
Document Number: 252046-041

Intel® 64 and IA-32 Architectures
Software Developer’s Manual 

Documentation Changes

February 2014

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata 
that may cause the product to deviate from published specifications. Current characterized errata are 
documented in the specification updates.



2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS.  NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.  EXCEPT AS PROVIDED
IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY
OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal
injury or death.  SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL
INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND
EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES
ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE
DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.  Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined".  Intel reserves these for future definition
and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  The information
here is subject to change without notice.  Do not finalize a design with this information.

Intel, the Intel logo, Pentium, Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trademarks of Intel Corporation in the U.S.
and/or other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copyright © 1997-2014 Intel Corporation. All rights reserved.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents

Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Summary Tables of Changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Documentation Changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9



Revision History

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Revision Description Date

-001 • Initial release November 2002

-002
•  Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been 

incorporated in the published Software Developer’s manual
December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len 

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI 

Discussion

February 2003

-004 • Removed Documentation changes 1-17.
• Added Documentation changes 1-24. June 2003

-005 • Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007 • Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008 • Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012 • Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the 

document.
July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015 • Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017 • Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019 • Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Added Documentation Changes 20-27. May 2007

-021 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1-6

November 2007

-022 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-6

August 2008

-023 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-21

March 2009



Revision History

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

§

-024 • Removed Documentation Changes 1-21
• Added Documentation Changes 1-16

June 2009

-025 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

September 2009

-026 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-15

December 2009

-027 • Removed Documentation Changes 1-15
• Added Documentation Changes 1-24

March 2010

-028 • Removed Documentation Changes 1-24
• Added Documentation Changes 1-29

June 2010

-029 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

September 2010

-030 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

January 2011

-031 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

April 2011

-032 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-14

May 2011

-033 • Removed Documentation Changes 1-14
• Added Documentation Changes 1-38

October 2011

-034 • Removed Documentation Changes 1-38
• Added Documentation Changes 1-16

December 2011

-035 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

March 2012

-036 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-17

May 2012

-037 • Removed Documentation Changes 1-17
• Added Documentation Changes 1-28

August 2012

-038 • Removed Documentation Changes 1-28
• Add Documentation Changes 1-22

January 2013

-039 • Removed Documentation Changes 1-22
• Add Documentation Changes 1-17

June 2013

-040 • Removed Documentation Changes 1-17
• Add Documentation Changes 1-24

September 2013

-041 • Removed Documentation Changes 1-24
• Add Documentation Changes 1-20

February 2014

Revision Description Date



Revision History

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Preface

This document is an update to the specifications contained in the Affected Documents table below. This 
document is a compilation of device and documentation errata, specification clarifications and changes. It is 
intended for hardware system manufacturers and software developers of applications, operating systems, or 
tools.

Affected Documents

Nomenclature
Documentation Changes include typos, errors, or omissions from the current published specifications. These 
will be incorporated in any new release of the specification.

Document Title Document Number/
Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture 253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A: Instruction Set 
Reference, A-M 253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B: Instruction Set 
Reference, N-Z 253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C: Instruction Set 
Reference 326018

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System 
Programming Guide, Part 1 253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System 
Programming Guide, Part 2 253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C: System 
Programming Guide, Part 3 326019
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Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and IA-32 architectures. This 
table uses the following notations:

Codes Used in Summary Tables
Change bar to left of table row indicates this erratum is either new or modified from the previous version of the 
document.

Documentation Changes
No. DOCUMENTATION CHANGES

1 Updates to Chapter 2, Volume 1

2 Updates to Chapter 3, Volume 1

3 Updates to Chapter 13, Volume 1

4 Updates to Chapter 3, Volume 2A

5 Updates to Chapter 4, Volume 2B

6 Updates to Chapter 5, Volume 2C

7 Updates to Appendix A, Volume 2C

8 Updates to Chapter 10, Volume 3A

9 Updates to Chapter 13, Volume 3A

10 Updates to Chapter 14, Volume 3B

11 Updates to Chapter 17, Volume 3B

12 Updates to Chapter 18, Volume 3B

13 Updates to Chapter 19, Volume 3B

14 Updates to Chapter 24, Volume 3B

15 Updates to Chapter 25, Volume 3C

16 Updates to Chapter 27, Volume 3C

17 Updates to Chapter 28, Volume 3C

18 Updates to Chapter 35, Volume 3C

19 Updates to Appendix B, Volume 3C

19 Updates to Appendix C, Volume 3C
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Documentation Changes

1. Updates to Chapter 2, Volume 1
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1: Basic Architecture.

------------------------------------------------------------------------------------------

...

2.1.9 The Intel® Pentium® M Processor (2003-2006)
The Intel Pentium M processor family is a high performance, low power mobile processor family with microarchi-
tectural enhancements over previous generations of IA-32 Intel mobile processors. This family is designed for 
extending battery life and seamless integration with platform innovations that enable new usage models (such as 
extended mobility, ultra thin form-factors, and integrated wireless networking).

Its enhanced microarchitecture includes:
• Support for Intel Architecture with Dynamic Execution
• A high performance, low-power core manufactured using Intel’s advanced process technology with copper 

interconnect
• On-die, primary 32-KByte instruction cache and 32-KByte write-back data cache
• On-die, second-level cache (up to 2 MByte) with Advanced Transfer Cache Architecture
• Advanced Branch Prediction and Data Prefetch Logic
• Support for MMX technology, Streaming SIMD instructions, and the SSE2 instruction set
• A 400 or 533 MHz, Source-Synchronous Processor System Bus
• Advanced power management using Enhanced Intel SpeedStep® technology

2.1.10 The Intel® Pentium® Processor Extreme Edition (2005) 
The Intel Pentium processor Extreme Edition introduced dual-core technology. This technology provides advanced 
hardware multi-threading support. The processor is based on Intel NetBurst microarchitecture and supports SSE, 
SSE2, SSE3, Hyper-Threading Technology, and Intel 64 architecture.

See also:
• Section 2.2.2, “Intel NetBurst® Microarchitecture”
• Section 2.2.3, “Intel® Core™ Microarchitecture”
• Section 2.2.7, “SIMD Instructions”
• Section 2.2.8, “Intel® Hyper-Threading Technology”
• Section 2.2.9, “Multi-Core Technology”
• Section 2.2.10, “Intel® 64 Architecture”

...
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2.1.12 The Intel® Xeon® Processor 5100, 5300 Series and Intel® Core™2 Processor Family 
(2006)

The Intel Xeon processor 3000, 3200, 5100, 5300, and 7300 series, Intel Pentium Dual-Core, Intel Core 2 
Extreme, Intel Core 2 Quad processors, and Intel Core 2 Duo processor family support Intel 64 architecture; they 
are based on the high-performance, power-efficient Intel® Core microarchitecture built on 65 nm process tech-
nology. The Intel Core microarchitecture includes the following innovative features:
• Intel® Wide Dynamic Execution to increase performance and execution throughput
• Intel® Intelligent Power Capability to reduce power consumption
• Intel® Advanced Smart Cache which allows for efficient data sharing between two processor cores
• Intel® Smart Memory Access to increase data bandwidth and hide latency of memory accesses
• Intel® Advanced Digital Media Boost which improves application performance using multiple generations of 

Streaming SIMD extensions 

The Intel Xeon processor 5300 series, Intel Core 2 Extreme processor QX6800 series, and Intel Core 2 Quad 
processors support Intel quad-core technology.

2.1.13 The Intel® Xeon® Processor 5200, 5400, 7400 Series and Intel® Core™2 Processor 
Family (2007)

The Intel Xeon processor 5200, 5400, and 7400 series, Intel Core 2 Quad processor Q9000 Series, Intel Core 2 
Duo processor E8000 series support Intel 64 architecture; they are based on the Enhanced Intel® Core microar-
chitecture using 45 nm process technology. The Enhanced Intel Core microarchitecture provides the following 
improved features:
• A radix-16 divider, faster OS primitives further increases the performance of Intel® Wide Dynamic Execution. 
• Improves Intel® Advanced Smart Cache with Up to 50% larger level-two cache and up to 50% increase in 

way-set associativity. 
• A 128-bit shuffler engine significantly improves the performance of Intel® Advanced Digital Media Boost and 

SSE4.

Intel Xeon processor 5400 series and Intel Core 2 Quad processor Q9000 Series support Intel quad-core tech-
nology. Intel Xeon processor 7400 series offers up to six processor cores and an L3 cache up to 16 MBytes.

2.1.14 The Intel® Atom™ Processor Family (2008)
The first generation of Intel® AtomTM processors are built on 45 nm process technology. They are based on a new 
microarchitecture, Intel® AtomTM microarchitecture, which is optimized for ultra low power devices. The Intel® 
AtomTM microarchitecture features two in-order execution pipelines that minimize power consumption, increase 
battery life, and enable ultra-small form factors. The initial Intel Atom Processor family and subsequent generations 
including Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series provide the following features:
• Enhanced Intel® SpeedStep® Technology
• Intel® Hyper-Threading Technology
• Deep Power Down Technology with Dynamic Cache Sizing
• Support for instruction set extensions up to and including Supplemental Streaming SIMD Extensions 3 

(SSSE3).
• Support for Intel® Virtualization Technology
• Support for Intel® 64 Architecture (excluding Intel Atom processor Z5xx Series)
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2.1.15 The Intel® Atom™ Processor Family Based on Silvermont Microarchitecture (2013)
Intel Atom Processor C2xxx, E3xxx, S1xxx series are based on the Silvermont microarchitecture. Processors based on the Silvermont 
microarchitecture supports instruction set extensions up to and including SSE4.2, AESNI, and PCLMULQDQ.

2.1.16 The Intel® Core™i7 Processor Family (2008)
The Intel Core i7 processor 900 series support Intel 64 architecture; they are based on Intel® microarchitecture 
code name Nehalem using 45 nm process technology. The Intel Core i7 processor and Intel Xeon processor 5500 
series include the following innovative features:
• Intel® Turbo Boost Technology converts thermal headroom into higher performance. 
• Intel® HyperThreading Technology in conjunction with Quadcore to provide four cores and eight threads. 
• Dedicated power control unit to reduce active and idle power consumption.
• Integrated memory controller on the processor supporting three channel of DDR3 memory.
• 8 MB inclusive Intel® Smart Cache.
• Intel® QuickPath interconnect (QPI) providing point-to-point link to chipset.
• Support for SSE4.2 and SSE4.1 instruction sets.
• Second generation Intel Virtualization Technology.

...

2.1.20 The Second Generation Intel® Core™ Processor Family (2011)
The Second Generation Intel Core processor family spans Intel Core i7, i5 and i3 processors based on the Sandy 
Bridge microarchitecture. They are built from 32 nm process technology and have innovative features including:
• Intel Turbo Boost Technology for Intel Core i5 and i7 processors
• Intel Hyper-Threading Technology. 
• Enhanced Intel Smart Cache and integrated memory controller.
• Processor graphics and built-in visual features like Intel® Quick Sync Video, Intel® InsiderTM etc.
• Range of instruction set support up to AVX, AESNI, PCLMULQDQ, SSE4.2 and SSE4.1.

Intel Xeon processors 12xx series are also based on the Sandy Bridge microarchitecture.

Intel Xeon processors E5 2xxx series are based on the Sandy Bridge-E microarchitecture and provide support for 
multiple sockets.

2.1.21 The Third Generation Intel® Core™ Processor Family (2012)
The Third Generation Intel Core processor family spans Intel Core i7, i5 and i3 processors based on the Ivy Bridge 
microarchitecture. Intel Xeon processors v2 1200 series are also based on the Ivy Bridge microarchitecture.

Intel Xeon processors E5 v2 2xxx series are based on the Ivy Bridge-EP microarchitecture and provide support for 
multiple sockets.

2.1.22 The Fourth Generation Intel® Core™ Processor Family (2013)
The Fourth Generation Intel Core processor family spans Intel Core i7, i5 and i3 processors based on the Haswell 
microarchitecture. Intel Xeon processors v3 1200 series are also based on the Haswell microarchitecture.
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...

2. Updates to Chapter 3, Volume 1
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1: Basic Architecture.

------------------------------------------------------------------------------------------

...

3.7.5.1  Specifying an Offset in 64-Bit Mode
The offset part of a memory address in 64-bit mode can be specified directly as a static value or through an 
address computation made up of one or more of the following components:
• Displacement — An 8-bit, 16-bit, or 32-bit value.
• Base — The value in a 64-bit general-purpose register.
• Index — The value in a 64-bit general-purpose register.
• Scale factor — A value of 2, 4, or 8 that is multiplied by the index value.

The base and index value can be specified in one of sixteen available general-purpose registers in most cases. See 
Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A.

The following unique combination of address components is also available.
• RIP + Displacement ⎯ In 64-bit mode, RIP-relative addressing uses a signed 32-bit displacement to 

calculate the effective address of the next instruction by sign-extend the 32-bit value and add to the 64-bit 
value in RIP.

...

3. Updates to Chapter 13, Volume 1
Change bars show changes to Chapter 13 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1: Basic Architecture.

------------------------------------------------------------------------------------------

...
The XSAVE feature set extends the functionality of the FXSAVE and FXRSTOR instructions (see Section 10.5, 
“FXSAVE and FXRSTOR Instructions”) by supporting the saving and restoring of processor state in addition to the 
x87 execution environment (x87 state) and the registers used by the streaming SIMD extensions (SSE state). 

The XSAVE feature set comprises eight instructions. XGETBV and XSETBV allow software to read and write the 
extended control register XCR0, which controls the operation of the XSAVE feature set. XSAVE, XSAVEOPT, 
XSAVEC, and XSAVES are four instructions that save processor state to memory; XRSTOR and XRSTORS are 
corresponding instructions that load processor state from memory. XGETBV, XSAVE, XSAVEOPT, XSAVEC, and 
XRSTOR can be executed at any privilege level; XSETBV, XSAVES, and XRSTORS can be executed only if CPL = 0.

The XSAVE feature set organizes the state that manages into state components. Operation of the instructions 
is based on state-component bitmaps that have the same format as XCR0: each bit corresponds to a state 
component. Section 13.1 discusses these state components and bitmaps in more detail.

Section 13.2 describes how the processor enumerates support for the XSAVE feature set and for XSAVE-enabled 
features (those features that require use of the XSAVE feature set for their enabling). Section 13.3 explains how 
software can enable the XSAVE feature set and XSAVE-enabled features.
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The XSAVE feature set allows saving and loading processor state from a region of memory called an XSAVE area. 
Section 13.4 presents details of the XSAVE area and its organization. Each XSAVE-supported state component is 
associated with a section of the XSAVE area. Section 13.5 describes in detail each of the XSAVE-supported state 
components.

Section 13.7 through Section 13.12 describe the operation of XSAVE, XRSTOR, XSAVEOPT, XSAVEC, XSAVES, and 
XRSTORS, respectively.

13.1 XSAVE-MANAGED FEATURES AND STATE-COMPONENT BITMAPS
The XSAVE feature set supports the saving and restoring of state components, each of which is a discrete set of 
processor registers (or parts of registers). In general, each such state component corresponds to a particular CPU 
feature. Such a feature is XSAVE-managed. Some XSAVE-managed features use registers in multiple state 
components.

The XSAVE feature set organizes the state components of the XSAVE-managed features using state-component 
bitmaps. A state-component bitmap comprises 64 bits; each bit in such a bitmap corresponds to a single state 
component. The following bits are currently defined in state-component bitmaps:
• Bit 0 corresponds to the state component used for the x87 FPU execution environment (x87 state). See 

Section 13.5.1.
• Bit 1 corresponds to the state component used for registers used by the streaming SIMD extensions (SSE 

state). See Section 13.5.2.
• Bit 2 corresponds to the state component used for the additional register state used by the Intel® Advanced 

Vector Extensions (AVX state). See Section 13.5.3.

Bits 62:3 are not currently defined in state-component bitmaps and are reserved for future expansion. Bit 63 is 
used for special functionality in some bitmaps and does not correspond to any state component.

The state component corresponding to bit i of state-component bitmaps is called state component i. Thus, x87 
state is state component 0; SSE state is state component 1; and AVX state is state component 2.

The XSAVE feature set uses state-component bitmaps in multiple ways. Most of the instructions use an implicit 
operand (in EDX:EAX), called the instruction mask, which is the state-component bitmap that specifies the 
state components on which the instruction operates.

Extended control register XCR0 contains a state-component bitmap that specifies the state components that soft-
ware has enabled the full XSAVE feature set to manage. If the bit corresponding to a state component is clear in 
XCR0, the following instructions in the XSAVE feature set will not operate on that state component, regardless of 
the value of the instruction mask: XSAVE, XRSTOR, XSAVEOPT, and XSAVEC. Details of the operation of these 
instructions are given in Section 13.7 through Section 13.10.

The IA32_XSS MSR (index DA0H) contains a state-component bitmap that specifies the state components that 
software has enabled XSAVES and XRSTORS to manage. If the bit corresponding to a state component is clear in 
the logical-OR of XCR0 and IA32_XSS (XCR0 | IA32_XSS), XSAVES and XRSTORS will not operate on that state 
component, regardless of the value of the instruction mask. Details of the operation of these instructions are 
given in Section 13.11 and Section 13.12.

Some XSAVE-managed features can be used only if XCR0 has been configured so that the features’ state compo-
nents can be managed by the XSAVE feature set. Such state components and features are XSAVE-enabled. In 
general, the processor will not modify (or allow modification of) the registers of any XSAVE-enabled state compo-
nent if the bit corresponding to that state component is clear in XCR0. If an XSAVE-managed feature has not been 
fully enabled in XCR0, execution of any instruction defined for that feature causes an invalid-opcode exception 
(#UD).

As will be explained in Section 13.3, the XSAVE feature set is enabled only if CR4.OSXSAVE[bit 18] = 1. If 
CR4.OSXSAVE = 0, the processor treats XSAVE-enabled state components and features as if all bits in XCR0 were 
clear; the state components cannot be modified and the features’ instructions cannot be executed.
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The state components for x87 state and for SSE state are XSAVE-managed but not XSAVE-enabled. The proces-
sors allows modification to this state, and it allows execution of the x87 FPU instructions and the SSE instructions, 
regardless of the value of CR4.OSXSAVE and XCR0.

13.2 ENUMERATION OF CPU SUPPORT FOR XSAVE INSTRUCTIONS AND 
XSAVE-SUPPORTED FEATURES

A processor enumerates support for the XSAVE feature set and for features supported by that feature set using 
the CPUID instruction. The following items provide specific details:
• CPUID.1:ECX.XSAVE[bit 26] enumerates general support for the XSAVE feature set:

— If this bit is 0, the processor does not support any of the following instructions: XGETBV, XRSTOR, 
XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and XSETBV; the processor provides no further 
enumeration through CPUID function 0DH (see below).

— If this bit is 1, the processor supports the following instructions: XGETBV, XRSTOR, XSAVE, and XSETBV.1 
Further enumeration is provided through CPUID function 0DH.

CR4.OSXSAVE can be set to 1 if and only if CPUID.1:ECX.XSAVE[bit 26] is enumerated as 1.
• CPUID function 0DH enumerates details of CPU support through a set of sub-functions. Software selects a 

specific sub-function by the value placed in the ECX register. The following items provide specific details:

— CPUID function 0DH, sub-function 0.

• EDX:EAX is a bitmap of all the state components that can be managed using the full XSAVE feature 
set. A bit can be set in XCR0 if and only if the corresponding bit is set in this bitmap. Every processor 
that supports the XSAVE feature set will set EAX[0] (x87 state) and EAX[1] (SSE state).

If EAX[i] = 1 (for 1 < i < 32) or EDX[i–32] = 1 (for 32 ≤ i < 63), sub-function i enumerates details for 
state component i (see below).

• ECX enumerates the size (in bytes) required by the XSAVE instruction for an XSAVE area containing all 
the state components supported by this processor.

• EBX enumerates the size (in bytes) required by the XSAVE instruction for an XSAVE area containing all 
the state components corresponding to bits currently set in XCR0.

— CPUID function 0DH, sub-function 1.

• EAX[0] enumerates support for the XSAVEOPT instruction. The instruction is supported if and only if 
this bit is 1. If EAX[0] = 0, execution of XSAVEOPT causes an invalid-opcode exception (#UD).

• EAX[1] enumerates support for compaction extensions to the XSAVE feature set. The following are 
supported if this bit is 1:

— The compacted format of the extended region of XSAVE areas (see Section 13.4.3). 

— The XSAVEC instruction. If EAX[1] = 0, execution of XSAVEC causes a #UD.

— Execution of the compacted form of XRSTOR (see Section 13.8).

• EAX[2] enumerates support for execution of XGETBV with ECX = 1. This allows software to determine 
the state of the init optimization. See Section 13.6.

• EAX[3] enumerates support for XSAVES, XRSTORS, and the IA32_XSS MSR. If EAX[3] = 0, execution 
of XSAVES or XRSTORS causes a #UD; an attempt to access the IA32_XSS MSR using RDMSR or 

1. If CPUID.1:ECX.XSAVE[bit 26] = 1, XGETBV and XSETBV may be executed with ECX = 0 (to read and write XCR0). Any support for 
execution of these instructions with other values of ECX is enumerated separately.
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WRMSR causes a general-protection exception (#GP). Every processor that sets EAX[3] (XSAVES, 
XRSTORS, IA32_XSS) will also set EAX[1] (the compaction extensions).

• EAX[31:4] are reserved.

• EBX enumerates the size (in bytes) required by the XSAVES instruction for an XSAVE area containing 
all the state components corresponding to bits currently set in XCR0 | IA32_XSS.

• EDX:ECX is a bitmap of all the state components that can be managed by XSAVES and XRSTORS but 
not by the rest of the XSAVE feature set. A bit can be set in the IA32_XSS MSR if and only if the corre-
sponding bit is set in this bitmap.

NOTE
In summary, the XSAVE feature set supports state component i (0 ≤ i < 63) if one of the following 
is true: (1) i < 32 and CPUID.(EAX=0DH,ECX=0):EAX[i] = 1; (2) i ≥ 32 and 
CPUID.(EAX=0DH,ECX=0):EAX[i–32] = 1; (3) i < 32 and CPUID.(EAX=0DH,ECX=1):ECX[i] = 1; 
or (4) i ≥ 32 and CPUID.(EAX=0DH,ECX=1):EDX[i–32] = 1. The full XSAVE feature set supports 
state component i if (1) or (2) holds; if (3) or (4) holds, support is limited to XSAVES and 
XRSTORS.

— CPUID function 0DH, sub-function i (i > 1). This sub-function enumerates details for state component i. If 
the XSAVE feature set supports state component i (see note above), the following items provide specific 
details:

• EAX enumerates the size (in bytes) required for state component i.

• If the full XSAVE feature set supports state component i, EBX enumerates the offset (in bytes, from 
the base of the XSAVE area) of the section used for state component i. (This offset applies only when 
the standard format for the extended region of the XSAVE area is being used; see Section 13.4.3.)

• If support for state component i is limited to XSAVES and XRSTORS, EBX returns 0.

• If the full XSAVE feature set supports state component i, ECX[0] return 0; if support is limited to 
XSAVES and XRSTORS, ECX[0] returns 1.

• ECX[31:1] and EDX return 0.

If the XSAVE feature set does not support state component i, sub-function i returns 0 in EAX, EBX, ECX, 
and EDX.

13.3 ENABLING THE XSAVE FEATURE SET AND XSAVE-SUPPORTED FEATURES
Software enables the XSAVE feature set by setting CR4.OSXSAVE[bit 18] to 1 (e.g., with the MOV to CR4 instruc-
tion). If this bit is 0, execution of any of XGETBV, XRSTOR, XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and 
XSETBV causes an invalid-opcode exception (#UD).

When CR4.OSXSAVE = 1 and CPL = 0, executing the XSETBV instruction with ECX = 0 writes the 64-bit value in 
EDX:EAX to XCR0 (EAX is written to XCR0[31:0] and EDX to XCR0[63:32]). (Execution of the XSETBV instruction 
causes a general-protection fault — #GP — if CPL > 0.) The following items provide details regarding individual 
bits in XCR0:
• XCR0[0] is associated with x87 state. (See Section 13.5.1.) XCR0[0] is always 1. It has that value coming out 

of RESET. Executing the XSETBV instruction causes a general-protection fault (#GP) if ECX = 0 and EAX[0] is 
0.

• XCR0[1] is associated with SSE state. (See Section 13.5.2.) Software can use the XSAVE feature set to 
manage SSE state only if XCR0[1] = 1. The value of XCR0[1] in no way determines whether software can 
execute SSE instructions (these instructions can be executed even if XCR0[1] = 0).
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XCR0[1] is 0 coming out of RESET. As noted in Section 13.2, every processor that supports the XSAVE feature 
set allows software to set XCR0[1].

• XCR0[2] is associated with AVX state. (See Section 13.5.3.) Software can use the XSAVE feature set to 
manage AVX state only if XCR0[2] = 1. In addition, software can execute AVX instructions only if 
CR4.OSXSAVE = XCR0[1] = XCR0[2] = 1. Otherwise, any execution of an AVX instruction causes an invalid-
opcode exception (#UD).
XCR0[2] is 0 coming out of RESET. As noted in Section 13.2, a processor allows software to set XCR0[2] if and 
only if CPUID.(EAX=0DH,ECX=0):EAX[2] = 1. In addition, executing the XSETBV instruction causes a 
general-protection fault (#GP) if ECX = 0 and EAX[2:1] has the value 10b; that is, software cannot enable the 
XSAVE feature set for AVX state but not for SSE state.

• XCR0[63:3] are reserved. Executing the XSETBV instruction causes a general-protection fault (#GP) if ECX = 
0 and any bit in EDX or EAX[31:3] is not 0. Bits 63:3 of XCR0 are all 0 coming out of RESET.

Software operating with CPL > 0 may need to determine whether the XSAVE feature set and certain XSAVE-
supported features have been enabled. If CPL > 0, execution of the MOV from CR4 instruction causes a general-
protection fault (#GP). The following alternative mechanisms allow software to discover the enabling of the 
XSAVE feature set regardless of CPL:
• The value of CR4.OSXSAVE is returned in CPUID.1:ECX.OSXSAVE[bit 27]. If software determines that 

CPUID.1:ECX.OSXSAVE = 1, the processor supports the XSAVE feature set and the feature set has been 
enabled in CR4.

• Executing the XGETBV instruction with ECX = 0 returns the value of XCR0 in EDX:EAX. XGETBV can be 
executed if CR4.OSXSAVE = 1 (if CPUID.1:ECX.OSXSAVE = 1), regardless of CPL.

Thus, software can use the following algorithm to determine the support and enabling for the XSAVE feature set:

1. Use CPUID to discover the value of CPUID.1:ECX.OSXSAVE.

— If the bit is 0, either the XSAVE feature set is not supported by the processor or has not been enabled by 
software. Either way, the XSAVE feature set is not available, nor are XSAVE-enabled features such as AVX.

— If the bit is 1, the processor supports the XSAVE feature set — including the XGETBV instruction — and it 
has been enabled by software. The XSAVE feature set can be used to manage x87 state (because XCR0[0] 
is always 1). Software requiring more detailed information can go on to the next step.

2. Execute XGETBV with ECX = 0 to discover the value of XCR0. If XCR0[1] = 1, the XSAVE feature set can be 
used to manage SSE state. If XCR0[2] = 1, the XSAVE feature set can be used to manage AVX state and 
software can execute AVX instructions.

The IA32_XSS MSR is zero coming out of RESET. If CR4.OSXSAVE = 1, CPUID.(EAX=0DH,ECX=1):EAX[3] = 1, 
and CPL = 0, executing the WRMSR instruction with ECX = DA0H writes the 64-bit value in EDX:EAX to the 
IA32_XSS MSR (EAX is written to IA32_XSS[31:0] and EDX to IA32_XSS[63:32]). There is no mechanism by 
which software operating with CPL > 0 can discover the value of the IA32_XSS MSR.

13.4 XSAVE AREA
The XSAVE feature set includes instructions that save and restore the XSAVE-managed state components to and 
from memory: XSAVE, XSAVEOPT, XSAVEC, and XSAVES (for saving); and XRSTOR and XRSTORS (for restoring). 
The processor organizes the state components in a region of memory called an XSAVE area. Each of the save and 
restore instructions takes a memory operand that specifies the 64-byte aligned base address of the XSAVE area 
on which it operates.

Every XSAVE area has the following format:
• The legacy region. The legacy region of an XSAVE area comprises the 512 bytes starting at the area’s base 

address. It is used to manage the state components for x87 state and SSE state. The legacy region is 
described in more detail in Section 13.4.1.
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• The XSAVE header. The XSAVE header of an XSAVE area comprises the 64 bytes starting at an offset of 512 
bytes from the area’s base address. The XSAVE header is described in more detail in Section 13.4.2.

• The extended region. The extended region of an XSAVE area starts at an offset of 576 bytes from the area’s 
base address. It is used to manage the state components other than those for x87 state and SSE state. The 
extended region is described in more detail in Section 13.4.3. The size of the extended region is determined 
by which state components the processor supports and which bits have been set in XCR0 and IA32_XSS (see 
Section 13.3).

...

13.4.2 XSAVE Header
The XSAVE header of an XSAVE area comprises the 64 bytes starting at offset 512 from the area’s base address:
• Bytes 7:0 of the XSAVE header is a state-component bitmap (see Section 13.1) called XSTATE_BV. It 

identifies the state components in the XSAVE area.
• Bytes 15:8 of the XSAVE header is a state-component bitmap called XCOMP_BV. It is used as follows:

— XCOMP_BV[63] indicates the format of the extended region of the XSAVE area (see Section 13.4.3). If it 
is clear, the standard format is used. If it is set, the compacted format is used; XCOMP_BV[62:0] provide 
format specifics as specified in Section 13.4.3.

— XCOMP_BV[63] determines which form of the XRSTOR instruction is used. If the bit is set, the compacted 
form is used; otherwise, the standard form is used. See Section 13.8.

— All bits in XCOMP_BV should be 0 if the processor does not support the compaction extensions to the 
XSAVE feature set.

• Bytes 63:16 of the XSAVE header are reserved.

Section 13.7 through Section 13.9 provide details of how instructions in the XSAVE feature set use the XSAVE 
header of an XSAVE area.

13.4.3 Extended Region of an XSAVE Area
The extended region of an XSAVE area starts at byte offset 576 from the area’s base address. The size of the 
extended region is determined by which state components the processor supports and which bits have been set 
in XCR0 | IA32_XSS (see Section 13.3).

The XSAVE feature set uses the extended area for each state component i, where i ≥ 2. (Currently, the extended 
region is used only for AVX state, which is state component 2.)

The extended region of the an XSAVE area may have one of two formats. The standard format is supported by 
all processors that support the XSAVE feature set; the compacted format is supported by those processors that 
support the compaction extensions to the XSAVE feature set (see Section 13.2). Bit 63 of the XCOMP_BV field in 
the XSAVE header (see Section 13.4.2) indicates which format is used.

The following items describe the two possible formats of the extended region:
• Standard format. Each state component i (i ≥ 2) is located at the byte offset from the base address of the 

XSAVE area enumerated in CPUID.(EAX=0DH,ECX=i):EBX. (CPUID.(EAX=0DH,ECX=i):EAX enumerates the 
number of bytes required for state component i.

• Compacted format. Each state component i (i ≥ 2) is located at a byte offset from the base address of the 
XSAVE area based on the XCOMP_BV field in the XSAVE header:

— If XCOMP_BV[i] = 0, state component i is not in the XSAVE area.

— If XCOMP_BV[i] = 1, the following items apply:
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• If XCOMP_BV[j] = 0 for every j, 2 ≤ j < i, state component i is located at a byte offset 576 from the 
base address of the XSAVE area. (This item applies if i is the first bit set in bits 62:2 of the XCOMP_BV; 
it implies that state component i is located at the beginning of the extended region.) 

• Otherwise, let j, 2 ≤ j < i, be the greatest value such that XCOMP_BV[j] = 1. Then state component i 
is located at a byte offset X from the location of state component j, where X is the number of bytes 
required for state component j as enumerated in CPUID.(EAX=0DH,ECX=j):EAX. (This item implies 
that state component i immediately follows the preceding state component whose bit is set in 
XCOMP_BV.)

...

13.5 XSAVE-MANAGED STATE
The section provides details regarding how the XSAVE feature set interacts with the various XSAVE-managed 
state components.

13.5.1 x87 State
Instructions in the XSAVE feature set can manage the same state of the x87 FPU execution environment (x87 
state) that can be managed using the FXSAVE and FXRSTOR instructions. They organize all x87 state in the 
legacy region of the XSAVE area (see Section 13.4.1). This region is illustrated in Table 13-1; the x87 state is 
listed below, along with details of its interactions with the XSAVE feature set:
• Bytes 1:0, 3:2, 7:6. These are used for the x87 FPU Control Word (FCW), the x87 FPU Status Word (FSW), 

and the x87 FPU Opcode (FOP), respectively.
• Byte 4 is used for an abridged version of the x87 FPU Tag Word (FTW). The following items describe its usage:

— For each j, 0 ≤ j ≤ 7, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save a 0 into bit j of byte 4 if x87 FPU data 
register STj has a empty tag; otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save a 1 into bit j of 
byte 4.

— For each j, 0 ≤ j ≤ 7, XRSTOR and XRSTORS establish the tag value for x87 FPU data register STj as 
follows. If bit j of byte 4 is 0, the tag for STj in the tag register for that data register is marked empty 
(11B); otherwise, the x87 FPU sets the tag for STj based on the value being loaded into that register (see 
below).

• Bytes 15:8 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 11:8 are used for bits 31:0 of the x87 FPU Instruction Pointer Offset (FIP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 13:12 are used for x87 FPU Instruction Pointer 
Selector (FPU CS). Otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save these bytes as 0000H, 
and XRSTOR and XRSTORS ignore them.

• Bytes 15:14 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 15:8 are used for the full 64 bits of FIP.
• Bytes 23:16 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 19:16 are used for bits 31:0 of the x87 FPU Data Pointer Offset (FDP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 21:20 are used for x87 FPU Data Pointer 
Selector (FPU DS). Otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save these bytes as 0000H; 
and XRSTOR and XRSTORS ignore them.
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• Bytes 23:22 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 23:16 are used for the full 64 bits of FDP.
• Bytes 31:24 are used for SSE state (see Section 13.5.2).
• Bytes 159:32 are used for the registers ST0–ST7 (MM0–MM7). Each of the 8 register is allocated a 128-bit 

region, with the low 80 bits used for the register and the upper 48 bits unused.

x87 state is XSAVE-managed but not XSAVE-enabled. The XSAVE feature set can operate on x87 state only if the 
feature set is enabled (CR4.OSXSAVE = 1).1 Software can otherwise use x87 state even if the XSAVE feature set 
is not enabled.

13.5.2 SSE State
Instructions in the XSAVE feature set can manage the registers used by the streaming SIMD extensions (SSE 
state) just as the FXSAVE and FXRSTOR instructions do. They organize all SSE state in the legacy region of the 
XSAVE area (see Section 13.4.1). This region is illustrated in Table 13-1; the SSE state is listed below, along with 
details of its interactions with the XSAVE feature set:
• Bytes 23:0 are used for x87 state (see Section 13.5.1).
• Bytes 27:24 are used for the MXCSR register. XRSTOR and XRSTORS generate general-protection faults 

(#GP) in response to attempts to set any of the reserved bits of the MXCSR register.2

• Bytes 31:28 are used for the MXCSR_MASK value. XRSTOR and XRSTORS ignore this field.
• Bytes 159:32 are used for x87 state.
• Bytes 287:160 are used for the registers XMM0–XMM7. 
• Bytes 415:288 are used for the registers XMM8–XMM15. These fields are used only in 64-bit mode. 

Executions of XSAVE, XSAVEOPT, XSAVEC, and XSAVES outside 64-bit mode do not write to these bytes; 
executions of XRSTOR and XRSTORS outside 64-bit mode do not read these bytes and do not update XMM8–
XMM15.

SSE state is XSAVE-managed but not XSAVE-enabled. The XSAVE feature set can operate on SSE state only if the 
feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage SSE state (XCR0[1] = 1). Soft-
ware can otherwise use SSE state even if the XSAVE feature set is not enabled or has not been configured to 
manage SSE state.

13.5.3 AVX State
The register state used by the Intel® Advanced Vector Extensions (AVX) comprises the MXCSR register and 16 
256-bit vector registers called YMM0–YMM15. The low 128 bits of each register YMMi is identical to the SSE 
register XMMi. Thus, the new state register state added by AVX comprises the upper 128 bits of the registers 
YMM0–YMM15. These 16 128-bit values are denoted YMM0_H–YMM15_H and are collectively called AVX state.

As noted in Section 13.1, the XSAVE feature set manages AVX state as state component 2. Thus, AVX state is 
located in the extended region of the XSAVE area (see Section 13.4.3).

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=2):EBX enumerates the offset (in bytes, from the base of the 
XSAVE area) of the section of the extended region of the XSAVE area used for AVX state (when the standard 
format of the extended region is used). CPUID returns this value as 576. CPUID.(EAX=0DH,ECX=2):EAX enumer-
ates the size (in bytes) required for AVX state. CPUID returns this value as 256.

1. The processor ensures that XCR0[0] is always 1.

2. While MXCSR and MXCSR_MASK are part of SSE state, their treatment by the XSAVE feature set is not the same as that of the 
XMM registers. See Section 13.7 through Section 13.11 for details.
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The XSAVE feature set partitions YMM0_H–YMM15_H in a manner similar to that used for the XMM registers (see 
Section 13.5.2). Bytes 127:0 of the AVX-state section are used YMM0_H–YMM7_H. Bytes 255:128 are used for 
YMM8_H–YMM15_H, but they are used only in 64-bit mode. (Executions of XSAVE, XSAVEOPT, XSAVEC, and 
XSAVES outside 64-bit mode do not write to bytes 255:128; executions of XRSTOR and XRSTORS outside 64-bit 
mode do not read these bytes and do not update YMM8_H–YMM15_H.)

AVX state is XSAVE-managed and XSAVE-enabled. The XSAVE feature set can operate on AVX state only if the 
feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage AVX state (XCR0[1] = XCR0[2] = 
1).1 AVX instructions cannot be used unless the XSAVE feature set is enabled and has been configured to manage 
AVX state.

13.5.4 PROCESSOR TRACKING OF XSAVE-MANAGED STATE
The XSAVEOPT, XSAVEC, and XSAVES instructions use two optimization to reduce the amount of data that they 
write to memory. They avoid writing data for any state component known to be in its initial configuration (the init 
optimization). In addition, if either XSAVEOPT or XSAVES is using the same XSAVE area as that used by the 
most recent execution of XRSTOR or XRSTORS, it may avoid writing data for any state component whose config-
uration is known not to have been modified since then (the modified optimization). (XSAVE does not use these 
optimizations, and XSAVEC does not use the modified optimization.) The operation of XSAVEOPT, XSAVEC, and 
XSAVES are described in more detail in Section 13.9 through Section 13.11.

A processor can support the init and modified optimizations with special hardware that tracks the state compo-
nents that might benefit from those optimizations. Other implementations might not include such hardware; such 
a processor would always consider each such state component as not in its initial configuration and as modified 
since the last execution of XRSTOR or XRSTORS.

The following notation describes the state of the init and modified optimizations:
• XINUSE denotes the state-component bitmap corresponding to the init optimization. If XINUSE[i] = 0, state 

component i is known to be in its initial configuration; otherwise XINUSE[i] = 1. On a processor that does not 
support the init optimization, XINUSE[i] is always 1 for every value of i.
Although MXCSR is part of SSE state (state component 1), a processor may maintain XINUSE[1] as 0 
(indicating that SSE state is in its initial configuration) even if MXCSR does not have its RESET value of 1F80H; 
XINUSE[1] = 0 implies only that the XMM registers are all 0. See Section 13.7 through Section 13.10 for 
details of how the various instructions treat XINUSE[1] and MXCSR.
Executing XGETBV with ECX = 1 returns in EDX:EAX the logical-AND of XCR0 and the current value of the 
XINUSE state-component bitmap. Such an execution of XGETBV always sets EAX[1] to 1 if XCR0[1] = 1 and 
MXCSR does not have its RESET value of 1F80H. Section 13.2 explains how software can determine whether 
a processor supports this use of XGETBV.

• XMODIFIED denotes the state-component bitmap corresponding to the modified optimization. If 
XMODIFIED[i] = 0, state component i is known not to have been modified since the most recent execution of 
XRSTOR or XRSTORS; otherwise XMODIFIED[i] = 1. On a processor that does not support the modified 
optimization, XMODIFIED[i] is always 1 for every value of i.

A processor that implements the modified optimization saves information about the most recent execution of 
XRSTOR or XRSTORS in a quantity called XRSTOR_INFO, a 4-tuple containing the following: (1) the CPL; 
(2) whether the logical processor was in VMX non-root operation; (3) the linear address of the XSAVE area; and 
(4) the XCOMP_BV field in the XSAVE area. An execution of XSAVEOPT or XSAVES uses the modified optimization 
only if that execution corresponds to XRSTOR_INFO on these four parameters.

1. The XSETBV instruction can set XCR0[2] to 1 only if it is also setting XCR0[1] to 1. XSETBV generates a general-protection excep-
tion (#GP) in response to attempts to set XCR0[2] while clearing XCR0[1].
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This mechanism implies that, depending on details of the operating system, the processor might determine that 
an execution of XSAVEOPT by one user application corresponds to an earlier execution of XRSTOR by a different 
application. For this reason, Intel recommends the application software not use the XSAVEOPT instruction.

13.7 OPERATION OF XSAVE
The XSAVE instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair 
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction 
mask. The logical-AND of XCR0 and the instruction mask is the requested-feature bitmap (RFBM) of the state 
components to be saved.

The following conditions cause execution of the XSAVE instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.1

If none of these conditions cause a fault, execution of XSAVE reads the XSTATE_BV field of the XSAVE header (see 
Section 13.4.2) and writes it back to memory, setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:
• If RFBM[i] = 0, XSTATE_BV[i] is not changed.
• If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i]. Section 13.6 defines XINUSE to describe the 

processor init optimization. The nature of that optimization implies the following:

— If state component i is in its initial configuration, XSTATE_BV[i] may be written with either 0 or 1.

— If state component i is not in its initial configuration, XSTATE_BV[i] is written with 1.
The following items specify the initial configuration each state component (for the purposes of defining the 
values saved to XSTATE_BV):

— x87 state. x87 state is in its initial configuration if the following all hold: FCW is 037FH; FSW is 0000H; 
FTW is FFFFH; FPU CS and FPU DS are each 0000H; FPU IP and FPU DP are each 00000000_00000000H; 
each of ST0–ST7 is 0000_00000000_00000000H.

— SSE state. In 64-bit mode, SSE state is in its initial configuration if each of XMM0–XMM15 is 0. Outside 
64-bit mode, SSE state is in its initial configuration if each of XMM0–XMM7 is 0. The value of the MXCSR 
register considered; XSTATE_BV[1] may be written with 0 even if MXCSR does not have its RESET value 
of 1F80H.

— AVX state. In 64-bit mode, AVX state is in its initial configuration if each of YMM0_H–YMM15_H is 0. 
Outside 64-bit mode, AVX state is in its initial configuration if each of YMM0_H–YMM7_H is 0.

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and 
operation determined by instruction prefixes.

The XSAVE instruction does not write any part of the XSAVE header other than the XSTATE_BV field; in particular, 
it does not write to the XCOMP_BV field.

Execution of XSAVE saves into the XSAVE area those state components corresponding to bits that are set in RFBM. 
State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state 
component i, 2 ≤ i ≤ 62, is located in the extended region; the XSAVE instruction always uses the standard format 
for the extended region (see Section 13.4.3).

The MXCSR register and MXCSR_MASK are part of SSE state (see Section 13.5.2) and are thus associated with 
RFBM[1]. However, the XSAVE instruction also saves these values when RFBM[2] = 1 (even if RFBM[1] = 0).

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.
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See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and 
operation determined by instruction prefixes.

13.8 OPERATION OF XRSTOR
The XRSTOR instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair 
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction 
mask. The logical-AND of XCR0 and the instruction mask is the requested-feature bitmap (RFBM) of the state 
components to be restored.

The following conditions cause execution of the XRSTOR instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.1

After checking for these faults, the XRSTOR instruction reads the XCOMP_BV field in the XSAVE area’s XSAVE 
header (see Section 13.4.2). If XCOMP_BV[63] = 0, the standard form of XRSTOR is executed (see Section 
13.8.1); otherwise, the compacted form of XRSTOR is executed (see Section 13.8.2).

See Section 13.2 for details of how to determine whether the compacted form of XRSTOR is supported.

13.8.1 Standard Form of XRSTOR
The standard from of XRSTOR performs additional fault checking. Either of the following conditions causes a 
general-protection exception (#GP):
• The XSTATE_BV field of the XSAVE header sets a bit that is not set in XCR0.
• Bytes 23:8 of the XSAVE header are not all 0 (this implies that all bits in XCOMP_BV are 0).2

If none of these conditions cause a fault, the processor updates each state component i for which RFBM[i] = 1. 
XRSTOR updates state component i based on the value of bit i in the XSTATE_BV field of the XSAVE header:
• If XSTATE_BV[i] = 0, the state component is set to its initial configuration. The following items specify the 

initial configuration that XRSTOR establishes for each state component:

— If XSTATE_BV[0] = 0, XRSTOR initializes x87 state by establishing the following: FCW is set to 037FH; 
FSW is set to 0000H; FTW is set to FFFFH; FPU CS and FPU DS are each set to 0000H; FPU IP and FPU DP 
are each set to 00000000_00000000H; each of ST0–ST7 is set to 0000_00000000_00000000H.

— If XSTATE_BV[1] = 0, behavior is mode-dependent. In 64-bit mode, XRSTOR initializes SSE state by 
setting each of XMM0–XMM15 to 0. Outside 64-bit mode, XRSTOR initializes SSE state by setting each of 
XMM0–XMM7 to 0. In either case, XRSTOR loads MXCSR from the XSAVE area whenever RFBM[1] = 1, 
even when XSTATE_BV[1] = 0.

— If XSTATE_BV[2] = 0, behavior is mode-dependent. In 64-bit mode, XRSTOR initializes AVX state by 
setting each of YMM0_H–YMM15_H to 0. Outside 64-bit mode, XRSTOR initializes AVX state by setting 
each of YMM0_H–YMM7_H to 0. In either case, XRSTOR loads MXCSR from the XSAVE area whenever 
RFBM[2] = 1, even when XSTATE_BV[2] = 0.

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

2. Bytes 63:24 of the XSAVE header are also reserved. Software should ensure that bytes 63:16 of the XSAVE header are all 0 in 
any XSAVE area. (Bytes 15:8 should also be 0 if the XSAVE area is to be used on a processor that does not support the compaction 
extensions to the XSAVE feature set.)
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• If XSTATE_BV[i] = 1, the state component is loaded with data from the XSAVE area. See Section 13.5 for 
specifics for each state component and for details regarding mode-specific operation and operation 
determined by instruction prefixes.
State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state 
component i, 2 ≤ i ≤ 62, is located in the extended region; the standard form of the XRSTOR instruction uses 
the standard format for the extended region (see Section 13.4.3).

The MXCSR register is part of state component 1, SSE state (see Section 13.5.2). However, the standard form of 
XRSTOR loads the MXCSR register from memory whenever the RFBM[1] (SSE) or RFBM[2] (AVX) is set. The stan-
dard form of XRSTOR causes a general-protection exception (#GP) if it would load MXCSR with an illegal value.

13.8.2 Compacted Form of XRSTOR
The compacted from of XRSTOR performs additional fault checking. Any of the following conditions causes a #GP:
• The XCOMP_BV field of the XSAVE header sets a bit in the range 62:0 that is not set in XCR0.
• The XSTATE_BV field of the XSAVE header sets a bit (including bit 63) that is not set in XCOMP_BV.
• Bytes 63:16 of the XSAVE header are not all 0.

If none of these conditions cause a fault, the processor updates each state component i for which RFBM[i] = 1. 
XRSTOR updates state component i based on the value of bit i in the XSTATE_BV field of the XSAVE header:
• If XSTATE_BV[i] = 0, the state component is set to its initial configuration. The following items specify the 

initial configuration that XRSTOR establishes for each state component:

— If XSTATE_BV[0] = 0, XRSTOR initializes x87 state by establishing the following: FCW is set to 037FH; 
FSW is set to 0000H; FTW is set to FFFFH; FPU CS and FPU DS are each set to 0000H; FPU IP and FPU DP 
are each set to 00000000_00000000H; each of ST0–ST7 is set to 0000_00000000_00000000H.

— If XSTATE_BV[1] = 0, behavior is mode-dependent. In 64-bit mode, XRSTOR initializes SSE state by 
setting each of XMM0–XMM15 to 0. Outside 64-bit mode, XRSTOR initializes SSE state by setting each of 
XMM0–XMM7 to 0. In either case, XRSTOR initializes MXCSR to the 1F80H. (This differs from the standard 
from of XRSTOR, which loads MXCSR from the XSAVE area whenever either RFBM[1] or RFBM[2] is set.)

— If XSTATE_BV[2] = 0, behavior is mode-dependent. In 64-bit mode, XRSTOR initializes AVX state by 
setting each of YMM0_H–YMM15_H to 0. Outside 64-bit mode, XRSTOR initializes AVX state by setting 
each of YMM0_H–YMM7_H to 0.

State component i is set to its initial configuration if RFBM[i] = 1 and XSTATE_BV[i] = 0 — even if 
XCOMP_BV[i] = 0. This is true for all values of i, including 0 (x87 state) and 1 (SSE state).

• If XSTATE_BV[i] = 1, the state component is loaded with data from the XSAVE area.1 See Section 13.5 for 
specifics for each state component and for details regarding mode-specific operation and operation 
determined by instruction prefixes.
State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state 
component i, 2 ≤ i ≤ 62, is located in the extended region; the compacted form of the XRSTOR instruction uses 
the compacted format for the extended region (see Section 13.4.3).
The MXCSR register is part of SSE state (see Section 13.5.2) and is thus loaded from memory if RFBM[1] = 
XSTATE_BV[i] = 1. The compacted form of XRSTOR does not consider RFBM[2] (AVX) when determining 
whether to update MXCSR. (This is a difference from the standard form of XRSTOR.) The compacted form of 
XRSTOR causes a general-protection exception (#GP) if it would load MXCSR with an illegal value.

1. Earlier fault checking ensured that, if XSTATE_BV[i] = 1 at this point, XCOMP_BV[i] = 1.
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13.8.3 XRSTOR and the Init and Modified Optimizations
Execution of the XRSTOR instruction causes the processor to update is tracking for the init and modified optimi-
zations (see Section 13.6). The following items provide details:
• The processor updates its tracking for the init optimization as follows:

— If RFBM[i] = 0, XINUSE[i] is not changed.

— If RFBM[i] = 1 and XSTATE_BV[i] = 0, state component i may be tracked as init; XINUSE[i] may be set to 
0 or 1. (As noted in Section 13.6, a processor need not implement the init optimization for state 
component i; a processor that does not implicitly maintains XINUSE[i] = 1 at all times.)

— If RFBM[i] = 1 and XSTATE_BV[i] = 1, state component i is tracked as not init; XINUSE[i] is set to 1.
• The processor updates its tracking for the modified optimization and records information about the XRSTOR 

execution for future interaction with the XSAVEOPT and XSAVES instructions (see Section 13.9 and Section 
13.11) as follows:

— If RFBM[i] = 0, state component i is tracked as modified; XMODIFIED[i] is set to 1.

— If RFBM[i] = 1, state component i may be tracked as unmodified; XMODIFIED[i] may be set to 0 or 1. (As 
noted in Section 13.6, a processor need not implement the modified optimization for state component i; a 
processor that does not implicitly maintains XMODIFIED[i] = 1 at all times.)

— XRSTOR_INFO is set to the 4-tuple w,x,y,z, where w is the CPL (0); x is 1 if the logical processor is in 
VMX non-root operation and 0 otherwise; y is the linear address of the XSAVE area; and z is XCOMP_BV. 
In particular, the standard form of XRSTOR always sets z to all zeroes, while the compacted form of 
XRSTORS never does so (because it sets at least bit 63 to 1).

13.9 OPERATION OF XSAVEOPT
The operation of XSAVEOPT is similar to that of XSAVE. Unlike XSAVE, XSAVEOPT uses the init optimization (by 
which it may omit saving state components that are in their initial configuration) and the modified optimization 
(by which it may omit saving state components that have not been modified since the last execution of XRSTOR); 
see Section 13.6. See Section 13.2 for details of how to determine whether XSAVEOPT is supported.

The XSAVEOPT instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair 
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction 
mask. The logical (bitwise) AND of XCR0 and the instruction mask is the requested-feature bitmap (RFBM) of 
the state components to be saved.

The following conditions cause execution of the XSAVEOPT instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.1

If none of these conditions cause a fault, execution of XSAVEOPT reads the XSTATE_BV field of the XSAVE header 
(see Section 13.4.2) and writes it back to memory, setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:
• If RFBM[i] = 0, XSTATE_BV[i] is not changed.
• If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i]. Section 13.6 defines XINUSE to describe the 

processor init optimization. The nature of that optimization implies the following:

— If the state component is in its initial configuration, XSTATE_BV[i] may be written with either 0 or 1.

— If the state component is not in its initial configuration, XSTATE_BV[i] is written with 1.

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.
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Section 13.7 specifies the initial configuration of each state component.

The XSAVEOPT instruction does not write any part of the XSAVE header other than the XSTATE_BV field; in partic-
ular, it does not write to the XCOMP_BV field.

Execution of XSAVEOPT saves into the XSAVE area those state components corresponding to bits that are set in 
RFBM (subject to the optimizations below). State components 0 and 1 are located in the legacy region of the 
XSAVE area (see Section 13.4.1). Each state component i, 2 ≤ i ≤ 62, is located in the extended region; the 
XSAVEOPT instruction always uses the standard format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and 
operation determined by instruction prefixes.

Execution of XSAVEOPT performs two optimizations that reduce the amount of data written to memory:
• Init optimization.

If XINUSE[i] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). (See below for 
exceptions made for MXCSR.)

• Modified optimization.
Each execution of XRSTOR and XRSTORS establishes XRSTOR_INFO as a 4-tuple w,x,y,z (see Section 13.8.3 
and Section 13.12). Execution of XSAVEOPT uses the modified optimization only if the following all hold for the 
current value of XRSTOR_INFO:

— w = CPL;

— x = 1 if and only if the logical processor is in VMX non-root operation;

— y is the linear address of the XSAVE area being used by XSAVEOPT; and

— z is 00000000_00000000H. (This last item implies that XSAVEOPT does not use the modified optimization 
if the last execution of XRSTOR used the compacted form, or if an execution of XRSTORS followed the last 
execution of XRSTOR.)

If XSAVEOPT uses the modified optimization and XMODIFIED[i] = 0 (see Section 13.6), state component i is 
not saved to the XSAVE area.
(In practice, the benefit of the modified optimization for state component i depends on how the processor is 
tracking state component i; see Section 13.6. Limitations on the tracking ability may result in state 
component i being saved even though is in the same configuration that was loaded by the previous execution 
of XRSTOR.)
Depending on details of the operating system, an execution of XSAVEOPT by a user application might use the 
modified optimization when the most recent execution of XRSTOR was by a different application. Because of 
this, Intel recommends the application software not use the XSAVEOPT instruction.

The MXCSR register and MXCSR_MASK are part of SSE state (see Section 13.5.2) and are thus associated with 
bit 1 of RFBM. However, the XSAVEOPT instruction also saves these values when RFBM[2] = 1 (even if RFBM[1] = 
0). The init and modified optimizations do not apply to the MXCSR register and MXCSR_MASK.

13.10 OPERATION OF XSAVEC
The operation of XSAVEC is similar to that of XSAVE. Two main differences are (1) XSAVEC uses the compacted 
format for the extended region of the XSAVE area; and (2) XSAVEC uses the init optimization (see Section 13.6). 
Unlike XSAVEOPT, XSAVEC does not use the modified optimization. See Section 13.2 for details of how to deter-
mine whether XSAVEC is supported.

The XSAVEC instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair 
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction 
mask. The logical (bitwise) AND of XCR0 and the instruction mask is the requested-feature bitmap (RFBM) of 
the state components to be saved.
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The following conditions cause execution of the XSAVEC instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.1

If none of these conditions cause a fault, execution of XSAVEC writes the XSTATE_BV field of the XSAVE header 
(see Section 13.4.2), setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:2

• If RFBM[i] = 0, XSTATE_BV[i] is written as 0.
• If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i] (see below for an exception made for 

XSTATE_BV[1]). Section 13.6 defines XINUSE to describe the processor init optimization. The nature of that 
optimization implies the following:

— If state component i is in its initial configuration, XSTATE_BV[i] may be written with either 0 or 1.

— If state component i is not in its initial configuration, XSTATE_BV[i] is written with 1.
Section 13.7 specifies the initial configuration of each state component. However, if RFBM[1] = 1 and MXCSR 
does not have the value 1F80H, XSAVEC writes XSTATE_BV[1] as 1 even if XINUSE[1] = 0.

The XSAVEC instructions sets bit 63 of the XCOMP_BV field of the XSAVE header while writing RFBM[62:0] to 
XCOMP_BV[62:0]. The XSAVEC instruction does not write any part of the XSAVE header other than the 
XSTATE_BV and XCOMP_BV fields.

Execution of XSAVEC saves into the XSAVE area those state components corresponding to bits that are set in 
RFBM. State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each 
state component i, 2 ≤ i ≤ 62, is located in the extended region; the XSAVEC instruction always uses the 
compacted format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and 
operation determined by instruction prefixes.

Execution of XSAVEC performs the init optimization to reduce the amount of data written to memory. If 
XINUSE[i] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). However, if RFBM[1] = 1 
and MXCSR does not have the value 1F80H, XSAVEC writes saves all of state component 1 (SSE — including the 
XMM registers) even if XINUSE[1] = 0. Unlike the XSAVE instruction, RFBM[2] does not determine whether 
XSAVEC saves MXCSR and MXCSR_MASK.

13.11 OPERATION OF XSAVES
The operation of XSAVES is similar to that of XSAVEC. The main differences are (1) XSAVES can be executed only 
if CPL = 0; (2) XSAVES can operate on the state components whose bits are set in XCR0 | IA32_XSS; and 
(3) XSAVES uses the modified optimization (see Section 13.6). See Section 13.2 for details of how to determine 
whether XSAVES is supported.

The XSAVES instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair 
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction 
mask. EDX:EAX & (XCR0 | IA32_XSS) (the logical AND the instruction mask with the logical OR of XCR0 and 
IA32_XSS) is the requested-feature bitmap (RFBM) of the state components to be saved.

The following conditions cause execution of the XSAVES instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

2. Unlike the XSAVE and XSAVEOPT instructions, the XSAVEC instruction does not read the XSTATE_BV field of the XSAVE header.
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• If CPL > 0 or if the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) 
occurs.1

If none of these conditions cause a fault, execution of XSAVES writes the XSTATE_BV field of the XSAVE header 
(see Section 13.4.2), setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:
• If RFBM[i] = 0, XSTATE_BV[i] is written as 0.
• If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i] (see below for an exception made for 

XSTATE_BV[1]). Section 13.6 defines XINUSE to describe the processor init optimization. The nature of that 
optimization implies the following:

— If state component i is in its initial configuration, XSTATE_BV[i] may be written with either 0 or 1.

— If state component i is not in its initial configuration, XSTATE_BV[i] is written with 1.
Section 13.7 specifies the initial configuration of each state component. However, if RFBM[1] = 1 and MXCSR 
does not have the value 1F80H, XSAVEC writes XSTATE_BV[1] as 1 even if XINUSE[1] = 0.

The XSAVES instructions sets bit 63 of the XCOMP_BV field of the XSAVE header while writing RFBM[62:0] to 
XCOMP_BV[62:0]. The XSAVEC instruction does not write any part of the XSAVE header other than the 
XSTATE_BV and XCOMP_BV fields.

Execution of XSAVES saves into the XSAVE area those state components corresponding to bits that are set in 
RFBM. State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each 
state component i, 2 ≤ i ≤ 62, is located in the extended region; the XSAVES instruction always uses the 
compacted format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and 
operation determined by instruction prefixes.

Execution of XSAVES performs the init optimization to reduce the amount of data written to memory. If 
XINUSE[i] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). However, if RFBM[1] = 1 
and MXCSR does not have the value 1F80H, XSAVES writes saves all of state component 1 (SSE — including the 
XMM registers) even if XINUSE[1] = 0.

Like XSAVEOPT, XSAVES may perform the modified optimization. Each execution of XRSTOR and XRSTORS estab-
lishes XRSTOR_INFO as a 4-tuple w,x,y,z (see Section 13.8.3 and Section 13.12). Execution of XSAVES uses the 
modified optimization only if the following all hold:
• w = CPL;
• x = 1 if and only if the logical processor is in VMX non-root operation;
• y is the linear address of the XSAVE area being used by XSAVEOPT; and
• z[63] is 1 and z[62:0] = RFBM[62:0]. (This last item implies that XSAVES does not use the modified optimi-

zation if the last execution of XRSTOR used the standard form and followed the last execution of XRSTORS.)

If XSAVES uses the modified optimization and XMODIFIED[i] = 0 (see Section 13.6), state component i is not 
saved to the XSAVE area.

13.12 OPERATION OF XRSTORS
The operation of XRSTORS is similar to that of XRSTOR. Two main differences are (1) XRSTORS can be executed 
only if CPL = 0; (2) XRSTORS can operate on the state components whose bits are set in XCR0 | IA32_XSS; and 
(3) XRSTORS has only a compacted form (no standard form; see Section 13.8). See Section 13.2 for details of 
how to determine whether XRSTORS is supported.

The XRSTORS instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair 
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction 

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.
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mask. EDX:EAX & (XCR0 | IA32_XSS) (the logical AND the instruction mask with the logical OR of XCR0 and 
IA32_XSS) is the requested-feature bitmap (RFBM) of the state components to be restored.

The following conditions cause execution of the XRSTOR instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If CPL > 0 or if the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) 

occurs.1

After checking for these faults, the XRSTORS instruction reads the first 64 bytes of the XSAVE header, including 
the XSTATE_BV and XCOMP_BV fields (see Section 13.4.2). A #GP occurs if any of the following conditions hold 
for the values read:
• XCOMP_BV[63] = 0.
• XCOMP_BV sets a bit in the range 62:0 that is not set in XCR0 | IA32_XSS.
• XSTATE_BV sets a bit (including bit 63) that is not set in XCOMP_BV.
• Bytes 63:16 of the XSAVE header are not all 0.

If none of these conditions cause a fault, the processor updates each state component i for which RFBM[i] = 1. 
XRSTORS updates state component i based on the value of bit i in the XSTATE_BV field of the XSAVE header:
• If XSTATE_BV[i] = 0, the state component is set to its initial configuration. The following items specify the 

initial configuration that XRSTORS establishes for each state component:

— If XSTATE_BV[0] = 0, XRSTORS initializes x87 state by establishing the following: FCW is set to 037FH; 
FSW is set to 0000H; FTW is set to FFFFH; FPU CS and FPU DS are each set to 0000H; FPU IP and FPU DP 
are each set to 00000000_00000000H; each of ST0–ST7 is set to 0000_00000000_00000000H.

— If XSTATE_BV[1] = 0, behavior is mode-dependent. In 64-bit mode, XRSTORS initializes SSE state by 
setting each of XMM0–XMM15 to 0. Outside 64-bit mode, XRSTORS initializes SSE state by setting each of 
XMM0–XMM7 to 0. In either case, XRSTORS initializes MXCSR to the 1F80H.

— If XSTATE_BV[2] = 0, behavior is mode-dependent. In 64-bit mode, XRSTORS initializes AVX state by 
setting each of YMM0_H–YMM15_H to 0. Outside 64-bit mode, XRSTORS initializes AVX state by setting 
each of YMM0_H–YMM7_H to 0.

State component i is set to its initial configuration if RFBM[i] = 1 and XSTATE_BV[i] = 0 — even if 
XCOMP_BV[i] = 0. This is true for all values of i, including 0 (x87 state) and 1 (SSE state).

• If XSTATE_BV[i] = 1, the state component is loaded with data from the XSAVE area.2 See Section 13.5 for 
specifics for each state component and for details regarding mode-specific operation and operation 
determined by instruction prefixes.
State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state 
component i, 2 ≤ i ≤ 62, is located in the extended region; XRSTORS uses the compacted format for the 
extended region (see Section 13.4.3).
The MXCSR register is part of SSE state (see Section 13.5.2) and is thus loaded from memory if RFBM[1] = 
XSTATE_BV[i] = 1. XRSTORS causes a general-protection exception (#GP) if it would load MXCSR with an 
illegal value.

Like XRSTOR, execution of XRSTORS causes the processor to update is tracking for the init and modified optimi-
zations (see Section 13.6 and Section 13.8.3). The following items provide details:
• The processor updates its tracking for the init optimization as follows:

— If RFBM[i] = 0, XINUSE[i] is not changed.

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

2. Earlier fault checking ensured that, if XSTATE_BV[i] = 1 at this point, XCOMP_BV[i] = 1.
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— If RFBM[i] = 1 and XSTATE_BV[i] = 0, state component i may be tracked as init; XINUSE[i] may be set to 
0 or 1.

— If RFBM[i] = 1 and XSTATE_BV[i] = 1, state component i is tracked as not init; XINUSE[i] is set to 1.
• The processor updates its tracking for the modified optimization and records information about the XRSTORS 

execution for future interaction with the XSAVEOPT and XSAVES instructions as follows:

— If RFBM[i] = 0, state component i is tracked as modified; XMODIFIED[i] is set to 1.

— If RFBM[i] = 1, state component i may be tracked as unmodified; XMODIFIED[i] may be set to 0 or 1.

— XRSTOR_INFO is set to the 4-tuple w,x,y,z, where w is the CPL; x is 1 if the logical processor is in VMX 
non-root operation and 0 otherwise; y is the linear address of the XSAVE area; and z is XCOMP_BV (this 
implies that z[63] = 1).

...

4. Updates to Chapter 3, Volume 2A
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A: Instruction Set Reference, A-M.

------------------------------------------------------------------------------------------
...

CPUID—CPU Identification

Instruction Operand Encoding

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can 
set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction 
operates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.1 The 
instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well). 
For example, the following pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value 
and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F A2 CPUID NP Valid Valid Returns processor identification and feature 
information to the EAX, EBX, ECX, and EDX 
registers, as determined by input entered in 
EAX (in some cases, ECX as well).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.
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Table 3-17 shows information returned, depending on the initial value loaded into the EAX register. Table 3-18 
shows the maximum CPUID input value recognized for each family of IA-32 processors on which CPUID is imple-
mented. 

Two types of information are returned: basic and extended function information. If a value entered for CPUID.EAX 
is higher than the maximum input value for basic or extended function for that processor then the data for the 
highest basic information leaf is returned. For example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *) 
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *) 
CPUID.EAX = 0BH (* Returns Extended Topology Enumeration leaf. *) 
CPUID.EAX = 0CH (* INVALID: Returns the same information as CPUID.EAX = 0BH. *) 
CPUID.EAX = 80000008H (* Returns linear/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0BH. *)

If a value entered for CPUID.EAX is less than or equal to the maximum input value and the leaf is not supported 
on that processor then 0 is returned in all the registers. For example, using the Intel Core i7 processor, the 
following is true:

CPUID.EAX = 07H (*Returns EAX=EBX=ECX=EDX=0. *)

When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence 
on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution 
guarantees that any modifications to flags, registers, and memory for previous instructions are completed before 
the next instruction is fetched and executed.

See also: 

“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A.

“Caching Translation Information” in Chapter 4, “Paging,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A.

Table 3-17   Information Returned by CPUID Instruction

Initial EAX 
Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 3-18)
“Genu”
“ntel”
“ineI”

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see Figure 3-5)

Bits 07-00: Brand Index
Bits 15-08: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors in this physical package*. 
Bits 31-24: Initial APIC ID

Feature Information (see Figure 3-6 and Table 3-20)
Feature Information (see Figure 3-7 and Table 3-21)

NOTES: 
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the number of unique initial APIC

IDs reserved for addressing different logical processors in a physical package. This field is only valid if
CPUID.1.EDX.HTT[bit 28]= 1.
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02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 3-22)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX
EBX
ECX

EDX

Reserved.
Reserved.
Bits 00-31 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value 
in this register is reserved.)
Bits 32-63 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value 
in this register is reserved.)

NOTES: 
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models, use
the PSN flag (returned using CPUID) to check for PSN support before accessing the feature. 

See AP-485, Intel Processor Identification and the CPUID Instruction (Order Number 241618) for more 
information on PSN.

CPUID leaves > 3 < 80000000 are visible only when IA32_MISC_ENABLE.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf 

04H NOTES:
Leaf 04H output depends on the initial value in ECX.* 
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters for each level on page 3-177.

EAX Bits 04-00: Cache Type Field
0 = Null - No more caches
1 = Data Cache 
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Bits 07-05: Cache Level (starts at 1) 
Bit 08: Self Initializing cache level (does not need SW initialization)
Bit 09: Fully Associative cache

Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache**, *** 
Bits 31-26: Maximum number of addressable IDs for processor cores in the physical 
package**, ****, *****

EBX Bits 11-00: L = System Coherency Line Size**
Bits 21-12: P = Physical Line partitions**
Bits 31-22: W = Ways of associativity**

ECX Bits 31-00: S = Number of Sets**

Table 3-17   Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 32

EDX Bit 0: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads sharing this 
cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads sharing 
this cache.

Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 2: Complex Cache Indexing
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using all address bits.

Bits 31-03: Reserved = 0

NOTES:
* If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Invalid sub-leaves of EAX = 04H: 

ECX = n, n > 3.
** Add one to the return value to get the result. 
***The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique ini-

tial APIC IDs reserved for addressing different logical processors sharing this cache
**** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of unique 

Core_IDs reserved for addressing different processor cores in a physical package. Core ID is a subset of 
bits of the initial APIC ID. 

***** The returned value is constant for valid initial values in ECX. Valid ECX values start from 0. 

MONITOR/MWAIT Leaf 

05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor granularity) 
Bits 31-16: Reserved = 0

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor granularity) 
Bits 31-16: Reserved = 0

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported

Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled

Bits 31 - 02: Reserved 

EDX Bits 03 - 00: Number of C0* sub C-states supported using MWAIT
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 23 - 20: Number of C5* sub C-states supported using MWAIT
Bits 27 - 24: Number of C6* sub C-states supported using MWAIT
Bits 31 - 28: Number of C7* sub C-states supported using MWAIT
NOTE:
* The definition of C0 through C7 states for MWAIT extension are processor-specific C-states, not ACPI C-

states.

Thermal and Power Management Leaf 

Table 3-17   Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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06H EAX

EBX

Bit 00: Digital temperature sensor is supported if set
Bit 01: Intel Turbo Boost Technology Available (see description of IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved 
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bit 07: HWP. HWP base registers (IA32_PM_ENALBE[bit 0], IA32_HWP_CAPABILITIES, 
IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set.
Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set.
Bit 09: HWP_Activity_Window. IA32_HWP_REQUEST[bits 41:32] is supported if set.
Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUEST[bits 31:24] is supported if set.
Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set.
Bit 12: Reserved.
Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs are 
supported if set.
Bits 31 - 15: Reserved 
Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved 

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The 
capability to provide a measure of delivered processor performance (since last reset of the counters), as 
a percentage of expected processor performance at frequency specified in CPUID Brand String
Bits 02 - 01: Reserved = 0
Bit 03: The processor supports performance-energy bias preference if CPUID.06H:ECX.SETBH[bit 3] is set 
and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H)
Bits 31 - 04: Reserved = 0

EDX Reserved = 0

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)

07H Sub-leaf 0 (Input ECX = 0). *

EAX Bits 31-00: Reports the maximum input value for supported leaf 7 sub-leaves.

Table 3-17   Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01: IA32_TSC_ADJUST MSR is supported if 1.
Bit 02: Reserved
Bit 03: BMI1
Bit 04: HLE
Bit 05: AVX2
Bit 06: Reserved
Bit 07: SMEP. Supports Supervisor-Mode Execution Prevention if 1.
Bit 08: BMI2
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software that manages process-context 
identifiers.
Bit 11: RTM
Bit 12: Supports Platform Quality of Service Monitoring (PQM) capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.
Bit 14: Reserved.
Bit 15: Supports Platform Quality of Service Enforcement (PQE) capability if 1.
Bits 31:16: Reserved

ECX Reserved 

EDX Reserved

NOTE:
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Invalid sub-leaves of EAX = 07H: 

ECX = n, n > 0.

Direct Cache Access Information Leaf 

09H EAX

EBX

ECX

EDX

Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H)

Reserved 

Reserved 

Reserved 

Architectural Performance Monitoring Leaf 

0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring counter 
Bits 31 - 24: Length of EBX bit vector to enumerate architectural performance monitoring events

EBX Bit 00: Core cycle event not available if 1
Bit 01: Instruction retired event not available if 1
Bit 02: Reference cycles event not available if 1
Bit 03: Last-level cache reference event not available if 1
Bit 04: Last-level cache misses event not available if 1
Bit 05: Branch instruction retired event not available if 1
Bit 06: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

ECX Reserved = 0

Table 3-17   Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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EDX Bits 04 - 00: Number of fixed-function performance counters (if Version ID > 1)
Bits 12- 05: Bit width of fixed-function performance counters (if Version ID > 1)
Reserved = 0

Extended Topology Enumeration Leaf 

0BH NOTES:
Most of Leaf 0BH output depends on the initial value in ECX. 
The EDX output of leaf 0BH is always valid and does not vary with input value in ECX.
Output value in ECX[7:0] always equals input value in ECX[7:0].
For sub-leaves that return an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0.

 If an input value n in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with ECX > 
n also return 0 in ECX[15:8].

EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type*. 
All logical processors with the same next level ID share current level.
Bits 31-05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as shipped 
by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input
Bits 15 - 08: Level type***.
Bits 31 - 16:: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in this 
field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical processors 
available to BIOS/OS/Applications may be different from the value of EBX[15:0], depending on software 
and platform hardware configurations. 

*** The value of the “level type” field is not related to level numbers in any way, higher “level type” val-
ues do not mean higher levels. Level type field has the following encoding:
0 : invalid
1 : SMT
2 : Core
3-255 : Reserved

Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0). 

EAX Bits 31-00: Reports the valid bit fields of the lower 32 bits of XCR0. If a bit is 0, the corresponding bit 
field in XCR0 is reserved.
Bit 00: legacy x87 
Bit 01: 128-bit SSE
Bit 02: 256-bit AVX
Bits 31- 03: Reserved

Table 3-17   Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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EBX Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by 
enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save area 
are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the XSAVE/
XRSTOR save area required by all supported features in the processor, i.e all the valid bit fields in XCR0. 

EDX Bit 31-00: Reports the valid bit fields of the upper 32 bits of XCR0. If a bit is 0, the corresponding bit field 
in XCR0 is reserved.

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

0DH EAX Bits 31-04: Reserved

Bit 00: XSAVEOPT is available

Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set

Bit 02: Supports XGETBV with ECX = 1 if set

Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set

EBX Bits 31-00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.

ECX Bits 31-00: Reports the valid bit fields of the lower 32 bits of IA32_XSS. If a bit is 0, the corresponding bit 
field in IA32_XSS is reserved.

Bits 07-00: Reserved

Bit 08: IA32_XSS[bit 8] is supported if 1

Bits 31-09: Reserved

EDX Bits 31-00: Reports the valid bit fields of the upper 32 bits of IA32_XSS. If a bit is 0, the corresponding 
bit field in IA32_XSS is reserved.

Bits 31-00: Reserved

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX. 
Each valid sub-leaf index maps to a valid bit in either the XCR0 register or the IA32_XSS MSR starting 
at bit position 2.
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Invalid sub-leaves of EAX = 0DH: 

ECX = n, n > 2.

EAX Bits 31-0: The size in bytes (from the offset specified in EBX) of the save area for an extended state fea-
ture associated with a valid sub-leaf index, n. This field reports 0 if the sub-leaf index, n, does not map to 
a valid bit in the XCR0 register*.

EBX Bits 31-0: The offset in bytes of this extended state component’s save area from the beginning of the 
XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, is invalid*.

ECX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise, bit 0 is set if the sub-leaf index, n, maps 
to a valid bit in the IA32_XSS MSR, and bits 31-1 are reserved.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Platform QoS Monitoring Enumeration Sub-leaf (EAX = 0FH, ECX = 0)

Table 3-17   Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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0FH NOTES:
Leaf 0FH output depends on the initial value in ECX. 
Sub-leaf index 0 reports valid resource type starting at bit position 1 of EDX

EAX Reserved.

EBX Bits 31-0: Maximum range (zero-based) of RMID within this physical processor of all types.

ECX Reserved.

EDX Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS Monitoring if 1.
Bits 31:02: Reserved

L3 Cache QoS Monitoring Capability Enumeration Sub-leaf (EAX = 0FH, ECX = 1)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX. 

EAX Reserved.

EBX Bits 31-0: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes).

ECX Maximum range (zero-based) of RMID of this resource type.

EDX Bit 00: Supports L3 occupancy monitoring if 1.
Bits 31:01: Reserved

Platform QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = 0)

10H NOTES:
Leaf 10H output depends on the initial value in ECX. 
Sub-leaf index 0 reports valid resource identification (ResID) starting at bit position 1 of EDX

EAX Reserved.

EBX Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS Enforcement if 1.
Bits 31:02: Reserved

ECX Reserved.

EDX Reserved

L3 Cache QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = ResID =1)

10H NOTES:
Leaf 10H output depends on the initial value in ECX. 

EAX Bits 4:0: Length of the capacity bit mask for the corresponding ResID.
Bits 31:05: Reserved

EBX Bits 31-0: Bit-granular map of isolation/contention of allocation units.

ECX Bit 00: Reserved.
Bit 01: Updates of COS should be infrequent if 1.
Bits 31:02: Reserved

EDX Bits 15:0: Highest COS number supported for this ResID.
Bits 31:16: Reserved

Unimplemented CPUID Leaf Functions

Table 3-17   Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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40000000H 
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or feature information if the initial 
EAX value is in the range 40000000H to 4FFFFFFFH.

Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information (see 
Table 3-18).

EBX
ECX
EDX

Reserved
Reserved
Reserved

80000001H EAX

EBX

ECX

Extended Processor Signature and Feature Bits.

Reserved

Bit 00: LAHF/SAHF available in 64-bit mode
Bits 04-01 Reserved
Bit 05: LZCNT
Bits 07-06 Reserved
Bit 08: PREFETCHW
Bits 31-09 Reserved

EDX Bits 10-00: Reserved
Bit 11: SYSCALL/SYSRET available in 64-bit mode
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 25-21: Reserved = 0
Bit 26: 1-GByte pages are available if 1
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1
Bits 28: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

Table 3-17   Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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...

80000006H EAX
EBX

Reserved = 0
Reserved = 0

ECX

EDX

Bits 07-00: Cache Line size in bytes
Bits 11-08: Reserved
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0

NOTES:
* L2 associativity field encodings:

00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Bits 07-00: Reserved = 0
Bit 08: Invariant TSC available if 1
Bits 31-09: Reserved = 0

80000008H EAX Linear/Physical Address size 
Bits 07-00: #Physical Address Bits*
Bits 15-8: #Linear Address Bits
Bits 31-16: Reserved = 0

EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported should 

come from this field.

Table 3-17   Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor

Table 3-20  Feature Information Returned in the ECX Register 

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor supports this 
technology.

1 PCLMULQDQ PCLMULQDQ. A value of 1 indicates the processor supports the PCLMULQDQ instruction

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature. 

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the 
Debug Store feature to allow for branch message storage qualified by CPL.
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...

5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See 
Chapter 5, “Safer Mode Extensions Reference”.

7 EIST Enhanced Intel SpeedStep® technology. A value of 1 indicates that the processor supports this 
technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology. 

9 SSSE3 A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A 
value of 0 indicates the instruction extensions are not present in the processor

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode 
or shared mode. A value of 0 indicates this feature is not supported. See definition of the 
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.

11 SDBG A value of 1 indicates the processor supports IA32_DEBUG_INTERFACE MSR for silicon debug.

12 FMA A value of 1 indicates the processor supports FMA extensions using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is available. See the 
“CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes” section in this chapter for a 
description.

14 xTPR Update 
Control

xTPR Update Control. A value of 1 indicates that the processor supports changing 
IA32_MISC_ENABLE[bit 23]. 

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the processor supports the performance 
and debug feature indication MSR IA32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that 
software may set CR4.PCIDE to 1.

18 DCA  A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped 
device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1. 

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2. 

21 x2APIC A value of 1 indicates that the processor supports x2APIC feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT instruction.

24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer supports one-shot operation using a 
TSC deadline value.

25 AESNI A value of 1 indicates that the processor supports the AESNI instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the XSAVE/XRSTOR processor extended states 
feature, the XSETBV/XGETBV instructions, and XCR0.

27 OSXSAVE A value of 1 indicates that the OS has set CR4.OSXSAVE[bit 18] to enable the XSAVE feature set.

28 AVX A value of 1 indicates the processor supports the AVX instruction extensions.

29 F16C A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.

30 RDRAND A value of 1 indicates that processor supports RDRAND instruction.

31 Not Used Always returns 0.

Table 3-20  Feature Information Returned in the ECX Register  (Contd.)

Bit # Mnemonic Description
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Table 3-22   Encoding of CPUID Leaf 2 Descriptors 
 Value Type Description

00H General Null descriptor, this byte contains no information

01H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H TLB Instruction TLB: 4 MByte pages, fully associative, 2 entries

03H TLB Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H TLB Data TLB: 4 MByte pages, 4-way set associative, 8 entries

05H TLB Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H Cache 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H Cache 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

09H Cache 1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size

0AH Cache 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH TLB Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

0CH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

0DH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size

0EH Cache 1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size

1DH Cache 2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size

21H Cache 2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size

22H Cache 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector

23H Cache 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

24H Cache 2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size

25H Cache 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

29H Cache 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

2CH Cache 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H Cache 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size

40H Cache No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache

41H Cache 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H Cache 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H Cache 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H Cache 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H Cache 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H Cache 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H Cache 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

48H Cache 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size

49H Cache 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model 
06H);

2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH Cache 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH Cache 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH Cache 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size
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4DH Cache 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

4EH Cache 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

4FH TLB Instruction TLB: 4 KByte pages, 32 entries

50H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

55H TLB Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries

56H TLB Data TLB0: 4 MByte pages, 4-way set associative, 16 entries

57H TLB Data TLB0: 4 KByte pages, 4-way associative, 16 entries

59H TLB Data TLB0: 4 KByte pages, fully associative, 16 entries

5AH TLB Data TLB0: 2-MByte or 4 MByte pages, 4-way set associative, 32 entries

5BH TLB Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH TLB Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH TLB Data TLB: 4 KByte and 4 MByte pages,256 entries

60H Cache 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

61H TLB Instruction TLB: 4 KByte pages, fully associative, 48 entries

63H TLB Data TLB: 1 GByte pages, 4-way set associative, 4 entries

66H Cache 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H Cache 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H Cache 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Cache Trace cache: 12 K-μop, 8-way set associative

71H Cache Trace cache: 16 K-μop, 8-way set associative

72H Cache Trace cache: 32 K-μop, 8-way set associative

76H TLB Instruction TLB: 2M/4M pages, fully associative, 8 entries 

78H Cache 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H Cache 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7AH Cache 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7BH Cache 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7CH Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector

7DH Cache 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH Cache 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

80H Cache 2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size

82H Cache 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H Cache 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H Cache 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H Cache 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H Cache 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

Table 3-22   Encoding of CPUID Leaf 2 Descriptors  (Contd.)
 Value Type Description
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...

INPUT EAX = 0FH: Returns Platform Quality of Service (PQoS) Monitoring Enumeration Information

When CPUID executes with EAX set to 0FH and ECX = 0, the processor returns information about the bit-vector 
representation of QoS monitoring resource types that are supported in the processor and maximum range of 
RMID values the processor can use to monitor of any supported resource types. Each bit, starting from bit 1, 
corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or 
ResID) that software must use to query QoS monitoring capability available for that type. See Table 3-17.

A0H DTLB DTLB: 4k pages, fully associative, 32 entries

B0H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B1H TLB Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B2H TLB Instruction TLB: 4KByte pages, 4-way set associative, 64 entries

B3H TLB Data TLB: 4 KByte pages, 4-way set associative, 128 entries

B4H TLB Data TLB1: 4 KByte pages, 4-way associative, 256 entries

B5H TLB Instruction TLB: 4KByte pages, 8-way set associative, 64 entries

B6H TLB Instruction TLB: 4KByte pages, 8-way set associative, 128 entries

BAH TLB Data TLB1: 4 KByte pages, 4-way associative, 64 entries

C0H TLB Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries

C1H STLB Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries

C2H DTLB DTLB: 4 KByte/2 MByte pages, 4-way associative, 16 entries

CAH STLB Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries

D0H Cache 3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size

D1H Cache 3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size

D2H Cache 3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size

D6H Cache 3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size

D7H Cache 3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size

D8H Cache 3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size

DCH Cache 3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size

DDH Cache 3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size

DEH Cache 3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size

E2H Cache 3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size

E3H Cache 3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size

E4H Cache 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size

EAH Cache 3rd-level cache: 12MByte, 24-way set associative, 64 byte line size

EBH Cache 3rd-level cache: 18MByte, 24-way set associative, 64 byte line size

ECH Cache 3rd-level cache: 24MByte, 24-way set associative, 64 byte line size

F0H Prefetch 64-Byte prefetching

F1H Prefetch 128-Byte prefetching

FFH General CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters

Table 3-22   Encoding of CPUID Leaf 2 Descriptors  (Contd.)
 Value Type Description
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When CPUID executes with EAX set to 0FH and ECX = n (n >= 1, and is a valid ResID), the processor returns 
information software can use to program IA32_PQR_ASSOC, IA32_QM_EVTSEL MSRs before reading QoS data 
from the IA32_QM_CTR MSR.

INPUT EAX = 10H: Returns Platform Quality of Service (PQoS) Enforcement Enumeration Information

When CPUID executes with EAX set to 10H and ECX = 0, the processor returns information about the bit-vector 
representation of QoS Enforcement resource types that are supported in the processor. Each bit, starting from bit 
1, corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or 
ResID) that software must use to query QoS enforcement capability available for that type. See Table 3-17.

When CPUID executes with EAX set to 10H and ECX = n (n >= 1, and is a valid ResID), the processor returns 
information about available classes of service and range of QoS mask MSRs that software can use to configure 
each class of services using capability bit masks in the QoS Mask registers, IA32_resourceType_Mask_n.
...

IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor earlier than the 
Intel486 processor.

Operation

IA32_BIOS_SIGN_ID MSR ← Update with installed microcode revision number;

CASE (EAX) OF
EAX = 0:

EAX ← Highest basic function input value understood by CPUID;
EBX ← Vendor identification string;
EDX ← Vendor identification string;
ECX ← Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] ← Stepping ID; 
EAX[7:4] ← Model; 
EAX[11:8] ← Family; 
EAX[13:12] ← Processor type; 
EAX[15:14] ← Reserved;
EAX[19:16] ← Extended Model;
EAX[27:20] ← Extended Family;
EAX[31:28] ← Reserved;
EBX[7:0] ← Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] ← CLFLUSH Line Size;
EBX[16:23] ← Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] ← Initial APIC ID;
ECX ← Feature flags; (* See Figure 3-6. *)
EDX ← Feature flags; (* See Figure 3-7. *)

BREAK;
EAX = 2H:

EAX ← Cache and TLB information; 
 EBX ← Cache and TLB information; 
 ECX ← Cache and TLB information; 

EDX ← Cache and TLB information; 
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BREAK;
EAX = 3H:

EAX ← Reserved; 
 EBX ← Reserved; 
 ECX ← ProcessorSerialNumber[31:0]; 

(* Pentium III processors only, otherwise reserved. *)
EDX ← ProcessorSerialNumber[63:32]; 
(* Pentium III processors only, otherwise reserved. *

BREAK
EAX = 4H:

EAX ← Deterministic Cache Parameters Leaf; (* See Table 3-17. *)
EBX ← Deterministic Cache Parameters Leaf; 

 ECX ← Deterministic Cache Parameters Leaf; 
EDX ← Deterministic Cache Parameters Leaf; 

BREAK;
EAX = 5H:

EAX ← MONITOR/MWAIT Leaf; (* See Table 3-17. *)
 EBX ← MONITOR/MWAIT Leaf; 
 ECX ← MONITOR/MWAIT Leaf; 

EDX ← MONITOR/MWAIT Leaf; 
BREAK;
EAX = 6H:

EAX ← Thermal and Power Management Leaf; (* See Table 3-17. *)
 EBX ← Thermal and Power Management Leaf; 
 ECX ← Thermal and Power Management Leaf; 

EDX ← Thermal and Power Management Leaf; 
BREAK;
EAX = 7H:

EAX ← Structured Extended Feature Flags Enumeration Leaf; (* See Table 3-17. *)
EBX ← Structured Extended Feature Flags Enumeration Leaf; 

 ECX ← Structured Extended Feature Flags Enumeration Leaf; 
EDX ← Structured Extended Feature Flags Enumeration Leaf; 

BREAK;
EAX = 8H:

EAX ← Reserved = 0;
 EBX ← Reserved = 0; 
 ECX ← Reserved = 0; 

EDX ← Reserved = 0; 
BREAK;
EAX = 9H:

EAX ← Direct Cache Access Information Leaf; (* See Table 3-17. *)
 EBX ← Direct Cache Access Information Leaf; 
 ECX ← Direct Cache Access Information Leaf; 

EDX ← Direct Cache Access Information Leaf; 
BREAK;
EAX = AH:

EAX ← Architectural Performance Monitoring Leaf; (* See Table 3-17. *)
 EBX ← Architectural Performance Monitoring Leaf; 
 ECX ← Architectural Performance Monitoring Leaf; 

EDX ← Architectural Performance Monitoring Leaf; 



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 46

BREAK
EAX = BH:

EAX ← Extended Topology Enumeration Leaf; (* See Table 3-17. *)
EBX ← Extended Topology Enumeration Leaf; 

 ECX ← Extended Topology Enumeration Leaf; 
EDX ← Extended Topology Enumeration Leaf; 

BREAK;
EAX = CH:

EAX ← Reserved = 0;
 EBX ← Reserved = 0; 
 ECX ← Reserved = 0; 

EDX ← Reserved = 0; 
BREAK;
EAX = DH:

EAX ← Processor Extended State Enumeration Leaf; (* See Table 3-17. *)
 EBX ← Processor Extended State Enumeration Leaf; 
 ECX ← Processor Extended State Enumeration Leaf; 

EDX ← Processor Extended State Enumeration Leaf; 
BREAK;
EAX = EH:

EAX ← Reserved = 0;
 EBX ← Reserved = 0; 
 ECX ← Reserved = 0; 

EDX ← Reserved = 0; 
BREAK;
EAX = FH:

EAX ← Platform Quality of Service Monitoring Enumeration Leaf; (* See Table 3-17. *)
 EBX ← Platform Quality of Service Monitoring Enumeration Leaf; 
 ECX ← Platform Quality of Service Monitoring Enumeration Leaf; 

EDX ← Platform Quality of Service Monitoring Enumeration Leaf; 
BREAK;
EAX = 10H:

EAX ← Platform Quality of Service Enforcement Enumeration Leaf; (* See Table 3-17. *)
 EBX ← Platform Quality of Service Enforcement Enumeration Leaf; 
 ECX ← Platform Quality of Service Enforcement Enumeration Leaf; 

EDX ← Platform Quality of Service Enforcement Enumeration Leaf; 
BREAK;

BREAK;
EAX = 80000000H:

EAX ← Highest extended function input value understood by CPUID;
EBX ← Reserved; 
ECX ← Reserved; 
EDX ← Reserved; 

BREAK;
EAX = 80000001H:

EAX ← Reserved; 
EBX ← Reserved; 
ECX ← Extended Feature Bits (* See Table 3-17.*); 
EDX ← Extended Feature Bits (* See Table 3-17. *); 

BREAK;
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EAX = 80000002H:
EAX ← Processor Brand String; 
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued; 
EDX ← Processor Brand String, continued; 

BREAK;
EAX = 80000003H:

EAX ← Processor Brand String, continued; 
EBX ← Processor Brand String, continued; 
ECX ← Processor Brand String, continued; 
EDX ← Processor Brand String, continued; 

BREAK;
EAX = 80000004H:

EAX ← Processor Brand String, continued; 
EBX ← Processor Brand String, continued; 
ECX ← Processor Brand String, continued; 
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000005H:

EAX ← Reserved = 0; 
EBX ← Reserved = 0; 
ECX ← Reserved = 0; 
EDX ← Reserved = 0; 

BREAK;
EAX = 80000006H:

EAX ← Reserved = 0; 
EBX ← Reserved = 0; 
ECX ← Cache information; 
EDX ← Reserved = 0; 

BREAK;
EAX = 80000007H:

EAX ← Reserved = 0; 
EBX ← Reserved = 0; 
ECX ← Reserved = 0; 
EDX ← Reserved = Misc Feature Flags; 

BREAK;
EAX = 80000008H:

EAX ← Reserved = Physical Address Size Information; 
EBX ← Reserved = Virtual Address Size Information; 
ECX ← Reserved = 0; 
EDX ← Reserved = 0; 

BREAK;
EAX >= 40000000H and EAX <= 4FFFFFFFH:
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)

(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX ← Reserved; (* Information returned for highest basic information leaf. *)
EBX ← Reserved; (* Information returned for highest basic information leaf. *)
ECX ← Reserved; (* Information returned for highest basic information leaf. *)
EDX ← Reserved; (* Information returned for highest basic information leaf. *)

BREAK;
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ESAC;

...

FDIV/FDIVP/FIDIV—Divide

...

5. Updates to Chapter 4, Volume 2B
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2B: Instruction Set Reference, N-Z.

------------------------------------------------------------------------------------------
...

PBLENDVB — Variable Blend Packed Bytes

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /6 FDIV m32fp Valid Valid Divide ST(0) by m32fp and store result in ST(0).

DC /6 FDIV m64fp Valid Valid Divide ST(0) by m64fp and store result in ST(0).

D8 F0+i FDIV ST(0), ST(i) Valid Valid Divide ST(0) by ST(i) and store result in ST(0).

DC F8+i FDIV ST(i), ST(0) Valid Valid Divide ST(i) by ST(0) and store result in ST(i).

DE F8+i FDIVP ST(i), ST(0) Valid Valid Divide ST(i) by ST(0), store result in ST(i), and pop the 
register stack.

DE F9 FDIVP Valid Valid Divide ST(1) by ST(0), store result in ST(1), and pop 
the register stack.

DA /6 FIDIV m32int Valid Valid Divide ST(0) by m32int and store result in ST(0).

DE /6 FIDIV m16int Valid Valid Divide ST(0) by m16int and store result in ST(0).

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 10 /r
PBLENDVB xmm1, xmm2/m128, <XMM0>

RM V/V SSE4_1 Select byte values from xmm1 and xmm2/
m128 from mask specified in the high bit of 
each byte in XMM0 and store the values into 
xmm1.

VEX.NDS.128.66.0F3A.W0 4C /r /is4
VPBLENDVB xmm1, xmm2, xmm3/m128, xmm4

RVMR V/V AVX Select byte values from xmm2 and xmm3/
m128 using mask bits in the specified mask 
register, xmm4, and store the values into 
xmm1.

VEX.NDS.256.66.0F3A.W0 4C /r /is4
VPBLENDVB ymm1, ymm2, ymm3/m256, ymm4

RVMR V/V AVX2 Select byte values from ymm2 and ymm3/
m256 from mask specified in the high bit of 
each byte in ymm4 and store the values into 
ymm1.
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Instruction Operand Encoding

...

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

Instruction Operand Encoding

...

PUSH—Push Word, Doubleword or Quadword Onto the Stack

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) <XMM0> NA

RVMR ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8[7:4]

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

9D POPF NP Valid Valid Pop top of stack into lower 16 bits of EFLAGS.

9D POPFD NP N.E. Valid Pop top of stack into EFLAGS.

9D POPFQ NP Valid N.E. Pop top of stack and zero-extend into RFLAGS. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

FF /6 PUSH r/m16 M Valid Valid Push r/m16.

FF /6 PUSH r/m32 M N.E. Valid Push r/m32.

FF /6 PUSH r/m64 M Valid N.E. Push r/m64. 

50+rw PUSH r16 O Valid Valid Push r16.

50+rd PUSH r32 O N.E. Valid Push r32.

50+rd PUSH r64 O Valid N.E. Push r64.

6A ib PUSH imm8 I Valid Valid Push imm8.

68 iw PUSH imm16 I Valid Valid Push imm16.

68 id PUSH imm32 I Valid Valid Push imm32.

0E PUSH CS NP Invalid Valid Push CS.

16 PUSH SS NP Invalid Valid Push SS.

1E PUSH DS NP Invalid Valid Push DS.

06 PUSH ES NP Invalid Valid Push ES.

0F A0 PUSH FS NP Valid Valid Push FS.

0F A8 PUSH GS NP Valid Valid Push GS.

NOTES:
* See IA-32 Architecture Compatibility section below.
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Instruction Operand Encoding

Description

Decrements the stack pointer and then stores the source operand on the top of the stack. Address and operand 
sizes are determined and used as follows:
• Address size. The D flag in the current code-segment descriptor determines the default address size; it may 

be overridden by an instruction prefix (67H).
The address size is used only when referencing a source operand in memory.

• Operand size. The D flag in the current code-segment descriptor determines the default operand size; it may 
be overridden by instruction prefixes (66H or REX.W).
The operand size (16, 32, or 64 bits) determines the amount by which the stack pointer is decremented (2,
4 or 8).
If the source operand is an immediate of size less than the operand size, a sign-extended value is pushed on
the stack. If the source operand is a segment register (16 bits) and the operand size is 64-bits, a zero-
extended value is pushed on the stack; if the operand size is 32-bits, either a zero-extended value is pushed
on the stack or the segment selector is written on the stack using a 16-bit move. For the last case, all recent
Core and Atom processors perform a 16-bit move, leaving the upper portion of the stack location
unmodified.

• Stack-address size. Outside of 64-bit mode, the B flag in the current stack-segment descriptor determines the 
size of the stack pointer (16 or 32 bits); in 64-bit mode, the size of the stack pointer is always 64 bits.
The stack-address size determines the width of the stack pointer when writing to the stack in memory and
when decrementing the stack pointer. (As stated above, the amount by which the stack pointer is
decremented is determined by the operand size.)
If the operand size is less than the stack-address size, the PUSH instruction may result in a misaligned stack
pointer (a stack pointer that is not aligned on a doubleword or quadword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before the instruction was executed. 
If a PUSH instruction uses a memory operand in which the ESP register is used for computing the operand 
address, the address of the operand is computed before the ESP register is decremented. 

If the ESP or SP register is 1 when the PUSH instruction is executed in real-address mode, a stack-fault exception 
(#SS) is generated (because the limit of the stack segment is violated). Its delivery encounters a second stack-
fault exception (for the same reason), causing generation of a double-fault exception (#DF). Delivery of the 
double-fault exception encounters a third stack-fault exception, and the logical processor enters shutdown mode. 
See the discussion of the double-fault exception in Chapter 6 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A.

IA-32 Architecture Compatibility

For IA-32 processors from the Intel 286 on, the PUSH ESP instruction pushes the value of the ESP register as it 
existed before the instruction was executed. (This is also true for Intel 64 architecture, real-address and virtual-
8086 modes of IA-32 architecture.) For the Intel® 8086 processor, the PUSH SP instruction pushes the new value 
of the SP register (that is the value after it has been decremented by 2).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

O opcode + rd (w) NA NA NA

I imm8/16/32 NA NA NA

NP NA NA NA NA
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Operation

(* See Description section for possible sign-extension or zero-extension of source operand and for *)
(* a case in which the size of the memory store may be smaller than the instruction’s operand size *)
IF StackAddrSize = 64

THEN
IF OperandSize = 64

THEN
RSP ← RSP – 8;
Memory[SS:RSP] ← SRC; (* push quadword *)

ELSE IF OperandSize = 32
THEN

RSP ← RSP – 4;
Memory[SS:RSP] ← SRC; (* push dword *)

ELSE (* OperandSize = 16 *)
RSP ← RSP – 2;
Memory[SS:RSP] ← SRC; (* push word *)

FI;

ELSE IF StackAddrSize = 32
THEN

IF OperandSize = 64
THEN

ESP ← ESP – 8;
Memory[SS:ESP] ← SRC; (* push quadword *)

ELSE IF OperandSize = 32
THEN

ESP ← ESP – 4;
Memory[SS:ESP] ← SRC; (* push dword *)

ELSE (* OperandSize = 16 *)
ESP ← ESP – 2;
Memory[SS:ESP] ← SRC; (* push word *)

FI;
ELSE (* StackAddrSize = 16 *)

IF OperandSize = 32
THEN

SP ← SP – 4;
Memory[SS:SP] ← SRC; (* push dword *)

ELSE (* OperandSize = 16 *)
SP ← SP – 2;
Memory[SS:SP] ← SRC; (* push word *)

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
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If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

If the new value of the SP or ESP register is outside the stack segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

If the PUSH is of CS, SS, DS, or ES.
...

RDRAND—Read Random Number
Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F C7 /6

RDRAND r16

M V/V RDRAND Read a 16-bit random number and store in the 
destination register.

0F C7 /6

RDRAND r32

M V/V RDRAND Read a 32-bit random number and store in the 
destination register.

REX.W + 0F C7 /6

RDRAND r64

M V/I RDRAND Read a 64-bit random number and store in the 
destination register.
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Instruction Operand Encoding

Description

Loads a hardware generated random value and store it in the destination register. The size of the random value is 
determined by the destination register size and operating mode. The Carry Flag indicates whether a random value 
is available at the time the instruction is executed. CF=1 indicates that the data in the destination is valid. Other-
wise CF=0 and the data in the destination operand will be returned as zeros for the specified width. All other flags 
are forced to 0 in either situation. Software must check the state of CF=1 for determining if a valid random value 
has been returned, otherwise it is expected to loop and retry execution of RDRAND (see Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, Section 7.3.17, “Random Number Generator Instruction”).
This instruction is available at all privilege levels.
In 64-bit mode, the instruction's default operation size is 32 bits. Using a REX prefix in the form of REX.B permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bit 
operands. See the summary chart at the beginning of this section for encoding data and limits.

Operation

IF HW_RND_GEN.ready = 1
THEN 

CASE of
osize is 64: DEST[63:0] ← HW_RND_GEN.data;
osize is 32: DEST[31:0] ← HW_RND_GEN.data;
osize is 16: DEST[15:0] ← HW_RND_GEN.data;

ESAC
CF ← 1;

ELSE
CASE of

osize is 64: DEST[63:0] ← 0;
osize is 32: DEST[31:0] ← 0;
osize is 16: DEST[15:0] ← 0;

ESAC
CF ← 0;

FI
OF, SF, ZF, AF, PF ← 0;

Flags Affected

The CF flag is set according to the result (see the “Operation” section above). The OF, SF, ZF, AF, and PF flags are 
set to 0.

Intel C/C++ Compiler Intrinsic Equivalent

RDRAND:  int _rdrand16_step( unsigned short * );

RDRAND:  int _rdrand32_step( unsigned int * );

RDRAND:  int _rdrand64_step( unsigned __int64 *);

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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If the F2H or F3H prefix is used.
If CPUID.01H:ECX.RDRAND[bit 30] = 0.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 55

XGETBV—Get Value of Extended Control Register

Instruction Operand Encoding

Description

Reads the contents of the extended control register (XCR) specified in the ECX register into registers EDX:EAX. 
(On processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The EDX 
register is loaded with the high-order 32 bits of the XCR and the EAX register is loaded with the low-order 32 bits. 
(On processors that support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are cleared.) 
If fewer than 64 bits are implemented in the XCR being read, the values returned to EDX:EAX in unimplemented 
bit locations are undefined.

XCR0 is supported on any processor that supports the XGETBV instruction. If 
CPUID.(EAX=0DH,ECX=1):EAX.XG1[bit 2] = 1, executing XGETBV with ECX = 1 returns in EDX:EAX the logical-
AND of XCR0 and the current value of the XINUSE state-component bitmap. This allows software to discover the 
state of the init optimization used by XSAVEOPT and XSAVES. See Chapter 13, “Managing State Using the XSAVE 
Feature Set‚” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

Use of any other value for ECX results in a general-protection (#GP) exception.

Operation

EDX:EAX ← XCR[ECX];

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XGETBV: unsigned __int64 _xgetbv( unsigned int);

Protected Mode Exceptions
#GP(0) If an invalid XCR is specified in ECX (includes ECX = 1 if 

CPUID.(EAX=0DH,ECX=1):EAX.XG1[bit 2] = 0).
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions
#GP(0) If an invalid XCR is specified in ECX (includes ECX = 1 if 

CPUID.(EAX=0DH,ECX=1):EAX.XG1[bit 2] = 0).
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 D0 XGETBV NP Valid Valid Reads an XCR specified by ECX into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...

XRSTOR—Restore Processor Extended States

Instruction Operand Encoding

Description

Performs a full or partial restore of processor state components from the XSAVE area located at the memory 
address specified by the source operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. 
The specific state components restored correspond to the bits set in the requested-feature bitmap (RFBM), which 
is the logical-AND of EDX:EAX and XCR0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Section 13.7, “Operation of XRSTOR,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
1 provides a detailed description of the operation of the XRSTOR instruction. The following items provide a high-
level outline:
• Execution of XRSTOR may take one of two forms: standard and compacted. Bit 63 of the XCOMP_BV field in 

the XSAVE header determines which form is used: value 0 specifies the standard form, while value 1 specifies 
the compacted form.

• If RFBM[i] = 0, XRSTOR does not update state component i.1

• If RFBM[i] = 1 and bit i is clear in the XSTATE_BV field in the XSAVE header, XRSTOR initializes state 
component i.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AE /5 XRSTOR mem M Valid Valid Restore state components specified by 
EDX:EAX from mem.

REX.W+ 0F AE /5 XRSTOR64 mem M Valid N.E. Restore state components specified by 
EDX:EAX from mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

1. There is an exception if RFBM[1] = 0 and RFBM[2] = 1. In this case, the standard form of XRSTOR will load MXCSR from memory, 
even though MXCSR is part of state component 1 — SSE. The compacted form of XRSTOR does not make this exception.
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• If RFBM[i] = 1 and XSTATE_BV[i] = 1, XRSTOR loads state component i from the XSAVE area.
• The standard form of XRSTOR treats MXCSR (which is part of state component 1 — SSE) differently from the 

XMM registers. If either form attempts to load MXCSR with an illegal value, a general-protection exception 
(#GP) occurs.

• XRSTOR loads the internal value XRSTOR_INFO, which may be used to optimize a subsequent execution of 
XSAVEOPT or XSAVES.

• Immediately following an execution of XRSTOR, the processor tracks as in-use (not in initial configuration) 
any state component i for which RFBM[i] = 1 and XSTATE_BV[i] = 1; it tracks as modified any state 
component i for which RFBM[i] = 0.

Use of a source operand not aligned to 64-byte boundary (for 64-bit and 32-bit modes) results in a general-
protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Operation

RFBM ← XCR0 AND EDX:EAX; /* bitwise logical AND */
COMPMASK ← XCOMP_BV field from XSAVE header;
RSTORMASK ← XSTATE_BV field from XSAVE header;
IF in VMX non-root operation

THEN VMXNR ← 1;
ELSE VMXNR ← 0;

FI;
LAXA ← linear address of XSAVE area;

IF COMPMASK[63] = 0
THEN

/* Standard form of XRSTOR */
If RFBM[0] = 1

THEN
IF RSTORMASK[0] = 1

THEN load x87 state from legacy region of XSAVE area;
ELSE initialize x87 state;

FI;
FI;
If RFBM[1] = 1

THEN
IF RSTORMASK[1] = 1

THEN load XMM registers from legacy region of XSAVE area;
ELSE set all XMM registers to 0;

FI;
FI;
If RFBM[2] = 1

THEN
IF RSTORMASK[2] = 1

THEN load AVX state from extended region (standard format) of XSAVE area;
ELSE initialize AVX state;

FI;
FI;
If RFBM[1] = 1 or RFBM[2] = 1

THEN load MXCSR from legacy region of XSAVE area;
FI;
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FI;
ELSE

/* Compacted form of XRSTOR */
IF CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0

THEN /* compacted form not supported */
#GP(0);

FI;
If RFBM[0] = 1

THEN
IF RSTORMASK[0] = 1

THEN load x87 state from legacy region of XSAVE area;
ELSE initialize x87 state;

FI;
FI;
If RFBM[1] = 1

THEN
IF RSTORMASK[1] = 1

THEN load SSE state from legacy region of XSAVE area;
ELSE initialize SSE state;

FI;
FI;
If RFBM[2] = 1

THEN
IF RSTORMASK[2] = 1

THEN load AVX state from extended region (compacted format) of XSAVE area;
ELSE initialize AVX state;

FI;
FI;

FI;
XRSTOR_INFO ← CPL,VMXNR,LAXA,COMPMASK;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XRSTOR: void _xrstor( void * , unsigned __int64);

XRSTOR: void _xrstor64( void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If bit 63 of the XCOMP_BV field of the XSAVE header is 1 and 
CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.
If the standard form is executed and a bit in XCR0 is 0 and the corresponding bit in the 
XSTATE_BV field of the XSAVE header is 1.
If the standard form is executed and bytes 23:8 of the XSAVE header are not all zero.
If the compacted form is executed and a bit in XCR0 is 0 and the corresponding bit in the 
XCOMP_BV field of the XSAVE header is 1.
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If the compacted form is executed and a bit in the XCOMP_BV field in the XSAVE header is 0 
and the corresponding bit in the XSTATE_BV field is 1.
If the compacted form is executed and bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general 
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
If bit 63 of the XCOMP_BV field of the XSAVE header is 1 and 
CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.
If the standard form is executed and a bit in XCR0 is 0 and the corresponding bit in the 
XSTATE_BV field of the XSAVE header is 1.
If the standard form is executed and bytes 23:8 of the XSAVE header are not all zero.
If the compacted form is executed and a bit in XCR0 is 0 and the corresponding bit in the 
XCOMP_BV field of the XSAVE header is 1.
If the compacted form is executed and a bit in the XCOMP_BV field in the XSAVE header is 0 
and the corresponding bit in the XSTATE_BV field is 1.
If the compacted form is executed and bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode

Compatibility Mode Exceptions
Same exceptions as in protected mode.
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64-Bit Mode Exceptions
#GP(0) If a memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If bit 63 of the XCOMP_BV field of the XSAVE header is 1 and 
CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.
If the standard form is executed and a bit in XCR0 is 0 and the corresponding bit in the 
XSTATE_BV field of the XSAVE header is 1.
If the standard form is executed and bytes 23:8 of the XSAVE header are not all zero.
If the compacted form is executed and a bit in XCR0 is 0 and the corresponding bit in the 
XCOMP_BV field of the XSAVE header is 1.
If the compacted form is executed and a bit in the XCOMP_BV field in the XSAVE header is 0 
and the corresponding bit in the XSTATE_BV field is 1.
If the compacted form is executed and bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general 
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).

...

XRSTORS—Restore Processor Extended States Supervisor

Instruction Operand Encoding

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F C7 /3 XRSTORS mem M Valid Valid Restore state components specified by 
EDX:EAX from mem.

REX.W+ 0F C7 /3 XRSTORS64 mem M Valid N.E. Restore state components specified by 
EDX:EAX from mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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Description

Performs a full or partial restore of processor state components from the XSAVE area located at the memory 
address specified by the source operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. 
The specific state components restored correspond to the bits set in the requested-feature bitmap (RFBM), which 
is the logical-AND of EDX:EAX and the logical-OR of XCR0 with the IA32_XSS MSR. XRSTORS may be executed 
only if CPL = 0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Section 13.11, “Operation of XRSTORS,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1 provides a detailed description of the operation of the XRSTOR instruction. The following items provide 
a high-level outline:
• Execution of XRSTORS is similar to that of the compacted form of XRSTOR; XRSTORS cannot restore from an 

XSAVE area in which the extended region is in the standard format (see Section 13.4.3, “Extended Region of 
an XSAVE Area”).

• XRSTORS differs from XRSTOR in that it can restore state components corresponding to bits set in the 
IA32_XSS MSR.

• If RFBM[i] = 0, XRSTORS does not update state component i.
• If RFBM[i] = 1 and bit i is clear in the XSTATE_BV field in the XSAVE header, XRSTORS initializes state 

component i.
• If RFBM[i] = 1 and XSTATE_BV[i] = 1, XRSTORS loads state component i from the XSAVE area.
• If XRSTORS attempts to load MXCSR with an illegal value, a general-protection exception (#GP) occurs.
• XRSTORS loads the internal value XRSTOR_INFO, which may be used to optimize a subsequent execution of 

XSAVEOPT or XSAVES.
• Immediately following an execution of XRSTORS, the processor tracks as in-use (not in initial configuration) 

any state component i for which RFBM[i] = 1 and XSTATE_BV[i] = 1; it tracks as modified any state 
component i for which RFBM[i] = 0.

Use of a source operand not aligned to 64-byte boundary (for 64-bit and 32-bit modes) results in a general-
protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Operation

RFBM ← (XCR0 OR IA32_XSS) AND EDX:EAX; /* bitwise logical OR and AND */
COMPMASK ← XCOMP_BV field from XSAVE header;
RSTORMASK ← XSTATE_BV field from XSAVE header;
IF in VMX non-root operation

THEN VMXNR ← 1;
ELSE VMXNR ← 0;

FI;
LAXA ← linear address of XSAVE area;

If RFBM[0] = 1
THEN

IF RSTORMASK[0] = 1
THEN load x87 state from legacy region of XSAVE area;
ELSE initialize x87 state;

FI;
FI;
If RFBM[1] = 1
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THEN
IF RSTORMASK[1] = 1

THEN load SSE state from legacy region of XSAVE area;
ELSE initialize SSE state;

FI;
FI;
If RFBM[2] = 1

THEN
IF RSTORMASK[2] = 1

THEN load AVX state from extended region (compacted format) of XSAVE area;
ELSE initialize AVX state;

FI;
FI;
XRSTOR_INFO ← CPL,VMXNR,LAXA,COMPMASK;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XRSTORS: void _xrstors( void * , unsigned __int64);

XRSTORS64: void _xrstors64( void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If CPL > 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If bit 63 of the XCOMP_BV field of the XSAVE header is 0.
If a bit in XCR0 is 0 and the corresponding bit in the XCOMP_BV field of the XSAVE header is 
1.
If a bit in the XCOMP_BV field in the XSAVE header is 0 and the corresponding bit in the 
XSTATE_BV field is 1.
If bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
#GP is signaled in its place. In addition, the width of the alignment check may also vary with 
implementation. For instance, for a given implementation, an alignment check exception 
might be signaled for a 2-byte misalignment, whereas a #GP might be signaled for all other 
misalignments (4-, 8-, or 16-byte misalignments).
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Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
If bit 63 of the XCOMP_BV field of the XSAVE header is 0.
If a bit in XCR0 is 0 and the corresponding bit in the XCOMP_BV field of the XSAVE header is 
1.
If a bit in the XCOMP_BV field in the XSAVE header is 0 and the corresponding bit in the 
XSTATE_BV field is 1.
If bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If CPL > 0.

If a memory address is in a non-canonical form.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If bit 63 of the XCOMP_BV field of the XSAVE header is 0.
If a bit in XCR0 is 0 and the corresponding bit in the XCOMP_BV field of the XSAVE header is 
1.
If a bit in the XCOMP_BV field in the XSAVE header is 0 and the corresponding bit in the 
XSTATE_BV field is 1.
If bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general 



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 64

protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).

...

XSAVE—Save Processor Extended States

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address 
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The 
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the 
logical-AND of EDX:EAX and XCR0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Section 13.6, “Operation of XSAVE,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
1 provides a detailed description of the operation of the XSAVE instruction. The following items provide a high-
level outline:
• XSAVE saves state component i if and only if RFBM[i] = 1.1

• XSAVE does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy 
Region of an XSAVE Area”).

• XSAVE reads the XSTATE_BV field of the XSAVE header (see Section 13.4.2, “XSAVE Header”) and writes a 
modified value back to memory as follows. If RFBM[i] = 1, XSAVE writes XSTATE_BV[i] with the value of 
XINUSE[i]. (XINUSE is a bitmap by which the processor tracks the status of various state components. See 
Section 13.5.4, “Processor Tracking of XSAVE-Managed State.”) If RFBM[i] = 0, XSAVE writes XSTATE_BV[i] 
with the value that it read from memory (it does not modify the bit). XSAVE does not write to any part of the 
XSAVE header other than the XSTATE_BV field.

• XSAVE always uses the standard format of the extended region of the XSAVE area (see Section 13.4.3, 
“Extended Region of an XSAVE Area”).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a 
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Operation

RFBM ← XCR0 AND EDX:EAX; /* bitwise logical AND */

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AE /4 XSAVE mem M Valid Valid Save state components specified by EDX:EAX 
to mem.

REX.W+ 0F AE /4 XSAVE64 mem M Valid N.E. Save state components specified by EDX:EAX 
to mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

1. An exception is made for MXCSR and MXCSR_MASK, which belong to state component 1 — SSE. XSAVE saves these values to mem-
ory if either RFBM[1] or RFBM[2] is 1.
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OLD_BV ← XSTATE_BV field from XSAVE header;

IF RFBM[0] = 1
THEN store x87 state into legacy region of XSAVE area;

FI;
IF RFBM[1] = 1

THEN store XMM registers into legacy region of XSAVE area;
FI;
IF RFBM[2] = 1

THEN store AVX state into extended region of XSAVE area;
FI;
IF RFBM[1] = 1 or RFBM[2] = 1

THEN store MXCSR and MXCSR_MASK into legacy region of XSAVE area;
FI;

XSTATE_BV field in XSAVE header ← (OLD_BV AND ~RFBM) OR (XINUSE AND RFBM);

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVE: void _xsave( void * , unsigned __int64);

XSAVE: void _xsave64( void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general 
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
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#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general 
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).

...

XSAVEC—Save Processor Extended States with Compaction

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address 
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F C7 /4 XSAVEC mem M Valid Valid Save state components specified by EDX:EAX 
to mem with compaction.

REX.W+ 0F C7 /4 XSAVEC64 mem M Valid N.E. Save state components specified by EDX:EAX 
to mem with compaction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the 
logical-AND of EDX:EAX and XCR0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Section 13.9, “Operation of XSAVEC,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
1 provides a detailed description of the operation of the XSAVEC instruction. The following items provide a high-
level outline:
• Execution of XSAVEC is similar to that of XSAVE. XSAVEC differs from XSAVE in that it uses compaction and 

that it may use the init optimization.
• XSAVEC saves state component i if and only if RFBM[i] = 1 and XINUSE[i] = 1.1 (XINUSE is a bitmap by which 

the processor tracks the status of various state components. See Section 13.5.4, “Processor Tracking of 
XSAVE-Managed State.”)

• XSAVEC does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy 
Region of an XSAVE Area”).

• XSAVEC writes the logical AND of RFBM and XINUSE to the XSTATE_BV field of the XSAVE header.2,3 (See 
Section 13.4.2, “XSAVE Header.”) XSAVEC sets bit 63 of the XCOMP_BV field and sets bits 62:0 of that field to 
RFBM[62:0]. XSAVEC does not write to any parts of the XSAVE header other than the XSTATE_BV and 
XCOMP_BV fields.

• XSAVEC always uses the compacted format of the extended region of the XSAVE area (see Section 13.4.3, 
“Extended Region of an XSAVE Area”).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a 
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Operation

RFBM ← XCR0 AND EDX:EAX; /* bitwise logical AND */
COMPMASK ← RFBM OR 80000000_00000000H;

IF RFBM[0] = 1 and XINUSE[0] = 1
THEN store x87 state into legacy region of XSAVE area;

FI;
IF RFBM[1] = 1 and (XINUSE[1] = 1 or MXCSR ≠ 1F80H)

THEN store SSE state into legacy region of XSAVE area;
FI;
IF RFBM[2] = 1 AND XINUSE[2] = 1

THEN store AVX state into extended region of XSAVE area;
FI;

XSTATE_BV field in XSAVE header ← XINUSE AND RFBM;
XCOMP_BV field in XSAVE header ← COMPMASK;

1. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not 
have its initial value of 1F80H. In this case, XSAVEC saves SSE state as long as RFBM[1] = 1.

2. Unlike XSAVE and XSAVEOPT, XSAVEC clears bits in the XSTATE_BV field that correspond to bits that are clear in RFBM.

3. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not 
have its initial value of 1F80H. In this case, XSAVEC sets XSTATE_BV[1] to 1 as long as RFBM[1] = 1.
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Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVEC: void _xsavec( void * , unsigned __int64);

XSAVEC64: void _xsavec64( void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general 
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
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#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general 
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).

...

XSAVEOPT—Save Processor Extended States Optimized

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address 
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The 
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the 
logical-AND of EDX:EAX and XCR0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Section 13.8, “Operation of XSAVEOPT,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1 provides a detailed description of the operation of the XSAVEOPT instruction. The following items 
provide a high-level outline:
• Execution of XSAVEOPT is similar to that of XSAVE. XSAVEOPT differs from XSAVE in that it uses compaction 

and that it may use the init and modified optimizations. The performance of XSAVEOPT will be equal to or 
better than that of XSAVE.

• XSAVEOPT saves state component i only if RFBM[i] = 1 and XINUSE[i] = 1.1 (XINUSE is a bitmap by which the 
processor tracks the status of various state components. See Section 13.5.4, “Processor Tracking of XSAVE-

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F AE /6

XSAVEOPT mem

M V/V XSAVEOPT Save state components specified by EDX:EAX 
to mem, optimizing if possible.

REX.W + 0F AE /6

XSAVEOPT64 mem

M V/V XSAVEOPT Save state components specified by EDX:EAX 
to mem, optimizing if possible.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

1. There is an exception made for MXCSR and MXCSR_MASK, which belong to state component 1 — SSE. XSAVEOPT always saves 
these to memory if RFBM[1] = 1 or RFBM[2] = 1, regardless of the value of XINUSE.
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Managed State.”) Even if both bits are 1, XSAVEOPT may optimize and not save state component i if (1) state 
component i has not been modified since the last execution of XRTOR or XRSTORS; and (2) this execution of 
XSAVES corresponds to that last execution of XRTOR or XRSTORS as determined by the internal value 
XRSTOR_INFO (see the Operation section below).

• XSAVEOPT does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, 
“Legacy Region of an XSAVE Area”).

• XSAVEOPT reads the XSTATE_BV field of the XSAVE header (see Section 13.4.2, “XSAVE Header”) and writes 
a modified value back to memory as follows. If RFBM[i] = 1, XSAVEOPT writes XSTATE_BV[i] with the value of 
XINUSE[i]. If RFBM[i] = 0, XSAVEOPT writes XSTATE_BV[i] with the value that it read from memory (it does 
not modify the bit). XSAVEOPT does not write to any part of the XSAVE header other than the XSTATE_BV 
field.

• XSAVEOPT always uses the standard format of the extended region of the XSAVE area (see Section 13.4.3, 
“Extended Region of an XSAVE Area”).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) will result in a 
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Operation

RFBM ← XCR0 AND EDX:EAX; /* bitwise logical AND */
OLD_BV ← XSTATE_BV field from XSAVE header;
IF in VMX non-root operation

THEN VMXNR ← 1;
ELSE VMXNR ← 0;

FI;
LAXA ← linear address of XSAVE area;
COMPMASK ← 00000000_00000000H;
IF XRSTOR_INFO = CPL,VMXNR,LAXA,COMPMASK

THEN MODOPT ← 1;
ELSE MODOPT ← 0;

FI;

IF RFBM[0] = 1 and XINUSE[0] = 1
THEN store x87 state into legacy region of XSAVE area;
/* might avoid saving if x87 state is not modified and MODOPT = 1 */

FI;
IF RFBM[1] = 1 and XINUSE[1]

THEN store XMM registers into legacy region of XSAVE area;
/* might avoid saving if XMM registers are not modified and MODOPT = 1 */

FI;
IF RFBM[2] = 1 AND XINUSE[2] = 1

THEN store AVX state into extended region of XSAVE area;
/* might avoid saving if AVX state is not modified and MODOPT = 1 */

FI;
IF RFBM[1] = 1 or RFBM[2] = 1

THEN store MXCSR and MXCSR_MASK into legacy region of XSAVE area;
FI;

XSTATE_BV field in XSAVE header ← (OLD_BV AND ~RFBM) OR (XINUSE AND RFBM);
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Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVEOPT: void _xsaveopt( void * , unsigned __int64);

XSAVEOPT: void _xsaveopt64( void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEOPT[bit 0] = 

0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEOPT[bit 0] = 

0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEOPT[bit 0] = 

0.
If CR4.OSXSAVE[bit 18] = 0.
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If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

...

XSAVES—Save Processor Extended States Supervisor

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address 
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The 
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), the logical-
AND of EDX:EAX and the logical-OR of XCR0 with the IA32_XSS MSR. XSAVES may be executed only if CPL = 0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Section 13.10, “Operation of XSAVES,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1 provides a detailed description of the operation of the XSAVES instruction. The following items provide 
a high-level outline:
• Execution of XSAVES is similar to that of XSAVEC. XSAVES differs from XSAVEC in that it can save state 

components corresponding to bits set in the IA32_XSS MSR and that it may use the modified optimization.
• XSAVES saves state component i only if RFBM[i] = 1 and XINUSE[i] = 1.1 (XINUSE is a bitmap by which the 

processor tracks the status of various state components. See Section 13.5.4, “Processor Tracking of XSAVE-
Managed State.”) Even if both bits are 1, XSAVES may optimize and not save state component i if (1) state 
component i has not been modified since the last execution of XRTOR or XRSTORS; and (2) this execution of 
XSAVES correspond to that last execution of XRTOR or XRSTORS as determined by XRSTOR_INFO (see the 
Operation section below).

• XSAVES does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy 
Region of an XSAVE Area”).

• XSAVES writes the logical AND of RFBM and XINUSE to the XSTATE_BV field of the XSAVE header.2 (See 
Section 13.4.2, “XSAVE Header.”) XSAVES sets bit 63 of the XCOMP_BV field and sets bits 62:0 of that field to 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F C7 /5 XSAVES mem M Valid Valid Save state components specified by EDX:EAX 
to mem with compaction, optimizing if 
possible.

REX.W+ 0F C7 /5 XSAVES64 mem M Valid N.E. Save state components specified by EDX:EAX 
to mem with compaction, optimizing if 
possible.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

1. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not 
have its initial value of 1F80H. In this case, the init optimization does not apply and XSAVEC will save SSE state as long as 
RFBM[1] = 1 and the modified optimization is not being applied.

2. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not 
have its initial value of 1F80H. In this case, XSAVES sets XSTATE_BV[1] to 1 as long as RFBM[1] = 1.
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RFBM[62:0]. XSAVES does not write to any parts of the XSAVE header other than the XSTATE_BV and 
XCOMP_BV fields.

• XSAVES always uses the compacted format of the extended region of the XSAVE area (see Section 13.4.3, 
“Extended Region of an XSAVE Area”).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a 
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Operation

RFBM ← XCR0 AND EDX:EAX; /* bitwise logical AND */
IF in VMX non-root operation

THEN VMXNR ← 1;
ELSE VMXNR ← 0;

FI;
LAXA ← linear address of XSAVE area;
COMPMASK ← RFBM OR 80000000_00000000H;
IF XRSTOR_INFO = CPL,VMXNR,LAXA,COMPMASK

THEN MODOPT ← 1;
ELSE MODOPT ← 0;

FI;

IF RFBM[0] = 1 and XINUSE[0] = 1
THEN store x87 state into legacy region of XSAVE area;
/* might avoid saving if x87 state is not modified and MODOPT = 1 */

FI;
IF RFBM[1] = 1 and (XINUSE[1] = 1 or MXCSR ≠ 1F80H)

THEN store SSE state into legacy region of XSAVE area;
/* might avoid saving if SSE state is not modified and MODOPT = 1 */

FI;
IF RFBM[2] = 1 AND XINUSE[2] = 1

THEN store AVX state into extended region of XSAVE area;
/* might avoid saving if AVX state is not modified and MODOPT = 1 */

FI;

XSTATE_BV field in XSAVE header ← XINUSE AND RFBM;
XCOMP_BV field in XSAVE header ← COMPMASK;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVES: void _xsaves( void * , unsigned __int64);

XSAVES64: void _xsaves64( void * , unsigned __int64);

XSAVES: mem extern void_xsaves( void * , unsigned __int64);

XSAVES64: mem extern void_xsaves64( void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
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If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general 
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general 
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protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).

...

XSETBV—Set Extended Control Register

Instruction Operand Encoding

Description

Writes the contents of registers EDX:EAX into the 64-bit extended control register (XCR) specified in the ECX 
register. (On processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The 
contents of the EDX register are copied to high-order 32 bits of the selected XCR and the contents of the EAX 
register are copied to low-order 32 bits of the XCR. (On processors that support the Intel 64 architecture, the 
high-order 32 bits of each of RAX and RDX are ignored.) Undefined or reserved bits in an XCR should be set to 
values previously read.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a general protection 
exception #GP(0) is generated. Specifying a reserved or unimplemented XCR in ECX will also cause a general 
protection exception. The processor will also generate a general protection exception if software attempts to write 
to reserved bits in an XCR.

Currently, only XCR0 is supported. Thus, all other values of ECX are reserved and will cause a #GP(0). Note that 
bit 0 of XCR0 (corresponding to x87 state) must be set to 1; the instruction will cause a #GP(0) if an attempt is 
made to clear this bit. In addition, the instruction causes a #GP(0) if an attempt is made to set XCR0[2] (AVX 
state) while clearing XCR0[1] (SSE state); it is necessary to set both bits to use AVX instructions; Section 13.3, 
“Enabling the XSAVE Feature Set and XSAVE-Supported Features,” of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.

Operation

XCR[ECX] ← EDX:EAX;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSETBV: void _xsetbv( unsigned int, unsigned __int64);

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an invalid XCR is specified in ECX.
If the value in EDX:EAX sets bits that are reserved in the XCR specified by ECX.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 D1 XSETBV NP Valid Valid Write the value in EDX:EAX to the XCR 
specified by ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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If an attempt is made to clear bit 0 of XCR0.
If an attempt is made to set XCR0[2:1] to 10b.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions
#GP If an invalid XCR is specified in ECX.

If the value in EDX:EAX sets bits that are reserved in the XCR specified by ECX.
If an attempt is made to clear bit 0 of XCR0.
If an attempt is made to set XCR0[2:1] to 10b.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The XSETBV instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...

6. Updates to Chapter 5, Volume 2C
Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2C: Instruction Set Reference.

------------------------------------------------------------------------------------------
...
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GETSEC[SENTER]—Enter a Measured Environment

Description

The GETSEC[SENTER] instruction initiates the launch of a measured environment and places the initiating logical 
processor (ILP) into the authenticated code execution mode. The SENTER leaf of GETSEC is selected with EAX set 
to 4 at execution. The physical base address of the AC module to be loaded and authenticated is specified in EBX. 
The size of the module in bytes is specified in ECX. EDX controls the level of functionality supported by the 
measured environment launch. To enable the full functionality of the protected environment launch, EDX must be 
initialized to zero.

The authenticated code base address and size parameters (in bytes) are passed to the GETSEC[SENTER] instruc-
tion using EBX and ECX respectively. The ILP evaluates the contents of these registers according to the rules for 
the AC module address in GETSEC[ENTERACCS]. AC module execution follows the same rules, as set by 
GETSEC[ENTERACCS].

The launching software must ensure that the TPM.ACCESS_0.activeLocality bit is clear before executing the 
GETSEC[SENTER] instruction.

There are restrictions enforced by the processor for execution of the GETSEC[SENTER] instruction: 
• Execution is not allowed unless the processor is in protected mode or IA-32e mode with CPL = 0 and 

EFLAGS.VM = 0. 
• Processor cache must be available and not disabled using the CR0.CD and NW bits. 
• For enforcing consistency of operation with numeric exception reporting using Interrupt 16, CR0.NE must be 

set. 
• An Intel TXT-capable chipset must be present as communicated to the processor by sampling of the power-on 

configuration capability field after reset. 
• The processor can not be in authenticated code execution mode or already in a measured environment (as 

launched by a previous GETSEC[ENTERACCS] or GETSEC[SENTER] instruction). 
• To avoid potential operability conflicts between modes, the processor is not allowed to execute this instruction 

if it currently is in SMM or VMX operation. 
• To insure consistent handling of SIPI messages, the processor executing the GETSEC[SENTER] instruction 

must also be designated the BSP (boot-strap processor) as defined by A32_APIC_BASE.BSP (Bit 8). 
• EDX must be initialized to a setting supportable by the processor. Unless enumeration by the GETSEC[PARAM-

ETERS] leaf reports otherwise, only a value of zero is supported.

Failure to abide by the above conditions results in the processor signaling a general protection violation.

This instruction leaf starts the launch of a measured environment by initiating a rendezvous sequence for all 
logical processors in the platform. The rendezvous sequence involves the initiating logical processor sending a 
message (by executing GETSEC[SENTER]) and other responding logical processors (RLPs) acknowledging the 
message, thus synchronizing the RLP(s) with the ILP.

In response to a message signaling the completion of rendezvous, RLPs clear the bootstrap processor indicator 
flag (IA32_APIC_BASE.BSP) and enter an SENTER sleep state. In this sleep state, RLPs enter an idle processor 
condition while waiting to be activated after a measured environment has been established by the system execu-

Opcode Instruction Description

0F 37

(EAX=4)

GETSEC[SENTER] Launch a measured environment

EBX holds the SINIT authenticated code module physical base address.

ECX holds the SINIT authenticated code module size (bytes).

EDX controls the level of functionality supported by the measured environment launch.
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tive. RLPs in the SENTER sleep state can only be activated by the GETSEC leaf function WAKEUP in a measured 
environment.

A successful launch of the measured environment results in the initiating logical processor entering the authenti-
cated code execution mode. Prior to reaching this point, the ILP performs the following steps internally: 
• Inhibit processor response to the external events: INIT, A20M, NMI, and SMI. 
• Establish and check the location and size of the authenticated code module to be executed by the ILP. 
• Check for the existence of an Intel® TXT-capable chipset. 
• Verify the current power management configuration is acceptable. 
• Broadcast a message to enable protection of memory and I/O from activities from other processor agents. 
• Load the designated AC module into authenticated code execution area. 
• Isolate the content of authenticated code execution area from further state modification by external agents.
• Authenticate the AC module.
• Updated the Trusted Platform Module (TPM) with the authenticated code module's hash. 
• Initialize processor state based on the authenticated code module header information. 
• Unlock the Intel® TXT-capable chipset private configuration register space and TPM locality 3 space. 
• Begin execution in the authenticated code module at the defined entry point.

As an integrity check for proper processor hardware operation, execution of GETSEC[SENTER] will also check the 
contents of all the machine check status registers (as reported by the MSRs IA32_MCi_STATUS) for any valid 
uncorrectable error condition. In addition, the global machine check status register IA32_MCG_STATUS MCIP bit 
must be cleared and the IERR processor package pin (or its equivalent) must be not asserted, indicating that no 
machine check exception processing is currently in-progress. These checks are performed twice: once by the ILP 
prior to the broadcast of the rendezvous message to RLPs, and later in response to RLPs acknowledging the 
rendezvous message. Any outstanding valid uncorrectable machine check error condition present in the machine 
check status registers at the first check point will result in the ILP signaling a general protection violation. If an 
outstanding valid uncorrectable machine check error condition is present at the second check point, then this will 
result in the corresponding logical processor signaling the more severe TXT-shutdown condition with an error 
code of 12.

Before loading and authentication of the target code module is performed, the processor also checks that the 
current voltage and bus ratio encodings correspond to known good values supportable by the processor. The MSR 
IA32_PERF_STATUS values are compared against either the processor supported maximum operating target 
setting, system reset setting, or the thermal monitor operating target. If the current settings do not meet any of 
these criteria then the SENTER function will attempt to change the voltage and bus ratio select controls in a 
processor-specific manner. This adjustment may be to the thermal monitor, minimum (if different), or maximum 
operating target depending on the processor.

This implies that some thermal operating target parameters configured by BIOS may be overridden by SENTER. 
The measured environment software may need to take responsibility for restoring such settings that are deemed 
to be safe, but not necessarily recognized by SENTER. If an adjustment is not possible when an out of range 
setting is discovered, then the processor will abort the measured launch. This may be the case for chipset 
controlled settings of these values or if the controllability is not enabled on the processor. In this case it is the 
responsibility of the external software to program the chipset voltage ID and/or bus ratio select settings to known 
good values recognized by the processor, prior to executing SENTER.

NOTE
For a mobile processor, an adjustment can be made according to the thermal monitor operating 
target. For a quad-core processor the SENTER adjustment mechanism may result in a more 
conservative but non-uniform voltage setting, depending on the pre-SENTER settings per core.
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The ILP and RLPs mask the response to the assertion of the external signals INIT#, A20M, NMI#, and SMI#. The 
purpose of this masking control is to prevent exposure to existing external event handlers until a protected 
handler has been put in place to directly handle these events. Masked external pin events may be unmasked 
conditionally or unconditionally via the GETSEC[EXITAC], GETSEC[SEXIT], GETSEC[SMCTRL] or for specific VMX 
related operations such as a VM entry or the VMXOFF instruction (see respective GETSEC leaves and Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3C for more details).The state of the A20M pin is 
masked and forced internally to a de-asserted state so that external assertion is not recognized. A20M masking 
as set by GETSEC[SENTER] is undone only after taking down the measured environment with the GETSEC[SEXIT] 
instruction or processor reset. INTR is masked by simply clearing the EFLAGS.IF bit. It is the responsibility of 
system software to control the processor response to INTR through appropriate management of EFLAGS.

To prevent other (logical) processors from interfering with the ILP operating in authenticated code execution 
mode, memory (excluding implicit write-back transactions) and I/O activities originating from other processor 
agents are blocked. This protection starts when the ILP enters into authenticated code execution mode. Only 
memory and I/O transactions initiated from the ILP are allowed to proceed. Exiting authenticated code execution 
mode is done by executing GETSEC[EXITAC]. The protection of memory and I/O activities remains in effect until 
the ILP executes GETSEC[EXITAC].

Once the authenticated code module has been loaded into the authenticated code execution area, it is protected 
against further modification from external bus snoops. There is also a requirement that the memory type for the 
authenticated code module address range be WB (via initialization of the MTRRs prior to execution of this instruc-
tion). If this condition is not satisfied, it is a violation of security and the processor will force a TXT system reset 
(after writing an error code to the chipset LT.ERRORCODE register). This action is referred to as a Intel® TXT reset 
condition. It is performed when it is considered unreliable to signal an error through the conventional exception 
reporting mechanism. 

To conform to the minimum granularity of MTRR MSRs for specifying the memory type, authenticated code RAM 
(ACRAM) is allocated to the processor in 4096 byte granular blocks. If an AC module size as specified in ECX is not 
a multiple of 4096 then the processor will allocate up to the next 4096 byte boundary for mapping as ACRAM with 
indeterminate data. This pad area will not be visible to the authenticated code module as external memory nor 
can it depend on the value of the data used to fill the pad area.

Once successful authentication has been completed by the ILP, the computed hash is stored in a trusted storage 
facility in the platform. The following trusted storage facility are supported: 
• If the platform register FTM_INTERFACE_ID.[bits 3:0] = 0, the computed hash is stored to the platform’s TPM 

at PCR17 after this register is implicitly reset. PCR17 is a dedicated register for holding the computed hash of 
the authenticated code module loaded and subsequently executed by the GETSEC[SENTER]. As part of this 
process, the dynamic PCRs 18-22 are reset so they can be utilized by subsequently software for registration 
of code and data modules. 

• If the platform register FTM_INTERFACE_ID.[bits 3:0] = 1, the computed hash is stored in a firmware trusted 
module (FTM) using a modified protocol similar to the protocol used to write to TPM’s PCR17. 

After successful execution of SENTER, either PCR17 (if FTM is not enabled) or the FTM (if enabled) contains the 
measurement of AC code and the SENTER launching parameters. 

After authentication is completed successfully, the private configuration space of the Intel® TXT-capable chipset 
is unlocked so that the authenticated code module and measured environment software can gain access to this 
normally restricted chipset state. The Intel® TXT-capable chipset private configuration space can be locked later 
by software writing to the chipset LT.CMD.CLOSE-PRIVATE register or unconditionally using the GETSEC[SEXIT] 
instruction.

The SENTER leaf function also initializes some processor architecture state for the ILP from contents held in the 
header of the authenticated code module. Since the authenticated code module is relocatable, all address refer-
ences are relative to the base address passed in via EBX. The ILP GDTR base value is initialized to EBX + [GDTBa-
sePtr] and GDTR limit set to [GDTLimit]. The CS selector is initialized to the value held in the AC module header 
field SegSel, while the DS, SS, and ES selectors are initialized to CS+8. The segment descriptor fields are initial-
ized implicitly with BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write/accessed for DS, SS, and ES, while 
execute/read/accessed for CS. Execution in the authenticated code module for the ILP begins with the EIP set to 
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EBX + [EntryPoint]. AC module defined fields used for initializing processor state are consistency checked with a 
failure resulting in an TXT-shutdown condition.

Table 5-6 provides a summary of processor state initialization for the ILP and RLP(s) after successful completion 
of GETSEC[SENTER]. For both ILP and RLP(s), paging is disabled upon entry to the measured environment. It is 
up to the ILP to establish a trusted paging environment, with appropriate mappings, to meet protection require-
ments established during the launch of the measured environment. RLP state initialization is not completed until 
a subsequent wake-up has been signaled by execution of the GETSEC[WAKEUP] function by the ILP.

Segmentation related processor state that has not been initialized by GETSEC[SENTER] requires appropriate 
initialization before use. Since a new GDT context has been established, the previous state of the segment 
selector values held in FS, GS, TR, and LDTR may no longer be valid. The IDTR will also require reloading with a 
new IDT context after launching the measured environment before exceptions or the external interrupts INTR and 

Table 5-6   Register State Initialization after GETSEC[SENTER] and GETSEC[WAKEUP]

Register State ILP after GETSEC[SENTER] RLP after GETSEC[WAKEUP]

CR0 PG←0, AM←0, WP←0; Others unchanged PG←0, CD←0, NW←0, AM←0, WP←0; PE←1, NE←1

CR4 00004000H 00004000H

EFLAGS 00000002H 00000002H

IA32_EFER 0H 0

EIP [EntryPoint from MLE header1] [LT.MLE.JOIN + 12]

EBX Unchanged [SINIT.BASE] Unchanged

EDX SENTER control flags Unchanged

EBP SINIT.BASE Unchanged

CS Sel=[SINIT SegSel], base=0, limit=FFFFFh, G=1, 
D=1, AR=9BH

Sel = [LT.MLE.JOIN + 8], base = 0, limit = FFFFFH, G = 
1, D = 1, AR = 9BH

DS, ES, SS Sel=[SINIT SegSel] +8, base=0, limit=FFFFFh, G=1, 
D=1, AR=93H

Sel = [LT.MLE.JOIN + 8] +8, base = 0, limit = FFFFFH, 
G = 1, D = 1, AR = 93H

GDTR Base= SINIT.base (EBX) + [SINIT.GDTBasePtr], 
Limit=[SINIT.GDTLimit]

Base = [LT.MLE.JOIN + 4], Limit = [LT.MLE.JOIN]

DR7 00000400H 00000400H

IA32_DEBUGCTL 0H 0H

Performance 
counters and counter 
control registers

0H 0H

IA32_MISC_ENABLE See Table 5-5 See Table 5-5

IA32_SMM_MONITOR
_CTL

Bit 2←0 Bit 2←0

NOTES:
1. See Intel® Trusted Execution Technology Measured Launched Environment Programming Guide for MLE header 

format.
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NMI can be handled. In the meantime, the programmer must take care in not executing an INT n instruction or 
any other condition that would result in an exception or trap signaling.

Debug exception and trap related signaling is also disabled as part of execution of GETSEC[SENTER]. This is 
achieved by clearing DR7, TF in EFLAGs, and the MSR IA32_DEBUGCTL as defined in Table 5-6. These can be re-
enabled once supporting exception handler(s), descriptor tables, and debug registers have been properly re-
initialized following SENTER. Also, any pending single-step trap condition will be cleared at the completion of 
SENTER for both the ILP and RLP(s).

Performance related counters and counter control registers are cleared as part of execution of SENTER on both 
the ILP and RLP. This implies any active performance counters at the time of SENTER execution will be disabled. 
To reactive the processor performance counters, this state must be re-initialized and re-enabled.

Since MCE along with all other state bits (with the exception of SMXE) are cleared in CR4 upon execution of 
SENTER processing, any enabled machine check error condition that occurs will result in the processor performing 
the TXT-shutdown action. This also applies to an RLP while in the SENTER sleep state. For each logical processor 
CR4.MCE must be reestablished with a valid machine check exception handler to otherwise avoid an TXT-shut-
down under such conditions.

The MSR IA32_EFER is also unconditionally cleared as part of the processor state initialized by SENTER for both 
the ILP and RLP. Since paging is disabled upon entering authenticated code execution mode, a new paging envi-
ronment will have to be re-established if it is desired to enable IA-32e mode while operating in authenticated code 
execution mode. 

The miscellaneous feature control MSR, IA32_MISC_ENABLE, is initialized as part of the measured environment 
launch. Certain bits of this MSR are preserved because preserving these bits may be important to maintain previ-
ously established platform settings. See the footnote for Table 5-5 The remaining bits are cleared for the purpose 
of establishing a more consistent environment for the execution of authenticated code modules. Among the 
impact of initializing this MSR, any previous condition established by the MONITOR instruction will be cleared. 

Effect of MSR IA32_FEATURE_CONTROL MSR

Bits 15:8 of the IA32_FEATURE_CONTROL MSR affect the execution of GETSEC[SENTER]. These bits consist of 
two fields: 
• Bit 15: a global enable control for execution of SENTER.
• Bits 14:8: a parameter control field providing the ability to qualify SENTER execution based on the level of 

functionality specified with corresponding EDX parameter bits 6:0. 

The layout of these fields in the IA32_FEATURE_CONTROL MSR is shown in Table 5-1. 

Prior to the execution of GETSEC[SENTER], the lock bit of IA32_FEATURE_CONTROL MSR must be bit set to affirm 
the settings to be used. Once the lock bit is set, only a power-up reset condition will clear this MSR. The 
IA32_FEATURE_CONTROL MSR must be configured in accordance to the intended usage at platform initialization. 
Note that this MSR is only available on SMX or VMX enabled processors. Otherwise, IA32_FEATURE_CONTROL is 
treated as reserved.

The Intel® Trusted Execution Technology Measured Launched Environment Programming Guide provides additional details and 
requirements for programming measured environment software to launch in an Intel TXT platform.

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)
GETSEC[SENTER] (ILP only):
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
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ELSE IF ((in VMX root operation) or
(CR0.PE=0) or (CR0.CD=1) or (CR0.NW=1) or (CR0.NE=0) or
(CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or (TXT chipset not present) or
(SENTERFLAG=1) or (ACMODEFLAG=1) or (IN_SMM=1) or
(TPM interface is not present) or
(EDX != (SENTER_EDX_support_mask & EDX)) or
(IA32_CR_FEATURE_CONTROL[0]=0) or (IA32_CR_FEATURE_CONTROL[15]=0) or
((IA32_CR_FEATURE_CONTROL[14:8] & EDX[6:0]) != EDX[6:0]))

THEN #GP(0);
IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)

FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO
IF IA32_MC[I]_STATUS = uncorrectable error

THEN #GP(0);
FI;

OD;
FI;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN #GP(0);
ACBASE← EBX;
ACSIZE← ECX;
IF (((ACBASE MOD 4096) != 0) or ((ACSIZE MOD 64) != 0 ) or (ACSIZE < minimum 

module size) or (ACSIZE > AC RAM capacity) or ((ACBASE+ACSIZE) > (2^32 -1)))
THEN #GP(0);

Mask SMI, INIT, A20M, and NMI external pin events;
SignalTXTMsg(SENTER);
DO
WHILE (no SignalSENTER message);

TXT_SENTER__MSG_EVENT (ILP & RLP):
Mask and clear SignalSENTER event;
Unmask SignalSEXIT event;
IF (in VMX operation)

THEN TXT-SHUTDOWN(#IllegalEvent);
FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO

IF IA32_MC[I]_STATUS = uncorrectable error
THEN TXT-SHUTDOWN(#UnrecovMCError);

FI;
OD;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN TXT-SHUTDOWN(#UnrecovMCError);
IF (Voltage or bus ratio status are NOT at a known good state)

THEN IF (Voltage select and bus ratio are internally adjustable)
THEN 

Make product-specific adjustment on operating parameters;
ELSE

TXT-SHUTDOWN(#IIlegalVIDBRatio);
FI;

IA32_MISC_ENABLE← (IA32_MISC_ENABLE & MASK_CONST*)
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(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M← 0;
IA32_DEBUGCTL← 0;
Invalidate processor TLB(s);
Drain outgoing transactions;
Clear performance monitor counters and control;
SENTERFLAG← 1;
SignalTXTMsg(SENTERAck);
IF (logical processor is not ILP)

THEN GOTO RLP_SENTER_ROUTINE;
(* ILP waits for all logical processors to ACK *)
DO

DONE← TXT.READ(LT.STS);
WHILE (not DONE);
SignalTXTMsg(SENTERContinue);
SignalTXTMsg(ProcessorHold);
FOR I=ACBASE to ACBASE+ACSIZE-1 DO

ACRAM[I-ACBASE].ADDR← I;
ACRAM[I-ACBASE].DATA← LOAD(I);

OD;
IF (ACRAM memory type != WB)

THEN TXT-SHUTDOWN(#BadACMMType);
IF (AC module header version is not supported) OR (ACRAM[ModuleType] <> 2)

THEN TXT-SHUTDOWN(#UnsupportedACM);
KEY← GETKEY(ACRAM, ACBASE);
KEYHASH← HASH(KEY);
CSKEYHASH← LT.READ(LT.PUBLIC.KEY);
IF (KEYHASH <> CSKEYHASH)

THEN TXT-SHUTDOWN(#AuthenticateFail);
SIGNATURE← DECRYPT(ACRAM, ACBASE, KEY);
(* The value of SIGNATURE_LEN_CONST is implementation-specific*)
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.I]← SIGNATURE[I];
COMPUTEDSIGNATURE← HASH(ACRAM, ACBASE, ACSIZE);
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I]← COMPUTEDSIGNATURE[I];
IF (SIGNATURE != COMPUTEDSIGNATURE)

THEN TXT-SHUTDOWN(#AuthenticateFail);
ACMCONTROL← ACRAM[CodeControl];
IF ((ACMCONTROL.0 = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))

THEN TXT-SHUTDOWN(#UnexpectedHITM);
IF (ACMCONTROL reserved bits are set)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[GDTBasePtr] < (ACRAM[HeaderLen] * 4 + Scratch_size)) OR 

((ACRAM[GDTBasePtr] + ACRAM[GDTLimit]) >= ACSIZE))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACMCONTROL.0 = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified 
line detected on ACRAM load)) 
THEN ACEntryPoint← ACBASE+ACRAM[ErrorEntryPoint];

ELSE
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ACEntryPoint← ACBASE+ACRAM[EntryPoint];
IF ((ACEntryPoint >= ACSIZE) or (ACEntryPoint < (ACRAM[HeaderLen] * 4 + Scratch_size)))

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SegSel] > (ACRAM[GDTLimit] - 15)) or (ACRAM[SegSel] < 8))

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SegSel].TI=1) or (ACRAM[SegSel].RPL!=0))

THEN TXT-SHUTDOWN(#BadACMFormat);

IF (FTM_INTERFACE_ID.[3:0] = 1 ) (* Alternate FTM Interface has been enabled *)
THEN (* TPM_LOC_CTRL_4 is located at 0FED44008H, TMP_DATA_BUFFER_4 is located at 0FED44080H *)

WRITE(TPM_LOC_CTRL_4) ← 01H; (* Modified HASH.START protocol *)
(* Write to firmware storage *)
WRITE(TPM_DATA_BUFFER_4) ← SIGNATURE_LEN_CONST + 4;
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

WRITE(TPM_DATA_BUFFER_4 + 2 + I )← ACRAM[SCRATCH.I];
WRITE(TPM_DATA_BUFFER_4 + 2 + SIGNATURE_LEN_CONST) ← EDX;
WRITE(FTM.LOC_CTRL) ← 06H; (* Modified protocol combining HASH.DATA and HASH.END *)

ELSE IF (FTM_INTERFACE_ID.[3:0] = 0 ) (* Use standard TPM Interface *)
ACRAM[SCRATCH.SIGNATURE_LEN_CONST]← EDX;
WRITE(TPM.HASH.START)← 0;
FOR I=0 to SIGNATURE_LEN_CONST + 3 DO

WRITE(TPM.HASH.DATA)← ACRAM[SCRATCH.I];
WRITE(TPM.HASH.END)← 0;

FI;
ACMODEFLAG← 1;
CR0.[PG.AM.WP]← 0;
CR4← 00004000h;
EFLAGS← 00000002h;
IA32_EFER← 0;
EBP← ACBASE;
GDTR.BASE← ACBASE+ACRAM[GDTBasePtr];
GDTR.LIMIT← ACRAM[GDTLimit];
CS.SEL← ACRAM[SegSel];
CS.BASE← 0;
CS.LIMIT← FFFFFh;
CS.G← 1;
CS.D← 1;
CS.AR← 9Bh;
DS.SEL← ACRAM[SegSel]+8;
DS.BASE← 0;
DS.LIMIT← FFFFFh;
DS.G← 1;
DS.D← 1;
DS.AR← 93h;
SS← DS;
ES← DS;
DR7← 00000400h;
IA32_DEBUGCTL← 0;
SignalTXTMsg(UnlockSMRAM);
SignalTXTMsg(OpenPrivate);
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SignalTXTMsg(OpenLocality3);
EIP← ACEntryPoint;
END;

RLP_SENTER_ROUTINE: (RLP only)
Mask SMI, INIT, A20M, and NMI external pin events
Unmask SignalWAKEUP event;
Wait for SignalSENTERContinue message;
IA32_APIC_BASE.BSP← 0;
GOTO SENTER sleep state;
END;

Flags Affected

All flags are cleared.

Use of Prefixes
LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CR0.CD = 1 or CR0.NW = 1 or CR0.NE = 0 or CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If in VMX root operation.
If the initiating processor is not designated as the bootstrap processor via the MSR bit 
IA32_APIC_BASE.BSP.
If an Intel® TXT-capable chipset is not present.
If an Intel® TXT-capable chipset interface to TPM is not detected as present.
If a protected partition is already active or the processor is already in authenticated code 
mode.
If the processor is in SMM.
If a valid uncorrectable machine check error is logged in IA32_MC[I]_STATUS.
If the authenticated code base is not on a 4096 byte boundary.
If the authenticated code size > processor's authenticated code execution area storage 
capacity.
If the authenticated code size is not modulo 64.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SENTER] is not recognized in real-address mode.
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Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SENTER] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.
#GP  IF AC code module does not reside in physical address below 2^32 -1.

64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP  IF AC code module does not reside in physical address below 2^32 -1.

VM-Exit Condition
Reason (GETSEC) IF in VMX non-root operation.
...

7. Updates to Appendix A, Volume 2C
Change bars show changes to Appendix A of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2C: Instruction Set Reference.

------------------------------------------------------------------------------------------
...
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Table A-2  One-byte Opcode Map: (08H — FFH) *

...

8. Updates to Chapter 10, Volume 3A
Change bars show changes to Chapter 10 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

8 9 A B C D E F

0 OR PUSH
CSi64

2-byte
escape

(Table A-3) Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 SBB PUSH
DSi64

POP
DSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 SUB SEG=CS 
(Prefix)

DASi64 

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 CMP SEG=DS 
(Prefix)

AASi64 

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 DECi64 general register / REXo64 Prefixes

eAX
REX.W

eCX
REX.WB

eDX
REX.WX

eBX
REX.WXB

eSP
REX.WR

eBP
REX.WRB

eSI
REX.WRX

eDI 
REX.WRXB

5 POPd64 into general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15 

6 PUSHd64

Iz
IMUL

Gv, Ev, Iz
PUSHd64

Ib
IMUL

Gv, Ev, Ib
INS/
INSB

Yb, DX

INS/
INSW/
INSD

Yz, DX

OUTS/
OUTSB
DX, Xb

OUTS/
OUTSW/
OUTSD
DX, Xz

7 Jccf64, Jb- Short displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G 

8 MOV MOV
Ev, Sw

LEA
Gv, M 

MOV
Sw, Ew

Grp 1A1A POPd64 

Ev
Eb, Gb Ev, Gv Gb, Eb Gv, Ev 

9 CBW/
CWDE/
CDQE

CWD/
CDQ/
CQO

far CALLi64

Ap
FWAIT/
WAIT

PUSHF/D/Q d64/
Fv

POPF/D/Q d64/
Fv

SAHF LAHF

A TEST STOS/B
Yb, AL 

STOS/W/D/Q
Yv, rAX 

LODS/B
AL, Xb 

LODS/W/D/Q
rAX, Xv

SCAS/B
AL, Yb

SCAS/W/D/Q
rAX, Yv

AL, Ib rAX, Iz

B MOV immediate word or double into word, double, or quad register

rAX/r8, Iv rCX/r9, Iv rDX/r10, Iv rBX/r11, Iv rSP/r12, Iv rBP/r13, Iv rSI/r14, Iv rDI/r15 , Iv

C ENTER LEAVEd64 far RET far RET INT 3 INT INTOi64 IRET/D/Q 

Iw, Ib Iw Ib

D ESC (Escape to coprocessor instruction set)

E near CALLf64 JMP IN OUT

Jz nearf64

Jz
fari64

Ap
shortf64

Jb
AL, DX eAX, DX DX, AL DX, eAX 

F CLC STC CLI STI CLD STD INC/DEC INC/DEC

Grp 41A Grp 51A

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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10.9 SPURIOUS INTERRUPT
A special situation may occur when a processor raises its task priority to be greater than or equal to the level of 
the interrupt for which the processor INTR signal is currently being asserted. If at the time the INTA cycle is 
issued, the interrupt that was to be dispensed has become masked (programmed by software), the local APIC will 
deliver a spurious-interrupt vector. Dispensing the spurious-interrupt vector does not affect the ISR, so the 
handler for this vector should return without an EOI.

The vector number for the spurious-interrupt vector is specified in the spurious-interrupt vector register (see 
Figure Figure 10-23). The functions of the fields in this register are as follows:
Spurious Vector Determines the vector number to be delivered to the processor when the local APIC gener-

ates a spurious vector. 
(Pentium 4 and Intel Xeon processors.) Bits 0 through 7 of the this field are programmable 
by software. 
(P6 family and Pentium processors). Bits 4 through 7 of the this field are programmable by 
software, and bits 0 through 3 are hardwired to logical ones. Software writes to bits 0 
through 3 have no effect.

APIC Software Enable/Disable
Allows software to temporarily enable (1) or disable (0) the local APIC (see Section 10.4.3, 
“Enabling or Disabling the Local APIC”).

Focus Processor Checking
Determines if focus processor checking is enabled (0) or disabled (1) when using the 
lowest-priority delivery mode. In Pentium 4 and Intel Xeon processors, this bit is reserved 
and should be cleared to 0.

Suppress EOI Broadcasts
Determines whether an EOI for a level-triggered interrupt causes EOI messages to be broad-
cast to the I/O APICs (0) or not (1). See Section 10.8.5. The default value for this bit is 0, 
indicating that EOI broadcasts are performed. This bit is reserved to 0 if the processor does 
not support EOI-broadcast suppression.

NOTE
Do not program an LVT or IOAPIC RTE with a spurious vector even if you set the mask bit. A 
spurious vector ISR does not do an EOI. If for some reason an interrupt is generated by an LVT or 
RTE entry, the bit in the in-service register will be left set for the spurious vector. This will mask all 
interrupts at the same or lower priority
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9. Updates to Chapter 13, Volume 3A
Change bars show changes to Chapter 13 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------
This chapter describes system programming features for instruction set extensions operating on the processor 
state extension known as the SSE state (XMM registers, MXCSR) and for other processor extended states. 
Instruction set extensions operating on the SSE state include the streaming SIMD extensions (SSE), streaming 
SIMD extensions 2 (SSE2), streaming SIMD extensions 3 (SSE3), Supplemental SSE3 (SSSE3), and SSE4. Collec-
tively, these are called SSE extensions1 and the corresponding instructions SSE instructions. FXSAVE/
FXRSTOR instructions can be used save/restore SSE state along with FP state. See Section 10.5 in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 1 for information about FXSAVE and FXRSTOR.

Sections 13.1 through 13.4 cover system programming requirements to enable the SSE extensions, providing 
operating system or executive support for the SSE extensions, SIMD floating-point exceptions, exception 
handling, and task (context) switching. These sections primarily discuss use of FXSAVE/FXRSTOR to save/restore 
SSE state.

XSAVE feature set refers to extensions to the Intel architecture that will allow system executives to implement 
support for multiple processor extended states along with FP/SSE states that may be introduced over time 
without requiring the system executive to be modified each time a new processor state extension is introduced. 
XSAVE feature set provide mechanisms to enumerate the supported extended states, enable some or all of them 
for software use, instructions to save/restore the states and enumerate the layout of the states when saved to 
memory. XSAVE/XRSTOR instructions are part of the XSAVE feature set. These instructions are introduced after 

Figure 10-23   Spurious-Interrupt Vector Register (SVR)

...

31 0

Reserved

7

Focus Processor Checking2

APIC Software Enable/Disable

8910

0: APIC Disabled
1: APIC Enabled

Spurious Vector3

Address: FEE0 00F0H
Value after reset: 0000 00FFH

0: Enabled
1: Disabled

1. Not supported on all processors.
2. Not supported in Pentium 4 and Intel Xeon processors.
3. For the P6 family and Pentium processors, bits 0 through 3

are always 0.

1112

EOI-Broadcast Suppression1

0: Disabled
1: Enabled

1. The collection also includes PCLMULQDQ and AES instructions operating on XMM state.
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the introduction of FP/SSE states but can be used to manage legacy FP/SSE state along with processor extended 
states. See CHAPTER 13 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 for 
information about XSAVE feature set.

System programming for managing processor extended states is described in sections 13.5 through 13.6. XSAVE 
feature set is designed to be compatible with FXSAVE/FXRSTOR and hence much of the material through sections 
13.1 to 13.4 related to SSE state also applies to XSAVE feature set with the exception of enumeration and saving/
restoring state.

XSAVE Compaction is an XSAVE feature that allows operating systems to allocate space for only the states 
saved to conserve memory usage. A new instruction called XSAVEC is introduced to save extended states in 
compacted format and XRSTOR instruction is enhanced to comprehend compacted format. System programming 
for managing processor extended states in compacted format is also described in section 13.5.

Supervisor state is an extended state that can only be accessed in ring 0. XSAVE feature set has been enhanced 
to manage supervisor states. Two new ring 0 instructions, XSAVES/XRSTORS, are introduced to save/restore 
supervisor states along with other XSAVE managed states. They are privileged instruction and only operate in 
compacted format. System programming for managing supervisor states in described in section 13.7.

Each XSAVE managed features may have additional feature specific system programming requirements such as 
exception handlers etc. Feature specific system programming requirements for XSAVE managed features are 
described in section 13.8.

13.1 PROVIDING OPERATING SYSTEM SUPPORT FOR SSE EXTENSIONS
To use SSE extensions, the operating system or executive must provide support for initializing the processor to 
use these extensions, for handling SIMD floating-point exceptions, and for using FXSAVE and FXRSTOR (Section 
10.5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1) to manage context. 
XSAVE features set can also be used to manage SSE state along with other processor extended states as 
described in 13.5. This section primarily focuses on using FXSAVE/FXRSTOR to manage SSE state. The following 
sections provide system programming guidelines for this support. Because SSE extensions share the same state, 
experience the same sets of non-numerical and numerical exception behavior, these guidelines that apply to SSE 
also apply to other sets of SIMD extensions that operate on the same processor state and subject to the same sets 
of non-numerical and numerical exception behavior. 

Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2),” and Chapter 12, “Programming with 
SSE3, SSSE3 and SSE4,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
discuss support for SSE/SSE2/SSE3/SSSE3/SSE4 from an applications point of view program.

...

13.1.3 Initialization of the SSE Extensions
The operating system or executive should carry out the following steps to set up SSE extensions for use by appli-
cation programs:

1. Set CR4.OSFXSR[bit 9] = 1. Setting this flag implies that the operating system provides facilities for saving 
and restoring SSE state using FXSAVE and FXRSTOR instructions or the XSAVE feature set. These instructions 
may be used to save the SSE state during task switches and when invoking the SIMD floating-point exception 
(#XM) handler (see Section 13.1.5, “Providing an Handler for the SIMD Floating-Point Exception (#XM)”). 
If the processor does not support the FXSAVE and FXRSTOR instructions, attempting to set the OSFXSR flag 
causes a general-protection exception (#GP) to be generated.

2. Set CR4.OSXMMEXCPT[bit 10] = 1. Setting this flag implies that the operating system provides an SIMD 
floating-point exception (#XM) handler (see Section 13.1.5, “Providing an Handler for the SIMD Floating-Point 
Exception (#XM)”). 
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...

13.1.4 Providing Non-Numeric Exception Handlers for Exceptions Generated by the SSE 
Instructions

SSE instructions can generate the same type of memory-access exceptions (such as page faults and limit viola-
tions) and other non-numeric exceptions as other Intel 64 and IA-32 architecture instructions generate. 

Ordinarily, existing exception handlers can handle these and other non-numeric exceptions without code modifi-
cation. However, depending on the mechanisms used in existing exception handlers, some modifications might 
need to be made.

The SSE extensions can generate the non-numeric exceptions listed below:
• Memory Access Exceptions:

— Stack-segment fault (#SS).

— General protection exception (#GP). Executing most SSE instructions with an unaligned 128-bit memory 
reference generates a general-protection exception. (The MOVUPS and MOVUPD instructions allow 
unaligned a loads or stores of 128-bit memory locations, without generating a general-protection 
exception.) A 128-bit reference within the stack segment that is not aligned to a 16-byte boundary will 
also generate a general-protection exception, instead a stack-segment fault exception (#SS).

— Page fault (#PF).

— Alignment check (#AC). When enabled, this type of alignment check operates on operands that are less 
than 128-bits in size: 16-bit, 32-bit, and 64-bit. To enable the generation of alignment check exceptions, 
do the following:

• Set the AM flag (bit 18 of control register CR0)

• Set the AC flag (bit 18 of the EFLAGS register)

• CPL must be 3

If alignment check exceptions are enabled, 16-bit, 32-bit, and 64-bit misalignment will be detected for 
the MOVUPD and MOVUPS instructions; detection of 128-bit misalignment is not guaranteed and may 
vary with implementation.

• System Exceptions:

— Invalid-opcode exception (#UD). This exception is generated when executing SSE instructions under the 
following conditions:

• SSE/SSE2/SSE3/SSSE3/SSE4_1/SSE4_2 feature flags returned by CPUID are set to 0. This condition 
does not affect the CLFLUSH instruction, nor POPCNT.

• The CLFSH feature flag returned by the CPUID instruction is set to 0. This exception condition only 
pertains to the execution of the CLFLUSH instruction. 

• The POPCNT feature flag returned by the CPUID instruction is set to 0. This exception condition only 
pertains to the execution of the POPCNT instruction. 

• The EM flag (bit 2) in control register CR0 is set to 1, regardless of the value of TS flag (bit 3) of CR0. 
This condition does not affect the PAUSE, PREFETCHh, MOVNTI, SFENCE, LFENCE, MFENCE, CLFLUSH, 
CRC32 and POPCNT instructions.

• The OSFXSR flag (bit 9) in control register CR4 is set to 0. This condition does not affect the PSHUFW, 
MOVNTQ, MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, CLFLUSH, CRC32 and POPCNT 
instructions.
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• Executing a instruction that causes a SIMD floating-point exception when the OSXMMEXCPT flag (bit 
10) in control register CR4 is set to 0. See Section 13.4.1, “Using the TS Flag to Control the Saving of 
the x87 FPU and SSE State.”

— Device not available (#NM). This exception is generated by executing a SSE instruction when the TS flag 
(bit 3) of CR0 is set to 1.

Other exceptions can occur during delivery of the above exceptions.

...

13.3 SAVING AND RESTORING SSE STATE
The SSE state consists of the state of the XMM and MXCSR registers. Intel recommends the following method for 
saving and restoring this state:
• Execute the FXSAVE instruction to save the state of the XMM and MXCSR registers to memory.
• Execute the FXRSTOR instruction to restore the state of the XMM and MXCSR registers from the image saved 

in memory earlier.

This save and restore method is required for all operating systems. XSAVE feature set can also be used to save/
restore SSE state. See Section 13.5, “The XSAVE Feature Set and Processor Extended State Management.” for 
using the XSAVE feature set to save/restore SSe state.

In some cases, applications may choose to save only the XMM and MXCSR registers in the following manner:
• Execute MOVDQ instructions to save the contents of the XMM registers to memory. 
• Execute a STMXCSR instruction to save the state of the MXCSR register to memory.

Such applications must restore the XMM and MXCSR registers as follows:
• Execute MOVDQ instructions to load the saved contents of the XMM registers from memory into the XMM 

registers.
• Execute a LDMXCSR instruction to restore the state of the MXCSR register from memory.

13.4 DESIGNING OS FACILITIES FOR SAVING X87 FPU,SSE AND EXTENDED 
STATES ON TASK OR CONTEXT SWITCHES

The x87 FPU, SSE, and AVX state consist of the state of the x87 FPU, XMM, and MXCSR registers. The FXSAVE and 
FXRSTOR instructions provide a fast method for saving ad restoring this state, as does the XSAVE feature set.

Older operating systems may use FSAVE/FNSAVE and FRSTOR to save the x87 FPU state. These facilities can be 
extended to save and restore SSE state by substituting FXSAVE and FXRSTOR or the XSAVE feature set in place 
of FSAVE/FNSAVE and FRSTOR.

If task or content switching facilities are written from scratch, any of several approaches may be taken for using 
the FXSAVE and FXRSTOR instructions of the XSAVE feature set to save and restore x87 FPU and SSE state:
• The operating system can require applications that are intended to be run as tasks take responsibility for 

saving the states prior to a task suspension during a task switch and for restoring the states when the task is 
resumed. This approach is appropriate for cooperative multitasking operating systems, where the application 
has control over (or is able to determine) when a task switch is about to occur and can save state prior to the 
task switch.

• The operating system can take the responsibility for saving the states as part of the task switch process and 
restoring the state of the registers when a suspended task is resumed. This approach is appropriate for 
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preemptive multitasking operating systems, where the application cannot know when it is going to be 
preempted and cannot prepare in advance for task switching. 

• The operating system can take the responsibility for saving the states as part of the task switch process, but 
delay the restoring of the states until an instruction operating on the states is actually executed by the new 
task. See Section 13.4.1, “Using the TS Flag to Control the Saving of the x87 FPU and SSE State,” for more 
information. This approach is called lazy restore.
The use of lazy restore mechanism in context switches is not recommended when XSAVE feature set is used 
to save/restore states for the following reasons.

— With XSAVE feature set, Intel processors have optimizations in place to avoid saving the state components 
that are in their initial configurations or when they have not been modified since it was restored last. 
These optimizations eliminate the need for lazy restore. See section 13.5.4 in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1. 

— Intel processors have power optimizations when state components are in their initial configurations. Use 
of lazy restore retains the non-initial configuration of the last thread and is not power efficient.

— Not all extended states support lazy restore mechanisms. As such, when one or more such states are 
enabled it becomes very inefficient to use lazy restore as it results in two separate state restore, one in 
context switch for the states that does not support lazy restore and one in the #NM handler for states that 
support lazy restore.

13.4.1 Using the TS Flag to Control the Saving of the x87 FPU and SSE State
The TS flag in control register CR0 is provided to allow the operating system to delay saving/restoring the x87 FPU 
and SSE state until an instruction that actually accesses this state is encountered in a new task. When the TS flag 
is set, the processor monitors the instruction stream for x87 FPU, MMX, SSE instructions. When the processor 
detects one of these instructions, it raises a device-not-available exception (#NM) prior to executing the instruc-
tion. The #NM exception handler can then be used to save the x87 FPU and SSE state for the previous task (using 
an FXSAVE, XSAVE, or XSAVEOPT instruction) and load the x87 FPU and SSE state for the current task (using an 
FXRSTOR or XRSOTR instruction). If the task never encounters an x87 FPU, MMX, or SSE instruction, the device-
not-available exception will not be raised and a task state will not be saved/restored unnecessarily.

NOTE
The CRC32 and POPCNT instructions do not operate on the x87 FPU or SSE state. They operate on 
the general-purpose registers and are not involved with the techniques described above.

The TS flag can be set either explicitly (by executing a MOV instruction to control register CR0) or implicitly (using 
the IA-32 architecture’s native task switching mechanism). When the native task switching mechanism is used, 
the processor automatically sets the TS flag on a task switch. After the device-not-available handler has saved the 
x87 FPU and SSE state, it should execute the CLTS instruction to clear the TS flag.

13.5 THE XSAVE FEATURE SET AND PROCESSOR EXTENDED STATE 
MANAGEMENT 

The architecture of XSAVE feature set is described in CHAPTER 13 of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1. The XSAVE feature set includes the following:
• An extensible data layout for existing and future processor state extensions. The layout of the XSAVE area 

extends from the 512-byte FXSAVE/FXRSTOR layout to provide compatibility and migration path from 
managing the legacy FXSAVE/FXRSTOR area. The XSAVE area is described in more detail in Section 13.4 of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.
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• CPUID enhancements for feature enumeration. See Section 13.2 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1.

• Control register enhancement and dedicated register for enabling each processor extended state. See Section 
13.3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

• Instructions to save state to and restore state from the XSAVE area. See Section 13.6 through Section 13.8 of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

Operating systems can utilize XSAVE feature set to manage both FP/SSE state and processor extended states. 
CPUID leaf 0DH enumerates XSAVE feature set related information. The following guide lines provide the steps an 
operating system needs to take to support legacy FP/SSE states and processor extended states.

1. Check that the processor supports the XSAVE feature set

2. Determine the set of XSAVE managed features that the operating system intends to enable and calculate the 
size of the buffer needed to save/restore the states during context switch and other flows

3. Enable use of XSAVE feature set and XSAVE managed features

4. Provide an initialization for the XSAVE managed feature state components

5. Provide (if necessary) required exception handlers for exceptions generated each of the XSAVE managed 
features.

13.5.1 Checking the Support for XSAVE Feature Set
Support for XSAVE Feature set is enumerated in CPUID.1.ECX.XSAVE[bit 26]. Enumeration of this bit indicates 
that the processor supports XSAVE/XRSTOR instructions to manage state and XSETBV/XGETBV on XCR0 to 
enable and get enabled states. An operating system needs to enable XSAVE feature set as described later.
Additionally CPUID.(EAX=0DH, ECX=1).EAX enumerates additional XSAVE sub features such as optimized save, 
compaction and supervisor state support. The following table summarizes XSAVE sub features. Once an operating 
system enables XSAVE feature set, all the sub-features enumerated are also available. There is no need to enable 
each additional sub feature.

13.5.2 Determining the XSAVE Managed Feature States And The Required Buffer Size 
Each XSAVE managed feature has one or more state components associated with it. An operating system policy 
needs to determine the XSAVE managed features to support and determine the corresponding state components 
to enable. When determining the XSAVE managed features to support, operating system needs to take in account 
the dependencies between them (e.g. AVX feature depends on SSE feature). Similarly, when a XSAVE managed 
feature has more than one state components, all of them needs to be enabled. Each logical processor enumerates 

Table 13-3    CPUID.(EAX=0DH, ECX=1) EAX Bit Assignment

EAX Bit Position Meaning

0 If set, indicates availability of the XSAVEOPT instruction.

1 If set, indicates availability of the XSAVEC instruction and the corresponding compaction enhancements 
to the legacy XRSTOR instruction.

2 If set, indicates support for execution of XGETBV with ECX=1. This execution returns the state-compo-
nent bitmap XINUSE. If XINUSE[i] = 0, state component i is in its initial configuration. Execution of 
XSETBV with ECX=1 causes a #GP.

3 If set, indicates support for XSAVES/XRSTORS and IA32_XSS MSR

31:4 Reserved
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supported XSAVE state components in CPUID.(EAX=0DH, ECX=0).EDX:EAX. An operating system may enable all 
or a subset of the state components enumerated by the processor based on the OS policy.
The size of the memory buffer needed to save enabled XSAVE state components depends on whether the OS opts-
in to use compacted format or not. If the OS uses non-compacted format, then the size will be determined by the 
last state in the layout. This can be calculated as the largest offset + size of the states to be enabled. When 
compacted format is used, the OS may add up the sizes of all state components that intend to enable excluding 
FP/SSE states plus 576 bytes (legacy area 512 bytes + header 64 bytes) to arrive at required save area size. Note 
that the base of the save area must be 64-byte aligned in both cases.

13.5.3 Enable the Use Of XSAVE Feature Set And XSAVE State Components
Operating systems need to enable the use of XSAVE feature set by writing to CR4.OSXSAVE[bit 18] to enable 
XSETBV/XGETBV instructions to access XCR0 and to support processor extended state management using 
XSAVE/XRSTOR. When XSAVE feature set is enabled, all enumerated XSAVE sub features such as optimized save, 
compaction and supervisor state support are also enabled. Operating systems also need to enable the XSAVE 
state components in XCR0 using XSETBV instruction.

13.5.4 Provide an Initialization for the XSAVE State Components
The XSAVE header of a newly allocated XSAVE area should be initialized to all zeroes before saving context. An 
operating system may choose establish beginning state-component values for a task by executing XRSTOR from 
an XSAVE area that the OS has configured. If it is desired to begin state component i in its initial configuration, 
the OS should clear bit i in the XSTATE_BV field in the XSAVE header; otherwise, it should set that bit and place 
the desired beginning value in the appropriate location in the XSAVE area.
When a buffer is allocated for compacted size, software must ensure that the XCOMP_BV field is setup correctly 
before restoring from the buffer. Bit 63 of the XCOMP_BV field indicates that the save area is in the compacted 
format and the remaining bits indicate the states that have space allocated in the save area. If the buffer was first 
used to save the state in compacted format, then the save instructions will setup the XCOMP_BV field appropri-
ately. If the buffer is first used to restore the state, then software must set up the XCOMP_BV field.

13.5.5 Providing the Required Exception Handlers
Instructions part of each XSAVE managed features may generate exceptions and operating system may need to 
enable such exceptions and provide handlers for them. Section 13.8 describes feature specific OS requirements 
for each XSAVE managed features.

13.6 INTEROPERABILITY OF THE XSAVE FEATURE SET AND FXSAVE/FXRSTOR
The FXSAVE instruction writes x87 FPU and SSE state information to a 512-byte FXSAVE save area. FXRSTOR 
restores the processor’s x87 FPU and SSE states from an FXSAVE area. The XSAVE features set supports x87 FPU 
and SSE states using the same layout as the FXSAVE area to provide interoperability of FXSAVE versus XSAVE, 
and FXRSTOR versus XRSTOR. The XSAVE feature set allows system software to manage SSE state independent 
of x87 FPU states. Thus system software that had been using FXSAVE and FXRSTOR to manage x87 FPU and SSE 
states can transition to using the XSAVE feature set to manage x87 FPU, SSE and other processor extended states 
in a systematic and forward-looking manner. See Section 10.5 and Chapter 13 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1 for more details.
...
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13.7 THE XSAVE FEATURE SET AND PROCESSOR SUPERVISOR STATE 
MANAGEMENT 

Supervisor state is a processor state that is only accessible in ring 0. An extension to XSAVE feature set, enumer-
ated by CPUID.(EAX=0DH, ECX=1).EAX[bit 3] allows the management of the supervisor states using XSAVE 
feature set. See Chapter 13 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 for the 
details of the supervisor state XSAVE feature set extension. The supervisor state extension includes the following:
• CPUID enhancements to enumerate the set of supervisor states and their sizes that can be managed by 

XSAVE feature set. 
• A new MSR IA32_XSS to enable XSAVE feature set to manage one or more enumerated supervisor states. 
• A new pair of privileged save/restore instructions, XSAVES and XRSTORS, to save/restore supervisor states 

along with other XSAVE managed feature states.

The guidelines to enable XSAVE feature set to manage supervisor state are very similar to the steps outlines in 
Section 13.6 with the differences outline below. The set of supervisor states that can be managed by XSAVE 
feature set is enumerated in (EAX=0DH, ECX=1).EDX:ECX. XSAVE managed supervisor states are enabled in 
IA32_XSS MSR instead of XCR0 control register. There are semantic differences between user states enabled in 
XCR0 and supervisor state enabled in IA32_XSS MSR. A supervisor state enabled in IA32_XSS MSR:
• May be accessed via other mechanisms such as RDMSR/WRMSR even when they are not enabled in IA32_XSS 

MSR. Enabling a supervisor state in the IA32_XSS MSR merely indicates that the state can be saved/restored 
using XSAVES/XRSTORS instructions. 

• May have side effects when saving/restoring the state such as disabling/enabling feature associated with the 
state. This behavior is feature specific and will be documented along with the feature description. 

• May generate faults when saving/restoring the state. XSAVES/XRSTORS will follow the faulting behavior of 
RDMSR/WRMSR respectively if the corresponding state is also accessible using RDMSR/WRMSR. 

• XRSTORS may fault when restoring the state for supervisor features that are already enabled via feature 
specific mechanisms. This behavior is feature specific and will be documented along with the feature 
description.

When a supervisor state is disabled via a feature specific mechanism, the state does not automatically get marked 
as INIT. Hence XSAVES/XRSTORS will continue to save/restore the state subject to available optimizations. If the 
software does not intend to preserve the state when it disables the feature, it should initialize it to hardware INIT 
value with XRSTORS instruction so that XSAVES/XRSTORS perform optimally for that state.

13.8 SYSTEM PROGRAMMING FOR XSAVE MANAGED FEATURES
This section describes system programming requirement for each XSAVE managed features that are feature 
specific such as exception handling.

13.8.1 Intel Advanced Vector Extensions (Intel AVX) and YMM State
Intel AVX instructions comprises of 256-bit and 128-bit instructions that operates on 256-bit YMM registers. The 
XSAVE feature set allows software to save and restore the state of these registers. See Chapter 13 of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

System software support requirements for 256-bit YMM states are described next:

For processors that support YMM states, the YMM state exists in all operating modes. However, the available 
instruction interfaces to access YMM states may vary in different modes. 
Operating systems must use the XSAVE feature set for YMM state management. The XSAVE feature set also 
provides flexible and efficient interface to manage XMM/MXCSR states and x87 FPU states in conjunction with 
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newer processor extended states like YMM states. Operating systems may need to be aware of the following when 
supporting AVX.
• Saving/Restoring AVX state in non-compacted format without SSE state will also save/restore MXCSR even 

though MXCSR is not part of AVX state. This does not happen when compacted format is used. 
• Few AVX instructions such as VZEROUPPER/VZEROALL may operate on future expansion of YMM registers.

An operating system must enable its YMM state management to support AVX and any 256-bit extensions that 
operate on YMM registers. Otherwise, an attempt to execute an instruction in AVX extensions (including an 
enhanced 128-bit SIMD instructions using VEX encoding) will cause a #UD exception. 

AVX instructions may generate SIMD floating-point exceptions. An OS must enable SIMD floating-point exception 
support by setting CR4.OSXMMEXCPT[bit 10]=1.

...

10.Updates to Chapter 14, Volume 3B
Change bars show changes to Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

14.3.4 Performance and Energy Bias Hint support
Intel 64 processors may support additional software hint to guide the hardware heuristic of power management 
features to favor increasing dynamic performance or conserve energy consumption. 

Software can detect the processor's capability to support the performance-energy bias preference hint by exam-
ining bit 3 of ECX in CPUID leaf 6. The processor supports this capability if CPUID.06H:ECX.SETBH[bit 3] is set 
and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H).

Software can program the lowest four bits of IA32_ENERGY_PERF_BIAS MSR with a value from 0 - 15. The values 
represent a sliding scale, where a value of 0 (the default reset value) corresponds to a hint preference for highest 
performance and a value of 15 corresponds to the maximum energy savings. A value of 7 roughly translates into 
a hint to balance performance with energy consumption.

The layout of IA32_ENERGY_PERF_BIAS is shown in Figure 14-4. The scope of IA32_ENERGY_PERF_BIAS is per 
logical processor, which means that each of the logical processors in the package can be programmed with a 
different value. This may be especially important in virtualization scenarios, where the performance / energy 

Figure 14-4   IA32_ENERGY_PERF_BIAS Register
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Energy Policy Preference Hint

4 3
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requirements of one logical processor may differ from the other. Conflicting “hints” from various logical processors 
at higher hierarchy level will be resolved in favor of performance over energy savings. 

Software can use whatever criteria it sees fit to program the MSR with an appropriate value. However, the value 
only serves as a hint to the hardware and the actual impact on performance and energy savings is model 
specific.

14.4 HARDWARE-CONTROLLED PERFORMANCE STATES (HWP)
Intel processors may contain support for Hardware-Controlled Performance States (HWP), which autonomously 
selects performance states while utilizing OS supplied performance guidance hints. The Enhanced Intel Speed-
Step® Technology provides a means for the OS to control discrete frequency-based operating points via the 
IA32_PERF_CTL and IA32_PERF_STATUS MSRs. 

In contrast, HWP is an implementation of the ACPI-defined Collaborative Processor Performance Control (CPPC), 
which specifies that the platform enumerate a continuous, abstract unit-less, performance value scale that is not 
tied to a specific performance state / frequency by definition. While the enumerated scale is roughly linear in 
terms of a delivered integer workload performance result, the OS is required to characterize the performance 
value range to comprehend the delivered performance for an applied workload. 

When HWP is enabled, the processor autonomously selects performance states as deemed appropriate for the 
applied workload and with consideration of constraining hints that are programmed by the OS. These OS-provided 
hints include minimum and maximum performance limits, preference towards energy efficiency or performance, 
and the specification of a relevant workload history observation time window. The means for the OS to override 
HWP's autonomous selection of performance state with a specific desired performance target is also provided, 
however, the effective frequency delivered is subject to the result of energy efficiency and performance optimiza-
tions.

14.4.1 HWP Programming Interfaces 
The programming interfaces provided by HWP include the following:
• The CPUID instruction allows software to discover the presence of HWP support in an Intel processor. Specifi-

cally, execute CPUID instruction with EAX=06H as input will return 5 bit flags covering the following aspects 
in bits 7 through 11 of CPUID.06H:EAX:

— Availability of HWP baseline resource and capability, CPUID.06H:EAX[bit 7]: If this bit is set, HWP provides 
several new architectural MSRs: IA32_PM_ENABLE, IA32_HWP_CAPABILITIES, IA32_HWP_REQUEST, 
IA32_HWP_STATUS. 

— Availability of HWP Notification upon dynamic Guaranteed Performance change, CPUID.06H:EAX[bit 8]: If 
this bit is set, HWP provides IA32_HWP_INTERRUPT MSR to enable interrupt generation due to dynamic 
Performance changes and excursions.

— Availability of HWP Activity window control, CPUID.06H:EAX[bit 9]: If this bit is set, HWP allows software 
to program activity window in the IA32_HWP_REQUEST MSR.

— Availability of HWP energy/performance preference control, CPUID.06H:EAX[bit 10]: If this bit is set, HWP 
allows software to set an energy/performance preference hint in the IA32_HWP_REQUEST MSR.

— Availability of HWP package level control, CPUID.06H:EAX[bit 11]:If this bit is set, HWP provides the 
IA32_HWP_REQUEST_PKG MSR to convey OS Power Management’s control hints for all logical processors 
in the physical package.

Table 14-1   Architectual and Non-Architectural MSRs Related to HWP

Address Archite
ctural

Register Name Description
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• Additionally, HWP may provide a non-architectural MSR, MSR_PPERF, which provides a quantitative metric to 
software of hardware’s view of workload scalability. This hardware’s view of workload scalability is implemen-
tation specific.

14.4.2 Enabling HWP 
The layout of the IA32_PM_ENABLE MSR is shown in Figure 14-5. The bit fields are described below: 

• HWP_ENABLE (bit 0, R/W1Once) — Software sets this bit to enable HWP with autonomous selection. 
When set, the processor will disregard input from the legacy performance control interface (IA32_PERF_CTL). 
Note this bit can only be enabled once from the default value. Once set, writes to the HWP_ENABLE bit are 
ignored. Only RESET will clear this bit. Default = zero (0). 

• Bits 63:1 are reserved and must be zero.

After software queries CPUID and verifies the processor’s support of HWP, system software can write 1 to 
IA32_PM_ENABLE.HWP_ENABLE (bit 0) to enable hardware controlled performance states. The default value of 
IA32_PM_ENABLE MSR at power-on is 0, i.e. HWP is disabled.

Additional MSRs associated with HWP may only be accessed after HWP is enabled, with the exception of 
IA32_HWP_INTERRUPT and MSR_PPERF. Accessing the IA32_HWP_INTERRUPT MSR requires only HWP is present 
as enumerated by CPUID but does not require enabling HWP.

IA32_PM_ENABLE is a package level MSR, i.e. writing to it from any logical processor within a package affects all 
logical processors within that package.

770H Y IA32_PM_ENABLE Enable/Disable HWP.

771H Y IA32_HWP_CAPABILITIES Enumerates the HWP performance range (static and dynamic). 

772H Y IA32_HWP_REQUEST_PKG Conveys OSPM's control hints (Min, Max, Activity Window, Energy 
Performance Preference, Desired) for all logical processor in the physical 
package.

773H Y IA32_HWP_INTERRUPT Controls HWP native interrupt generation (Guaranteed Performance 
changes, excursions).

774H Y IA32_HWP_REQUEST Conveys OSPM's control hints (Min, Max, Activity Window, Energy 
Performance Preference, Desired) for a single logical processor.

777H Y IA32_HWP_STATUS Status bits indicating changes to Guaranteed Performance and 
excursions to Minimum Performance. 

19CH Y IA32_THERM_STATUS[bits 15:12] Conveys reasons for performance excursions

64EH N MSR_PPERF Productive Performance Count.

Table 14-1   Architectual and Non-Architectural MSRs Related to HWP

Figure 14-5   IA32_PM_ENABLE MSR
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14.4.3 HWP Performance Range and Dynamic Capabilities
The OS reads the IA32_HWP_CAPABILITIES MSR to comprehend the limits of the HWP-managed performance 
range as well as the dynamic capability, which may change during processor operation. The enumerated perfor-
mance range values reported by IA32_HWP_CAPABILITIES directly map to initial frequency targets (prior to 
workload-specific frequency optimizations of HWP). However the mapping is processor family specific. The 
enumerated performance range values for Intel Core processors correspond to 100MHz units. e.g. a field value of 
8 = 800MHz.

The layout of the IA32_HWP_CAPABILITIES MSR is shown in Figure 14-6. The bit fields are described below: 

• Highest_Performance (bits 7:0, RO) — Value for the maximum non-guaranteed performance level.
• Guaranteed_Performance (bits 15:8, RO) — Current value for the guaranteed performance level. This 

value can change dynamically as a result of internal or external constraints, e.g. thermal or power limits.
• Most_Efficient_Performance (bits 23:16, RO) — Current value of the most efficient performance level. 

This value can change dynamically as a result of workload characteristics.
• Lowest_Performance (bits 31:24, RO) — Value for the lowest performance level that software can 

program to IA32_HWP_REQUEST.
• Bits 63:32 are reserved and must be zero.

The value returned in the Guaranteed_Performance field is hardware's best-effort approximation of the avail-
able performance given current operating constraints. Changes to the Guaranteed_Performance value will 
primarily occur due to a shift in operational mode. This includes a power or other limit applied by an external 
agent, e.g. RAPL (see Figure 14.9.1), or the setting of a Configurable TDP level (see model-specific controls 
related to Programmable TDP Limit in Chapter 35, “Model-Specific Registers (MSRs)”). Notification of a change to 
the Guaranteed_Performance occurs via interrupt (if configured) and the IA32_HWP_Status MSR. Changes to 
Guaranteed_Performance are indicated when a macroscopically meaningful change in performance occurs i.e. 
sustained for greater than one second. Consequently, notification of a change in Guaranteed Performance will 
typically occur no more frequently than once per second. Rapid changes in platform configuration, e.g. docking / 
undocking, with corresponding changes to a Configurable TDP level could potentially cause more frequent notifi-
cations.

The value returned by the Most_Efficient_Performance field provides the OS with an indication of the practical 
lower limit for the IA32_HWP_REQUEST. The processor may not honor IA32_HWP_REQUEST.Maximum Perfor-
mance settings below this value.

14.4.4 Managing HWP 
Typically, the OS controls HWP operation for each logical processor via the writing of control hints / constraints to 
the IA32_HWP_REQUEST MSR. The layout of the IA32_HWP_REQUEST MSR is shown in Figure 14-7. The bit fields 
are described below: 

Figure 14-6   IA32_HWP_CAPABILITIES Register 
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• Minimum_Performance (bits 7:0, RW) — Conveys a hint to the HWP hardware. The OS programs the 
minimum performance hint to achieve the required quality of service (QOS) or to meet a service level 
agreement (SLA) as needed. Note that an excursion below the level specified is possible due to hardware 
constraints. The default value of this field is IA32_HWP_CAPABILITIES.Lowest_Performance.

• Maximum_Performance (bits 15:8, RW) — Conveys a hint to the HWP hardware. The OS programs this 
field to limit the maximum performance that is expected to be supplied by the HWP hardware. Excursions 
above the limit requested by OS are possible due to hardware coordination between the processor cores and 
other components in the package. The default value of this field is 
IA32_HWP_CAPABILITIES.Highest_Performance.

• Desired_Performance (bits 23:16, RW) — Conveys a hint to the HWP hardware. When set to zero, 
hardware autonomous selection determines the performance target. When set to a non-zero value (between 
the range of Lowest_Performance and Highest_Performance of IA32_HWP_CAPABILITIES) conveys an explicit 
performance request hint to the hardware; effectively disabling HW Autonomous selection. The 
Desired_Performance input is non-constraining in terms of Performance and Energy Efficiency optimizations, 
which are independently controlled. The default value of this field is 0.

• Energy_Performance_Preference (bits 31:24, RW) — Conveys a hint to the HWP hardware. The OS may 
write a range of values from 0 (performance preference) to 0FFH (energy efficiency preference) to influence 
the rate of performance increase /decrease and the result of the hardware's energy efficiency and 
performance optimizations. The default value of this field is 80H.

• Activity_Window (bits 41:32, RW) — Conveys a hint to the HWP hardware specifying a moving workload 
history observation window for performance/frequency optimizations. If 0, the hardware will determine the 
appropriate window size. When writing a non-zero value to this field, this field is encoded in the format of bits 
38:32 as a 7-bit mantissa and bits 41:39 as a 3-bit exponent value in powers of 10. The resultant value is in 
microseconds. Thus, the minimal/maximum activity window size is 1 microsecond/1270 seconds. Combined 
with the Energy_Performance_Preference input, Activity_Window influences the rate of performance increase 
/ decrease. This non-zero hint only has meaning when Desired_Performance = 0. The default value of this 
field is 0.

• Package_Control (bit 42, RW) — When set causes this logical processor's IA32_HWP_REQUEST control 
inputs to be derived from IA32_HWP_REQUEST_PKG

• Bits 63:43 are reserved and must be zero.

The HWP hardware clips and resolves the field values as necessary to the valid range. Reads return the last value 
written not the clipped values.

Processors may support a subset of IA32_HWP_REQUEST fields as indicated by CPUID. Reads of non-supported 
fields will return 0. Writes to non-supported fields are ignored.

The OS may override HWP's autonomous selection of performance state with a specific performance target by 
setting the Desired_Performance field to a non zero value, however, the effective frequency delivered is subject 

Figure 14-7   IA32_HWP_REQUEST Register 
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to the result of energy efficiency and performance optimizations, which are influenced by the Energy Performance 
Preference field.

Software may disable all hardware optimizations by setting Minimum_Performance = Maximum_Performance 
(subject to package coordination).

Note:  The processor may run below the Minimum_Performance level due to hardware constraints including: 
power, thermal, and package coordination constraints. The processor may also run below the 
Minimum_Performance level for short durations (few milliseconds) following C-state exit, and when Hardware 
Duty Cycling (see Section 14.5) is enabled.

The structure of the IA32_HWP_REQUEST_PKG MSR (package-level) is identical to the IA32_HWP_REQUEST MSR 
with the exception of the Package Control field, which does not exist. Field values written to this MSR apply to all 
logical processors within the physical package with the exception of logical processors whose 
IA32_HWP_REQUEST.Package Control field is clear (zero). Single P-state Control mode is only supported when 
IA32_HWP_REQUEST_PKG is not supported. 

14.4.5 HWP Feedback
The processor provides several types of feedback to the OS during HWP operation. 

The IA32_MPERF MSR and IA32_APERF MSR mechanism (see Section 14.2) allows the OS to calculate the resul-
tant effective frequency delivered over a time period. Energy efficiency and performance optimizations directly 
impact the resultant effective frequency delivered.

The layout of the IA32_HWP_STATUS MSR is shown in Figure 14-9. It provides feedback regarding changes to 
IA32_HWP_CAPABILITIES.Guaranteed_Performance and excursions to 
IA32_HWP_CAPABILITIES.Minimum_Performance. The bit fields are described below: 
• Guaranteed_Performance_Change (bit 0, RWC0) — If set (1), a change to Guaranteed_Performance has 

occurred. Software should query IA32_HWP_CAPABILITIES.Guaranteed_Performance value to ascertain the 
new Guaranteed Performance value and to assess whether to re-adjust HWP hints via IA32_HWP_REQUEST. 
Software must clear this bit by writing a zero (0).

• Excursion_To_Minimum (bit 2, RWC0) — If set (1), an excursion to Minimum_Performance of 
IA32_HWP_REQUEST has occurred. Software must clear this bit by writing a zero (0).

• Bits 63:3, and bit 1 are reserved and must be zero.

Figure 14-8   IA32_HWP_REQUEST_PKG Register 
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The status bits of IA32_HWP_STATUS must be cleared (0) by software so that a new status condition change will 
cause the hardware to set the bit again and issue the notification. Status bits are not set for "normal" excursions 
e.g. running below Minimum Performance for short durations during C-state exit. Changes to 
Guaranteed_Performance and excursions to Minimum_Performance will occur no more than once per second.

The OS can determine the specific reasons for a Guaranteed_Performance change or an excursion to 
Minimum_Performance in IA32_HWP_REQUEST by examining the associated status and log bits reported in the 
IA32_THERM_STATUS MSR. The layout of the IA32_HWP_STATUS MSR that HWP uses to support software query 
of HWP feedback is shown in Figure 14-10. The bit fields of IA32_THERM_STATUS associated with HWP feedback 
are described below (Bit fields of IA32_THERM_STATUS unrelated to HWP can be found in Section 14.7.5.2).

• Bits 11:0, See Section 14.7.5.2.
• Current Limit Status (bit 12, RO) — If set (1), indicates an electrical current limit (e.g. Electrical Design 

Point/IccMax) is being exceeded and is adversely impacting energy efficiency optimizations.
• Current Limit Log (bit 13, RWC0) — If set (1), an electrical current limit has been exceeded that has 

adversely impacted energy efficiency optimizations since the last clearing of this bit or a reset. This bit is 
sticky, software may clear this bit by writing a zero (0).

• Cross-domain Limit Status (bit 14, RO) — If set (1), indicates another hardware domain (e.g. processor 
graphics) is currently limiting energy efficiency optimizations in the processor core domain.

Figure 14-9   IA32_HWP_STATUS MSR

Figure 14-10   IA32_THERM_STATUS Register With HWP Feedback
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• Cross-domain Limit Log (bit 15, RWC0) — If set (1), indicates another hardware domain (e.g. processor 
graphics) has limited energy efficiency optimizations in the processor core domain since the last clearing of 
this bit or a reset. This bit is sticky, software may clear this bit by writing a zero (0).

• Bits 63:16, See Section 14.7.5.2.

14.4.5.1 Non-Architectural HWP Feedback
The Productive Performance (MSR_PPERF) MSR (non-architectural) provides hardware's view of workload scal-
ability, which is a rough assessment of the relationship between frequency and workload performance, to soft-
ware. The layout of the MSR_PPERF is shown in Figure 14-11. 

• PCNT (bits 63:0, RO) — Similar to IA32_APERF but only counts cycles perceived by hardware as contrib-
uting to instruction execution (e.g. unhalted and unstalled cycles). This counter increments at the same rate 
as IA32_APERF, where the ratio of (ΔPCNT/ΔACNT) is an indicator of workload scalability (0% to 100%). Note 
that values in this register are valid even when HWP is not enabled. 

14.4.6 HWP Notifications
Processors may support interrupt-based notification of changes to HWP status as indicated by CPUID.  If 
supported, the IA32_HWP_INTERRUPT MSR is used to enable interrupt-based notifications. Notification events, 
when enabled, are delivered using the existing thermal LVT entry. The layout of the IA32_HWP_INTERRUPT is 
shown in Figure 14-12. The bit fields are described below:

• EN_Guaranteed_Performance_Change (bit 0, RW) — When set (1), an HWP Interrupt will be generated 
whenever a change to the IA32_HWP_CAPABILITIES.Guaranteed_Performance occurs. The default value is 0 
(Interrupt generation is disabled). 

• EN_Excursion_Minimum (bit 1, RW) — When set (1), an HWP Interrupt will be generated whenever the 
HWP hardware is unable to meet the IA32_HWP_REQUEST.Minimum_Performance setting. The default value 
is 0 (Interrupt generation is disabled). 

• Bits 63:2, and bit 1 are reserved and must be zero.

Figure 14-11   MSR_PPERF MSR

Figure 14-12   IA32_HWP_INTERRUPT MSR
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14.4.7 Recommendations for OS use of HWP Controls

Common Cases of Using HWP

The default HWP control field values are expected to be suitable for many applications. The OS can enable auton-
omous HWP for these common cases by
• Setting IA32_HWP_REQUEST.Desired Performance = 0 (hardware autonomous selection determines the 

performance target). Set IA32_HWP_REQUEST.Activity Window = 0 (enable HW dynamic selection of window 
size).

To maximize HWP benefit for the common cases, the OS should set 
• IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_CAPABILITIES.Lowest_Performance and 
• IA32_HWP_REQUEST.Maximum_Performance = IA32_HWP_CAPABILITIES.Highest_Performance. 

Setting IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_REQUEST.Maximum_Performance is func-
tionally equivalent to using of the IA32_PERF_CTRL interface and is therefore not recommended (bypassing 
HWP).

Calibrating HWP for Application-Specific HWP Optimization

In some applications, the OS may have Quality of Service requirements that may not be met by the default 
values. The OS can characterize HWP by: 
• keeping IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_REQUEST.Maximum_Performance to 

prevent non-linearity in the characterization process,
• utilizing the range values enumerated from the IA32_HWP_CAPABILITIES MSR to program 

IA32_HWP_REQUEST while executing workloads of interest and observing the power and performance result.

The power and performance result of characterization is also influenced by the IA32_HWP_REQUEST.Energy 
Performance Preference field, which must also be characterized. 

Characterization can be used to set IA32_HWP_REQUEST.Minimum_Performance to achieve the required QOS in 
terms of performance. If IA32_HWP_REQUEST.Minimum_Performance is set higher than 
IA32_HWP_CAPABILITIES.Guaranteed Performance then notification of excursions to Minimum Performance may 
be continuous.

If autonomous selection does not deliver the required workload performance, the OS should assess the current 
delivered effective frequency and for the duration of the specific performance requirement set 
IA32_HWP_REQUEST.Desired_Performance <> 0 and adjust 
IA32_HWP_REQUEST.Energy_Performance_Preference as necessary to achieve the required workload perfor-
mance. The MSR_PPERF.PCNT value can be used to better comprehend the potential performance result from 
adjustments to IA32_HWP_REQUEST.Desired_Performance. The OS should set 
IA32_HWP_REQUEST.Desired_Performance = 0 to re-enable autonomous selection. 

Tuning for Maximum Performance or Lowest Power Consumption

Maximum performance will be delivered by setting IA32_HWP_REQUEST.Minimum_Performance = 
IA32_HWP_REQUEST.Maximum_Performance = IA32_HWP_CAPABILITIES.Highest_Performance and setting 
IA32_HWP_REQUEST.Energy_Performance_Preference = 0 (performance preference).

Lowest power will be achieved by setting IA32_HWP_REQUEST.Minimum_Performance = 
IA32_HWP_REQUEST.Maximum_Performance = IA32_HWP_CAPABILITIES.Lowest_Performance and setting 
IA32_HWP_REQUEST.Energy_Performance_Preference = 0FFH (energy efficiency preference).
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Additional Guidelines

Set IA32_HWP_REQUEST.Energy_Performance_Preference as appropriate for the platform's current mode of 
operation. For example, a mobile platforms' setting may be towards performance preference when on AC power 
and more towards energy efficiency when on DC power.

The use of the Running Average Power Limit (RAPL) processor capability (see section 14.7.1) is highly recom-
mended when HWP is enabled. Use of IA32_HWP_Request.Maximum_Performance for thermal control is subject 
to limitations and can adversely impact the performance of other processor components e.g. Graphics

If default values deliver undesirable performance latency in response to events, the OS should set 
IA32_HWP_REQUEST. Activity_Window to a low (non zero) value and 
IA32_HWP_REQUEST.Energy_Performance_Preference towards performance (0) for the event duration.

Similarly, for "real-time" threads, set IA32_HWP_REQUEST.Energy_Performance_Preference towards perfor-
mance (0) and IA32_HWP_REQUEST. Activity_Window to a low value, e.g. 01H, for the duration of their execu-
tion.

When executing low priority work that may otherwise cause the hardware to deliver high performance, set 
IA32_HWP_REQUEST. Activity_Window to a longer value and reduce the 
IA32_HWP_Request.Maximum_Performance value as appropriate to control energy efficiency. Adjustments to 
IA32_HWP_REQUEST.Energy_Performance_Preference may also be necessary.

14.5 HARDWARE DUTY CYCLING (HDC)
Intel processors may contain support for Hardware Duty Cycling (HDC), which enables the processor to autono-
mously force its components inside the physical package into idle state. For example, the processor may selec-
tively force only the processor cores into an idle state. 

HDC is disabled by default on processors that support it. System software can dynamically enable or disable HDC 
to force one or more components into an idle state or wake up those components previously forced into an idle 
state. Forced Idling (and waking up) of multiple components in a physical package can be done with one WRMSR 
to a packaged-scope MSR from any logical processor within the same package. 

HDC does not delay events such as timer expiration, but it may affect the latency of short (less than 1 msec) soft-
ware threads, e.g. if a thread is forced to idle state just before completion and entering a "natural idle".

HDC forced idle operation can be thought of as operating at a lower effective frequency. The effective average 
frequency computed by software will include the impact of HDC forced idle. 

The primary use of HDC is enable system software to manage low active workloads to increase the package level 
C6 residency. Additionally, HDC can lower the effective average frequency in case or power or thermal limitation. 

When HDC forces a logical processor, a processor core or a physical package to enter an idle state, its C-State is 
set to C3 or deeper. The deep “C-states” referred to in this section are processor-specific C-states.

14.5.1 Hardware Duty Cycling Programming Interfaces 
The programming interfaces provided by HDC include the following:
• The CPUID instruction allows software to discover the presence of HDC support in an Intel processor. Specifi-

cally, execute CPUID instruction with EAX=06H as input, bit 13 of EAX indicates the processor’s support of the 
following aspects of HDC.

— Availability of HDC baseline resource, CPUID.06H:EAX[bit 13]: If this bit is set, HDC provides the following 
architectural MSRs: IA32_PKG_HDC_CTL, IA32_PM_CTL1, and the IA32_THREAD_STALL MSRs.

• Additionally, HDC may provide several non-architectural MSR. 
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14.5.2 Package level Enabling HDC
The layout of the IA32_PKG_HDC_CTL MSR is shown in Figure 14-13. IA32_PKG_HDC_CTL is a writable MSR from 
any logical processor in a package. The bit fields are described below: 

• HDC_PKG_Enable (bit 0, R/W) — Software sets this bit to enable HDC operation by allowing the processor 
to force to idle all “HDC-allowed” (see Figure 14.5.3) logical processors in the package. Clearing this bit 
disables HDC operation in the package by waking up all the processor cores that were forced into idle by a 
previous ‘0’-to-’1’ transition in IA32_PKG_HDC_CTL.HDC_PKG_Enable. This bit is writable only if 
CPUID.06H:EAX[bit 13] = 1. Default = zero (0). 

• Bits 63:1 are reserved and must be zero.

After processor support is determined via CPUID, system software can enable HDC operation by setting 
IA32_PKG_HDC_CTL.HDC_PKG_Enable to 1. At reset, IA32_PKG_HDC_CTL.HDC_PKG_Enable is cleared to 0. A 
'0'-to-'1' transition in HDC_PKG_Enable allows the processor to force to idle all HDC-allowed (indicated by the 
non-zero state of IA32_PM_CTL1[bit 0]) logical processors in the package. A ‘1’-to-’0’ transition wakes up those 
HDC force-idled logical processors. 

Software can enable or disable HDC using this package level control multiple times from any logical processor in 
the package. Note the latency of writing a value to the package-visible IA32_PKG_HDC_CTL.HDC_PKG_Enable is 
longer than the latency of a WRMSR operation to a Logical Processor MSR (as opposed to package level MSR) such 
as: IA32_PM_CTL1 (described in Section 14.5.3). Propagation of the change in 

Table 14-2   Architectural and non-Architecture MSRs Related to HDC

Address Architec
tural

Register Name Description

DB0H Y IA32_PKG_HDC_CTL Package Enable/Disable HDC.

DB1H Y IA32_PM_CTL1 Per-logical-processor select control to allow/block HDC forced idling. 

DB2H Y IA32_THREAD_STALL Accumulate stalled cycles on this logical processor due to HDC forced idling.

653H N MSR_CORE_HDC_RESIDENCY Core level stalled cycle counter due to HDC forced idling on one or more 
logical processor.

655H N MSR_PKG_HDC_SHALLOW_RE
SIDENCY

Accumulate the cycles the package was in C21 state and at least one logical 
processor was in forced idle

656H N MSR_PKG_HDC_DEEP_RESIDE
NCY

Accumulate the cycles the package was in the software specified Cx1 state 
and at least one logical processor was in forced idle. Cx is specified in 
MSR_PKG_HDC_CONFIG_CTL.

652H N MSR_PKG_HDC_CONFIG_CTL HDC configuration controls
NOTES:

1. The package “C-states” referred to in this section are processor-specific C-states.

Figure 14-13   IA32_PKG_HDC_CTL MSR
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IA32_PKG_HDC_CTL.HDC_PKG_Enable and reaching all HDC idled logical processor to be woken up may take on 
the order of core C6 exit latency.

14.5.3 Logical-Processor Level HDC Control
The layout of the IA32_PM_CTL1 MSR is shown in Figure 14-14. Each logical processor in a package has its own 
IA32_PM_CTL1 MSR. The bit fields are described below: 

• HDC_Allow_Block (bit 0, R/W) — Software sets this bit to allow this logical processors to honor the 
package-level IA32_PKG_HDC_CTL.HDC_PKG_Enable control. Clearing this bit prevents this logical processor 
from using the HDC. This bit is writable only if CPUID.06H:EAX[bit 13] = 1. Default = one (1). 

• Bits 63:1 are reserved and must be zero.

Fine-grain OS control of HDC operation at the granularity of per-logical-processor is provided by IA32_PM_CTL1. 
At RESET, all logical processors are allowed to participate in HDC operation such that OS can manage HDC using 
the package-level IA32_PKG_HDC_CTL.

Writes to IA32_PM_CTL1 complete with the latency that is typical to WRMSR to a Logical Processor level MSR. 
When the OS chooses to manage HDC operation at per-logical-processor granularity, it can write to 
IA32_PM_CTL1 on one or more logical processors as desired. Each write to IA32_PM_CTL1 must be done by code 
that executes on the logical processor targeted to be allowed into or blocked from HDC operation. 

Blocking one logical processor for HDC operation may have package level impact. For example, the processor may 
decide to stop duty cycling of all other Logical Processors as well. 

The propagation of IA32_PKG_HDC_CTL.HDC_PKG_Enable in a package takes longer than a WRMSR to 
IA32_PM_CTL1. The last completed write to IA32_PM_CTL1 on a logical processor will be honored when a ‘0’-to-
’1’ transition of IA32_PKG_HDC_CTL.HDC_PKG_Enable arrives to a logical processor.

14.5.4 HDC Residency Counters
There is a collection of counters available for software to track various residency metrics related to HDC operation. 
In general, HDC residency time is defined as the time in HDC forced idle state at the granularity of per-logical-
processor, per-core, or package. At the granularity of per-core/package-level HDC residency, at least one of the 
logical processor in a core/package must be in the HDC forced idle state.

14.5.4.1 IA32_THREAD_STALL
Software can track per-logical-processor HDC residency using the architectural MSR IA32_THREAD_STALL.The 
layout of the IA32_THREAD_STALL MSR is shown in Figure 14-15. Each logical processor in a package has its own 
IA32_THREAD_STALL MSR. The bit fields are described below: 

Figure 14-14   IA32_PM_CTL1 MSR
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• Stall_Cycle_Cnt (bits 63:0, R/O) — Stores accumulated HDC forced-idle cycle count of this processor core 
since last RESET. This counter increments at the same rate of the TSC. The count is updated only after the 
logical processor exits from the forced idled C-state. At each update, the number of cycles that the logical 
processor was stalled due to forced-idle will be added to the counter. This counter is available only if 
CPUID.06H:EAX[bit 13] = 1. Default = zero (0). 

A value of zero in IA32_THREAD_STALL indicates either HDC is not supported or the logical processor never 
serviced any forced HDC idle. A non-zero value in IA32_THREAD_STALL indicates the HDC forced-idle residency 
times of the logical processor. It also indicates the forced-idle cycles due to HDC that could appear as C0 time to 
traditional OS accounting mechanisms (e.g. time-stamping OS idle/exit events).

Software can read IA32_THREAD_STALL irrespective of the state of IA32_PKG_HDC_CTL and IA32_PM_CTL1, as 
long as CPUID.06H:EAX[bit 13] = 1.

14.5.4.2 Non-Architectural HDC Residency Counters
Processors that support HDC operation may provide the following model-specific HDC residency counters.

MSR_CORE_HDC_RESIDENCY

Software can track per-core HDC residency using the counter MSR_CORE_HDC_RESIDENCY. This counter incre-
ments when the core is in C3 state or deeper (all logical processors in this core are idle due to either HDC or other 
mechanisms) and at least one of the logical processors is in HDC forced idle state. The layout of the 
MSR_CORE_HDC_RESIDENCY is shown in Figure 14-16. Each processor core in a package has its own 
MSR_CORE_HDC_RESIDENCY MSR. The bit fields are described below: 

• Core_Cx_Duty_Cycle_Cnt (bits 63:0, R/O) — Stores accumulated HDC forced-idle cycle count of this 
processor core since last RESET. This counter increments at the same rate of the TSC. The count is updated 
only after core C-state exit from a forced idled C-state. At each update, the increment counts cycles when the 
core is in a Cx state (all its logical processor are idle) and at least one logical processor in this core was forced 
into idle state due to HDC. If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR will cause a #GP fault. 
Default = zero (0). 

A value of zero in MSR_CORE_HDC_RESIDENCY indicates either HDC is not supported or this processor core 
never serviced any forced HDC idle. 

Figure 14-15   IA32_THREAD_STALL MSR

Figure 14-16   MSR_CORE_HDC_RESIDENCY MSR
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MSR_PKG_HDC_SHALLOW_RESIDENCY

The counter MSR_PKG_HDC_SHALLOW_RESIDENCY allows software to track HDC residency time when the 
package is in C2 state, all processor cores in the package are not active and at least one logical processor was 
forced into idle state due to HDC. The layout of the MSR_PKG_HDC_SHALLOW_RESIDENCY is shown in Figure 14-
17. There is one MSR_PKG_HDC_SHALLOW_RESIDENCY per package. The bit fields are described below: 

• Pkg_Duty_Cycle_Cnt (bits 63:0, R/O) — Stores accumulated HDC forced-idle cycle count of this 
processor core since last RESET. This counter increments at the same rate of the TSC. Package shallow 
residency may be implementation specific. In the initial implementation, the threshold is package C2-state. 
The count is updated only after package C2-state exit from a forced idled C-state. At each update, the 
increment counts cycles when the package is in C2 state and at least one processor core in this package was 
forced into idle state due to HDC. If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR may cause a #GP 
fault. Default = zero (0). 

A value of zero in MSR_PKG_HDC_SHALLOW_RESIDENCY indicates either HDC is not supported or this processor 
package never serviced any forced HDC idle. 

MSR_PKG_HDC_DEEP_RESIDENCY

The counter MSR_PKG_HDC_DEEP_RESIDENCY allows software to track HDC residency time when the package is 
in a software-specified package Cx state, all processor cores in the package are not active and at least one logical 
processor was forced into idle state due to HDC. Selection of a specific package Cx state can be configured using 
MSR_PKG_HDC_CONFIG. The layout of the MSR_PKG_HDC_DEEP_RESIDENCY is shown in Figure 14-18. There is 
one MSR_PKG_HDC_DEEP_RESIDENCY per package. The bit fields are described below: 

• Pkg_Cx_Duty_Cycle_Cnt (bits 63:0, R/O) — Stores accumulated HDC forced-idle cycle count of this 
processor core since last RESET. This counter increments at the same rate of the TSC. The count is updated 
only after package C-state exit from a forced idle state. At each update, the increment counts cycles when the 
package is in the software-configured Cx state and at least one processor core in this package was forced into 
idle state due to HDC. If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR may cause a #GP fault. 
Default = zero (0). 

A value of zero in MSR_PKG_HDC_SHALLOW_RESIDENCY indicates either HDC is not supported or this processor 
package never serviced any forced HDC idle. 

Figure 14-17   MSR_PKG_HDC_SHALLOW_RESIDENCY MSR

Figure 14-18   MSR_PKG_HDC_DEEP_RESIDENCY MSR
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MSR_PKG_HDC_CONFIG

MSR_PKG_HDC_CONFIG allows software to configure the package Cx state that the counter 
MSR_PKG_HDC_DEEP_RESIDENCY monitors. The layout of the MSR_PKG_HDC_CONFIG is shown in Figure 14-
19. There is one MSR_PKG_HDC_CONFIG per package. The bit fields are described below: 

• Pkg_Cx_Monitor (bits 2:0, R/W) — Selects which package C-state the MSR_HDC_DEEP_RESIDENCY 
counter will monitor. The encoding of the HDC_Cx_Monitor field are: 0: no-counting; 1: count package C2 
only, 2: count package C3 and deeper; 3: count package C6 and deeper; 4: count package C7 and deeper; 
other encodings are reserved. If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR may cause a #GP 
fault. Default = zero (0). 

• Bits 63:3 are reserved and must be zero.

14.5.5 MPERF and APERF Counters Under HDC
HDC operation can be thought of as an average effective frequency drop due to all or some of the Logical Proces-
sors enter an idle state period. 

By default, the IA32_MPERF counter counts during forced idle periods as if the logical processor was active. The 
IA32_APERF counter does not count during forced idle state. This counting convention allows the OS to compute 
the average effective frequency of the Logical Processor between the last MWAIT exit and the next MWAIT entry 
(OS visible C0) by ΔACNT/ΔMCNT * Nominal_ratio.

...

11. Updates to Chapter 17, Volume 3B
Change bars show changes to Chapter 17 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

Figure 14-19   MSR_PKG_HDC_CONFIG MSR

Figure 14-20   Example of Effective Frequency Reduction and Forced Idle Period of HDC

63 0

Reserved

2

HDC_Cx_Monitor
Reserved

1600 MHz: 25% Utilization /75% Forced Idle

Effective Frequency @ 100% Utilization : 400 MHz



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 112

CHAPTER 17
DEBUG, BRANCH PROFILE, TSC, AND QUALITY OF SERVICE

Intel 64 and IA-32 architectures provide debug facilities for use in debugging code and monitoring performance. 
These facilities are valuable for debugging application software, system software, and multitasking operating 
systems. Debug support is accessed using debug registers (DR0 through DR7) and model-specific registers 
(MSRs): 
• Debug registers hold the addresses of memory and I/O locations called breakpoints. Breakpoints are user-

selected locations in a program, a data-storage area in memory, or specific I/O ports. They are set where a 
programmer or system designer wishes to halt execution of a program and examine the state of the processor 
by invoking debugger software. A debug exception (#DB) is generated when a memory or I/O access is made 
to a breakpoint address. 

• MSRs monitor branches, interrupts, and exceptions; they record addresses of the last branch, interrupt or 
exception taken and the last branch taken before an interrupt or exception.

• Time stamp counter is described in Section 17.13, “Time-Stamp Counter”.
• Platform Quality of Service Monitoring is described in Section 17.14, “Platform Quality-of-Service (Qos) 

Monitoring”.
• Platform Quality of Service Enforcement is described in Section 17.15, “Cache Quality-of-Service (Qos) 

Enforcement”.

...

17.14 PLATFORM QUALITY-OF-SERVICE (QOS) MONITORING 
Future generations of Intel Xeon processor may offer monitoring capability in each logical processor to measure 
specific platform quality-of-service (PQoS) metric, for example, L3 cache occupancy. The programming interface 
for the PQoS Monitoring capability is described in this section. Two features within the PQoS Monitoring feature set 
are described - Cache QoS Monitoring and Memory Bandwidth Monitoring.

Cache QoS Monitoring (CQM) allows an Operating System, Hypervisor or similar system management agent to 
determine the usage of cache by applications running on the platform. The initial implementation is directed at L3 
cache monitoring (currently the last level cache in most server platforms).   

Memory Bandwidth Monitoring (MBM) builds on the CQM infrastructure to allow monitoring of bandwidth from one 
level of the cache hierarchy to the next - in this case focusing on the L3 cache, which is typically backed directly 
by system memory. As a result of this implementation, memory bandwidth can be monitored.

The PQoS Monitoring mechanisms provide the following key shared infrastructure features:
• A mechanism to enumerate the presence of the PQoS Monitoring capability within the platform (via a CPUID 

feature bit).
• A framework to enumerate the details of each sub-feature (including CQM and MBM, as discussed later, via 

CPUID leaves and sub-leaves). 
• A mechanism for the OS or Hypervisor to indicate a software-defined ID for each of the software threads 

(applications, virtual machines, etc.) that are scheduled to run on a logical processor. These identifiers are 
known as Resource Monitoring IDs (RMIDs). 

• Mechanisms in hardware to monitor cache occupancy and bandwidth statistics as applicable to a given 
product generation on a per software-id basis. 

• Mechanisms for the OS or Hypervisor to read back the collected metrics such as L3 occupancy or Memory 
Bandwidth for a given software ID at any point during runtime.
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17.14.1 Overview of Cache QoS Monitoring and Memory Bandwidth Monitoring
Platform QoS Monitoring provides a layer of abstraction between applications and logical processors through 
the use of Resource Monitoring IDs (RMIDs). Each logical processor in the system can be assigned an RMID 
independently, or multiple logical processors can be assigned to the same RMID value (e.g., to track an applica-
tion with multiple threads). For each logical processor, only one RMID value is active at a time. This is enforced by 
the IA32_PQR_ASSOC MSR, which specifies the active RMID of a logical processor. Writing to this MSR by soft-
ware changes the active RMID of the logical processor from an old value to a new value.

The Platform QoS Monitoring hardware tracks cache utilization as a result of memory accesses according to the 
RMIDs and reports monitored data via a counter register (IA32_QM_CTR). Software must also configure an event 
selection MSR (IA32_QM_EVTSEL) to specify which QOS metric is to be reported, and which RMID for which the 
data should be returned. 

Processor support of the QoS Monitoring framework is reported via the CPUID instruction. The resource type 
available to the QoS Monitoring framework is enumerated via a new leaf function in CPUID. Reading and writing 
to the PQoS MSRs requires the RDMSR and WRMSR instructions.

The PQoS Monitoring feature provides the following unique mechanisms:
• A mechanism to enumerate the presence and details of the CQM feature as applicable to a given level of the 

cache hierarchy, independent of other PQoS Monitoring features. 
• CQM-specific event codes to read occupancy for a given level of the cache hierarchy.

The MBM feature provides the following unique mechanisms:
• A mechanism to enumerate the presence and details of the MBM feature as applicable to a given level of the 

cache hierarchy, independent of other PQoS Monitoring features.
• MBM-specific event codes to read bandwidth out to the next level of the hierarchy and various sub-event 

codes to read more specific metrics as discussed later (e.g., total bandwidth vs. bandwidth only from local 
memory controllers on the same package).

17.14.2 Enabling PQoS Monitoring Usage Flow
Figure 17-19 illustrates the key steps for OS/VMM to detect support of PQoS Monitoring (PQM) and enable 
resource monitoring for available resource types and monitoring events.

Figure 17-19   Platform QoS Monitoring Usage Flow
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17.14.3 Enumeration and Detection Support of QoS Monitoring
Software can query processor support of QoS monitoring capabilities by executing CPUID instruction with EAX = 
07H, ECX = 0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] reports 1, the processor provides the 
following programming interfaces for Platform QoS Monitoring:
• CPUID leaf function 0FH (Platform QoS Monitoring Enumeration leaf) provides information on available 

resource types (see Section 17.14.4), and Platform QoS Monitoring capabilities for each resource type (see 
Section 17.14.5) . Note CQM and MBM capabilities are enumerated as separate event vectors using shared 
enumeration infrastructure under a given resource type.

• IA32_PQR_ASSOC.RMID: The per-logical-processor MSR, IA32_PQR_ASSOC, that OS/VMM can use to assign 
an RMID to each logical processor, see Section 17.14.6.

• IA32_QM_EVTSEL: This MSR specifies an Event ID (EvtID) and an RMID which the platform uses to look up 
and provide monitoring data in the PQoS monitoring counter, IA32_QM_CTR, see Section 17.14.7. 

• IA32_QM_CTR: This MSR reports monitored QoS data when available along with bits to allow software to 
check for error conditions and verify data validity. 

Software must follow the following sequence of enumeration to discover Cache QoS Monitoring capabilities:

1. Execute CPUID with EAX=0 to discover the “cpuid_maxLeaf” supported in the processor;

2. If cpuid_maxLeaf >= 7, then execute CPUID with EAX=7, ECX= 0 to verify CPUID.(EAX=07H, 
ECX=0):EBX.PQM[bit 12] is set;

3. If CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1, then execute CPUID with EAX=0FH, ECX= 0 to query 
available resource types that support QoS monitoring;

4. If CPUID.(EAX=0FH, ECX=0):EDX.L3[bit 1] = 1, then execute CPUID with EAX=0FH, ECX= 1 to query the 
capability of L3 Cache QoS monitoring and memory bandwidth monitoring.

5. If CPUID.(EAX=0FH, ECX=0):EDX reports additional resource types supporting QoS monitoring, then execute 
CPUID with EAX=0FH, ECX set to a corresponding resource type ID (ResID) as enumerated by the bit position 
of CPUID.(EAX=0FH, ECX=0):EDX.

17.14.4 PQOS Monitoring Resource Type and Capability Enumeration
CPUID leaf function 0FH (Platform QoS Monitoring Enumeration leaf) provides one sub-leaf (sub-function 0) that 
reports shared enumeration infrastructure, and one or more sub-functions that report feature-specific enumera-
tion data:
• Platform QoS Monitoring leaf sub-function 0 enumerates available resources that support PQoS monitoring, 

i.e. executing CPUID with EAX=0FH and ECX=0H. In the initial implementation, L3 cache QoS is the only 
resource type available. Each supported resource type is represented by a bit field in CPUID.(EAX=0FH, 
ECX=0):EDX[31:1]. The bit position corresponds to the sub-leaf index (ResID) that software must use to 
query details of the PQoS monitoring capability of that resource type (see Figure 17-21 and Figure 17-22). 
Reserved bit fields of CPUID.(EAX=0FH, ECX=0):EDX[31:2] correspond to unsupported sub-leaves of the 
CPUID.0FH leaf. Additionally, CPUID.(EAX=0FH, ECX=0H):EBX reports the highest RMID value of any 
resource type that supports PQoS Monitoring in the processor.
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17.14.5 Feature-Specific Enumeration
Each additional sub-leaf of CPUID.(EAX=0FH, ECX=ResID) enumerates the specific details for software to 
program PQoS Monitoring MSRs using the resource type associated with the given ResID.

Note that in future PQoS Monitoring implementations the meanings of the returned registers may vary in other 
sub-leaves that are not yet defined. The registers will be specified and defined on a per-ResID basis.

For each supported PQoS Monitoring resource type, hardware supports only a finite number of RMIDs. 
CPUID.(EAX=0FH, ECX=1H).ECX enumerates the highest RMID value that can be monitored with this resource 
type, see Figure 17-21. 

CPUID.(EAX=0FH, ECX=1H).EDX specifies a bit vector that is used to look up the EventID (See Figure 17-22 and 
Table 17-14) that software must program with IA32_QM_EVTSEL in order to retrieve event data. After software 
configures IA32_QMEVTSEL with the desired RMID and EventID, it can read QoS data from IA32_QM_CTR. The 
raw numerical value reported from IA32_QM_CTR can be converted to the final value (occupancy in bytes or 
bandwidth in bytes per sampled time period) by multiplying the counter value by the value from 
CPUID.(EAX=0FH, ECX=1H).EBX, see Figure 17-21. 

Figure 17-20   CPUID.(EAX=0FH, ECX=0H) QoS Monitoring Resource Type Enumeration

Figure 17-21   L3 QoS Monitoring Capability Enumeration Data (CPUID.(EAX=0FH, ECX=1H) )
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17.14.5.1 CQM
On processors that PQoS Monitoring only supports the L3 cache occupancy event, CPUID.(EAX=0FH, 
ECX=1H).EDX would return with only bit 0 set. The corresponding event ID can be looked up from Table 17-14. 
The L3 occupancy data accumulated in IA32_QM_CTR can be converted to total occupancy (in bytes) using 
CPUID.(EAX=0FH, ECX=1H).EBX.

Event codes for CQM are discussed in the next section.

17.14.5.2 MBM
On processors that PQoS monitoring supports memory bandwidth monitoring using ResID=1 (L3), two additional 
bits will be set in the vector at CPUID.(EAX=0FH, ECX=1H).EDX:
• CPUID.(EAX=0FH, ECX=1H).EDX[bit 1]: indicates the L3 total external bandwidth monitoring event is 

supported if set. This event monitors the L3 total external bandwidth to the next level of the cache hierarchy, 
including all demand and prefetch misses from the L3 to the next hierarchy of the memory system. In most 
platforms, this represents memory bandwidth.

• CPUID.(EAX=0FH, ECX=1H).EDX[bit 2]: indicates L3 local memory bandwidth monitoring event is supported 
if set. This event monitors the L3 external bandwidth satisfied by the local memory. In most platforms that 
supports this event, L3 requests are likely serviced by a memory system with non-uniform memory archi-
tecture. This allows bandwidth to off-package memory resources to be tracked by subtracting total from local 
bandwidth (for instance, bandwidth over QPI to a memory controller on another physical processor could be 
tracked by subtraction). 

The corresponding Event ID can be looked up from Table 17-14. The L3 bandwidth data accumulated in 
IA32_QM_CTR can be converted to total bandwidth (in bytes) using CPUID.(EAX=0FH, ECX=1H).EBX.

Table 17-14   PQoS Supported Event IDs

Figure 17-22   L3 QoS Monitoring Capability Enumeration Event Type Bit Vector (CPUID.(EAX=0FH, ECX=1H) )
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17.14.6 QOS Monitoring Resource RMID Association
After PQoS Monitoring and sub-features has been enumerated, software can begin using the monitoring features. 
The first step is to associate a given software thread (or multiple threads as part of an application, VM, group of 
applications or other abstraction) with an RMID. 

Note that the process of associating an RMID with a given software thread is the same for all PQoS Monitoring 
features, and a given RMID number has the same meaning from the viewpoint of any logical processors in a 
package. Stated another way, a thread may be associated in a 1:1 mapping with an RMID, and that RMID may 
allow cache occupancy, memory bandwidth information or other monitoring data to be read back later with PQoS 
Monitoring event codes (discussed in a subsequent section). 

The association of an application thread with an RMID requires an OS to program the per-logical-processor MSR 
IA32_PQR_ASSOC at context swap time (updates may also be made at any other arbitrary points during program 
execution such as application phase changes). The IA32_PQR_ASSOC MSR specifies the active RMID that QoS 
monitoring hardware will use to tag internal operations, such as L3 cache requests. The layout of the MSR is 
shown in Figure 17-23. Software specifies the active RMID to monitor in the IA32_PQR_ASSOC.RMID field. The 
width of the RMID field can vary from one implementation to another, and is derived from Ceil (LOG2 ( 1 + 
CPUID.(EAX=0FH, ECX=0):EBX[31:0])). The value of IA32_PQR_ASSOC after power-on is 0.

In the initial implementation, the width of the RMID field is up to 10 bits wide, zero-referenced and fully encoded. 
However, software must use CPUID to query the maximum RMID supported by the processor. If a value larger 
than the maximum RMID is written to IA32_PQR_ASSOC.RMID, a #GP(0) fault will be generated.

RMIDs have a global scope within the physical package- if an RMID is assigned to one logical processor then the 
same RMID can be used to read multiple thread attributes later (for example, L3 cache occupancy or external 
bandwidth from the L3 to the next level of the cache hierarchy). In a multiple LLC platform the RMIDs are to be 
reassigned by the OS or VMM scheduler when an application is migrated across LLCs. 

Note that in a situation where PQoS Monitoring supports multiple resource types, some upper range of RMIDs 
(e.g. RMID 31) may only be supported by one resource type but not by another resource type. 

17.14.7 QOS Monitoring Resource Selection and Reporting Infrastructure
The reporting mechanism for CQM is architecturally exposed as an MSR pair that can be programmed and read to 
measure various metrics such as the L3 cache occupancy (CQM) and bandwidths (MBM) depending on the level of 
PQoS Monitoring support provided by the platform. Data is reported back on a per-RMID basis. These events do 
not trigger based on event counts or trigger APIC interrupts (e.g. no Performance Monitoring Interrupt occurs 
based on counts). Rather, they are used to sample counts explicitly. 

The MSR pair for PQoS Monitoring is architected in a similar style as the architectural performance monitoring 
(see Chapter 18). But these infrastructures are separate and not shared, meaning software can use PQoS Moni-
toring simultaneously with the Perfmon counters. 

Access to the aggregated PQoS Monitoring information is accomplished through the following programmable 
PQoS Monitoring MSRs:

Figure 17-23   IA32_PQR_ASSOC MSR
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• IA32_QM_EVTSEL: This MSR provides a role similar to the event select MSRs for programmable performance 
monitoring described in Chapter 18. The simplified layout of the MSR is shown in Figure 17-23. Bits 
IA32_QM_EVTSEL.EvtID (bits 7:0) specify an event code of a supported resource type for hardware to report 
QoS monitored data associated with IA32_QM_EVTSEL.RMID (bits 41:32). Software can configure 
IA32_QM_EVTSEL.RMID with any RMID that is active within the physical processor. The width of 
IA32_QM_EVTSEL.RMID matches that of IA32_PQR_ASSOC.RMID. Supported event codes for the 
IA32_QM_EVTSEL register are shown in Table 17-14. Note that valid event codes may not necessarily map 
directly to the bit position used to enumerate support for the resource via CPUID. 
Software can program an RMID / Event ID pair into the IA32_QM_EVTSEL MSR bit field to select an RMID to 
read a particular counter for a given resource. The currently supported list of PQoS Monitoring Event IDs is 
discussed in Section 17.14.5, which covers feature-specific details.
Thread access to the IA32_QM_EVTSEL and IA32_QM_CTR MSR pair should be serialized to avoid situations 
where one thread changes the RMID/EvtID just before another thread reads monitoring data from 
IA32_QM_CTR.

• IA32_QM_CTR: This MSR reports monitored QoS data when available. It contains three bit fields. If software 
configures an unsupported RMID or event type in IA32_QM_EVTSEL, then IA32_QM_CTR.Error (bit 63) will be 
set, indicating there is no valid data to report. If IA32_QM_CTR.Unavailable (bit 62) is set, it indicates QoS 
monitored data for the RMID is not available, and IA32_QM_CTR.data (bits 61:0) should be ignored. 
Therefore, IA32_QM_CTR.data (bits 61:0) is valid only if bit 63 and 62 are both clear. For Cache QoS 
monitoring, software can convert IA32_QM_CTR.data into cache occupancy or bandwidth metrics expressed 
in bytes by multiplying with the conversion factor from CPUID.(EAX=0FH, ECX=1H).EBX.

17.14.8 PQoS Monitoring Programming Considerations

17.14.8.1 QoS Monitoring Dynamic Configuration 
Both the IA32_QM_EVTSEL and IA32_PQR_ASSOC registers are accessible and modifiable at any time during 
execution using RDMSR/WRMSR unless otherwise noted. When writing to these MSRs a #GP(0) will be generated 
if any of the following conditions occur:
• A reserved bit is modified,
• An RMID exceeding the maxRMID is used,

Figure 17-24   IA32_QM_EVTSEL and IA32_QM_CTR MSRs
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17.14.8.2 PQM Operation With Power Saving Features
Note that some advanced power management features such as deep package C-states may shrink the L3 cache 
and cause CQM occupancy count to be reduced. MBM bandwidth counts may increase due to flushing cached data 
out of L3.

17.14.8.3 PQM Operation with Other Operating Modes
The states in IA32_PQR_ASSOC and QOS monitoring counter are unmodified across an SMI delivery. Thus, the 
execution of SMM handler code and SMM handler’s data can manifest as spurious contribution in the QOS moni-
tored data. 

It is possible for an SMM handler to minimize the impact on of spurious contribution in the QOS monitoring coun-
ters by reserving a dedicated RMID for monitoring the SMM handler. Such an SMM handler can save the previously 
configured QOS Monitoring state immediately upon entering SMM, and restoring the QOS monitoring state back 
to the prev-SMM RMID upon exit.

17.15 CACHE QUALITY-OF-SERVICE (QOS) ENFORCEMENT
Future generations of Intel Xeon processor may offer capabilities to configure and make use of the Cache Quality-
of-Service Enforcement (CQE) mechanisms. The programming interface for CQE and for the more general Plat-
form QoS Enforcement (PQE) capability are described in the rest of this chapter. 

Cache QoS Enforcement (CQE) is a cache allocation control mechanism that allows an Operating System (OS), 
Hypervisor /Virtual Machine Manager (VMM) or similar system service management agent to specify the amount 
of cache space into which an application can fill (as a hint to hardware - certain features such as power manage-
ment may override CQE settings). User-level implementations with minimal OS support are also possible, though 
not recommended (see Section 3.5 for examples and discussion). The initial implementation focuses on L3 cache 
allocation, but the technology is designed to scale across multiple cache levels and technology generations.

The CQE mechanisms defined in this document provide the following key features:
• A mechanism to enumerate platform QOS Enforcement capability and available resource types that provides 

QOS Enforcement. For implementations that support Cache QOS Enforcement, CPUID provides enumeration 
support to query CQE capability on cache allocations, 

• A mechanism for the OS or Hypervisor to configure the amount of a resource available to a particular Class of 
Service via a list of enforcement bitmasks, 

• Mechanisms for the OS or Hypervisor to signal the Class of Service to which an application belongs, and
• Hardware mechanisms to guide and enforce the LLC fill policy when an application has been designated to 

belong to a specific Class of Service.

Note that an OS or Hypervisor should not expose CQE mechanisms to Ring3 software or virtualized guests.

The CQE architecture enables more cache resources (i.e. cache space) to be available for high priority applications 
based on guidance from the execution environment as shown in Figure 17-25. The architecture also allows 
dynamic resource reassignment during runtime to further optimize the performance of the high priority applica-
tion with minimal degradation to the low priority app. Additionally, resources can be rebalanced for system 
throughput benefit. This section describes the hardware and software support required in the platform including 
what is required of the execution environment (i.e. OS/VMM) to support such resource control. Note that in Figure 
17-25 the L3 Cache is shown as an example resource.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 120

17.15.1 CQE Architecture Introduction
The fundamental goal of CQE is to enable resource allocation based on application priority or Class of Service 
(COS or CLOS). The processor exposes a set of Classes of Service into which applications (or individual threads) 
can be assigned. Cache allocation for the respective applications or threads is then restricted based on the class 
with which they are associated. Each Class of Service can be configured using bitmasks which represent capacity 
and indicate the degree of overlap and isolation between classes. For each logical processor there is a register 
exposed (referred to here as the IA32_PQR_ASSOC MSR or PQR) to allow the OS/VMM to specify a COS when an 
application, thread or VM is scheduled. Cache QoS Enforcement for the indicated application/thread/VM is then 
controlled automatically by the hardware based on the class and the bitmask associated with that class. Bitmasks 
are configured via the IA32_resourceType_QOS_MASK_n MSRs, where resourceType indicates a resource type 
(e.g. "L3" for the L3 cache) and n indicates a COS number. 

The basic ingredients of CQE are as follows:
• An architecturally exposed mechanism using CPUID to indicate whether PQoS Enforcement is supported, and 

what resource types are available for PQoS Enforcement,
• For each available resourceType, CPUID also enumerates the total number of Classes of Services and the 

length of the capacity bitmasks that can be used to enforce cache allocation to applications on the platform, 
• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to configure the 

behavior of different classes of service using the bitmasks available, 
• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to assign a COS to an 

executing software thread (i.e. associating the active CR3 of a logical processor with the COS in 
IA32_PQR_ASSOC), 

• Implementation-dependent mechanisms to indicate which COS is associated with a memory access and to 
enforce the cache allocation on a per COS basis.

A capacity bitmask (CBM) provides a hint to the hardware indicating the cache space an application should be 
limited to as well as providing an indication of overlap and isolation in the CQE-capable cache from other applica-
tions contending for the cache. The bitlength of the capacity mask available generally depends on the configura-
tion of the cache and is specified in the enumeration process for CQE in CPUID (this may vary between models in 
a processor family as well). 

Figure 17-25   Enabling Class-based Cache Allocation
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Sample cache capacity bitmasks for a bitlength of 8 are shown in Figure 17-26. Please note that all (and only) 
contiguous '1' combinations are allowed (e.g. 0xFFFF, 0x0FF0, 0x003C, etc.). It is generally expected that in way-
based implementations, one capacity mask bit corresponds to some number of ways in cache, but the specific 
mapping is implementation-dependent. In all cases, a mask bit set to '1' specifies that a particular Class of 
Service can allocate into the cache subset represented by that bit. A value of '0' in a mask bit specifies that a Class 
of Service cannot allocate into the given cache subset. In general, allocating more cache to a given application is 
usually beneficial to its performance. 

Figure 17-26 also shows three examples of sets of Cache Capacity Bitmasks. For simplicity these are represented 
as 8-bit vectors, though this may vary depending on the implementation and how the mask is mapped to the 
available cache capacity. The first example shows the default case where all 4 Classes of Service (the total 
number of COS are implementation-dependent) have full access to the cache. The second case shows an over-
lapped case, which would allow some lower-priority threads share cache space with the highest priority threads. 
The third case shows various non-overlapped partitioning schemes. As a matter of software policy for extensibility 
COS0 should typically be considered and configured as the highest priority COS, followed by COS1, and so on, 
though there is no hardware restriction enforcing this mapping. When the system boots all threads are initialized 
to COS0, which has full access to the cache by default.

Though the representation of the CBMs looks similar to a way-based mapping they are independent of any specific 
enforcement implementation (e.g. way partitioning.) Rather, this is a convenient manner to represent capacity, 
overlap and isolation of cache space. For example, executing a POPCNT instruction (population count of set bits) 
on the capacity bitmask can provide the fraction of cache space that a class of service can allocate into. In addition 

Figure 17-26   Examples of Cache Capacity Bitmasks
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to the fraction, the exact location of the bits also shows whether the class of service overlaps with other classes 
of service or is entirely isolated in terms of cache space used. 

Figure 17-27 shows how the Cache Capacity Bitmasks and the per-logical-processor Class of Service are logically 
used to enable CQE. All (and only) contiguous 1's in the CBM are permitted. The length of CBM may vary from 
resource to resource or between processor generations and can be enumerated using CPUID. From the available 
mask set and based on the goals of the OS/VMM (shared or isolated cache, etc.) bitmasks are selected and asso-
ciated with different classes of service. For the available Classes of Service the associated CBMs can be 
programmed via the global set of QoS Configuration Registers (In the case of L3 Cache QoS Enforcement, via the 
IA32_L3_QOS_MASK_n MSRs, where "n" is the Class of Service, starting from zero). In all architectural imple-
mentations supporting CPUID it is possible to change the CBMs dynamically, during program execution, unless 
stated otherwise by Intel. 

The currently running application's Class of Service is communicated to the hardware through the per-logical-
processor PQR MSR (IA32_PQR_ASSOC MSR). When the OS schedules an application thread on a logical 
processor, the application thread is associated with a specific COS (i.e. the corresponding COS in the PQR) and all 
requests to the CQE-capable resource from that logical processor are tagged with that COS (in other words, the 
application thread is configured to belong to a specific COS). The cache subsystem uses this tagged request infor-
mation to enforce QoS. The capacity bitmask may be mapped into a way bitmask (or a similar enforcement entity 
based on the implementation) at the cache before it is applied to the allocation policy. For example, the capacity 
bitmask can be an 8-bit mask and the enforcement may be accomplished using a 16-way bitmask for a cache 
enforcement implementation based on way partitioning.

Figure 17-27   Examples of Cache Capacity Bitmasks
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17.15.2 Enabling CQE Usage Flow
Figure 17-28 illustrates the key steps for OS/VMM to detect support of CQE and enable priority-based resource 
allocation for a CQE-capable resource.

17.15.2.1 Enumeration and Detection Support of CQE
Availability of Platform QoS Enforcement can be detected by calling CPUID leaf 7 and sub leaf 0 (Set EAX=0x7, 
Set ECX=0, call CPUID). This function is used to enumerate the extended feature flags supported by the 
processor. It loads feature flags in EAX, ECX, EBX and EDX registers. Bit position 15 in the EBX (EBX[15]) register 
indicates support for Platform QoS Enforcement. If the value of this bit is set to 1 then it implies that the processor 
supports PQoS Enforcement. 

Software can query processor support of QoS Enforcement capabilities by executing CPUID instruction with EAX 
= 07H, ECX = 0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQE[bit 15] reports 1, the processor supports PQoS 
Enforcement. Software must use CPUID leaf 10H to enumerate additional details of available resource types, 
classes of services and capability bitmasks. The programming interfaces provided by PQoS Enforcement include:
• CPUID leaf function 10H (PQoS Enforcement Enumeration leaf) and its sub-functions provide information on 

available resource types, and PQoS Enforcement capability for each resource type (see Section 17.15.2.2).
• IA32_L3_QOS_MASK_n: A range of MSRs is provided for each resource type, each MSR within that range 

specifying a software-configured capacity bitmask for each class of service. For L3 with CQE support, the CBM 
is specified using one of the IA32_L3_QOS_MASK_n MSR, where 'n' corresponds to a number within the 
supported range of COS, i.e. the range between 0 and CPUID.(EAX=10FH, ECX=ResID):EDX[15:0], inclusive. 
See Section 17.15.2.3 for details.

• IA32_PQR_ASSOC.CLOS: The IA32_PQR_ASSOC MSR provides a COS field that OS/VMM can use to assign a 
logical processor to an available COS. See Section 17.15.2.4 for details. 

17.15.2.2 QOS Enforcement Resource Type and Capability Enumeration
CPUID leaf function 10H (PQoS Enforcement Enumeration leaf) provides two or more sub-functions:
• PQoS Enforcement leaf sub-function 0 enumerates available resource types that support PQoS enforcement, 

i.e. by executing CPUID with EAX=10H and ECX=0H. In the initial implementation, L3 cache CQE is the only 
resource type available. Each supported resource type is represented by a bit field in CPUID.(EAX=10H, 
ECX=0):EBX[31:1]. The bit position of each set bit corresponds to a Resource ID (ResID). The ResID is also 
the sub-leaf index that software must use to query details of the PQoS Enforcement capability of that resource 
type (see Figure 17-29). 

Figure 17-28   Cache QoS Enforcement Usage Flow
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• Sub-functions of CPUID.EAX=10H with a non-zero ECX input matching a supported ResID enumerate the 
specific enforcement details of the corresponding ResID. The capabilities enumerated include the length of the 
capacity bitmasks and the number of Classes of Service for a given ResID. Software must query the capability 
of each available ResID that supports PQoS Enforcement from a sub-leaf of leaf 10H using the sub-leaf index 
reported by the corresponding non-zero bit in CPUID.(EAX=10H, ECX=0):EBX[31:1]. CQE capability for L3 is 
enumerated by CPUID.(EAX=10H, ECX=1H), see Figure 17-30. The specific CQE capabilities reported by 
CPUID.(EAX=10H, ECX=1) are:

— CPUID.(EAX=10H, ECX=ResID=1):EAX[4:0] reports the length of the enforcement capacity bitmask 
length using minus-one notation, i.e. a value of 15 corresponds to the capability bitmask having length of 
16 bits. Bits 31:5 of EAX are reserved.

— CPUID.(EAX=10H, ECX=1):EBX[31:0] reports a bit mask. Each set bit within the length of the CBM 
indicates the corresponding unit of the L3 allocation may be used by other entities in the platform (e.g. an 
integrated graphics engine or hardware units outside the processor core and have direct access to L3). 
Each cleared bit within the length of the CBM indicates the corresponding allocation unit can be configured 
to implement a priority-based allocation scheme chosen by an OS/VMM without interference with other 
hardware agents in the system. Bits outside the length of the CBM are reserved.

— CPUID.(EAX=10H, ECX=1):ECX[1], if set, indicates that a processor does not support frequent changes 
to the Class of Service running on a thread. In such cases, software may experience a degredation in CQE 
performance if the COS on a thread is changed often. In such cases software may choose to either retain 
the flexibility of dynamic updates (albeit with reduced CQE performance) or affinitize a CLOS to a given 

Figure 17-29   CPUID.(EAX=10H, ECX=0H) Available Platform QoS Enforcement Resource Type Identification

Figure 17-30   L3 Cache QoS Enforcement Enumeration (CPUID.(EAX=10H, ECX=1H) )
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logical thread. If affinitized, any thread from a given COS can be run on that logical core without 
degradation in CQE performance, but changing the COS value may cause a degredation in CQE perfor-
mance. Reiterated in simpler terms, if CPUID.(EAX=10H, ECX=1):ECX[1] is set, the processor does not 
support frequent requests of CLOS updates to a logical processor. In the latter case, OS/VMM that use CQE 
to implement priority-based policy should affinitize a COS to a logical processor. In other words, any given 
logical processor should only execute software threads from the same COS if CPUID.(EAX=10H, 
ECX=1):ECX[1] is set. If software migrates Classes of Service when this bit is set the performance of the 
overall QoS Enforcement features may be reduced, reducing the effectiveness of PQoS in general. Bit 0, 
and 31:2 are reserved.

— CPUID.(EAX=10H, ECX=1):EdX[15:0] reports the maximum COS supported for the resource (COS are 
zero-referenced, meaning a reported value of '15' would indicate 16 total supported COS). Bits 31:16 are 
reserved.

Note that in initial implementations CPUID.(EAX=10H, ECX=1):ECX[1] is not expected to be set, but software 
should make provision for possible future use. If CPUID.(EAX=10H, ECX=1):ECX[1] is set, software has the 
option to disregard this bit and maintain flexibility with dynamic COS migration across logical processors, but 
as mentioned, PQoS Enforcement performance may be reduced. Note that good scheduling practices already 
advocate a loose form of thread affinitization or 'lazy migration' to reduce cache warmup effects on cores 
when possible.

17.15.2.3 Cache Mask Configuration
After determining the length of the capacity bitmasks (CBM) and number of COS supported using CPUID (see 
Section 17.15.2.2), each COS needs to be programmed with a CBM to dictate its available cache via a write to the 
corresponding IA32_resourceType_QOS_MASK_n register, where 'n' corresponds to a number within the 
supported range of COS, i.e. the range between 0 and CPUID.(EAX=10FH, ECX=ResID):EDX[15:0], inclusive, 
and 'resourceType' corresponds to a specific resource as enumerated by the set bits of CPUID.(EAX=10H, 
ECX=0):EAX[31:1]. 

A range of MSRs is reserved for PQoS Enforcement registers of the form IA32_resourceType_QOS_MASK_n, from 
0C90H through 0D8FH (inclusive), providing support for up to 256 Classes of Service or multiple resource types. 
In the first implementation the only supported resourceType is 'L3', corresponding to the L3 cache in a platform. 
All CQE configuration registers can be accessed using the standard RDMSR / WRMSR instructions. 

Figure 17-31   IA32_PQR_ASSOC, IA32_L3_QOS_MASK_n MSRs
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17.15.2.4  Cache Mask Association
After configuring the available classes of service with the preferred set of capacity bitmasks, the OS/VMM can set 
the IA32_PQR_ASSOC.COS of a logical processor to the class of service with the desired CBM when a thread 
context switch occurs. This allow the OS/VMM to indicate which class of service an executing thread/VM belongs 
to. Each logical processor contains an instance of the IA32_PQR_ASSOC register at MSR location 0C8FH, and 
Figure 17-31 shows the bit field layout for this register. Bits[63:32] contain the COS field for each logical 
processor. 

Specifying a COS value in IA32_PQR_ASSOC.COS greater than the value reported by CPUID.(EAX=10FH, 
ECX=ResID):EDX[15:0] will cause a #GP(0). The value of IA32_PQR_ASSOC.COS after power-on is 0.

Note that if the IA32_PQR_ASSOC.COS is never written then the CQE capability defaults to using COS 0, which in 
turn is set to the default mask in IA32_L3 QOS_MASK_0 - which is all "1"s (on reset). This essentially disables the 
enforcement feature by default or for legacy operating systems and software.

17.15.3 CQE Programming Considerations

17.15.3.1 CQE Dynamic Configuration 
Both the CQE masks and PQR registers are accessible and modifiable at any time during execution using RDMSR/
WRMSR unless otherwise noted. When writing to these MSRs a #GP(0) will be generated if any of the following 
conditions occur:
• A reserved bit is modified,
• Accessing a QOS mask register outside the supported COS (the max COS number is specified in 

CPUID.(EAX=10FH, ECX=ResID):EDX[15:0]), or
• Writing a COS greater than the supported maximum (specified as the maximum value of CPUID.(EAX=10FH, 

ECX=ResID):EDX[15:0] for all valid ResID values) is written to the IA32_PQR_ASSOC.CLOS field.

When reading the IA32_PQR_ASSOC register the currently programmed COS on the core will be returned. 

When reading an IA32_resourceType_QOS_MASK_n register the current capacity bit mask for COS 'n' will be 
returned.

17.15.3.2 CQE Operation With Power Saving Features
Note that the CQE feature cannot be used to enforce cache coherency, and that some advanced power manage-
ment features such as C-states which may shrink or power off various caches within the system may interfere 
with CQE hints - in such cases the CQE bitmasks are ignored and the other features take precedence. If the 
highest possible level of CQE differentiation or determinism is required, disable any power-saving features which 
shrink the caches or power off caches. The details of the power management interfaces are typically implementa-
tion-specific, but can be found at Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C. 

If software requires differentiation between threads but not absolute determinism then in many cases it is 
possible to leave power-saving cache shrink features enabled, which can provide substantial power savings and 
increase battery life in mobile platforms. In such cases when the caches are powered off (e.g., package C-states) 
the entire cache of a portion thereof may be powered off. Upon resuming an active state any new incoming data 
to the cache will be filled subject to the cache capacity bitmasks. Any data in the cache prior to the cache shrink 
or power off may have been flushed to memory during the process of entering the idle state, however, and is not 
guaranteed to remain in the cache. If differentiation between threads is the goal of system software then this 
model allows substantial power savings while continuing to deliver performance differentiation. If system soft-
ware needs optimal determinism then power saving modes which flush portions of the caches and power them off 
should be disabled.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 127

NOTE
IA32_PQR_ASSOC is saved and restored across C6 entry/exit. Similarly, the mask register contents are saved 
across package c-state entry/exit and are not lost.

17.15.3.3 CQE Operation with Other Operating Modes
The states in IA32_PQR_ASSOC and QOS mask registers are unmodified across an SMI delivery. Thus, the execu-
tion of SMM handler code can interact with the CQE resource and manifest some degree of non-determinism to 
the non-SMM software stack. An SMM handler may also perform certain system-level or power management 
practices that affect CQE operation. 

It is possible for an SMM handler to minimize the impact on data determinism in the cache by reserving a COS 
with a dedicated partition in the cache. Such an SMM handler can switch to the dedicated COS immediately upon 
entering SMM, and switching back to the previously running COS upon exit.

...

12. Updates to Chapter 18, Volume 3B
Change bars show changes to Chapter 18 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

18.2.1.1  Architectural Performance Monitoring Version 1 Facilities
Architectural performance monitoring facilities include a set of performance monitoring counters and perfor-
mance event select registers. These MSRs have the following properties:
• IA32_PMCx MSRs start at address 0C1H and occupy a contiguous block of MSR address space; the number of 

MSRs per logical processor is reported using CPUID.0AH:EAX[15:8].
• IA32_PERFEVTSELx MSRs start at address 186H and occupy a contiguous block of MSR address space. Each 

performance event select register is paired with a corresponding performance counter in the 0C1H address 
block.

• The bit width of an IA32_PMCx MSR is reported using the CPUID.0AH:EAX[23:16]. This the number of valid 
bits for read operation. On write operations, the lower-order 32 bits of the MSR may be written with any value, 
and the high-order bits are sign-extended from the value of bit 31. 

• Bit field layout of IA32_PERFEVTSELx MSRs is defined architecturally.

See Figure 18-1 for the bit field layout of IA32_PERFEVTSELx MSRs. The bit fields are:
• Event select field (bits 0 through 7) — Selects the event logic unit used to detect microarchitectural 

conditions (see Table 18-1, for a list of architectural events and their 8-bit codes). The set of values for this 
field is defined architecturally; each value corresponds to an event logic unit for use with an architectural 
performance event. The number of architectural events is queried using CPUID.0AH:EAX. A processor may 
support only a subset of pre-defined values.
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• Unit mask (UMASK) field (bits 8 through 15) — These bits qualify the condition that the selected event 
logic unit detects. Valid UMASK values for each event logic unit are specific to the unit. For each architectural 
performance event, its corresponding UMASK value defines a specific microarchitectural condition. 
A pre-defined microarchitectural condition associated with an architectural event may not be applicable to a 
given processor. The processor then reports only a subset of pre-defined architectural events. Pre-defined 
architectural events are listed in Table 18-1; support for pre-defined architectural events is enumerated using 
CPUID.0AH:EBX. Architectural performance events available in the initial implementation are listed in Table 
19-1.

• USR (user mode) flag (bit 16) — Specifies that the selected microarchitectural condition is counted only 
when the logical processor is operating at privilege levels 1, 2 or 3. This flag can be used with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that the selected microarchitectural condition is 
counted only when the logical processor is operating at privilege level 0. This flag can be used with the USR 
flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of the selected microarchitectural 
condition. The logical processor counts the number of deasserted to asserted transitions for any condition that 
can be expressed by the other fields. The mechanism does not permit back-to-back assertions to be distin-
guished. 
This mechanism allows software to measure not only the fraction of time spent in a particular state, but also 
the average length of time spent in such a state (for example, the time spent waiting for an interrupt to be 
serviced).

• PC (pin control) flag (bit 19) — When set, the logical processor toggles the PMi pins and increments the 
counter when performance-monitoring events occur; when clear, the processor toggles the PMi pins when the 
counter overflows. The toggling of a pin is defined as assertion of the pin for a single bus clock followed by 
deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the logical processor generates an exception 
through its local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — When set, performance counting is enabled in the corresponding 
performance-monitoring counter; when clear, the corresponding counter is disabled. The event logic unit for 
a UMASK must be disabled by setting IA32_PERFEVTSELx[bit 22] = 0, before writing to IA32_PMCx.

• INV (invert) flag (bit 23) — When set, inverts the counter-mask (CMASK) comparison, so that both greater 
than or equal to and less than comparisons can be made (0: greater than or equal; 1: less than). Note if 
counter-mask is programmed to zero, INV flag is ignored..

• Counter mask (CMASK) field (bits 24 through 31) — When this field is not zero, a logical processor 
compares this mask to the events count of the detected microarchitectural condition during a single cycle. If 

Figure 18-1   Layout of IA32_PERFEVTSELx MSRs
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the event count is greater than or equal to this mask, the counter is incremented by one. Otherwise the 
counter is not incremented. 
This mask is intended for software to characterize microarchitectural conditions that can count multiple 
occurrences per cycle (for example, two or more instructions retired per clock; or bus queue occupations). If 
the counter-mask field is 0, then the counter is incremented each cycle by the event count associated with 
multiple occurrences.

...

18.6.3 Average Offcore Request Latency Measurement
Measurement of average latency of offcore transaction requests can be enabled using MSR_OFFCORE_RSP0.[bit 
38] with the choice of request type specified in MSR_OFFCORE_RSP0.[bit 15:0] and MSR_OFFCORE_RSP0.[bit 
37:16] set to 0. 

When average latency measurement is enabled, e.g. with IA32_PERFEVTSEL0.[bits 15:0] = 0x01B7 and chosen 
value of MSR_OFFCORE_RSP0, IA32_PMC0 will accumulate weighted cycles of outstanding transaction requests 
for the specified transaction request type. At the same time, IA32_PMC1 should be configured to accumulate the 
number of occurrences each time a new transaction request of specified type is made.

...

18.19.1 PerfEvtSel0 and PerfEvtSel1 MSRs
The PerfEvtSel0 and PerfEvtSel1 MSRs control the operation of the performance-monitoring counters, with one 
register used to set up each counter. They specify the events to be counted, how they should be counted, and the 
privilege levels at which counting should take place. Figure 18-54 shows the flags and fields in these MSRs.

The functions of the flags and fields in the PerfEvtSel0 and PerfEvtSel1 MSRs are as follows:
• Event select field (bits 0 through 7) — Selects the event logic unit to detect certain microarchitectural 

conditions (see Table 19-30, for a list of events and their 8-bit codes).
• Unit mask (UMASK) field (bits 8 through 15) — Further qualifies the event logic unit selected in the event 

select field to detect a specific microarchitectural condition. For example, for some cache events, the mask is 
used as a MESI-protocol qualifier of cache states (see Table 19-30).

• USR (user mode) flag (bit 16) — Specifies that events are counted only when the processor is operating at 
privilege levels 1, 2 or 3. This flag can be used in conjunction with the OS flag.

Figure 18-54   PerfEvtSel0 and PerfEvtSel1 MSRs
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• OS (operating system mode) flag (bit 17) — Specifies that events are counted only when the processor 
is operating at privilege level 0. This flag can be used in conjunction with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of events. The processor counts the 
number of deasserted to asserted transitions of any condition that can be expressed by the other fields. The 
mechanism is limited in that it does not permit back-to-back assertions to be distinguished. This mechanism 
allows software to measure not only the fraction of time spent in a particular state, but also the average length 
of time spent in such a state (for example, the time spent waiting for an interrupt to be serviced).

• PC (pin control) flag (bit 19) — When set, the processor toggles the PMi pins and increments the counter 
when performance-monitoring events occur; when clear, the processor toggles the PMi pins when the counter 
overflows. The toggling of a pin is defined as assertion of the pin for a single bus clock followed by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the processor generates an exception through its 
local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — This flag is only present in the PerfEvtSel0 MSR. When set, 
performance counting is enabled in both performance-monitoring counters; when clear, both counters are 
disabled.

• INV (invert) flag (bit 23) — When set, inverts the counter-mask (CMASK) comparison, so that both greater 
than or equal to and less than comparisons can be made (0: greater than or equal; 1: less than). Note if 
counter-mask is programmed to zero, INV flag is ignored..

• Counter mask (CMASK) field (bits 24 through 31) — When nonzero, the processor compares this mask 
to the number of events counted during a single cycle. If the event count is greater than or equal to this mask, 
the counter is incremented by one. Otherwise the counter is not incremented. This mask can be used to count 
events only if multiple occurrences happen per clock (for example, two or more instructions retired per clock). 
If the counter-mask field is 0, then the counter is incremented each cycle by the number of events that 
occurred that cycle.

...

13. Updates to Chapter 19, Volume 3B
Change bars show changes to Chapter 19 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------
This chapter lists the performance-monitoring events that can be monitored with the Intel 64 or IA-32 processors. 
The ability to monitor performance events and the events that can be monitored in these processors are mostly 
model-specific, except for architectural performance events, described in Section 19.1. 

Non-architectural performance events (i.e. model-specific events) are listed for each generation of microarchitec-
ture:
• Section 19.2 - Processors based on Intel® microarchitecture code name Haswell
• Section 19.3 - Processors based on Intel® microarchitecture code name Ivy Bridge
• Section 19.4 - Processors based on Intel® microarchitecture code name Sandy Bridge
• Section 19.5 - Processors based on Intel® microarchitecture code name Nehalem
• Section 19.6 - Processors based on Intel® microarchitecture code name Westmere
• Section 19.7 - Processors based on Enhanced Intel® Core™ microarchitecture
• Section 19.8 - Processors based on Intel® Core™ microarchitecture
• Section 19.9 - Processors based on the Silvermont microarchitecture
• Section 19.10 - Processors based on Intel® Atom™ microarchitecture
• Section 19.11 - Intel® Core™ Solo and Intel® Core™ Duo processors
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• Section 19.12 - Processors based on Intel NetBurst® microarchitecture
• Section 19.13 - Pentium® M family processors
• Section 19.14 - P6 family processors
• Section 19.15 - Pentium® processors

NOTE
These performance-monitoring events are intended to be used as guides for performance tuning. 
The counter values reported by the performance-monitoring events are approximate and believed 
to be useful as relative guides for tuning software. Known discrepancies are documented where 
applicable. 
All performance event encodings not documented in the appropriate tables for the given 
processor are considered reserved, and their use will result in undefined counter updates with 
associated overflow actions.

...

19.2 PERFORMANCE MONITORING EVENTS FOR THE 4TH GENERATION 
INTEL® CORE™ PROCESSORS 

4th generation Intel® Core™ processors and Intel Xeon processor E3-1200 v3 product family are based on Intel 
microarchitecture code name Haswell. They support the architectural performance-monitoring events listed in 
Table 19-1. Non-architectural performance-monitoring events in the processor core are listed in Table 19-2. The 
events in Table 19-2 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the 
following values: 06_3CH, 06_45H and 06_46H. Table 19-3 lists performance events focused on supporting Intel 
TSX (see Section 18.11.5).

Additional information on event specifics (e.g. derivative events using specific IA32_PERFEVTSELx modifiers, 
limitations, special notes and recommendations) can be found at http://software.intel.com/en-us/forums/soft-
ware-tuning-performance-optimization-platform-monitoring.

Table 19-2   Non-Architectural Performance Events In the Processor Core of 
4th Generation Intel® Core™ Processors

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD loads blocked by overlapping with store buffer that 
cannot be forwarded .

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are 
temporarily blocked because all resources for 
handling the split accesses are in use.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to 
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops 
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS
_ALIAS

False dependencies in MOB due to partial compare 
on address.

08H 01H DTLB_LOAD_MISSES.MISS_CAUS
ES_A_WALK

Misses in all TLB levels that cause a page walk of any 
page size.
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08H 02H DTLB_LOAD_MISSES.WALK_COM
PLETED_4K

Completed page walks due to demand load misses 
that caused 4K page walks in any TLB levels.

08H 04H DTLB_LOAD_MISSES.WALK_COM
PLETED_2M_4M

Completed page walks due to demand load misses 
that caused 2M/4M page walks in any TLB levels.

08H 0EH DTLB_LOAD_MISSES.WALK_COM
PLETED

Completed page walks in any TLB of any page size 
due to demand load misses 

08H 10H DTLB_LOAD_MISSES.WALK_DUR
ATION

Cycle PMH is busy with a walk.

08H 20H DTLB_LOAD_MISSES.STLB_HIT_
4K

Load misses that missed DTLB but hit STLB (4K).

08H 40H DTLB_LOAD_MISSES.STLB_HIT_
2M

Load misses that missed DTLB but hit STLB (2M).

08H 60H DTLB_LOAD_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

08H 80H DTLB_LOAD_MISSES.PDE_CACH
E_MISS

DTLB demand load misses with low part of linear-to-
physical address translation missed

0DH 03H INT_MISC.RECOVERY_CYCLES Cycles waiting to recover after Machine Clears 
except JEClear. Set Cmask= 1.

Set Edge to count 
occurrences

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the 
RAT to RS. 

Set Cmask = 1, Inv = 1, Any= 1to count stalled cycles 
of this core.

Set Cmask = 1, Inv = 1to 
count stalled cycles

0EH 10H UOPS_ISSUED.FLAGS_MERGE Number of flags-merge uops allocated. Such uops 
adds delay.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such 
uop has 3 sources (e.g. 2 sources + immediate) 
regardless if as a result of LEA instruction or not.

0EH 40H UOPS_ISSUED.SiNGLE_MUL Number of multiply packed/scalar single precision 
uops allocated.

24H 21H L2_RQSTS.DEMAND_DATA_RD_
MISS

Demand Data Read requests that missed L2, no 
rejects.

24H 41H L2_RQSTS.DEMAND_DATA_RD_
HIT

Demand Data Read requests that hit L2 cache.

24H E1H L2_RQSTS.ALL_DEMAND_DATA
_RD

Counts any demand and L1 HW prefetch data load 
requests to L2. 

24H 42H L2_RQSTS.RFO_HIT Counts the number of store RFO requests that hit 
the L2 cache. 

24H 22H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss 
the L2 cache. 

24H E2H L2_RQSTS.ALL_RFO Counts all L2 store RFO requests. 

24H 44H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache. 

24H 24H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2 
cache. 

Table 19-2   Non-Architectural Performance Events In the Processor Core of 
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment
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24H 27H L2_RQSTS.ALL_DEMAND_MISS Demand requests that miss L2 cache. 

24H E7H L2_RQSTS.ALL_DEMAND_REFE
RENCES

Demand requests to L2 cache. 

24H E4H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 50H L2_RQSTS.L2_PF_HIT Counts all L2 HW prefetcher requests that hit L2.

24H 30H L2_RQSTS.L2_PF_MISS Counts all L2 HW prefetcher requests that missed 
L2.

24H F8H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher requests.

24H 3FH L2_RQSTS.MISS All requests that missed L2.

24H FFH L2_RQSTS.REFERENCES All requests to L2 cache. 

27H 50H L2_DEMAND_RQSTS.WB_HIT Not rejected writebacks that hit L2 cache

2EH 4FH LONGEST_LAT_CACHE.REFEREN
CE

This event counts requests originating from the core 
that reference a cache line in the last level cache. 

see Table 19-1

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for 
references to the last level cache. 

see Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD_
P

Counts the number of thread cycles while the thread 
is not in a halt state. The thread enters the halt state 
when it is running the HLT instruction. The core 
frequency may change from time to time due to 
power or thermal throttling. 

see Table 19-1

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK

Increments at the frequency of XCLK (100 MHz) 
when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses 
every cycle. Set Cmaks = 1 and Edge =1 to count 
occurrences.

Counter 2 only;

Set Cmask = 1 to count 
cycles. 

49H 01H DTLB_STORE_MISSES.MISS_CAU
SES_A_WALK

Miss in all TLB levels causes an page walk of any 
page size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_CO
MPLETED_4K

Completed page walks due to store misses in one or 
more TLB levels of 4K page structure.

49H 04H DTLB_STORE_MISSES.WALK_CO
MPLETED_2M_4M

Completed page walks due to store misses in one or 
more TLB levels of 2M/4M page structure.

49H 0EH DTLB_STORE_MISSES.WALK_CO
MPLETED

Completed page walks due to store miss in any TLB 
levels of any page size (4K/2M/4M/1G).

49H 10H DTLB_STORE_MISSES.WALK_DU
RATION

Cycles PMH is busy with this walk.

49H 20H DTLB_STORE_MISSES.STLB_HIT
_4K

Store misses that missed DTLB but hit STLB (4K).

49H 40H DTLB_STORE_MISSES.STLB_HIT
_2M

Store misses that missed DTLB but hit STLB (2M).

49H 60H DTLB_STORE_MISSES.STLB_HIT Store operations that miss the first TLB level but hit 
the second and do not cause page walks.
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49H 80H DTLB_STORE_MISSES.PDE_CAC
HE_MISS

DTLB store misses with low part of linear-to-physical 
address translation missed.

4CH 01H LOAD_HIT_PRE.SW_PF Non-SW-prefetch load dispatches that hit fill buffer 
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches that hit fill buffer 
allocated for H/W prefetch.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data 
cache.

58H 04H MOVE_ELIMINATION.INT_NOT_E
LIMINATED

Number of integer Move Elimination candidate uops 
that were not eliminated.

58H 08H MOVE_ELIMINATION.SIMD_NOT_
ELIMINATED

Number of SIMD Move Elimination candidate uops 
that were not eliminated.

58H 01H MOVE_ELIMINATION.INT_ELIMIN
ATED

Number of integer Move Elimination candidate uops 
that were eliminated.

58H 02H MOVE_ELIMINATION.SIMD_ELIMI
NATED

Number of SIMD Move Elimination candidate uops 
that were eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count 
transition

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring 0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read transactions 
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is off

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Offcore outstanding Demand code Read transactions 
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is off

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to 
uncore. Set Cmask=1 to count cycles.

Use only when HTT is off

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Offcore outstanding cacheable data read 
transactions in SQ to uncore. Set Cmask=1 to count 
cycles.

Use only when HTT is off

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC_
LOCK_DURATION

Cycles in which the L1D and L2  are locked, due to a 
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_DU
RATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ from 
MITE path. 

Set Cmask = 1 to count cycles.

Can combine Umask 04H 
and 20H 

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ 
from DSB path. 

Set Cmask = 1 to count cycles.

Can combine Umask 08H 
and 10H 
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79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ 
when MS_busy by DSB. Set Cmask = 1 to count 
cycles. Add Edge=1 to count # of delivery.

Can combine Umask 04H, 
08H 

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ 
when MS_busy by MITE. Set Cmask = 1 to count 
cycles.

Can combine Umask 04H, 
08H 

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ from 
MS by either DSB or MITE. Set Cmask = 1 to count 
cycles.

Can combine Umask 04H, 
08H 

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UO
PS

Counts cycles DSB is delivered at least one uops. Set 
Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Counts cycles DSB is delivered four uops. Set Cmask 
= 4.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UO
PS

Counts cycles MITE is delivered at least one uops. Set 
Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. Set Cmask 
= 4.

79H 3CH IDQ.MITE_ALL_UOPS # of uops delivered to IDQ from any path. 

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and 
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A_
WALK

Misses in ITLB that causes a page walk of any page 
size.

85H 02H ITLB_MISSES.WALK_COMPLETE
D_4K

Completed page walks due to misses in ITLB 4K page 
entries.

85H 04H ITLB_MISSES.WALK_COMPLETE
D_2M_4M

Completed page walks due to misses in ITLB 2M/4M 
page entries.

85H 0EH ITLB_MISSES.WALK_COMPLETE
D

Completed page walks in ITLB of any page size.

85H 10H ITLB_MISSES.WALK_DURATION Cycle PMH is busy with a walk.

85H 20H ITLB_MISSES.STLB_HIT_4K ITLB misses that hit STLB (4K).

85H 40H ITLB_MISSES.STLB_HIT_2M ITLB misses that hit STLB (2M).

85H 60H ITLB_MISSES.STLB_HIT ITLB misses that hit STLB. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the 
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions 
executed, but not necessarily retired.

Must combine with 
umask 40H, 80H

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions 
excluding calls and indirect branches.

Must combine with 
umask 80H

88H 04H BR_INST_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify executed indirect near branch instructions 
that are not calls nor returns.

Must combine with 
umask 80H
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88H 08H BR_INST_EXEC.RETURN_NEAR Qualify indirect near branches that have a return 
mnemonic.

Must combine with 
umask 80H

88H 10H BR_INST_EXEC.DIRECT_NEAR_C
ALL

Qualify unconditional near call branch instructions, 
excluding non call branch, executed. 

Must combine with 
umask 80H

88H 20H BR_INST_EXEC.INDIRECT_NEAR
_CALL

Qualify indirect near calls, including both register and 
memory indirect, executed.

Must combine with 
umask 80H

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H 
only

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must combine 
with 01H,02H, 04H, 08H, 10H, 20H.

88H FFH BR_INST_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily 
retired). 

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions 
mispredicted.

Must combine with 
umask 40H, 80H

89H 04H BR_MISP_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify mispredicted indirect near branch 
instructions that are not calls nor returns.

Must combine with 
umask 80H

89H 08H BR_MISP_EXEC.RETURN_NEAR Qualify mispredicted indirect near branches that 
have a return mnemonic.

Must combine with 
umask 80H

89H 10H BR_MISP_EXEC.DIRECT_NEAR_C
ALL

Qualify mispredicted unconditional near call branch 
instructions, excluding non call branch, executed. 

Must combine with 
umask 80H

89H 20H BR_MISP_EXEC.INDIRECT_NEAR
_CALL

Qualify mispredicted indirect near calls, including 
both register and memory indirect, executed.

Must combine with 
umask 80H

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches 
executed. 

Applicable to umask 01H 
only

89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed. 
Must combine with 01H,02H, 04H, 08H, 10H, 20H.

89H FFH BR_MISP_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily 
retired). 

9CH 01H IDQ_UOPS_NOT_DELIVERED.CO
RE

Count number of non-delivered uops to RAT per 
thread. 

Use Cmask to qualify uop 
b/w

A1H 01H UOPS_EXECUTED_PORT.PORT_
0

Cycles which a Uop is dispatched on port 0 in this 
thread.

Set AnyThread to count 
per core

A1H 02H UOPS_EXECUTED_PORT.PORT_
1

Cycles which a Uop is dispatched on port 1 in this 
thread.

Set AnyThread to count 
per core

A1H 04H UOPS_EXECUTED_PORT.PORT_
2

Cycles which a uop is dispatched on port 2 in this 
thread.

Set AnyThread to count 
per core

A1H 08H UOPS_EXECUTED_PORT.PORT_
3

Cycles which a uop is dispatched on port 3 in this 
thread.

Set AnyThread to count 
per core

A1H 10H UOPS_EXECUTED_PORT.PORT_
4

Cycles which a uop is dispatched on port 4 in this 
thread.

Set AnyThread to count 
per core

A1H 20H UOPS_EXECUTED_PORT.PORT_
5

Cycles which a uop is dispatched on port 5 in this 
thread.

Set AnyThread to count 
per core
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A1H 40H UOPS_EXECUTED_PORT.PORT_
6

Cycles which a Uop is dispatched on port 6 in this 
thread.

Set AnyThread to count 
per core

A1H 80H UOPS_EXECUTED_PORT.PORT_
7

Cycles which a Uop is dispatched on port 7 in this 
thread

Set AnyThread to count 
per core

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related 
reason. 

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available. 

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not 
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_PE
NDING

Cycles with pending L2 miss loads. Set Cmask=2 to 
count cycle.

Use only when HTT is off

A3H 02H CYCLE_ACTIVITY.CYCLES_LDM_
PENDING

Cycles with pending memory loads. Set Cmask=2 to 
count cycle.

A3H 05H CYCLE_ACTIVITY.STALLS_L2_PE
NDING

Number of loads missed L2. Use only when HTT is off

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_P
ENDING

Cycles with pending L1 data cache miss loads. Set 
Cmask=8 to count cycle.

PMC2 only

A3H 0CH CYCLE_ACTIVITY.STALLS_L1D_P
ENDING

Execution stalls due to L1 data cache miss loads. Set 
Cmask=0CH.

PMC2 only

A8H 01H LSD.UOPS Number of Uops delivered by the LSD.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes 4k/2M/
4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_
DATA_RD

Demand data read requests sent to uncore. Use only when HTT is off

B0H 02H OFFCORE_REQUESTS.DEMAND_
CODE_RD

Demand code read requests sent to uncore. Use only when HTT is off

B0H 04H OFFCORE_REQUESTS.DEMAND_
RFO

Demand RFO read requests sent to uncore, including 
regular RFOs, locks, ItoM.

Use only when HTT is off

B0H 08H OFFCORE_REQUESTS.ALL_DATA
_RD

Data read requests sent to uncore (demand and 
prefetch).

Use only when HTT is off

B1H 02H UOPS_EXECUTED.CORE Counts total number of uops to be executed per-core 
each cycle.

Do not need to set ANY

B7H 01H OFF_CORE_RESPONSE_0 see Section 18.9.5, “Off-core Response Performance 
Monitoring”.

Requires MSR 01A6H

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.9.5, “Off-core Response Performance 
Monitoring”.

Requires MSR 01A7H

BCH 11H PAGE_WALKER_LOADS.DTLB_L1 Number of DTLB page walker loads that hit in the 
L1+FB.

BCH 21H PAGE_WALKER_LOADS.ITLB_L1 Number of ITLB page walker loads that hit in the 
L1+FB.

BCH 12H PAGE_WALKER_LOADS.DTLB_L2 Number of DTLB page walker loads that hit in the L2.
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BCH 22H PAGE_WALKER_LOADS.ITLB_L2 Number of ITLB page walker loads that hit in the L2.

BCH 14H PAGE_WALKER_LOADS.DTLB_L3 Number of DTLB page walker loads that hit in the L3.

BCH 24H PAGE_WALKER_LOADS.ITLB_L3 Number of ITLB page walker loads that hit in the L3.

BCH 18H PAGE_WALKER_LOADS.DTLB_M
EMORY

Number of DTLB page walker loads from memory.

BCH 28H PAGE_WALKER_LOADS.ITLB_ME
MORY

Number of ITLB page walker loads from memory.

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1

C0H 01H INST_RETIRED.ALL Precise instruction retired event with HW to reduce 
effect of PEBS shadow in IP distribution.

PMC1 only; 

C1H 08H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE 
when penalty applicable.

C1H 10H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when 
penalty applicable.

C1H 40H OTHER_ASSISTS.ANY_WB_ASSI
ST

Number of microcode assists invoked by HW upon 
uop writeback.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use 
cmask=1 and invert to count active cycles or stalled 
cycles.

Supports PEBS, use 
Any=1 for core granular.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each 
cycle.

Supports PEBS

C3H 02H MACHINE_CLEARS.MEMORY_OR
DERING

Counts the number of machine clears due to memory 
order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears 
detected.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load 
operations that refer to an illegal address range with 
the mask bits set to 0. 

C4H 00H BR_INST_RETIRED.ALL_BRANC
HES

Branch instructions at retirement. See Table 19-1 

C4H 01H BR_INST_RETIRED.CONDITIONA
L

Counts the number of conditional branch instructions 
retired. 

Supports PEBS

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS

C4H 04H BR_INST_RETIRED.ALL_BRANC
HES

Counts the number of branch instructions retired. Supports PEBS

C4H 08H BR_INST_RETIRED.NEAR_RETU
RN

Counts the number of near return instructions 
retired.

Supports PEBS

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions 
retired. 
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C4H 20H BR_INST_RETIRED.NEAR_TAKE
N

Number of near taken branches retired. Supports PEBS

C4H 40H BR_INST_RETIRED.FAR_BRANC
H

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted branch instructions at retirement See Table 19-1 

C5H 01H BR_MISP_RETIRED.CONDITIONA
L

Mispredicted conditional branch instructions retired. Supports PEBS

C5H 04H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted macro branch instructions retired. Supports PEBS

C5H 20H BR_MISP_RETIRED.NEAR_TAKE
N

Number of near branch instructions retired that 
were taken but mispredicted.

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 FP assists due to Output values.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 FP assists due to input values.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to Output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSER
TS

Count cases of saving new LBR records by hardware. 

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY

Randomly sampled loads whose latency is above a 
user defined threshold. A small fraction of the overall 
loads are sampled due to randomization.

Specify threshold in MSR 
0x3F6

D0H 01H MEM_UOPS_RETIRED.LOADS Qualify retired memory uops that are loads. Combine 
with umask 10H, 20H, 40H, 80H.

Supports PEBS and 
DataLA

D0H 10H MEM_UOPS_RETIRED.STLB_MIS
S

Qualify retired memory uops with STLB miss. Must 
combine with umask 01H, 02H, to produce counts.

Supports PEBS and 
DataLA

D0H 40H MEM_UOPS_RETIRED.SPLIT Qualify retired memory uops with line split. Must 
combine with umask 01H, 02H, to produce counts.

Supports PEBS and 
DataLA

D0H 80H MEM_UOPS_RETIRED.ALL Qualify any retired memory uops. Must combine with 
umask 01H, 02H, to produce counts.

Supports PEBS and 
DataLA

D1H 01H MEM_LOAD_UOPS_RETIRED.L1_
HIT

Retired load uops with L1 cache hits as data sources. Supports PEBS and 
DataLA

D1H 02H MEM_LOAD_UOPS_RETIRED.L2_
HIT

Retired load uops with L2 cache hits as data sources. Supports PEBS and 
DataLA

D1H 04H MEM_LOAD_UOPS_RETIRED.L3_
HIT

Retired load uops with L3 cache hits as data sources. Supports PEBS and 
DataLA

D1H 08H MEM_LOAD_UOPS_RETIRED.L1_
MISS

Retired load uops missed L1 cache as data sources. Supports PEBS and 
DataLA

D1H 10H MEM_LOAD_UOPS_RETIRED.L2_
MISS

Retired load uops missed L2. Unknown data source 
excluded.

Supports PEBS and 
DataLA

D1H 20H MEM_LOAD_UOPS_RETIRED.L3_
MISS

Retired load uops missed L3. Excludes unknown data 
source .

Supports PEBS and 
DataLA
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...
Non-architecture performance monitoring events in the processor core that are applicable only to Intel Xeon 
processor E5 family (and Intel Core i7-3930 processor) based on Intel microarchitecture code name Sandy 
Bridge, with CPUID signature of DisplayFamily_DisplayModel 06_2DH, are listed in Table 19-9.

D1H 40H MEM_LOAD_UOPS_RETIRED.HIT
_LFB

Retired load uops which data sources were load uops 
missed L1 but hit FB due to preceding miss to the 
same cache line with data not ready.

D2H 01H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_MISS

Retired load uops which data sources were L3 hit 
and cross-core snoop missed in on-pkg core cache.

Supports PEBS and 
DataLA

D2H 02H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HIT

Retired load uops which data sources were L3 and 
cross-core snoop hits in on-pkg core cache.

Supports PEBS and 
DataLA

D2H 04H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HITM

Retired load uops which data sources were HitM 
responses from shared L3.

Supports PEBS and 
DataLA

D2H 08H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_NONE

Retired load uops which data sources were hits in L3 
without snoops required.

Supports PEBS and 
DataLA

D3H 01H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.LOCAL_DRAM

Retired load uops which data sources missed L3 but 
serviced from local dram. 

Supports PEBS and 
DataLA.

E6H 1FH BACLEARS.ANY Number of front end re-steers due to BPU 
misprediction.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF Any MLC or L3 HW prefetch accessing L2, including 
rejects. 

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover 
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover 
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover 
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover 
rejects.

F2H 05H L2_LINES_OUT.DEMAND_CLEAN Clean L2 cache lines evicted by demand.

F2H 06H L2_LINES_OUT.DEMAND_DIRTY Dirty L2 cache lines evicted by demand.
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Table 19-9   Non-Architectural Performance Events Applicable only to the Processor Core of 
Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

CDH 01H MEM_TRANS_RETIRED.LOAD_
LATENCY

Additional Configuration: Disable BL bypass and direct2core, and if the memory 
is remotely homed. The count is not reliable If the memory is locally homed. 

D1H 04H MEM_LOAD_UOPS_RETIRED.LL
C_HIT

Additional Configuration: Disable BL bypass. Supports PEBS.

D1H 20H MEM_LOAD_UOPS_RETIRED.LL
C_MISS

Additional Configuration: Disable BL bypass and direct2core. Supports PEBS.

D2H 01H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_MISS

Additional Configuration: Disable bypass. Supports PEBS.

D2H 02H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HIT

Additional Configuration: Disable bypass. Supports PEBS.

D2H 04H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HITM

Additional Configuration: Disable bypass. Supports PEBS.

D2H 08H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_NONE

Additional Configuration: Disable bypass. Supports PEBS.

D3H 01H MEM_LOAD_UOPS_LLC_MISS_
RETIRED.LOCAL_DRAM

Retired load uops which data sources were data 
missed LLC but serviced by local DRAM.

Disable BL bypass and 
direct2core (see MSR 
0x3C9)

D3H 04H MEM_LOAD_UOPS_LLC_MISS_
RETIRED.REMOTE_DRAM

Retired load uops which data sources were data 
missed LLC but serviced by remote DRAM.

Disable BL bypass and 
direct2core (see MSR 
0x3C9)

B7H/
BBH

01H OFF_CORE_RESPONSE_N Sub-events of OFF_CORE_RESPONSE_N (suffix N = 0, 
1) programmed using MSR 01A6H/01A7H with values 
shown in the comment column.

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.ANY_RESPONSE_N 0x3FFFC00004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.LOCAL_DRAM_N 0x600400004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE_DRAM_N 0x67F800004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE_HIT_FWD_N 0x87F800004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE_HITM_N 0x107FC00004

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_DRAM_N 0x67FC00001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_RESPONSE_N 0x3F803C0001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.LOCAL_DRAM_N 0x600400001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE_DRAM_N 0x67F800001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE_HIT_FWD_N 0x87F800001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE_HITM_N 0x107FC00001

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_MISS.ANY_RESPONSE_N 0x3F803C0040

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_DRAM_N 0x67FC00010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_RESPONSE_N 0x3F803C0010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.LOCAL_DRAM_N 0x600400010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_DRAM_N 0x67F800010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HIT_FWD_N 0x87F800010
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...

14. Updates to Chapter 24, Volume 3B
Change bars show changes to Chapter 24 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...
Table 24-7 lists the secondary processor-based VM-execution controls. See Chapter 27 for more details of how 
these controls affect processor behavior in VMX non-root operation.

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HITM_N 0x107FC00010

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_MISS.ANY_RESPONSE_N 0x3FFFC00200

OFFCORE_RESPONSE.PF_LLC_DATA_RD.LLC_MISS.ANY_RESPONSE_N 0x3FFFC00080

Table 19-9   Non-Architectural Performance Events Applicable only to the Processor Core of 
Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Table 24-7   Definitions of Secondary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

0 Virtualize APIC 
accesses

If this control is 1, the logical processor treats specially accesses to the page with the APIC-
access address. See Section 29.4.

1 Enable EPT If this control is 1, extended page tables (EPT) are enabled. See Section 28.2.

2 Descriptor-table 
exiting

This control determines whether executions of LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, and 
STR cause VM exits.

3 Enable RDTSCP If this control is 0, any execution of RDTSCP causes an invalid-opcode exception (#UD).

4 Virtualize x2APIC 
mode

If this control is 1, the logical processor treats specially RDMSR and WRMSR to APIC MSRs (in 
the range 800H–8FFH). See Section 29.5.

5 Enable VPID If this control is 1, cached translations of linear addresses are associated with a virtual-
processor identifier (VPID). See Section 28.1.

6 WBINVD exiting This control determines whether executions of WBINVD cause VM exits.

7 Unrestricted guest This control determines whether guest software may run in unpaged protected mode or in real-
address mode.

8 APIC-register 
virtualization

If this control is 1, the logical processor virtualizes certain APIC accesses. See Section 29.4 and 
Section 29.5.

9 Virtual-interrupt 
delivery

This controls enables the evaluation and delivery of pending virtual interrupts as well as the 
emulation of writes to the APIC registers that control interrupt prioritization.

10 PAUSE-loop exiting This control determines whether a series of executions of PAUSE can cause a VM exit (see 
Section 24.6.13 and Section 25.1.3).

11 RDRAND exiting This control determines whether executions of RDRAND cause VM exits.

12 Enable INVPCID If this control is 0, any execution of INVPCID causes a #UD.

13 Enable 
VM functions

Setting this control to 1 enables use of the VMFUNC instruction in VMX non-root operation. See 
Section 25.5.5.
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...

24.6.17 XSS-Exiting Bitmap
On processors that support the 1-setting of the “enable XSAVES/XRSTORS” VM-execution control, the VM-execu-
tion control fields include a 64-bit XSS-exiting bitmap. If the “enable XSAVES/XRSTORS” VM-execution control 
is 1, executions of XSAVES and XRSTORS may consult this bitmap (see Section 25.1.3 and Section 25.3).

24.7 VM-EXIT CONTROL FIELDS
The VM-exit control fields govern the behavior of VM exits. They are discussed in Section 24.7.1 and Section 
24.7.2.

...

15. Updates to Chapter 25, Volume 3C
Change bars show changes to Chapter 25 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C: System Programming Guide, Part 3.

------------------------------------------------------------------------------------------

...

25.1.3 Instructions That Cause VM Exits Conditionally
Certain instructions cause VM exits in VMX non-root operation depending on the setting of the VM-execution 
controls. The following instructions can cause “fault-like” VM exits based on the conditions described:1

• CLTS. The CLTS instruction causes a VM exit if the bits in position 3 (corresponding to CR0.TS) are set in both 
the CR0 guest/host mask and the CR0 read shadow.

• HLT. The HLT instruction causes a VM exit if the “HLT exiting” VM-execution control is 1.
• IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD. The behavior of each of these 

instructions is determined by the settings of the “unconditional I/O exiting” and “use I/O bitmaps” 
VM-execution controls:

— If both controls are 0, the instruction executes normally.

— If the “unconditional I/O exiting” VM-execution control is 1 and the “use I/O bitmaps” VM-execution 
control is 0, the instruction causes a VM exit.

14 VMCS shadowing If this control is 1, executions of VMREAD and VMWRITE in VMX non-root operation may access 
a shadow VMCS (instead of causing VM exits). See Section 24.10 and Section 30.3.

18 EPT-violation #VE If this control is 1, EPT violations may cause virtualization exceptions (#VE) instead of VM exits. 
See Section 25.5.6.

20 Enable XSAVES/
XRSTORS

If this control is 0, any execution of XSAVES or XRSTORS causes a #UD.

Table 24-7   Definitions of Secondary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description

1. Many of the items in this section refer to secondary processor-based VM-execution controls. If bit 31 of the primary processor-
based VM-execution controls is 0, VMX non-root operation functions as if these controls were all 0. See Section 24.6.2.
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— If the “use I/O bitmaps” VM-execution control is 1, the instruction causes a VM exit if it attempts to access 
an I/O port corresponding to a bit set to 1 in the appropriate I/O bitmap (see Section 24.6.4). If an I/O 
operation “wraps around” the 16-bit I/O-port space (accesses ports FFFFH and 0000H), the I/O instruction 
causes a VM exit (the “unconditional I/O exiting” VM-execution control is ignored if the “use I/O bitmaps” 
VM-execution control is 1).

See Section 25.1.1 for information regarding the priority of VM exits relative to faults that may be caused by 
the INS and OUTS instructions.

• INVLPG. The INVLPG instruction causes a VM exit if the “INVLPG exiting” VM-execution control is 1.
• INVPCID. The INVPCID instruction causes a VM exit if the “INVLPG exiting” and “enable INVPCID” 

VM-execution controls are both 1.
• LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR. These instructions cause VM exits if the “descriptor-

table exiting” VM-execution control is 1.
• LMSW. In general, the LMSW instruction causes a VM exit if it would write, for any bit set in the low 4 bits of 

the CR0 guest/host mask, a value different than the corresponding bit in the CR0 read shadow. LMSW never 
clears bit 0 of CR0 (CR0.PE); thus, LMSW causes a VM exit if either of the following are true:

— The bits in position 0 (corresponding to CR0.PE) are set in both the CR0 guest/mask and the source 
operand, and the bit in position 0 is clear in the CR0 read shadow.

— For any bit position in the range 3:1, the bit in that position is set in the CR0 guest/mask and the values 
of the corresponding bits in the source operand and the CR0 read shadow differ.

• MONITOR. The MONITOR instruction causes a VM exit if the “MONITOR exiting” VM-execution control is 1.
• MOV from CR3. The MOV from CR3 instruction causes a VM exit if the “CR3-store exiting” VM-execution 

control is 1. The first processors to support the virtual-machine extensions supported only the 1-setting of this 
control.

• MOV from CR8. The MOV from CR8 instruction causes a VM exit if the “CR8-store exiting” VM-execution 
control is 1.

• MOV to CR0. The MOV to CR0 instruction causes a VM exit unless the value of its source operand matches, 
for the position of each bit set in the CR0 guest/host mask, the corresponding bit in the CR0 read shadow. (If 
every bit is clear in the CR0 guest/host mask, MOV to CR0 cannot cause a VM exit.)

• MOV to CR3. The MOV to CR3 instruction causes a VM exit unless the “CR3-load exiting” VM-execution 
control is 0 or the value of its source operand is equal to one of the CR3-target values specified in the VMCS. 
If the CR3-target count in n, only the first n CR3-target values are considered; if the CR3-target count is 0, 
MOV to CR3 always causes a VM exit.
The first processors to support the virtual-machine extensions supported only the 1-setting of the “CR3-load
exiting” VM-execution control. These processors always consult the CR3-target controls to determine
whether an execution of MOV to CR3 causes a VM exit.

• MOV to CR4. The MOV to CR4 instruction causes a VM exit unless the value of its source operand matches, 
for the position of each bit set in the CR4 guest/host mask, the corresponding bit in the CR4 read shadow.

• MOV to CR8. The MOV to CR8 instruction causes a VM exit if the “CR8-load exiting” VM-execution control is 1.
• MOV DR. The MOV DR instruction causes a VM exit if the “MOV-DR exiting” VM-execution control is 1. Such 

VM exits represent an exception to the principles identified in Section 25.1.1 in that they take priority over the 
following: general-protection exceptions based on privilege level; and invalid-opcode exceptions that occur 
because CR4.DE=1 and the instruction specified access to DR4 or DR5.

• MWAIT. The MWAIT instruction causes a VM exit if the “MWAIT exiting” VM-execution control is 1. If this 
control is 0, the behavior of the MWAIT instruction may be modified (see Section 25.3).

• PAUSE.The behavior of each of this instruction depends on CPL and the settings of the “PAUSE exiting” and 
“PAUSE-loop exiting” VM-execution controls:

— CPL = 0.
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• If the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls are both 0, the PAUSE 
instruction executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction causes a VM exit (the “PAUSE-
loop exiting” VM-execution control is ignored if CPL = 0 and the “PAUSE exiting” VM-execution control 
is 1).

• If the “PAUSE exiting” VM-execution control is 0 and the “PAUSE-loop exiting” VM-execution control is 
1, the following treatment applies.

The processor determines the amount of time between this execution of PAUSE and the previous 
execution of PAUSE at CPL 0. If this amount of time exceeds the value of the VM-execution control field 
PLE_Gap, the processor considers this execution to be the first execution of PAUSE in a loop. (It also 
does so for the first execution of PAUSE at CPL 0 after VM entry.)

Otherwise, the processor determines the amount of time since the most recent execution of PAUSE 
that was considered to be the first in a loop. If this amount of time exceeds the value of the VM-
execution control field PLE_Window, a VM exit occurs.

For purposes of these computations, time is measured based on a counter that runs at the same rate 
as the timestamp counter (TSC).

— CPL > 0.

• If the “PAUSE exiting” VM-execution control is 0, the PAUSE instruction executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction causes a VM exit.

The “PAUSE-loop exiting” VM-execution control is ignored if CPL > 0.
• RDMSR. The RDMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the ranges 00000000H – 00001FFFH and C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in read bitmap for low MSRs is 1, 
where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in read bitmap for high MSRs is 1, 
where n is the value of ECX & 00001FFFH.

See Section 24.6.9 for details regarding how these bitmaps are identified.
• RDPMC. The RDPMC instruction causes a VM exit if the “RDPMC exiting” VM-execution control is 1.
• RDRAND. The RDRAND instruction causes a VM exit if the “RDRAND exiting” VM-execution control is 1.
• RDTSC. The RDTSC instruction causes a VM exit if the “RDTSC exiting” VM-execution control is 1.
• RDTSCP. The RDTSCP instruction causes a VM exit if the “RDTSC exiting” and “enable RDTSCP” VM-execution 

controls are both 1.
• RSM. The RSM instruction causes a VM exit if executed in system-management mode (SMM).1

• VMREAD. The VMREAD instruction causes a VM exit if any of the following are true:

— The “VMCS shadowing” VM-execution control is 0.

— Bits 63:15 (bits 31:15 outside 64-bit mode) of the register source operand are not all 0.

— Bit n in VMREAD bitmap is 1, where n is the value of bits 14:0 of the register source operand. See Section 
24.6.15 for details regarding how the VMREAD bitmap is identified.

1. Execution of the RSM instruction outside SMM causes an invalid-opcode exception regardless of whether the processor is in VMX 
operation. It also does so in VMX root operation in SMM; see Section 34.15.3.
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If the VMREAD instruction does not cause a VM exit, it reads from the VMCS referenced by the VMCS link
pointer. See Chapter 30, “VMREAD—Read Field from Virtual-Machine Control Structure” for details of the
operation of the VMREAD instruction.

• VMWRITE. The VMWRITE instruction causes a VM exit if any of the following are true:

— The “VMCS shadowing” VM-execution control is 0.

— Bits 63:15 (bits 31:15 outside 64-bit mode) of the register source operand are not all 0.

— Bit n in VMWRITE bitmap is 1, where n is the value of bits 14:0 of the register source operand. See Section 
24.6.15 for details regarding how the VMWRITE bitmap is identified.

If the VMWRITE instruction does not cause a VM exit, it writes to the VMCS referenced by the VMCS link
pointer. See Chapter 30, “VMWRITE—Write Field to Virtual-Machine Control Structure” for details of the
operation of the VMWRITE instruction.

• WBINVD. The WBINVD instruction causes a VM exit if the “WBINVD exiting” VM-execution control is 1.
• WRMSR. The WRMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the ranges 00000000H – 00001FFFH and C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in write bitmap for low MSRs is 1, 
where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in write bitmap for high MSRs is 1, 
where n is the value of ECX & 00001FFFH.

See Section 24.6.9 for details regarding how these bitmaps are identified.
• XRSTORS. The XRSTORS instruction causes a VM exit if the “enable XSAVES/XRSTORS” VM-execution 

control is 1and any bit is set in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, 
and the XSS-exiting bitmap (see Section 24.6.17).

• XSAVES. The XSAVES instruction causes a VM exit if the “enable XSAVES/XRSTORS” VM-execution control is 
1and any bit is set in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the 
XSS-exiting bitmap (see Section 24.6.17).

...

25.3 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT OPERATION
The behavior of some instructions is changed in VMX non-root operation. Some of these changes are determined 
by the settings of certain VM-execution control fields. The following items detail such changes:1

• CLTS. Behavior of the CLTS instruction is determined by the bits in position 3 (corresponding to CR0.TS) in 
the CR0 guest/host mask and the CR0 read shadow:

— If bit 3 in the CR0 guest/host mask is 0, CLTS clears CR0.TS normally (the value of bit 3 in the CR0 read 
shadow is irrelevant in this case), unless CR0.TS is fixed to 1 in VMX operation (see Section 23.8), in which 
case CLTS causes a general-protection exception.

— If bit 3 in the CR0 guest/host mask is 1 and bit 3 in the CR0 read shadow is 0, CLTS completes but does 
not change the contents of CR0.TS.

— If the bits in position 3 in the CR0 guest/host mask and the CR0 read shadow are both 1, CLTS causes a 
VM exit.

1. Some of the items in this section refer to secondary processor-based VM-execution controls. If bit 31 of the primary processor-
based VM-execution controls is 0, VMX non-root operation functions as if these controls were all 0. See Section 24.6.2.
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• INVPCID. Behavior of the INVPCID instruction is determined first by the setting of the “enable INVPCID” 
VM-execution control:

— If the “enable INVPCID” VM-execution control is 0, INVPCID causes an invalid-opcode exception (#UD).

— If the “enable INVPCID” VM-execution control is 1, treatment is based on the setting of the “INVLPG 
exiting” VM-execution control:

• If the “INVLPG exiting” VM-execution control is 0, INVPCID operates normally.

• If the “INVLPG exiting” VM-execution control is 1, INVPCID causes a VM exit.
• IRET. Behavior of IRET with regard to NMI blocking (see Table 24-3) is determined by the settings of the “NMI 

exiting” and “virtual NMIs” VM-execution controls:

— If the “NMI exiting” VM-execution control is 0, IRET operates normally and unblocks NMIs. (If the “NMI 
exiting” VM-execution control is 0, the “virtual NMIs” control must be 0; see Section 26.2.1.1.)

— If the “NMI exiting” VM-execution control is 1, IRET does not affect blocking of NMIs. If, in addition, the 
“virtual NMIs” VM-execution control is 1, the logical processor tracks virtual-NMI blocking. In this case, 
IRET removes any virtual-NMI blocking.

The unblocking of NMIs or virtual NMIs specified above occurs even if IRET causes a fault.
• LMSW. Outside of VMX non-root operation, LMSW loads its source operand into CR0[3:0], but it does not 

clear CR0.PE if that bit is set. In VMX non-root operation, an execution of LMSW that does not cause a VM exit 
(see Section 25.1.3) leaves unmodified any bit in CR0[3:0] corresponding to a bit set in the CR0 guest/host 
mask. An attempt to set any other bit in CR0[3:0] to a value not supported in VMX operation (see Section 
23.8) causes a general-protection exception. Attempts to clear CR0.PE are ignored without fault.

• MOV from CR0. The behavior of MOV from CR0 is determined by the CR0 guest/host mask and the CR0 read 
shadow. For each position corresponding to a bit clear in the CR0 guest/host mask, the destination operand is 
loaded with the value of the corresponding bit in CR0. For each position corresponding to a bit set in the CR0 
guest/host mask, the destination operand is loaded with the value of the corresponding bit in the CR0 read 
shadow. Thus, if every bit is cleared in the CR0 guest/host mask, MOV from CR0 reads normally from CR0; if 
every bit is set in the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read shadow.
Depending on the contents of the CR0 guest/host mask and the CR0 read shadow, bits may be set in the 
destination that would never be set when reading directly from CR0.

• MOV from CR3. If the “enable EPT” VM-execution control is 1 and an execution of MOV from CR3 does not 
cause a VM exit (see Section 25.1.3), the value loaded from CR3 is a guest-physical address; see Section 
28.2.1.

• MOV from CR4. The behavior of MOV from CR4 is determined by the CR4 guest/host mask and the CR4 read 
shadow. For each position corresponding to a bit clear in the CR4 guest/host mask, the destination operand is 
loaded with the value of the corresponding bit in CR4. For each position corresponding to a bit set in the CR4 
guest/host mask, the destination operand is loaded with the value of the corresponding bit in the CR4 read 
shadow. Thus, if every bit is cleared in the CR4 guest/host mask, MOV from CR4 reads normally from CR4; if 
every bit is set in the CR4 guest/host mask, MOV from CR4 returns the value of the CR4 read shadow.
Depending on the contents of the CR4 guest/host mask and the CR4 read shadow, bits may be set in the 
destination that would never be set when reading directly from CR4.

• MOV from CR8. If the MOV from CR8 instruction does not cause a VM exit (see Section 25.1.3), its behavior 
is modified if the “use TPR shadow” VM-execution control is 1; see Section 29.3.

• MOV to CR0. An execution of MOV to CR0 that does not cause a VM exit (see Section 25.1.3) leaves 
unmodified any bit in CR0 corresponding to a bit set in the CR0 guest/host mask. Treatment of attempts to 
modify other bits in CR0 depends on the setting of the “unrestricted guest” VM-execution control:

— If the control is 0, MOV to CR0 causes a general-protection exception if it attempts to set any bit in CR0 to 
a value not supported in VMX operation (see Section 23.8).
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— If the control is 1, MOV to CR0 causes a general-protection exception if it attempts to set any bit in CR0 
other than bit 0 (PE) or bit 31 (PG) to a value not supported in VMX operation. It remains the case, 
however, that MOV to CR0 causes a general-protection exception if it would result in CR0.PE = 0 and 
CR0.PG = 1 or if it would result in CR0.PG = 1, CR4.PAE = 0, and IA32_EFER.LME = 1.

• MOV to CR3. If the “enable EPT” VM-execution control is 1 and an execution of MOV to CR3 does not cause a 
VM exit (see Section 25.1.3), the value loaded into CR3 is treated as a guest-physical address; see Section 
28.2.1.

— If PAE paging is not being used, the instruction does not use the guest-physical address to access memory 
and it does not cause it to be translated through EPT.1

— If PAE paging is being used, the instruction translates the guest-physical address through EPT and uses 
the result to load the four (4) page-directory-pointer-table entries (PDPTEs). The instruction does not use 
the guest-physical addresses the PDPTEs to access memory and it does not cause them to be translated 
through EPT.

• MOV to CR4. An execution of MOV to CR4 that does not cause a VM exit (see Section 25.1.3) leaves 
unmodified any bit in CR4 corresponding to a bit set in the CR4 guest/host mask. Such an execution causes a 
general-protection exception if it attempts to set any bit in CR4 (not corresponding to a bit set in the CR4 
guest/host mask) to a value not supported in VMX operation (see Section 23.8).

• MOV to CR8. If the MOV to CR8 instruction does not cause a VM exit (see Section 25.1.3), its behavior is 
modified if the “use TPR shadow” VM-execution control is 1; see Section 29.3.

• MWAIT.  Behavior of the MWAIT instruction (which always causes an invalid-opcode exception—#UD—if 
CPL > 0) is determined by the setting of the “MWAIT exiting” VM-execution control:

— If the “MWAIT exiting” VM-execution control is 1, MWAIT causes a VM exit.

— If the “MWAIT exiting” VM-execution control is 0, MWAIT does not cause the processor to enter an imple-
mentation-dependent optimized state if (1) ECX[0] = 1; and (2) either (a) the “interrupt-window exiting” 
VM-execution control is 0; or (b) the logical processor has recognized a pending virtual interrupt (see 
Section 29.2.1). Instead, control passes to the instruction following the MWAIT instruction.

• RDMSR. Section 25.1.3 identifies when executions of the RDMSR instruction cause VM exits. If such an 
execution causes neither a fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified for 
certain values of ECX:

— If ECX contains 10H (indicating the IA32_TIME_STAMP_COUNTER MSR), the value returned by the 
instruction is determined by the setting of the “use TSC offsetting” VM-execution control as well as the 
TSC offset:

• If the control is 0, the instruction operates normally, loading EAX:EDX with the value of the 
IA32_TIME_STAMP_COUNTER MSR.

• If the control is 1, the instruction loads EAX:EDX with the sum (using signed addition) of the value of 
the IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset (interpreted as a signed value).

The 1-setting of the “use TSC-offsetting” VM-execution control does not effect executions of RDMSR if ECX 
contains 6E0H (indicating the IA32_TSC_DEADLINE MSR). Such executions return the APIC-timer 
deadline relative to the actual timestamp counter without regard to the TSC offset.

— If ECX is in the range 800H–8FFH (indicating an APIC MSR), instruction behavior may be modified if the 
“virtualize x2APIC mode” VM-execution control is 1; see Section 29.5.

• RDTSC. Behavior of the RDTSC instruction is determined by the settings of the “RDTSC exiting” and “use TSC 
offsetting” VM-execution controls as well as the TSC offset:

— If both controls are 0, RDTSC operates normally.

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.
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— If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting” VM-execution control is 1, 
RDTSC loads EAX:EDX with the sum (using signed addition) of the value of the 
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset (interpreted as a signed value).

— If the “RDTSC exiting” VM-execution control is 1, RDTSC causes a VM exit.
• RDTSCP. Behavior of the RDTSCP instruction is determined first by the setting of the “enable RDTSCP” 

VM-execution control:

— If the “enable RDTSCP” VM-execution control is 0, RDTSCP causes an invalid-opcode exception (#UD).

— If the “enable RDTSCP” VM-execution control is 1, treatment is based on the settings of the “RDTSC 
exiting” and “use TSC offsetting” VM-execution controls as well as the TSC offset:

• If both controls are 0, RDTSCP operates normally.

• If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting” VM-execution control is 
1, RDTSCP loads EAX:EDX with the sum (using signed addition) of the value of the 
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset (interpreted as a signed value); it 
also loads ECX with the value of bits 31:0 of the IA32_TSC_AUX MSR.

• If the “RDTSC exiting” VM-execution control is 1, RDTSCP causes a VM exit.
• SMSW. The behavior of SMSW is determined by the CR0 guest/host mask and the CR0 read shadow. For each 

position corresponding to a bit clear in the CR0 guest/host mask, the destination operand is loaded with the 
value of the corresponding bit in CR0. For each position corresponding to a bit set in the CR0 guest/host mask, 
the destination operand is loaded with the value of the corresponding bit in the CR0 read shadow. Thus, if 
every bit is cleared in the CR0 guest/host mask, MOV from CR0 reads normally from CR0; if every bit is set in 
the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read shadow.
Note the following: (1) for any memory destination or for a 16-bit register destination, only the low 16 bits of 
the CR0 guest/host mask and the CR0 read shadow are used (bits 63:16 of a register destination are left 
unchanged); (2) for a 32-bit register destination, only the low 32 bits of the CR0 guest/host mask and the 
CR0 read shadow are used (bits 63:32 of the destination are cleared); and (3) depending on the contents of 
the CR0 guest/host mask and the CR0 read shadow, bits may be set in the destination that would never be set 
when reading directly from CR0.

• WRMSR. Section 25.1.3 identifies when executions of the WRMSR instruction cause VM exits. If such an 
execution neither a fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified for certain 
values of ECX:

— If ECX contains 79H (indicating IA32_BIOS_UPDT_TRIG MSR), no microcode update is loaded, and control 
passes to the next instruction. This implies that microcode updates cannot be loaded in VMX non-root 
operation.

— If ECX contains 808H (indicating the TPR MSR), 80BH (the EOI MSR), or 83FH (self-IPI MSR), instruction 
behavior may modified if the “virtualize x2APIC mode” VM-execution control is 1; see Section 29.5.

• XRSTORS. Behavior of the XRSTORS instruction is determined first by the setting of the “enable XSAVES/
XRSTORS” VM-execution control:

— If the “enable XSAVES/XRSTORS” VM-execution control is 0, XRSTORS causes an invalid-opcode 
exception (#UD).

— If the “enable XSAVES/XRSTORS” VM-execution control is 1, treatment is based on the value of the XSS-
exiting bitmap (see Section 24.6.17):

• XRSTORS causes a VM exit if any bit is set in the logical-AND of the following three values: EDX:EAX, 
the IA32_XSS MSR, and the XSS-exiting bitmap.

• Otherwise, XRSTORS operates normally.
• XSAVES. Behavior of the XSAVES instruction is determined first by the setting of the “enable XSAVES/

XRSTORS” VM-execution control:
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— If the “enable XSAVES/XRSTORS” VM-execution control is 0, XSAVES causes an invalid-opcode exception 
(#UD).

— If the “enable XSAVES/XRSTORS” VM-execution control is 1, treatment is based on the value of the XSS-
exiting bitmap (see Section 24.6.17):

• XSAVES causes a VM exit if any bit is set in the logical-AND of the following three values: EDX:EAX, 
the IA32_XSS MSR, and the XSS-exiting bitmap.

• Otherwise, XSAVES operates normally.

...

16. Updates to Chapter 27, Volume 3C
Change bars show changes to Chapter 27 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C: System Programming Guide, Part 3.

------------------------------------------------------------------------------------------

...

27.2.1 Basic VM-Exit Information
Section 24.9.1 defines the basic VM-exit information fields. The following items detail their use.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. It is loaded with a number indicating the general cause 
of the VM exit. Appendix C lists the numbers used and their meaning.

— The remainder of the field (bits 31:16) is cleared to 0 (certain SMM VM exits may set some of these bits; 
see Section 34.15.2.3).1

• Exit qualification. This field is saved for VM exits due to the following causes: debug exceptions; page-fault 
exceptions; start-up IPIs (SIPIs); system-management interrupts (SMIs) that arrive immediately after the 
retirement of I/O instructions; task switches; INVEPT; INVLPG; INVPCID; INVVPID; LGDT; LIDT; LLDT; LTR; 
SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON; XRSTORS; XSAVES; 
control-register accesses; MOV DR; I/O instructions; MWAIT; accesses to the APIC-access page (see Section 
29.4); EPT violations; EOI virtualization (Section 29.1.4); and APIC-write emulation (see Section 29.4.3.3). 
For all other VM exits, this field is cleared. The following items provide details:

— For a debug exception, the exit qualification contains information about the debug exception. The 
information has the format given in Table 27-1.

1. Bit 13 of this field is set on certain VM-entry failures; see Section 26.7.

Table 27-1   Exit Qualification for Debug Exceptions

Bit Position(s) Contents

3:0 B3 – B0. When set, each of these bits indicates that the corresponding breakpoint condition was met. Any of 
these bits may be set even if its corresponding enabling bit in DR7 is not set.

12:4 Reserved (cleared to 0).

13 BD. When set, this bit indicates that the cause of the debug exception is “debug register access detected.”
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— For a page-fault exception, the exit qualification contains the linear address that caused the page fault. On 
processors that support Intel 64 architecture, bits 63:32 are cleared if the logical processor was not in 64-
bit mode before the VM exit.

— For a start-up IPI (SIPI), the exit qualification contains the SIPI vector information in bits 7:0. Bits 63:8 
of the exit qualification are cleared to 0.

— For a task switch, the exit qualification contains details about the task switch, encoded as shown in Table 
27-2.

— For INVLPG, the exit qualification contains the linear-address operand of the instruction.

• On processors that support Intel 64 architecture, bits 63:32 are cleared if the logical processor was 
not in 64-bit mode before the VM exit.

• If the INVLPG source operand specifies an unusable segment, the linear address specified in the exit 
qualification will match the linear address that the INVLPG would have used if no VM exit occurred. 
This address is not architecturally defined and may be implementation-specific.

— For INVEPT, INVPCID, INVVPID, LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR, VMCLEAR, VMPTRLD, 
VMPTRST, VMREAD, VMWRITE, VMXON, XRSTORS, and XSAVES, the exit qualification receives the value 
of the instruction’s displacement field, which is sign-extended to 64 bits if necessary (32 bits on 
processors that do not support Intel 64 architecture). If the instruction has no displacement (for example, 
has a register operand), zero is stored into the exit qualification.

...

27.2.4 Information for VM Exits Due to Instruction Execution
Section 24.9.4 defined fields containing information for VM exits that occur due to instruction execution. (The VM-
exit instruction length is also used for VM exits that occur during the delivery of a software interrupt or software 
exception.) The following items detail their use.

14 BS. When set, this bit indicates that the cause of the debug exception is either the execution of a single 
instruction (if RFLAGS.TF = 1 and IA32_DEBUGCTL.BTF = 0) or a taken branch (if 
RFLAGS.TF = DEBUGCTL.BTF = 1).

63:15 Reserved (cleared to 0). Bits 63:32 exist only on processors that support Intel 64 architecture.

Table 27-1   Exit Qualification for Debug Exceptions (Contd.)

Bit Position(s) Contents

Table 27-2   Exit Qualification for Task Switch

Bit Position(s) Contents

15:0 Selector of task-state segment (TSS) to which the guest attempted to switch

29:16 Reserved (cleared to 0)

31:30 Source of task switch initiation:

0: CALL instruction
1: IRET instruction
2: JMP instruction
3: Task gate in IDT

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 64 architecture.
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• VM-exit instruction length. This field is used in the following cases:

— For fault-like VM exits due to attempts to execute one of the following instructions that cause VM exits 
unconditionally (see Section 25.1.2) or based on the settings of VM-execution controls (see Section 
25.1.3): CLTS, CPUID, GETSEC, HLT, IN, INS, INVD, INVEPT, INVLPG, INVPCID, INVVPID, LGDT, LIDT, 
LLDT, LMSW, LTR, MONITOR, MOV CR, MOV DR, MWAIT, OUT, OUTS, PAUSE, RDMSR, RDPMC, RDRAND, 
RDTSC, RDTSCP, RSM, SGDT, SIDT, SLDT, STR, VMCALL, VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, 
VMREAD, VMRESUME, VMWRITE, VMXOFF, VMXON, WBINVD, WRMSR, XRSTORS, XSETBV, and XSAVES.1

— For VM exits due to software exceptions (those generated by executions of INT3 or INTO).

— For VM exits due to faults encountered during delivery of a software interrupt, privileged software 
exception, or software exception.

— For VM exits due to attempts to effect a task switch via instruction execution. These are VM exits that 
produce an exit reason indicating task switch and either of the following:

• An exit qualification indicating execution of CALL, IRET, or JMP instruction.

• An exit qualification indicating a task gate in the IDT and an IDT-vectoring information field indicating 
that the task gate was encountered during delivery of a software interrupt, privileged software 
exception, or software exception.

— For APIC-access VM exits resulting from accesses (see Section 29.4) during delivery of a software 
interrupt, privileged software exception, or software exception.2

— For VM exits due executions of VMFUNC that fail because one of the following is true:

• EAX indicates a VM function that is not enabled (the bit at position EAX is 0 in the VM-function 
controls; see Section 25.5.5.2).

• EAX = 0 and either ECX ≥ 512 or the value of ECX selects an invalid tentative EPTP value (see Section 
25.5.5.3).

In all the above cases, this field receives the length in bytes (1–15) of the instruction (including any 
instruction prefixes) whose execution led to the VM exit (see the next paragraph for one exception).
The cases of VM exits encountered during delivery of a software interrupt, privileged software exception, or 
software exception include those encountered during delivery of events injected as part of VM entry (see 
Section 26.5.1.2). If the original event was injected as part of VM entry, this field receives the value of the 
VM-entry instruction length.
All VM exits other than those listed in the above items leave this field undefined.

• VM-exit instruction information. For VM exits due to attempts to execute INS, INVEPT, INVPCID, INVVPID, 
LIDT, LGDT, LLDT, LTR, OUTS, RDRAND, SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST, VMREAD, 
VMWRITE, VMXON, XRSTORS, or XSAVES, this field receives information about the instruction that caused the 
VM exit. The format of the field depends on the identity of the instruction causing the VM exit:

— For VM exits due to attempts to execute INS or OUTS, the field has the format is given in Table 27-8.3

— For VM exits due to attempts to execute INVEPT, INVPCID, or INVVPID, the field has the format is given in 
Table 27-9.

1. This item applies only to fault-like VM exits. It does not apply to trap-like VM exits following executions of the MOV to CR8 instruc-
tion when the “use TPR shadow” VM-execution control is 1 or to those following executions of the WRMSR instruction when the 
“virtualize x2APIC mode” VM-execution control is 1.

2. The VM-exit instruction-length field is not defined following APIC-access VM exits resulting from physical accesses (see Section 
29.4.6) even if encountered during delivery of a software interrupt, privileged software exception, or software exception.

3. The format of the field was undefined for these VM exits on the first processors to support the virtual-machine extensions. Soft-
ware can determine whether the format specified in Table 27-8 is used by consulting the VMX capability MSR IA32_VMX_BASIC 
(see Appendix A.1).
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— For VM exits due to attempts to execute LIDT, LGDT, SIDT, or SGDT, the field has the format is given in 
Table 27-10.

— For VM exits due to attempts to execute LLDT, LTR, SLDT, or STR, the field has the format is given in 
Table 27-11.

— For VM exits due to attempts to execute RDRAND, the field has the format is given in Table 27-12.

— For VM exits due to attempts to execute VMCLEAR, VMPTRLD, VMPTRST, VMXON, XRSTORS, or XSAVES, 
the field has the format is given in Table 27-13.

— For VM exits due to attempts to execute VMREAD or VMWRITE, the field has the format is given in 
Table 27-14.

For all other VM exits, the field is undefined.

...

Table 27-13   Format of the VM-Exit Instruction-Information Field as Used for VMCLEAR, VMPTRLD, VMPTRST, 
VMXON, XRSTORS, and XSAVES (Contd.)

Table 27-8   Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS
Bit Position(s) Content

6:0 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

14:10 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for VM exits due to execution of INS.

31:18 Undefined.

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.
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...

17. Updates to Chapter 28, Volume 3C
Change bars show changes to Chapter 28 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C: System Programming Guide, Part 3.

------------------------------------------------------------------------------------------

...

28.2.3 EPT-Induced VM Exits
Accesses using guest-physical addresses may cause VM exits due to EPT misconfigurations and EPT viola-
tions. An EPT misconfiguration occurs when, in the course of translating a guest-physical address, the logical 
processor encounters an EPT paging-structure entry that contains an unsupported value. An EPT violation occurs 

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Undefined.

Bit Position(s) Content



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 155

when there is no EPT misconfiguration but the EPT paging-structure entries disallow an access using the guest-
physical address.

EPT misconfigurations and EPT violations occur only due to an attempt to access memory with a guest-physical 
address. Loading CR3 with a guest-physical address with the MOV to CR3 instruction can cause neither an EPT 
configuration nor an EPT violation until that address is used to access a paging structure.1

If the “EPT-violation #VE” VM-execution control is 1, certain EPT violations may cause virtualization exceptions 
instead of VM exits. See Section 25.5.6.1.

...

18. Updates to Chapter 35, Volume 3C
Change bars show changes to Chapter 35 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C: System Programming Guide, Part 3.

------------------------------------------------------------------------------------------
This chapter list MSRs across Intel processor families. All MSRs listed can be read with the RDMSR and written 
with the WRMSR instructions. 

Register addresses are given in both hexadecimal and decimal. The register name is the mnemonic register name 
and the bit description describes individual bits in registers.

Model specific registers and its bit-fields may be supported for a finite range of processor families/models. To 
distinguish between different processor family and/or models, software must use CPUID.01H leaf function to 
query the combination of DisplayFamily and DisplayModel to determine model-specific availability of MSRs (see 
CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A). Table 35-1 lists the signature values of DisplayFamily and DisplayModel for 
various processor families or processor number series.

1. If the logical processor is using PAE paging—because CR0.PG = CR4.PAE = 1 and IA32_EFER.LMA = 0—the MOV to CR3 instruction 
loads the PDPTEs from memory using the guest-physical address being loaded into CR3. In this case, therefore, the MOV to CR3 
instruction may cause an EPT misconfiguration or an EPT violation.

Table 35-1   CPUID Signature Values of DisplayFamily_DisplayModel 
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_4EH Future Generation Intel Core Processor 

06_3DH Next Generation Intel Core Processor 

06_3FH Future Generation Intel Xeon Processor

06_3CH, 06_45H, 06_46H 4th Generation Intel Core Processor and Intel Xeon Processor E3-1200 v3 Product Family based on 
Haswell microarchitecture.

06_3EH Next Generation Intel Xeon Processor E7 Family based on Ivy Bridge-EP microarchitecture.

06_3EH Intel Xeon Processor E5-1600 v2/E5-2400 v2/E5-2600 v2 Product Families based on Ivy Bridge-EP 
microarchitecture, Intel Core i7-49xx Processor Extreme Edition

06_3AH 3rd Generation Intel Core Processor and Intel Xeon Processor E3-1200 v2 Product Family based on 
Ivy Bridge microarchitecture.

06_2DH Intel Xeon Processor E5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core 
i7-39xx Processor Extreme Edition

06_2FH Intel Xeon Processor E7 Family
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35.1 ARCHITECTURAL MSRS
Many MSRs have carried over from one generation of IA-32 processors to the next and to Intel 64 processors. A 
subset of MSRs and associated bit fields, which do not change on future processor generations, are now consid-
ered architectural MSRs. For historical reasons (beginning with the Pentium 4 processor), these “architectural 
MSRs” were given the prefix “IA32_”. Table 35-2 lists the architectural MSRs, their addresses, their current 
names, their names in previous IA-32 processors, and bit fields that are considered architectural. MSR addresses 
outside Table 35-2 and certain bitfields in an MSR address that may overlap with architectural MSR addresses are 

06_2AH Intel Xeon Processor E3-1200 Product Family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx 
Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon Processor 3400, 3500, 5500 series

06_1DH Intel Xeon Processor MP 7400 series

06_17H Intel Xeon Processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000 
series

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series, 
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel 
Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_4AH, 06_5AH, 06_5DH Future Intel Atom Processor Based on Silvermont Microarchitecture

06_37H Intel Atom Processor E3000 series

06_4DH Intel Atom Processor C2000 series

06_36H Intel Atom Processor S1000 Series

06_1CH, 06_26H, 06_27H, 
06_35H, 06_36H

Intel Atom Processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D 
processors

0F_03H, 0F_04H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors

06_7H, 06_08H, 06_0AH, 
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor 

06_01H Intel Pentium Pro Processor 

05_01H, 05_02H, 05_04H Intel Pentium Processor, Intel Pentium Processor with MMX Technology

Table 35-1   CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel  (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series
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model-specific. Code that accesses a machine specified MSR and that is executed on a processor that does not 
support that MSR will generate an exception.

Architectural MSR or individual bit fields in an architectural MSR may be introduced or transitioned at the granu-
larity of certain processor family/model or the presence of certain CPUID feature flags. The right-most column of 
Table 35-2 provides information on the introduction of each architectural MSR or its individual fields. This informa-
tion is expressed either as signature values of “DF_DM” (see Table 35-1) or via CPUID flags.

Certain bit field position may be related to the maximum physical address width, the value of which is expressed 
as “MAXPHYWID” in Table 35-2. “MAXPHYWID” is reported by CPUID.8000_0008H leaf.

MSR address range between 40000000H - 400000FFH is marked as a specially reserved range. All existing and 
future processors will not implement any features using any MSR in this range.

Table 35-2   IA-32 Architectural MSRs

Register 
Address

Architectural MSR Name and bit 
fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural MSR

Hex Decimal

0H 0 IA32_P5_MC_ADDR (P5_MC_ADDR) See Section 35.18, “MSRs in Pentium 
Processors.”

Pentium Processor 
(05_01H)

1H 1 IA32_P5_MC_TYPE (P5_MC_TYPE) See Section 35.18, “MSRs in Pentium 
Processors.”

DF_DM = 05_01H

6H 6 IA32_MONITOR_FILTER_SIZE See Section 8.10.5, “Monitor/Mwait 
Address Range Determination.”

0F_03H

10H 16 IA32_TIME_STAMP_
COUNTER (TSC)

See Section 17.13, “Time-Stamp Counter.” 05_01H

17H 23 IA32_PLATFORM_ID 
(MSR_PLATFORM_ID )

Platform ID (RO) 
The operating system can use this MSR to 
determine “slot” information for the 
processor and the proper microcode update 
to load.

06_01H

49:0 Reserved.

52:50 Platform Id (RO) 

Contains information concerning the 
intended platform for the processor. 

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4 
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

1BH 27 IA32_APIC_BASE (APIC_BASE) 06_01H

7:0 Reserved

8 BSP flag (R/W)
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9 Reserved

10 Enable x2APIC mode 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYWID - 1):12 APIC Base (R/W)

63: MAXPHYWID Reserved

3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64 Processor 
(R/W)

If CPUID.01H: ECX[bit 5 or 
bit 6] = 1

0 Lock bit (R/WO): (1 = locked). When set, 
locks this MSR from being written, writes 
to this bit will result in GP(0).

Note: Once the Lock bit is set, the contents 
of this register cannot be modified. 
Therefore the lock bit must be set after 
configuring support

If CPUID.01H:ECX[bit 5 or 
bit 6] = 1

for Intel Virtualization Technology and prior 
to transferring control to an option ROM or 
the OS. Hence, once the Lock bit is set, the 
entire

IA32_FEATURE_CONTROL_MSR contents 
are preserved across RESET when 
PWRGOOD is not deasserted.

1 Enable VMX inside SMX operation (R/WL): 
This bit enables a system executive to use 
VMX in conjunction with SMX to support 
Intel® Trusted Execution Technology.

BIOS must set this bit only when the CPUID 
function 1 returns VMX feature flag and 
SMX feature flag set (ECX bits 5 and 6 
respectively).

If CPUID.01H:ECX[bit 5 and 
bit 6] are set to 1

2 Enable VMX outside SMX operation (R/WL): 
This bit enables VMX for system executive 
that do not require SMX.

BIOS must set this bit only when the CPUID 
function 1 returns VMX feature flag set 
(ECX bit 5).

If CPUID.01H:ECX[bit 5 or 
bit 6] = 1

7:3 Reserved

14:8 SENTER Local Function Enables (R/WL): 
When set, each bit in the field represents 
an enable control for a corresponding 
SENTER function. This bit is supported only 
if CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[bit 6] = 1

Table 35-2   IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name and bit 
fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural MSR

Hex Decimal
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15 SENTER Global Enable (R/WL): This bit must 
be set to enable SENTER leaf functions. 
This bit is supported only if 
CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[bit 6] = 1

63:16 Reserved

3BH 59 IA32_TSC_ADJUST Per Logical Processor TSC Adjust (R/Write 
to clear)

If CPUID.(EAX=07H, 
ECX=0H): EBX[1] = 1

63:0 THREAD_ADJUST: 

Local offset value of the IA32_TSC for a 
logical processor. Reset value is Zero. A 
write to IA32_TSC will modify the local 
offset in IA32_TSC_ADJUST and the 
content of IA32_TSC, but does not affect 
the internal invariant TSC hardware. 

79H 121 IA32_BIOS_UPDT_TRIG 
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR instruction to this MSR 
causes a microcode update to be loaded 
into the processor. See Section 9.11.6, 
“Microcode Update Loader.”

A processor may prevent writing to this 
MSR when loading guest states on VM 
entries or saving guest states on VM exits.

06_01H

8BH 139 IA32_BIOS_SIGN_ID (BIOS_SIGN/
BBL_CR_D3)

BIOS Update Signature (RO)

Returns the microcode update signature 
following the execution of CPUID.01H.

A processor may prevent writing to this 
MSR when loading guest states on VM 
entries or saving guest states on VM exits.

06_01H

31:0 Reserved

63:32 It is recommended that this field be pre-
loaded with 0 prior to executing CPUID. 

If the field remains 0 following the 
execution of CPUID; this indicates that no 
microcode update is loaded. Any non-zero 
value is the microcode update signature.

9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration (R/W) If CPUID.01H: ECX[bit 5 or 
bit 6] = 1

0 Valid (R/W)

1 Reserved

2 Controls SMI unblocking by VMXOFF (see 
Section 34.14.4)

If IA32_VMX_MISC[bit 28])

11:3 Reserved
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31:12 MSEG Base (R/W)

63:32 Reserved

9EH 158 IA32_SMBASE Base address of the logical processor’s 
SMRAM image (RO, SMM only)

If IA32_VMX_MISC[bit 15])

C1H 193 IA32_PMC0 (PERFCTR0) General Performance Counter 0 (R/W) If CPUID.0AH: EAX[15:8] > 
0

C2H 194 IA32_PMC1 (PERFCTR1) General Performance Counter 1 (R/W) If CPUID.0AH: EAX[15:8] > 
1

C3H 195 IA32_PMC2 General Performance Counter 2 (R/W) If CPUID.0AH: EAX[15:8] > 
2

C4H 196 IA32_PMC3 General Performance Counter 3 (R/W) If CPUID.0AH: EAX[15:8] > 
3

C5H 197 IA32_PMC4 General Performance Counter 4 (R/W) If CPUID.0AH: EAX[15:8] > 
4

C6H 198 IA32_PMC5 General Performance Counter 5 (R/W) If CPUID.0AH: EAX[15:8] > 
5

C7H 199 IA32_PMC6 General Performance Counter 6 (R/W) If CPUID.0AH: EAX[15:8] > 
6

C8H 200 IA32_PMC7 General Performance Counter 7 (R/W) If CPUID.0AH: EAX[15:8] > 
7

E7H 231 IA32_MPERF Maximum Qualified Performance Clock 
Counter (R/Write to clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_MCNT: C0 Maximum Frequency Clock 
Count

Increments at fixed interval (relative to TSC 
freq.) when the logical processor is in C0. 

Cleared upon overflow / wrap-around of 
IA32_APERF. 

E8H 232 IA32_APERF Actual Performance Clock Counter (R/Write 
to clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_ACNT: C0 Actual Frequency Clock 
Count

Accumulates core clock counts at the 
coordinated clock frequency, when the 
logical processor is in C0. 

Cleared upon overflow / wrap-around of 
IA32_MPERF.

FEH 254 IA32_MTRRCAP (MTRRcap) MTRR Capability (RO) Section 11.11.2.1, 
“IA32_MTRR_DEF_TYPE MSR.”

06_01H

7:0 VCNT: The number of variable memory 
type ranges in the processor.
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8 Fixed range MTRRs are supported when 
set.

9 Reserved.

10 WC Supported when set.

11 SMRR Supported when set.

63:12 Reserved.

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector

63:16 Reserved.

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H

179H 377 IA32_MCG_CAP (MCG_CAP) Global Machine Check Capability (RO) 06_01H

7:0 Count: Number of reporting banks.

8 MCG_CTL_P: IA32_MCG_CTL is present if 
this bit is set

9 MCG_EXT_P: Extended machine check 
state registers are present if this bit is set

10 MCP_CMCI_P: Support for corrected MC 
error event is present.

06_1AH

11 MCG_TES_P: Threshold-based error status 
register are present if this bit is set.

15:12 Reserved

23:16 MCG_EXT_CNT: Number of extended 
machine check state registers present.

24 MCG_SER_P: The processor supports 
software error recovery if this bit is set.

25 Reserved.

26 MCG_ELOG_P: Indicates that the processor 
allows platform firmware to be invoked 
when an error is detected so that it may 
provide additional platform specific 
information in an ACPI format “Generic 
Error Data Entry” that augments the data 
included in machine check bank registers.

06_3EH

63:27 Reserved.

17AH 378 IA32_MCG_STATUS (MCG_STATUS) Global Machine Check Status (R/W0) 06_01H

0 RIPV. Restart IP valid 06_01H

1 EIPV. Error IP valid 06_01H
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2 MCIP. Machine check in progress 06_01H

63:3 Reserved.

17BH 379 IA32_MCG_CTL (MCG_CTL) Global Machine Check Control (R/W) 06_01H

180H-
185H

384-
389

Reserved 06_0EH1

186H 390 IA32_PERFEVTSEL0 (PERFEVTSEL0) Performance Event Select Register 0 (R/W) If CPUID.0AH: EAX[15:8] > 
0

7:0 Event Select: Selects a performance event 
logic unit.

15:8 UMask: Qualifies the microarchitectural 
condition to detect on the selected event 
logic.

16 USR: Counts while in privilege level is not 
ring 0.

17 OS: Counts while in privilege level is ring 0.

18 Edge: Enables edge detection if set.

19 PC: enables pin control.

20 INT: enables interrupt on counter overflow.

21 AnyThread: When set to 1, it enables 
counting the associated event conditions 
occurring across all logical processors 
sharing a processor core. When set to 0, the 
counter only increments the associated 
event conditions occurring in the logical 
processor which programmed the MSR.

22 EN: enables the corresponding performance 
counter to commence counting when this 
bit is set.

23 INV: invert the CMASK.

31:24 CMASK: When CMASK is not zero, the 
corresponding performance counter 
increments each cycle if the event count is 
greater than or equal to the CMASK.

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 (PERFEVTSEL1) Performance Event Select Register 1 (R/W) If CPUID.0AH: EAX[15:8] > 
1

188H 392 IA32_PERFEVTSEL2 Performance Event Select Register 2 (R/W) If CPUID.0AH: EAX[15:8] > 
2

189H 393 IA32_PERFEVTSEL3 Performance Event Select Register 3 (R/W) If CPUID.0AH: EAX[15:8] > 
3
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18AH-
197H

394-
407

Reserved 06_0EH2

198H 408 IA32_PERF_STATUS (RO) 0F_03H 

15:0 Current performance State Value

63:16 Reserved.

199H 409 IA32_PERF_CTL (R/W) 0F_03H 

15:0 Target performance State Value

31:16 Reserved.

32 IDA Engage. (R/W)

When set to 1: disengages IDA

06_0FH (Mobile)

63:33 Reserved.

19AH 410 IA32_CLOCK_MODULATION Clock Modulation Control (R/W)

See Section 14.7.3, “Software Controlled 
Clock Modulation.”

0F_0H

0 Extended On-Demand Clock Modulation 
Duty Cycle:

If CPUID.06H:EAX[5] = 1

3:1 On-Demand Clock Modulation Duty Cycle: 
Specific encoded values for target duty 
cycle modulation.

4 On-Demand Clock Modulation Enable: Set 1 
to enable modulation.

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

Enables and disables the generation of an 
interrupt on temperature transitions 
detected with the processor’s thermal 
sensors and thermal monitor. 

See Section 14.7.2, “Thermal Monitor.”

0F_0H

0 High-Temperature Interrupt Enable

1 Low-Temperature Interrupt Enable

2 PROCHOT# Interrupt Enable

3 FORCEPR# Interrupt Enable

4 Critical Temperature Interrupt Enable

7:5 Reserved.

14:8 Threshold #1 Value

15 Threshold #1 Interrupt Enable

22:16 Threshold #2 Value
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23 Threshold #2 Interrupt Enable

24 Power Limit Notification Enable If CPUID.06H:EAX[4] = 1

63:25 Reserved.

19CH 412 IA32_THERM_STATUS Thermal Status Information (RO)

Contains status information about the 
processor’s thermal sensor and automatic 
thermal monitoring facilities. 

See Section 14.7.2, “Thermal Monitor”

0F_0H

0 Thermal Status (RO):

1 Thermal Status Log (R/W): 

2 PROCHOT # or FORCEPR# event (RO)

3 PROCHOT # or FORCEPR# log (R/WC0)

4 Critical Temperature Status (RO)

5 Critical Temperature Status log (R/WC0)

6 Thermal Threshold #1 Status (RO) If CPUID.01H:ECX[8] = 1

7 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1

8 Thermal Threshold #2 Status (RO) If CPUID.01H:ECX[8] = 1

9 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1

10 Power Limitation Status (RO) If CPUID.06H:EAX[4] = 1

11 Power Limitation log (R/WC0) If CPUID.06H:EAX[4] = 1

15:12 Reserved.

22:16 Digital Readout (RO) If CPUID.06H:EAX[0] = 1

26:23 Reserved.

30:27 Resolution in Degrees Celsius (RO) If CPUID.06H:EAX[0] = 1

31 Reading Valid (RO) If CPUID.06H:EAX[0] = 1

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to 
be enabled and disabled.

0 Fast-Strings Enable

When set, the fast-strings feature (for REP 
MOVS and REP STORS) is enabled (default); 
when clear, fast-strings are disabled.

0F_0H

2:1 Reserved.
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3 Automatic Thermal Control Circuit Enable 
(R/W) 

1 = Setting this bit enables the thermal 
control circuit (TCC) portion of the 
Intel Thermal Monitor feature. This 
allows the processor to automatically 
reduce power consumption in 
response to TCC activation.

0 = Disabled (default).
Note: In some products clearing this bit 
might be ignored in critical thermal 
conditions, and TM1, TM2 and adaptive 
thermal throttling will still be activated.

0F_0H

6:4 Reserved

7 Performance Monitoring Available (R) 

1 = Performance monitoring enabled
0 = Performance monitoring disabled

0F_0H

10:8 Reserved.

11 Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch 
trace storage (BTS)

0 = BTS is supported

0F_0H

12 Precise Event Based Sampling (PEBS) 
Unavailable (RO) 

1 = PEBS is not supported; 
0 = PEBS is supported. 

06_0FH

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology 
Enable (R/W)

0= Enhanced Intel SpeedStep 
Technology disabled

1 = Enhanced Intel SpeedStep 
Technology enabled

06_0DH

17 Reserved.
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18 ENABLE MONITOR FSM (R/W)

When this bit is set to 0, the MONITOR 
feature flag is not set (CPUID.01H:ECX[bit 
3] = 0). This indicates that MONITOR/
MWAIT are not supported. 

Software attempts to execute MONITOR/
MWAIT will cause #UD when this bit is 0.

When this bit is set to 1 (default), 
MONITOR/MWAIT are supported 
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag ECX[0] is not set 
(CPUID.01H:ECX[bit 0] = 0), the OS must 
not attempt to alter this bit. BIOS must 
leave it in the default state. Writing this bit 
when the SSE3 feature flag is set to 0 may 
generate a #GP exception.

0F_03H

21:19 Reserved.

22 Limit CPUID Maxval (R/W)

When this bit is set to 1, CPUID.00H returns 
a maximum value in EAX[7:0] of 3.

BIOS should contain a setup question that 
allows users to specify when the installed 
OS does not support CPUID functions 
greater than 3.

Before setting this bit, BIOS must execute 
the CPUID.0H and examine the maximum 
value returned in EAX[7:0]. If the maximum 
value is greater than 3, the bit is supported.

Otherwise, the bit is not supported.  Writing 
to this bit when the maximum value is 
greater than 3 may generate a #GP 
exception.

Setting this bit may cause unexpected 
behavior in software that depends on the 
availability of CPUID leaves greater than 3.

0F_03H

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are 
disabled. xTPR messages are optional 
messages that allow the processor to 
inform the chipset of its priority.

if CPUID.01H:ECX[14] = 1

33:24 Reserved.
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34 XD Bit Disable (R/W)

When set to 1, the Execute Disable Bit 
feature (XD Bit) is disabled and the XD Bit 
extended feature flag will be clear 
(CPUID.80000001H: EDX[20]=0).

When set to a 0 (default), the Execute 
Disable Bit feature (if available) allows the 
OS to enable PAE paging and take 
advantage of data only pages.

BIOS must not alter the contents of this bit 
location, if XD bit is not supported.. Writing 
this bit to 1 when the XD Bit extended 
feature flag is set to 0 may generate a #GP 
exception.

if 
CPUID.80000001H:EDX[2
0] = 1

63:35 Reserved.

1B0H 432 IA32_ENERGY_PERF_BIAS Performance Energy Bias Hint (R/W) if CPUID.6H:ECX[3] = 1

3:0 Power Policy Preference: 

0 indicates preference to highest 
performance.

15 indicates preference to maximize 
energy saving.

63:4 Reserved.

1B1H 433 IA32_PACKAGE_THERM_STATUS Package Thermal Status Information (RO)

Contains status information about the 
package’s thermal sensor. 

See Section 14.8, “Package Level Thermal 
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg Thermal Status (RO):

1 Pkg Thermal Status Log (R/W): 

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature Status (RO)

5 Pkg Critical Temperature Status log (R/
WC0)

6 Pkg Thermal Threshold #1 Status (RO)

7 Pkg Thermal Threshold #1 log (R/WC0)

8 Pkg Thermal Threshold #2 Status (RO)

9 Pkg Thermal Threshold #1 log (R/WC0)

10 Pkg Power Limitation Status (RO)
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11 Pkg Power Limitation log (R/WC0)

15:12 Reserved.

22:16 Pkg Digital Readout (RO)

63:23 Reserved.

1B2H 434 IA32_PACKAGE_THERM_INTERRUPT Pkg Thermal Interrupt Control (R/W)

Enables and disables the generation of an 
interrupt on temperature transitions 
detected with the package’s thermal 
sensor. 

See Section 14.8, “Package Level Thermal 
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg High-Temperature Interrupt Enable

1 Pkg Low-Temperature Interrupt Enable

2 Pkg PROCHOT# Interrupt Enable

3 Reserved.

4 Pkr Overheat Interrupt Enable

7:5 Reserved.

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt Enable

22:16 Pkg Threshold #2 Value

23 Pkg Threshold #2 Interrupt Enable

24 Pkg Power Limit Notification Enable

63:25 Reserved.

1D9H 473 IA32_DEBUGCTL (MSR_DEBUGCTLA, 
MSR_DEBUGCTLB)

Trace/Profile Resource Control (R/W) 06_0EH

0 LBR: Setting this bit to 1 enables the 
processor to record a running trace of the 
most recent branches taken by the 
processor in the LBR stack.

06_01H

1 BTF: Setting this bit to 1 enables the 
processor to treat EFLAGS.TF as single-step 
on branches instead of single-step on 
instructions.

06_01H

5:2 Reserved.

6 TR: Setting this bit to 1 enables branch 
trace messages to be sent.

06_0EH

7 BTS: Setting this bit enables branch trace 
messages (BTMs) to be logged in a BTS 
buffer.

06_0EH
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8 BTINT: When clear, BTMs are logged in a 
BTS buffer in circular fashion. When this bit 
is set, an interrupt is generated by the BTS 
facility when the BTS buffer is full.

06_0EH

9 1: BTS_OFF_OS: When set, BTS or BTM is 
skipped if CPL = 0.

06_0FH

10 BTS_OFF_USR: When set, BTS or BTM is 
skipped if CPL > 0.

06_0FH

11 FREEZE_LBRS_ON_PMI: When set, the LBR 
stack is frozen on a PMI request.

If CPUID.01H: ECX[15] = 1 
and CPUID.0AH: EAX[7:0] > 
1

12 FREEZE_PERFMON_ON_PMI: When set, 
each ENABLE bit of the global counter 
control MSR are frozen (address 3BFH) on a 
PMI request

If CPUID.01H: ECX[15] = 1 
and CPUID.0AH: EAX[7:0] > 
1

13 ENABLE_UNCORE_PMI: When set, enables 
the logical processor to receive and 
generate PMI on behalf of the uncore.

06_1AH

14 FREEZE_WHILE_SMM: When set, freezes 
perfmon and trace messages while in SMM.

if  
IA32_PERF_CAPABILITIES[
12] = '1

63:15 Reserved.

1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address (Writeable only in 
SMM) 

Base address of SMM memory range.

If IA32_MTRR_CAP[SMRR] 
= 1

7:0 Type. Specifies memory type of the range.

11:8 Reserved.

31:12 PhysBase. 

SMRR physical Base Address.

63:32 Reserved.

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask. (Writeable only in 
SMM) 

Range Mask of SMM memory range.

If IA32_MTRR_CAP[SMRR] 
= 1

10:0  Reserved.

11 Valid

Enable range mask.

31:12 PhysMask

SMRR address range mask.

63:32 Reserved.

1F8H 504 IA32_PLATFORM_DCA_CAP DCA Capability (R) 06_0FH
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1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-Hint type. 

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and Control register. 06_2EH

0 DCA_ACTIVE: Set by HW when DCA is fuse-
enabled and no defeatures are set.

06_2EH

2:1 TRANSACTION 06_2EH

6:3 DCA_TYPE 06_2EH

10:7 DCA_QUEUE_SIZE 06_2EH

12:11 Reserved. 06_2EH

16:13 DCA_DELAY: Writes will update the register 
but have no HW side-effect.

06_2EH

23:17 Reserved. 06_2EH

24 SW_BLOCK: SW can request DCA block by 
setting this bit.

06_2EH

25 Reserved. 06_2EH

26 HW_BLOCK: Set when DCA is blocked by 
HW (e.g. CR0.CD = 1).

06_2EH

31:27 Reserved. 06_2EH

200H 512 IA32_MTRR_PHYSBASE0 
(MTRRphysBase0)

See Section 11.11.2.3, “Variable Range 
MTRRs.”

06_01H

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 06_01H

202H 514 IA32_MTRR_PHYSBASE1  MTRRphysBase1 06_01H

203H 515 IA32_MTRR_PHYSMASK1  MTRRphysMask1 06_01H

204H 516 IA32_MTRR_PHYSBASE2  MTRRphysBase2 06_01H

205H 517 IA32_MTRR_PHYSMASK2  MTRRphysMask2 06_01H

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 06_01H

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 06_01H

208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 06_01H

209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 06_01H

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 06_01H

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 06_01H

20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 06_01H

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 06_01H

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 06_01H

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 06_01H

210H 528 IA32_MTRR_PHYSBASE8 MTRRphysBase8 if IA32_MTRR_CAP[7:0] > 
8
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211H 529 IA32_MTRR_PHYSMASK8 MTRRphysMask8 if IA32_MTRR_CAP[7:0] > 
8

212H 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 if IA32_MTRR_CAP[7:0] > 
9

213H 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 if IA32_MTRR_CAP[7:0] > 
9

250H 592 IA32_MTRR_FIX64K_00000 MTRRfix64K_00000 06_01H

258H 600 IA32_MTRR_FIX16K_80000 MTRRfix16K_80000 06_01H

259H 601 IA32_MTRR_FIX16K_A0000 MTRRfix16K_A0000 06_01H

268H 616 IA32_MTRR_FIX4K_C0000 
(MTRRfix4K_C0000 )

See Section 11.11.2.2, “Fixed Range 
MTRRs.”

06_01H

269H 617 IA32_MTRR_FIX4K_C8000 MTRRfix4K_C8000 06_01H

26AH 618 IA32_MTRR_FIX4K_D0000 MTRRfix4K_D0000 06_01H

26BH 619 IA32_MTRR_FIX4K_D8000 MTRRfix4K_D8000 06_01H

26CH 620 IA32_MTRR_FIX4K_E0000 MTRRfix4K_E0000 06_01H

26DH 621 IA32_MTRR_FIX4K_E8000 MTRRfix4K_E8000 06_01H

26EH 622 IA32_MTRR_FIX4K_F0000 MTRRfix4K_F0000 06_01H

26FH 623 IA32_MTRR_FIX4K_F8000 MTRRfix4K_F8000 06_01H

277H 631 IA32_PAT IA32_PAT (R/W) 06_05H

2:0 PA0

7:3 Reserved.

10:8 PA1

15:11 Reserved.

18:16 PA2

23:19 Reserved.

26:24 PA3

31:27 Reserved.

34:32 PA4

39:35 Reserved.

42:40 PA5

47:43 Reserved.

50:48 PA6

55:51 Reserved.

58:56 PA7

63:59 Reserved.
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280H 640 IA32_MC0_CTL2 (R/W) 06_1AH

14:0 Corrected error count threshold.

29:15 Reserved.

30 CMCI_EN

63:31 Reserved.

281H 641 IA32_MC1_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

282H 642 IA32_MC2_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

283H 643 IA32_MC3_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

284H 644 IA32_MC4_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

285H 645 IA32_MC5_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

286H 646 IA32_MC6_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

287H 647 IA32_MC7_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

288H 648 IA32_MC8_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

289H 649 IA32_MC9_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28AH 650 IA32_MC10_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28BH 651 IA32_MC11_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28CH 652 IA32_MC12_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28DH 653 IA32_MC13_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28EH 654 IA32_MC14_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28FH 655 IA32_MC15_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

290H 656 IA32_MC16_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

291H 657 IA32_MC17_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

292H 658 IA32_MC18_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

293H 659 IA32_MC19_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

294H 660 IA32_MC20_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

295H 661 IA32_MC21_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

296H 662 IA32_MC22_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

297H 663 IA32_MC23_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

298H 664 IA32_MC24_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

299H 665 IA32_MC25_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29AH 666 IA32_MC26_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29BH 667 IA32_MC27_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29CH 668 IA32_MC28_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType (R/W) 06_01H
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2:0 Default Memory Type

9:3 Reserved.

10 Fixed Range MTRR Enable 

11 MTRR Enable 

63:12 Reserved.

309H 777 IA32_FIXED_CTR0 
(MSR_PERF_FIXED_CTR0)

Fixed-Function Performance Counter 0 (R/
W): Counts Instr_Retired.Any.

If CPUID.0AH: EDX[4:0] > 0

30AH 778 IA32_FIXED_CTR1 
(MSR_PERF_FIXED_CTR1)

Fixed-Function Performance Counter 1 0 
(R/W): Counts CPU_CLK_Unhalted.Core

If CPUID.0AH: EDX[4:0] > 1

30BH 779 IA32_FIXED_CTR2 
(MSR_PERF_FIXED_CTR2)

Fixed-Function Performance Counter 0 0 
(R/W): Counts CPU_CLK_Unhalted.Ref

If CPUID.0AH: EDX[4:0] > 2

345H 837 IA32_PERF_CAPABILITIES RO If CPUID.01H: ECX[15] = 1

5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is supported.

13 1: Full width of counter writable via 
IA32_A_PMCx.

63:14 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL 
(MSR_PERF_FIXED_CTR_CTRL)

Fixed-Function Performance Counter 
Control (R/W)

Counter increments while the results of 
ANDing respective enable bit in 
IA32_PERF_GLOBAL_CTRL with the 
corresponding OS or USR bits in this MSR is 
true.

If CPUID.0AH: EAX[7:0] > 1

0 EN0_OS: Enable Fixed Counter 0 to count 
while CPL = 0.

1 EN0_Usr: Enable Fixed Counter 0 to count 
while CPL > 0.

2 AnyThread: When set to 1, it enables 
counting the associated event conditions 
occurring across all logical processors 
sharing a processor core. When set to 0, the 
counter only increments the associated 
event conditions occurring in the logical 
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

3 EN0_PMI: Enable PMI when fixed counter 0 
overflows.
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4 EN1_OS: Enable Fixed Counter 1to count 
while CPL = 0.

5 EN1_Usr: Enable Fixed Counter 1to count 
while CPL > 0.

6 AnyThread: When set to 1, it enables 
counting the associated event conditions 
occurring across all logical processors 
sharing a processor core. When set to 0, the 
counter only increments the associated 
event conditions occurring in the logical 
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

7 EN1_PMI: Enable PMI when fixed counter 1 
overflows.

8 EN2_OS: Enable Fixed Counter 2 to count 
while CPL = 0.

9 EN2_Usr: Enable Fixed Counter 2 to count 
while CPL > 0.

10 AnyThread: When set to 1, it enables 
counting the associated event conditions 
occurring across all logical processors 
sharing a processor core. When set to 0, the 
counter only increments the associated 
event conditions occurring in the logical 
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

11 EN2_PMI: Enable PMI when fixed counter 2 
overflows.

63:12 Reserved.

38EH 910 IA32_PERF_GLOBAL_STATUS 
(MSR_PERF_GLOBAL_STATUS)

Global Performance Counter Status (RO) If CPUID.0AH: EAX[7:0] > 0

0 Ovf_PMC0: Overflow status of IA32_PMC0. If CPUID.0AH: EAX[7:0] > 0

1 Ovf_PMC1: Overflow status of IA32_PMC1. If CPUID.0AH: EAX[7:0] > 0

2 Ovf_PMC2: Overflow status of IA32_PMC2. 06_2EH

3 Ovf_PMC3: Overflow status of IA32_PMC3. 06_2EH

31:4 Reserved.

32 Ovf_FixedCtr0: Overflow status of 
IA32_FIXED_CTR0.

If CPUID.0AH: EAX[7:0] > 1

33 Ovf_FixedCtr1: Overflow status of 
IA32_FIXED_CTR1.

If CPUID.0AH: EAX[7:0] > 1

34 Ovf_FixedCtr2: Overflow status of 
IA32_FIXED_CTR2.

If CPUID.0AH: EAX[7:0] > 1

60:35 Reserved.
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61 Ovf_Uncore: Uncore counter overflow 
status.

If CPUID.0AH: EAX[7:0] > 2

62 OvfBuf: DS SAVE area Buffer overflow 
status.

If CPUID.0AH: EAX[7:0] > 0

63 CondChg: status bits of this register has 
changed.

If CPUID.0AH: EAX[7:0] > 0

38FH 911 IA32_PERF_GLOBAL_CTRL 
(MSR_PERF_GLOBAL_CTRL)

Global Performance Counter Control (R/W)

Counter increments while the result of 
ANDing respective enable bit in this MSR 
with the corresponding OS or USR bits in 
the general-purpose or fixed counter 
control MSR is true.

If CPUID.0AH: EAX[7:0] > 0

0 EN_PMC0 If CPUID.0AH: EAX[7:0] > 0

1 EN_PMC1 If CPUID.0AH: EAX[7:0] > 0

31:2 Reserved.

32 EN_FIXED_CTR0 If CPUID.0AH: EAX[7:0] > 1

33 EN_FIXED_CTR1 If CPUID.0AH: EAX[7:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH: EAX[7:0] > 1

63:35 Reserved.

390H 912 IA32_PERF_GLOBAL_OVF_CTRL 
(MSR_PERF_GLOBAL_OVF_CTRL)

Global Performance Counter Overflow 
Control (R/W)

If CPUID.0AH: EAX[7:0] > 0

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[7:0] > 0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[7:0] > 0

31:2 Reserved.

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EAX[7:0] > 1

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EAX[7:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EAX[7:0] > 1

60:35 Reserved.

61 Set 1 to Clear Ovf_Uncore: bit. 06_2EH

62 Set 1 to Clear OvfBuf: bit. If CPUID.0AH: EAX[7:0] > 0

63 Set to 1to clear CondChg: bit. If CPUID.0AH: EAX[7:0] > 0

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0. 06_0FH

1-3 Reserved or Model specific .

31:4 Reserved.

35-32 Reserved or Model specific .

63:36 Reserved.
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400H 1024 IA32_MC0_CTL MC0_CTL P6 Family Processors

401H 1025 IA32_MC0_STATUS MC0_STATUS P6 Family Processors

402H 1026 IA32_MC0_ADDR1 MC0_ADDR P6 Family Processors

403H 1027 IA32_MC0_MISC MC0_MISC P6 Family Processors

404H 1028 IA32_MC1_CTL MC1_CTL P6 Family Processors

405H 1029 IA32_MC1_STATUS MC1_STATUS P6 Family Processors

406H 1030 IA32_MC1_ADDR2 MC1_ADDR P6 Family Processors

407H 1031 IA32_MC1_MISC MC1_MISC P6 Family Processors

408H 1032 IA32_MC2_CTL MC2_CTL P6 Family Processors

409H 1033 IA32_MC2_STATUS MC2_STATUS P6 Family Processors

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR P6 Family Processors

40BH 1035 IA32_MC2_MISC MC2_MISC P6 Family Processors

40CH 1036 IA32_MC3_CTL MC3_CTL P6 Family Processors

40DH 1037 IA32_MC3_STATUS MC3_STATUS P6 Family Processors

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR P6 Family Processors

40FH 1039 IA32_MC3_MISC MC3_MISC P6 Family Processors

410H 1040 IA32_MC4_CTL MC4_CTL P6 Family Processors

411H 1041 IA32_MC4_STATUS MC4_STATUS P6 Family Processors

412H 1042 IA32_MC4_ADDR1 MC4_ADDR P6 Family Processors

413H 1043 IA32_MC4_MISC MC4_MISC P6 Family Processors

414H 1044 IA32_MC5_CTL MC5_CTL 06_0FH

415H 1045 IA32_MC5_STATUS MC5_STATUS 06_0FH

416H 1046 IA32_MC5_ADDR1 MC5_ADDR 06_0FH

417H 1047 IA32_MC5_MISC MC5_MISC 06_0FH

418H 1048 IA32_MC6_CTL MC6_CTL 06_1DH

419H 1049 IA32_MC6_STATUS MC6_STATUS 06_1DH

41AH 1050 IA32_MC6_ADDR1 MC6_ADDR 06_1DH

41BH 1051 IA32_MC6_MISC MC6_MISC 06_1DH

41CH 1052 IA32_MC7_CTL MC7_CTL 06_1AH

41DH 1053 IA32_MC7_STATUS MC7_STATUS 06_1AH

41EH 1054 IA32_MC7_ADDR1 MC7_ADDR 06_1AH

41FH 1055 IA32_MC7_MISC MC7_MISC 06_1AH

420H 1056 IA32_MC8_CTL MC8_CTL 06_1AH

421H 1057 IA32_MC8_STATUS MC8_STATUS 06_1AH
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422H 1058 IA32_MC8_ADDR1 MC8_ADDR 06_1AH

423H 1059 IA32_MC8_MISC MC8_MISC 06_1AH

424H 1060 IA32_MC9_CTL MC9_CTL 06_2EH

425H 1061 IA32_MC9_STATUS MC9_STATUS 06_2EH

426H 1062 IA32_MC9_ADDR1 MC9_ADDR 06_2EH

427H 1063 IA32_MC9_MISC MC9_MISC 06_2EH

428H 1064 IA32_MC10_CTL MC10_CTL 06_2EH

429H 1065 IA32_MC10_STATUS MC10_STATUS 06_2EH

42AH 1066 IA32_MC10_ADDR1 MC10_ADDR 06_2EH

42BH 1067 IA32_MC10_MISC MC10_MISC 06_2EH

42CH 1068 IA32_MC11_CTL MC11_CTL 06_2EH

42DH 1069 IA32_MC11_STATUS MC11_STATUS 06_2EH

42EH 1070 IA32_MC11_ADDR1 MC11_ADDR 06_2EH

42FH 1071 IA32_MC11_MISC MC11_MISC 06_2EH

430H 1072 IA32_MC12_CTL MC12_CTL 06_2EH

431H 1073 IA32_MC12_STATUS MC12_STATUS 06_2EH

432H 1074 IA32_MC12_ADDR1 MC12_ADDR 06_2EH

433H 1075 IA32_MC12_MISC MC12_MISC 06_2EH

434H 1076 IA32_MC13_CTL MC13_CTL 06_2EH

435H 1077 IA32_MC13_STATUS MC13_STATUS 06_2EH

436H 1078 IA32_MC13_ADDR1 MC13_ADDR 06_2EH

437H 1079 IA32_MC13_MISC MC13_MISC 06_2EH

438H 1080 IA32_MC14_CTL MC14_CTL 06_2EH

439H 1081 IA32_MC14_STATUS MC14_STATUS 06_2EH

43AH 1082 IA32_MC14_ADDR1 MC14_ADDR 06_2EH

43BH 1083 IA32_MC14_MISC MC14_MISC 06_2EH

43CH 1084 IA32_MC15_CTL MC15_CTL 06_2EH

43DH 1085 IA32_MC15_STATUS MC15_STATUS 06_2EH

43EH 1086 IA32_MC15_ADDR1 MC15_ADDR 06_2EH

43FH 1087 IA32_MC15_MISC MC15_MISC 06_2EH

440H 1088 IA32_MC16_CTL MC16_CTL 06_2EH

441H 1089 IA32_MC16_STATUS MC16_STATUS 06_2EH

442H 1090 IA32_MC16_ADDR1 MC16_ADDR 06_2EH

443H 1091 IA32_MC16_MISC MC16_MISC 06_2EH
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444H 1092 IA32_MC17_CTL MC17_CTL 06_2EH

445H 1093 IA32_MC17_STATUS MC17_STATUS 06_2EH

446H 1094 IA32_MC17_ADDR1 MC17_ADDR 06_2EH

447H 1095 IA32_MC17_MISC MC17_MISC 06_2EH

448H 1096 IA32_MC18_CTL MC18_CTL 06_2EH

449H 1097 IA32_MC18_STATUS MC18_STATUS 06_2EH

44AH 1098 IA32_MC18_ADDR1 MC18_ADDR 06_2EH

44BH 1099 IA32_MC18_MISC MC18_MISC 06_2EH

44CH 1100 IA32_MC19_CTL MC19_CTL 06_2EH

44DH 1101 IA32_MC19_STATUS MC19_STATUS 06_2EH

44EH 1102 IA32_MC19_ADDR1 MC19_ADDR 06_2EH

44FH 1103 IA32_MC19_MISC MC19_MISC 06_2EH

450H 1104 IA32_MC20_CTL MC20_CTL 06_2EH

451H 1105 IA32_MC20_STATUS MC20_STATUS 06_2EH

452H 1106 IA32_MC20_ADDR1 MC20_ADDR 06_2EH

453H 1107 IA32_MC20_MISC MC20_MISC 06_2EH

454H 1108 IA32_MC21_CTL MC21_CTL 06_2EH

455H 1109 IA32_MC21_STATUS MC21_STATUS 06_2EH

456H 1110 IA32_MC21_ADDR1 MC21_ADDR 06_2EH

457H 1111 IA32_MC21_MISC MC21_MISC 06_2EH

480H 1152 IA32_VMX_BASIC Reporting Register of Basic VMX 
Capabilities (R/O)

See Appendix A.1, “Basic VMX Information.”

If CPUID.01H:ECX.[bit 5] = 
1

481H 1153 IA32_VMX_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If CPUID.01H:ECX.[bit 5] = 
1

482H 1154 IA32_VMX_PROCBASED_CTLS Capability Reporting Register of Primary 
Processor-based VM-execution Controls 
(R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If CPUID.01H:ECX.[bit 5] = 
1

483H 1155 IA32_VMX_EXIT_CTLS Capability Reporting Register of VM-exit 
Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If CPUID.01H:ECX.[bit 5] = 
1
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484H 1156 IA32_VMX_ENTRY_CTLS Capability Reporting Register of VM-
entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If CPUID.01H:ECX.[bit 5] = 
1

485H 1157 IA32_VMX_MISC Reporting Register of Miscellaneous 
VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data.”

If CPUID.01H:ECX.[bit 5] = 
1

486H 1158 IA32_VMX_CRO_FIXED0 Capability Reporting Register of CR0 Bits 
Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[bit 5] = 
1

487H 1159 IA32_VMX_CRO_FIXED1 Capability Reporting Register of CR0 Bits 
Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[bit 5] = 
1

488H 1160 IA32_VMX_CR4_FIXED0 Capability Reporting Register of CR4 Bits 
Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[bit 5] = 
1

489H 1161 IA32_VMX_CR4_FIXED1 Capability Reporting Register of CR4 Bits 
Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[bit 5] = 
1

48AH 1162 IA32_VMX_VMCS_ENUM Capability Reporting Register of VMCS 
Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration.”

If CPUID.01H:ECX.[bit 5] = 
1

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Capability Reporting Register of 
Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3.3, “Secondary Processor-
Based VM-Execution Controls.”

If ( CPUID.01H:ECX.[bit 5] 
and 
IA32_VMX_PROCBASED_C
TLS[bit 63])

48CH 1164 IA32_VMX_EPT_VPID_CAP Capability Reporting Register of EPT and 
VPID (R/O)

See Appendix A.10, “VPID and EPT 
Capabilities.”

If ( CPUID.01H:ECX.[bit 5], 
IA32_VMX_PROCBASED_C
TLS[bit 63], and either 
IA32_VMX_PROCBASED_C
TLS2[bit 33] or 
IA32_VMX_PROCBASED_C
TLS2[bit 37])

48DH 1165 IA32_VMX_TRUE_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Flex Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If ( CPUID.01H:ECX.[bit 5] = 
1 and 
IA32_VMX_BASIC[bit 55] )

48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Capability Reporting Register of Primary 
Processor-based VM-execution Flex 
Controls (R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If( CPUID.01H:ECX.[bit 5] = 
1 and 
IA32_VMX_BASIC[bit 55] )
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48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Capability Reporting Register of VM-exit 
Flex Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If( CPUID.01H:ECX.[bit 5] = 
1 and 
IA32_VMX_BASIC[bit 55] )

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Capability Reporting Register of VM-
entry Flex Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If( CPUID.01H:ECX.[bit 5] = 
1 and 
IA32_VMX_BASIC[bit 55] )

491H 1169 IA32_VMX_VMFUNC Capability Reporting Register of VM-
function Controls (R/O)

If( CPUID.01H:ECX.[bit 5] = 
1 and 
IA32_VMX_BASIC[bit 55] )

4C1H 1217 IA32_A_PMC0 Full Width Writable IA32_PMC0 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
0) &

IA32_PERF_CAPABILITIES[
13] = 1

4C2H 1218 IA32_A_PMC1 Full Width Writable IA32_PMC1 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
1) &

IA32_PERF_CAPABILITIES[
13] = 1

4C3H 1219 IA32_A_PMC2 Full Width Writable IA32_PMC2 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
2) &

IA32_PERF_CAPABILITIES[
13] = 1

4C4H 1220 IA32_A_PMC3 Full Width Writable IA32_PMC3 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
3) &

IA32_PERF_CAPABILITIES[
13] = 1

4C5H 1221 IA32_A_PMC4 Full Width Writable IA32_PMC4 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
4) &

IA32_PERF_CAPABILITIES[
13] = 1

4C6H 1222 IA32_A_PMC5 Full Width Writable IA32_PMC5 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
5) &

IA32_PERF_CAPABILITIES[
13] = 1

4C7H 1223 IA32_A_PMC6 Full Width Writable IA32_PMC6 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
6) &

IA32_PERF_CAPABILITIES[
13] = 1

4C8H 1224 IA32_A_PMC7 Full Width Writable IA32_PMC7 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
7) &

IA32_PERF_CAPABILITIES[
13] = 1
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600H 1536 IA32_DS_AREA DS Save Area (R/W) 

Points to the linear address of the first 
byte of the DS buffer management area, 
which is used to manage the BTS and PEBS 
buffers.

See Section 18.12.4, “Debug Store (DS) 
Mechanism.”

0F_0H

63:0 The linear address of the first byte of the 
DS buffer management area, if IA-32e 
mode is active.

31:0 The linear address of the first byte of the 
DS buffer management area, if not in IA-
32e mode.

63:32 Reserved if not in IA-32e mode.

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s TSC Deadline 
Mode (R/W)

If( CPUID.01H:ECX.[bit 25] 
= 1 

770H 1904 IA32_PM_ENABLE Enable/disable HWP (R/W) If( CPUID.06H:EAX.[bit 7] = 
1 

0 HWP_ENABLE (R/W1-Once).

See Section 14.4.2, “Enabling HWP”

If( CPUID.06H:EAX.[bit 7] = 
1 

63:1 Reserved. 

771H 1905 IA32_HWP_CAPABILITIES HWP Performance Range Enumeration 
(RO)

If( CPUID.06H:EAX.[bit 7] = 
1 

7:0 Highest_Performance 

See Section 14.4.3, “HWP Performance 
Range and Dynamic Capabilities”

If( CPUID.06H:EAX.[bit 7] = 
1 

15:8 Guaranteed_Performance 

See Section 14.4.3, “HWP Performance 
Range and Dynamic Capabilities”

If( CPUID.06H:EAX.[bit 7] = 
1 

23:16 Most_Efficient_Performance 

See Section 14.4.3, “HWP Performance 
Range and Dynamic Capabilities”

If( CPUID.06H:EAX.[bit 7] = 
1 

31:24 Lowest_Performance 

See Section 14.4.3, “HWP Performance 
Range and Dynamic Capabilities”

If( CPUID.06H:EAX.[bit 7] = 
1 

63:32 Reserved. 

772H 1906 IA32_HWP_REQUEST_PKG Power Management Control Hints for All 
Logical Processors in a Package (R/W)

If( CPUID.06H:EAX.[bit 11] 
= 1 

7:0 Minimum_Performance 

See Section 14.4.4, “Managing HWP”

If( CPUID.06H:EAX.[bit 11] 
= 1 
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15:8 Maximum_Performance 

See Section 14.4.4, “Managing HWP”

If( CPUID.06H:EAX.[bit 11] 
= 1 

23:16 Desired_Performance 

See Section 14.4.4, “Managing HWP”

If( CPUID.06H:EAX.[bit 11] 
= 1 

31:24 Energy_Performance_Preference 

See Section 14.4.4, “Managing HWP”

If( CPUID.06H:EAX.[bit 11] 
= 1 and 

CPUID.06HEAX.[bit 10] = 1

41:32 Activity_Window 

See Section 14.4.4, “Managing HWP”

If( CPUID.06H:EAX.[bit 11] 
= 1 and

CPUID.06HEAX.[bit 9] = 1

63:42 Reserved. 

773H 1907 IA32_HWP_INTERRUPT Control HWP Native Interrupts (R/W) If( CPUID.06H:EAX.[bit 8] = 
1 

0 EN_Guaranteed_Performance_Change.

See Section 14.4.6, “HWP Notifications”

If( CPUID.06H:EAX.[bit 8] = 
1 

1 EN_Excursion_Minimum.

See Section 14.4.6, “HWP Notifications”

If( CPUID.06H:EAX.[bit 8] = 
1 

63:2 Reserved. 

774H 1908 IA32_HWP_REQUEST Power Management Control Hints to a 
Logical Processor (R/W)

If( CPUID.06H:EAX.[bit 7] = 
1 

7:0 Minimum_Performance 

See Section 14.4.4, “Managing HWP”

If( CPUID.06H:EAX.[bit 7] = 
1 

15:8 Maximum_Performance 

See Section 14.4.4, “Managing HWP”

If( CPUID.06H:EAX.[bit 7] = 
1 

23:16 Desired_Performance 

See Section 14.4.4, “Managing HWP”

If( CPUID.06H:EAX.[bit 7] = 
1 

31:24 Energy_Performance_Preference 

See Section 14.4.4, “Managing HWP”

If CPUID.06HEAX.[bit 7] = 
1 and ( CPUID.06H:EAX.[bit 
10] = 1 

41:32 Activity_Window 

See Section 14.4.4, “Managing HWP”

If CPUID.06HEAX.[bit 7] = 
1 and ( CPUID.06H:EAX.[bit 
9] = 1 

42 Package_Control 

See Section 14.4.4, “Managing HWP”

If CPUID.06HEAX.[bit 7] = 
1 and ( CPUID.06H:EAX.[bit 
11] = 1 

63:43 Reserved. 

777H 1911 IA32_HWP_STATUS Log bits indicating changes to 
Guaranteed & excursions to Minimum (R/
W)

If( CPUID.06H:EAX.[bit 7] = 
1 
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0 Guaranteed_Performance_Change (R/
WC0).

See Section 14.4.5, “HWP Feedback”

If( CPUID.06H:EAX.[bit 7] = 
1 

1 Reserved. 

2 Excursion_To_Minimum (R/WC0).

See Section 14.4.5, “HWP Feedback”

If( CPUID.06H:EAX.[bit 7] = 
1 

63:3 Reserved. 

802H 2050 IA32_X2APIC_APICID x2APIC ID Register (R/O)

See x2APIC Specification

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register (R/O) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

808H 2056 IA32_X2APIC_TPR x2APIC Task Priority Register (R/W) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority Register (R/O) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register (W/O) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination Register (R/
O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt Vector 
Register (R/W)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register Bits 31:0 (R/
O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register Bits 63:32 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register Bits 95:64 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register Bits 127:96 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register Bits 159:128 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register Bits 191:160 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register Bits 223:192 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register Bits 255:224 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode Register Bits 31:0 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )
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819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode Register Bits 63:32 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode Register Bits 95:64 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode Register Bits 
127:96 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode Register Bits 
159:128 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode Register Bits 
191:160 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode Register Bits 
223:192 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode Register Bits 
255:224 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request Register Bits 
31:0 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request Register Bits 
63:32 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request Register Bits 
95:64 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request Register Bits 
127:96 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request Register Bits 
159:128 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request Register Bits 
191:160 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request Register Bits 
223:192 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request Register Bits 
255:224 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

828H 2088 IA32_X2APIC_ESR x2APIC Error Status Register (R/W) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected Machine Check 
Interrupt Register (R/W)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command Register (R/
W)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer Interrupt Register (R/
W)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

833H 2099 IA32_X2APIC_LVT_THERMAL x2APIC LVT Thermal Sensor Interrupt 
Register (R/W)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )
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834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance Monitor 
Interrupt Register (R/W)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0 Register (R/W) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1 Register (R/W) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

837H 2103 IA32_X2APIC_LVT_ERROR x2APIC LVT Error Register (R/W) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

838H 2104 IA32_X2APIC_INIT_COUNT x2APIC Initial Count Register (R/W) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

839H 2105 IA32_X2APIC_CUR_COUNT x2APIC Current Count Register (R/O) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide Configuration Register (R/
W)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register (W/O) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

C80H 3200 IA32_DEBUG_INTERFACE Silicon Debug Feature Control (R/W) If( CPUID.01H:ECX.[bit 11] 
= 1 

0 Enable (R/W).

BIOS set 1 to enable Silicon debug features. 
Default is 0

If( CPUID.01H:ECX.[bit 11] 
= 1 

29:1 Reserved. 

30 Lock (R/W): If 1, locks any further change 
to the MSR. The lock bit is set automatically 
on the first SMI assertion even if not 
explicitly set by BIOS. Default is 0.

If( CPUID.01H:ECX.[bit 11] 
= 1 

31 Debug Occurred (R/O): This sticky bit is set 
by hardware to indicate the status of bit 0. 
Default is 0.

If( CPUID.01H:ECX.[bit 11] 
= 1 

63:32 Reserved. 

C8DH 3213 IA32_QM_EVTSEL QoS Monitoring Event Select Register (R/
W)

If ( CPUID.(EAX=07H, 
ECX=0):EBX.[bit 12] = 1 )

7:0 Event ID: ID of a supported QoS monitoring 
event to report via IA32_QM_CTR.

31: 8 Reserved. 

N+31:32 Resource Monitoring ID: ID for QoS 
monitoring hardware to report monitored 
data via IA32_QM_CTR.

N = Ceil (Log2 ( 
CPUID.(EAX= 0FH, 
ECX=0H).EBX[31:0] +1))

63:N+32 Reserved.
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C8EH 3214 IA32_QM_CTR QoS Monitoring Counter Register (R/O) If ( CPUID.(EAX=07H, 
ECX=0):EBX.[bit 12] = 1 )

61:0 Resource Monitored Data 

62 Unavailable: If 1, indicates data for this 
RMID is not available or not monitored for 
this resource or RMID.

63 Error: If 1, indicates and unsupported RMID 
or event type was written to 
IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC QoS Resource Association Register (R/W) If ( CPUID.(EAX=07H, 
ECX=0):EBX.[bit 12] = 1 )

N-1:0 Resource Monitoring ID (R/W): ID for QoS 
monitoring hardware to track internal 
operation, e.g. memory access.

N = Ceil (Log2 ( 
CPUID.(EAX= 0FH, 
ECX=0H).EBX[31:0] +1))

31:N Reserved 

63:32 COS (R/W). The class of service 
(COS) to enforce (on writes); 
returns the current COS when 
read.

If ( CPUID.(EAX=07H, 
ECX=0):EBX.[bit 15] = 1 )

0C90H 
- 
0D8FH

Reserved MSR Address Space for 
Platform QoS Enforcement Mask 
Registers

See Section 17.15.2.1, “Enumeration and 
Detection Support of CQE”

C90H 3216 IA32_L3_QOS_MASK_0 L3 CQE Mask for COS0 (R/W) If (CPUID.(10H, 0):EBX[bit 
1] != 0)

31:0 Capacity Bit Mask (R/W).

63:32 Reserved. 

C90H+
n

3216+n IA32_L3_QOS_MASK_n L3 CQE Mask for COSn (R/W) n = CPUID.(10H, 
1):EDX[15:0]

31:0 Capacity Bit Mask (R/W).

63:32 Reserved. 

DA0H 3488 IA32_XSS Extended Supervisor State Mask (R/W) If( CPUID.(0DH, 1):EAX.[bit 
3] = 1 

7:0 Reserved

8 Trace Packet Configuration State (R/W).

63:9 Reserved. 

DB0H 3504 IA32_PKG_HDC_CTL Package Level Enable/disable HDC (R/W) If( CPUID.06H:EAX.[bit 13] 
= 1 
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0 HDC_Pkg_Enable (R/W).

Force HDC idling or wake up HDC-idled 
logical processors in the package. See 
Section 14.5.2, “Package level Enabling 
HDC”

If( CPUID.06H:EAX.[bit 13] 
= 1 

63:1 Reserved. 

DB1H 3505 IA32_PM_CTL1 Enable/disable HWP (R/W) If( CPUID.06H:EAX.[bit 13] 
= 1 

0 HDC_Allow_Block (R/W).

Allow/Block this logical processor for 
package level HDC control. See Section 
14.5.3

If( CPUID.06H:EAX.[bit 13] 
= 1 

63:1 Reserved. 

DB2H 3506 IA32_THREAD_STALL Per-Logical_Processor HDC Idle 
Residency (R/0)

If( CPUID.06H:EAX.[bit 13] 
= 1 

63:0 Stall_Cycle_Cnt (R/W).

Stalled cycles due to HDC forced idle on this 
logical processor. See Section 14.5.4.1

If( CPUID.06H:EAX.[bit 13] 
= 1 

4000_
0000H 
- 
4000_
00FFH

Reserved MSR Address Space All existing and future processors will 
not implement MSR in this range.

C000_
0080H

IA32_EFER Extended Feature Enables If ( 
CPUID.80000001.EDX.[bit 
20] or 
CPUID.80000001.EDX.[bit
29])

0 SYSCALL Enable (R/W)

Enables SYSCALL/SYSRET instructions in 
64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable (R/W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active (R) 

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable (R/W)

63:12 Reserved.
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...

35.4 MSRS IN THE PROCESSORS BASED ON SILVERMONT 
MICROARCHITECTURE

Table 35-6 lists model-specific registers (MSRs) for Intel processors based on the Silvermont microarchitecture 
These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_37H, 06_4AH, 06_4DH, 
06_5AH, and 06_5DH, see Table 35-1. 

The column “Scope” lists the core/shared/package granularity of sharing in the Silvermont microarchitecture. 
“Core” means each processor core has a separate MSR, or a bit field not shared with another processor core. 
“Shared” means the MSR or the bit field is shared by more than one processor cores in the physical package. 
“Package” means all processor cores in the physical package share the same MSR or bit interface.

C000_
0081H

IA32_STAR System Call Target Address (R/W) If 
CPUID.80000001.EDX.[bit 
29] = 1

C000_
0082H

IA32_LSTAR IA-32e Mode System Call Target Address 
(R/W)

If 
CPUID.80000001.EDX.[bit 
29] = 1

C000_
0084H

IA32_FMASK System Call Flag Mask (R/W) If 
CPUID.80000001.EDX.[bit 
29] = 1

C000_
0100H

IA32_FS_BASE Map of BASE Address of FS (R/W) If 
CPUID.80000001.EDX.[bit 
29] = 1

C000_
0101H

IA32_GS_BASE Map of BASE Address of GS (R/W) If 
CPUID.80000001.EDX.[bit 
29] = 1

C000_
0102H

IA32_KERNEL_GS_BASE Swap Target of BASE Address of GS (R/
W)

If 
CPUID.80000001.EDX.[bit 
29] = 1

C000_
0103H

IA32_TSC_AUX Auxiliary TSC (RW) If CPUID.80000001H: 
EDX[27] = 1

31:0 AUX: Auxiliary signature of TSC

63:32 Reserved.
NOTES:

1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are supported, software must treat them as 
model-specific. Starting with Intel Core Duo processors, MSR addresses 180H-185H, 188H-197H are reserved.

2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. See Section 15.3.2.3 and Section 
15.3.2.4 for more information.
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Table 35-6   Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

0H 0 IA32_P5_MC_ADDR Shared See Section 35.18, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Shared See Section 35.18, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Core See Section 8.10.5, “Monitor/Mwait Address Range Determination.” 
andTable 35-2

10H 16 IA32_TIME_STAMP_
COUNTER

Core See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R) 
See Table 35-2.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R) 

7:0 Reserved.

12:8 Maximum Qualified Ratio (R) 

The maximum allowed bus ratio.

49:13 Reserved.

52:50 See Table 35-2

63:33 Reserved.

1BH 27 IA32_APIC_BASE Core See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W) Enables and 
disables processor features; 

(R) indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0. 

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

3 AERR# Drive Enable (R/W) 

1 = Enabled; 0 = Disabled
Always 0.

4 BERR# Enable for initiator bus requests (R/W)

1 = Enabled; 0 = Disabled
Always 0. 

5 Reserved.

6 Reserved.
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7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled 
Always 0.

8 Reserved.

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled 

10 AERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

11 Reserved.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled 
Always 0.

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

Always 00B.

19: 18 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio (R/O)

34H 52 MSR_SMI_COUNT Core SMI Counter (R/O)

31:0 SMI Count (R/O) 

Running count of SMI events since last RESET.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Core Control Features in Intel 64Processor (R/W)

See Table 35-2.

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Core Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the last branch 
record stack. This part of the stack contains pointers to the source 
instruction for one of the last eight branches, exceptions, or 
interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.11, “Last Branch, Interrupt, and Exception Recording 

(Pentium M Processors).”
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41H 65 MSR_
LASTBRANCH_1_FROM_IP

Core Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Core Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Core Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_
LASTBRANCH_4_FROM_IP

Core Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_FROM_IP

Core Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_FROM_IP

Core Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_FROM_IP

Core Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_TO_IP

Core Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the last branch 
record stack. This part of the stack contains pointers to the 
destination instruction for one of the last eight branches, 
exceptions, or interrupts taken by the processor.

61H 97 MSR_
LASTBRANCH_1_TO_IP

Core Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

62H 98 MSR_
LASTBRANCH_2_TO_IP

Core Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

63H 99 MSR_
LASTBRANCH_3_TO_IP

Core Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

64H 100 MSR_
LASTBRANCH_4_TO_IP

Core Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

65H 101 MSR_
LASTBRANCH_5_TO_IP

Core Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

66H 102 MSR_
LASTBRANCH_6_TO_IP

Core Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

67H 103 MSR_
LASTBRANCH_7_TO_IP

Core Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W) 

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Core BIOS Update Signature ID (RO)

See Table 35-2.
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C1H 193 IA32_PMC0 Core Performance counter register

See Table 35-2.

C2H 194 IA32_PMC1 Core Performance Counter Register

See Table 35-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for 
processors based on Silvermont microarchitecture:

2:0 • 100B: 080.0 MHz 
• 000B: 083.3 MHz 
• 001B: 100.0 MHz 
• 010B: 133.3 MHz 
• 011B: 116.7 MHz 

63:3 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Shared C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name 
(consuming the least power). for the package. The default is set as 
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

100b: C4

110b: C6

111b: C7 (Silvermont only).

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register 
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO) 

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Shared Power Management IO Redirection in C-state (R/W) 

See http://biosbits.org.
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15:0 LVL_2 Base Address (R/W) 

Specifies the base address visible to software for IO redirection. If 
IO MWAIT Redirection is enabled, reads to this address will be 
consumed by the power management logic and decoded to MWAIT 
instructions. When IO port address redirection is enabled, this is the 
IO port address reported to the OS/software.

18:16 C-state Range (R/W) 

Specifies the encoding value of the maximum C-State code name to 
be included when IO read to MWAIT redirection is enabled by 
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

100b - C4 is the max C-State to include

110b - C6 is the max C-State to include

111b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Core Maximum Performance Frequency Clock Count (RW) 

See Table 35-2.

E8H 232 IA32_APERF Core Actual Performance Frequency Clock Count (RW) 

See Table 35-2.

FEH 254 IA32_MTRRCAP Core Memory Type Range Register (R) 

See Table 35-2.

11EH 281 MSR_BBL_CR_CTL3 Shared

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W) 

1 = L2 cache has been initialized 
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD 
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO) 

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Core See Table 35-2.

175H 373 IA32_SYSENTER_ESP Core See Table 35-2.

176H 374 IA32_SYSENTER_EIP Core See Table 35-2.

179H 377 IA32_MCG_CAP Core See Table 35-2.
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17AH 378 IA32_MCG_STATUS Core

0 RIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) can be used to restart the program. If cleared, the 
program cannot be reliably restarted

1 EIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If 
a second machine check is detected while this bit is still set, the 
processor enters a shutdown state. Software should write this bit 
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Core See Table 35-2.

187H 391 IA32_PERFEVTSEL1 Core See Table 35-2.

198H 408 IA32_PERF_STATUS Shared See Table 35-2.

199H 409 IA32_PERF_CTL Core See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Core Clock Modulation (R/W) 

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named 
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W) 

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W) 

See Table 35-2.

1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Core Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Shared Automatic Thermal Control Circuit Enable (R/W) 

See Table 35-2.

6:4 Reserved.

7 Core Performance Monitoring Available (R) 

See Table 35-2.

10:8 Reserved.
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11 Core Branch Trace Storage Unavailable (RO) 

See Table 35-2.

12 Core Precise Event Based Sampling Unavailable (RO) 

See Table 35-2.

15:13 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 35-2.

18 Core ENABLE MONITOR FSM (R/W) 

See Table 35-2.

21:19 Reserved.

22 Core Limit CPUID Maxval (R/W) 

See Table 35-2.

23 Shared xTPR Message Disable (R/W) 

See Table 35-2.

33:24 Reserved.

34 Core XD Bit Disable (R/W) 

See Table 35-2.

37:35 Reserved.

38 Shared Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost 
Technology, the turbo mode feature is disabled and the IDA_Enable 
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H: 
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect 
hardware support of turbo mode. If power-on default value is 1, 
turbo mode is available in the processor. If power-on default value 
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Package

15:0 Reserved.

23:16 Temperature Target (R) 

The default thermal throttling or PROCHOT# activation 
temperature in degree C, The effective temperature for thermal 
throttling or PROCHOT# activation is “Temperature Target” + 
“Target Offset”
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29:24 Target Offset (R/W) 

Specifies an offset in degrees C to adjust the throttling and 
PROCHOT# activation temperature from the default target 
specified in TEMPERATURE_TARGET (bits 23:16).

63:30 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Shared Offcore Response Event Select Register (R/W)

1A7H 423 MSR_OFFCORE_RSP_1 Shared Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode (RW )

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

1B0H 432 IA32_ENERGY_PERF_BIAS Core See Table 35-2.

1C9H 457 MSR_LASTBRANCH_TOS Core Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-2) that points to the MSR containing the 
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Core Debug Control (R/W) 

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Core Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Core Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch 
instruction that the processor executed prior to the last exception 
that was generated or the last interrupt that was handled. 
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1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

200H 512 IA32_MTRR_PHYSBASE0 Core See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Core See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Core See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Core See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Core See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Core See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Core See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Core See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Core See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Core See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Core See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Core See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Core See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Core See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Core See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Core See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Core See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Core See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Core See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Core See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Core See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Core See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Core See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Core See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Core See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Core See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Core See Table 35-2.

277H 631 IA32_PAT Core See Table 35-2.

2FFH 767 IA32_MTRR_DEF_TYPE Core Default Memory Types (R/W) 

See Table 35-2.
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309H 777 IA32_FIXED_CTR0 Core Fixed-Function Performance Counter Register 0 (R/W) 

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Core Fixed-Function Performance Counter Register 1 (R/W) 

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Core Fixed-Function Performance Counter Register 2 (R/W) 

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Core See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Core Fixed-Function-Counter Control Register (R/W) 

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Core See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.” 

38FH 911 IA32_PERF_GLOBAL_CTRL Core See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Core See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Core See Table 35-2. See Section 18.4.4, “Precise Event Based Sampling 
(PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

3FAH 1018 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6 
states. Counts at P1 clock frequency (Guaranteed Maximum 
Frequency)

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6 
states. Counts at P1 clock frequency (Guaranteed Maximum 
Frequency)

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC0_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

Table 35-6   Common MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 199

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC2_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

40CH 1036 MSR_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

4OEH 1038 MSR_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC3_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC4_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC4_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

480H 1152 IA32_VMX_BASIC Core Reporting Register of Basic VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”
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481H 1153 IA32_VMX_PINBASED_
CTLS

Core Capability Reporting Register of Pin-based VM-execution 
Controls (R/O) 

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Core Capability Reporting Register of Primary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Core Capability Reporting Register of VM-exit Controls (R/O) 

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Core Capability Reporting Register of VM-entry Controls (R/O) 

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Core Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Core Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Core Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Core Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Core Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Core Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Core Capability Reporting Register of Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Core Capability Reporting Register of EPT and VPID (R/O) 

See Table 35-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Core Capability Reporting Register of Pin-based VM-execution Flex 
Controls (R/O)

See Table 35-2
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48EH 1166 IA32_VMX_TRUE_PROCBA
SED_CTLS

Core Capability Reporting Register of Primary Processor-based 
VM-execution Flex Controls (R/O)

See Table 35-2

48FH 1167 IA32_VMX_TRUE_EXIT_CT
LS

Core Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 35-2

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Core Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 35-2

491H 1169 IA32_VMX_FMFUNC Core Capability Reporting Register of VM-function Controls (R/O)

See Table 35-2

4C1H 1217 IA32_A_PMC0 Core See Table 35-2.

4C2H 1218 IA32_A_PMC1 Core See Table 35-2.

600H 1536 IA32_DS_AREA Core DS Save Area (R/W)

See Table 35-2.

See Section 18.12.4, “Debug Store (DS) Mechanism.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O) 

See Section 14.9.3, “Package RAPL Domain.”

639H 1593 MSR_PP0_ENERGY_STATU
S

Package PP0 Energy Status (R/O) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

660H 1632 MSR_CORE_C1_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C1 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C1 
states. Counts at P1 clock frequency (Guaranteed Maximum 
Frequency)

6E0H 1760 IA32_TSC_DEADLINE Core TSC Target of Local APIC’s TSC Deadline Mode (R/W) 

See Table 35-2

C000_
0080H

IA32_EFER Core Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Core System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Core IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Core System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Core Map of BASE Address of FS (R/W)

See Table 35-2.

Table 35-6   Common MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec
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Table 35-7 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor E3000 Series (CPUID 
signature with DisplayFamily_DisplayModel of 06_37H) and future Intel Atom processors (CPUID signatures with 
DisplayFamily_DisplayModel of 06_4AH, 06_5AH, 06_5DH). 

Table35-8 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor C2000 Series (CPUID 
signature with DisplayFamily_DisplayModel of 06_4DH). 

C000_
0101H

IA32_GS_BASE Core Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Core Swap Target of BASE Address of GS (R/W) See Table 35-2.

C000_
0103H

IA32_TSC_AUX Core AUXILIARY TSC Signature. (R/W) See Table 35-2 

Table 35-6   Common MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Table 35-7   Specific MSRs Supported by Intel® Atom™ Processors with CPUID Signature 06_37H, 06_4AH, 06_5AH, 
06_5DH

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W) 

14:0 Package Power Limit #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

15 Enable Power Limit #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

16 Package Clamping Limitation #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

23:17 Time Window for Power Limit #1. (R/W)

Time Limit = 2^Y * (1.0+Z/4.0) seconds.

Y and Z: see definition in Section 14.9.3, “Package RAPL Domain.”

31:24 Reserved

46:32 Package Power Limit #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

47 Enable Power Limit #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

48 Package Clamping Limitation #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

55:49 Time Window for Power Limit #1. (R/W)

Time Limit = 2^Y * (1.0+Z/4.0) seconds.

Y and Z: see definition in Section 14.9.3, “Package RAPL Domain.”

63:56 Reserved
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...

35.8 MSRS IN INTEL® PROCESSOR FAMILY BASED ON INTEL® 
MICROARCHITECTURE CODE NAME SANDY BRIDGE

Table 35-14 lists model-specific registers (MSRs) that are common to Intel® processor family based on Intel 
microarchitecture code name Sandy Bridge. All architectural MSRs listed in Table 35-2 are supported. These 
processors have a CPUID signature with DisplayFamily_DisplayModel of 06_2AH, 06_2DH, see Table 35-1. Addi-
tional MSRs specific to 06_2AH are listed in Table 35-15.

Table35-8   Specific MSRs Supported by Intel® Atom™ Processor C2000 Series with CPUID Signature 06_4DH

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O) 

See Section 14.9.1, “RAPL Interfaces.”

3:0 Power Units. 

Power related information (in milliWatts) is based on the multiplier,   
2^PU; where PU is an unsigned integer represented by bits 3:0. 
Default value is 0011b, indicating power unit is in 8 milliWatts 
increment.

7:4 Reserved

12:8 Energy Status Units. 

See Section 14.9.3, “Package RAPL Domain.”

15:13 Reserved

19:16 Time Units. 

See Section 14.9.3, “Package RAPL Domain.”

63:20 Reserved

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W) 

See Section 14.9.3, “Package RAPL Domain.”

66EH 1646 MSR_PKG_POWER_INFO Package PKG RAPL Parameter (R/0) 

14:0 Thermal Spec Power. (R/0)

The unsigned integer value is the equivalent of thermal 
specification power of the package domain. The unit of this field is 
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT

63:15 Reserved
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Table 35-14   MSRs Supported by Intel® Processors 
based on Intel® microarchitecture code name Sandy Bridge

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 35.18, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 35.18, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,” 
and Table 35-2.

10H 16 IA32_TIME_STAMP_
COUNTER

Thread See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R) 
See Table 35-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O) 

Count SMIs.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 35-2.

0 Lock (R/WL) 

1 Enable VMX inside SMX operation (R/WL) 

2 Enable VMX outside SMX operation (R/WL) 

14:8 SENTER local functions enables (R/WL) 

15 SENTER global functions enable (R/WL) 

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W) 

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Thread BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register 

See Table 35-2.

C2H 194 IA32_PMC1 Thread Performance Counter Register 

See Table 35-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register 

See Table 35-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register 

See Table 35-2.
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C5H 197 IA32_PMC4 Core Performance Counter Register 

See Table 35-2.

C6H 198 IA32_PMC5 Core Performance Counter Register 

See Table 35-2.

C7H 199 IA32_PMC6 Core Performance Counter Register 

See Table 35-2.

C8H 200 IA32_PMC7 Core Performance Counter Register 

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O) 

The is the ratio of the frequency that invariant TSC runs at. 
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limits for Turbo 
mode is enabled, and when set to 0, indicates Programmable Ratio 
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limits for Turbo mode are 
programmable, and when set to 0, indicates TDP Limit for Turbo 
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O) 

The is the minimum ratio (maximum efficiency) that the processor 
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

Table 35-14   MSRs Supported by Intel® Processors 
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec
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2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name 
(consuming the least power). for the package. The default is set as 
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register 
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO) 

When set, lock bits 15:0 of this register until next reset.

24:16 Reserved.

25 C3 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C6/C7 requests 
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C3/C6/C7 
requests to C1 based on uncore auto-demote information.

27 Enable C3 undemotion (R/W) 

When set, enables undemotion from demoted C3.

28 Enable C1 undemotion (R/W) 

When set, enables undemotion from demoted C1.

63:29 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W) 

See http://biosbits.org.

Table 35-14   MSRs Supported by Intel® Processors 
based on Intel® microarchitecture code name Sandy Bridge (Contd.)
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15:0 LVL_2 Base Address (R/W) 

Specifies the base address visible to software for IO redirection. If 
IO MWAIT Redirection is enabled, reads to this address will be 
consumed by the power management logic and decoded to MWAIT 
instructions. When IO port address redirection is enabled, this is 
the IO port address reported to the OS/software.

18:16 C-state Range (R/W) 

Specifies the encoding value of the maximum C-State code name 
to be included when IO read to MWAIT redirection is enabled by 
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW) 

See Table 35-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Thread See Table 35-2.

174H 372 IA32_SYSENTER_CS Thread See Table 35-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 35-2.

179H 377 IA32_MCG_CAP Thread See Table 35-2.

17AH 378 IA32_MCG_STATUS Thread

0 RIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) can be used to restart the program. If cleared, the 
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If 
a second machine check is detected while this bit is still set, the 
processor enters a shutdown state. Software should write this bit 
to 0 after processing a machine check exception.

63:3 Reserved.

Table 35-14   MSRs Supported by Intel® Processors 
based on Intel® microarchitecture code name Sandy Bridge (Contd.)
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186H 390 IA32_
PERFEVTSEL0

Thread See Table 35-2.

187H 391 IA32_
PERFEVTSEL1

Thread See Table 35-2.

188H 392 IA32_
PERFEVTSEL2

Thread See Table 35-2.

189H 393 IA32_
PERFEVTSEL3

Thread See Table 35-2.

18AH 394 IA32_
PERFEVTSEL4

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18BH 395 IA32_
PERFEVTSEL5

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18CH 396 IA32_
PERFEVTSEL6

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18DH 397 IA32_
PERFEVTSEL7

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

198H 408 IA32_PERF_STATUS Package See Table 35-2.

15:0 Current Performance State Value.

63:16 Reserved.

198H 408 MSR_PERF_STATUS Package

47:32 Core Voltage (R/O)

P-state core voltage can be computed by

MSR_PERF_STATUS[37:32] * (float) 1/(2^13).

199H 409 IA32_PERF_CTL Thread See Table 35-2.

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation (R/W) 

See Table 35-2

IA32_CLOCK_MODULATION MSR was originally named 
IA32_THERM_CONTROL MSR.

3:0 On demand Clock Modulation Duty Cycle (R/W)

In 6.25% increment

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W) 

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W) 

See Table 35-2.

Table 35-14   MSRs Supported by Intel® Processors 
based on Intel® microarchitecture code name Sandy Bridge (Contd.)
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1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Thread Fast-Strings Enable 

See Table 35-2

6:1 Reserved.

7 Thread Performance Monitoring Available (R) 

See Table 35-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable (RO) 

See Table 35-2.

12 Thread Precise Event Based Sampling Unavailable (RO) 

See Table 35-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 35-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 35-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval (R/W) 

See Table 35-2.

23 Thread xTPR Message Disable (R/W) 

See Table 35-2.

33:24 Reserved.

34 Thread XD Bit Disable (R/W) 

See Table 35-2.

37:35 Reserved.

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost 
Technology, the turbo mode feature is disabled and the IDA_Enable 
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H: 
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect 
hardware support of turbo mode. If power-on default value is 1, 
turbo mode is available in the processor. If power-on default value 
is 0, turbo mode is not available.

63:39 Reserved.

Table 35-14   MSRs Supported by Intel® Processors 
based on Intel® microarchitecture code name Sandy Bridge (Contd.)
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1A2H 418 MSR_
TEMPERATURE_TARGET

Unique

15:0 Reserved.

23:16 Temperature Target (R) 

The minimum temperature at which PROCHOT# will be asserted. 
The value is degree C.

63:24 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1A7H 422 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT See http://biosbits.org.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 35-2.

1B1H 433 IA32_PACKAGE_THERM_
STATUS

Package See Table 35-2.

1B2H 434 IA32_PACKAGE_THERM_
INTERRUPT

Package See Table 35-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W) 

See Section 17.6.2, “Filtering of Last Branch Records.”

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the 
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W) 

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch 
instruction that the processor executed prior to the last exception 
that was generated or the last interrupt that was handled. 

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

1FCH 508 MSR_POWER_CTL Core See http://biosbits.org.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 35-2.

Table 35-14   MSRs Supported by Intel® Processors 
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201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 35-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 35-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 35-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 35-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 35-2.

277H 631 IA32_PAT Thread See Table 35-2.
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based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 212

280H 640 IA32_MC0_CTL2 Core See Table 35-2.

281H 641 IA32_MC1_CTL2 Core See Table 35-2.

282H 642 IA32_MC2_CTL2 Core See Table 35-2.

283H 643 IA32_MC3_CTL2 Core See Table 35-2.

284H 644 MSR_MC4_CTL2 Package Always 0 (CMCI not supported).

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W) 

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W) 

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W) 

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 35-2.

6 PEBS Record Format. 

7 PEBSSaveArchRegs. See Table 35-2.

11:8 PEBS_REC_FORMAT. See Table 35-2.

12 SMM_FREEZE. See Table 35-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W) 

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.” 

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.7.1.1, “Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.
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32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

3F6H 1014 MSR_PEBS_LD_LAT Thread see See Section 18.7.1.2, “Load Latency Performance Monitoring 
Facility.”

15:0 Minimum threshold latency value of tagged load operation that will 
be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3 
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6 
states. Count at the same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7 
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3 
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

Table 35-14   MSRs Supported by Intel® Processors 
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 214

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6 
states. Count at the same frequency as the TSC.

3FEH 1022 MSR_CORE_C7_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C7 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C7 
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

403H 1027 IA32_MC0_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

406H 1030 IA32_MC1_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

407H 1031 IA32_MC1_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

0 PCU Hardware Error (R/W) 

When set, enables signaling of PCU hardware detected errors. 

1 PCU Controller Error (R/W) 

When set, enables signaling of PCU controller detected errors

2 PCU Firmware Error (R/W) 

When set, enables signaling of PCU firmware detected errors

63:2 Reserved.

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.
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480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution 
Controls (R/O) 

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O) 

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O) 

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration (R/O) 

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”
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48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Thread Capability Reporting Register of EPT and VPID (R/O) 

See Table 35-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Thread Capability Reporting Register of Pin-based VM-execution Flex 
Controls (R/O)

See Table 35-2

48EH 1166 IA32_VMX_TRUE_PROCBA
SED_CTLS

Thread Capability Reporting Register of Primary Processor-based 
VM-execution Flex Controls (R/O)

See Table 35-2

48FH 1167 IA32_VMX_TRUE_EXIT_CT
LS

Thread Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 35-2

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Thread Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 35-2

4C1H 1217 IA32_A_PMC0 Thread See Table 35-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 35-2.

4C3H 1219 IA32_A_PMC2 Thread See Table 35-2.

4C4H 1220 IA32_A_PMC3 Thread See Table 35-2.

4C5H 1221 IA32_A_PMC4 Core See Table 35-2.

4C6H 1222 IA32_A_PMC5 Core See Table 35-2.

4C7H 1223 IA32_A_PMC6 Core See Table 35-2.

4C8H 200 IA32_A_PMC7 Core See Table 35-2.

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-2.

See Section 18.12.4, “Debug Store (DS) Mechanism.”

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O) 

See Section 14.9.1, “RAPL Interfaces.”

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W) 

Specifies the limit that should be used to decide if the package 
should be put into a package C3 state. 
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12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response 
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used 
by the processor for package C-sate management. 

63:16 Reserved.

60BH 1547 MSR_PKGC6_IRTL Package Package C6 Interrupt Response Limit (R/W) 

This MSR defines the budget allocated for the package to exit from 
C6 to a C0 state, where interrupt request can be delivered to the 
core and serviced. Additional core-exit latency amy be applicable 
depending on the actual C-state the core is in. 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W) 

Specifies the limit that should be used to decide if the package 
should be put into a package C6 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response 
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used 
by the processor for package C-sate management. 

63:16 Reserved.
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60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C2 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C2 
states. Count at the same frequency as the TSC.

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W) 

See Section 14.9.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATU
S

Package PKG Energy Status (R/O) 

See Section 14.9.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) See Section 14.9.3, “Package RAPL 
Domain.”

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERGY_STATU
S

Package PP0 Energy Status (R/O) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last 
branch record stack. This part of the stack contains pointers to the 
source instruction for one of the last sixteen branches, 
exceptions, or interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.
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688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_
IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_FROM_
IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_
IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_
IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_
IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_FROM_
IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last 
branch record stack. This part of the stack contains pointers to the 
destination instruction for one of the last sixteen branches, 
exceptions, or interrupts taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 
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6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6E0H 1760 IA32_TSC_DEADLINE Thread See Table 35-2.

802H-
83FH

X2APIC MSRs Thread See Table 35-2.

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W) 

See Table 35-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W)

See Table 35-2.
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...

35.9 MSRS IN THE 3RD GENERATION INTEL® CORE™ PROCESSOR FAMILY 
(BASED ON IVY BRIDGE MICROARCHITECTURE)

The 3rd generation Intel® Core™ processor family and Intel Xeon processor E3-1200v2 product family (based on 
Ivy Bridge microarchitecture) supports the MSR interfaces listed in Table 35-14, Table 35-15 and Table 35-17. 

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature (R/W)

See Table 35-2 and Section 17.13.2, “IA32_TSC_AUX Register and 
RDTSCP Support.” 
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CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O) 

The is the ratio of the frequency that invariant TSC runs at. 
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limits for Turbo 
mode is enabled, and when set to 0, indicates Programmable Ratio 
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limits for Turbo mode are 
programmable, and when set to 0, indicates TDP Limit for Turbo 
mode is not programmable.

31:30 Reserved.

32 Package Low Power Mode Support (LPM) (R/O) 

When set to 1, indicates that LPM is supported, and when set to 0, 
indicates LPM is not supported.
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34:33 Package Number of ConfigTDP Levels (R/O) 

00: Only nominal TDP level available.

01: One additional TDP level available.

02: Two additional TDP level available.

11: Reserved

39:35 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O) 

The is the minimum ratio (maximum efficiency) that the processor 
can operates, in units of 100MHz.

55:48 Package Minimum Operating Ratio (R/O) 

Contains the minimum supported

operating ratio in units of 100 MHz.

63:56 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name 
(consuming the least power). for the package. The default is set as 
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register specified 
by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO) 

When set, lock bits 15:0 of this register until next reset.
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24:16 Reserved.

25 C3 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C6/C7 requests 
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C3/C6/C7 
requests to C1 based on uncore auto-demote information.

27 Enable C3 undemotion (R/W) 

When set, enables undemotion from demoted C3.

28 Enable C1 undemotion (R/W) 

When set, enables undemotion from demoted C1.

63:29 Reserved.

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Nominal TDP Ratio (R/O)

7:0 Config_TDP_Nominal

Nominal TDP level ratio to be used for this specific processor (in 
units of 100 MHz). 

63:8 Reserved.

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O)

14:0 PKG_TDP_LVL1. Power setting for ConfigTDP Level 1.

15 Reserved

23:16 Config_TDP_LVL1_Ratio. ConfigTDP level 1 ratio to be used for this 
specific processor. 

31:24 Reserved

46:32 PKG_MAX_PWR_LVL1. Max Power setting allowed for ConfigTDP 
Level 1.

47 Reserved

62:48 PKG_MIN_PWR_LVL1. MIN Power setting allowed for ConfigTDP 
Level 1.

63 Reserved.

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O)

14:0 PKG_TDP_LVL2. Power setting for ConfigTDP Level 2.

15 Reserved

23:16 Config_TDP_LVL2_Ratio. ConfigTDP level 2 ratio to be used for this 
specific processor. 

31:24 Reserved
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35.9.1  MSRs In Intel® Xeon® Processor E5 v2 Product Family (Based on Ivy Bridge-EP 
Microarchitecture)

Table 35-18 lists model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5 v2 Product 
Family (based on Ivy Bridge-EP microarchitecture). These processors have a CPUID signature with 
DisplayFamily_DisplayModel of 06_3EH, see Table 35-1. These processors supports the MSR interfaces listed in 
Table 35-14, and Table 35-18. 

46:32 PKG_MAX_PWR_LVL2. Max Power setting allowed for ConfigTDP 
Level 2.

47 Reserved

62:48 PKG_MIN_PWR_LVL2. MIN Power setting allowed for ConfigTDP 
Level 2.

63 Reserved.

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

1:0 TDP_LEVEL (RW/L)

System BIOS can program this field. 

30:2 Reserved.

31 Config_TDP_Lock (RW/L)

When this bit is set, the content of this register is locked until a 
reset. 

63:32 Reserved.

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field. 

30:8 Reserved.

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is locked until a 
reset. 

63:32 Reserved.
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Table 35-18   MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-EP 
microarchitecture)
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Address Register Name
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Bit Description
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4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control (R/W)

0 LockOut (R/WO)

Set 1to prevent further writes to MSR_PPIN_CTL. Writing 1 to

MSR_PPINCTL[bit 0] is permitted only if MSR_PPIN_CTL[bit 1] is

clear, Default is 0.

BIOS should provide an opt-in menu to enable the user to turn on

MSR_PPIN_CTL[bit 1] for privileged inventory initialization agent to

access MSR_PPIN. After reading MSR_PPIN, the privileged

inventory initialization agent should write ‘01b’ to MSR_PPIN_CTL

to disable further access to MSR_PPIN and prevent unauthorized

modification to MSR_PPIN_CTL.

1 Enable_PPIN (R/W)

If 1, enables MSR_PPIN to be accessible using RDMSR. Once set,

attempt to write 1 to MSR_PPIN_CTL[bit 0] will cause #GP.

If 0, an attempt to read MSR_PPIN will cause #GP. Default is 0.

63:2 Reserved.

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

63:0 Protected Processor Inventory Number (R/O)

A unique value within a given CPUID family/model/stepping

signature that a privileged inventory initialization agent can access

to identify each physical processor, when access to MSR_PPIN is

enabled. Access to MSR_PPIN is permitted only if

MSR_PPIN_CTL[bits 1:0] = ‘10b’

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O) 

The is the ratio of the frequency that invariant TSC runs at. 
Frequency = ratio * 100 MHz.

22:16 Reserved.

23 Package PPIN_CAP (R/O)

When set to 1, indicates that Protected Processor Inventory

Number (PPIN) capability can be enabled for privileged system

inventory agent to read PPIN from MSR_PPIN.

When set to 0, PPIN capability is not supported. An attempt to

access MSR_PPIN_CTL or MSR_PPIN will cause #GP.
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27:24 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limits for Turbo 
mode is enabled, and when set to 0, indicates Programmable Ratio 
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limits for Turbo mode are 
programmable, and when set to 0, indicates TDP Limit for Turbo 
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O) 

The is the minimum ratio (maximum efficiency) that the processor 
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name 
(consuming the least power). for the package. The default is set as 
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register 
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

Table 35-18   MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-EP 
microarchitecture) (Contd.)
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15 CFG Lock (R/WO) 

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 Reserved.

26 MCG_ELOG_P

63:27 Reserved.

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W) 

When set, enables IMC status bank to log additional info in bits 
36:32.

63:2 Reserved.

1AEH 430 MSR_TURBO_RATIO_LIMIT
1

Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active. 

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10core active. 

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

63:32 Reserved

285H 645 IA32_MC5_CTL2 Package See Table 35-2.

Table 35-18   MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-EP 
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286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

288H 648 IA32_MC8_CTL2 Package See Table 35-2.

289H 649 IA32_MC9_CTL2 Package See Table 35-2.

28AH 650 IA32_MC10_CTL2 Package See Table 35-2.

28BH 651 IA32_MC11_CTL2 Package See Table 35-2.

28CH 652 IA32_MC12_CTL2 Package See Table 35-2.

28DH 653 IA32_MC13_CTL2 Package See Table 35-2.

28EH 654 IA32_MC14_CTL2 Package See Table 35-2.

28FH 655 IA32_MC15_CTL2 Package See Table 35-2.

290H 656 IA32_MC16_CTL2 Package See Table 35-2.

291H 657 IA32_MC17_CTL2 Package See Table 35-2.

292H 658 IA32_MC18_CTL2 Package See Table 35-2.

293H 659 IA32_MC19_CTL2 Package See Table 35-2.

294H 660 IA32_MC20_CTL2 Package See Table 35-2.

295H 661 IA32_MC21_CTL2 Package See Table 35-2.

296H 662 IA32_MC22_CTL2 Package See Table 35-2.

297H 663 IA32_MC23_CTL2 Package See Table 35-2.

298H 664 IA32_MC24_CTL2 Package See Table 35-2.

299H 665 IA32_MC25_CTL2 Package See Table 35-2.

29AH 666 IA32_MC26_CTL2 Package See Table 35-2.

29BH 667 IA32_MC27_CTL2 Package See Table 35-2.

29CH 668 IA32_MC28_CTL2 Package See Table 35-2.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

Table 35-18   MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-EP 
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41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 MSR_MC9_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 MSR_MC13_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 MSR_MC14_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 MSR_MC15_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

Table 35-18   MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-EP 
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43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 MSR_MC16_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

450H 1104 MSR_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

451H 1105 MSR_MC20_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

452H 1106 MSR_MC20_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

453H 1107 MSR_MC20_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

454H 1108 MSR_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

455H 1109 MSR_MC21_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

456H 1110 MSR_MC21_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

457H 1111 MSR_MC21_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

458H 1112 MSR_MC22_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

459H 1113 MSR_MC22_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

45AH 1114 MSR_MC22_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

45BH 1115 MSR_MC22_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

45CH 1116 MSR_MC23_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

45DH 1117 MSR_MC23_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

45EH 1118 MSR_MC23_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

45FH 1119 MSR_MC23_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

Table 35-18   MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-EP 
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35.9.2  Additional MSRs Supported by Intel® Xeon Processor E7 v2 Family
Intel® Xeon Processor E7 v2 Family (based on Ivy Bridge-EP microarchitecture) with CPUID 
DisplayFamily_DisplayModel signature 06_3EH supports the MSR interfaces listed in Table 35-14, Table 35-18, 
and Table 35-19. 

460H 1120 MSR_MC24_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

461H 1121 MSR_MC24_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

462H 1122 MSR_MC24_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

463H 1123 MSR_MC24_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

464H 1124 MSR_MC25_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

465H 1125 MSR_MC25_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

466H 1126 MSR_MC25_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

467H 1127 MSR_MC25_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

468H 1128 MSR_MC26_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

469H 1129 MSR_MC26_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

46AH 1130 MSR_MC26_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

46BH 1131 MSR_MC26_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

46CH 1132 MSR_MC27_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

46DH 1133 MSR_MC27_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

46EH 1134 MSR_MC27_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

46FH 1135 MSR_MC27_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

470H 1136 MSR_MC28_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

471H 1137 MSR_MC28_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

472H 1138 MSR_MC28_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

473H 1139 MSR_MC28_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

613H 1555 MSR_PKG_PERF_STATUS Package Package RAPL Perf Status (R/O) 

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W) 

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O) 

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5, 
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W) 

See Section 14.9.5, “DRAM RAPL Domain.”
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Table 35-19   Additional MSRs Supported by Intel® Xeon Processors E7 v2 Family with DisplayFamily_DisplayModel 
Signature 06_3EH

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 Reserved.

26 MCG_ELOG_P

63:27 Reserved.

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active. 

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10core active. 

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

39:32 Package Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

47:40 Package Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

55:48 Package Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

63:56 Reserved

41BH 1051 IA32_MC6_MISC Package Misc MAC information of Integrated I/O. (R/O) see Section 15.3.2.4

5:0 Recoverable Address LSB

8:6 Address Mode
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35.10 MSRS IN THE 4TH GENERATION INTEL® CORE™ PROCESSORS (BASED ON 
HASWELL MICROARCHITECTURE)

The 4th generation Intel® Core™ processor family and Intel Xeon processor E3-1200v3 product family (based on 
Haswell microarchitecture), with CPUID DisplayFamily_DisplayModel signature 06_3CH/06_45H/06_46H, 
support the MSR interfaces listed in Table 35-14, Table 35-15, Table 35-17, and Table 35-20. 

15:9 Reserved

31:16 PCI Express Requestor ID

39:32 PCI Express Segment Number

63:32 Reserved

Table 35-19   Additional MSRs Supported by Intel® Xeon Processors E7 v2 Family with DisplayFamily_DisplayModel 
Signature 06_3EH

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-20   Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell 
microarchitecture)

Register 
Address Register Name

Scope
Bit Description
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3BH 59 IA32_TSC_ADJUST THREAD Per-Logical-Processor TSC ADJUST (R/W)

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package See Table 35-17

186H 390 IA32_PERFEVTSEL0 THREAD Performance Event Select for Counter 0 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to 
prevent incorrect results

187H 391 IA32_PERFEVTSEL1 THREAD Performance Event Select for Counter 1 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to 
prevent incorrect results

188H 392 IA32_PERFEVTSEL2 THREAD Performance Event Select for Counter 2 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to 
prevent incorrect results
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33 IN_TXCP: see Section 18.11.5.1

When IN_TXCP=1 & IN_TX=1 and in sampling, spurious PMI may 
occur and transactions may continuously abort near overflow 
conditions. Software should favor using IN_TXCP for counting over 
sampling. If sampling, software should use large “sample-after“ 
value after clearing the counter configured to use IN_TXCP and 
also always reset the counter even when no overflow condition 
was reported. 

189H 393 IA32_PERFEVTSEL3 THREAD Performance Event Select for Counter 3 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to 
prevent incorrect results

491H 1169 IA32_VMX_FMFUNC THREAD Capability Reporting Register of VM-function Controls (R/O)

See Table 35-2

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Nominal TDP Ratio (R/O)

See Table 35-17

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O). See Table 35-17

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O). See Table 35-17

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

See Table 35-17

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

See Table 35-17

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating 
system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system 
request due to Processor Graphics driver override.

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system 
request because the processor has detected that utilization is low.

Table 35-20   Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell 
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6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system 
request due to electrical design point constraints (e.g. maximum 
electrical current consumption).

9 Core Power Limiting Status (R0)

When set, frequency is reduced below the operating system 
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system 
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system 
request due to package-level power limiting PL2.

12 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating system 
request due to multi-core turbo limits.

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating system 
request due to Turbo transition attenuation. This prevents 
performance degradation due to frequent operating ratio changes.

15:14 Reserved 

16 PROCHOT Log 

When set, indicates that the corresponding PROCHOT Status bit is 
set. Software can write 0 to this bit to clear PROCHOT Status.

17 Thermal Log 

When set, indicates that the corresponding Thermal status bit was 
set since it was last cleared by software. Software can write 0 to 
this bit to clear Thermal Status.

19:18 Reserved.

20 Graphics Driver Log 

When set, indicates that the corresponding Graphics Driver status 
bit was set since it was last cleared by software. Software can 
write 0 to this bit to clear Graphics Driver Status.

Table 35-20   Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell 
microarchitecture) (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec
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21 Autonomous Utilization-Based Frequency Control Log 

When set, indicates that the corresponding Autonomous 
Utilization-Based Frequency Control status bit was set since it was 
last cleared by software. Software can write 0 to this bit to clear 
Autonomous Utilization-Based Frequency Control Status.

22 VR Therm Alert Log 

When set, indicates that the corresponding VR Therm Alert Status 
bit was set since it was last cleared by software. Software can 
write 0 to this bit to clear VR Therm Alert Status.

23 Reserved.

24 Electrical Design Point Log 

When set, indicates that the corresponding EDP Status bit was set 
since it was last cleared by software. Software can write 0 to this 
bit to clear EDP Status.

25 Core Power Limiting Log 

When set, indicates that the corresponding Core Power Limiting 
Status bit was set since it was last cleared by software. Software 
can write 0 to this bit to clear Core Power Limiting Status.

26 Package-Level PL1 Power Limiting Log 

When set, indicates that the corresponding Package-level Power 
Limiting PL1 Status bit was set since it was last cleared by 
software. Software can write 0 to this bit to clear Package-level 
Power Limiting PL1 Status.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the corresponding Package-level Power 
Limiting PL2 Status bit was set since it was last cleared by 
software. Software can write 0 to this bit to clear Package-level 
Power Limiting PL2 Status.

28 Max Turbo Limit Log

When set, indicates that the corresponding Max Turbo Limit Status 
bit was set since it was last cleared by software. Software can 
write 0 to this bit to clear Max Turbo Limit Status.

29 Turbo Transition Attenuation Log

When set, indicates that the corresponding Turbo Transition 
Attenuation Status bit was set since it was last cleared by 
software. Software can write 0 to this bit to clear Turbo Transition 
Attenuation Status.

63:30 Reserved.

6B0H 1712 MSR_GRAPHICS_PERF_LIMI
T_REASONS

Package Indicator of Frequency Clipping in the Processor Graphics (R/W)

(frequency refers to processor graphics frequency)

Table 35-20   Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell 
microarchitecture) (Contd.)
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0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system 
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system 
request due to Processor Graphics driver override.

5 Reserved.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system 
request due to electrical design point constraints (e.g. maximum 
electrical current consumption).

9 Graphics Power Limiting Status (R0)

When set, frequency is reduced below the operating system 
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system 
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system 
request due to package-level power limiting PL2.

15:12 Reserved 

16 PROCHOT Log 

When set, indicates that the corresponding PROCHOT Status bit is 
set. Software can write 0 to this bit to clear PROCHOT Status.

17 Thermal Log 

When set, indicates that the corresponding Thermal status bit was 
set since it was last cleared by software. Software can write 0 to 
this bit to clear Thermal Status.

19:18 Reserved.

Table 35-20   Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell 
microarchitecture) (Contd.)
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20 Graphics Driver Log 

When set, indicates that the corresponding Graphics Driver status 
bit was set since it was last cleared by software. Software can 
write 0 to this bit to clear Graphics Driver Status.

21 Reserved.

22 VR Therm Alert Log 

When set, indicates that the corresponding VR Therm Alert Status 
bit was set since it was last cleared by software. Software can 
write 0 to this bit to clear VR Therm Alert Status.

23 Reserved.

24 Electrical Design Point Log 

When set, indicates that the corresponding EDP Status bit was set 
since it was last cleared by software. Software can write 0 to this 
bit to clear EDP Status.

25 Graphics Power Limiting Log 

When set, indicates that the corresponding Graphics Power Limiting 
Status bit was set since it was last cleared by software. Software 
can write 0 to this bit to clear Graphics Power Limiting Status.

26 Package-Level PL1 Power Limiting Log 

When set, indicates that the corresponding Package-level Power 
Limiting PL1 Status bit was set since it was last cleared by 
software. Software can write 0 to this bit to clear Package-level 
Power Limiting PL1 Status.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the corresponding Package-level Power 
Limiting PL2 Status bit was set since it was last cleared by 
software. Software can write 0 to this bit to clear Package-level 
Power Limiting PL2 Status.

63:28 Reserved.

6B1H 1713 MSR_RING_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in the Ring Interconnect (R/W)

(frequency refers to ring interconnect in the uncore)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system 
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal event.

5:2 Reserved.

Table 35-20   Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell 
microarchitecture) (Contd.)
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6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system 
request due to electrical design point constraints (e.g. maximum 
electrical current consumption).

9 Reserved.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system 
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system 
request due to package-level power limiting PL2.

15:12 Reserved 

16 PROCHOT Log 

When set, indicates that the corresponding PROCHOT Status bit is 
set. Software can write 0 to this bit to clear PROCHOT Status.

17 Thermal Log 

When set, indicates that the corresponding Thermal status bit was 
set since it was last cleared by software. Software can write 0 to 
this bit to clear Thermal Status.

21:18 Reserved.

22 VR Therm Alert Log 

When set, indicates that the corresponding VR Therm Alert Status 
bit was set since it was last cleared by software. Software can 
write 0 to this bit to clear VR Therm Alert Status.

23 Reserved.

24 Electrical Design Point Log 

When set, indicates that the corresponding EDP Status bit was set 
since it was last cleared by software. Software can write 0 to this 
bit to clear EDP Status.

25 Reserved.

26 Package-Level PL1 Power Limiting Log 

When set, indicates that the corresponding Package-level Power 
Limiting PL1 Status bit was set since it was last cleared by 
software. Software can write 0 to this bit to clear Package-level 
Power Limiting PL1 Status.

Table 35-20   Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell 
microarchitecture) (Contd.)
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35.10.1  Additional MSRs Supported by 4th Generation Intel® Core™ Processors

The 4th generation Intel® Core™ processor family (based on Haswell microarchitecture) with CPUID 
DisplayFamily_DisplayModel signature 06_45H supports the MSR interfaces listed in Table 35-14, Table 35-15, 
Table 35-17, Table 35-20, and Table 35-21. 

...

35.10.2  MSRs in 4th Generation Intel® Core™ Processor Family (based on Haswell 
Microarchitecture)

Table 35-22 lists model-specific registers (MSRs) that are specific to 4th generation Intel® Core™ processor 
family and Intel Xeon processor E3-1200 v3 product family (based on Haswell microarchitecture). These proces-
sors have a CPUID signature with DisplayFamily_DisplayModel of 06_3CH/06_45H/06_46H, see Table 35-1. 

...

35.12 MSRS IN THE NEXT GENERATION INTEL® CORE™ PROCESSORS
The next generation Intel® Core™ processor family, with CPUID DisplayFamily_DisplayModel signature 06_3DH, 
supports the MSR interfaces listed in Table 35-14, Table 35-15, Table 35-17, and Table 35-20. 

35.13 MSRS IN FUTURE GENERATION INTEL® CORE™ PROCESSORS
Future generation Intel® Core™ processor family, with CPUID DisplayFamily_DisplayModel signature 06_4DH, 
supports the MSR interfaces listed in Table 35-14, Table 35-15, Table 35-17, Table 35-20, and Table 35-24. 

27 Package-Level PL2 Power Limiting Log

When set, indicates that the corresponding Package-level Power 
Limiting PL2 Status bit was set since it was last cleared by 
software. Software can write 0 to this bit to clear Package-level 
Power Limiting PL2 Status.

63:28 Reserved.

C80H 32 IA32_DEBUG_FEATURE Package Hardware Debug Feature Control (R/W)

See Table 35-2.

Table 35-20   Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell 
microarchitecture) (Contd.)
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Table 35-24   Additional MSRs Supported by Future Generation Intel® Core™ Processors with 
DisplayFamily_DisplayModel Signature 06_4DH

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

64EH 1615 MSR_PPERF THREAD Productive Performance Count. (R/O).

63:0 Hardware’s view of workload scalability. See Section 14.4.5.1

652H 1614 MSR_PKG_HDC_CONFIG Package HDC Configuration (R/W).

2:0 PKG_Cx_Monitor. 

Configures Package Cx state threshold for 
MSR_PKG_HDC_DEEP_RESIDENCY

63: 3 Reserved

653H 1615 MSR_CORE_HDC_Residency Core Core HDC Idle Residency. (R/O).

63:0 Core_Cx_Duty_Cycle_Cnt. 

655H 1617 MSR_PKG_HDC_SHALLOW_
Residency

Package Accumulate the cycles the package was in C2 state and at least one 
logical processor was in forced idle. (R/O).

63:0 Pkg_C2_Duty_Cycle_Cnt. 

656H 1618 MSR_PKG_HDC_DEEP_Resid
ency

Package Package Cx HDC Idle Residency. (R/O).

63:0 Pkg_Cx_Duty_Cycle_Cnt. 

658H 1620 MSR_WEIGHTED_CORE_C0 Package Core-count Weighted C0 Residency. (R/O).

63:0 Increment at the same rate as the TSC. The increment each cycle is 
weighted by the number of processor cores in the package that 
reside in C0. If N cores are simultaneously in C0, then each cycle the 
counter increments by N. 

659H 1621 MSR_ANY_CORE_C0 Package Any Core C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is 
one if any processor core in the package is in C0. 

65AH 1622 MSR_ANY_GFXE_C0 Package Any Graphics Engine C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is 
one if any processor graphic device’s compute engines are in C0. 

65BH 1623 MSR_CORE_GFXE_OVERLA
P_C0

Package Core and Graphics Engine Overlapped C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is 
one if at least one compute engine of the processor graphics is in 
C0 and at least one processor core in the package is also in C0. 

770H 1904 IA32_PM_ENABLE Package See Section 14.4.2, “Enabling HWP”

771H 1905 IA32_HWP_CAPABILITIES Thread See Section 14.4.3, “HWP Performance Range and Dynamic 
Capabilities”

772H 1906 IA32_HWP_REQUEST_PKG Package See Section 14.4.4, “Managing HWP”

773H 1907 IA32_HWP_INTERRUPT Thread See Section 14.4.6, “HWP Notifications”
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...

19. Updates to Appendix B, Volume 3C
Change bars show changes to Appendix B of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C: System Programming Guide, Part 3.

------------------------------------------------------------------------------------------

...

B.2.1  64-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index 
value in bits 9:1. Table B-4 enumerates the 64-bit control fields.

774H 1908 IA32_HWP_REQUEST Thread See Section 14.4.4, “Managing HWP”

777H 1911 IA32_HWP_STATUS Thread See Section 14.4.5, “HWP Feedback”

DB0H 3504 IA32_PKG_HDC_CTL Package See Section 14.5.2, “Package level Enabling HDC”

DB1H 3505 IA32_PM_CTL1 Thread See Section 14.5.3, “Logical-Processor Level HDC Control”

DB2H 3506 IA32_THREAD_STALL Thread See Section 14.5.4.1, “IA32_THREAD_STALL”

Table 35-24   Additional MSRs Supported by Future Generation Intel® Core™ Processors with 
DisplayFamily_DisplayModel Signature 06_4DH

Register 
Address Register Name

Scope
Bit Description
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Table B-4   Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb)
Field Name Index Encoding

Address of I/O bitmap A (full)
000000000B

00002000H

Address of I/O bitmap A (high) 00002001H

Address of I/O bitmap B (full)
000000001B

00002002H

Address of I/O bitmap B (high) 00002003H

Address of MSR bitmaps (full)1
000000010B

00002004H

Address of MSR bitmaps (high)1 00002005H

VM-exit MSR-store address (full)
000000011B

00002006H

VM-exit MSR-store address (high) 00002007H

VM-exit MSR-load address (full)
000000100B

00002008H

VM-exit MSR-load address (high) 00002009H

VM-entry MSR-load address (full)
000000101B

0000200AH

VM-entry MSR-load address (high) 0000200BH

Executive-VMCS pointer (full)
000000110B

0000200CH

Executive-VMCS pointer (high) 0000200DH
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TSC offset (full)
000001000B

00002010H

TSC offset (high) 00002011H

Virtual-APIC address (full)2
000001001B

00002012H

Virtual-APIC address (high)2 00002013H

APIC-access address (full)3
000001010B

00002014H

APIC-access address (high)3 00002015H

Posted-interrupt descriptor address (full)4
000001011B

00002016H

Posted-interrupt descriptor address (high)4 00002017H

VM-function controls (full)5
000001100B

00002018H

VM-function controls (high)5 00002019H

EPT pointer (EPTP; full)6
000001101B

0000201AH

EPT pointer (EPTP; high)6 0000201BH

EOI-exit bitmap 0 (EOI_EXIT0; full)7
000001110B

0000201CH

EOI-exit bitmap 0 (EOI_EXIT0; high)7 0000201DH

EOI-exit bitmap 1 (EOI_EXIT1; full)7
000001111B

0000201EH

EOI-exit bitmap 1 (EOI_EXIT1; high)7 0000201FH

EOI-exit bitmap 2 (EOI_EXIT2; full)7
000010000B

00002020H

EOI-exit bitmap 2 (EOI_EXIT2; high)7 00002021H

EOI-exit bitmap 3 (EOI_EXIT3; full)7
000010001B

00002022H

EOI-exit bitmap 3 (EOI_EXIT3; high)7 00002023H

EPTP-list address (full)8
000010010B

00002024H

EPTP-list address (high)8 00002025H

VMREAD-bitmap address (full)9
000010011B

00002026H

VMREAD-bitmap address (high)9 00002027H

VMWRITE-bitmap address (full)9
000010100B

00002028H

VMWRITE-bitmap address (high)9 00002029H

Virtualization-exception information address (full)10

000010101B
0000202AH

Virtualization-exception information address (high)10 0000202BH

XSS-exiting bitmap (full)11

000010110B
0000202CH

XSS-exiting bitmap (high)11 0000202DH
NOTES:

1. This field exists only on processors that support the 1-setting of the “use MSR bitmaps” 
VM-execution control.

2. This field exists only on processors that support either the 1-setting of the “use TPR shadow” VM-execution control.
3. This field exists only on processors that support the 1-setting of the “virtualize APIC accesses” VM-execution control.
4. This field exists only on processors that support the 1-setting of the “process posted interrupts” VM-execution control.
5. This field exists only on processors that support the 1-setting of the “enable VM functions” VM-execution control.

Table B-4   Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb) (Contd.)
Field Name Index Encoding
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...

20. Updates to Appendix C, Volume 3C
Change bars show changes to Appendix C of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C: System Programming Guide, Part 3.

------------------------------------------------------------------------------------------
Every VM exit writes a 32-bit exit reason to the VMCS (see Section 24.9.1). Certain VM-entry failures also do this 
(see Section 26.7). The low 16 bits of the exit-reason field form the basic exit reason which provides basic infor-
mation about the cause of the VM exit or VM-entry failure.

Table C-1 lists values for basic exit reasons and explains their meaning. Entries apply to VM exits, unless other-
wise noted.

6. This field exists only on processors that support the 1-setting of the “enable EPT” VM-execution control.
7. This field exists only on processors that support the 1-setting of the “virtual-interrupt delivery” VM-execution control.
8. This field exists only on processors that support the 1-setting of the “EPTP switching” VM-function control.
9. This field exists only on processors that support the 1-setting of the “VMCS shadowing” VM-execution control.
10.This field exists only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.
11.This field exists only on processors that support the 1-setting of the “enable XSAVES/XRSTORS” VM-execution control.

Table C-1   Basic Exit Reasons 
Basic Exit 
Reason Description

0 Exception or non-maskable interrupt (NMI). Either:

1: Guest software caused an exception and the bit in the exception bitmap associated with exception’s vector was 1.
2: An NMI was delivered to the logical processor and the “NMI exiting” VM-execution control was 1. This case includes 

executions of BOUND that cause #BR, executions of INT3 (they cause #BP), executions of INTO that cause #OF, 
and executions of UD2 (they cause #UD).

1 External interrupt. An external interrupt arrived and the “external-interrupt exiting” VM-execution control was 1.

2 Triple fault. The logical processor encountered an exception while attempting to call the double-fault handler and 
that exception did not itself cause a VM exit due to the exception bitmap.

3 INIT signal. An INIT signal arrived

4 Start-up IPI (SIPI). A SIPI arrived while the logical processor was in the “wait-for-SIPI” state.

5 I/O system-management interrupt (SMI). An SMI arrived immediately after retirement of an I/O instruction and 
caused an SMM VM exit (see Section 34.15.2).

6 Other SMI. An SMI arrived and caused an SMM VM exit (see Section 34.15.2) but not immediately after retirement of 
an I/O instruction.

7 Interrupt window. At the beginning of an instruction, RFLAGS.IF was 1; events were not blocked by STI or by MOV 
SS; and the “interrupt-window exiting” VM-execution control was 1.

8 NMI window. At the beginning of an instruction, there was no virtual-NMI blocking; events were not blocked by MOV 
SS; and the “NMI-window exiting” VM-execution control was 1.

9 Task switch. Guest software attempted a task switch.

10 CPUID. Guest software attempted to execute CPUID.

11 GETSEC. Guest software attempted to execute GETSEC.

12 HLT. Guest software attempted to execute HLT and the “HLT exiting” VM-execution control was 1.

13 INVD. Guest software attempted to execute INVD.
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14 INVLPG. Guest software attempted to execute INVLPG and the “INVLPG exiting” VM-execution control was 1.

15 RDPMC. Guest software attempted to execute RDPMC and the “RDPMC exiting” VM-execution control was 1.

16 RDTSC. Guest software attempted to execute RDTSC and the “RDTSC exiting” VM-execution control was 1.

17 RSM. Guest software attempted to execute RSM in SMM.

18 VMCALL. VMCALL was executed either by guest software (causing an ordinary VM exit) or by the executive monitor 
(causing an SMM VM exit; see Section 34.15.2).

19 VMCLEAR. Guest software attempted to execute VMCLEAR.

20 VMLAUNCH. Guest software attempted to execute VMLAUNCH.

21 VMPTRLD. Guest software attempted to execute VMPTRLD.

22 VMPTRST. Guest software attempted to execute VMPTRST.

23 VMREAD. Guest software attempted to execute VMREAD.

24 VMRESUME. Guest software attempted to execute VMRESUME.

25 VMWRITE. Guest software attempted to execute VMWRITE.

26 VMXOFF. Guest software attempted to execute VMXOFF.

27 VMXON. Guest software attempted to execute VMXON.

28 Control-register accesses. Guest software attempted to access CR0, CR3, CR4, or CR8 using CLTS, LMSW, or 
MOV CR and the VM-execution control fields indicate that a VM exit should occur (see Section 25.1 for details). This 
basic exit reason is not used for trap-like VM exits following executions of the MOV to CR8 instruction when the “use 
TPR shadow” VM-execution control is 1.

29 MOV DR. Guest software attempted a MOV to or from a debug register and the “MOV-DR exiting” VM-execution 
control was 1.

30 I/O instruction. Guest software attempted to execute an I/O instruction and either:

1: The “use I/O bitmaps” VM-execution control was 0 and the “unconditional I/O exiting” VM-execution control was 1.
2: The “use I/O bitmaps” VM-execution control was 1 and a bit in the I/O bitmap associated with one of the ports 

accessed by the I/O instruction was 1.

31 RDMSR. Guest software attempted to execute RDMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in read bitmap for low MSRs is 1, 

where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in read bitmap for high MSRs is 1, where 

n is the value of RCX & 00001FFFH.

32 WRMSR. Guest software attempted to execute WRMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in write bitmap for low MSRs is 1, 

where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in write bitmap for high MSRs is 1, 

where n is the value of RCX & 00001FFFH.

33 VM-entry failure due to invalid guest state. A VM entry failed one of the checks identified in Section 26.3.1.

34 VM-entry failure due to MSR loading. A VM entry failed in an attempt to load MSRs. See Section 26.4.

36 MWAIT. Guest software attempted to execute MWAIT and the “MWAIT exiting” VM-execution control was 1.

Table C-1   Basic Exit Reasons  (Contd.)
Basic Exit 
Reason Description
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37 Monitor trap flag. A VM entry occurred due to the 1-setting of the “monitor trap flag” VM-execution control and 
injection of an MTF VM exit as part of VM entry. See Section 25.5.2.

39 MONITOR. Guest software attempted to execute MONITOR and the “MONITOR exiting” VM-execution control was 1.

40 PAUSE. Either guest software attempted to execute PAUSE and the “PAUSE exiting” VM-execution control was 1 or 
the “PAUSE-loop exiting” VM-execution control was 1 and guest software executed a PAUSE loop with execution 
time exceeding PLE_Window (see Section 25.1.3).

41 VM-entry failure due to machine-check event. A machine-check event occurred during VM entry (see Section 
26.8).

43 TPR below threshold. The logical processor determined that the value of bits 7:4 of the byte at offset 080H on the 
virtual-APIC page was below that of the TPR threshold VM-execution control field while the “use TPR shadow” VM-
execution control was 1 either as part of TPR virtualization (Section 29.1.2) or VM entry (Section 26.6.7).

44 APIC access. Guest software attempted to access memory at a physical address on the APIC-access page and the 
“virtualize APIC accesses” VM-execution control was 1 (see Section 29.4).

45 Virtualized EOI. EOI virtualization was performed for a virtual interrupt whose vector indexed a bit set in the EOI-
exit bitmap.

46 Access to GDTR or IDTR. Guest software attempted to execute LGDT, LIDT, SGDT, or SIDT and the “descriptor-table 
exiting” VM-execution control was 1.

47 Access to LDTR or TR. Guest software attempted to execute LLDT, LTR, SLDT, or STR and the “descriptor-table 
exiting” VM-execution control was 1.

48 EPT violation. An attempt to access memory with a guest-physical address was disallowed by the configuration of 
the EPT paging structures.

49 EPT misconfiguration. An attempt to access memory with a guest-physical address encountered a misconfigured 
EPT paging-structure entry.

50 INVEPT. Guest software attempted to execute INVEPT.

51 RDTSCP. Guest software attempted to execute RDTSCP and the “enable RDTSCP” and “RDTSC exiting” VM-execution 
controls were both 1.

52 VMX-preemption timer expired. The preemption timer counted down to zero.

53 INVVPID. Guest software attempted to execute INVVPID.

54 WBINVD. Guest software attempted to execute WBINVD and the “WBINVD exiting” VM-execution control was 1.

55 XSETBV. Guest software attempted to execute XSETBV.

56 APIC write. Guest software completed a write to the virtual-APIC page that must be virtualized by VMM software 
(see Section 29.4.3.3).

57 RDRAND. Guest software attempted to execute RDRAND and the “RDRAND exiting” VM-execution control was 1.

58 INVPCID. Guest software attempted to execute INVPCID and the “enable INVPCID” and “INVLPG exiting” 
VM-execution controls were both 1.

59 VMFUNC. Guest software invoked a VM function with the VMFUNC instruction and the VM function either was not 
enabled or generated a function-specific condition causing a VM exit.

63 XSAVES. Guest software attempted to execute XSAVES, the “enable XSAVES/XRSTORS” was 1, and a bit was set in 
the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-exiting bitmap.

64 XRSTORS. Guest software attempted to execute XRSTORS, the “enable XSAVES/XRSTORS” was 1, and a bit was set 
in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-exiting bitmap.

Table C-1   Basic Exit Reasons  (Contd.)
Basic Exit 
Reason Description
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