
Document Number: 252046-042

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Documentation Changes

February 2014

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED
IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY
OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal
injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL
INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND
EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES
ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE
DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition
and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information
here is subject to change without notice. Do not finalize a design with this information.

Intel, the Intel logo, Pentium, Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trademarks of Intel Corporation in the U.S.
and/or other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copyright © 1997-2014 Intel Corporation. All rights reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents

Revision History . 4

Preface . 7

Summary Tables of Changes . 8

Documentation Changes. 9

Revision History

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Revision Description Date

-001 • Initial release November 2002

-002
• Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual
December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion

February 2003

-004 • Removed Documentation changes 1-17.
• Added Documentation changes 1-24. June 2003

-005 • Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007 • Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008 • Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012 • Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the

document.
July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015 • Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017 • Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019 • Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Added Documentation Changes 20-27. May 2007

-021 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1-6

November 2007

-022 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-6

August 2008

-023 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-21

March 2009

Revision History

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

§

-024 • Removed Documentation Changes 1-21
• Added Documentation Changes 1-16

June 2009

-025 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

September 2009

-026 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-15

December 2009

-027 • Removed Documentation Changes 1-15
• Added Documentation Changes 1-24

March 2010

-028 • Removed Documentation Changes 1-24
• Added Documentation Changes 1-29

June 2010

-029 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

September 2010

-030 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

January 2011

-031 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

April 2011

-032 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-14

May 2011

-033 • Removed Documentation Changes 1-14
• Added Documentation Changes 1-38

October 2011

-034 • Removed Documentation Changes 1-38
• Added Documentation Changes 1-16

December 2011

-035 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

March 2012

-036 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-17

May 2012

-037 • Removed Documentation Changes 1-17
• Added Documentation Changes 1-28

August 2012

-038 • Removed Documentation Changes 1-28
• Add Documentation Changes 1-22

January 2013

-039 • Removed Documentation Changes 1-22
• Add Documentation Changes 1-17

June 2013

-040 • Removed Documentation Changes 1-17
• Add Documentation Changes 1-24

September 2013

-041 • Removed Documentation Changes 1-24
• Add Documentation Changes 1-20

February 2014

-042 • Removed Documentation Changes 1-20
• Add Documentation Changes 1-8

February 2014

Revision Description Date

Revision History

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Preface

This document is an update to the specifications contained in the Affected Documents table below. This
document is a compilation of device and documentation errata, specification clarifications and changes. It is
intended for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents

Nomenclature
Documentation Changes include typos, errors, or omissions from the current published specifications. These
will be incorporated in any new release of the specification.

Document Title Document Number/
Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture 253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A: Instruction Set
Reference, A-M 253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B: Instruction Set
Reference, N-Z 253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C: Instruction Set
Reference 326018

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System
Programming Guide, Part 1 253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System
Programming Guide, Part 2 253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C: System
Programming Guide, Part 3 326019

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 8

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and IA-32 architectures. This
table uses the following notations:

Codes Used in Summary Tables
Change bar to left of table row indicates this erratum is either new or modified from the previous version of the
document.

Documentation Changes
No. DOCUMENTATION CHANGES

1 Updates to Chapter 1, Volume 1

2 Updates to Chapter 2, Volume 1

3 Updates to Chapter 1, Volume 2A

4 Updates to Chapter 3, Volume 2A

5 Updates to Chapter 4, Volume 2B

6 Updates to Chapter 1, Volume 3A

7 Updates to Chapter 15, Volume 3B

8 Updates to Chapter 35, Volume 3C

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

Documentation Changes

1. Updates to Chapter 1, Volume 1
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Core™ i7 processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 10

• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v3 product family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processor QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced
Intel® Core™ microarchitecture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture and supports Intel 64 archi-
tecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel®
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32nm version of
Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and
various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These
processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® CoreTM i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2
product family and the 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code
name Ivy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families and Intel® Xeon® processor E5-2400/1400
v2 product families are based on the Intel® microarchitecture code name Ivy Bridge-EP and support Intel 64
architecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors,
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel®
64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is the
superset of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 1: BASIC ARCHITECTURE
A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related Intel
manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — Intel® 64 and IA-32 Architectures. Introduces the Intel 64 and IA-32 architectures along with
the families of Intel processors that are based on these architectures. It also gives an overview of the common
features found in these processors and brief history of the Intel 64 and IA-32 architectures.

Chapter 3 — Basic Execution Environment. Introduces the models of memory organization and describes the
register set used by applications.

Chapter 4 — Data Types. Describes the data types and addressing modes recognized by the processor;
provides an overview of real numbers and floating-point formats and of floating-point exceptions.

Chapter 5 — Instruction Set Summary. Lists all Intel 64 and IA-32 instructions, divided into technology
groups.

Chapter 6 — Procedure Calls, Interrupts, and Exceptions. Describes the procedure stack and mechanisms
provided for making procedure calls and for servicing interrupts and exceptions.

Chapter 7 — Programming with General-Purpose Instructions. Describes basic load and store, program
control, arithmetic, and string instructions that operate on basic data types, general-purpose and segment regis-
ters; also describes system instructions that are executed in protected mode.

Chapter 8 — Programming with the x87 FPU. Describes the x87 floating-point unit (FPU), including floating-
point registers and data types; gives an overview of the floating-point instruction set and describes the
processor's floating-point exception conditions.

Chapter 9 — Programming with Intel® MMX™ Technology. Describes Intel MMX technology, including MMX
registers and data types; also provides an overview of the MMX instruction set.

Chapter 10 — Programming with Streaming SIMD Extensions (SSE). Describes SSE extensions, including
XMM registers, the MXCSR register, and packed single-precision floating-point data types; provides an overview
of the SSE instruction set and gives guidelines for writing code that accesses the SSE extensions.

Chapter 11 — Programming with Streaming SIMD Extensions 2 (SSE2). Describes SSE2 extensions,
including XMM registers and packed double-precision floating-point data types; provides an overview of the SSE2
instruction set and gives guidelines for writing code that accesses SSE2 extensions. This chapter also describes
SIMD floating-point exceptions that can be generated with SSE and SSE2 instructions. It also provides general
guidelines for incorporating support for SSE and SSE2 extensions into operating system and applications code.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 12

Chapter 12 — Programming with SSE3, SSSE3 and SSE4. Provides an overview of the SSE3 instruction set,
Supplemental SSE3, SSE4, and guidelines for writing code that accesses these extensions.

Chapter 13 — Managing State Using the XSAVE Feature Set. Describes the XSAVE feature set instructions
and explains how software can enable the XSAVE feature set and XSAVE-enabled features.

Chapter 14 — Programming with AVX, FMA and AVX2. Provides an overview of the Intel® AVX instruction
set, FMA and Intel AVX2 extensions and gives guidelines for writing code that accesses these extensions.

Chapter 15 — Programming with Intel Transactional Synchronization Extensions. Describes the instruc-
tion extensions that support lock elision techniques to improve the performance of multi-threaded software with
contended locks.

Chapter 16 — Input/Output. Describes the processor’s I/O mechanism, including I/O port addressing, I/O
instructions, and I/O protection mechanisms.

Chapter 17 — Processor Identification and Feature Determination. Describes how to determine the CPU
type and features available in the processor.

Appendix A — EFLAGS Cross-Reference. Summarizes how the IA-32 instructions affect the flags in the
EFLAGS register.

Appendix B — EFLAGS Condition Codes. Summarizes how conditional jump, move, and ‘byte set on condition
code’ instructions use condition code flags (OF, CF, ZF, SF, and PF) in the EFLAGS register.

Appendix C — Floating-Point Exceptions Summary. Summarizes exceptions raised by the x87 FPU floating-
point and SSE/SSE2/SSE3 floating-point instructions.

Appendix D — Guidelines for Writing x87 FPU Exception Handlers. Describes how to design and write MS-
DOS* compatible exception handling facilities for FPU exceptions (includes software and hardware requirements
and assembly-language code examples). This appendix also describes general techniques for writing robust FPU
exception handlers.

Appendix E — Guidelines for Writing SIMD Floating-Point Exception Handlers. Gives guidelines for
writing exception handlers for exceptions generated by SSE/SSE2/SSE3 floating-point instructions.

...

2. Updates to Chapter 2, Volume 1
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

2.1.20 The Second Generation Intel® Core™ Processor Family (2011)
The Second Generation Intel Core processor family spans Intel Core i7, i5 and i3 processors based on the Sandy
Bridge microarchitecture. They are built from 32 nm process technology and have innovative features including:
• Intel Turbo Boost Technology for Intel Core i5 and i7 processors
• Intel Hyper-Threading Technology.
• Enhanced Intel Smart Cache and integrated memory controller.
• Processor graphics and built-in visual features like Intel® Quick Sync Video, Intel® InsiderTM etc.
• Range of instruction set support up to AVX, AESNI, PCLMULQDQ, SSE4.2 and SSE4.1.

Intel Xeon processor E3-1200 product family is also based on the Sandy Bridge microarchitecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

Intel Xeon processor E5-2400/1400 product families are based on the Sandy Bridge-EP microarchitecture.

Intel Xeon processor E5-4600/2600/1600 product families are based on the Sandy Bridge-EP microarchitecture
and provide support for multiple sockets.

2.1.21 The Third Generation Intel® Core™ Processor Family (2012)
The Third Generation Intel Core processor family spans Intel Core i7, i5 and i3 processors based on the Ivy Bridge
microarchitecture. The Intel Xeon processor E7-8800/4800/2800 v2 product families and Intel Xeon processor
E3-1200 v2 product family are also based on the Ivy Bridge microarchitecture.

The Intel Xeon processor E5-2400/1400 v2 product families are based on the Ivy Bridge-EP microarchitecture.

The Intel Xeon processor E5-4600/2600/1600 v2 product families are based on the Ivy Bridge-EP microarchitec-
ture and provide support for multiple sockets.

2.1.22 The Fourth Generation Intel® Core™ Processor Family (2013)

The Fourth Generation Intel Core processor family spans Intel Core i7, i5 and i3 processors based on the
Haswell microarchitecture. Intel Xeon processor E3-1200 v3 product family is also based on the Haswell
microarchitecture.

...

3. Updates to Chapter 1, Volume 2A
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-M.

--
...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 14

• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v3 product family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processor QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced
Intel® Core™ microarchitecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 15

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture and supports Intel 64 archi-
tecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel®
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32nm version of
Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and
various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These
processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® CoreTM i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2
product family and the 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code
name Ivy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families and Intel® Xeon® processor E5-2400/1400
v2 product families are based on the Intel® microarchitecture code name Ivy Bridge-EP and support Intel 64
architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors,
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel®
64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is the
superset of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.
...

4. Updates to Chapter 3, Volume 2A
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-M.

--
...
CPUID—CPU Identification
...

NOTE
Software must confirm that a processor feature is present using feature flags returned by CPUID
prior to using the feature. Software should not depend on future offerings retaining all features.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 16

...

5. Updates to Chapter 4, Volume 2B
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B: Instruction Set Reference, N-Z.

--
...

Figure 3-6 Feature Information Returned in the ECX Register

OM16524b

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EST — Enhanced Intel SpeedStep® Technology

DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT

PCLMULQDQ — Carryless Multiplication

Reserved

CMPXCHG16B

SMX — Safer Mode Extensions

xTPR Update Control

SSSE3 — SSSE3 Extensions

PDCM — Perf/Debug Capability MSR

VMX — Virtual Machine Extensions

SSE4_1 — SSE4.1

OSXSAVE

SSE4_2 — SSE4.2

DCA — Direct Cache Access

x2APIC

POPCNT

XSAVE

AVX

AES

FMA — Fused Multiply Add

SSE3 — SSE3 Extensions

PCID — Process-context Identifiers

0

DTES64 — 64-bit DS Area

MOVBE

TSC-Deadline

F16C
RDRAND

SDBG

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

PUSH—Push Word, Doubleword or Quadword Onto the Stack

Instruction Operand Encoding

...

XSAVES—Save Processor Extended States Supervisor

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

FF /6 PUSH r/m16 M Valid Valid Push r/m16.

FF /6 PUSH r/m32 M N.E. Valid Push r/m32.

FF /6 PUSH r/m64 M Valid N.E. Push r/m64.

50+rw PUSH r16 O Valid Valid Push r16.

50+rd PUSH r32 O N.E. Valid Push r32.

50+rd PUSH r64 O Valid N.E. Push r64.

6A ib PUSH imm8 I Valid Valid Push imm8.

68 iw PUSH imm16 I Valid Valid Push imm16.

68 id PUSH imm32 I Valid Valid Push imm32.

0E PUSH CS NP Invalid Valid Push CS.

16 PUSH SS NP Invalid Valid Push SS.

1E PUSH DS NP Invalid Valid Push DS.

06 PUSH ES NP Invalid Valid Push ES.

0F A0 PUSH FS NP Valid Valid Push FS.

0F A8 PUSH GS NP Valid Valid Push GS.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

O opcode + rd (r) NA NA NA

I imm8/16/32 NA NA NA

NP NA NA NA NA

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F C7 /5 XSAVES mem M Valid Valid Save state components specified by EDX:EAX
to mem with compaction, optimizing if
possible.

REX.W+ 0F C7 /5 XSAVES64 mem M Valid N.E. Save state components specified by EDX:EAX
to mem with compaction, optimizing if
possible.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 18

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), the logical-
AND of EDX:EAX and the logical-OR of XCR0 with the IA32_XSS MSR. XSAVES may be executed only if CPL = 0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Section 13.10, “Operation of XSAVES,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1 provides a detailed description of the operation of the XSAVES instruction. The following items provide
a high-level outline:
• Execution of XSAVES is similar to that of XSAVEC. XSAVES differs from XSAVEC in that it can save state

components corresponding to bits set in the IA32_XSS MSR and that it may use the modified optimization.
• XSAVES saves state component i only if RFBM[i] = 1 and XINUSE[i] = 1.1 (XINUSE is a bitmap by which the

processor tracks the status of various state components. See Section 13.5.4, “Processor Tracking of XSAVE-
Managed State.”) Even if both bits are 1, XSAVES may optimize and not save state component i if (1) state
component i has not been modified since the last execution of XRTOR or XRSTORS; and (2) this execution of
XSAVES correspond to that last execution of XRTOR or XRSTORS as determined by XRSTOR_INFO (see the
Operation section below).

• XSAVES does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy
Region of an XSAVE Area”).

• XSAVES writes the logical AND of RFBM and XINUSE to the XSTATE_BV field of the XSAVE header.2 (See
Section 13.4.2, “XSAVE Header.”) XSAVES sets bit 63 of the XCOMP_BV field and sets bits 62:0 of that field to
RFBM[62:0]. XSAVES does not write to any parts of the XSAVE header other than the XSTATE_BV and
XCOMP_BV fields.

• XSAVES always uses the compacted format of the extended region of the XSAVE area (see Section 13.4.3,
“Extended Region of an XSAVE Area”).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Operation

RFBM ← XCR0 AND EDX:EAX; /* bitwise logical AND */
IF in VMX non-root operation

THEN VMXNR ← 1;
ELSE VMXNR ← 0;

FI;
LAXA ← linear address of XSAVE area;
COMPMASK ← RFBM OR 80000000_00000000H;

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

1. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not
have its initial value of 1F80H. In this case, the init optimization does not apply and XSAVEC will save SSE state as long as
RFBM[1] = 1 and the modified optimization is not being applied.

2. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not
have its initial value of 1F80H. In this case, XSAVES sets XSTATE_BV[1] to 1 as long as RFBM[1] = 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

IF XRSTOR_INFO = CPL,VMXNR,LAXA,COMPMASK
THEN MODOPT ← 1;
ELSE MODOPT ← 0;

FI;

IF RFBM[0] = 1 and XINUSE[0] = 1
THEN store x87 state into legacy region of XSAVE area;
/* might avoid saving if x87 state is not modified and MODOPT = 1 */

FI;
IF RFBM[1] = 1 and (XINUSE[1] = 1 or MXCSR ≠ 1F80H)

THEN store SSE state into legacy region of XSAVE area;
/* might avoid saving if SSE state is not modified and MODOPT = 1 */

FI;
IF RFBM[2] = 1 AND XINUSE[2] = 1

THEN store AVX state into extended region of XSAVE area;
/* might avoid saving if AVX state is not modified and MODOPT = 1 */

FI;

XSTATE_BV field in XSAVE header ← XINUSE AND RFBM;
XCOMP_BV field in XSAVE header ← COMPMASK;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVES: void _xsaves(void * , unsigned __int64);

XSAVES64: void _xsaves64(void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 20

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

...

6. Updates to Chapter 1, Volume 3A
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--
...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 21

• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 22

• Intel® Xeon® processor E3-1200 v3 product family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processor QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced
Intel® Core™ microarchitecture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture and supports Intel 64 archi-
tecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel®
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32nm version of
Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and
various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These
processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® CoreTM i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2
product family and the 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code
name Ivy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families and Intel® Xeon® processor E5-2400/1400
v2 product families are based on the Intel® microarchitecture code name Ivy Bridge-EP and support Intel 64
architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors,
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel®
64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is the
superset of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 23

7. Updates to Chapter 15, Volume 3B
Change bars show changes to Chapter 15 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

15.3.1 Machine-Check Global Control MSRs
The machine-check global control MSRs include the IA32_MCG_CAP, IA32_MCG_STATUS, and optionally
IA32_MCG_CTL and IA32_MCG_EXT_CTL. See Chapter 35, “Model-Specific Registers (MSRs),” for the addresses
of these registers.

15.3.1.1 IA32_MCG_CAP MSR
The IA32_MCG_CAP MSR is a read-only register that provides information about the machine-check architecture
of the processor. Figure Figure 15-2 shows the layout of the register.

Where:
• Count field, bits 7:0 — Indicates the number of hardware unit error-reporting banks available in a particular

processor implementation.
• MCG_CTL_P (control MSR present) flag, bit 8 — Indicates that the processor implements the

IA32_MCG_CTL MSR when set; this register is absent when clear.
• MCG_EXT_P (extended MSRs present) flag, bit 9 — Indicates that the processor implements the

extended machine-check state registers found starting at MSR address 180H; these registers are absent
when clear.

• MCG_CMCI_P (Corrected MC error counting/signaling extension present) flag, bit 10 — Indicates
(when set) that extended state and associated MSRs necessary to support the reporting of an interrupt on a
corrected MC error event and/or count threshold of corrected MC errors, is present. When this bit is set, it
does not imply this feature is supported across all banks. Software should check the availability of the
necessary logic on a bank by bank basis when using this signaling capability (i.e. bit 30 settable in individual
IA32_MCi_CTL2 register).

Figure 15-2 IA32_MCG_CAP Register

MCG_TES_P[11]
MCG_EXT_CNT[23:16]

63 9

Reserved

101112

MCG_CMCI_P[10]

08 7

Count

MCG_EXT_P[9]

15162324

MCG_CTL_P[8]

MCG_SER_P[24]

25

MCG_ELOG_P[26]

27 26

MCG_LMCE_P[27]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 24

• MCG_TES_P (threshold-based error status present) flag, bit 11 — Indicates (when set) that bits 56:53
of the IA32_MCi_STATUS MSR are part of the architectural space. Bits 56:55 are reserved, and bits 54:53 are
used to report threshold-based error status. Note that when MCG_TES_P is not set, bits 56:53 of the
IA32_MCi_STATUS MSR are model-specific.

• MCG_EXT_CNT, bits 23:16 — Indicates the number of extended machine-check state registers present.
This field is meaningful only when the MCG_EXT_P flag is set.

• MCG_SER_P (software error recovery support present) flag, bit 24— Indicates (when set) that the
processor supports software error recovery (see Section 15.6), and IA32_MCi_STATUS MSR bits 56:55 are
used to report the signaling of uncorrected recoverable errors and whether software must take recovery
actions for uncorrected errors. Note that when MCG_TES_P is not set, bits 56:53 of the IA32_MCi_STATUS
MSR are model-specific. If MCG_TES_P is set but MCG_SER_P is not set, bits 56:55 are reserved.

• MCG_ELOG_P (extended error logging) flag, bit 26 — Indicates (when set) that the processor allows
platform firmware to be invoked when an error is detected so that it may provide additional platform specific
information in an ACPI format “Generic Error Data Entry” that augments the data included in machine check
bank registers.
For additional information about extended error logging interface, see http://www.intel.com/content/www/
us/en/architecture-and-technology/enhanced-mca-logging-xeon-paper.html

• MCG_LMCE_P (local machine check exception) flag, bit 27 — Indicates (when set) that the following
interfaces are present:

— an extended state LMCE_S (located in bit 3 of IA32_MCG_STATUS), and

— the IA32_MCG_EXT_CTL MSR, necessary to support Local Machine Check Exception (LMCE).
A non-zero MCG_LMCE_P indicates that, when LMCE is enabled as described in Section 15.3.1.5, some
machine check errors may be delivered to only a single logical processor.

The effect of writing to the IA32_MCG_CAP MSR is undefined.

15.3.1.2 IA32_MCG_STATUS MSR
The IA32_MCG_STATUS MSR describes the current state of the processor after a machine-check exception has
occurred (see Figure Figure 15-3).

Where:
• RIPV (restart IP valid) flag, bit 0 — Indicates (when set) that program execution can be restarted reliably

at the instruction pointed to by the instruction pointer pushed on the stack when the machine-check exception
is generated. When clear, the program cannot be reliably restarted at the pushed instruction pointer.

Figure 15-3 IA32_MCG_STATUS Register

EIPV—Error IP valid flag
MCIP—Machine check in progress flag

63 0

Reserved

123
E
I
P
V

M
C
I
P

R
I
P
V

RIPV—Restart IP valid flag

LMCE_S—Local machine check exception signaled

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 25

• EIPV (error IP valid) flag, bit 1 — Indicates (when set) that the instruction pointed to by the instruction
pointer pushed onto the stack when the machine-check exception is generated is directly associated with the
error. When this flag is cleared, the instruction pointed to may not be associated with the error.

• MCIP (machine check in progress) flag, bit 2 — Indicates (when set) that a machine-check exception was
generated. Software can set or clear this flag. The occurrence of a second Machine-Check Event while MCIP is
set will cause the processor to enter a shutdown state. For information on processor behavior in the shutdown
state, please refer to the description in Chapter 6, “Interrupt and Exception Handling”: “Interrupt 8—Double
Fault Exception (#DF)”.

• LMCE_S (local machine check exception signaled), bit 3 — Indicates (when set) that a local machine-
check exception was generated. This indicates that the current machine-check event was delivered to only
this logical processor.

Bits 63:04 in IA32_MCG_STATUS are reserved. An attempt to write to IA32_MCG_STATUS with any value other
than 0 would result in #GP.

...

15.3.1.4 IA32_MCG_EXT_CTL MSR
The IA32_MCG_EXT_CTL MSR is present if the capability flag MCG_LMCE_P is set in the IA32_MCG_CAP MSR.
IA32_MCG_EXT_CTL.LMCE_EN (bit 0) allows the processor to signal some MCEs to only a single logical processor
in the system.
If MCG_LMCE_P is not set in IA32_MCG_CAP, or platform software has not enabled LMCE by setting
IA32_FEATURE_CONTROL.LMCE_ON (bit 20), any attempt to write or read IA32_MCG_EXT_CTL will result in
#GP.
The IA32_MCG_EXT_CTL MSR is cleared on RESET.
Figure Figure 15-4 shows the layout of the IA32_MCG_EXT_CTL register

where
• LMCE_EN (local machine check exception enable) flag, bit 0 - System software sets this to allow

hardware to signal some MCEs to only a single logical processor. System software can set LMCE_EN only if the
platform software has configured IA32_FEATURE_CONTROL as described in Section 15.3.1.5.

15.3.1.5 Enabling Local Machine Check
The intended usage of LMCE requires proper configuration by both platform software and system software. Plat-
form software can turn LMCE on by setting bit 20 (LMCE_ON) in IA32_FEATURE_CONTROL MSR (MSR address
3AH).
System software must ensure that both IA32_FEATURE_CONTROL.Lock (bit 0)and
IA32_FEATURE_CONTROL.LMCE_ON (bit 20) are set before attempting to set IA32_MCG_EXT_CTL.LMCE_EN (bit

Figure 15-4 IA32_MCG_EXT_CTL Register

63 0

Reserved

1

LMCE_EN - system software control to enable/disable LMCE

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 26

0). When system software has enabled LMCE, then hardware will determine if a particular error can be delivered
only to a single logical processor. Software should make no assumptions about the type of error that hardware can
choose to deliver as LMCE. The severity and override rules stay the same as described in Table 15-7 to determine
the recovery actions.

...

15.3.2.2 IA32_MCi_STATUS MSRS
Each IA32_MCi_STATUS MSR contains information related to a machine-check error if its VAL (valid) flag is set
(see Figure Figure 15-6). Software is responsible for clearing IA32_MCi_STATUS MSRs by explicitly writing 0s to
them; writing 1s to them causes a general-protection exception.

NOTE
Figure Figure 15-6 depicts the IA32_MCi_STATUS MSR when IA32_MCG_CAP[24] = 1,
IA32_MCG_CAP[11] = 1 and IA32_MCG_CAP[10] = 1. When IA32_MCG_CAP[24] = 0 and
IA32_MCG_CAP[11] = 1, bits 56:55 is reserved and bits 54:53 for threshold-based error
reporting. When IA32_MCG_CAP[11] = 0, bits 56:53 are part of the “Other Information” field. The
use of bits 54:53 for threshold-based error reporting began with Intel Core Duo processors, and is
currently used for cache memory. See Section 15.4, “Enhanced Cache Error reporting,” for more
information. When IA32_MCG_CAP[10] = 0, bits 52:38 are part of the “Other Information” field.
The use of bits 52:38 for corrected MC error count is introduced with Intel 64 processor on which
CPUID reports DisplayFamily_DisplayModel as 06H_1AH.

Where:
• MCA (machine-check architecture) error code field, bits 15:0 — Specifies the machine-check archi-

tecture-defined error code for the machine-check error condition detected. The machine-check architecture-
defined error codes are guaranteed to be the same for all IA-32 processors that implement the machine-check
architecture. See Section 15.9, “Interpreting the MCA Error Codes,” and Chapter 16, “Interpreting Machine-
Check Error Codes”, for information on machine-check error codes.

Figure 15-6 IA32_MCi_STATUS Register

63

Threshold-based error status (54:53)*
AR — Recovery action required for UCR error (55)**
S — Signaling an uncorrected recoverable (UCR) error (56)**
PCC — Processor context corrupted (57)

37 32 31 16 0

P
C

AE

ADDRV — MCi_ADDR register valid (58)
MISCV — MCi_MISC register valid (59)
EN — Error reporting enabled (60)
UC — Uncorrected error (61)
OVER — Error overflow (62)
VAL — MCi_STATUS register valid (63)

C

MCA Error Code
U S

R
Other MSCOD Model

54 53 3862 61 60 59 58 57 56 55 52 15

V
A
L

O
V
E
R

C N Specific Error CodeInfo
Corrected Error
Count

* When IA32_MCG_CAP[11] (MCG_TES_P) is not set, these bits are model-specific
 (part of “Other Information”).

** When IA32_MCG_CAP[11] or IA32_MCG_CAP[24] are not set, these bits are reserved, or
 model-specific (part of “Other Information”).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

• Model-specific error code field, bits 31:16 — Specifies the model-specific error code that uniquely
identifies the machine-check error condition detected. The model-specific error codes may differ among IA-32
processors for the same machine-check error condition. See Chapter 16, “Interpreting Machine-Check Error
Codes”for information on model-specific error codes.

• Reserved, Error Status, and Other Information fields, bits 56:32 —

• Bits 37:32 always contain “Other Information” that is implementation-specific and is not part of the
machine-check architecture. Software that is intended to be portable among IA-32 processors should
not rely on these values.

• If IA32_MCG_CAP[10] is 0, bits 52:38 also contain “Other Information” (in the same sense as bits
37:32).

• If IA32_MCG_CAP[10] is 1, bits 52:38 are architectural (not model-specific). In this case, bits 52:38
reports the value of a 15 bit counter that increments each time a corrected error is observed by the
MCA recording bank. This count value will continue to increment until cleared by software. The most
significant bit, 52, is a sticky count overflow bit.

• If IA32_MCG_CAP[11] is 0, bits 56:53 also contain “Other Information” (in the same sense).

• If IA32_MCG_CAP[11] is 1, bits 56:53 are architectural (not model-specific). In this case, bits 56:53
have the following functionality:

• If IA32_MCG_CAP[24] is 0, bits 56:55 are reserved.

• If IA32_MCG_CAP[24] is 1, bits 56:55 are defined as follows:

• S (Signaling) flag, bit 56 - Signals the reporting of UCR errors in this MC bank. See Section 15.6.2
for additional detail.

• AR (Action Required) flag, bit 55 - Indicates (when set) that MCA error code specific recovery
action must be performed by system software at the time this error was signaled. See Section
15.6.2 for additional detail.

• If the UC bit (Figure Figure 15-6) is 1, bits 54:53 are undefined.

• If the UC bit (Figure Figure 15-6) is 0, bits 54:53 indicate the status of the hardware structure
that reported the threshold-based error. See Table Table 15-1.

• PCC (processor context corrupt) flag, bit 57 — Indicates (when set) that the state of the processor might
have been corrupted by the error condition detected and that reliable restarting of the processor may not be
possible. When clear, this flag indicates that the error did not affect the processor’s state. Software restarting
might be possible.

• ADDRV (IA32_MCi_ADDR register valid) flag, bit 58 — Indicates (when set) that the IA32_MCi_ADDR
register contains the address where the error occurred (see Section 15.3.2.3, “IA32_MCi_ADDR MSRs”).
When clear, this flag indicates that the IA32_MCi_ADDR register is either not implemented or does not contain
the address where the error occurred. Do not read these registers if they are not implemented in the
processor.

Table 15-1 Bits 54:53 in IA32_MCi_STATUS MSRs when IA32_MCG_CAP[11] = 1 and UC = 0
Bits 54:53 Meaning

00 No tracking - No hardware status tracking is provided for the structure reporting this event.

01 Green - Status tracking is provided for the structure posting the event; the current status is green (below threshold).
For more information, see Section 15.4, “Enhanced Cache Error reporting”.

10 Yellow - Status tracking is provided for the structure posting the event; the current status is yellow (above threshold).
For more information, see Section 15.4, “Enhanced Cache Error reporting”.

11 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 28

• MISCV (IA32_MCi_MISC register valid) flag, bit 59 — Indicates (when set) that the IA32_MCi_MISC
register contains additional information regarding the error. When clear, this flag indicates that the
IA32_MCi_MISC register is either not implemented or does not contain additional information regarding the
error. Do not read these registers if they are not implemented in the processor.

• EN (error enabled) flag, bit 60 — Indicates (when set) that the error was enabled by the associated EEj bit
of the IA32_MCi_CTL register.

• UC (error uncorrected) flag, bit 61 — Indicates (when set) that the processor did not or was not able to
correct the error condition. When clear, this flag indicates that the processor was able to correct the error
condition.

• OVER (machine check overflow) flag, bit 62 — Indicates (when set) that a machine-check error occurred
while the results of a previous error were still in the error-reporting register bank (that is, the VAL bit was
already set in the IA32_MCi_STATUS register). The processor sets the OVER flag and software is responsible
for clearing it. In general, enabled errors are written over disabled errors, and uncorrected errors are written
over corrected errors. Uncorrected errors are not written over previous valid uncorrected errors. For more
information, see Section 15.3.2.2.1, “Overwrite Rules for Machine Check Overflow”.

• VAL (IA32_MCi_STATUS register valid) flag, bit 63 — Indicates (when set) that the information within
the IA32_MCi_STATUS register is valid. When this flag is set, the processor follows the rules given for the
OVER flag in the IA32_MCi_STATUS register when overwriting previously valid entries. The processor sets the
VAL flag and software is responsible for clearing it.

...

15.3.2.5 IA32_MCi_CTL2 MSRs
The IA32_MCi_CTL2 MSR provides the programming interface to use corrected MC error signaling capability that
is indicated by IA32_MCG_CAP[10] = 1. Software must check for the presence of IA32_MCi_CTL2 on a per-bank
basis.
When IA32_MCG_CAP[10] = 1, the IA32_MCi_CTL2 MSR for each bank exists, i.e. reads and writes to these MSR
are supported. However, signaling interface for corrected MC errors may not be supported in all banks.
The layout of IA32_MCi_CTL2 is shown in Figure Figure 15-9:

• Corrected error count threshold, bits 14:0 — Software must initialize this field. The value is compared
with the corrected error count field in IA32_MCi_STATUS, bits 38 through 52. An overflow event is signaled to
the CMCI LVT entry (see Table 10-1) in the APIC when the count value equals the threshold value. The new
LVT entry in the APIC is at 02F0H offset from the APIC_BASE. If CMCI interface is not supported for a
particular bank (but IA32_MCG_CAP[10] = 1), this field will always read 0.

• CMCI_EN (Corrected error interrupt enable/disable/indicator), bits 30 — Software sets this bit to
enable the generation of corrected machine-check error interrupt (CMCI). If CMCI interface is not supported

Figure 15-9 IA32_MCi_CTL2 Register

CMCI_EN—Enable/disable CMCI

63 15

Reserved

29

Corrected error count threshold

01431 30

Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

for a particular bank (but IA32_MCG_CAP[10] = 1), this bit is writeable but will always return 0 for that bank.
This bit also indicates CMCI is supported or not supported in the corresponding bank. See Section 15.5 for
details of software detection of CMCI facility.

Some microarchitectural sub-systems that are the source of corrected MC errors may be shared by more than one
logical processors. Consequently, the facilities for reporting MC errors and controlling mechanisms may be shared
by more than one logical processors. For example, the IA32_MCi_CTL2 MSR is shared between logical processors
sharing a processor core. Software is responsible to program IA32_MCi_CTL2 MSR in a consistent manner with
CMCI delivery and usage.
After processor reset, IA32_MCi_CTL2 MSRs are zero’ed.

...

15.8 MACHINE-CHECK INITIALIZATION
To use the processors machine-check architecture, software must initialize the processor to activate the machine-
check exception and the error-reporting mechanism.
Example Example 15-1 gives pseudocode for performing this initialization. This pseudocode checks for the exis-
tence of the machine-check architecture and exception; it then enables machine-check exception and the error-
reporting register banks. The pseudocode shown is compatible with the Pentium 4, Intel Xeon, Intel Atom, P6
family, and Pentium processors.
Following power up or power cycling, IA32_MCi_STATUS registers are not guaranteed to have valid data until
after they are initially cleared to zero by software (as shown in the initialization pseudocode in Example Example
15-1). In addition, when using P6 family processors, software must set MCi_STATUS registers to zero when doing
a soft-reset.

Example 15-1 Machine-Check Initialization Pseudocode

Check CPUID Feature Flags for MCE and MCA support
IF CPU supports MCE
THEN

IF CPU supports MCA
THEN

IF (IA32_MCG_CAP.MCG_CTL_P = 1)
(* IA32_MCG_CTL register is present *)
THEN

IA32_MCG_CTL ← FFFFFFFFFFFFFFFFH;
(* enables all MCA features *)

FI

IF (IA32_MCG_CAP.MCG_LMCE_P = 1 and IA32_FEATURE_CONTROL.LOCK = 1 and IA32_FEATURE_CONTROL.LMCE_ON= 1)
(* IA32_MCG_EXT_CTL register is present and platform has enabled LMCE to permit system software to use LMCE *)
THEN

IA32_MCG_EXT_CTL ← IA32_MCG_EXT_CTL | 01H;
(* System software enables LMCE capability for hardware to signal MCE to a single logical processor*)

FI

(* Determine number of error-reporting banks supported *)
COUNT← IA32_MCG_CAP.Count;
MAX_BANK_NUMBER ← COUNT - 1;

IF (Processor Family is 6H and Processor EXTMODEL:MODEL is less than 1AH)
THEN

(* Enable logging of all errors except for MC0_CTL register *)
FOR error-reporting banks (1 through MAX_BANK_NUMBER)
DO

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 30

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;
OD

ELSE
(* Enable logging of all errors including MC0_CTL register *)
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;
OD

FI

(* BIOS clears all errors only on power-on reset *)
IF (BIOS detects Power-on reset)
THEN

FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_STATUS ← 0;
OD

ELSE
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

(Optional for BIOS and OS) Log valid errors
(OS only) IA32_MCi_STATUS ← 0;

OD

FI
FI

Setup the Machine Check Exception (#MC) handler for vector 18 in IDT

Set the MCE bit (bit 6) in CR4 register to enable Machine-Check Exceptions
FI

...

15.9.1 Simple Error Codes
Table Table 15-8 shows the simple error codes. These unique codes indicate global error information.

Table 15-8 IA32_MCi_Status [15:0] Simple Error Code Encoding
Error Code Binary Encoding Meaning

No Error 0000 0000 0000 0000 No error has been reported to this bank of error-reporting
registers.

Unclassified 0000 0000 0000 0001 This error has not been classified into the MCA error classes.

Microcode ROM Parity Error 0000 0000 0000 0010 Parity error in internal microcode ROM

External Error 0000 0000 0000 0011 The BINIT# from another processor caused this processor to
enter machine check.1

FRC Error 0000 0000 0000 0100 FRC (functional redundancy check) master/slave error

Internal Parity Error 0000 0000 0000 0101 Internal parity error.

SMM Handler Code Access
Violation

0000 0000 0000 0110 An attempt was made by the SMM Handler to execute
outside the ranges specified by SMRR.

Internal Timer Error 0000 0100 0000 0000 Internal timer error.

I/O Error 0000 1110 0000 1011 generic I/O error.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 31

...

15.9.3.1 Architecturally Defined SRAO Errors
The following two SRAO errors are architecturally defined.
• UCR Errors detected by memory controller scrubbing; and
• UCR Errors detected during L3 cache (L3) explicit writebacks.
The MCA error code encodings for these two architecturally-defined UCR errors corresponds to sub-classes of
compound MCA error codes (see Table 15-9). Their values and compound encoding format are given in Table Table
15-15.

Table Table 15-16 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally defined SRAO errors.

For both the memory scrubbing and L3 explicit writeback errors, the ADDRV and MISCV flags in the
IA32_MCi_STATUS register are set to indicate that the offending physical address information is available from
the IA32_MCi_MISC and the IA32_MCi_ADDR registers. For the memory scrubbing and L3 explicit writeback
errors, the address mode in the IA32_MCi_MISC register should be set as physical address mode (010b) and the
address LSB information in the IA32_MCi_MISC register should indicate the lowest valid address bit in the
address information provided from the IA32_MCi_ADDR register.

Internal Unclassified 0000 01xx xxxx xxxx Internal unclassified errors. 2

NOTES:
1. BINIT# assertion will cause a machine check exception if the processor (or any processor on the same external bus) has BINIT#

observation enabled during power-on configuration (hardware strapping) and if machine check exceptions are enabled (by setting
CR4.MCE = 1).

2. At least one X must equal one. Internal unclassified errors have not been classified.

Table 15-8 IA32_MCi_Status [15:0] Simple Error Code Encoding (Contd.)

Table 15-15 MCA Compound Error Code Encoding for SRAO Errors
Type MCACOD Value MCA Error Code Encoding1

Memory Scrubbing 0xC0 - 0xCF 0000_0000_1100_CCCC

000F 0000 1MMM CCCC (Memory Controller Error), where

Memory subfield MMM = 100B (memory scrubbing)

Channel subfield CCCC = channel # or generic

L3 Explicit Writeback 0x17A 0000_0001_0111_1010

000F 0001 RRRR TTLL (Cache Hierarchy Error) where

Request subfields RRRR = 0111B (Eviction)

Transaction Type subfields TT = 10B (Generic)

Level subfields LL = 10B

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error is 0, indicating "normal" filtering.

Table 15-16 IA32_MCi_STATUS Values for SRAO Errors
SRAO Error Valid OVER UC EN MISCV ADDRV PCC S AR MCACOD

Memory Scrubbing 1 0 1 1 1 1 0 1 0 0xC0-0xCF

L3 Explicit Writeback 1 0 1 1 1 1 0 1 0 0x17A

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 32

MCE signal is broadcast to all logical processors as outlined in Section 15.10.4.1. If LMCE is supported and
enabled, some errors (not limited to UCR errors) may be delivered to only a single logical processor. System soft-
ware should consult IA32_MCG_STATUS.LMCE_S to determine if the MCE signaled is only to this logical processor.
IA32_MCi_STATUS banks can be shared by logical processors within a core or within the same package. So
several logical processors may find an SRAO error in the shared IA32_MCi_STATUS bank but other processors do
not find it in any of the IA32_MCi_STATUS banks. Table Table 15-17 shows the RIPV and EIPV flag indication in the
IA32_MCG_STATUS register for the memory scrubbing and L3 explicit writeback errors on both the reporting and
non-reporting logical processors.

15.9.3.2 Architecturally Defined SRAR Errors
The following two SRAR errors are architecturally defined.
• UCR Errors detected on data load; and
• UCR Errors detected on instruction fetch.
The MCA error code encodings for these two architecturally-defined UCR errors corresponds to sub-classes of
compound MCA error codes (see Table 15-9). Their values and compound encoding format are given in Table Table
15-18.

Table Table 15-19 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally defined SRAR errors.

Table 15-17 IA32_MCG_STATUS Flag Indication for SRAO Errors
SRAO Type Reporting Logical Processors Non-reporting Logical Processors

RIPV EIPV RIPV EIPV

Memory Scrubbing 1 0 1 0

L3 Explicit Writeback 1 0 1 0

Table 15-18 MCA Compound Error Code Encoding for SRAR Errors
Type MCACOD Value MCA Error Code Encoding1

Data Load 0x134 0000_0001_0011_0100

000F 0001 RRRR TTLL (Cache Hierarchy Error), where

Request subfield RRRR = 0011B (Data Load)

Transaction Type subfield TT= 01B (Data)

Level subfield LL = 00B (Level 0)

Instruction Fetch 0x150 0000_0001_0101_0000

000F 0001 RRRR TTLL (Cache Hierarchy Error), where

Request subfield RRRR = 0101B (Instruction Fetch)

Transaction Type subfield TT= 00B (Instruction)

Level subfield LL = 00B (Level 0)

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error is 0, indicating "normal" filtering.

Table 15-19 IA32_MCi_STATUS Values for SRAR Errors
SRAR Error Valid OVER UC EN MISCV ADDRV PCC S AR MCACOD

Data Load 1 0 1 1 1 1 0 1 1 0x134

Instruction Fetch 1 0 1 1 1 1 0 1 1 0x150

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 33

For both the data load and instruction fetch errors, the ADDRV and MISCV flags in the IA32_MCi_STATUS register
are set to indicate that the offending physical address information is available from the IA32_MCi_MISC and the
IA32_MCi_ADDR registers. For the memory scrubbing and L3 explicit writeback errors, the address mode in the
IA32_MCi_MISC register should be set as physical address mode (010b) and the address LSB information in the
IA32_MCi_MISC register should indicate the lowest valid address bit in the address information provided from the
IA32_MCi_ADDR register.
MCE signal is broadcast to all logical processors on the system on which the UCR errors are supported, except
when the processor supports LMCE and LMCE is enabled by system software (see Section 15.3.1.5). The
IA32_MCG_STATUS MSR allows system software to distinguish the affected logical processor of an SRAR error
amongst logical processors that observed SRAR via MCi_STATUS bank.

...

15.9.4 Multiple MCA Errors
When multiple MCA errors are detected within a certain detection window, the processor may aggregate the
reporting of these errors together as a single event, i.e. a single machine exception condition. If this occurs,
system software may find multiple MCA errors logged in different MC banks on one logical processor or find
multiple MCA errors logged across different processors for a single machine check broadcast event. In order to
handle multiple UCR errors reported from a single machine check event and possibly recover from multiple errors,
system software may consider the following:
• Whether it can recover from multiple errors is determined by the most severe error reported on the system.

If the most severe error is found to be an unrecoverable error (VAL=1, UC=1, PCC=1 and EN=1) after system
software examines the MC banks of all processors to which the MCA signal is broadcast, recovery from the
multiple errors is not possible and system software needs to reset the system.

• When multiple recoverable errors are reported and no other fatal condition (e.g.. overflowed condition for
SRAR error) is found for the reported recoverable errors, it is possible for system software to recover from the
multiple recoverable errors by taking necessary recovery action for each individual recoverable error.
However, system software can no longer expect one to one relationship with the error information recorded in
the IA32_MCi_STATUS register and the states of the RIPV and EIPV flags in the IA32_MCG_STATUS register
as the states of the RIPV and the EIPV flags in the IA32_MCG_STATUS register may indicate the information
for the most severe error recorded on the processor. System software is required to use the RIPV flag
indication in the IA32_MCG_STATUS register to make a final decision of recoverability of the errors and find
the restart-ability requirement after examining each IA32_MCi_STATUS register error information in the MC
banks.
In certain cases where system software observes more than one SRAR error logged for a single logical
processor, it can no longer rely on affected threads as specified in Table 15-20 above. System software is
recommended to reset the system if this condition is observed.

...

15.10.4.1 Machine-Check Exception Handler for Error Recovery
When writing a machine-check exception (MCE) handler to support software recovery from Uncorrected Recover-
able (UCR) errors, consider the following:
• When IA32_MCG_CAP [24] is zero, there are no recoverable errors supported and all machine-check are fatal

exceptions. The logging of status and error information is therefore a baseline implementation requirement.
• When IA32_MCG_CAP [24] is 1, certain uncorrected errors called uncorrected recoverable (UCR) errors may

be software recoverable. The handler can analyze the reported error information, and in some cases attempt
to recover from the uncorrected error and continue execution.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 34

• For processors on which CPUID reports DisplayFamily_DisplayModel as 06H_0EH and onward, an MCA signal
is broadcast to all logical processors in the system (see CPUID instruction in Chapter 3, “Instruction Set
Reference, A-M” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). Due to
the potentially shared machine check MSR resources among the logical processors on the same package/core,
the MCE handler may be required to synchronize with the other processors that received a machine check
error and serialize access to the machine check registers when analyzing, logging and clearing the information
in the machine check registers.

— On processors that indicate ability for local machine-check exception (MCG_LMCE_P), hardware can
choose to report the error to only a single logical processor if system software has enabled LMCE by
setting IA32_MCG_EXT_CTL[LMCE_EN] = 1 as outlined in Section 15.3.1.5.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error information in the register
is valid. If this flag is clear, the registers in that bank do not contain valid error information and should not be
checked.

• The MCE handler is primarily responsible for processing uncorrected errors. The UC flag in each
IA32_MCi_Status register indicates whether the reported error was corrected (UC=0) or uncorrected (UC=1).
The MCE handler can optionally log and clear the corrected errors in the MC banks if it can implement software
algorithm to avoid the undesired race conditions with the CMCI or CMC polling handler.

• For uncorrectable errors, the EIPV flag in the IA32_MCG_STATUS register indicates (when set) that the
instruction pointed to by the instruction pointer pushed onto the stack when the machine-check exception is
generated is directly associated with the error. When this flag is cleared, the instruction pointed to may not be
associated with the error.

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-check exception was
generated. When a machine check exception is generated, it is expected that the MCIP flag in the
IA32_MCG_STATUS register is set to 1. If it is not set, this machine check was generated by either an INT 18
instruction or some piece of hardware signaling an interrupt with vector 18.

When IA32_MCG_CAP [24] is 1, the following rules can apply when writing a machine check exception (MCE)
handler to support software recovery:
• The PCC flag in each IA32_MCi_STATUS register indicates whether recovery from the error is possible for

uncorrected errors (UC=1). If the PCC flag is set for uncorrected errors (UC=1), recovery is not possible.
When recovery is not possible, the MCE handler typically records the error information and signals the
operating system to reset the system.

• The RIPV flag in the IA32_MCG_STATUS register indicates whether restarting the program execution from the
instruction pointer saved on the stack for the machine check exception is possible. When the RIPV is set,
program execution can be restarted reliably when recovery is possible. If the RIPV flag is not set, program
execution cannot be restarted reliably. In this case the recovery algorithm may involve terminating the
current program execution and resuming an alternate thread of execution upon return from the machine
check handler when recovery is possible. When recovery is not possible, the MCE handler signals the
operating system to reset the system.

• When the EN flag is zero but the VAL and UC flags are one in the IA32_MCi_STATUS register, the reported
uncorrected error in this bank is not enabled. As uncorrected errors with the EN flag = 0 are not the source of
machine check exceptions, the MCE handler should log and clear non-enabled errors when the S bit is set and
should continue searching for enabled errors from the other IA32_MCi_STATUS registers. Note that when
IA32_MCG_CAP [24] is 0, any uncorrected error condition (VAL =1 and UC=1) including the one with the EN
flag cleared are fatal and the handler must signal the operating system to reset the system. For the errors that
do not generate machine check exceptions, the EN flag has no meaning. See Chapter 19: Table 19-15 to find
the errors that do not generate machine check exceptions.

• When the VAL flag is one, the UC flag is one, the EN flag is one and the PCC flag is zero in the
IA32_MCi_STATUS register, the error in this bank is an uncorrected recoverable (UCR) error. The MCE handler
needs to examine the S flag and the AR flag to find the type of the UCR error for software recovery and
determine if software error recovery is possible.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 35

• When both the S and the AR flags are clear in the IA32_MCi_STATUS register for the UCR error (VAL=1,
UC=1, EN=x and PCC=0), the error in this bank is an uncorrected no-action required error (UCNA). UCNA
errors are uncorrected but do not require any OS recovery action to continue execution. These errors indicate
that some data in the system is corrupt, but that data has not been consumed and may not be consumed. If
that data is consumed a non-UNCA machine check exception will be generated. UCNA errors are signaled in
the same way as corrected machine check errors and the CMCI and CMC polling handler is primarily
responsible for handling UCNA errors. Like corrected errors, the MCA handler can optionally log and clear
UCNA errors as long as it can avoid the undesired race condition with the CMCI or CMC polling handler. As
UCNA errors are not the source of machine check exceptions, the MCA handler should continue searching for
uncorrected or software recoverable errors in all other MC banks.

• When the S flag in the IA32_MCi_STATUS register is set for the UCR error ((VAL=1, UC=1, EN=1 and PCC=0),
the error in this bank is software recoverable and it was signaled through a machine-check exception. The AR
flag in the IA32_MCi_STATUS register further clarifies the type of the software recoverable errors.

• When the AR flag in the IA32_MCi_STATUS register is clear for the software recoverable error (VAL=1, UC=1,
EN=1, PCC=0 and S=1), the error in this bank is a software recoverable action optional (SRAO) error. The
MCE handler and the operating system can analyze the IA32_MCi_STATUS [15:0] to implement MCA error
code specific optional recovery action, but this recovery action is optional. System software can resume the
program execution from the instruction pointer saved on the stack for the machine check exception when the
RIPV flag in the IA32_MCG_STATUS register is set.

• When the OVER flag in the IA32_MCi_STATUS register is set for the SRAO error (VAL=1, UC=1, EN=1, PCC=0,
S=1 and AR=0), the MCE handler cannot take recovery action as the information of the SRAO error in the
IA32_MCi_STATUS register was potentially lost due to the overflow condition. Since the recovery action for
SRAO errors is optional, restarting the program execution from the instruction pointer saved on the stack for
the machine check exception is still possible for the overflowed SRAO error if the RIPV flag in the
IA32_MCG_STATUS is set.

• When the AR flag in the IA32_MCi_STATUS register is set for the software recoverable error (VAL=1, UC=1,
EN=1, PCC=0 and S=1), the error in this bank is a software recoverable action required (SRAR) error. The
MCE handler and the operating system must take recovery action in order to continue execution after the
machine-check exception. The MCA handler and the operating system need to analyze the IA32_MCi_STATUS
[15:0] to determine the MCA error code specific recovery action. If no recovery action can be performed, the
operating system must reset the system.

• When the OVER flag in the IA32_MCi_STATUS register is set for the SRAR error (VAL=1, UC=1, EN=1, PCC=0,
S=1 and AR=1), the MCE handler cannot take recovery action as the information of the SRAR error in the
IA32_MCi_STATUS register was potentially lost due to the overflow condition. Since the recovery action for
SRAR errors must be taken, the MCE handler must signal the operating system to reset the system.

• When the MCE handler cannot find any uncorrected (VAL=1, UC=1 and EN=1) or any software recoverable
errors (VAL=1, UC=1, EN=1, PCC=0 and S=1) in any of the IA32_MCi banks of the processors, this is an
unexpected condition for the MCE handler and the handler should signal the operating system to reset the
system.

• Before returning from the machine-check exception handler, software must clear the MCIP flag in the
IA32_MCG_STATUS register. The MCIP flag is used to detect recursion. The machine-check architecture does
not support recursion. When the processor receives a machine check when MCIP is set, it automatically enters
the shutdown state.

Example Example 15-4 gives pseudocode for an MC exception handler that supports recovery of UCR.

Example 15-4 Machine-Check Error Handler Pseudocode Supporting UCR

MACHINE CHECK HANDLER: (* Called from INT 18 handler *)
NOERROR = TRUE;
ProcessorCount = 0;
IF CPU supports MCA

THEN

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 36

RESTARTABILITY = TRUE;
IF (Processor Family = 6 AND DisplayModel ≥ 0EH) OR (Processor Family > 6)

THEN
IF (MCG_LMCE = 1)

MCA_BROADCAST = FALSE;
ELSE

MCA_BROADCAST = TRUE;
FI;
Acquire SpinLock;
ProcessorCount++; (* Allowing one logical processor at a time to examine machine check registers *)
CALL MCA ERROR PROCESSING; (* returns RESTARTABILITY and NOERROR *)

ELSE
MCA_BROADCAST = FALSE;
(* Implement a rendezvous mechanism with the other processors if necessary *)
CALL MCA ERROR PROCESSING;

FI;
ELSE (* Pentium(R) processor compatible *)

READ P5_MC_ADDR
READ P5_MC_TYPE;
RESTARTABILITY = FALSE;

FI;

IF NOERROR = TRUE
 THEN

IF NOT (MCG_RIPV = 1 AND MCG_EIPV = 0)
THEN

RESTARTABILITY = FALSE;
FI

FI;

IF RESTARTABILITY = FALSE
THEN

Report RESTARTABILITY to console;
Reset system;

FI;

IF MCA_BROADCAST = TRUE
THEN

IF ProcessorCount = MAX_PROCESSORS
 AND NOERROR = TRUE

THEN
Report RESTARTABILITY to console;
Reset system;

FI;
Release SpinLock;
Wait till ProcessorCount = MAX_PROCESSRS on system;
(* implement a timeout and abort function if necessary *)

FI;
CLEAR IA32_MCG_STATUS;
RESUME Execution;
(* End of MACHINE CHECK HANDLER*)

MCA ERROR PROCESSING: (* MCA Error Processing Routine called from MCA Handler *)
IF MCIP flag in IA32_MCG_STATUS = 0

THEN (* MCIP=0 upon MCA is unexpected *)
RESTARTABILITY = FALSE;

FI;
FOR each bank of machine-check registers

DO

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 37

CLEAR_MC_BANK = FALSE;
READ IA32_MCi_STATUS;
IF VAL Flag in IA32_MCi_STATUS = 1

THEN
IF UC Flag in IA32_MCi_STATUS = 1

THEN
IF Bit 24 in IA32_MCG_CAP = 0

THEN (* the processor does not support software error recovery *)
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI;
(* the processor supports software error recovery *)
IF EN Flag in IA32_MCi_STATUS = 0 AND OVER Flag in IA32_MCi_STATUS=0

THEN (* It is a spurious MCA Log. Log and clear the register *)
CLEAR_MC_BANK = TRUE;
GOTO LOG MCA REGISTER;

FI;
IF PCC Flag in IA32_MCi_STATUS = 1

THEN (* processor context might have been corrupted *)
RESTARTABILITY = FALSE;

ELSE (* It is a uncorrected recoverable (UCR) error *)
IF S Flag in IA32_MCi_STATUS = 0

THEN
IF AR Flag in IA32_MCi_STATUS = 0

THEN (* It is a uncorrected no action required (UCNA) error *)
GOTO CONTINUE; (* let CMCI and CMC polling handler to process *)

ELSE
FESTARTABILITY = FALSE; (* S=0, AR=1 is illegal *)

FI
FI;
IF RESTARTABILITY = FALSE

THEN (* no need to take recovery action if RESTARTABILITY is already false *)
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI;
(* S in IA32_MCi_STATUS = 1 *)
IF AR Flag in IA32_MCi_STATUS = 1

THEN (* It is a software recoverable and action required (SRAR) error *)
IF OVER Flag in IA32_MCi_STATUS = 1

THEN
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI
IF MCACOD Value in IA32_MCi_STATUS is recognized
 AND Current Processor is an Affected Processor

THEN
Implement MCACOD specific recovery action;
CLEAR_MC_BANK = TURE;

ELSE
RESTARTABILITY = FALSE;

FI;
ELSE (* It is a software recoverable and action optional (SRAO) error *)

IF OVER Flag in IA32_MCi_STATUS = 0 AND
 MCACOD in IA32_MCi_STATUS is recognized

THEN
Implement MCACOD specific recovery action;

FI;
CLEAR_MC_BANK = TRUE;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 38

FI; AR
FI; PCC
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

ELSE (* It is a corrected error; continue to the next IA32_MCi_STATUS *)
GOTO CONTINUE;

FI; UC
FI; VAL

LOG MCA REGISTER:
SAVE IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_MISC;

FI;
IF ADDRV in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_ADDR;

FI;
IF CLEAR_MC_BANK = TRUE

THEN
SET all 0 to IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS

THEN
SET all 0 to IA32_MCi_MISC;

FI;
IF ADDRV in IA32_MCi_STATUS

THEN
SET all 0 to IA32_MCi_ADDR;

FI;
FI;
CONTINUE:

OD;
(*END FOR *)
RETURN;
(* End of MCA ERROR PROCESSING*)

...

8. Updates to Chapter 35, Volume 3C
Change bars show changes to Chapter 35 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...
This chapter list MSRs across Intel processor families. All MSRs listed can be read with the RDMSR and written
with the WRMSR instructions.

Register addresses are given in both hexadecimal and decimal. The register name is the mnemonic register name
and the bit description describes individual bits in registers.

Model specific registers and its bit-fields may be supported for a finite range of processor families/models. To
distinguish between different processor family and/or models, software must use CPUID.01H leaf function to
query the combination of DisplayFamily and DisplayModel to determine model-specific availability of MSRs (see
CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A). Table Table 35-1 lists the signature values of DisplayFamily and Display-
Model for various processor families or processor number series.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 39

Table 35-1 CPUID Signature Values of DisplayFamily_DisplayModel
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_4EH Future Generation Intel Core Processor

06_3DH Next Generation Intel Core Processor

06_3FH Next Generation Intel Xeon Processor

06_3CH, 06_45H, 06_46H 4th Generation Intel Core Processor and Intel Xeon Processor E3-1200 v3 Product Family based on
Haswell microarchitecture.

06_3EH Intel Xeon Processor E7-8800 v2/E7-4800 v2/E7-2800 v2 Family based on Ivy Bridge-EP
microarchitecture

06_3EH Intel Xeon Processor E5-1600 v2/E5-2400 v2/E5-2600 v2 Product Families based on Ivy Bridge-EP
microarchitecture, Intel Core i7-49xx Processor Extreme Edition

06_3AH 3rd Generation Intel Core Processor and Intel Xeon Processor E3-1200 v2 Product Family based on
Ivy Bridge microarchitecture.

06_2DH Intel Xeon Processor E5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core
i7-39xx Processor Extreme Edition

06_2FH Intel Xeon Processor E7 Family

06_2AH Intel Xeon Processor E3-1200 Product Family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx
Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon Processor 3400, 3500, 5500 series

06_1DH Intel Xeon Processor MP 7400 series

06_17H Intel Xeon Processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000
series

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series,
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel
Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_4AH, 06_5AH, 06_5DH Future Intel Atom Processor Based on Silvermont Microarchitecture

06_37H Intel Atom Processor E3000 series

06_4DH Intel Atom Processor C2000 series

06_36H Intel Atom Processor S1000 Series

06_1CH, 06_26H, 06_27H,
06_35H, 06_36H

Intel Atom Processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D
processors

0F_03H, 0F_04H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 40

35.1 ARCHITECTURAL MSRS
Many MSRs have carried over from one generation of IA-32 processors to the next and to Intel 64 processors. A
subset of MSRs and associated bit fields, which do not change on future processor generations, are now consid-
ered architectural MSRs. For historical reasons (beginning with the Pentium 4 processor), these “architectural
MSRs” were given the prefix “IA32_”. Table Table 35-2 lists the architectural MSRs, their addresses, their current
names, their names in previous IA-32 processors, and bit fields that are considered architectural. MSR addresses
outside Table Table 35-2 and certain bitfields in an MSR address that may overlap with architectural MSR
addresses are model-specific. Code that accesses a machine specified MSR and that is executed on a processor
that does not support that MSR will generate an exception.

Architectural MSR or individual bit fields in an architectural MSR may be introduced or transitioned at the granu-
larity of certain processor family/model or the presence of certain CPUID feature flags. The right-most column of
Table Table 35-2 provides information on the introduction of each architectural MSR or its individual fields. This
information is expressed either as signature values of “DF_DM” (see Table Table 35-1) or via CPUID flags.

Certain bit field position may be related to the maximum physical address width, the value of which is expressed
as “MAXPHYWID” in Table Table 35-2. “MAXPHYWID” is reported by CPUID.8000_0008H leaf.

MSR address range between 40000000H - 400000FFH is marked as a specially reserved range. All existing and
future processors will not implement any features using any MSR in this range.

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor

06_01H Intel Pentium Pro Processor

05_01H, 05_02H, 05_04H Intel Pentium Processor, Intel Pentium Processor with MMX Technology

Table 35-1 CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series

Table 35-2 IA-32 Architectural MSRs

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

0H 0 IA32_P5_MC_ADDR (P5_MC_ADDR) See Section 35.18, “MSRs in Pentium
Processors.”

Pentium Processor
(05_01H)

1H 1 IA32_P5_MC_TYPE (P5_MC_TYPE) See Section 35.18, “MSRs in Pentium
Processors.”

DF_DM = 05_01H

6H 6 IA32_MONITOR_FILTER_SIZE See Section 8.10.5, “Monitor/Mwait
Address Range Determination.”

0F_03H

10H 16 IA32_TIME_STAMP_
COUNTER (TSC)

See Section 17.13, “Time-Stamp Counter.” 05_01H

17H 23 IA32_PLATFORM_ID
(MSR_PLATFORM_ID)

Platform ID (RO)
The operating system can use this MSR to
determine “slot” information for the
processor and the proper microcode update
to load.

06_01H

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 41

49:0 Reserved.

52:50 Platform Id (RO)

Contains information concerning the
intended platform for the processor.

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

1BH 27 IA32_APIC_BASE (APIC_BASE) 06_01H

7:0 Reserved

8 BSP flag (R/W)

9 Reserved

10 Enable x2APIC mode 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYWID - 1):12 APIC Base (R/W)

63: MAXPHYWID Reserved

3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64 Processor
(R/W)

If CPUID.01H: ECX[bit 5 or
bit 6] = 1

0 Lock bit (R/WO): (1 = locked). When set,
locks this MSR from being written, writes
to this bit will result in GP(0).

Note: Once the Lock bit is set, the contents
of this register cannot be modified.
Therefore the lock bit must be set after
configuring support

If CPUID.01H:ECX[bit 5 or
bit 6] = 1

for Intel Virtualization Technology and prior
to transferring control to an option ROM or
the OS. Hence, once the Lock bit is set, the
entire

IA32_FEATURE_CONTROL_MSR contents
are preserved across RESET when
PWRGOOD is not deasserted.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 42

1 Enable VMX inside SMX operation (R/WL):
This bit enables a system executive to use
VMX in conjunction with SMX to support
Intel® Trusted Execution Technology.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag and
SMX feature flag set (ECX bits 5 and 6
respectively).

If CPUID.01H:ECX[bit 5 and
bit 6] are set to 1

2 Enable VMX outside SMX operation (R/WL):
This bit enables VMX for system executive
that do not require SMX.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag set
(ECX bit 5).

If CPUID.01H:ECX[bit 5 or
bit 6] = 1

7:3 Reserved

14:8 SENTER Local Function Enables (R/WL):
When set, each bit in the field represents
an enable control for a corresponding
SENTER function. This bit is supported only
if CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[bit 6] = 1

15 SENTER Global Enable (R/WL): This bit must
be set to enable SENTER leaf functions.
This bit is supported only if
CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[bit 6] = 1

19:16 Reserved

20 LMCE On (R/WL): When set, system
software can program the MSRs associated
with LMCE to configure delivery of some
machine check exceptions to a single logical
processor.

63:21 Reserved

3BH 59 IA32_TSC_ADJUST Per Logical Processor TSC Adjust (R/Write
to clear)

If CPUID.(EAX=07H,
ECX=0H): EBX[1] = 1

63:0 THREAD_ADJUST:

Local offset value of the IA32_TSC for a
logical processor. Reset value is Zero. A
write to IA32_TSC will modify the local
offset in IA32_TSC_ADJUST and the
content of IA32_TSC, but does not affect
the internal invariant TSC hardware.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 43

79H 121 IA32_BIOS_UPDT_TRIG
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR instruction to this MSR
causes a microcode update to be loaded
into the processor. See Section 9.11.6,
“Microcode Update Loader.”

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

8BH 139 IA32_BIOS_SIGN_ID (BIOS_SIGN/
BBL_CR_D3)

BIOS Update Signature (RO)

Returns the microcode update signature
following the execution of CPUID.01H.

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

31:0 Reserved

63:32 It is recommended that this field be pre-
loaded with 0 prior to executing CPUID.

If the field remains 0 following the
execution of CPUID; this indicates that no
microcode update is loaded. Any non-zero
value is the microcode update signature.

9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration (R/W) If CPUID.01H: ECX[bit 5 or
bit 6] = 1

0 Valid (R/W)

1 Reserved

2 Controls SMI unblocking by VMXOFF (see
Section 34.14.4)

If IA32_VMX_MISC[bit 28])

11:3 Reserved

31:12 MSEG Base (R/W)

63:32 Reserved

9EH 158 IA32_SMBASE Base address of the logical processor’s
SMRAM image (RO, SMM only)

If IA32_VMX_MISC[bit 15])

C1H 193 IA32_PMC0 (PERFCTR0) General Performance Counter 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

C2H 194 IA32_PMC1 (PERFCTR1) General Performance Counter 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

C3H 195 IA32_PMC2 General Performance Counter 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

C4H 196 IA32_PMC3 General Performance Counter 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 44

C5H 197 IA32_PMC4 General Performance Counter 4 (R/W) If CPUID.0AH: EAX[15:8] >
4

C6H 198 IA32_PMC5 General Performance Counter 5 (R/W) If CPUID.0AH: EAX[15:8] >
5

C7H 199 IA32_PMC6 General Performance Counter 6 (R/W) If CPUID.0AH: EAX[15:8] >
6

C8H 200 IA32_PMC7 General Performance Counter 7 (R/W) If CPUID.0AH: EAX[15:8] >
7

E7H 231 IA32_MPERF Maximum Qualified Performance Clock
Counter (R/Write to clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_MCNT: C0 Maximum Frequency Clock
Count

Increments at fixed interval (relative to TSC
freq.) when the logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_APERF.

E8H 232 IA32_APERF Actual Performance Clock Counter (R/Write
to clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_ACNT: C0 Actual Frequency Clock
Count

Accumulates core clock counts at the
coordinated clock frequency, when the
logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_MPERF.

FEH 254 IA32_MTRRCAP (MTRRcap) MTRR Capability (RO) Section 11.11.2.1,
“IA32_MTRR_DEF_TYPE MSR.”

06_01H

7:0 VCNT: The number of variable memory
type ranges in the processor.

8 Fixed range MTRRs are supported when
set.

9 Reserved.

10 WC Supported when set.

11 SMRR Supported when set.

63:12 Reserved.

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector

63:16 Reserved.

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 45

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H

179H 377 IA32_MCG_CAP (MCG_CAP) Global Machine Check Capability (RO) 06_01H

7:0 Count: Number of reporting banks.

8 MCG_CTL_P: IA32_MCG_CTL is present if
this bit is set

9 MCG_EXT_P: Extended machine check
state registers are present if this bit is set

10 MCP_CMCI_P: Support for corrected MC
error event is present.

06_1AH

11 MCG_TES_P: Threshold-based error status
register are present if this bit is set.

15:12 Reserved

23:16 MCG_EXT_CNT: Number of extended
machine check state registers present.

24 MCG_SER_P: The processor supports
software error recovery if this bit is set.

25 Reserved.

26 MCG_ELOG_P: Indicates that the processor
allows platform firmware to be invoked
when an error is detected so that it may
provide additional platform specific
information in an ACPI format “Generic
Error Data Entry” that augments the data
included in machine check bank registers.

06_3EH

27 MCG_LMCE_P: Indicates that the processor
support extended state in
IA32_MCG_STATUS and associated
MSR necessary to configure Local
Machine Check Exception (LMCE).

06_3EH

63:28 Reserved.

17AH 378 IA32_MCG_STATUS (MCG_STATUS) Global Machine Check Status (R/W0) 06_01H

0 RIPV. Restart IP valid 06_01H

1 EIPV. Error IP valid 06_01H

2 MCIP. Machine check in progress 06_01H

3 LMCE_S. If IA32_MCG_CAP.LMCE_P
=1

63:4 Reserved.

17BH 379 IA32_MCG_CTL (MCG_CTL) Global Machine Check Control (R/W) 06_01H

180H-
185H

384-
389

Reserved 06_0EH1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 46

186H 390 IA32_PERFEVTSEL0 (PERFEVTSEL0) Performance Event Select Register 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

7:0 Event Select: Selects a performance event
logic unit.

15:8 UMask: Qualifies the microarchitectural
condition to detect on the selected event
logic.

16 USR: Counts while in privilege level is not
ring 0.

17 OS: Counts while in privilege level is ring 0.

18 Edge: Enables edge detection if set.

19 PC: enables pin control.

20 INT: enables interrupt on counter overflow.

21 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

22 EN: enables the corresponding performance
counter to commence counting when this
bit is set.

23 INV: invert the CMASK.

31:24 CMASK: When CMASK is not zero, the
corresponding performance counter
increments each cycle if the event count is
greater than or equal to the CMASK.

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 (PERFEVTSEL1) Performance Event Select Register 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

188H 392 IA32_PERFEVTSEL2 Performance Event Select Register 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

189H 393 IA32_PERFEVTSEL3 Performance Event Select Register 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

18AH-
197H

394-
407

Reserved 06_0EH2

198H 408 IA32_PERF_STATUS (RO) 0F_03H

15:0 Current performance State Value

63:16 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 47

199H 409 IA32_PERF_CTL (R/W) 0F_03H

15:0 Target performance State Value

31:16 Reserved.

32 IDA Engage. (R/W)

When set to 1: disengages IDA

06_0FH (Mobile)

63:33 Reserved.

19AH 410 IA32_CLOCK_MODULATION Clock Modulation Control (R/W)

See Section 14.7.3, “Software Controlled
Clock Modulation.”

0F_0H

0 Extended On-Demand Clock Modulation
Duty Cycle:

If CPUID.06H:EAX[5] = 1

3:1 On-Demand Clock Modulation Duty Cycle:
Specific encoded values for target duty
cycle modulation.

4 On-Demand Clock Modulation Enable: Set 1
to enable modulation.

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the processor’s thermal
sensors and thermal monitor.

See Section 14.7.2, “Thermal Monitor.”

0F_0H

0 High-Temperature Interrupt Enable

1 Low-Temperature Interrupt Enable

2 PROCHOT# Interrupt Enable

3 FORCEPR# Interrupt Enable

4 Critical Temperature Interrupt Enable

7:5 Reserved.

14:8 Threshold #1 Value

15 Threshold #1 Interrupt Enable

22:16 Threshold #2 Value

23 Threshold #2 Interrupt Enable

24 Power Limit Notification Enable If CPUID.06H:EAX[4] = 1

63:25 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 48

19CH 412 IA32_THERM_STATUS Thermal Status Information (RO)

Contains status information about the
processor’s thermal sensor and automatic
thermal monitoring facilities.

See Section 14.7.2, “Thermal Monitor”

0F_0H

0 Thermal Status (RO):

1 Thermal Status Log (R/W):

2 PROCHOT # or FORCEPR# event (RO)

3 PROCHOT # or FORCEPR# log (R/WC0)

4 Critical Temperature Status (RO)

5 Critical Temperature Status log (R/WC0)

6 Thermal Threshold #1 Status (RO) If CPUID.01H:ECX[8] = 1

7 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1

8 Thermal Threshold #2 Status (RO) If CPUID.01H:ECX[8] = 1

9 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1

10 Power Limitation Status (RO) If CPUID.06H:EAX[4] = 1

11 Power Limitation log (R/WC0) If CPUID.06H:EAX[4] = 1

15:12 Reserved.

22:16 Digital Readout (RO) If CPUID.06H:EAX[0] = 1

26:23 Reserved.

30:27 Resolution in Degrees Celsius (RO) If CPUID.06H:EAX[0] = 1

31 Reading Valid (RO) If CPUID.06H:EAX[0] = 1

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to
be enabled and disabled.

0 Fast-Strings Enable

When set, the fast-strings feature (for REP
MOVS and REP STORS) is enabled (default);
when clear, fast-strings are disabled.

0F_0H

2:1 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 49

3 Automatic Thermal Control Circuit Enable
(R/W)

1 = Setting this bit enables the thermal
control circuit (TCC) portion of the
Intel Thermal Monitor feature. This
allows the processor to automatically
reduce power consumption in
response to TCC activation.

0 = Disabled (default).
Note: In some products clearing this bit
might be ignored in critical thermal
conditions, and TM1, TM2 and adaptive
thermal throttling will still be activated.

0F_0H

6:4 Reserved

7 Performance Monitoring Available (R)

1 = Performance monitoring enabled
0 = Performance monitoring disabled

0F_0H

10:8 Reserved.

11 Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch
trace storage (BTS)

0 = BTS is supported

0F_0H

12 Precise Event Based Sampling (PEBS)
Unavailable (RO)

1 = PEBS is not supported;
0 = PEBS is supported.

06_0FH

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology
Enable (R/W)

0= Enhanced Intel SpeedStep
Technology disabled

1 = Enhanced Intel SpeedStep
Technology enabled

06_0DH

17 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 50

18 ENABLE MONITOR FSM (R/W)

When this bit is set to 0, the MONITOR
feature flag is not set (CPUID.01H:ECX[bit
3] = 0). This indicates that MONITOR/
MWAIT are not supported.

Software attempts to execute MONITOR/
MWAIT will cause #UD when this bit is 0.

When this bit is set to 1 (default),
MONITOR/MWAIT are supported
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag ECX[0] is not set
(CPUID.01H:ECX[bit 0] = 0), the OS must
not attempt to alter this bit. BIOS must
leave it in the default state. Writing this bit
when the SSE3 feature flag is set to 0 may
generate a #GP exception.

0F_03H

21:19 Reserved.

22 Limit CPUID Maxval (R/W)

When this bit is set to 1, CPUID.00H returns
a maximum value in EAX[7:0] of 3.

BIOS should contain a setup question that
allows users to specify when the installed
OS does not support CPUID functions
greater than 3.

Before setting this bit, BIOS must execute
the CPUID.0H and examine the maximum
value returned in EAX[7:0]. If the maximum
value is greater than 3, the bit is supported.

Otherwise, the bit is not supported. Writing
to this bit when the maximum value is
greater than 3 may generate a #GP
exception.

Setting this bit may cause unexpected
behavior in software that depends on the
availability of CPUID leaves greater than 3.

0F_03H

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are
disabled. xTPR messages are optional
messages that allow the processor to
inform the chipset of its priority.

if CPUID.01H:ECX[14] = 1

33:24 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 51

34 XD Bit Disable (R/W)

When set to 1, the Execute Disable Bit
feature (XD Bit) is disabled and the XD Bit
extended feature flag will be clear
(CPUID.80000001H: EDX[20]=0).

When set to a 0 (default), the Execute
Disable Bit feature (if available) allows the
OS to enable PAE paging and take
advantage of data only pages.

BIOS must not alter the contents of this bit
location, if XD bit is not supported.. Writing
this bit to 1 when the XD Bit extended
feature flag is set to 0 may generate a #GP
exception.

if
CPUID.80000001H:EDX[2
0] = 1

63:35 Reserved.

1B0H 432 IA32_ENERGY_PERF_BIAS Performance Energy Bias Hint (R/W) if CPUID.6H:ECX[3] = 1

3:0 Power Policy Preference:

0 indicates preference to highest
performance.

15 indicates preference to maximize
energy saving.

63:4 Reserved.

1B1H 433 IA32_PACKAGE_THERM_STATUS Package Thermal Status Information (RO)

Contains status information about the
package’s thermal sensor.

See Section 14.8, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg Thermal Status (RO):

1 Pkg Thermal Status Log (R/W):

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature Status (RO)

5 Pkg Critical Temperature Status log (R/
WC0)

6 Pkg Thermal Threshold #1 Status (RO)

7 Pkg Thermal Threshold #1 log (R/WC0)

8 Pkg Thermal Threshold #2 Status (RO)

9 Pkg Thermal Threshold #1 log (R/WC0)

10 Pkg Power Limitation Status (RO)

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 52

11 Pkg Power Limitation log (R/WC0)

15:12 Reserved.

22:16 Pkg Digital Readout (RO)

63:23 Reserved.

1B2H 434 IA32_PACKAGE_THERM_INTERRUPT Pkg Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the package’s thermal
sensor.

See Section 14.8, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg High-Temperature Interrupt Enable

1 Pkg Low-Temperature Interrupt Enable

2 Pkg PROCHOT# Interrupt Enable

3 Reserved.

4 Pkr Overheat Interrupt Enable

7:5 Reserved.

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt Enable

22:16 Pkg Threshold #2 Value

23 Pkg Threshold #2 Interrupt Enable

24 Pkg Power Limit Notification Enable

63:25 Reserved.

1D9H 473 IA32_DEBUGCTL (MSR_DEBUGCTLA,
MSR_DEBUGCTLB)

Trace/Profile Resource Control (R/W) 06_0EH

0 LBR: Setting this bit to 1 enables the
processor to record a running trace of the
most recent branches taken by the
processor in the LBR stack.

06_01H

1 BTF: Setting this bit to 1 enables the
processor to treat EFLAGS.TF as single-step
on branches instead of single-step on
instructions.

06_01H

5:2 Reserved.

6 TR: Setting this bit to 1 enables branch
trace messages to be sent.

06_0EH

7 BTS: Setting this bit enables branch trace
messages (BTMs) to be logged in a BTS
buffer.

06_0EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 53

8 BTINT: When clear, BTMs are logged in a
BTS buffer in circular fashion. When this bit
is set, an interrupt is generated by the BTS
facility when the BTS buffer is full.

06_0EH

9 1: BTS_OFF_OS: When set, BTS or BTM is
skipped if CPL = 0.

06_0FH

10 BTS_OFF_USR: When set, BTS or BTM is
skipped if CPL > 0.

06_0FH

11 FREEZE_LBRS_ON_PMI: When set, the LBR
stack is frozen on a PMI request.

If CPUID.01H: ECX[15] = 1
and CPUID.0AH: EAX[7:0] >
1

12 FREEZE_PERFMON_ON_PMI: When set,
each ENABLE bit of the global counter
control MSR are frozen (address 3BFH) on a
PMI request

If CPUID.01H: ECX[15] = 1
and CPUID.0AH: EAX[7:0] >
1

13 ENABLE_UNCORE_PMI: When set, enables
the logical processor to receive and
generate PMI on behalf of the uncore.

06_1AH

14 FREEZE_WHILE_SMM: When set, freezes
perfmon and trace messages while in SMM.

if
IA32_PERF_CAPABILITIES[
12] = '1

63:15 Reserved.

1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address (Writeable only in
SMM)

Base address of SMM memory range.

If IA32_MTRR_CAP[SMRR]
= 1

7:0 Type. Specifies memory type of the range.

11:8 Reserved.

31:12 PhysBase.

SMRR physical Base Address.

63:32 Reserved.

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask. (Writeable only in
SMM)

Range Mask of SMM memory range.

If IA32_MTRR_CAP[SMRR]
= 1

10:0 Reserved.

11 Valid

Enable range mask.

31:12 PhysMask

SMRR address range mask.

63:32 Reserved.

1F8H 504 IA32_PLATFORM_DCA_CAP DCA Capability (R) 06_0FH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 54

1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-Hint type.

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and Control register. 06_2EH

0 DCA_ACTIVE: Set by HW when DCA is fuse-
enabled and no defeatures are set.

06_2EH

2:1 TRANSACTION 06_2EH

6:3 DCA_TYPE 06_2EH

10:7 DCA_QUEUE_SIZE 06_2EH

12:11 Reserved. 06_2EH

16:13 DCA_DELAY: Writes will update the register
but have no HW side-effect.

06_2EH

23:17 Reserved. 06_2EH

24 SW_BLOCK: SW can request DCA block by
setting this bit.

06_2EH

25 Reserved. 06_2EH

26 HW_BLOCK: Set when DCA is blocked by
HW (e.g. CR0.CD = 1).

06_2EH

31:27 Reserved. 06_2EH

200H 512 IA32_MTRR_PHYSBASE0
(MTRRphysBase0)

See Section 11.11.2.3, “Variable Range
MTRRs.”

06_01H

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 06_01H

202H 514 IA32_MTRR_PHYSBASE1 MTRRphysBase1 06_01H

203H 515 IA32_MTRR_PHYSMASK1 MTRRphysMask1 06_01H

204H 516 IA32_MTRR_PHYSBASE2 MTRRphysBase2 06_01H

205H 517 IA32_MTRR_PHYSMASK2 MTRRphysMask2 06_01H

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 06_01H

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 06_01H

208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 06_01H

209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 06_01H

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 06_01H

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 06_01H

20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 06_01H

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 06_01H

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 06_01H

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 06_01H

210H 528 IA32_MTRR_PHYSBASE8 MTRRphysBase8 if IA32_MTRR_CAP[7:0] >
8

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 55

211H 529 IA32_MTRR_PHYSMASK8 MTRRphysMask8 if IA32_MTRR_CAP[7:0] >
8

212H 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 if IA32_MTRR_CAP[7:0] >
9

213H 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 if IA32_MTRR_CAP[7:0] >
9

250H 592 IA32_MTRR_FIX64K_00000 MTRRfix64K_00000 06_01H

258H 600 IA32_MTRR_FIX16K_80000 MTRRfix16K_80000 06_01H

259H 601 IA32_MTRR_FIX16K_A0000 MTRRfix16K_A0000 06_01H

268H 616 IA32_MTRR_FIX4K_C0000
(MTRRfix4K_C0000)

See Section 11.11.2.2, “Fixed Range
MTRRs.”

06_01H

269H 617 IA32_MTRR_FIX4K_C8000 MTRRfix4K_C8000 06_01H

26AH 618 IA32_MTRR_FIX4K_D0000 MTRRfix4K_D0000 06_01H

26BH 619 IA32_MTRR_FIX4K_D8000 MTRRfix4K_D8000 06_01H

26CH 620 IA32_MTRR_FIX4K_E0000 MTRRfix4K_E0000 06_01H

26DH 621 IA32_MTRR_FIX4K_E8000 MTRRfix4K_E8000 06_01H

26EH 622 IA32_MTRR_FIX4K_F0000 MTRRfix4K_F0000 06_01H

26FH 623 IA32_MTRR_FIX4K_F8000 MTRRfix4K_F8000 06_01H

277H 631 IA32_PAT IA32_PAT (R/W) 06_05H

2:0 PA0

7:3 Reserved.

10:8 PA1

15:11 Reserved.

18:16 PA2

23:19 Reserved.

26:24 PA3

31:27 Reserved.

34:32 PA4

39:35 Reserved.

42:40 PA5

47:43 Reserved.

50:48 PA6

55:51 Reserved.

58:56 PA7

63:59 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 56

280H 640 IA32_MC0_CTL2 (R/W) 06_1AH

14:0 Corrected error count threshold.

29:15 Reserved.

30 CMCI_EN

63:31 Reserved.

281H 641 IA32_MC1_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

282H 642 IA32_MC2_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

283H 643 IA32_MC3_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

284H 644 IA32_MC4_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

285H 645 IA32_MC5_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

286H 646 IA32_MC6_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

287H 647 IA32_MC7_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

288H 648 IA32_MC8_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

289H 649 IA32_MC9_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28AH 650 IA32_MC10_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28BH 651 IA32_MC11_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28CH 652 IA32_MC12_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28DH 653 IA32_MC13_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28EH 654 IA32_MC14_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28FH 655 IA32_MC15_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

290H 656 IA32_MC16_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

291H 657 IA32_MC17_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

292H 658 IA32_MC18_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

293H 659 IA32_MC19_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

294H 660 IA32_MC20_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

295H 661 IA32_MC21_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

296H 662 IA32_MC22_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

297H 663 IA32_MC23_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

298H 664 IA32_MC24_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

299H 665 IA32_MC25_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29AH 666 IA32_MC26_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29BH 667 IA32_MC27_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29CH 668 IA32_MC28_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29DH 669 IA32_MC29_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 57

29EH 670 IA32_MC30_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29FH 671 IA32_MC31_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType (R/W) 06_01H

2:0 Default Memory Type

9:3 Reserved.

10 Fixed Range MTRR Enable

11 MTRR Enable

63:12 Reserved.

309H 777 IA32_FIXED_CTR0
(MSR_PERF_FIXED_CTR0)

Fixed-Function Performance Counter 0 (R/
W): Counts Instr_Retired.Any.

If CPUID.0AH: EDX[4:0] > 0

30AH 778 IA32_FIXED_CTR1
(MSR_PERF_FIXED_CTR1)

Fixed-Function Performance Counter 1 0
(R/W): Counts CPU_CLK_Unhalted.Core

If CPUID.0AH: EDX[4:0] > 1

30BH 779 IA32_FIXED_CTR2
(MSR_PERF_FIXED_CTR2)

Fixed-Function Performance Counter 0 0
(R/W): Counts CPU_CLK_Unhalted.Ref

If CPUID.0AH: EDX[4:0] > 2

345H 837 IA32_PERF_CAPABILITIES RO If CPUID.01H: ECX[15] = 1

5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is supported.

13 1: Full width of counter writable via
IA32_A_PMCx.

63:14 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL
(MSR_PERF_FIXED_CTR_CTRL)

Fixed-Function Performance Counter
Control (R/W)

Counter increments while the results of
ANDing respective enable bit in
IA32_PERF_GLOBAL_CTRL with the
corresponding OS or USR bits in this MSR is
true.

If CPUID.0AH: EAX[7:0] > 1

0 EN0_OS: Enable Fixed Counter 0 to count
while CPL = 0.

1 EN0_Usr: Enable Fixed Counter 0 to count
while CPL > 0.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 58

2 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

3 EN0_PMI: Enable PMI when fixed counter 0
overflows.

4 EN1_OS: Enable Fixed Counter 1to count
while CPL = 0.

5 EN1_Usr: Enable Fixed Counter 1to count
while CPL > 0.

6 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

7 EN1_PMI: Enable PMI when fixed counter 1
overflows.

8 EN2_OS: Enable Fixed Counter 2 to count
while CPL = 0.

9 EN2_Usr: Enable Fixed Counter 2 to count
while CPL > 0.

10 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

11 EN2_PMI: Enable PMI when fixed counter 2
overflows.

63:12 Reserved.

38EH 910 IA32_PERF_GLOBAL_STATUS
(MSR_PERF_GLOBAL_STATUS)

Global Performance Counter Status (RO) If CPUID.0AH: EAX[7:0] > 0

0 Ovf_PMC0: Overflow status of IA32_PMC0. If CPUID.0AH: EAX[7:0] > 0

1 Ovf_PMC1: Overflow status of IA32_PMC1. If CPUID.0AH: EAX[7:0] > 0

2 Ovf_PMC2: Overflow status of IA32_PMC2. 06_2EH

3 Ovf_PMC3: Overflow status of IA32_PMC3. 06_2EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 59

31:4 Reserved.

32 Ovf_FixedCtr0: Overflow status of
IA32_FIXED_CTR0.

If CPUID.0AH: EAX[7:0] > 1

33 Ovf_FixedCtr1: Overflow status of
IA32_FIXED_CTR1.

If CPUID.0AH: EAX[7:0] > 1

34 Ovf_FixedCtr2: Overflow status of
IA32_FIXED_CTR2.

If CPUID.0AH: EAX[7:0] > 1

60:35 Reserved.

61 Ovf_Uncore: Uncore counter overflow
status.

If CPUID.0AH: EAX[7:0] > 2

62 OvfBuf: DS SAVE area Buffer overflow
status.

If CPUID.0AH: EAX[7:0] > 0

63 CondChg: status bits of this register has
changed.

If CPUID.0AH: EAX[7:0] > 0

38FH 911 IA32_PERF_GLOBAL_CTRL
(MSR_PERF_GLOBAL_CTRL)

Global Performance Counter Control (R/W)

Counter increments while the result of
ANDing respective enable bit in this MSR
with the corresponding OS or USR bits in
the general-purpose or fixed counter
control MSR is true.

If CPUID.0AH: EAX[7:0] > 0

0 EN_PMC0 If CPUID.0AH: EAX[7:0] > 0

1 EN_PMC1 If CPUID.0AH: EAX[7:0] > 0

31:2 Reserved.

32 EN_FIXED_CTR0 If CPUID.0AH: EAX[7:0] > 1

33 EN_FIXED_CTR1 If CPUID.0AH: EAX[7:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH: EAX[7:0] > 1

63:35 Reserved.

390H 912 IA32_PERF_GLOBAL_OVF_CTRL
(MSR_PERF_GLOBAL_OVF_CTRL)

Global Performance Counter Overflow
Control (R/W)

If CPUID.0AH: EAX[7:0] > 0

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[7:0] > 0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[7:0] > 0

31:2 Reserved.

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EAX[7:0] > 1

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EAX[7:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EAX[7:0] > 1

60:35 Reserved.

61 Set 1 to Clear Ovf_Uncore: bit. 06_2EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 60

62 Set 1 to Clear OvfBuf: bit. If CPUID.0AH: EAX[7:0] > 0

63 Set to 1to clear CondChg: bit. If CPUID.0AH: EAX[7:0] > 0

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0. 06_0FH

1-3 Reserved or Model specific .

31:4 Reserved.

35-32 Reserved or Model specific .

63:36 Reserved.

400H 1024 IA32_MC0_CTL MC0_CTL P6 Family Processors

401H 1025 IA32_MC0_STATUS MC0_STATUS P6 Family Processors

402H 1026 IA32_MC0_ADDR1 MC0_ADDR P6 Family Processors

403H 1027 IA32_MC0_MISC MC0_MISC P6 Family Processors

404H 1028 IA32_MC1_CTL MC1_CTL P6 Family Processors

405H 1029 IA32_MC1_STATUS MC1_STATUS P6 Family Processors

406H 1030 IA32_MC1_ADDR2 MC1_ADDR P6 Family Processors

407H 1031 IA32_MC1_MISC MC1_MISC P6 Family Processors

408H 1032 IA32_MC2_CTL MC2_CTL P6 Family Processors

409H 1033 IA32_MC2_STATUS MC2_STATUS P6 Family Processors

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR P6 Family Processors

40BH 1035 IA32_MC2_MISC MC2_MISC P6 Family Processors

40CH 1036 IA32_MC3_CTL MC3_CTL P6 Family Processors

40DH 1037 IA32_MC3_STATUS MC3_STATUS P6 Family Processors

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR P6 Family Processors

40FH 1039 IA32_MC3_MISC MC3_MISC P6 Family Processors

410H 1040 IA32_MC4_CTL MC4_CTL P6 Family Processors

411H 1041 IA32_MC4_STATUS MC4_STATUS P6 Family Processors

412H 1042 IA32_MC4_ADDR1 MC4_ADDR P6 Family Processors

413H 1043 IA32_MC4_MISC MC4_MISC P6 Family Processors

414H 1044 IA32_MC5_CTL MC5_CTL 06_0FH

415H 1045 IA32_MC5_STATUS MC5_STATUS 06_0FH

416H 1046 IA32_MC5_ADDR1 MC5_ADDR 06_0FH

417H 1047 IA32_MC5_MISC MC5_MISC 06_0FH

418H 1048 IA32_MC6_CTL MC6_CTL 06_1DH

419H 1049 IA32_MC6_STATUS MC6_STATUS 06_1DH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 61

41AH 1050 IA32_MC6_ADDR1 MC6_ADDR 06_1DH

41BH 1051 IA32_MC6_MISC MC6_MISC 06_1DH

41CH 1052 IA32_MC7_CTL MC7_CTL 06_1AH

41DH 1053 IA32_MC7_STATUS MC7_STATUS 06_1AH

41EH 1054 IA32_MC7_ADDR1 MC7_ADDR 06_1AH

41FH 1055 IA32_MC7_MISC MC7_MISC 06_1AH

420H 1056 IA32_MC8_CTL MC8_CTL 06_1AH

421H 1057 IA32_MC8_STATUS MC8_STATUS 06_1AH

422H 1058 IA32_MC8_ADDR1 MC8_ADDR 06_1AH

423H 1059 IA32_MC8_MISC MC8_MISC 06_1AH

424H 1060 IA32_MC9_CTL MC9_CTL 06_2EH

425H 1061 IA32_MC9_STATUS MC9_STATUS 06_2EH

426H 1062 IA32_MC9_ADDR1 MC9_ADDR 06_2EH

427H 1063 IA32_MC9_MISC MC9_MISC 06_2EH

428H 1064 IA32_MC10_CTL MC10_CTL 06_2EH

429H 1065 IA32_MC10_STATUS MC10_STATUS 06_2EH

42AH 1066 IA32_MC10_ADDR1 MC10_ADDR 06_2EH

42BH 1067 IA32_MC10_MISC MC10_MISC 06_2EH

42CH 1068 IA32_MC11_CTL MC11_CTL 06_2EH

42DH 1069 IA32_MC11_STATUS MC11_STATUS 06_2EH

42EH 1070 IA32_MC11_ADDR1 MC11_ADDR 06_2EH

42FH 1071 IA32_MC11_MISC MC11_MISC 06_2EH

430H 1072 IA32_MC12_CTL MC12_CTL 06_2EH

431H 1073 IA32_MC12_STATUS MC12_STATUS 06_2EH

432H 1074 IA32_MC12_ADDR1 MC12_ADDR 06_2EH

433H 1075 IA32_MC12_MISC MC12_MISC 06_2EH

434H 1076 IA32_MC13_CTL MC13_CTL 06_2EH

435H 1077 IA32_MC13_STATUS MC13_STATUS 06_2EH

436H 1078 IA32_MC13_ADDR1 MC13_ADDR 06_2EH

437H 1079 IA32_MC13_MISC MC13_MISC 06_2EH

438H 1080 IA32_MC14_CTL MC14_CTL 06_2EH

439H 1081 IA32_MC14_STATUS MC14_STATUS 06_2EH

43AH 1082 IA32_MC14_ADDR1 MC14_ADDR 06_2EH

43BH 1083 IA32_MC14_MISC MC14_MISC 06_2EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 62

43CH 1084 IA32_MC15_CTL MC15_CTL 06_2EH

43DH 1085 IA32_MC15_STATUS MC15_STATUS 06_2EH

43EH 1086 IA32_MC15_ADDR1 MC15_ADDR 06_2EH

43FH 1087 IA32_MC15_MISC MC15_MISC 06_2EH

440H 1088 IA32_MC16_CTL MC16_CTL 06_2EH

441H 1089 IA32_MC16_STATUS MC16_STATUS 06_2EH

442H 1090 IA32_MC16_ADDR1 MC16_ADDR 06_2EH

443H 1091 IA32_MC16_MISC MC16_MISC 06_2EH

444H 1092 IA32_MC17_CTL MC17_CTL 06_2EH

445H 1093 IA32_MC17_STATUS MC17_STATUS 06_2EH

446H 1094 IA32_MC17_ADDR1 MC17_ADDR 06_2EH

447H 1095 IA32_MC17_MISC MC17_MISC 06_2EH

448H 1096 IA32_MC18_CTL MC18_CTL 06_2EH

449H 1097 IA32_MC18_STATUS MC18_STATUS 06_2EH

44AH 1098 IA32_MC18_ADDR1 MC18_ADDR 06_2EH

44BH 1099 IA32_MC18_MISC MC18_MISC 06_2EH

44CH 1100 IA32_MC19_CTL MC19_CTL 06_2EH

44DH 1101 IA32_MC19_STATUS MC19_STATUS 06_2EH

44EH 1102 IA32_MC19_ADDR1 MC19_ADDR 06_2EH

44FH 1103 IA32_MC19_MISC MC19_MISC 06_2EH

450H 1104 IA32_MC20_CTL MC20_CTL 06_2EH

451H 1105 IA32_MC20_STATUS MC20_STATUS 06_2EH

452H 1106 IA32_MC20_ADDR1 MC20_ADDR 06_2EH

453H 1107 IA32_MC20_MISC MC20_MISC 06_2EH

454H 1108 IA32_MC21_CTL MC21_CTL 06_2EH

455H 1109 IA32_MC21_STATUS MC21_STATUS 06_2EH

456H 1110 IA32_MC21_ADDR1 MC21_ADDR 06_2EH

457H 1111 IA32_MC21_MISC MC21_MISC 06_2EH

480H 1152 IA32_VMX_BASIC Reporting Register of Basic VMX
Capabilities (R/O)

See Appendix A.1, “Basic VMX Information.”

If CPUID.01H:ECX.[bit 5] =
1

481H 1153 IA32_VMX_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If CPUID.01H:ECX.[bit 5] =
1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 63

482H 1154 IA32_VMX_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-based VM-execution Controls
(R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If CPUID.01H:ECX.[bit 5] =
1

483H 1155 IA32_VMX_EXIT_CTLS Capability Reporting Register of VM-exit
Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If CPUID.01H:ECX.[bit 5] =
1

484H 1156 IA32_VMX_ENTRY_CTLS Capability Reporting Register of VM-
entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If CPUID.01H:ECX.[bit 5] =
1

485H 1157 IA32_VMX_MISC Reporting Register of Miscellaneous
VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data.”

If CPUID.01H:ECX.[bit 5] =
1

486H 1158 IA32_VMX_CRO_FIXED0 Capability Reporting Register of CR0 Bits
Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[bit 5] =
1

487H 1159 IA32_VMX_CRO_FIXED1 Capability Reporting Register of CR0 Bits
Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[bit 5] =
1

488H 1160 IA32_VMX_CR4_FIXED0 Capability Reporting Register of CR4 Bits
Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[bit 5] =
1

489H 1161 IA32_VMX_CR4_FIXED1 Capability Reporting Register of CR4 Bits
Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[bit 5] =
1

48AH 1162 IA32_VMX_VMCS_ENUM Capability Reporting Register of VMCS
Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration.”

If CPUID.01H:ECX.[bit 5] =
1

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Capability Reporting Register of
Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3.3, “Secondary Processor-
Based VM-Execution Controls.”

If (CPUID.01H:ECX.[bit 5]
and
IA32_VMX_PROCBASED_C
TLS[bit 63])

48CH 1164 IA32_VMX_EPT_VPID_CAP Capability Reporting Register of EPT and
VPID (R/O)

See Appendix A.10, “VPID and EPT
Capabilities.”

If (CPUID.01H:ECX.[bit 5],
IA32_VMX_PROCBASED_C
TLS[bit 63], and either
IA32_VMX_PROCBASED_C
TLS2[bit 33] or
IA32_VMX_PROCBASED_C
TLS2[bit 37])

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 64

48DH 1165 IA32_VMX_TRUE_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Flex Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If (CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-based VM-execution Flex
Controls (R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Capability Reporting Register of VM-exit
Flex Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Capability Reporting Register of VM-
entry Flex Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

491H 1169 IA32_VMX_VMFUNC Capability Reporting Register of VM-
function Controls (R/O)

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

4C1H 1217 IA32_A_PMC0 Full Width Writable IA32_PMC0 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
0) &

IA32_PERF_CAPABILITIES[
13] = 1

4C2H 1218 IA32_A_PMC1 Full Width Writable IA32_PMC1 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
1) &

IA32_PERF_CAPABILITIES[
13] = 1

4C3H 1219 IA32_A_PMC2 Full Width Writable IA32_PMC2 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
2) &

IA32_PERF_CAPABILITIES[
13] = 1

4C4H 1220 IA32_A_PMC3 Full Width Writable IA32_PMC3 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
3) &

IA32_PERF_CAPABILITIES[
13] = 1

4C5H 1221 IA32_A_PMC4 Full Width Writable IA32_PMC4 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
4) &

IA32_PERF_CAPABILITIES[
13] = 1

4C6H 1222 IA32_A_PMC5 Full Width Writable IA32_PMC5 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
5) &

IA32_PERF_CAPABILITIES[
13] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 65

4C7H 1223 IA32_A_PMC6 Full Width Writable IA32_PMC6 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
6) &

IA32_PERF_CAPABILITIES[
13] = 1

4C8H 1224 IA32_A_PMC7 Full Width Writable IA32_PMC7 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
7) &

IA32_PERF_CAPABILITIES[
13] = 1

4D0H 1232 IA32_MCG_EXT_CTL (R/W) If IA32_MCG_CAP.LMCE_P
=1

0 LMCE_EN.

63:1 Reserved.

600H 1536 IA32_DS_AREA DS Save Area (R/W)

Points to the linear address of the first
byte of the DS buffer management area,
which is used to manage the BTS and PEBS
buffers.

See Section 18.12.4, “Debug Store (DS)
Mechanism.”

0F_0H

63:0 The linear address of the first byte of the
DS buffer management area, if IA-32e
mode is active.

31:0 The linear address of the first byte of the
DS buffer management area, if not in IA-
32e mode.

63:32 Reserved if not in IA-32e mode.

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s TSC Deadline
Mode (R/W)

If(CPUID.01H:ECX.[bit 25]
= 1

770H 1904 IA32_PM_ENABLE Enable/disable HWP (R/W) If(CPUID.06H:EAX.[bit 7] =
1

0 HWP_ENABLE (R/W1-Once).

See Section 14.4.2, “Enabling HWP”

If(CPUID.06H:EAX.[bit 7] =
1

63:1 Reserved.

771H 1905 IA32_HWP_CAPABILITIES HWP Performance Range Enumeration
(RO)

If(CPUID.06H:EAX.[bit 7] =
1

7:0 Highest_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If(CPUID.06H:EAX.[bit 7] =
1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 66

15:8 Guaranteed_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If(CPUID.06H:EAX.[bit 7] =
1

23:16 Most_Efficient_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If(CPUID.06H:EAX.[bit 7] =
1

31:24 Lowest_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If(CPUID.06H:EAX.[bit 7] =
1

63:32 Reserved.

772H 1906 IA32_HWP_REQUEST_PKG Power Management Control Hints for All
Logical Processors in a Package (R/W)

If(CPUID.06H:EAX.[bit 11]
= 1

7:0 Minimum_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1

15:8 Maximum_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1

23:16 Desired_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1

31:24 Energy_Performance_Preference

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1 and

CPUID.06HEAX.[bit 10] = 1

41:32 Activity_Window

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1 and

CPUID.06HEAX.[bit 9] = 1

63:42 Reserved.

773H 1907 IA32_HWP_INTERRUPT Control HWP Native Interrupts (R/W) If(CPUID.06H:EAX.[bit 8] =
1

0 EN_Guaranteed_Performance_Change.

See Section 14.4.6, “HWP Notifications”

If(CPUID.06H:EAX.[bit 8] =
1

1 EN_Excursion_Minimum.

See Section 14.4.6, “HWP Notifications”

If(CPUID.06H:EAX.[bit 8] =
1

63:2 Reserved.

774H 1908 IA32_HWP_REQUEST Power Management Control Hints to a
Logical Processor (R/W)

If(CPUID.06H:EAX.[bit 7] =
1

7:0 Minimum_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 7] =
1

15:8 Maximum_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 7] =
1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 67

23:16 Desired_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 7] =
1

31:24 Energy_Performance_Preference

See Section 14.4.4, “Managing HWP”

If CPUID.06HEAX.[bit 7] =
1 and (CPUID.06H:EAX.[bit
10] = 1

41:32 Activity_Window

See Section 14.4.4, “Managing HWP”

If CPUID.06HEAX.[bit 7] =
1 and (CPUID.06H:EAX.[bit
9] = 1

42 Package_Control

See Section 14.4.4, “Managing HWP”

IfCPUID.06HEAX.[bit 7] = 1
and (CPUID.06H:EAX.[bit
11] = 1

63:43 Reserved.

777H 1911 IA32_HWP_STATUS Log bits indicating changes to
Guaranteed & excursions to Minimum (R/
W)

If(CPUID.06H:EAX.[bit 7] =
1

0 Guaranteed_Performance_Change (R/
WC0).

See Section 14.4.5, “HWP Feedback”

If(CPUID.06H:EAX.[bit 7] =
1

1 Reserved.

2 Excursion_To_Minimum (R/WC0).

See Section 14.4.5, “HWP Feedback”

If(CPUID.06H:EAX.[bit 7] =
1

63:3 Reserved.

802H 2050 IA32_X2APIC_APICID x2APIC ID Register (R/O)

See x2APIC Specification

If (CPUID.01H:ECX.[bit 21]
= 1)

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register (R/O) If (CPUID.01H:ECX.[bit 21]
= 1)

808H 2056 IA32_X2APIC_TPR x2APIC Task Priority Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority Register (R/O) If (CPUID.01H:ECX.[bit 21]
= 1)

80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register (W/O) If (CPUID.01H:ECX.[bit 21]
= 1)

80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination Register (R/
O)

If (CPUID.01H:ECX.[bit 21]
= 1)

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt Vector
Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register Bits 31:0 (R/
O)

If (CPUID.01H:ECX.[bit 21]
= 1)

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register Bits 63:32
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 68

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register Bits 95:64
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register Bits 127:96
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register Bits 159:128
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register Bits 191:160
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register Bits 223:192
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register Bits 255:224
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode Register Bits 31:0
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode Register Bits 63:32
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode Register Bits 95:64
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode Register Bits
127:96 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode Register Bits
159:128 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode Register Bits
191:160 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode Register Bits
223:192 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode Register Bits
255:224 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request Register Bits
31:0 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request Register Bits
63:32 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request Register Bits
95:64 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request Register Bits
127:96 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request Register Bits
159:128 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request Register Bits
191:160 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 69

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request Register Bits
223:192 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request Register Bits
255:224 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

828H 2088 IA32_X2APIC_ESR x2APIC Error Status Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected Machine Check
Interrupt Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command Register (R/
W)

If (CPUID.01H:ECX.[bit 21]
= 1)

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer Interrupt Register (R/
W)

If (CPUID.01H:ECX.[bit 21]
= 1)

833H 2099 IA32_X2APIC_LVT_THERMAL x2APIC LVT Thermal Sensor Interrupt
Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance Monitor
Interrupt Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0 Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1 Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

837H 2103 IA32_X2APIC_LVT_ERROR x2APIC LVT Error Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

838H 2104 IA32_X2APIC_INIT_COUNT x2APIC Initial Count Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

839H 2105 IA32_X2APIC_CUR_COUNT x2APIC Current Count Register (R/O) If (CPUID.01H:ECX.[bit 21]
= 1)

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide Configuration Register (R/
W)

If (CPUID.01H:ECX.[bit 21]
= 1)

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register (W/O) If (CPUID.01H:ECX.[bit 21]
= 1)

C80H 3200 IA32_DEBUG_INTERFACE Silicon Debug Feature Control (R/W) If(CPUID.01H:ECX.[bit 11]
= 1

0 Enable (R/W).

BIOS set 1 to enable Silicon debug features.
Default is 0

If(CPUID.01H:ECX.[bit 11]
= 1

29:1 Reserved.

30 Lock (R/W): If 1, locks any further change
to the MSR. The lock bit is set automatically
on the first SMI assertion even if not
explicitly set by BIOS. Default is 0.

If(CPUID.01H:ECX.[bit 11]
= 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 70

31 Debug Occurred (R/O): This sticky bit is set
by hardware to indicate the status of bit 0.
Default is 0.

If(CPUID.01H:ECX.[bit 11]
= 1

63:32 Reserved.

C8DH 3213 IA32_QM_EVTSEL QoS Monitoring Event Select Register (R/
W)

If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 12] = 1)

7:0 Event ID: ID of a supported QoS monitoring
event to report via IA32_QM_CTR.

31: 8 Reserved.

N+31:32 Resource Monitoring ID: ID for QoS
monitoring hardware to report monitored
data via IA32_QM_CTR.

N = Ceil (Log2 (
CPUID.(EAX= 0FH,
ECX=0H).EBX[31:0] +1))

63:N+32 Reserved.

C8EH 3214 IA32_QM_CTR QoS Monitoring Counter Register (R/O) If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 12] = 1)

61:0 Resource Monitored Data

62 Unavailable: If 1, indicates data for this
RMID is not available or not monitored for
this resource or RMID.

63 Error: If 1, indicates and unsupported RMID
or event type was written to
IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC QoS Resource Association Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 12] = 1)

N-1:0 Resource Monitoring ID (R/W): ID for QoS
monitoring hardware to track internal
operation, e.g. memory access.

N = Ceil (Log2 (
CPUID.(EAX= 0FH,
ECX=0H).EBX[31:0] +1))

31:N Reserved

63:32 COS (R/W). The class of service
(COS) to enforce (on writes);
returns the current COS when
read.

If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 15] = 1)

0C90H
-
0D8FH

Reserved MSR Address Space for
Platform QoS Enforcement Mask
Registers

See Section 17.15.2.1, “Enumeration and
Detection Support of CQE”

C90H 3216 IA32_L3_QOS_MASK_0 L3 CQE Mask for COS0 (R/W) If (CPUID.(10H, 0):EBX[bit
1] != 0)

31:0 Capacity Bit Mask (R/W).

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 71

63:32 Reserved.

C90H+
n

3216+n IA32_L3_QOS_MASK_n L3 CQE Mask for COSn (R/W) n = CPUID.(10H,
1):EDX[15:0]

31:0 Capacity Bit Mask (R/W).

63:32 Reserved.

DA0H 3488 IA32_XSS Extended Supervisor State Mask (R/W) If(CPUID.(0DH, 1):EAX.[bit
3] = 1

7:0 Reserved

8 Trace Packet Configuration State (R/W).

63:9 Reserved.

DB0H 3504 IA32_PKG_HDC_CTL Package Level Enable/disable HDC (R/W) If(CPUID.06H:EAX.[bit 13]
= 1

0 HDC_Pkg_Enable (R/W).

Force HDC idling or wake up HDC-idled
logical processors in the package. See
Section 14.5.2, “Package level Enabling
HDC”

If(CPUID.06H:EAX.[bit 13]
= 1

63:1 Reserved.

DB1H 3505 IA32_PM_CTL1 Enable/disable HWP (R/W) If(CPUID.06H:EAX.[bit 13]
= 1

0 HDC_Allow_Block (R/W).

Allow/Block this logical processor for
package level HDC control. See Section
14.5.3

If(CPUID.06H:EAX.[bit 13]
= 1

63:1 Reserved.

DB2H 3506 IA32_THREAD_STALL Per-Logical_Processor HDC Idle
Residency (R/0)

If(CPUID.06H:EAX.[bit 13]
= 1

63:0 Stall_Cycle_Cnt (R/W).

Stalled cycles due to HDC forced idle on this
logical processor. See Section 14.5.4.1

If(CPUID.06H:EAX.[bit 13]
= 1

4000_
0000H
-
4000_
00FFH

Reserved MSR Address Space All existing and future processors will
not implement MSR in this range.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 72

C000_
0080H

IA32_EFER Extended Feature Enables If (
CPUID.80000001.EDX.[bit
20] or
CPUID.80000001.EDX.[bit
29])

0 SYSCALL Enable (R/W)

Enables SYSCALL/SYSRET instructions in
64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable (R/W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active (R)

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable (R/W)

63:12 Reserved.

C000_
0081H

IA32_STAR System Call Target Address (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0082H

IA32_LSTAR IA-32e Mode System Call Target Address
(R/W)

If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0084H

IA32_FMASK System Call Flag Mask (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0100H

IA32_FS_BASE Map of BASE Address of FS (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0101H

IA32_GS_BASE Map of BASE Address of GS (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0102H

IA32_KERNEL_GS_BASE Swap Target of BASE Address of GS (R/
W)

If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0103H

IA32_TSC_AUX Auxiliary TSC (RW) If CPUID.80000001H:
EDX[27] = 1

31:0 AUX: Auxiliary signature of TSC

63:32 Reserved.
NOTES:

1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are supported, software must treat them as
model-specific. Starting with Intel Core Duo processors, MSR addresses 180H-185H, 188H-197H are reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural MSR

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 73

...

35.9.2 Additional MSRs Supported by Intel® Xeon Processor E7 v2 Family
Intel® Xeon Processor E7 v2 Family (based on Ivy Bridge-EP microarchitecture) with CPUID
DisplayFamily_DisplayModel signature 06_3EH supports the MSR interfaces listed in Table 35-14, Table 35-18,
and Table Table 35-19.

2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. See Section 15.3.2.3 and Section
15.3.2.4 for more information.

Table 35-19 Additional MSRs Supported by Intel® Xeon Processors E7 v2 Family with DisplayFamily_DisplayModel
Signature 06_3EH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table Table 35-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

20 LMCE_ON (R/WL)

63:21 Reserved.

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 Reserved.

26 MCG_ELOG_P

27 MCG_LMCE_P

63:28 Reserved.

17AH 378 IA32_MCG_STATUS Thread (R/W0)

0 RIPV

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 74

1 EIPV

2 MCIP

3 LMCE signaled

63:4 Reserved.

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active.

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10core active.

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

39:32 Package Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

47:40 Package Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

55:48 Package Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

63:56 Reserved

29DH 669 IA32_MC29_CTL2 Package See Table Table 35-2.

29EH 670 IA32_MC30_CTL2 Package See Table Table 35-2.

29FH 671 IA32_MC31_CTL2 Package See Table Table 35-2.

41BH 1051 IA32_MC6_MISC Package Misc MAC information of Integrated I/O. (R/O) see Section 15.3.2.4

5:0 Recoverable Address LSB

8:6 Address Mode

15:9 Reserved

31:16 PCI Express Requestor ID

39:32 PCI Express Segment Number

63:32 Reserved

474H 1140 MSR_MC29_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

475H 1141 MSR_MC29_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

Table 35-19 Additional MSRs Supported by Intel® Xeon Processors E7 v2 Family with DisplayFamily_DisplayModel
Signature 06_3EH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 75

...

35.10 MSRS IN THE 4TH GENERATION INTEL® CORE™ PROCESSORS (BASED ON
HASWELL MICROARCHITECTURE)

The 4th generation Intel® Core™ processor family and Intel Xeon processor E3-1200v3 product family (based on
Haswell microarchitecture), with CPUID DisplayFamily_DisplayModel signature 06_3CH/06_45H/06_46H,
support the MSR interfaces listed in Table 35-14, Table 35-15, Table 35-17, and Table Table 35-20.

476H 1142 MSR_MC29_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

477H 1143 MSR_MC29_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

478H 1144 MSR_MC30_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

479H 1145 MSR_MC30_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

47AH 1146 MSR_MC30_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

47BH 1147 MSR_MC30_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

47CH 1148 MSR_MC31_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

47DH 1149 MSR_MC31_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

47EH 1150 MSR_MC31_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

47FH 1147 MSR_MC31_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

Table 35-19 Additional MSRs Supported by Intel® Xeon Processors E7 v2 Family with DisplayFamily_DisplayModel
Signature 06_3EH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-20 Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell
microarchitecture)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3BH 59 IA32_TSC_ADJUST THREAD Per-Logical-Processor TSC ADJUST (R/W)

See Table Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package See Table 35-17

186H 390 IA32_PERFEVTSEL0 THREAD Performance Event Select for Counter 0 (R/W)

Supports all fields described inTable Table 35-2 and the fields
below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

187H 391 IA32_PERFEVTSEL1 THREAD Performance Event Select for Counter 1 (R/W)

Supports all fields described inTable Table 35-2 and the fields
below.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 76

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

188H 392 IA32_PERFEVTSEL2 THREAD Performance Event Select for Counter 2 (R/W)

Supports all fields described inTable Table 35-2 and the fields
below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

33 IN_TXCP: see Section 18.11.5.1

When IN_TXCP=1 & IN_TX=1 and in sampling, spurious PMI may
occur and transactions may continuously abort near overflow
conditions. Software should favor using IN_TXCP for counting over
sampling. If sampling, software should use large “sample-after“
value after clearing the counter configured to use IN_TXCP and
also always reset the counter even when no overflow condition
was reported.

189H 393 IA32_PERFEVTSEL3 THREAD Performance Event Select for Counter 3 (R/W)

Supports all fields described inTable Table 35-2 and the fields
below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

491H 1169 IA32_VMX_FMFUNC THREAD Capability Reporting Register of VM-function Controls (R/O)

See Table Table 35-2

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Nominal TDP Ratio (R/O)

See Table 35-17

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O). See Table 35-17

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O). See Table 35-17

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

See Table 35-17

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

See Table 35-17

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating
system request due to assertion of external PROCHOT.

Table 35-20 Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 77

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system
request due to Processor Graphics driver override.

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system
request because the processor has detected that utilization is low.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Core Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

12 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating system
request due to multi-core turbo limits.

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating system
request due to Turbo transition attenuation. This prevents
performance degradation due to frequent operating ratio changes.

15:14 Reserved

16 PROCHOT Log

When set, indicates that the corresponding PROCHOT Status bit is
set. Software can write 0 to this bit to clear PROCHOT Status.

Table 35-20 Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 78

17 Thermal Log

When set, indicates that the corresponding Thermal status bit was
set since it was last cleared by software. Software can write 0 to
this bit to clear Thermal Status.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the corresponding Graphics Driver status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear Graphics Driver Status.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the corresponding Autonomous
Utilization-Based Frequency Control status bit was set since it was
last cleared by software. Software can write 0 to this bit to clear
Autonomous Utilization-Based Frequency Control Status.

22 VR Therm Alert Log

When set, indicates that the corresponding VR Therm Alert Status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear VR Therm Alert Status.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the corresponding EDP Status bit was set
since it was last cleared by software. Software can write 0 to this
bit to clear EDP Status.

25 Core Power Limiting Log

When set, indicates that the corresponding Core Power Limiting
Status bit was set since it was last cleared by software. Software
can write 0 to this bit to clear Core Power Limiting Status.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL1 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL1 Status.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL2 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL2 Status.

28 Max Turbo Limit Log

When set, indicates that the corresponding Max Turbo Limit Status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear Max Turbo Limit Status.

Table 35-20 Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 79

29 Turbo Transition Attenuation Log

When set, indicates that the corresponding Turbo Transition
Attenuation Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Turbo Transition
Attenuation Status.

63:30 Reserved.

6B0H 1712 MSR_GRAPHICS_PERF_LIMI
T_REASONS

Package Indicator of Frequency Clipping in the Processor Graphics (R/W)

(frequency refers to processor graphics frequency)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system
request due to Processor Graphics driver override.

5 Reserved.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Graphics Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

15:12 Reserved

Table 35-20 Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 80

16 PROCHOT Log

When set, indicates that the corresponding PROCHOT Status bit is
set. Software can write 0 to this bit to clear PROCHOT Status.

17 Thermal Log

When set, indicates that the corresponding Thermal status bit was
set since it was last cleared by software. Software can write 0 to
this bit to clear Thermal Status.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the corresponding Graphics Driver status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear Graphics Driver Status.

21 Reserved.

22 VR Therm Alert Log

When set, indicates that the corresponding VR Therm Alert Status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear VR Therm Alert Status.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the corresponding EDP Status bit was set
since it was last cleared by software. Software can write 0 to this
bit to clear EDP Status.

25 Graphics Power Limiting Log

When set, indicates that the corresponding Graphics Power Limiting
Status bit was set since it was last cleared by software. Software
can write 0 to this bit to clear Graphics Power Limiting Status.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL1 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL1 Status.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL2 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL2 Status.

63:28 Reserved.

6B1H 1713 MSR_RING_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in the Ring Interconnect (R/W)

(frequency refers to ring interconnect in the uncore)

Table 35-20 Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 81

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

5:2 Reserved.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Reserved.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

15:12 Reserved

16 PROCHOT Log

When set, indicates that the corresponding PROCHOT Status bit is
set. Software can write 0 to this bit to clear PROCHOT Status.

17 Thermal Log

When set, indicates that the corresponding Thermal status bit was
set since it was last cleared by software. Software can write 0 to
this bit to clear Thermal Status.

21:18 Reserved.

22 VR Therm Alert Log

When set, indicates that the corresponding VR Therm Alert Status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear VR Therm Alert Status.

23 Reserved.

Table 35-20 Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 82

...

35.11 MSRS IN NEXT GENERATION INTEL® XEON® PROCESSORS
The following MSRs are available in next generation of Intel® Xeon® Processor Family (CPUID
DisplayFamily_DisplayModel = 06_3F) if CPUID.(EAX=07H, ECX=0):EBX.QoS[bit 12] = 1.

24 Electrical Design Point Log

When set, indicates that the corresponding EDP Status bit was set
since it was last cleared by software. Software can write 0 to this
bit to clear EDP Status.

25 Reserved.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL1 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL1 Status.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL2 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL2 Status.

63:28 Reserved.

C80H 32 IA32_DEBUG_FEATURE Package Silicon Debug Feature Control (R/W)

See Table Table 35-2.

Table 35-20 Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-23 Additional MSRs Supported by Next Generation Intel® Xeon® Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

C8DH 3113 IA32_QM_EVTSEL THREAD QoS Monitoring Event Select Register (R/W).

7:0 EventID (RW)

31:8 Reserved.

41:32 RMID (RW)

63:42 Reserved.

C8EH 3114 IA32_QM_CTR THREAD QoS Monitoring Counter Register (R/O).

61:0 Resource Monitored Data

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 83

...

62 Unavailable: If 1, indicates data for this RMID is not available or not
monitored for this resource or RMID.

63 Error: If 1, indicates and unsupported RMID or event type was
written to IA32_PQR_QM_EVTSEL.

C8FH 3115 IA32_PQR_ASSOC THREAD QoS Resource Association Register (R/W).

9:0 RMID

63: 10 Reserved

Table 35-23 Additional MSRs Supported by Next Generation Intel® Xeon® Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 84

	Revision History
	Preface
	Summary Tables of Changes
	Documentation Changes
	1. Updates to Chapter 1, Volume 1
	2. Updates to Chapter 2, Volume 1
	3. Updates to Chapter 1, Volume 2A
	4. Updates to Chapter 3, Volume 2A
	5. Updates to Chapter 4, Volume 2B
	6. Updates to Chapter 1, Volume 3A
	7. Updates to Chapter 15, Volume 3B
	8. Updates to Chapter 35, Volume 3C

