
Document Number: 252046-043

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Documentation Changes

June 2014

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED
IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY
OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal
injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL
INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND
EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES
ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE
DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition
and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information
here is subject to change without notice. Do not finalize a design with this information.

Intel, the Intel logo, Pentium, Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trademarks of Intel Corporation in the U.S.
and/or other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copyright © 1997-2014 Intel Corporation. All rights reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents

Revision History . 4

Preface . 7

Summary Tables of Changes . 8

Documentation Changes. 9

Revision History

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Revision Description Date

-001 • Initial release November 2002

-002
• Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual
December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion

February 2003

-004 • Removed Documentation changes 1-17.
• Added Documentation changes 1-24. June 2003

-005 • Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007 • Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008 • Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012 • Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the

document.
July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015 • Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017 • Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019 • Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Added Documentation Changes 20-27. May 2007

-021 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1-6

November 2007

-022 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-6

August 2008

-023 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-21

March 2009

Revision History

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

§

-024 • Removed Documentation Changes 1-21
• Added Documentation Changes 1-16

June 2009

-025 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

September 2009

-026 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-15

December 2009

-027 • Removed Documentation Changes 1-15
• Added Documentation Changes 1-24

March 2010

-028 • Removed Documentation Changes 1-24
• Added Documentation Changes 1-29

June 2010

-029 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

September 2010

-030 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

January 2011

-031 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

April 2011

-032 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-14

May 2011

-033 • Removed Documentation Changes 1-14
• Added Documentation Changes 1-38

October 2011

-034 • Removed Documentation Changes 1-38
• Added Documentation Changes 1-16

December 2011

-035 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

March 2012

-036 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-17

May 2012

-037 • Removed Documentation Changes 1-17
• Added Documentation Changes 1-28

August 2012

-038 • Removed Documentation Changes 1-28
• Add Documentation Changes 1-22

January 2013

-039 • Removed Documentation Changes 1-22
• Add Documentation Changes 1-17

June 2013

-040 • Removed Documentation Changes 1-17
• Add Documentation Changes 1-24

September 2013

-041 • Removed Documentation Changes 1-24
• Add Documentation Changes 1-20

February 2014

-042 • Removed Documentation Changes 1-20
• Add Documentation Changes 1-8

February 2014

-043 • Removed Documentation Changes 1-8
• Add Documentation Changes 1-43

June 2014

Revision Description Date

Revision History

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Preface

This document is an update to the specifications contained in the Affected Documents table below. This
document is a compilation of device and documentation errata, specification clarifications and changes. It is
intended for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents

Nomenclature
Documentation Changes include typos, errors, or omissions from the current published specifications. These
will be incorporated in any new release of the specification.

Document Title Document Number/
Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture 253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A: Instruction Set
Reference, A-M 253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B: Instruction Set
Reference, N-Z 253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C: Instruction Set
Reference 326018

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System
Programming Guide, Part 1 253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System
Programming Guide, Part 2 253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C: System
Programming Guide, Part 3 326019

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 8

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and IA-32 architectures. This
table uses the following notations:

Codes Used in Summary Tables
Change bar to left of table row indicates this erratum is either new or modified from the previous version of the
document.

Documentation Changes(Sheet 1 of 2)
No. DOCUMENTATION CHANGES

1 Updates to Chapter 1, Volume 1

2 Updates to Chapter 2, Volume 1

3 Updates to Chapter 3, Volume 1

4 Updates to Chapter 5, Volume 1

5 Updates to Chapter 6, Volume 1

6 Updates to Chapter 7, Volume 1

7 Updates to Chapter 8, Volume 1

8 Updates to Chapter 12, Volume 1

9 Updates to Chapter 14, Volume 1

10 Updates to Chapter 15, Volume 1

11 Updates to Appendix D, Volume 1

12 Updates to Appendix E, Volume 1

13 Updates to Chapter 1, Volume 2A

14 Updates to Chapter 2, Volume 2A

15 Updates to Chapter 3, Volume 2A

16 Updates to Chapter 4, Volume 2B

17 Updates to Chapter 5, Volume 2B

18 Updates to Appendix B, Volume 2B

19 Updates to Chapter 1, Volume 3A

20 Updates to Chapter 2, Volume 3A

21 Updates to Chapter 4, Volume 3A

22 Updates to Chapter 5, Volume 3A

23 Updates to Chapter 6, Volume 3A

24 Updates to Chapter 8, Volume 3A

25 Updates to Chapter 9, Volume 3A

26 Updates to Chapter 14, Volume 3B

27 Updates to Chapter 15, Volume 3B

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

28 Updates to Chapter 16, Volume 3B

29 Updates to Chapter 17, Volume 3B

30 Updates to Chapter 18, Volume 3B

31 Updates to Chapter 19, Volume 3B

32 Updates to Chapter 22, Volume 3B

33 Updates to Chapter 23, Volume 3B

34 Updates to Chapter 24, Volume 3B

35 Updates to Chapter 25, Volume 3C

36 Updates to Chapter 26, Volume 3C

37 Updates to Chapter 27, Volume 3C

38 Updates to Chapter 30, Volume 3C

39 Updates to Chapter 34, Volume 3C

40 Updates to Chapter 35, Volume 3C

41 New Chapter 36, Volume 3C

42 Updates to Appendix A, Volume 3C

43 Updates to Appendix C, Volume 3C

Documentation Changes(Sheet 2 of 2)
No. DOCUMENTATION CHANGES

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 10

Documentation Changes

1. Updates to Chapter 1, Volume 1
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Core™ i7 processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v3 product family
• The Intel® Core™ M processor family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processor QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced
Intel® Core™ microarchitecture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture and supports Intel 64 archi-
tecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel®
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32nm version of
Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and
various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These
processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® CoreTM i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2
product family and the 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code
name Ivy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families and Intel® Xeon® processor E5-2400/1400
v2 product families are based on the Intel® microarchitecture code name Ivy Bridge-EP and support Intel 64
architecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 12

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

The Intel® Core™ M processor family is based on the Intel® microarchitecture code name Broadwell and supports
Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors,
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel®
64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is the
superset of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

...

2. Updates to Chapter 2, Volume 1
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

2.1.6 The P6 Family of Processors (1995-1999)
The P6 family of processors was based on a superscalar microarchitecture that set new performance standards;
see also Section 2.2.1, “P6 Family Microarchitecture.” One of the goals in the design of the P6 family microarchi-
tecture was to exceed the performance of the Pentium processor significantly while using the same 0.6-microm-
eter, four-layer, metal BICMOS manufacturing process. Members of this family include the following:
• The Intel Pentium Pro processor is three-way superscalar. Using parallel processing techniques, the

processor is able on average to decode, dispatch, and complete execution of (retire) three instructions per
clock cycle. The Pentium Pro introduced the dynamic execution (micro-data flow analysis, out-of-order
execution, superior branch prediction, and speculative execution) in a superscalar implementation. The
processor was further enhanced by its caches. It has the same two on-chip 8-KByte 1st-Level caches as the
Pentium processor and an additional 256-KByte Level 2 cache in the same package as the processor.

• The Intel Pentium II processor added Intel MMX technology to the P6 family processors along with new
packaging and several hardware enhancements. The processor core is packaged in the single edge contact
cartridge (SECC). The Level l data and instruction caches were enlarged to 16 KBytes each, and Level 2 cache
sizes of 256 KBytes, 512 KBytes, and 1 MByte are supported. A half-frequency backside bus connects the
Level 2 cache to the processor. Multiple low-power states such as AutoHALT, Stop-Grant, Sleep, and Deep
Sleep are supported to conserve power when idling.

• The Pentium II Xeon processor combined the premium characteristics of previous generations of Intel
processors. This includes: 4-way, 8-way (and up) scalability and a 2 MByte 2nd-Level cache running on a full-
frequency backside bus.

• The Intel Celeron processor family focused on the value PC market segment. Its introduction offers an
integrated 128 KBytes of Level 2 cache and a plastic pin grid array (P.P.G.A.) form factor to lower system
design cost.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

• The Intel Pentium III processor introduced the Streaming SIMD Extensions (SSE) to the IA-32 architecture.
SSE extensions expand the SIMD execution model introduced with the Intel MMX technology by providing a
new set of 128-bit registers and the ability to perform SIMD operations on packed single-precision floating-
point values. See Section 2.2.7, “SIMD Instructions.”

• The Pentium III Xeon processor extended the performance levels of the IA-32 processors with the
enhancement of a full-speed, on-die, and Advanced Transfer Cache.

...

Table 2-2 Key Features of Most Recent Intel 64 Processors

Intel
Processor

Date
Intro-
duced

Micro-architec-
ture

Highest
Processor
Base Fre-
quency at
Intro-
duction

Tran-
sistors

Register
Sizes

System
Bus/QPI
Link
Speed

Max.
Extern.
Addr.
Space

On-Die
Caches

64-bit Intel
Xeon
Processor
with 800 MHz
System Bus

2004 Intel NetBurst
Microarchitecture;
Intel Hyper-
Threading
Technology; Intel
64 Architecture

3.60 GHz 125 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop
Execution
Trace Cache;
16 KB L1;
1 MB L2

64-bit Intel
Xeon
Processor MP
with 8MB L3

2005 Intel NetBurst
Microarchitecture;
Intel Hyper-
Threading
Technology; Intel
64 Architecture

3.33 GHz 675M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

5.3 GB/s 1 1024 GB
(1 TB)

12K µop
Execution
Trace Cache;
16 KB L1;
1 MB L2,
8 MB L3

Intel Pentium
4
Processor
Extreme
Edition
Supporting
Hyper-
Threading
Technology

2005 Intel NetBurst
Microarchitecture;
Intel Hyper-
Threading
Technology; Intel
64 Architecture

3.73 GHz 164 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

8.5 GB/s 64 GB 12K µop
Execution
Trace Cache;
16 KB L1;
2 MB L2

Intel Pentium
Processor
Extreme
Edition 840

2005 Intel NetBurst
Microarchitecture;
Intel Hyper-
Threading
Technology; Intel
64 Architecture;

Dual-core 2

3.20 GHz 230 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop
Execution
Trace Cache;
16 KB L1;
1MB L2
(2MB Total)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 14

Dual-Core Intel
Xeon
Processor
7041

2005 Intel NetBurst
Microarchitecture;
Intel Hyper-
Threading
Technology; Intel
64 Architecture;

Dual-core 3

3.00 GHz 321M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop
Execution
Trace Cache;
16 KB L1;
2MB L2
(4MB Total)

Intel Pentium
4
Processor 672

2005 Intel NetBurst
Microarchitecture;
Intel Hyper-
Threading
Technology; Intel
64 Architecture;

Intel Virtualization
Technology.

3.80 GHz 164 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop
Execution
Trace Cache;
16 KB L1;
2MB L2

Intel Pentium
Processor
Extreme
Edition 955

2006 Intel NetBurst
Microarchitecture;
Intel 64
Architecture; Dual
Core;

Intel Virtualization
Technology.

3.46 GHz 376M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

8.5 GB/s 64 GB 12K µop
Execution
Trace Cache;
16 KB L1;
2MB L2

(4MB Total)

Intel Core 2
Extreme
Processor
X6800

2006 Intel Core
Microarchitecture;
Dual Core;

Intel 64
Architecture;

Intel Virtualization
Technology.

2.93 GHz 291M GP: 32,64
FPU: 80
MMX: 64
XMM: 128

8.5 GB/s 64 GB L1: 64 KB
L2: 4MB
(4MB Total)

Intel Xeon
Processor
5160

2006 Intel Core
Microarchitecture;
Dual Core;

Intel 64
Architecture;

Intel Virtualization
Technology.

3.00 GHz 291M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

10.6 GB/s 64 GB L1: 64 KB
L2: 4MB
(4MB Total)

Table 2-2 Key Features of Most Recent Intel 64 Processors (Contd.)

Intel
Processor

Date
Intro-
duced

Micro-architec-
ture

Highest
Processor
Base Fre-
quency at
Intro-
duction

Tran-
sistors

Register
Sizes

System
Bus/QPI
Link
Speed

Max.
Extern.
Addr.
Space

On-Die
Caches

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 15

Intel Xeon
Processor
7140

2006 Intel NetBurst
Microarchitecture;
Dual Core;

Intel 64
Architecture;

Intel Virtualization
Technology.

3.40 GHz 1.3 B GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

12.8 GB/s 64 GB L1: 64 KB
L2: 1MB
(2MB Total)

L3: 16 MB
(16MB Total)

Intel Core 2
Extreme
Processor
QX6700

2006 Intel Core
Microarchitecture;
Quad Core;

Intel 64
Architecture;

Intel Virtualization
Technology.

2.66 GHz 582M GP: 32,64
FPU: 80
MMX: 64
XMM: 128

8.5 GB/s 64 GB L1: 64 KB
L2: 4MB
(4MB Total)

Quad-core
Intel Xeon
Processor
5355

2006 Intel Core
Microarchitecture;
Quad Core;

Intel 64
Architecture;

Intel Virtualization
Technology.

2.66 GHz 582 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

10.6 GB/s 256 GB L1: 64 KB
L2: 4MB (8
MB Total)

Intel Core 2
Duo Processor
E6850

2007 Intel Core
Microarchitecture;
Dual Core;

Intel 64
Architecture;

Intel Virtualization
Technology;

Intel Trusted
Execution
Technology

3.00 GHz 291 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

10.6 GB/s 64 GB L1: 64 KB
L2: 4MB
(4MB Total)

Intel Xeon
Processor
7350

2007 Intel Core
Microarchitecture;
Quad Core;

Intel 64
Architecture;

Intel Virtualization
Technology.

2.93 GHz 582 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

8.5 GB/s 1024 GB L1: 64 KB
L2: 4MB
(8MB Total)

Table 2-2 Key Features of Most Recent Intel 64 Processors (Contd.)

Intel
Processor

Date
Intro-
duced

Micro-architec-
ture

Highest
Processor
Base Fre-
quency at
Intro-
duction

Tran-
sistors

Register
Sizes

System
Bus/QPI
Link
Speed

Max.
Extern.
Addr.
Space

On-Die
Caches

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 16

Intel Xeon
Processor
5472

2007 Enhanced Intel
Core
Microarchitecture;
Quad Core;

Intel 64
Architecture;

Intel Virtualization
Technology.

3.00 GHz 820 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

12.8 GB/s 256 GB L1: 64 KB
L2: 6MB
(12MB Total)

Intel Atom
Processor

2008 Intel Atom
Microarchitecture;
Intel 64
Architecture;

Intel Virtualization
Technology.

2.0 - 1.60
GHz

47 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

Up to 4.2
GB/s

Up to
64GB

L1: 56 KB4

L2: 512KB

Intel Xeon
Processor
7460

2008 Enhanced Intel
Core
Microarchitecture;
Six Cores;

Intel 64
Architecture;

Intel Virtualization
Technology.

2.67 GHz 1.9 B GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

8.5 GB/s 1024 GB L1: 64 KB
L2: 3MB
(9MB Total)

L3: 16MB

Intel Atom
Processor 330

2008 Intel Atom
Microarchitecture;
Intel 64
Architecture;

Dual core;

Intel Virtualization
Technology.

1.60 GHz 94 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

Up to 4.2
GB/s

Up to
64GB

L1: 56 KB5

L2: 512KB
(1MB Total)

Intel Core i7-
965
Processor
Extreme
Edition

2008 Intel
microarchitecture
code name
Nehalem;
Quadcore;
HyperThreading
Technology; Intel
QPI; Intel 64
Architecture;

Intel Virtualization
Technology.

3.20 GHz 731 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

QPI: 6.4
GT/s;
Memory:
25 GB/s

64 GB L1: 64 KB
L2: 256KB

L3: 8MB

Table 2-2 Key Features of Most Recent Intel 64 Processors (Contd.)

Intel
Processor

Date
Intro-
duced

Micro-architec-
ture

Highest
Processor
Base Fre-
quency at
Intro-
duction

Tran-
sistors

Register
Sizes

System
Bus/QPI
Link
Speed

Max.
Extern.
Addr.
Space

On-Die
Caches

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

Intel Core i7-
620M
Processor

2010 Intel Turbo Boost
Technology, Intel
microarchitecture
code name
Westmere;
Dualcore;
HyperThreading
Technology; Intel
64 Architecture;

Intel Virtualization
Technology.,
Integrated graphics

2.66 GHz 383 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

64 GB L1: 64 KB
L2: 256KB

L3: 4MB

Intel Xeon-
Processor
5680

2010 Intel Turbo Boost
Technology, Intel
microarchitecture
code name
Westmere; Six core;
HyperThreading
Technology; Intel
64 Architecture;

Intel Virtualization
Technology.

3.33 GHz 1.1B GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

QPI: 6.4
GT/s; 32
GB/s

1 TB L1: 64 KB
L2: 256KB

L3: 12MB

Intel Xeon-
Processor
7560

2010 Intel Turbo Boost
Technology, Intel
microarchitecture
code name
Nehalem; Eight
core;
HyperThreading
Technology; Intel
64 Architecture;

Intel Virtualization
Technology.

2.26 GHz 2.3B GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

QPI: 6.4
GT/s;
Memory:
76 GB/s

16 TB L1: 64 KB
L2: 256KB

L3: 24MB

Intel Core i7-
2600K
Processor

2011 Intel Turbo Boost
Technology, Intel
microarchitecture
code name Sandy
Bridge; Four core;
HyperThreading
Technology; Intel
64 Architecture;

Intel Virtualization
Technology.,
Processor graphics,
Quicksync Video

3.40 GHz 995M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

YMM: 256

DMI: 5 GT/
s; Memory:
21 GB/s

64 GB L1: 64 KB
L2: 256KB

L3: 8MB

Table 2-2 Key Features of Most Recent Intel 64 Processors (Contd.)

Intel
Processor

Date
Intro-
duced

Micro-architec-
ture

Highest
Processor
Base Fre-
quency at
Intro-
duction

Tran-
sistors

Register
Sizes

System
Bus/QPI
Link
Speed

Max.
Extern.
Addr.
Space

On-Die
Caches

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 18

...

Intel Xeon-
Processor E3-
1280

2011 Intel Turbo Boost
Technology, Intel
microarchitecture
code name Sandy
Bridge; Four core;
HyperThreading
Technology; Intel
64 Architecture;

Intel Virtualization
Technology.

3.50 GHz GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

YMM: 256

DMI: 5 GT/
s; Memory:
21 GB/s

1 TB L1: 64 KB
L2: 256KB

L3: 8MB

Intel Xeon-
Processor E7-
8870

2011 Intel Turbo Boost
Technology, Intel
microarchitecture
code name
Westmere; Ten
core;
HyperThreading
Technology; Intel
64 Architecture;

Intel Virtualization
Technology.

2.40 GHz 2.2B GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

QPI: 6.4
GT/s;
Memory:
102 GB/s

16 TB L1: 64 KB
L2: 256KB

L3: 30MB

NOTES:
1. The 64-bit Intel Xeon Processor MP with an 8-MByte L3 supports a multi-processor platform with a dual system bus; this creates a

platform bandwidth with 10.6 GBytes.
2. In Intel Pentium Processor Extreme Edition 840, the size of on-die cache is listed for each core. The total size of L2 in the physical

package in 2 MBytes.
3. In Dual-Core Intel Xeon Processor 7041, the size of on-die cache is listed for each core. The total size of L2 in the physical package in

4 MBytes.
4. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.
5. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.

Table 2-2 Key Features of Most Recent Intel 64 Processors (Contd.)

Intel
Processor

Date
Intro-
duced

Micro-architec-
ture

Highest
Processor
Base Fre-
quency at
Intro-
duction

Tran-
sistors

Register
Sizes

System
Bus/QPI
Link
Speed

Max.
Extern.
Addr.
Space

On-Die
Caches

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

3. Updates to Chapter 3, Volume 1
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

3.4.3 EFLAGS Register
The 32-bit EFLAGS register contains a group of status flags, a control flag, and a group of system flags. Figure 3-
8 defines the flags within this register. Following initialization of the processor (either by asserting the RESET pin
or the INIT pin), the state of the EFLAGS register is 00000002H. Bits 1, 3, 5, 15, and 22 through 31 of this register
are reserved. Software should not use or depend on the states of any of these bits.

Some of the flags in the EFLAGS register can be modified directly, using special-purpose instructions (described
in the following sections). There are no instructions that allow the whole register to be examined or modified
directly.

The following instructions can be used to move groups of flags to and from the procedure stack or the EAX
register: LAHF, SAHF, PUSHF, PUSHFD, POPF, and POPFD. After the contents of the EFLAGS register have been
transferred to the procedure stack or EAX register, the flags can be examined and modified using the processor’s
bit manipulation instructions (BT, BTS, BTR, and BTC).

When suspending a task (using the processor’s multitasking facilities), the processor automatically saves the
state of the EFLAGS register in the task state segment (TSS) for the task being suspended. When binding itself to
a new task, the processor loads the EFLAGS register with data from the new task’s TSS.

When a call is made to an interrupt or exception handler procedure, the processor automatically saves the state
of the EFLAGS registers on the procedure stack. When an interrupt or exception is handled with a task switch, the
state of the EFLAGS register is saved in the TSS for the task being suspended.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 20

As the IA-32 Architecture has evolved, flags have been added to the EFLAGS register, but the function and place-
ment of existing flags have remained the same from one family of the IA-32 processors to the next. As a result,
code that accesses or modifies these flags for one family of IA-32 processors works as expected when run on later
families of processors.

3.4.3.1 Status Flags
The status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results of arithmetic instructions,
such as the ADD, SUB, MUL, and DIV instructions. The status flag functions are:
CF (bit 0) Carry flag — Set if an arithmetic operation generates a carry or a borrow out of the most-

significant bit of the result; cleared otherwise. This flag indicates an overflow condition for
unsigned-integer arithmetic. It is also used in multiple-precision arithmetic.

PF (bit 2) Parity flag — Set if the least-significant byte of the result contains an even number of 1 bits;
cleared otherwise.

AF (bit 4) Auxiliary Carry flag — Set if an arithmetic operation generates a carry or a borrow out of
bit 3 of the result; cleared otherwise. This flag is used in binary-coded decimal (BCD) arith-
metic.

ZF (bit 6) Zero flag — Set if the result is zero; cleared otherwise.
SF (bit 7) Sign flag — Set equal to the most-significant bit of the result, which is the sign bit of a

signed integer. (0 indicates a positive value and 1 indicates a negative value.)

Figure 3-8 EFLAGS Register

31 2930 28 27 26 25 24 23 22 21 20 19 18 17 16

0 R
F

I
D

A
C

V
M

X Virtual-8086 Mode (VM)
X Resume Flag (RF)
X Nested Task (NT)
X I/O Privilege Level (IOPL)
S Overflow Flag (OF)
C Direction Flag (DF)
X Interrupt Enable Flag (IF)

X Alignment Check / Access Control (AC)

X ID Flag (ID)
X Virtual Interrupt Pending (VIP)

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

0 C
F

A
F

P
F 1D

F
I
F

T
F

S
F

Z
F

N
T 000 0 0 0 0 0 0 0 0

V
I
P

V
I
F

O
F

I
O
P
L

X Virtual Interrupt Flag (VIF)

X Trap Flag (TF)
S Sign Flag (SF)
S Zero Flag (ZF)
S Auxiliary Carry Flag (AF)
S Parity Flag (PF)
S Carry Flag (CF)

S Indicates a Status Flag
C Indicates a Control Flag
X Indicates a System Flag

Reserved bit positions. DO NOT USE.
Always set to values previously read.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 21

OF (bit 11) Overflow flag — Set if the integer result is too large a positive number or too small a nega-
tive number (excluding the sign-bit) to fit in the destination operand; cleared otherwise. This
flag indicates an overflow condition for signed-integer (two’s complement) arithmetic.

Of these status flags, only the CF flag can be modified directly, using the STC, CLC, and CMC instructions. Also the
bit instructions (BT, BTS, BTR, and BTC) copy a specified bit into the CF flag.

The status flags allow a single arithmetic operation to produce results for three different data types: unsigned
integers, signed integers, and BCD integers. If the result of an arithmetic operation is treated as an unsigned
integer, the CF flag indicates an out-of-range condition (carry or a borrow); if treated as a signed integer (two’s
complement number), the OF flag indicates a carry or borrow; and if treated as a BCD digit, the AF flag indicates
a carry or borrow. The SF flag indicates the sign of a signed integer. The ZF flag indicates either a signed- or an
unsigned-integer zero.

When performing multiple-precision arithmetic on integers, the CF flag is used in conjunction with the add with
carry (ADC) and subtract with borrow (SBB) instructions to propagate a carry or borrow from one computation to
the next.

The condition instructions Jcc (jump on condition code cc), SETcc (byte set on condition code cc), LOOPcc, and
CMOVcc (conditional move) use one or more of the status flags as condition codes and test them for branch, set-
byte, or end-loop conditions.

...

3.4.3.3 System Flags and IOPL Field
The system flags and IOPL field in the EFLAGS register control operating-system or executive operations. They
should not be modified by application programs. The functions of the system flags are as follows:
TF (bit 8) Trap flag — Set to enable single-step mode for debugging; clear to disable single-step

mode.
IF (bit 9) Interrupt enable flag — Controls the response of the processor to maskable interrupt

requests. Set to respond to maskable interrupts; cleared to inhibit maskable interrupts.
IOPL (bits 12 and 13)

I/O privilege level field — Indicates the I/O privilege level of the currently running
program or task. The current privilege level (CPL) of the currently running program or task
must be less than or equal to the I/O privilege level to access the I/O address space. The
POPF and IRET instructions can modify this field only when operating at a CPL of 0.

NT (bit 14) Nested task flag — Controls the chaining of interrupted and called tasks. Set when the
current task is linked to the previously executed task; cleared when the current task is not
linked to another task.

RF (bit 16) Resume flag — Controls the processor’s response to debug exceptions.
VM (bit 17) Virtual-8086 mode flag — Set to enable virtual-8086 mode; clear to return to protected

mode without virtual-8086 mode semantics.
AC (bit 18) Alignment check (or access control) flag — If the AM bit is set in the CR0 register, align-

ment checking of user-mode data accesses is enabled if and only if this flag is 1.
If the SMAP bit is set in the CR4 register, explicit supervisor-mode data accesses to user-
mode pages are allowed if and only if this bit is 1. See Section 4.6, “Access Rights,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

VIF (bit 19) Virtual interrupt flag — Virtual image of the IF flag. Used in conjunction with the VIP flag.
(To use this flag and the VIP flag the virtual mode extensions are enabled by setting the VME
flag in control register CR4.)

VIP (bit 20) Virtual interrupt pending flag — Set to indicate that an interrupt is pending; clear when
no interrupt is pending. (Software sets and clears this flag; the processor only reads it.) Used
in conjunction with the VIF flag.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 22

ID (bit 21) Identification flag — The ability of a program to set or clear this flag indicates support for
the CPUID instruction.

For a detailed description of these flags: see Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3A.

...

4. Updates to Chapter 5, Volume 1
Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...
This chapter provides an abridged overview of Intel 64 and IA-32 instructions. Instructions are divided into the
following groups:
• General purpose
• x87 FPU
• x87 FPU and SIMD state management
• Intel® MMX technology
• SSE extensions
• SSE2 extensions
• SSE3 extensions
• SSSE3 extensions
• SSE4 extensions
• AESNI and PCLMULQDQ
• Intel® AVX extensions
• F16C, RDRAND, RDSEED, FS/GS base access
• FMA extensions
• Intel® AVX2 extensions
• Intel® Transactional Synchronization extensions
• System instructions
• IA-32e mode: 64-bit mode instructions
• VMX instructions
• SMX instructions
• ADCX and ADOX

Table 5-1 lists the groups and IA-32 processors that support each group. More recent instruction set extensions
are listed in Table 5-2. Within these groups, most instructions are collected into functional subgroups.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 23

Table 5-1 Instruction Groups in Intel 64 and IA-32 Processors

Instruction Set
Architecture Intel 64 and IA-32 Processor Support

General Purpose All Intel 64 and IA-32 processors

 x87 FPU Intel486, Pentium, Pentium with MMX Technology, Celeron, Pentium Pro, Pentium II, Pentium II Xeon,
Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Atom processors

x87 FPU and SIMD State
Management

Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M,
Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom processors

MMX Technology Pentium with MMX Technology, Celeron, Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, Pentium
4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom
processors

SSE Extensions Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Atom processors

SSE2 Extensions Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors,
Intel Atom processors

SSE3 Extensions Pentium 4 supporting HT Technology (built on 90nm process technology), Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Xeon processor 3xxxx, 5xxx, 7xxx Series, Intel Atom processors

SSSE3 Extensions Intel Xeon processor 3xxx, 5100, 5200, 5300, 5400, 5500, 5600, 7300, 7400, 7500 series, Intel Core 2
Extreme processors QX6000 series, Intel Core 2 Duo, Intel Core 2 Quad processors, Intel Pentium Dual-Core
processors, Intel Atom processors

IA-32e mode: 64-bit
mode instructions

Intel 64 processors

System Instructions Intel 64 and IA-32 processors

VMX Instructions Intel 64 and IA-32 processors supporting Intel Virtualization Technology

SMX Instructions Intel Core 2 Duo processor E6x50, E8xxx; Intel Core 2 Quad processor Q9xxx

Table 5-2 Recent Instruction Set Extensions in Intel 64 and IA-32 Processors

Instruction Set
Architecture Processor Generation Introduction

SSE4.1 Extensions Intel Xeon processor 3100, 3300, 5200, 5400, 7400, 7500 series, Intel Core 2 Extreme processors
QX9000 series, Intel Core 2 Quad processor Q9000 series, Intel Core 2 Duo processors 8000 series, T9000
series.

SSE4.2 Extensions Intel Core i7 965 processor, Intel Xeon processors X3400, X3500, X5500, X6500, X7500 series.

AESNI, PCLMULQDQ InteL Xeon processor E7 series, Intel Xeon processors X3600, X5600, Intel Core i7 980X processor; Use
CPUID to verify presence of AESNI and PCLMULQDQ across Intel Core processor families.

Intel AVX Intel Xeon processor E3 and E5 families; 2nd Generation Intel Core i7, i5, i3 processor 2xxx families.

F16C, RDRAND, FS/GS
base access

3rd Generation Intel Core processors, Intel Xeon processor E3-1200 v2 product family, Next Generation
Intel Xeon processors, Intel Xeon processor E5 v2 and E7 v2 families.

FMA, AVX2, BMI1, BMI2,
TSX, INVPCID

Intel Xeon processor E3-1200 v3 product family; 4th Generation Intel Core processor family.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 24

...

5.1.14 Random Number Generator Instructions
RDRAND Retrieves a random number generated from hardware
RDSEED Retrieves a random number generated from hardware

...

5.5 SSE INSTRUCTIONS
SSE instructions represent an extension of the SIMD execution model introduced with the MMX technology. For
more detail on these instructions, see Chapter 10, “Programming with Streaming SIMD Extensions (SSE).”

SSE instructions can only be executed on Intel 64 and IA-32 processors that support SSE extensions. Support for
these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in
Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.

SSE instructions are divided into four subgroups (note that the first subgroup has subordinate subgroups of its
own):
• SIMD single-precision floating-point instructions that operate on the XMM registers
• MXCSR state management instructions
• 64-bit SIMD integer instructions that operate on the MMX registers
• Cacheability control, prefetch, and instruction ordering instructions

The following sections provide an overview of these groups.

...

5. Updates to Chapter 6, Volume 1
Change bars show changes to Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

6.4 INTERRUPTS AND EXCEPTIONS
The processor provides two mechanisms for interrupting program execution, interrupts and exceptions:
• An interrupt is an asynchronous event that is typically triggered by an I/O device.

ADX, RDSEED, CLAC,
STAC

Intel Core M processor family.

Table 5-2 Recent Instruction Set Extensions in Intel 64 and IA-32 Processors (Contd.)

Instruction Set
Architecture Processor Generation Introduction

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 25

• An exception is a synchronous event that is generated when the processor detects one or more predefined
conditions while executing an instruction. The IA-32 architecture specifies three classes of exceptions: faults,
traps, and aborts.

The processor responds to interrupts and exceptions in essentially the same way. When an interrupt or exception
is signaled, the processor halts execution of the current program or task and switches to a handler procedure that
has been written specifically to handle the interrupt or exception condition. The processor accesses the handler
procedure through an entry in the interrupt descriptor table (IDT). When the handler has completed handling the
interrupt or exception, program control is returned to the interrupted program or task.

The operating system, executive, and/or device drivers normally handle interrupts and exceptions independently
from application programs or tasks. Application programs can, however, access the interrupt and exception
handlers incorporated in an operating system or executive through assembly-language calls. The remainder of
this section gives a brief overview of the processor’s interrupt and exception handling mechanism. See Chapter 6,
“Interrupt and Exception Handling,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, for a description of this mechanism.

The IA-32 Architecture defines 18 predefined interrupts and exceptions and 224 user defined interrupts, which
are associated with entries in the IDT. Each interrupt and exception in the IDT is identified with a number, called
a vector. Table 6-1 lists the interrupts and exceptions with entries in the IDT and their respective vectors. Vectors
0 through 8, 10 through 14, and 16 through 19 are the predefined interrupts and exceptions; vectors 32 through
255 are for software-defined interrupts, which are for either software interrupts or maskable hardware
interrupts.

Note that the processor defines several additional interrupts that do not point to entries in the IDT; the most
notable of these interrupts is the SMI interrupt. See Chapter 6, “Interrupt and Exception Handling,” in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for more information about the interrupts
and exceptions.

When the processor detects an interrupt or exception, it does one of the following things:
• Executes an implicit call to a handler procedure.
• Executes an implicit call to a handler task.

...

6.4.1 Call and Return Operation for Interrupt or Exception Handling Procedures
A call to an interrupt or exception handler procedure is similar to a procedure call to another protection level (see
Section 6.3.6, “CALL and RET Operation Between Privilege Levels”). Here, the vector references one of two kinds
of gates in the IDT: an interrupt gate or a trap gate. Interrupt and trap gates are similar to call gates in that
they provide the following information:
• Access rights information
• The segment selector for the code segment that contains the handler procedure
• An offset into the code segment to the first instruction of the handler procedure

The difference between an interrupt gate and a trap gate is as follows. If an interrupt or exception handler is
called through an interrupt gate, the processor clears the interrupt enable (IF) flag in the EFLAGS register to
prevent subsequent interrupts from interfering with the execution of the handler. When a handler is called
through a trap gate, the state of the IF flag is not changed.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 26

...

6.4.3 Interrupt and Exception Handling in Real-Address Mode
When operating in real-address mode, the processor responds to an interrupt or exception with an implicit far call
to an interrupt or exception handler. The processor uses the interrupt or exception vector as an index into an
interrupt table. The interrupt table contains instruction pointers to the interrupt and exception handler proce-
dures.

The processor saves the state of the EFLAGS register, the EIP register, the CS register, and an optional error code
on the stack before switching to the handler procedure.

Table 6-1 Exceptions and Interrupts
Vector Mnemonic Description Source

 0 #DE Divide Error DIV and IDIV instructions.

 1 #DB Debug Any code or data reference.

 2 NMI Interrupt Non-maskable external interrupt.

 3 #BP Breakpoint INT 3 instruction.

 4 #OF Overflow INTO instruction.

 5 #BR BOUND Range Exceeded BOUND instruction.

 6 #UD Invalid Opcode (UnDefined Opcode) UD2 instruction or reserved opcode.1

 7 #NM Device Not Available (No Math Coprocessor) Floating-point or WAIT/FWAIT instruction.

 8 #DF Double Fault Any instruction that can generate an exception, an NMI, or
an INTR.

 9 #MF CoProcessor Segment Overrun (reserved) Floating-point instruction.2

10 #TS Invalid TSS Task switch or TSS access.

11 #NP Segment Not Present Loading segment registers or accessing system segments.

12 #SS Stack Segment Fault Stack operations and SS register loads.

13 #GP General Protection Any memory reference and other protection checks.

14 #PF Page Fault Any memory reference.

15 Reserved

16 #MF Floating-Point Error (Math Fault) Floating-point or WAIT/FWAIT instruction.

17 #AC Alignment Check Any data reference in memory.3

18 #MC Machine Check Error codes (if any) and source are model dependent.4

19 #XM SIMD Floating-Point Exception SIMD Floating-Point Instruction5

20-31 Reserved

32-255 Maskable Interrupts External interrupt from INTR pin or INT n instruction.

NOTES:
1. The UD2 instruction was introduced in the Pentium Pro processor.
2. IA-32 processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.
4. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.
5. This exception was introduced in the Pentium III processor.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

A return from the interrupt or exception handler is carried out with the IRET
instruction.

See Chapter 20, “8086 Emulation,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, for more information on handling interrupts and exceptions in real-address mode.

6.4.4 INT n, INTO, INT 3, and BOUND Instructions
The INT n, INTO, INT 3, and BOUND instructions allow a program or task to explicitly call an interrupt or exception
handler. The INT n instruction uses a vector as an argument, which allows a program to call any interrupt handler.

The INTO instruction explicitly calls the overflow exception (#OF) handler if the overflow flag (OF) in the EFLAGS
register is set. The OF flag indicates overflow on arithmetic instructions, but it does not automatically raise an
overflow exception. An overflow exception can only be raised explicitly in either of the following ways:
• Execute the INTO instruction.
• Test the OF flag and execute the INT n instruction with an argument of 4 (the vector of the overflow exception)

if the flag is set.

Both the methods of dealing with overflow conditions allow a program to test for overflow at specific places in the
instruction stream.

The INT 3 instruction explicitly calls the breakpoint exception (#BP) handler.

The BOUND instruction explicitly calls the BOUND-range exceeded exception (#BR) handler if an operand is found
to be not within predefined boundaries in memory. This instruction is provided for checking references to arrays
and other data structures. Like the overflow exception, the BOUND-range exceeded exception can only be raised
explicitly with the BOUND instruction or the INT n instruction with an argument of 5 (the vector of the bounds-
check exception). The processor does not implicitly perform bounds checks and raise the BOUND-range exceeded
exception.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 28

6. Updates to Chapter 7, Volume 1
Change bars show changes to Chapter 7 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

7.3.8.4 Software Interrupt Instructions
The INT n (software interrupt), INTO (interrupt on overflow), and BOUND (detect value out of range) instructions
allow a program to explicitly raise a specified interrupt or exception, which in turn causes the handler routine for
the interrupt or exception to be called.

The INT n instruction can raise any of the processor’s interrupts or exceptions by encoding the vector of the inter-
rupt or exception in the instruction. This instruction can be used to support software generated interrupts or to
test the operation of interrupt and exception handlers.

The IRET (return from interrupt) instruction returns program control from an interrupt handler to the interrupted
procedure. The IRET instruction performs a similar operation to the RET instruction.

The CALL (call procedure) and RET (return from procedure) instructions allow a jump from one procedure to
another and a subsequent return to the calling procedure. EFLAGS register contents are automatically stored on
the stack along with the return instruction pointer when the processor services an interrupt.

The INTO instruction raises the overflow exception if the OF flag is set. If the flag is clear, execution continues
without raising the exception. This instruction allows software to access the overflow exception handler explicitly
to check for overflow conditions.

The BOUND instruction compares a signed value against upper and lower bounds, and raises the “BOUND range
exceeded” exception if the value is less than the lower bound or greater than the upper bound. This instruction is
useful for operations such as checking an array index to make sure it falls within the range defined for the array.

...

7.3.17 Random Number Generator Instructions
The instructions for generating random numbers to comply with NIST SP800-90A, SP800-90B, and SP800-90C
standards are described in this section.

7.3.17.1 RDRAND
The RDRAND instruction returns a random number. All Intel processors that support the RDRAND instruction indi-
cate the availability of the RDRAND instruction via reporting CPUID.01H:ECX.RDRAND[bit 30] = 1.
RDRAND returns random numbers that are supplied by a cryptographically secure, deterministic random bit
generator DRBG. The DRBG is designed to meet the NIST SP 800-90A standard. The DRBG is re-seeded
frequently from a on-chip non-deterministic entropy source to guarantee data returned by RDRAND is statistically
uniform, non-periodic and non-deterministic.
In order for the hardware design to meet its security goals, the random number generator continuously tests itself
and the random data it is generating. Runtime failures in the random number generator circuitry or statistically
anomalous data occurring by chance will be detected by the self test hardware and flag the resulting data as being
bad. In such extremely rare cases, the RDRAND instruction will return no data instead of bad data.
Under heavy load, with multiple cores executing RDRAND in parallel, it is possible, though unlikely, for the
demand of random numbers by software processes/threads to exceed the rate at which the random number

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

generator hardware can supply them. This will lead to the RDRAND instruction returning no data transitorily. The
RDRAND instruction indicates the occurrence of this rare situation by clearing the CF flag.
The RDRAND instruction returns with the carry flag set (CF = 1) to indicate valid data is returned. It is recom-
mended that software using the RDRAND instruction to get random numbers retry for a limited number of itera-
tions while RDRAND returns CF=0 and complete when valid data is returned, indicated with CF=1. This will deal
with transitory underflows. A retry limit should be employed to prevent a hard failure in the RNG (expected to be
extremely rare) leading to a busy loop in software.
The intrinsic primitive for RDRAND is defined to address software’s need for the common cases (CF = 1) and the
rare situations (CF = 0). The intrinsic primitive returns a value that reflects the value of the carry flag returned by
the underlying RDRAND instruction. The example below illustrates the recommended usage of an RDRAND
intrinsic in a utility function, a loop to fetch a 64 bit random value with a retry count limit of 10. A C implementa-
tion might be written as follows:

--
#define SUCCESS 1
#define RETRY_LIMIT_EXCEEDED 0
#define RETRY_LIMIT 10

int get_random_64(unsigned __int 64 * arand)
{int i ;

for (i = 0; i < RETRY_LIMIT; i ++) {
if(_rdrand64_step(arand)) return SUCCESS;

}
return RETRY_LIMIT_EXCEEDED;

}

7.3.17.2 RDSEED
The RDSEED instruction returns a random number. All Intel processors that support the RDSEED instruction indi-
cate the availability of the RDSEED instruction via reporting CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit 18] =
1.
RDSEED returns random numbers that are supplied by a cryptographically secure, enhanced non-deterministic
random bit generator (Enhanced NRBG). The NRBG is designed to meet the NIST SP 800-90B and NIST SP800-
90C standards.
In order for the hardware design to meet its security goals, the random number generator continuously tests itself
and the random data it is generating. Runtime failures in the random number generator circuitry or statistically
anomalous data occurring by chance will be detected by the self test hardware and flag the resulting data as being
bad. In such extremely rare cases, the RDSEED instruction will return no data instead of bad data.
Under heavy load, with multiple cores executing RDSEED in parallel, it is possible for the demand of random
numbers by software processes/threads to exceed the rate at which the random number generator hardware can
supply them. This will lead to the RDSEED instruction returning no data transitorily. The RDSEED instruction indi-
cates the occurrence of this situation by clearing the CF flag.
The RDSEED instruction returns with the carry flag set (CF = 1) to indicate valid data is returned. It is recom-
mended that software using the RDSEED instruction to get random numbers retry for a limited number of itera-
tions while RDSEED returns CF=0 and complete when valid data is returned, indicated with CF=1. This will deal
with transitory underflows. A retry limit should be employed to prevent a hard failure in the NRBG (expected to be
extremely rare) leading to a busy loop in software.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 30

The intrinsic primitive for RDSEED is defined to address software’s need for the common cases (CF = 1) and the
rare situations (CF = 0). The intrinsic primitive returns a value that reflects the value of the carry flag returned by
the underlying RDSEED instruction.

...

7. Updates to Chapter 8, Volume 1
Change bars show changes to Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

8.1.8 x87 FPU Instruction and Data (Operand) Pointers
The x87 FPU stores pointers to the instruction and data (operand) for the last non-control instruction executed.
These are the x87 FPU instruction pointer and x87 FPU data (operand) pointers; software can save these pointers
to provide state information for exception handlers. The pointers are illustrated in Figure 8-1 (the figure illus-
trates the pointers as used outside 64-bit mode; see below).

Note that the value in the x87 FPU data pointer register is always a pointer to a memory operand. If the last non-
control instruction that was executed did not have a memory operand, the value in the data pointer register is
undefined (reserved).

The contents of the x87 FPU instruction and data pointer registers remain unchanged when any of the following
instructions are executed: FCLEX/FNCLEX, FLDCW, FSTCW/FNSTCW, FSTSW/FNSTSW, FSTENV/FNSTENV,
FLDENV, and WAIT/FWAIT.

For all the x87 FPUs and NPXs except the 8087, the x87 FPU instruction pointer points to any prefixes that
preceded the instruction. For the 8087, the x87 FPU instruction pointer points only to the actual opcode.

The x87 FPU instruction and data pointers each consists of an offset and a segment selector. On processors that
support IA-32e mode, each offset comprises 64 bits; on other processors, each offset comprises 32 bits. Each
segment selector comprises 16 bits.

The pointers are accessed by the FINIT/FNINIT, FLDENV, FRSTOR, FSAVE/FNSAVE, FSTENV/FNSTENV, FXRSTOR,
FXSAVE, XRSTOR, XSAVE, and XSAVEOPT instructions as follows:
• FINIT/FNINIT. Each instruction clears each 64-bit offset and 16-bit segment selector.
• FLDENV, FRSTOR. These instructions use the memory formats given in Figures 8-9 through 8-12:

— For each 64-bit offset, each instruction loads the lower 32 bits from memory and clears the upper 32 bits.

— If CR0.PE = 1, each instruction loads each 16-bit segment selector from memory; otherwise, it clears
each 16-bit segment selector.

• FSAVE/FNSAVE, FSTENV/FNSTENV. These instructions use the memory formats given in Figures 8-9 through
8-12.

— Each instruction saves the lower 32 bits of each 64-bit offset into memory. the upper 32 bits are not
saved.

— If CR0.PE = 1, each instruction saves each 16-bit segment selector into memory. If
CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the processor deprecates the segment selectors of the x87
FPU instruction and data pointers; it saves each segment selector as 0000H.

— After saving these data into memory, FSAVE/FNSAVE clears each 64-bit offset and 16-bit segment
selector.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 31

• FXRSTOR, XRSTOR. These instructions load data from a memory image whose format depend on operating
mode and the REX prefix. The memory formats are given in Tables 3-53, 3-56, and 3-57 in Chapter 3,
“Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

— Outside of 64-bit mode or if REX.W = 0, the instructions operate as follows:

• For each 64-bit offset, each instruction loads the lower 32 bits from memory and clears the upper 32
bits.

• Each instruction loads each 16-bit segment selector from memory.

— In 64-bit mode with REX.W = 1, the instructions operate as follows:

• Each instruction loads each 64-bit offset from memory.

• Each instruction clears each 16-bit segment selector.
• FXSAVE, XSAVE, and XSAVEOPT. These instructions store data into a memory image whose format depend on

operating mode and the REX prefix. The memory formats are given in Tables 3-53, 3-56, and 3-57 in Chapter
3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

— Outside of 64-bit mode or if REX.W = 0, the instructions operate as follows:

• Each instruction saves the lower 32 bits of each 64-bit offset into memory. The upper 32 bits are not
saved.

• Each instruction saves each 16-bit segment selector into memory. If
CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the processor deprecates the segment selectors of the
x87 FPU instruction and data pointers; it saves each segment selector as 0000H.

— In 64-bit mode with REX.W = 1, each instruction saves each 64-bit offset into memory. The 16-bit
segment selectors are not saved.

...

8.7.1 Native Mode
The native mode for handling floating-point exceptions is selected by setting CR0.NE[bit 5] to 1. In this mode, if
the x87 FPU detects an exception condition while executing a floating-point instruction and the exception is
unmasked (the mask bit for the exception is cleared), the x87 FPU sets the flag for the exception and the ES flag
in the x87 FPU status word. It then invokes the software exception handler through the floating-point-error
exception (#MF, exception vector 16), immediately before execution of any of the following instructions in the
processor’s instruction stream:
• The next floating-point instruction, unless it is one of the non-waiting instructions (FNINIT, FNCLEX, FNSTSW,

FNSTCW, FNSTENV, and FNSAVE).
• The next WAIT/FWAIT instruction.
• The next MMX instruction.

If the next floating-point instruction in the instruction stream is a non-waiting instruction, the x87 FPU executes
the instruction without invoking the software exception handler.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 32

...

8. Updates to Chapter 12, Volume 1
Change bars show changes to Chapter 12 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

12.8.2 Numeric Error flag and IGNNE#
Most SSE3 instructions ignore CR0.NE[bit 5] (treats it as if it were always set) and the IGNNE# pin. With one
exception, all use the exception 19 (#XM) software exception for error reporting. The exception is FISTTP; it
behaves like other x87-FP instructions.

SSSE3 instructions ignore CR0.NE[bit 5] (treats it as if it were always set) and the IGNNE# pin.

SSSE3 instructions do not cause floating-point errors. Floating-point numeric errors for SSE4.1 are described in
Section 12.8.4. SSE4.2 instructions do not cause floating-point errors.

...

12.14.1 Little-Endian Architecture and Big-Endian Specification (FIPS 197)
FIPS 197 document defines the Advanced Encryption Standard (AES) and includes a set of test vectors for testing
all of the steps in the algorithm, and can be used for testing and debugging.
The following observation is important for using the AES instructions offered in Intel 64 Architecture: FIPS 197
text convention is to write hex strings with the low-memory byte on the left and the high-memory byte on the
right. Intel’s convention is the reverse. It is similar to the difference between Big Endian and Little Endian nota-
tions.
In other words, a 128 bits vector in the FIPS document, when read from left to right, is encoded as [7:0, 15:8,
23:16, 31:24, …127:120]. Note that inside the byte, the encoding is [7:0], so the first bit from the left is the most
significant bit. In practice, the test vectors are written in hexadecimal notation, where pairs of hexadecimal digits
define the different bytes. To translate the FIPS 197 notation to an Intel 64 architecture compatible (“Little
Endian”) format, each test vector needs to be byte-reflected to [127:120,… 31:24, 23:16, 15:8, 7:0].
Example A:
FIPS Test vector: 000102030405060708090a0b0c0d0e0fH
Intel AES Hardware: 0f0e0d0c0b0a09080706050403020100H

It should be pointed out that the only thing at issue is a textual convention, and programmers do not need to
perform byte-reversal in their code, when using the AES instructions.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 33

9. Updates to Chapter 14, Volume 1
Change bars show changes to Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

14.3 DETECTION OF AVX INSTRUCTIONS
Intel AVX instructions operate on the 256-bit YMM register state. Application detection of new instruction exten-
sions operating on the YMM state follows the general procedural flow in Figure 14-2.
Prior to using AVX, the application must identify that the operating system supports the XGETBV instruction, the
YMM register state, in addition to processor’s support for YMM state management using XSAVE/XRSTOR and AVX
instructions. The following simplified sequence accomplishes both and is strongly recommended.
1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use1)
2) Issue XGETBV and verify that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by OS).
3) detect CPUID.1:ECX.AVX[bit 28] = 1 (AVX instructions supported).
(Step 3 can be done in any order relative to 1 and 2)

...

14.4.1 Detection of F16C Instructions
Application using float 16 instruction must follow a detection sequence similar to AVX to ensure:
• The OS has enabled YMM state management support,

1. If CPUID.01H:ECX.OSXSAVE reports 1, it also indirectly implies the processor supports XSAVE, XRSTOR, XGETBV, processor
extended state bit vector XCR0. Thus an application may streamline the checking of CPUID feature flags for XSAVE and OSXSAVE.
XSETBV is a privileged instruction.

Figure 14-2 General Procedural Flow of Application Detection of AVX

Implied HW support for

Check enabled state in

XCR0 via XGETBV

Check feature flag
for Instruction set

Check feature flag

CPUID.1H:ECX.OSXSAVE = 1?

OS provides processor
extended state management

State ok to use

XSAVE, XRSTOR, XGETBV, XCR0

enabled Instructions

Yes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 34

• The processor support AVX as indicated by the CPUID feature flag, i.e. CPUID.01H:ECX.AVX[bit 28] = 1.
• The processor support 16-bit floating-point conversion instructions via a CPUID feature flag

(CPUID.01H:ECX.F16C[bit 29] = 1).
Application detection of Float-16 conversion instructions follow the general procedural flow in Figure 14-3.

...

10.Updates to Chapter 15, Volume 1
Change bars show changes to Chapter 15 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

15.3.5 RTM Abort Status Definition
RTM uses the EAX register to communicate abort status to software. Following an RTM abort the EAX register has
the following definition.

Figure 14-3 General Procedural Flow of Application Detection of Float-16

Implied HW support for

Check enabled YMM state in
XCR0 via XGETBV

Check feature flags

for AVX and F16C

Check feature flag

CPUID.1H:ECX.OSXSAVE = 1?

OS provides processor
extended state management

State ok to use

XSAVE, XRSTOR, XGETBV, XFEATURE_ENABLED_MASK

enabled Instructions

Yes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 35

The EAX abort status for RTM only provides causes for aborts. It does not by itself encode whether an abort or
commit occurred for the RTM region. The value of EAX can be 0 following an RTM abort. For example, a CPUID
instruction when used inside an RTM region causes a transactional abort and may not satisfy the requirements for
setting any of the EAX bits. This may result in an EAX value of 0.

...

15.3.7 RTM-Enabled Debugger Support
By default, any debug exception (#DB) or breakpoint exception (#BP) inside an RTM region causes a transac-
tional abort and redirects control flow to the fallback instruction address with architectural state recovered and bit
4 in EAX set. However, to allow software debuggers to intercept execution on debug or breakpoint exceptions, the
RTM architecture provides additional capability called advanced debugging of RTM transactional regions.
Advanced debugging of RTM transactional regions is enabled if bit 11 of DR7 and bit 15 of the IA32_DEBUGCTL
MSR are both 1. In this case, any RTM transactional abort due to a #DB or #BP causes execution to roll back to
just before the XBEGIN instruction (EAX is restored to the value it had before XBEGIN) and then delivers a #DB.
(A #DB is delivered even if the transactional abort was caused by a #BP.) DR6[16] is cleared to indicate that the
exception resulted from a debug or breakpoint exception inside an RTM region. See also Section 17.3.3, “Debug
Exceptions, Breakpoint Exceptions, and Restricted Transactional Memory (RTM),” of Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B.

15.3.8 Programming Considerations
Typical programmer-identified regions are expected to execute transactionally and to commit successfully.
However, Intel TSX does not provide any such guarantee. A transactional execution may abort for many reasons.
To take full advantage of the transactional capabilities, programmers should follow certain guidelines to increase
the probability of their transactional execution committing successfully.
This section discusses various events that may cause transactional aborts. The architecture ensures that updates
performed within a transactional region that subsequently aborts execution will never become visible. Only a
committed transactional execution updates architectural state. Transactional aborts never cause functional fail-
ures and only affect performance.

Table 15-1 RTM Abort Status Definition

EAX Register Bit
Position

Meaning

0 Set if abort caused by XABORT instruction.

1 If set, the transactional execution may succeed on a retry. This bit is always clear if bit 0 is set.

2 Set if another logical processor conflicted with a memory address that was part of the transactional execution
that aborted.

3 Set if an internal buffer to track transactional state overflowed.

4 Set if a debug exception (#DB) or breakpoint exception (#BP) was hit.

5 Set if an abort occurred during execution of a nested transactional execution.

23:6 Reserved.

31:24 XABORT argument (only valid if bit 0 set, otherwise reserved).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 36

...

11.Updates to Appendix D, Volume 1
Change bars show changes to Appendix D of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

D.1 MS-DOS COMPATIBILITY SUB-MODE FOR HANDLING X87 FPU
EXCEPTIONS

The first generations of IA-32 processors (starting with the Intel 8086 and 8088 processors and going through the
Intel 286 and Intel386 processors) did not have an on-chip floating-point unit. Instead, floating-point capability
was provided on a separate numeric coprocessor chip. The first of these numeric coprocessors was the Intel 8087,
which was followed by the Intel 287 and Intel 387 numeric coprocessors.

To allow the 8087 to signal floating-point exceptions to its companion 8086 or 8088, the 8087 has an output pin,
INT, which it asserts when an unmasked floating-point exception occurs. The designers of the 8087 recommended
that the output from this pin be routed through a programmable interrupt controller (PIC) such as the Intel 8259A
to the INTR pin of the 8086 or 8088. The handler for the resulting interrupt could then be used to access the
floating-point exception handler.

However, the original IBM* PC design and MS-DOS operating system used a different mechanism for handling the
INT output from the 8087. It connected the INT pin directly to the NMI input pin of the 8086 or 8088. The NMI
interrupt handler then had to determine if the interrupt was caused by a floating-point exception or another NMI
event. This mechanism is the origin of what is now called the “MS-DOS compatibility mode.” The decision to use
this latter floating-point exception handling mechanism came about because when the IBM PC was first designed,
the 8087 was not available. When the 8087 did become available, other functions had already been assigned to
the eight inputs to the PIC. One of these functions was a BIOS video interrupt, which was assigned vector 16 for
the 8086 and 8088.

The Intel 286 processor created the “native mode” for handling floating-point exceptions by providing a dedicated
input pin (ERROR#) for receiving floating-point exception signals and a dedicated interrupt vector, 16. Interrupt
16 was used to signal floating-point errors (also called math faults). It was intended that the ERROR# pin on the
Intel 286 be connected to a corresponding ERROR# pin on the Intel 287 numeric coprocessor. When the Intel 287
signals a floating-point exception using this mechanism, the Intel 286 generates an interrupt 16, to invoke the
floating-point exception handler.

...

D.3.6.4 Interrupt Routing From the Kernel
In MS-DOS, an application that wishes to handle numeric exceptions hooks interrupt 16 by placing its handler
address in the interrupt vector table, and exiting via a jump to the previous interrupt 16 handler. Protected mode
systems that run MS-DOS programs under a subsystem can emulate this exception delivery mechanism. For
example, assume a protected mode OS. that runs with CR0.NE[bit 5] = 1, and that runs MS-DOS programs in
a virtual machine subsystem. The MS-DOS program is set up in a virtual machine that provides a virtualized
interrupt table. The MS-DOS application hooks interrupt 16 in the virtual machine in the normal way. A numeric
exception will trap to the kernel via the real INT 16 residing in the kernel at ring 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 37

The INT 16 handler in the kernel then locates the correct MS-DOS virtual machine, and reflects the interrupt to
the virtual machine monitor. The virtual machine monitor then emulates an interrupt by jumping through the
address in the virtualized interrupt table, eventually reaching the application’s numeric exception handler.

...

D.4 DIFFERENCES FOR HANDLERS USING NATIVE MODE
The 8087 has an INT pin which it asserts when an unmasked exception occurs. But there is no interrupt input pin
in the 8086 or 8088 dedicated to its attachment, nor an interrupt vector in the 8086 or 8088 specific for an x87
FPU error assertion. Beginning with the Intel 286 and Intel 287 hardware, a connection was dedicated to support
the x87 FPU exception and interrupt vector 16 was assigned to it.

D.4.1 Origin with the Intel 286 and Intel 287, and Intel386 and Intel 387 Processors
The Intel 286 and Intel 287, and Intel386 and Intel 387 processor/coprocessor pairs are each provided with
ERROR# pins that are recommended to be connected between the processor and x87 FPU. If this is done, when
an unmasked x87 FPU exception occurs, the x87 FPU records the exception, and asserts its ERROR# pin. The
processor recognizes this active condition of the ERROR# status line immediately before execution of the next
WAIT or x87 FPU instruction (except for the no-wait type) in its instruction stream, and branches to the handler
of interrupt 16. Thus an x87 FPU exception will be handled before any other x87 FPU instruction (after the one
causing the error) is executed (except for no-wait instructions, which will be executed without triggering the x87
FPU exception interrupt, but it will remain pending).

Using the dedicated INT 16 for x87 FPU exception handling is referred to as the native mode. It is the simplest
approach, and the one recommended most highly by Intel.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 38

12.Updates to Appendix E, Volume 1
Change bars show changes to Appendix E of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

E.1 TWO OPTIONS FOR HANDLING FLOATING-POINT EXCEPTIONS
Just as for x87 FPU floating-point exceptions, the processor takes one of two possible courses of action when an
SSE/SSE2/SSE3 instruction raises a floating-point exception:
• If the exception being raised is masked (by setting the corresponding mask bit in the MXCSR to 1), then a

default result is produced which is acceptable in most situations. No external indication of the exception is
given, but the corresponding exception flags in the MXCSR are set and may be examined later. Note though
that for packed operations, an exception flag that is set in the MXCSR will not tell which of the sub-operands
caused the event to occur.

• If the exception being raised is not masked (by setting the corresponding mask bit in the MXCSR to 0), a
software exception handler previously registered by the user with operating system support will be invoked
through the SIMD floating-point exception (#XM, exception 19). This case is discussed below in Section E.2,
“Software Exception Handling.”

E.2 SOFTWARE EXCEPTION HANDLING
The #XM handler is usually part of the system software (the operating system kernel). Note that an interrupt
descriptor table (IDT) entry must have been previously set up for exception 19 (refer to Chapter 6, “Interrupt and
Exception Handling,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). Some
compilers use specific run-time libraries to assist in floating-point exception handling. If any x87 FPU floating-
point operations are going to be performed that might raise floating-point exceptions, then the exception
handling routine must either disable all floating-point exceptions (for example, loading a local control word with
FLDCW), or it must be implemented as re-entrant (for the case of x87 FPU exceptions, refer to Example D-1 in
Appendix D, “Guidelines for Writing x87 FPU Exception Handlers”). If this is not the case, the routine has to clear
the status flags for x87 FPU exceptions or to mask all x87 FPU floating-point exceptions. For SIMD floating-point
exceptions though, the exception flags in MXCSR do not have to be cleared, even if they remain unmasked (but
they may still be cleared). Exceptions are in this case precise and occur immediately, and a SIMD floating-point
exception status flag that is set when the corresponding exception is unmasked will not generate an exception.

Typical actions performed by this low-level exception handling routine are:
• Incrementing an exception counter for later display or printing
• Printing or displaying diagnostic information (e.g. the MXCSR and XMM registers)
• Aborting further execution, or using the exception pointers to build an instruction that will run without

exception and executing it
• Storing information about the exception in a data structure that will be passed to a higher level user exception

handler

In most cases (and this applies also to SSE/SSE2/SSE3 instructions), there will be three main components of a
low-level floating-point exception handler: a prologue, a body, and an epilogue.

The prologue performs functions that must be protected from possible interruption by higher-priority sources -
typically saving registers and transferring diagnostic information from the processor to memory. When the critical
processing has been completed, the prologue may re-enable interrupts to allow higher-priority interrupt handlers

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 39

to preempt the exception handler (assuming that the interrupt handler was called through an interrupt gate,
meaning that the processor cleared the interrupt enable (IF) flag in the EFLAGS register - refer to Section 6.4.1,
“Call and Return Operation for Interrupt or Exception Handling Procedures”).

The body of the exception handler examines the diagnostic information and makes a response that is application-
dependent. It may range from halting execution, to displaying a message, to attempting to fix the problem and
then proceeding with normal execution, to setting up a data structure, calling a higher-level user exception
handler and continuing execution upon return from it. This latter case will be assumed in Section E.4, “SIMD
Floating-Point Exceptions and the IEEE Standard 754” below.

Finally, the epilogue essentially reverses the actions of the prologue, restoring the processor state so that normal
execution can be resumed.

The following example represents a typical exception handler. To link it with Example Example E-2 that will
follow in Section E.4.3, “Example SIMD Floating-Point Emulation Implementation,” assume that the body of the
handler (not shown here in detail) passes the saved state to a routine that will examine in turn all the sub-
operands of the excepting instruction, invoking a user floating-point exception handler if a particular set of sub-
operands raises an unmasked (enabled) exception, or emulating the instruction otherwise.

...

E.4.2.2 Results of Operations with NaN Operands or a NaN Result for SSE/SSE2/SSE3 Numeric
Instructions

The tables below (E-1 through E-10) specify the response of SSE/SSE2/SSE3 instructions to NaN inputs, or to
other inputs that lead to NaN results.

These results will be referenced by subsequent tables (e.g., E-10). Most operations do not raise an invalid excep-
tion for quiet NaN operands, but even so, they will have higher precedence over raising floating-point exceptions
other than invalid operation.

Note that the single precision QNaN Indefinite value is FFC00000H, the double precision QNaN Indefinite value is
FFF8000000000000H, and the Integer Indefinite value is 80000000H (not a floating-point number, but it can be
the result of a conversion instruction from floating-point to integer).

For an unmasked exception, no result will be provided by the hardware to the user handler. If a user registered
floating-point exception handler is invoked, it may provide a result for the excepting instruction, that will be used
if execution of the application code is continued after returning from the interruption.

In Tables Table E-1 through Table E-12, the specified operands cause an invalid exception, unless the unmasked
result is marked with “not an exception”. In this latter case, the unmasked and masked results are the same.

Table E-1 ADDPS, ADDSS, SUBPS, SUBSS, MULPS, MULSS, DIVPS, DIVSS, ADDPD, ADDSD, SUBPD, SUBSD, MULPD,
MULSD, DIVPD, DIVSD, ADDSUBPS, ADDSUBPD, HADDPS, HADDPD, HSUBPS, HSUBPD

Source Operands Masked Result Unmasked Result

SNaN1 op1 SNaN2 SNaN1 | 00400000H or
SNaN1 | 0008000000000000H2

None

SNaN1 op QNaN2 SNaN1 | 00400000H or
SNaN1 | 0008000000000000H2

None

QNaN1 op SNaN2 QNaN1 None

QNaN1 op QNaN2 QNaN1 QNaN1 (not an exception)

SNaN op real value SNaN | 00400000H or
SNaN1 | 0008000000000000H2

None

Real value op SNaN SNaN | 00400000H or
SNaN1 | 0008000000000000H2

None

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 40

...

E.4.3 Example SIMD Floating-Point Emulation Implementation
The sample code listed below may be considered as being part of a user-level floating-point exception filter for the
SSE/SSE2/SSE3 numeric instructions. It is assumed that the filter function is invoked by a low-level exception
handler (invoked for exception 19 when an unmasked floating-point exception occurs), and that it operates as
explained in Section E.4.1, “Floating-Point Emulation.” The sample code does the emulation only for the SSE
instructions for addition, subtraction, multiplication, and division. For this, it uses C code and x87 FPU operations.
Operations corresponding to other SSE/SSE2/SSE3 numeric instructions can be emulated similarly. The example
assumes that the emulation function receives a pointer to a data structure specifying a number of input parame-
ters: the operation that caused the exception, a set of sub-operands (unpacked, of type float), the rounding mode
(the precision is always single), exception masks (having the same relative bit positions as in the MXCSR but
starting from bit 0 in an unsigned integer), and flush-to-zero and denormals-are-zeros indicators.

The output parameters are a floating-point result (of type float), the cause of the exception (identified by
constants not explicitly defined below), and the exception status flags. The corresponding C definition is:

typedef struct {
unsigned int operation; //SSE or SSE2 operation: ADDPS, ADDSS, ...

 unsigned int operand1_uint32; //first operand value
unsigned int operand2_uint32; //second operand value (if any)

 float result_fval; // result value (if any)
 unsigned int rounding_mode; //rounding mode
 unsigned int exc_masks; //exception masks, in the order P,U,O,Z,D,I
 unsigned int exception_cause; //exception cause
 unsigned int status_flag_inexact; //inexact status flag
 unsigned int status_flag_underflow; //underflow status flag
 unsigned int status_flag_overflow; //overflow status flag
 unsigned int status_flag_divide_by_zero;

//divide by zero status flag
 unsigned int status_flag_denormal_operand;

//denormal operand status flag
 unsigned int status_flag_invalid_operation;

//invalid operation status flag
 unsigned int ftz; // flush-to-zero flag

QNaN op real value QNaN QNaN (not an exception)

Real value op QNaN QNaN QNaN (not an exception)

Neither source operand is SNaN,
but #I is signaled (e.g. for Inf - Inf,
Inf ∗ 0, Inf / Inf, 0/0)

Single precision or double precision QNaN
Indefinite

None

NOTES:
1. For Tables E-1 to E-12: op denotes the operation to be performed.
2. SNaN | 00400000H is a quiet NaN in single precision format (if SNaN is in single precision) and SNaN | 0008000000000000H is a

quiet NaN in double precision format (if SNaN is in double precision), obtained from the signaling NaN given as input.
3. Operations involving only quiet NaNs do not raise floating-point exceptions.

Table E-1 ADDPS, ADDSS, SUBPS, SUBSS, MULPS, MULSS, DIVPS, DIVSS, ADDPD, ADDSD, SUBPD, SUBSD, MULPD,
MULSD, DIVPD, DIVSD, ADDSUBPS, ADDSUBPD, HADDPS, HADDPD, HSUBPS, HSUBPD (Contd.)

Source Operands Masked Result Unmasked Result

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 41

unsigned int daz; // denormals-are-zeros flag
} EXC_ENV;

The arithmetic operations exemplified are emulated as follows:

1. If the denormals-are-zeros mode is enabled (the DAZ bit in MXCSR is set to 1), replace all the denormal inputs
with zeroes of the same sign (the denormal flag is not affected by this change).

2. Perform the operation using x87 FPU instructions, with exceptions disabled, the original user rounding mode,
and single precision. This reveals invalid, denormal, or divide-by-zero exceptions (if there are any) and stores
the result in memory as a double precision value (whose exponent range is large enough to look like
“unbounded” to the result of the single precision computation).

3. If no unmasked exceptions were detected, determine if the result is less than the smallest normal number
(tiny) that can be represented in single precision format, or greater than the largest normal number that can
be represented in single precision format (huge). If an unmasked overflow or underflow occurs, calculate the
scaled result that will be handed to the user exception handler, as specified by IEEE Standard 754.

4. If no exception was raised, calculate the result with a “bounded” exponent. If the result is tiny, it requires
denormalization (shifting the significand right while incrementing the exponent to bring it into the admissible
range of [-126,+127] for single precision floating-point numbers).

The result obtained in step 2 cannot be used because it might incur a double rounding error (it was rounded
to 24 bits in step 2, and might have to be rounded again in the denormalization process). To overcome this is,
calculate the result as a double precision value, and store it to memory in single precision format.

Rounding first to 53 bits in the significand, and then to 24 never causes a double rounding error (exact
properties exist that state when double-rounding error occurs, but for the elementary arithmetic operations,
the rule of thumb is that if an infinitely precise result is rounded to 2p+1 bits and then again to p bits, the
result is the same as when rounding directly to p bits, which means that no double-rounding error occurs).

5. If the result is inexact and the inexact exceptions are unmasked, the calculated result will be delivered to the
user floating-point exception handler.

6. The flush-to-zero case is dealt with if the result is tiny.

7. The emulation function returns RAISE_EXCEPTION to the filter function if an exception has to be raised (the
exception_cause field indicates the cause). Otherwise, the emulation function returns DO_NOT_
RAISE_EXCEPTION. In the first case, the result is provided by the user exception handler called by the filter
function. In the second case, it is provided by the emulation function. The filter function has to collect all the
partial results, and to assemble the scalar or packed result that is used if execution is to continue.

Example E-2 SIMD Floating-Point Emulation

// masks for individual status word bits
#define PRECISION_MASK 20H
#define UNDERFLOW_MASK 10H
#define OVERFLOW_MASK 08H
#define ZERODIVIDE_MASK 04H
#define DENORMAL_MASK 02H
#define INVALID_MASK 01H

// 32-bit constants
static unsigned ZEROF_ARRAY[] = {00000000H};
#define ZEROF *(float *) ZEROF_ARRAY
 // +0.0
static unsigned NZEROF_ARRAY[] = {80000000H};
#define NZEROF *(float *) NZEROF_ARRAY
 // -0.0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 42

static unsigned POSINFF_ARRAY[] = {7f800000H};
#define POSINFF *(float *)POSINFF_ARRAY
 // +Inf
static unsigned NEGINFF_ARRAY[] = {ff800000H};
#define NEGINFF *(float *)NEGINFF_ARRAY
 // -Inf

// 64-bit constants
static unsigned MIN_SINGLE_NORMAL_ARRAY [] = {00000000H, 38100000H};
#define MIN_SINGLE_NORMAL *(double *)MIN_SINGLE_NORMAL_ARRAY
 // +1.0 * 2^-126
static unsigned MAX_SINGLE_NORMAL_ARRAY [] = {70000000H, 47efffffH};
#define MAX_SINGLE_NORMAL *(double *)MAX_SINGLE_NORMAL_ARRAY
 // +1.1...1*2^127
static unsigned TWO_TO_192_ARRAY[] = {00000000H, 4bf00000H};
#define TWO_TO_192 *(double *)TWO_TO_192_ARRAY
 // +1.0 * 2^192
static unsigned TWO_TO_M192_ARRAY[] = {00000000H, 33f00000H};
#define TWO_TO_M192 *(double *)TWO_TO_M192_ARRAY
 // +1.0 * 2^-192

// auxiliary functions
static int isnanf (unsigned int); // returns 1 if f is a NaN, and 0 otherwise
static float quietf (unsigned int); // converts a signaling NaN to a quiet

// NaN, and leaves a quiet NaN unchanged
static unsigned int check_for_daz (unsigned int); // converts denormals

// to zeros of the same sign;
// does not affect any status flags

// emulation of SSE and SSE2 instructions using
// C code and x87 FPU instructions

unsigned int
simd_fp_emulate (EXC_ENV *exc_env)

{

 int uiopd1; // first operand of the add, subtract, multiply, or divide
 int uiopd2; // second operand of the add, subtract, multiply, or divide
 float res; // result of the add, subtract, multiply, or divide
 double dbl_res24; // result with 24-bit significand, but "unbounded" exponent
// (needed to check tininess, to provide a scaled result to
 // an underflow/overflow trap handler, and in flush-to-zero mode)
 double dbl_res; // result in double precision format (needed to avoid a
 // double rounding error when denormalizing)
 unsigned int result_tiny;
 unsigned int result_huge;
 unsigned short int sw; // 16 bits
 unsigned short int cw; // 16 bits

 // have to check first for faults (V, D, Z), and then for traps (O, U, I)

 // initialize x87 FPU (floating-point exceptions are masked)
 _asm {
 fninit;
 }

 result_tiny = 0;
 result_huge = 0;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 43

 switch (exc_env->operation) {

 case ADDPS:
 case ADDSS:
 case SUBPS:
 case SUBSS:
 case MULPS:
 case MULSS:
 case DIVPS:
 case DIVSS:

 uiopd1 = exc_env->operand1_uint32; // copy as unsigned int
// do not copy as float to avoid conversion
// of SNaN to QNaN by compiled code

 uiopd2 = exc_env->operand2_uint32;
// do not copy as float to avoid conversion of SNaN
// to QNaN by compiled code

uiopd1 = check_for_daz (uiopd1); // operand1 = +0.0 * operand1 if it is
// denormal and DAZ=1

 uiopd2 = check_for_daz (uiopd2); // operand2 = +0.0 * operand2 if it is
// denormal and DAZ=1

 // execute the operation and check whether the invalid, denormal, or
 // divide by zero flags are set and the respective exceptions enabled

 // set control word with rounding mode set to exc_env->rounding_mode,
 // single precision, and all exceptions disabled
 switch (exc_env->rounding_mode) {
 case ROUND_TO_NEAREST:
 cw = 003fH; // round to nearest, single precision, exceptions masked
 break;
 case ROUND_DOWN:
 cw = 043fH; // round down, single precision, exceptions masked
 break;
 case ROUND_UP:
 cw = 083fH; // round up, single precision, exceptions masked
 break;
 case ROUND_TO_ZERO:
 cw = 0c3fH; // round to zero, single precision, exceptions masked
 break;
 default:
 ;
 }
 __asm {
 fldcw WORD PTR cw;
}

 // compute result and round to the destination precision, with
 // "unbounded" exponent (first IEEE rounding)
 switch (exc_env->operation) {

 case ADDPS:
 case ADDSS:
 // perform the addition
 __asm {
 fnclex;
 // load input operands
 fld DWORD PTR uiopd1; // may set denormal or invalid status flags
 fld DWORD PTR uiopd2; // may set denormal or invalid status flags

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 44

 faddp st(1), st(0); // may set inexact or invalid status flags
 // store result
 fstp QWORD PTR dbl_res24; // exact
 }
 break;

 case SUBPS:
 case SUBSS:
 // perform the subtraction
 __asm {
 fnclex;
 // load input operands
 fld DWORD PTR uiopd1; // may set denormal or invalid status flags
 fld DWORD PTR uiopd2; // may set denormal or invalid status flags
 fsubp st(1), st(0); // may set the inexact or invalid status flags

// store result
 fstp QWORD PTR dbl_res24; // exact
 }
 break;

 case MULPS:
 case MULSS:
 // perform the multiplication
 __asm {
fnclex;
 // load input operands
 fld DWORD PTR uiopd1; // may set denormal or invalid status flags
 fld DWORD PTR uiopd2; // may set denormal or invalid status flags
 fmulp st(1), st(0); // may set inexact or invalid status flags

// store result
 fstp QWORD PTR dbl_res24; // exact
 }
 break;

 case DIVPS:
 case DIVSS:
 // perform the division
 __asm {
 fnclex;
 // load input operands
 fld DWORD PTR uiopd1; // may set denormal or invalid status flags
 fld DWORD PTR uiopd2; // may set denormal or invalid status flags
 fdivp st(1), st(0); // may set the inexact, divide by zero, or
 // invalid status flags
 // store result
 fstp QWORD PTR dbl_res24; // exact
 }
 break;

default:
 ; // will never occur

 }

 // read status word
 __asm {
 fstsw WORD PTR sw;
}

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 45

if (sw & ZERODIVIDE_MASK)
sw = sw & ~DENORMAL_MASK; // clear D flag for (denormal / 0)

 // if invalid flag is set, and invalid exceptions are enabled, take trap
 if (!(exc_env->exc_masks & INVALID_MASK) && (sw & INVALID_MASK)) {
 exc_env->status_flag_invalid_operation = 1;
 exc_env->exception_cause = INVALID_OPERATION;
 return (RAISE_EXCEPTION);
 }

// checking for NaN operands has priority over denormal exceptions;
// also fix for the SSE and SSE2
// differences in treating two NaN inputs between the
// instructions and other IA-32 instructions
if (isnanf (uiopd1) || isnanf (uiopd2)) {

 if (isnanf (uiopd1) && isnanf (uiopd2))
 exc_env->result_fval = quietf (uiopd1);
 else
 exc_env->result_fval = (float)dbl_res24; // exact

 if (sw & INVALID_MASK) exc_env->status_flag_invalid_operation = 1;
 return (DO_NOT_RAISE_EXCEPTION);
 }

// if denormal flag set, and denormal exceptions are enabled, take trap
 if (!(exc_env->exc_masks & DENORMAL_MASK) && (sw & DENORMAL_MASK)) {
 exc_env->status_flag_denormal_operand = 1;
 exc_env->exception_cause = DENORMAL_OPERAND;
 return (RAISE_EXCEPTION);
 }

 // if divide by zero flag set, and divide by zero exceptions are
 // enabled, take trap (for divide only)
 if (!(exc_env->exc_masks & ZERODIVIDE_MASK) && (sw & ZERODIVIDE_MASK)) {
 exc_env->status_flag_divide_by_zero = 1;
 exc_env->exception_cause = DIVIDE_BY_ZERO;
 return (RAISE_EXCEPTION);
 }

 // done if the result is a NaN (QNaN Indefinite)
 res = (float)dbl_res24;
 if (isnanf (*(unsigned int *)&res)) {
 exc_env->result_fval = res; // exact
 exc_env->status_flag_invalid_operation = 1;
 return (DO_NOT_RAISE_EXCEPTION);
 }

 // dbl_res24 is not a NaN at this point

 if (sw & DENORMAL_MASK) exc_env->status_flag_denormal_operand = 1;

 // Note: (dbl_res24 == 0.0 && sw & PRECISION_MASK) cannot occur
 if (-MIN_SINGLE_NORMAL < dbl_res24 && dbl_res24 < 0.0 ||
 0.0 < dbl_res24 && dbl_res24 < MIN_SINGLE_NORMAL) {
result_tiny = 1;
 }

 // check if the result is huge

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 46

 if (NEGINFF < dbl_res24 && dbl_res24 < -MAX_SINGLE_NORMAL ||
 MAX_SINGLE_NORMAL < dbl_res24 && dbl_res24 < POSINFF) {
 result_huge = 1;
 }

 // at this point, there are no enabled I,D, or Z exceptions
 // to take; the instr.

 // might lead to an enabled underflow, enabled underflow and inexact,
 // enabled overflow, enabled overflow and inexact, enabled inexact, or
 // none of these; if there are no U or O enabled exceptions, re-execute
 // the instruction using IA-32 double precision format, and the
 // user's rounding mode; exceptions must have

// been disabled before calling
 // this function; an inexact exception may be reported on the 53-bit
 // fsubp, fmulp, or on both the 53-bit and 24-bit conversions, while an
 // overflow or underflow (with traps disabled) may be reported on the
 // conversion from dbl_res to res

// check whether there is an underflow, overflow,
 // or inexact trap to be taken

// if the underflow traps are enabled and the result is
// tiny, take underflow trap

 if (!(exc_env->exc_masks & UNDERFLOW_MASK) && result_tiny) {
 dbl_res24 = TWO_TO_192 * dbl_res24; // exact
 exc_env->status_flag_underflow = 1;
 exc_env->exception_cause = UNDERFLOW;
 exc_env->result_fval = (float)dbl_res24; // exact
 if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;
 return (RAISE_EXCEPTION);
 }

// if overflow traps are enabled and the result is huge, take
 // overflow trap
 if (!(exc_env->exc_masks & OVERFLOW_MASK) && result_huge) {
 dbl_res24 = TWO_TO_M192 * dbl_res24; // exact
 exc_env->status_flag_overflow = 1;
 exc_env->exception_cause = OVERFLOW;
 exc_env->result_fval = (float)dbl_res24; // exact
 if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;
 return (RAISE_EXCEPTION);
 }

 // set control word with rounding mode set to exc_env->rounding_mode,
 // double precision, and all exceptions disabled
 cw = cw | 0200H; // set precision to double
 __asm {
 fldcw WORD PTR cw;
 }

 switch (exc_env->operation) {

 case ADDPS:
 case ADDSS:
 // perform the addition
 __asm {
 // load input operands
 fld DWORD PTR uiopd1; // may set the denormal status flag
 fld DWORD PTR uiopd2; // may set the denormal status flag
 faddp st(1), st(0); // rounded to 53 bits, may set the inexact

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 47

 // status flag
// store result
 fstp QWORD PTR dbl_res; // exact, will not set any flag
 }
 break;

 case SUBPS:
 case SUBSS:
 // perform the subtraction
 __asm {
 // load input operands
 fld DWORD PTR uiopd1; // may set the denormal status flag
 fld DWORD PTR uiopd2; // may set the denormal status flag
 fsubp st(1), st(0); // rounded to 53 bits, may set the inexact
 // status flag
 // store result
 fstp QWORD PTR dbl_res; // exact, will not set any flag
 }
 break;

 case MULPS:
 case MULSS:
 // perform the multiplication
 __asm {
 // load input operands
 fld DWORD PTR uiopd1; // may set the denormal status flag
 fld DWORD PTR uiopd2; // may set the denormal status flag
 fmulp st(1), st(0); // rounded to 53 bits, exact

// store result
 fstp QWORD PTR dbl_res; // exact, will not set any flag
 }
 break;

 case DIVPS:
 case DIVSS:
 // perform the division
 __asm {
 // load input operands
fld DWORD PTR uiopd1; // may set the denormal status flag
 fld DWORD PTR uiopd2; // may set the denormal status flag
 fdivp st(1), st(0); // rounded to 53 bits, may set the inexact

// status flag
 // store result
 fstp QWORD PTR dbl_res; // exact, will not set any flag
 }
 break;

 default:
 ; // will never occur

 }

 // calculate result for the case an inexact trap has to be taken, or
 // when no trap occurs (second IEEE rounding)
 res = (float)dbl_res;
 // may set P, U or O; may also involve denormalizing the result

 // read status word
 __asm {
 fstsw WORD PTR sw;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 48

 }

 // if inexact traps are enabled and result is inexact, take inexact trap
 if (!(exc_env->exc_masks & PRECISION_MASK) &&
 ((sw & PRECISION_MASK) || (exc_env->ftz && result_tiny))) {
 exc_env->status_flag_inexact = 1;
exc_env->exception_cause = INEXACT;
 if (result_tiny) {
 exc_env->status_flag_underflow = 1;

 // if ftz = 1 and result is tiny, result = 0.0
 // (no need to check for underflow traps disabled: result tiny and
 // underflow traps enabled would have caused taking an underflow
 // trap above)
 if (exc_env->ftz) {
 if (res > 0.0)
 res = ZEROF;
 else if (res < 0.0)
 res = NZEROF;
 // else leave res unchanged
 }
 }
 if (result_huge) exc_env->status_flag_overflow = 1;
 exc_env->result_fval = res;
 return (RAISE_EXCEPTION);
 }

 // if it got here, then there is no trap to be taken; the following must
 // hold: ((the MXCSR U exceptions are disabled or
 //
 // the MXCSR underflow exceptions are enabled and the underflow flag is
 // clear and (the inexact flag is set or the inexact flag is clear and
 // the 24-bit result with unbounded exponent is not tiny)))
 // and (the MXCSR overflow traps are disabled or the overflow flag is
 // clear) and (the MXCSR inexact traps are disabled or the inexact flag
 // is clear)
 //
 // in this case, the result has to be delivered (the status flags are
 // sticky, so they are all set correctly already)

 // read status word to see if result is inexact
 __asm {
fstsw WORD PTR sw;
 }

 if (sw & UNDERFLOW_MASK) exc_env->status_flag_underflow = 1;
 if (sw & OVERFLOW_MASK) exc_env->status_flag_overflow = 1;
 if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;

 // if ftz = 1, and result is tiny (underflow traps must be disabled),
 // result = 0.0
 if (exc_env->ftz && result_tiny) {
 if (res > 0.0)
 res = ZEROF;
 else if (res < 0.0)
 res = NZEROF;
 // else leave res unchanged

 exc_env->status_flag_inexact = 1;
 exc_env->status_flag_underflow = 1;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 49

 }

 exc_env->result_fval = res;
 if (sw & ZERODIVIDE_MASK) exc_env->status_flag_divide_by_zero = 1;
 if (sw & DENORMAL_MASK) exc_env->status_flag_denormal= 1;
 if (sw & INVALID_MASK) exc_env->status_flag_invalid_operation = 1;
 return (DO_NOT_RAISE_EXCEPTION);

 break;

 case CMPPS:
case CMPSS:

 ...

 break;

 case COMISS:
 case UCOMISS:

 ...

 break;

 case CVTPI2PS:
 case CVTSI2SS:

 ...

 break;

 case CVTPS2PI:
 case CVTSS2SI:
 case CVTTPS2PI:
 case CVTTSS2SI:

 ...

 break;

 case MAXPS:
 case MAXSS:
 case MINPS:
 case MINSS:

 ...

 break;

 case SQRTPS:
 case SQRTSS:

 ...

 break;

...

case UNSPEC:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 50

 ...

 break;

 default:
 ...

 }

}

...

13.Updates to Chapter 1, Volume 2A
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-M.

--
...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 51

• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v3 product family
• The Intel® Core™ M processor family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on
Enhanced Intel® Core™ microarchitecture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture and supports Intel 64 archi-
tecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel®
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32nm version of
Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and
various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These
processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, Intel®

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 52

CoreTM i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2
product family and 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code name
Ivy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families and Intel® Xeon® processor E5-2400/1400
v2 product families are based on the Intel® microarchitecture code name Ivy Bridge-EP and support Intel 64
architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

The Intel® Core™ M processor family is based on the Intel® microarchitecture code name Broadwell and supports
Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® AtomTM
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors, Pentium® Dual-
Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is the
superset of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.
...

14.Updates to Chapter 2, Volume 2A
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-M.

--
...

2.1.1 Instruction Prefixes
Instruction prefixes are divided into four groups, each with a set of allowable prefix codes. For each instruction, it
is only useful to include up to one prefix code from each of the four groups (Groups 1, 2, 3, 4). Groups 1 through
4 may be placed in any order relative to each other.
• Group 1

— Lock and repeat prefixes:

• LOCK prefix is encoded using F0H

• REPNE/REPNZ prefix is encoded using F2H. Repeat-Not-Zero prefix applies only to string and input/
output instructions. (F2H is also used as a mandatory prefix for some instructions)

REP or REPE/REPZ is encoded using F3H. The repeat prefix applies only to string and input/output instructions.
F3H is also used as a mandatory prefix for POPCNT, LZCNT and ADOX instructions.
• Group 2

— Segment override prefixes:

• 2EH—CS segment override (use with any branch instruction is reserved)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 53

• 36H—SS segment override prefix (use with any branch instruction is reserved)

• 3EH—DS segment override prefix (use with any branch instruction is reserved)

• 26H—ES segment override prefix (use with any branch instruction is reserved)

• 64H—FS segment override prefix (use with any branch instruction is reserved)

• 65H—GS segment override prefix (use with any branch instruction is reserved)

— Branch hints:

• 2EH—Branch not taken (used only with Jcc instructions)

• 3EH—Branch taken (used only with Jcc instructions)
• Group 3

• Operand-size override prefix is encoded using 66H (66H is also used as a mandatory prefix for some
instructions).

• Group 4

• 67H—Address-size override prefix

The LOCK prefix (F0H) forces an operation that ensures exclusive use of shared memory in a multiprocessor envi-
ronment. See “LOCK—Assert LOCK# Signal Prefix” in Chapter 3, “Instruction Set Reference, A-M,” for a descrip-
tion of this prefix.

Repeat prefixes (F2H, F3H) cause an instruction to be repeated for each element of a string. Use these prefixes
only with string and I/O instructions (MOVS, CMPS, SCAS, LODS, STOS, INS, and OUTS). Use of repeat prefixes
and/or undefined opcodes with other Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable
behavior.

Some instructions may use F2H,F3H as a mandatory prefix to express distinct functionality. A mandatory prefix
generally should be placed after other optional prefixes (exception to this is discussed in Section 2.2.1, “REX
Prefixes”)

Branch hint prefixes (2EH, 3EH) allow a program to give a hint to the processor about the most likely code path
for a branch. Use these prefixes only with conditional branch instructions (Jcc). Other use of branch hint prefixes
and/or other undefined opcodes with Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable
behavior.

The operand-size override prefix allows a program to switch between 16- and 32-bit operand sizes. Either size can
be the default; use of the prefix selects the non-default size.

Some SSE2/SSE3/SSSE3/SSE4 instructions and instructions using a three-byte sequence of primary opcode
bytes may use 66H as a mandatory prefix to express distinct functionality. A mandatory prefix generally should
be placed after other optional prefixes (exception to this is discussed in Section 2.2.1, “REX Prefixes”)

Other use of the 66H prefix is reserved; such use may cause unpredictable behavior.

The address-size override prefix (67H) allows programs to switch between 16- and 32-bit addressing. Either size
can be the default; the prefix selects the non-default size. Using this prefix and/or other undefined opcodes when
operands for the instruction do not reside in memory is reserved; such use may cause unpredictable behavior.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 54

2.4.3 Exceptions Type 3 (<16 Byte memory argument)

Table 2-20 Type 3 Class Exception Conditions

...

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference of 8 Bytes or
less is made while the current privilege level is 3.

SIMD Floating-point
Exception, #XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 55

15.Updates to Chapter 3, Volume 2A
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-M.

--
...

3.1.1.13 Protected Mode Exceptions Section
The “Protected Mode Exceptions” section lists the exceptions that can occur when the instruction is executed in
protected mode and the reasons for the exceptions. Each exception is given a mnemonic that consists of a pound
sign (#) followed by two letters and an optional error code in parentheses. For example, #GP(0) denotes a
general protection exception with an error code of 0. Table 3-3 associates each two-letter mnemonic with the
corresponding exception vector and name. See Chapter 6, “Procedure Calls, Interrupts, and Exceptions,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for a detailed description of the
exceptions.

Application programmers should consult the documentation provided with their operating systems to determine
the actions taken when exceptions occur.

Table 3-3 Intel 64 and IA-32 General Exceptions

Vector Name Source Protected
Mode1

Real
Address
Mode

Virtual
8086
Mode

 0 #DE—Divide Error DIV and IDIV instructions. Yes Yes Yes

 1 #DB—Debug Any code or data reference. Yes Yes Yes

 3 #BP—Breakpoint INT 3 instruction. Yes Yes Yes

 4 #OF—Overflow INTO instruction. Yes Yes Yes

 5 #BR—BOUND Range Exceeded BOUND instruction. Yes Yes Yes

 6 #UD—Invalid Opcode (Undefined
Opcode)

UD2 instruction or reserved opcode. Yes Yes Yes

 7 #NM—Device Not Available (No
Math Coprocessor)

Floating-point or WAIT/FWAIT instruction. Yes Yes Yes

 8 #DF—Double Fault Any instruction that can generate an
exception, an NMI, or an INTR.

Yes Yes Yes

10 #TS—Invalid TSS Task switch or TSS access. Yes Reserved Yes

11 #NP—Segment Not Present Loading segment registers or accessing system
segments.

Yes Reserved Yes

12 #SS—Stack Segment Fault Stack operations and SS register loads. Yes Yes Yes

13 #GP—General Protection2 Any memory reference and other protection
checks.

Yes Yes Yes

14 #PF—Page Fault Any memory reference. Yes Reserved Yes

16 #MF—Floating-Point Error (Math
Fault)

Floating-point or WAIT/FWAIT instruction. Yes Yes Yes

17 #AC—Alignment Check Any data reference in memory. Yes Reserved Yes

18 #MC—Machine Check Model dependent machine check errors. Yes Yes Yes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 56

...

3.1.1.16 Floating-Point Exceptions Section
The “Floating-Point Exceptions” section lists exceptions that can occur when an x87 FPU floating-point instruction
is executed. All of these exception conditions result in a floating-point error exception (#MF, exception 16) being
generated. Table 3-4 associates a one- or two-letter mnemonic with the corresponding exception name. See
“Floating-Point Exception Conditions” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for a detailed description of these exceptions.

3.1.1.17 SIMD Floating-Point Exceptions Section
The “SIMD Floating-Point Exceptions” section lists exceptions that can occur when an SSE/SSE2/SSE3 floating-
point instruction is executed. All of these exception conditions result in a SIMD floating-point error exception
(#XM, exception 19) being generated. Table 3-5 associates a one-letter mnemonic with the corresponding excep-
tion name. For a detailed description of these exceptions, refer to ”SSE and SSE2 Exceptions”, in Chapter 11 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.
...

ADCX — Unsigned Integer Addition of Two Operands with Carry Flag

Instruction Operand Encoding

Description

Performs an unsigned addition of the destination operand (first operand), the source operand (second operand)
and the carry-flag (CF) and stores the result in the destination operand. The destination operand is a general-
purpose register, whereas the source operand can be a general-purpose register or memory location. The state of

19 #XM—SIMD Floating-Point
Numeric Error

SSE/SSE2/SSE3 floating-point instructions. Yes Yes Yes

NOTES:
1. Apply to protected mode, compatibility mode, and 64-bit mode.
2. In the real-address mode, vector 13 is the segment overrun exception.

Table 3-3 Intel 64 and IA-32 General Exceptions (Contd.)

Vector Name Source Protected
Mode1

Real
Address
Mode

Virtual
8086
Mode

Opcode/
Instruction

Op/
En

64/32bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 F6 /r RM V/V ADX Unsigned addition of r32 with CF, r/m32 to r32, writes CF.
ADCX r32, r/m32

REX.w + 66 0F 38 F6 /r RM V/NE ADX Unsigned addition of r64 with CF, r/m64 to r64, writes CF.
ADCX r64, r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 57

CF can represent a carry from a previous addition. The instruction sets the CF flag with the carry generated by the
unsigned addition of the operands.
The ADCX instruction is executed in the context of multi-precision addition, where we add a series of operands
with a carry-chain. At the beginning of a chain of additions, we need to make sure the CF is in a desired initial
state. Often, this initial state needs to be 0, which can be achieved with an instruction to zero the CF (e.g. XOR).
This instruction is supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 64-
bit mode.
In 64-bit mode, the default operation size is 32 bits. Using a REX Prefix in the form of REX.R permits access to
additional registers (R8-15). Using REX Prefix in the form of REX.W promotes operation to 64 bits.
ADCX executes normally either inside or outside a transaction region.
Note: ADCX defines the OF flag differently than the ADD/ADC instructions as defined in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A.

Operation

IF OperandSize is 64-bit
THEN CF:DEST[63:0] ← DEST[63:0] + SRC[63:0] + CF;
ELSE CF:DEST[31:0] ← DEST[31:0] + SRC[31:0] + CF;

FI;

Flags Affected

CF is updated based on result. OF, SF, ZF, AF and PF flags are unmodified.

Intel C/C++ Compiler Intrinsic Equivalent

unsigned char _addcarryx_u32 (unsigned char c_in, unsigned int src1, unsigned int src2, unsigned int *sum_out);

unsigned char _addcarryx_u64 (unsigned char c_in, unsigned __int64 src1, unsigned __int64 src2, unsigned __int64 *sum_out);

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) For an illegal address in the SS segment.
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) For an illegal address in the SS segment.
#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 58

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) For an illegal address in the SS segment.
#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
...

ADOX — Unsigned Integer Addition of Two Operands with Overflow Flag

Instruction Operand Encoding

Description

Performs an unsigned addition of the destination operand (first operand), the source operand (second operand)
and the overflow-flag (OF) and stores the result in the destination operand. The destination operand is a general-
purpose register, whereas the source operand can be a general-purpose register or memory location. The state of
OF represents a carry from a previous addition. The instruction sets the OF flag with the carry generated by the
unsigned addition of the operands.
The ADOX instruction is executed in the context of multi-precision addition, where we add a series of operands
with a carry-chain. At the beginning of a chain of additions, we execute an instruction to zero the OF (e.g. XOR).

Opcode/
Instruction

Op/
En

64/32bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 38 F6 /r RM V/V ADX Unsigned addition of r32 with OF, r/m32 to r32, writes OF.
ADOX r32, r/m32

REX.w + F3 0F 38 F6 /r RM V/NE ADX Unsigned addition of r64 with OF, r/m64 to r64, writes OF.
ADOX r64, r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 59

This instruction is supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 64-
bit mode.
In 64-bit mode, the default operation size is 32 bits. Using a REX Prefix in the form of REX.R permits access to
additional registers (R8-15). Using REX Prefix in the form of REX.W promotes operation to 64-bits.
ADOX executes normally either inside or outside a transaction region.
Note: ADOX defines the CF and OF flags differently than the ADD/ADC instructions as defined in Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A.

Operation

IF OperandSize is 64-bit
THEN OF:DEST[63:0] ← DEST[63:0] + SRC[63:0] + OF;
ELSE OF:DEST[31:0] ← DEST[31:0] + SRC[31:0] + OF;

FI;

Flags Affected

OF is updated based on result. CF, SF, ZF, AF and PF flags are unmodified.

Intel C/C++ Compiler Intrinsic Equivalent

unsigned char _addcarryx_u32 (unsigned char c_in, unsigned int src1, unsigned int src2, unsigned int *sum_out);

unsigned char _addcarryx_u64 (unsigned char c_in, unsigned __int64 src1, unsigned __int64 src2, unsigned __int64 *sum_out);

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) For an illegal address in the SS segment.
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) For an illegal address in the SS segment.
#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) For an illegal address in the SS segment.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 60

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
...

BOUND—Check Array Index Against Bounds

Instruction Operand Encoding

Description

BOUND determines if the first operand (array index) is within the bounds of an array specified the second operand
(bounds operand). The array index is a signed integer located in a register. The bounds operand is a memory loca-
tion that contains a pair of signed doubleword-integers (when the operand-size attribute is 32) or a pair of signed
word-integers (when the operand-size attribute is 16). The first doubleword (or word) is the lower bound of the
array and the second doubleword (or word) is the upper bound of the array. The array index must be greater than
or equal to the lower bound and less than or equal to the upper bound plus the operand size in bytes. If the index
is not within bounds, a BOUND range exceeded exception (#BR) is signaled. When this exception is generated,
the saved return instruction pointer points to the BOUND instruction.

The bounds limit data structure (two words or doublewords containing the lower and upper limits of the array) is
usually placed just before the array itself, making the limits addressable via a constant offset from the beginning
of the array. Because the address of the array already will be present in a register, this practice avoids extra bus
cycles to obtain the effective address of the array bounds.

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.
...

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

62 /r BOUND r16, m16&16 RM Invalid Valid Check if r16 (array index) is within bounds
specified by m16&16.

62 /r BOUND r32, m32&32 RM Invalid Valid Check if r32 (array index) is within bounds
specified by m32&32.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 61

CLAC—Clear AC Flag in EFLAGS Register

Instruction Operand Encoding

Description

Clears the AC flag bit in EFLAGS register. This disables any alignment checking of user-mode data accesses. If
the SMAP bit is set in the CR4 register, this disallows explicit supervisor-mode data accesses to user-mode pages.
This instruction's operation is the same in non-64-bit modes and 64-bit mode. Attempts to execute CLAC when
CPL > 0 cause #UD.

Operation

EFLAGS.AC ← 0;

Flags Affected

AC cleared. Other flags are unaffected.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If the CPL > 0.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0.

Virtual-8086 Mode Exceptions
#UD The CLAC instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

If the CPL > 0.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If the CPL > 0.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0.

...

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

0F 01 CA CLAC NP Valid Valid Clear the AC flag in the EFLAGS register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 62

CLC—Clear Carry Flag

Instruction Operand Encoding

Description

Clears the CF flag in the EFLAGS register. Operation is the same in all modes.

Operation

CF ← 0;

Flags Affected

The CF flag is set to 0. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
...

CLD—Clear Direction Flag

Instruction Operand Encoding

Description

Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string operations increment the index
registers (ESI and/or EDI). Operation is the same in all modes.

Operation

DF ← 0;

Flags Affected

The DF flag is set to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

F8 CLC NP Valid Valid Clear CF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

FC CLD NP Valid Valid Clear DF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 63

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
...

CLI — Clear Interrupt Flag

Instruction Operand Encoding

Description

If protected-mode virtual interrupts are not enabled, CLI clears the IF flag in the EFLAGS register. No other flags
are affected. Clearing the IF flag causes the processor to ignore maskable external interrupts. The IF flag and the
CLI and STI instruction have no affect on the generation of exceptions and NMI interrupts.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than 3; CLI clears the VIF flag in
the EFLAGS register, leaving IF unaffected. Table 3-6 indicates the action of the CLI instruction depending on the
processor operating mode and the CPL/IOPL of the running program or procedure.

Operation is the same in all modes.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

FA CLI NP Valid Valid Clear interrupt flag; interrupts disabled when
interrupt flag cleared.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Table 3-6 Decision Table for CLI Results
PE VM IOPL CPL PVI VIP VME CLI Result

0 X X X X X X IF = 0

1 0 ≥ CPL X X X X IF = 0

1 0 < CPL 3 1 X X VIF = 0

1 0 < CPL < 3 X X X GP Fault

1 0 < CPL X 0 X X GP Fault

1 1 3 X X X X IF = 0

1 1 < 3 X X X 1 VIF = 0

1 1 < 3 X X X 0 GP Fault

NOTES:
* X = This setting has no impact.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 64

Operation

IF PE = 0
THEN

IF ← 0; (* Reset Interrupt Flag *)
ELSE

IF VM = 0;
THEN

IF IOPL ≥ CPL
THEN

IF ← 0; (* Reset Interrupt Flag *)
ELSE

IF ((IOPL < CPL) and (CPL = 3) and (PVI = 1))
THEN

VIF ← 0; (* Reset Virtual Interrupt Flag *)
ELSE

#GP(0);
FI;

FI;
ELSE (* VM = 1 *)

IF IOPL = 3
THEN

IF ← 0; (* Reset Interrupt Flag *)
ELSE

IF (IOPL < 3) AND (VME = 1)
THEN

VIF ← 0; (* Reset Virtual Interrupt Flag *)
ELSE

#GP(0);
FI;

FI;
FI;

FI;

Flags Affected

If protected-mode virtual interrupts are not enabled, IF is set to 0 if the CPL is equal to or less than the IOPL;
otherwise, it is not affected. Other flags are unaffected.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than 3; CLI clears the VIF flag in
the EFLAGS register, leaving IF unaffected. Other flags are unaffected.

Protected Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current program or procedure.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 65

Virtual-8086 Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current program or procedure.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current program or procedure.
#UD If the LOCK prefix is used.
...

CPUID—CPU Identification...

...
Table 3-17 Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 3-18)
“Genu”
“ntel”
“ineI”

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see Figure 3-5)

Bits 07-00: Brand Index
Bits 15-08: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors in this physical package*.
Bits 31-24: Initial APIC ID

Feature Information (see Figure 3-6 and Table 3-20)
Feature Information (see Figure 3-7 and Table 3-21)

NOTES:
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the number of unique initial APIC

IDs reserved for addressing different logical processors in a physical package. This field is only valid if
CPUID.1.EDX.HTT[bit 28]= 1.

02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 3-22)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX
EBX
ECX

EDX

Reserved.
Reserved.
Bits 00-31 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value
in this register is reserved.)
Bits 32-63 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value
in this register is reserved.)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 66

NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models, use
the PSN flag (returned using CPUID) to check for PSN support before accessing the feature.

See AP-485, Intel Processor Identification and the CPUID Instruction (Order Number 241618) for more
information on PSN.

CPUID leaves > 3 < 80000000 are visible only when IA32_MISC_ENABLE.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf

04H NOTES:
Leaf 04H output depends on the initial value in ECX.*
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters for each level on page 3-182.

EAX Bits 04-00: Cache Type Field
0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Bits 07-05: Cache Level (starts at 1)
Bit 08: Self Initializing cache level (does not need SW initialization)
Bit 09: Fully Associative cache

Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache**, ***
Bits 31-26: Maximum number of addressable IDs for processor cores in the physical
package**, ****, *****

EBX Bits 11-00: L = System Coherency Line Size**
Bits 21-12: P = Physical Line partitions**
Bits 31-22: W = Ways of associativity**

ECX Bits 31-00: S = Number of Sets**

EDX Bit 0: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads sharing this
cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads sharing
this cache.

Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 2: Complex Cache Indexing
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using all address bits.

Bits 31-03: Reserved = 0

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 67

NOTES:
* If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n+1 is invalid if sub-

leaf n returns EAX[4:0] as 0.
** Add one to the return value to get the result.
***The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique ini-

tial APIC IDs reserved for addressing different logical processors sharing this cache
**** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of unique

Core_IDs reserved for addressing different processor cores in a physical package. Core ID is a subset of
bits of the initial APIC ID.

***** The returned value is constant for valid initial values in ECX. Valid ECX values start from 0.

MONITOR/MWAIT Leaf

05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor granularity)
Bits 31-16: Reserved = 0

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor granularity)
Bits 31-16: Reserved = 0

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported

Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled

Bits 31 - 02: Reserved

EDX Bits 03 - 00: Number of C0* sub C-states supported using MWAIT
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 23 - 20: Number of C5* sub C-states supported using MWAIT
Bits 27 - 24: Number of C6* sub C-states supported using MWAIT
Bits 31 - 28: Number of C7* sub C-states supported using MWAIT
NOTE:
* The definition of C0 through C7 states for MWAIT extension are processor-specific C-states, not ACPI C-

states.

Thermal and Power Management Leaf

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 68

06H EAX

EBX

Bit 00: Digital temperature sensor is supported if set
Bit 01: Intel Turbo Boost Technology Available (see description of IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bit 07: HWP. HWP base registers (IA32_PM_ENALBE[bit 0], IA32_HWP_CAPABILITIES,
IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set.
Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set.
Bit 09: HWP_Activity_Window. IA32_HWP_REQUEST[bits 41:32] is supported if set.
Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUEST[bits 31:24] is supported if set.
Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set.
Bit 12: Reserved.
Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs are
supported if set.
Bits 31 - 15: Reserved
Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The
capability to provide a measure of delivered processor performance (since last reset of the counters), as
a percentage of the expected processor performance when running at the TSC frequency.
Bits 02 - 01: Reserved = 0
Bit 03: The processor supports performance-energy bias preference if CPUID.06H:ECX.SETBH[bit 3] is set
and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H).
Bits 31 - 04: Reserved = 0

EDX Reserved = 0

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)

07H Sub-leaf 0 (Input ECX = 0). *

EAX Bits 31-00: Reports the maximum input value for supported leaf 7 sub-leaves.

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 69

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01: IA32_TSC_ADJUST MSR is supported if 1.
Bit 02: Reserved
Bit 03: BMI1
Bit 04: HLE
Bit 05: AVX2
Bit 06: Reserved
Bit 07: SMEP. Supports Supervisor-Mode Execution Prevention if 1.
Bit 08: BMI2
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software that manages process-context
identifiers.
Bit 11: RTM
Bit 12: Supports Platform Quality of Service Monitoring (PQM) capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.
Bit 14: Reserved.
Bit 15: Supports Platform Quality of Service Enforcement (PQE) capability if 1.
Bits 17:16: Reserved
Bit 18: RDSEED
Bit 19: ADX
Bit 20: SMAP
Bits 31:21: Reserved

ECX Bit 00: PREFETCHWT1
Bit 31-01: Reserved

EDX Reserved

NOTE:
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n

exceeds the value that sub-leaf 0 returns in EAX.

Direct Cache Access Information Leaf

09H EAX

EBX

ECX

EDX

Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H)

Reserved

Reserved

Reserved

Architectural Performance Monitoring Leaf

0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring counter
Bits 31 - 24: Length of EBX bit vector to enumerate architectural performance monitoring events

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 70

EBX Bit 00: Core cycle event not available if 1
Bit 01: Instruction retired event not available if 1
Bit 02: Reference cycles event not available if 1
Bit 03: Last-level cache reference event not available if 1
Bit 04: Last-level cache misses event not available if 1
Bit 05: Branch instruction retired event not available if 1
Bit 06: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

ECX Reserved = 0

EDX Bits 04 - 00: Number of fixed-function performance counters (if Version ID > 1)
Bits 12- 05: Bit width of fixed-function performance counters (if Version ID > 1)
Reserved = 0

Extended Topology Enumeration Leaf

0BH NOTES:
Most of Leaf 0BH output depends on the initial value in ECX.
The EDX output of leaf 0BH is always valid and does not vary with input value in ECX.
Output value in ECX[7:0] always equals input value in ECX[7:0].
For sub-leaves that return an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0.

 If an input value n in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with ECX >
n also return 0 in ECX[15:8].

EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type*.
All logical processors with the same next level ID share current level.
Bits 31-05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as shipped
by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input
Bits 15 - 08: Level type***.
Bits 31 - 16:: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in this
field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical processors
available to BIOS/OS/Applications may be different from the value of EBX[15:0], depending on software
and platform hardware configurations.

*** The value of the “level type” field is not related to level numbers in any way, higher “level type” val-
ues do not mean higher levels. Level type field has the following encoding:
0 : invalid
1 : SMT
2 : Core
3-255 : Reserved

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 71

Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0).

EAX Bits 31-00: Reports the valid bit fields of the lower 32 bits of XCR0. If a bit is 0, the corresponding bit
field in XCR0 is reserved.
Bit 00: legacy x87
Bit 01: 128-bit SSE
Bit 02: 256-bit AVX
Bits 31- 03: Reserved

EBX Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by
enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save area
are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the XSAVE/
XRSTOR save area required by all supported features in the processor, i.e all the valid bit fields in XCR0.

EDX Bit 31-00: Reports the valid bit fields of the upper 32 bits of XCR0. If a bit is 0, the corresponding bit field
in XCR0 is reserved.

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

0DH EAX Bits 31-04: Reserved

Bit 00: XSAVEOPT is available

Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set

Bit 02: Supports XGETBV with ECX = 1 if set

Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set

EBX Bits 31-00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.

ECX Bits 31-00: Reports the valid bit fields of the lower 32 bits of IA32_XSS. If a bit is 0, the corresponding bit
field in IA32_XSS is reserved.

Bits 07-00: Reserved

Bit 08: IA32_XSS[bit 8] is supported if 1

Bits 31-09: Reserved

EDX Bits 31-00: Reports the valid bit fields of the upper 32 bits of IA32_XSS. If a bit is 0, the corresponding
bit field in IA32_XSS is reserved.

Bits 31-00: Reserved

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX.
Each valid sub-leaf index maps to a valid bit in either the XCR0 register or the IA32_XSS MSR starting
at bit position 2.
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf n (0 ≤ n ≤ 31) is invalid

if sub-leaf 0 returns 0 in EAX[n] and sub-leaf 1 returns 0 in ECX[n]. Sub-leaf n (32 ≤ n ≤ 63) is invalid if
sub-leaf 0 returns 0 in EDX[n-32] and sub-leaf 1 returns 0 in EDX[n-32].

EAX Bits 31-0: The size in bytes (from the offset specified in EBX) of the save area for an extended state fea-
ture associated with a valid sub-leaf index, n.

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 72

EBX Bits 31-0: The offset in bytes of this extended state component’s save area from the beginning of the
XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, does not map to a valid bit in the XCR0 register*.

ECX Bit 0 is set if the sub-leaf index, n, maps to a valid bit in the IA32_XSS MSR and bit 0 is clear if n maps to
a valid bit in XCR0. Bits 31-1 are reserved. This field reports 0 if the sub-leaf index, n, is invalid*.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Platform QoS Monitoring Enumeration Sub-leaf (EAX = 0FH, ECX = 0)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX.
Sub-leaf index 0 reports valid resource type starting at bit position 1 of EDX

EAX Reserved.

EBX Bits 31-0: Maximum range (zero-based) of RMID within this physical processor of all types.

ECX Reserved.

EDX Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS Monitoring if 1.
Bits 31:02: Reserved

L3 Cache QoS Monitoring Capability Enumeration Sub-leaf (EAX = 0FH, ECX = 1)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX.

EAX Reserved.

EBX Bits 31-0: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes).

ECX Maximum range (zero-based) of RMID of this resource type.

EDX Bit 00: Supports L3 occupancy monitoring if 1.
Bits 31:01: Reserved

Platform QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = 0)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.
Sub-leaf index 0 reports valid resource identification (ResID) starting at bit position 1 of EDX

EAX Reserved.

EBX Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS Enforcement if 1.
Bits 31:02: Reserved

ECX Reserved.

EDX Reserved.

L3 Cache QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = ResID =1)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.

EAX Bits 4:0: Length of the capacity bit mask for the corresponding ResID.
Bits 31:05: Reserved

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 73

EBX Bits 31-0: Bit-granular map of isolation/contention of allocation units.

ECX Bit 00: Reserved.
Bit 01: Updates of COS should be infrequent if 1.
Bits 31:02: Reserved

EDX Bits 15:0: Highest COS number supported for this ResID.
Bits 31:16: Reserved

Intel Processor Trace Enumeration Main Leaf (EAX = 14H, ECX = 0)

14H NOTES:
Leaf 14H main leaf (ECX = 0).

EAX Bits 31-0: Reports the maximum number sub-leaves that are supported in leaf 14H.

EBX Bit 00: If 1, Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that IA32_RTIT_CR3_MATCH
MSR can be accessed.
Bits 31- 01: Reserved

ECX Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output
scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
Bit 01: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the Mas-
kOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.
Bit 30:02: Reserved
Bit 31: If 1, Generated packets which contain IP payloads have LIP values, which include the CS base com-
ponent.

EDX Bits 31- 00: Reserved

Unimplemented CPUID Leaf Functions

40000000H
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or feature information if the initial
EAX value is in the range 40000000H to 4FFFFFFFH.

Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information (see
Table 3-18).

EBX
ECX
EDX

Reserved
Reserved
Reserved

80000001H EAX

EBX

ECX

Extended Processor Signature and Feature Bits.

Reserved

Bit 00: LAHF/SAHF available in 64-bit mode
Bits 04-01 Reserved
Bit 05: LZCNT
Bits 07-06 Reserved
Bit 08: PREFETCHW
Bits 31-09 Reserved

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 74

EDX Bits 10-00: Reserved
Bit 11: SYSCALL/SYSRET available in 64-bit mode
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 25-21: Reserved = 0
Bit 26: 1-GByte pages are available if 1
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1
Bits 28: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H EAX
EBX

Reserved = 0
Reserved = 0

ECX

EDX

Bits 07-00: Cache Line size in bytes
Bits 11-08: Reserved
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0

NOTES:
* L2 associativity field encodings:

00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 75

...

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Bits 07-00: Reserved = 0
Bit 08: Invariant TSC available if 1
Bits 31-09: Reserved = 0

80000008H EAX Linear/Physical Address size
Bits 07-00: #Physical Address Bits*
Bits 15-8: #Linear Address Bits
Bits 31-16: Reserved = 0

EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported should

come from this field.

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 76

...

METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method.

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are available in early processors, see
Section: “Identification of Earlier IA-32 Processors” in Chapter 17 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Figure 3-7 Feature Information Returned in the EDX Register

OM16523

PBE–Pend. Brk. EN.

012345678910111213141516171819202122232425262728293031

EDX

TM–Therm. Monitor
HTT–Multi-threading
SS–Self Snoop
SSE2–SSE2 Extensions
SSE–SSE Extensions
FXSR–FXSAVE/FXRSTOR
MMX–MMX Technology
ACPI–Thermal Monitor and Clock Ctrl
DS–Debug Store
CLFSH–CLFLUSH instruction
PSN–Processor Serial Number
PSE-36 – Page Size Extension
PAT–Page Attribute Table
CMOV–Conditional Move/Compare Instruction
MCA–Machine Check Architecture
PGE–PTE Global Bit
MTRR–Memory Type Range Registers
SEP–SYSENTER and SYSEXIT
APIC–APIC on Chip
CX8–CMPXCHG8B Inst.
MCE–Machine Check Exception
PAE–Physical Address Extensions
MSR–RDMSR and WRMSR Support
TSC–Time Stamp Counter
PSE–Page Size Extensions
DE–Debugging Extensions
VME–Virtual-8086 Mode Enhancement
FPU–x87 FPU on Chip

Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 77

The Processor Brand String Method

Figure 3-8 describes the algorithm used for detection of the brand string. Processor brand identification software
should execute this algorithm on all Intel 64 and IA-32 processors.

This method (introduced with Pentium 4 processors) returns an ASCII brand identification string and the
Processor Base frequency of the processor to the EAX, EBX, ECX, and EDX registers.

...

Figure 3-8 Determination of Support for the Processor Brand String

OM15194

IF (EAX & 0x80000000)

CPUID

IF (EAX Return Value
≥ 0x80000004)

CPUID
Function

Supported

True ≥
Extended

EAX Return Value =
Max. Extended CPUID

Function Index

Input: EAX=
0x80000000

Processor Brand
String Not
Supported

False

Processor Brand
String Supported

True

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 78

Extracting the Processor Frequency from Brand Strings

Figure 3-9 provides an algorithm which software can use to extract the Processor Base frequency from the
processor brand string.

...

Figure 3-9 Algorithm for Extracting Processor Frequency

OM15195

IF Substring Matched

"zHM", or
"zHG", or

"zHT"

Determine "Freq"
and "Multiplier"

True

Determine "Multiplier"

Scan "Brand String" in
Reverse Byte Order

Report Error
False

Scan Digits
Until Blank

Match
Substring

Determine "Freq"
Reverse Digits

To Decimal Value

Processor Base
Frequency =

"Freq" x "Multiplier" "Freq" = X.YZ if
Digits = "ZY.X"

In Reverse Order

If "zHM"

If "zHG"

If "zHT"
Multiplier = 1 x 1012

Multiplier = 1 x 109

Multiplier = 1 x 106

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 79

CRC32 — Accumulate CRC32 Value

Instruction Operand Encoding

Description

Starting with an initial value in the first operand (destination operand), accumulates a CRC32 (polynomial
11EDC6F41H) value for the second operand (source operand) and stores the result in the destination operand.
The source operand can be a register or a memory location. The destination operand must be an r32 or r64
register. If the destination is an r64 register, then the 32-bit result is stored in the least significant double word
and 00000000H is stored in the most significant double word of the r64 register.

The initial value supplied in the destination operand is a double word integer stored in the r32 register or the least
significant double word of the r64 register. To incrementally accumulate a CRC32 value, software retains the
result of the previous CRC32 operation in the destination operand, then executes the CRC32 instruction again
with new input data in the source operand. Data contained in the source operand is processed in reflected bit
order. This means that the most significant bit of the source operand is treated as the least significant bit of the
quotient, and so on, for all the bits of the source operand. Likewise, the result of the CRC operation is stored in
the destination operand in reflected bit order. This means that the most significant bit of the resulting CRC (bit 31)
is stored in the least significant bit of the destination operand (bit 0), and so on, for all the bits of the CRC.
...

Opcode/
Instruction

Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F2 0F 38 F0 /r

CRC32 r32, r/m8

RM Valid Valid Accumulate CRC32 on r/m8.

F2 REX 0F 38 F0 /r

CRC32 r32, r/m8*

RM Valid N.E. Accumulate CRC32 on r/m8.

F2 0F 38 F1 /r

CRC32 r32, r/m16

RM Valid Valid Accumulate CRC32 on r/m16.

F2 0F 38 F1 /r

CRC32 r32, r/m32

RM Valid Valid Accumulate CRC32 on r/m32.

F2 REX.W 0F 38 F0 /r

CRC32 r64, r/m8

RM Valid N.E. Accumulate CRC32 on r/m8.

F2 REX.W 0F 38 F1 /r

CRC32 r64, r/m64

RM Valid N.E. Accumulate CRC32 on r/m64.

NOTES:
*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 80

CVTPS2PD—Convert Packed Single-Precision FP Values to Packed Double-Precision FP Values

Instruction Operand Encoding

Description

Converts two or four packed single-precision floating-point values in the source operand (second operand) to two
or four packed double-precision floating-point values in the destination operand (first operand).

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 64- bit memory location. The destination
operation is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are
unmodified.
VEX.128 encoded version: The source operand is an XMM register or 64- bit memory location. The destination
operation is a YMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are
zeroed.
VEX.256 encoded version: The source operand is an XMM register or 128- bit memory location. The destination
operation is a YMM register.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

0F 5A /r

CVTPS2PD xmm1, xmm2/m64

RM V/V SSE2 Convert two packed single-precision floating-
point values in xmm2/m64 to two packed
double-precision floating-point values in
xmm1.

VEX.128.0F.WIG 5A /r

VCVTPS2PD xmm1, xmm2/m64

RM V/V AVX Convert two packed single-precision floating-
point values in xmm2/mem to two packed
double-precision floating-point values in
xmm1.

VEX.256.0F.WIG 5A /r

VCVTPS2PD ymm1, xmm2/m128

RM V/V AVX Convert four packed single-precision floating-
point values in xmm2/mem to four packed
double-precision floating-point values in
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 81

Figure 3-13 CVTPS2PD (VEX.256 encoded version)

Operation

CVTPS2PD (128-bit Legacy SSE version)
DEST[63:0] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[VLMAX-1:128] (unmodified)

VCVTPS2PD (VEX.128 encoded version)
DEST[63:0] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[VLMAX-1:128] 0

VCVTPS2PD (VEX.256 encoded version)
DEST[63:0] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[191:128] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[95:64])
DEST[255:192] Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[127:96)

Intel C/C++ Compiler Intrinsic Equivalent

CVTPS2PD: __m128d _mm_cvtps_pd(__m128 a)

VCVTPS2PD: __m256d _mm256_cvtps_pd (__m128 a)

SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions
VEX.256 version follows Exception Type 3 without #AC.
Other versions follow Exceptions Type 3; additionally
#UD If VEX.vvvv ≠ 1111B.
...

DEST

SRC X0X1X2X3

X3 X2 X1 X0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 82

INT n/INTO/INT 3—Call to Interrupt Procedure

Instruction Operand Encoding

Description

The INT n instruction generates a call to the interrupt or exception handler specified with the destination operand
(see the section titled “Interrupts and Exceptions” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1). The destination operand specifies a vector from 0 to 255, encoded as an 8-bit
unsigned intermediate value. Each vector provides an index to a gate descriptor in the IDT. The first 32 vectors
are reserved by Intel for system use. Some of these vectors are used for internally generated exceptions.

The INT n instruction is the general mnemonic for executing a software-generated call to an interrupt handler. The
INTO instruction is a special mnemonic for calling overflow exception (#OF), exception 4. The overflow interrupt
checks the OF flag in the EFLAGS register and calls the overflow interrupt handler if the OF flag is set to 1. (The
INTO instruction cannot be used in 64-bit mode.)

The INT 3 instruction generates a special one byte opcode (CC) that is intended for calling the debug exception
handler. (This one byte form is valuable because it can be used to replace the first byte of any instruction with a
breakpoint, including other one byte instructions, without over-writing other code). To further support its function
as a debug breakpoint, the interrupt generated with the CC opcode also differs from the regular software inter-
rupts as follows:
• Interrupt redirection does not happen when in VME mode; the interrupt is handled by a protected-mode

handler.
• The virtual-8086 mode IOPL checks do not occur. The interrupt is taken without faulting at any IOPL level.

Note that the “normal” 2-byte opcode for INT 3 (CD03) does not have these special features. Intel and Microsoft
assemblers will not generate the CD03 opcode from any mnemonic, but this opcode can be created by direct
numeric code definition or by self-modifying code.

The action of the INT n instruction (including the INTO and INT 3 instructions) is similar to that of a far call made
with the CALL instruction. The primary difference is that with the INT n instruction, the EFLAGS register is pushed
onto the stack before the return address. (The return address is a far address consisting of the current values of
the CS and EIP registers.) Returns from interrupt procedures are handled with the IRET instruction, which pops
the EFLAGS information and return address from the stack.

The vector specifies an interrupt descriptor in the interrupt descriptor table (IDT); that is, it provides index into
the IDT. The selected interrupt descriptor in turn contains a pointer to an interrupt or exception handler proce-
dure. In protected mode, the IDT contains an array of 8-byte descriptors, each of which is an interrupt gate,
trap gate, or task gate. In real-address mode, the IDT is an array of 4-byte far pointers (2-byte code segment
selector and a 2-byte instruction pointer), each of which point directly to a procedure in the selected segment.
(Note that in real-address mode, the IDT is called the interrupt vector table, and its pointers are called inter-
rupt vectors.)

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

CC INT 3 NP Valid Valid Interrupt 3—trap to debugger.

CD ib INT imm8 I Valid Valid Interrupt vector specified by immediate byte.

CE INTO NP Invalid Valid Interrupt 4—if overflow flag is 1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

I imm8 NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 83

The following decision table indicates which action in the lower portion of the table is taken given the conditions
in the upper portion of the table. Each Y in the lower section of the decision table represents a procedure defined
in the “Operation” section for this instruction (except #GP).

When the processor is executing in virtual-8086 mode, the IOPL determines the action of the INT n instruction. If
the IOPL is less than 3, the processor generates a #GP(selector) exception; if the IOPL is 3, the processor
executes a protected mode interrupt to privilege level 0. The interrupt gate's DPL must be set to 3 and the target
CPL of the interrupt handler procedure must be 0 to execute the protected mode interrupt to privilege level 0.

The interrupt descriptor table register (IDTR) specifies the base linear address and limit of the IDT. The initial base
address value of the IDTR after the processor is powered up or reset is 0.

Operation

The following operational description applies not only to the INT n and INTO instructions, but also to external
interrupts, nonmaskable interrupts (NMIs), and exceptions. Some of these events push onto the stack an error
code.

The operational description specifies numerous checks whose failure may result in delivery of a nested exception.
In these cases, the original event is not delivered.

The operational description specifies the error code delivered by any nested exception. In some cases, the error
code is specified with a pseudofunction error_code(num,idt,ext), where idt and ext are bit values. The pseudo-

Table 3-61 Decision Table

PE 0 1 1 1 1 1 1 1

VM – – – – – 0 1 1

IOPL – – – – – – <3 =3

DPL/CPL
RELATIONSHIP

– DPL<
CPL

– DPL>
CPL

DPL=
CPL or C

DPL<
CPL & NC

– –

INTERRUPT TYPE – S/W – – – – – –

GATE TYPE – – Task Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

Trap or
Interrupt

REAL-ADDRESS-MODE Y

PROTECTED-MODE Y Y Y Y Y Y Y

TRAP-OR-INTERRUPT-
GATE

Y Y Y Y Y

INTER-PRIVILEGE-LEVEL-
INTERRUPT

Y

INTRA-PRIVILEGE-LEVEL-
INTERRUPT

Y

INTERRUPT-FROM-
VIRTUAL-8086-MODE

Y

TASK-GATE Y

#GP Y Y Y

NOTES:
− Don't Care.
Y Yes, action taken.

Blank Action not taken.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 84

function produces an error code as follows: (1) if idt is 0, the error code is (num & FCH) | ext; (2) if idt is 1, the
error code is (num « 3) | 2 | ext.

In many cases, the pseudofunction error_code is invoked with a pseudovariable EXT. The value of EXT depends on
the nature of the event whose delivery encountered a nested exception: if that event is a software interrupt, EXT
is 0; otherwise, EXT is 1.

IF PE = 0
THEN

GOTO REAL-ADDRESS-MODE;
ELSE (* PE = 1 *)

IF (VM = 1 and IOPL < 3 AND INT n)
THEN

 #GP(0); (* Bit 0 of error code is 0 because INT n *)
ELSE (* Protected mode, IA-32e mode, or virtual-8086 mode interrupt *)

IF (IA32_EFER.LMA = 0)
THEN (* Protected mode, or virtual-8086 mode interrupt *)

GOTO PROTECTED-MODE;
ELSE (* IA-32e mode interrupt *)

GOTO IA-32e-MODE;
FI;

FI;
FI;
REAL-ADDRESS-MODE:

IF ((vector_number « 2) + 3) is not within IDT limit
THEN #GP; FI;

IF stack not large enough for a 6-byte return information
THEN #SS; FI;

Push (EFLAGS[15:0]);
IF ← 0; (* Clear interrupt flag *)
TF ← 0; (* Clear trap flag *)
AC ← 0; (* Clear AC flag *)
Push(CS);
Push(IP);
(* No error codes are pushed in real-address mode*)
CS ← IDT(Descriptor (vector_number « 2), selector));
EIP ← IDT(Descriptor (vector_number « 2), offset)); (* 16 bit offset AND 0000FFFFH *)

END;
PROTECTED-MODE:

IF ((vector_number « 3) + 7) is not within IDT limits
or selected IDT descriptor is not an interrupt-, trap-, or task-gate type

THEN #GP(error_code(vector_number,1,EXT)); FI;
(* idt operand to error_code set because vector is used *)

IF software interrupt (* Generated by INT n, INT3, or INTO *)
THEN

IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *)
THEN #GP(error_code(vector_number,1,0)); FI;
(* idt operand to error_code set because vector is used *)
(* ext operand to error_code is 0 because INT n, INT3, or INTO*)

FI;
IF gate not present

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 85

THEN #NP(error_code(vector_number,1,EXT)); FI;
(* idt operand to error_code set because vector is used *)

IF task gate (* Specified in the selected interrupt table descriptor *)
THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE = 1, trap/interrupt gate *)

FI;
END;
IA-32e-MODE:

IF INTO and CS.L = 1 (64-bit mode)
THEN #UD;

FI;
IF ((vector_number « 4) + 15) is not in IDT limits
or selected IDT descriptor is not an interrupt-, or trap-gate type

THEN #GP(error_code(vector_number,1,EXT));
(* idt operand to error_code set because vector is used *)

FI;
IF software interrupt (* Generated by INT n, INT 3, or INTO *)

THEN
IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *)

THEN #GP(error_code(vector_number,1,0));
(* idt operand to error_code set because vector is used *)
(* ext operand to error_code is 0 because INT n, INT3, or INTO*)

FI;
FI;
IF gate not present

THEN #NP(error_code(vector_number,1,EXT));
(* idt operand to error_code set because vector is used *)

FI;
GOTO TRAP-OR-INTERRUPT-GATE; (* Trap/interrupt gate *)

END;
TASK-GATE: (* PE = 1, task gate *)

Read TSS selector in task gate (IDT descriptor);
IF local/global bit is set to local or index not within GDT limits

THEN #GP(error_code(TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

THEN #GP(TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF TSS not present
THEN #NP(TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code

THEN
IF stack limit does not allow push of error code

THEN #SS(EXT); FI;
Push(error code);

FI;
IF EIP not within code segment limit

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 86

THEN #GP(EXT); FI;
END;
TRAP-OR-INTERRUPT-GATE:

Read new code-segment selector for trap or interrupt gate (IDT descriptor);
IF new code-segment selector is NULL

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
IF new code-segment selector is not within its descriptor table limits

THEN #GP(error_code(new code-segment selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Read descriptor referenced by new code-segment selector;
IF descriptor does not indicate a code segment or new code-segment DPL > CPL

THEN #GP(error_code(new code-segment selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF new code-segment descriptor is not present,
THEN #NP(error_code(new code-segment selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF new code segment is non-conforming with DPL < CPL
THEN

IF VM = 0
THEN

GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT;
(* PE = 1, VM = 0, interrupt or trap gate, nonconforming code segment,
DPL < CPL *)

ELSE (* VM = 1 *)
IF new code-segment DPL ≠ 0

THEN #GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is 0 because selector is used *)

GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE; FI;
(* PE = 1, interrupt or trap gate, DPL < CPL, VM = 1 *)

FI;
ELSE (* PE = 1, interrupt or trap gate, DPL ≥ CPL *)

IF VM = 1
THEN #GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is 0 because selector is used *)

IF new code segment is conforming or new code-segment DPL = CPL
THEN

GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT;
ELSE (* PE = 1, interrupt or trap gate, nonconforming code segment, DPL > CPL *)

#GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is 0 because selector is used *)

FI;
FI;

END;
INTER-PRIVILEGE-LEVEL-INTERRUPT:

(* PE = 1, interrupt or trap gate, non-conforming code segment, DPL < CPL *)
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
(* Identify stack-segment selector for new privilege level in current TSS *)

IF current TSS is 32-bit
THEN

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 87

TSSstackAddress ← (new code-segment DPL « 3) + 4;
IF (TSSstackAddress + 5) > current TSS limit

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 4);
NewESP ← 4 bytes loaded from (TSS base + TSSstackAddress);

ELSE (* current TSS is 16-bit *)
TSSstackAddress ← (new code-segment DPL « 2) + 2
IF (TSSstackAddress + 3) > current TSS limit

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 2);
NewESP ← 2 bytes loaded from (TSS base + TSSstackAddress);

FI;
IF NewSS is NULL

THEN #TS(EXT); FI;
IF NewSS index is not within its descriptor-table limits
or NewSS RPL ≠ new code-segment DPL

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Read new stack-segment descriptor for NewSS in GDT or LDT;
IF new stack-segment DPL ≠ new code-segment DPL
or new stack-segment Type does not indicate writable data segment

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF NewSS is not present
THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

ELSE (* IA-32e mode *)
IF IDT-gate IST = 0

THEN TSSstackAddress ← (new code-segment DPL « 3) + 4;
ELSE TSSstackAddress ← (IDT gate IST « 3) + 28;

FI;
IF (TSSstackAddress + 7) > current TSS limit

THEN #TS(error_code(current TSS selector,0,EXT); FI;
(* idt operand to error_code is 0 because selector is used *)

NewRSP ← 8 bytes loaded from (current TSS base + TSSstackAddress);
NewSS ← new code-segment DPL; (* NULL selector with RPL = new CPL *)

FI;
IF IDT gate is 32-bit

THEN
IF new stack does not have room for 24 bytes (error code pushed)
or 20 bytes (no error code pushed)

THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

FI
ELSE

IF IDT gate is 16-bit
THEN

IF new stack does not have room for 12 bytes (error code pushed)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 88

or 10 bytes (no error code pushed);
THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

ELSE (* 64-bit IDT gate*)
IF StackAddress is non-canonical

THEN #SS(EXT); FI; (* Error code contains NULL selector *)
FI;

FI;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
IF instruction pointer from IDT gate is not within new code-segment limits

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
ESP ← NewESP;
SS ← NewSS; (* Segment descriptor information also loaded *)

ELSE (* IA-32e mode *)
IF instruction pointer from IDT gate contains a non-canonical address

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
RSP ← NewRSP & FFFFFFFFFFFFFFF0H;
SS ← NewSS;

FI;
IF IDT gate is 32-bit

THEN
CS:EIP ← Gate(CS:EIP); (* Segment descriptor information also loaded *)

ELSE
IF IDT gate 16-bit

THEN
CS:IP ← Gate(CS:IP);
(* Segment descriptor information also loaded *)

ELSE (* 64-bit IDT gate *)
CS:RIP ← Gate(CS:RIP);
(* Segment descriptor information also loaded *)

FI;
FI;
IF IDT gate is 32-bit

THEN
Push(far pointer to old stack);
(* Old SS and ESP, 3 words padded to 4 *)
Push(EFLAGS);
Push(far pointer to return instruction);
(* Old CS and EIP, 3 words padded to 4 *)
Push(ErrorCode); (* If needed, 4 bytes *)

ELSE
IF IDT gate 16-bit

THEN
Push(far pointer to old stack);
(* Old SS and SP, 2 words *)
Push(EFLAGS(15-0]);
Push(far pointer to return instruction);
(* Old CS and IP, 2 words *)
Push(ErrorCode); (* If needed, 2 bytes *)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 89

ELSE (* 64-bit IDT gate *)
Push(far pointer to old stack);
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction);
(* Old CS and RIP, each an 8-byte push *)
Push(ErrorCode); (* If needed, 8-bytes *)

FI;
FI;
CPL ← new code-segment DPL;
CS(RPL) ← CPL;
IF IDT gate is interrupt gate

THEN IF ← 0 (* Interrupt flag set to 0, interrupts disabled *); FI;
TF ← 0;
VM ← 0;
RF ← 0;
NT ← 0;

END;
INTERRUPT-FROM-VIRTUAL-8086-MODE:

(* Identify stack-segment selector for privilege level 0 in current TSS *)
IF current TSS is 32-bit

THEN
IF TSS limit < 9

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS ← 2 bytes loaded from (current TSS base + 8);
NewESP ← 4 bytes loaded from (current TSS base + 4);

ELSE (* current TSS is 16-bit *)
IF TSS limit < 5

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewSS ← 2 bytes loaded from (current TSS base + 4);
NewESP ← 2 bytes loaded from (current TSS base + 2);

FI;
IF NewSS is NULL

THEN #TS(EXT); FI; (* Error code contains NULL selector *)
IF NewSS index is not within its descriptor table limits
or NewSS RPL ≠ 0

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

Read new stack-segment descriptor for NewSS in GDT or LDT;
IF new stack-segment DPL ≠ 0 or stack segment does not indicate writable data segment

THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF new stack segment not present
THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

IF IDT gate is 32-bit
THEN

IF new stack does not have room for 40 bytes (error code pushed)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 90

or 36 bytes (no error code pushed)
THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

ELSE (* IDT gate is 16-bit)
IF new stack does not have room for 20 bytes (error code pushed)
or 18 bytes (no error code pushed)

THEN #SS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

FI;
IF instruction pointer from IDT gate is not within new code-segment limits

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
tempEFLAGS ← EFLAGS;
VM ← 0;
TF ← 0;
RF ← 0;
NT ← 0;
IF service through interrupt gate

THEN IF = 0; FI;
TempSS ← SS;
TempESP ← ESP;
SS ← NewSS;
ESP ← NewESP;
(* Following pushes are 16 bits for 16-bit IDT gates and 32 bits for 32-bit IDT gates;
Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS ← 0; (* Segment registers made NULL, invalid for use in protected mode *)
FS ← 0;
DS ← 0;
ES ← 0;
CS:IP ← Gate(CS); (* Segment descriptor information also loaded *)
IF OperandSize = 32

THEN
EIP ← Gate(instruction pointer);

ELSE (* OperandSize is 16 *)
EIP ← Gate(instruction pointer) AND 0000FFFFH;

FI;
(* Start execution of new routine in Protected Mode *)

END;
INTRA-PRIVILEGE-LEVEL-INTERRUPT:

(* PE = 1, DPL = CPL or conforming segment *)
IF IA32_EFER.LMA = 1 (* IA-32e mode *)

IF IDT-descriptor IST ≠ 0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 91

THEN
TSSstackAddress ← (IDT-descriptor IST « 3) + 28;
IF (TSSstackAddress + 7) > TSS limit

THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)

NewRSP ← 8 bytes loaded from (current TSS base + TSSstackAddress);
FI;
IF 32-bit gate (* implies IA32_EFER.LMA = 0 *)

THEN
IF current stack does not have room for 16 bytes (error code pushed)
or 12 bytes (no error code pushed)

THEN #SS(EXT); FI; (* Error code contains NULL selector *)
ELSE IF 16-bit gate (* implies IA32_EFER.LMA = 0 *)

IF current stack does not have room for 8 bytes (error code pushed)
or 6 bytes (no error code pushed)

THEN #SS(EXT); FI; (* Error code contains NULL selector *)
ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)

IF NewRSP contains a non-canonical address
THEN #SS(EXT); (* Error code contains NULL selector *)

FI;
FI;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN
IF instruction pointer from IDT gate is not within new code-segment limit

THEN #GP(EXT); FI; (* Error code contains NULL selector *)
ELSE

IF instruction pointer from IDT gate contains a non-canonical address
THEN #GP(EXT); FI; (* Error code contains NULL selector *)

RSP ← NewRSP & FFFFFFFFFFFFFFF0H;
FI;
IF IDT gate is 32-bit (* implies IA32_EFER.LMA = 0 *)

THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP ← Gate(CS:EIP); (* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)

ELSE
IF IDT gate is 16-bit (* implies IA32_EFER.LMA = 0 *)

THEN
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP ← Gate(CS:IP);
(* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)

ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)
Push(far pointer to old stack);
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction);
(* Old CS and RIP, each an 8-byte push *)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 92

Push(ErrorCode); (* If needed, 8 bytes *)
CS:RIP ← GATE(CS:RIP);
(* Segment descriptor information also loaded *)

FI;
FI;
CS(RPL) ← CPL;
IF IDT gate is interrupt gate

THEN IF ← 0; FI; (* Interrupt flag set to 0; interrupts disabled *)
TF ← 0;
NT ← 0;
VM ← 0;
RF ← 0;

END;

Flags Affected

The EFLAGS register is pushed onto the stack. The IF, TF, NT, AC, RF, and VM flags may be cleared, depending on
the mode of operation of the processor when the INT instruction is executed (see the “Operation” section). If the
interrupt uses a task gate, any flags may be set or cleared, controlled by the EFLAGS image in the new task’s TSS.

Protected Mode Exceptions
#GP(error_code) If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate is beyond the code

segment limits.
If the segment selector in the interrupt-, trap-, or task gate is NULL.
If an interrupt-, trap-, or task gate, code segment, or TSS segment selector index is outside
its descriptor table limits.
If the vector selects a descriptor outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.
If an interrupt is generated by the INT n, INT 3, or INTO instruction and the DPL of an inter-
rupt-, trap-, or task-descriptor is less than the CPL.
If the segment selector in an interrupt- or trap-gate does not point to a segment descriptor
for a code segment.
If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(error_code) If pushing the return address, flags, or error code onto the stack exceeds the bounds of the
stack segment and no stack switch occurs.
If the SS register is being loaded and the segment pointed to is marked not present.
If pushing the return address, flags, error code, or stack segment pointer exceeds the
bounds of the new stack segment when a stack switch occurs.

#NP(error_code) If code segment, interrupt-, trap-, or task gate, or TSS is not present.
#TS(error_code) If the RPL of the stack segment selector in the TSS is not equal to the DPL of the code

segment being accessed by the interrupt or trap gate.
If DPL of the stack segment descriptor pointed to by the stack segment selector in the TSS is
not equal to the DPL of the code segment descriptor for the interrupt or trap gate.
If the stack segment selector in the TSS is NULL.
If the stack segment for the TSS is not a writable data segment.
If segment-selector index for stack segment is outside descriptor table limits.

#PF(fault-code) If a page fault occurs.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 93

#UD If the LOCK prefix is used.
#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the interrupt vector number is outside the IDT limits.
#SS If stack limit violation on push.

If pushing the return address, flags, or error code onto the stack exceeds the bounds of the
stack segment.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(error_code) (For INT n, INTO, or BOUND instruction) If the IOPL is less than 3 or the DPL of the interrupt-

, trap-, or task-gate descriptor is not equal to 3.
If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate is beyond the code
segment limits.
If the segment selector in the interrupt-, trap-, or task gate is NULL.
If a interrupt-, trap-, or task gate, code segment, or TSS segment selector index is outside
its descriptor table limits.
If the vector selects a descriptor outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.
If an interrupt is generated by the INT n instruction and the DPL of an interrupt-, trap-, or
task-descriptor is less than the CPL.
If the segment selector in an interrupt- or trap-gate does not point to a segment descriptor
for a code segment.
If the segment selector for a TSS has its local/global bit set for local.

#SS(error_code) If the SS register is being loaded and the segment pointed to is marked not present.
If pushing the return address, flags, error code, stack segment pointer, or data segments
exceeds the bounds of the stack segment.

#NP(error_code) If code segment, interrupt-, trap-, or task gate, or TSS is not present.
#TS(error_code) If the RPL of the stack segment selector in the TSS is not equal to the DPL of the code

segment being accessed by the interrupt or trap gate.
If DPL of the stack segment descriptor for the TSS’s stack segment is not equal to the DPL of
the code segment descriptor for the interrupt or trap gate.
If the stack segment selector in the TSS is NULL.
If the stack segment for the TSS is not a writable data segment.
If segment-selector index for stack segment is outside descriptor table limits.

#PF(fault-code) If a page fault occurs.
#BP If the INT 3 instruction is executed.
#OF If the INTO instruction is executed and the OF flag is set.
#UD If the LOCK prefix is used.
#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 94

64-Bit Mode Exceptions
#GP(error_code) If the instruction pointer in the 64-bit interrupt gate or 64-bit trap gate is non-canonical.

If the segment selector in the 64-bit interrupt or trap gate is NULL.
If the vector selects a descriptor outside the IDT limits.
If the vector points to a gate which is in non-canonical space.
If the vector points to a descriptor which is not a 64-bit interrupt gate or 64-bit trap gate.
If the descriptor pointed to by the gate selector is outside the descriptor table limit.
If the descriptor pointed to by the gate selector is in non-canonical space.
If the descriptor pointed to by the gate selector is not a code segment.
If the descriptor pointed to by the gate selector doesn’t have the L-bit set, or has both the L-
bit and D-bit set.
If the descriptor pointed to by the gate selector has DPL > CPL.

#SS(error_code) If a push of the old EFLAGS, CS selector, EIP, or error code is in non-canonical space with no
stack switch.
If a push of the old SS selector, ESP, EFLAGS, CS selector, EIP, or error code is in non-canon-
ical space on a stack switch (either CPL change or no-CPL with IST).

#NP(error_code) If the 64-bit interrupt-gate, 64-bit trap-gate, or code segment is not present.
#TS(error_code) If an attempt to load RSP from the TSS causes an access to non-canonical space.

If the RSP from the TSS is outside descriptor table limits.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned.
...

INVLPG—Invalidate TLB Entries

Instruction Operand Encoding

Description

Invalidates any translation lookaside buffer (TLB) entries specified with the source operand. The source operand
is a memory address. The processor determines the page that contains that address and flushes all TLB entries
for that page.1

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01/7 INVLPG m M Valid Valid Invalidate TLB entries for page containing m.

NOTES:
* See the IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

1. If the paging structures map the linear address using a page larger than 4 KBytes and there are multiple TLB entries for that page
(see Section 4.10.2.3, “Details of TLB Use,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A), the
instruction invalidates all of them.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 95

The INVLPG instruction is a privileged instruction. When the processor is running in protected mode, the CPL must
be 0 to execute this instruction.

The INVLPG instruction normally flushes TLB entries only for the specified page; however, in some cases, it may
flush more entries, even the entire TLB. The instruction is guaranteed to invalidates only TLB entries associated
with the current PCID. (If PCIDs are disabled — CR4.PCIDE = 0 — the current PCID is 000H.) The instruction also
invalidates any global TLB entries for the specified page, regardless of PCID.

For more details on operations that flush the TLB, see “MOV—Move to/from Control Registers” and Section
4.10.4.1, “Operations that Invalidate TLBs and Paging-Structure Caches,” of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A.

This instruction’s operation is the same in all non-64-bit modes. It also operates the same in 64-bit mode, except
if the memory address is in non-canonical form. In this case, INVLPG is the same as a NOP.

IA-32 Architecture Compatibility

The INVLPG instruction is implementation dependent, and its function may be implemented differently on
different families of Intel 64 or IA-32 processors. This instruction is not supported on IA-32 processors earlier
than the Intel486 processor.

Operation

Invalidate(RelevantTLBEntries);
Continue; (* Continue execution *)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD Operand is a register.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD Operand is a register.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The INVLPG instruction cannot be executed at the virtual-8086 mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD Operand is a register.

If the LOCK prefix is used.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 96

INVPCID—Invalidate Process-Context Identifier

Instruction Operand Encoding

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-structure caches based on process-
context identifier (PCID). (See Section 4.10, “Caching Translation Information,” in IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 3A.) Invalidation is based on the INVPCID type specified in the register operand
and the INVPCID descriptor specified in the memory operand.

Outside 64-bit mode, the register operand is always 32 bits, regardless of the value of CS.D. In 64-bit mode the
register operand has 64 bits.

There are four INVPCID types currently defined:
• Individual-address invalidation: If the INVPCID type is 0, the logical processor invalidates mappings—except

global translations—for the linear address and PCID specified in the INVPCID descriptor.1 In some cases, the
instruction may invalidate global translations or mappings for other linear addresses (or other PCIDs) as well.

• Single-context invalidation: If the INVPCID type is 1, the logical processor invalidates all mappings—except
global translations—associated with the PCID specified in the INVPCID descriptor. In some cases, the
instruction may invalidate global translations or mappings for other PCIDs as well.

• All-context invalidation, including global translations: If the INVPCID type is 2, the logical processor
invalidates all mappings—including global translations—associated with any PCID.

• All-context invalidation: If the INVPCID type is 3, the logical processor invalidates all mappings—except global
translations—associated with any PCID. In some case, the instruction may invalidate global translations as
well.

The INVPCID descriptor comprises 128 bits and consists of a PCID and a linear address as shown in Figure 3-23.
For INVPCID type 0, the processor uses the full 64 bits of the linear address even outside 64-bit mode; the linear
address is not used for other INVPCID types.

Opcode/
Instruction

Op/
En

64/32-
bit
Mode

CPUID
Feature
Flag

Description

66 0F 38 82 /r RM NE/V INVPCID Invalidates entries in the TLBs and paging-structure
caches based on invalidation type in r32 and descrip-
tor in m128.

INVPCID r32, m128

66 0F 38 82 /r RM V/NE INVPCID Invalidates entries in the TLBs and paging-structure
caches based on invalidation type in r64 and descrip-
tor in m128.

INVPCID r64, m128

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (R) ModRM:r/m (R) NA NA

1. If the paging structures map the linear address using a page larger than 4 KBytes and there are multiple TLB entries for that page
(see Section 4.10.2.3, “Details of TLB Use,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A), the
instruction invalidates all of them.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 97

If CR4.PCIDE = 0, a logical processor does not cache information for any PCID other than 000H. In this case,
executions with INVPCID types 0 and 1 are allowed only if the PCID specified in the INVPCID descriptor is 000H;
executions with INVPCID types 2 and 3 invalidate mappings only for PCID 000H. Note that CR4.PCIDE must be 0
outside 64-bit mode (see Chapter 4.10.1, “Process-Context Identifiers (PCIDs)‚” of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A).

Operation

INVPCID_TYPE ← value of register operand; // must be in the range of 0–3
INVPCID_DESC ← value of memory operand;
CASE INVPCID_TYPE OF

0: // individual-address invalidation
PCID ← INVPCID_DESC[11:0];
L_ADDR ← INVPCID_DESC[127:64];
Invalidate mappings for L_ADDR associated with PCID except global translations;
BREAK;

1: // single PCID invalidation
PCID ← INVPCID_DESC[11:0];
Invalidate all mappings associated with PCID except global translations;
BREAK;

2: // all PCID invalidation including global translations
Invalidate all mappings for all PCIDs, including global translations;
BREAK;

3: // all PCID invalidation retaining global translations
Invalidate all mappings for all PCIDs except global translations;
BREAK;

ESAC;

Intel C/C++ Compiler Intrinsic Equivalent

INVPCID: void _invpcid(unsigned __int32 type, void * descriptor);

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.

Figure 3-23 INVPCID Descriptor

127 64 63 01112

Reserved (must be zero)Linear Address PCID

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 98

If the source operand is located in an execute-only code segment.
If an invalid type is specified in the register operand, i.e., INVPCID_TYPE > 3.
If bits 63:12 of INVPCID_DESC are not all zero.
If INVPCID_TYPE is either 0 or 1 and INVPCID_DESC[11:0] is not zero.
If INVPCID_TYPE is 0 and the linear address in INVPCID_DESC[127:64] is not canonical.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If if CPUID.(EAX=07H, ECX=0H):EBX.INVPCID (bit 10) = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If an invalid type is specified in the register operand, i.e., INVPCID_TYPE > 3.

If bits 63:12 of INVPCID_DESC are not all zero.
If INVPCID_TYPE is either 0 or 1 and INVPCID_DESC[11:0] is not zero.
If INVPCID_TYPE is 0 and the linear address in INVPCID_DESC[127:64] is not canonical.

#UD If CPUID.(EAX=07H, ECX=0H):EBX.INVPCID (bit 10) = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The INVPCID instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand is in the CS, DS, ES, FS, or GS segments and the memory address is
in a non-canonical form.
If an invalid type is specified in the register operand, i.e., INVPCID_TYPE > 3.
If bits 63:12 of INVPCID_DESC are not all zero.
If CR4.PCIDE=0, INVPCID_TYPE is either 0 or 1, and INVPCID_DESC[11:0] is not zero.
If INVPCID_TYPE is 0 and the linear address in INVPCID_DESC[127:64] is not canonical.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory destination operand is in the SS segment and the memory address is in a non-

canonical form.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.INVPCID (bit 10) = 0.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 99

IRET/IRETD—Interrupt Return

Instruction Operand Encoding

Description

Returns program control from an exception or interrupt handler to a program or procedure that was interrupted
by an exception, an external interrupt, or a software-generated interrupt. These instructions are also used to
perform a return from a nested task. (A nested task is created when a CALL instruction is used to initiate a task
switch or when an interrupt or exception causes a task switch to an interrupt or exception handler.) See the
section titled “Task Linking” in Chapter 7 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.

IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (interrupt return double) is intended
for use when returning from an interrupt when using the 32-bit operand size; however, most assemblers use the
IRET mnemonic interchangeably for both operand sizes.

In Real-Address Mode, the IRET instruction preforms a far return to the interrupted program or procedure. During
this operation, the processor pops the return instruction pointer, return code segment selector, and EFLAGS image
from the stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes execution of the interrupted
program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested task) and VM flags
in the EFLAGS register and the VM flag in the EFLAGS image stored on the current stack. Depending on the setting
of these flags, the processor performs the following types of interrupt returns:
• Return from virtual-8086 mode.
• Return to virtual-8086 mode.
• Intra-privilege level return.
• Inter-privilege level return.
• Return from nested task (task switch).

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return from the interrupt proce-
dure, without a task switch. The code segment being returned to must be equally or less privileged than the inter-
rupt handler routine (as indicated by the RPL field of the code segment selector popped from the stack).

As with a real-address mode interrupt return, the IRET instruction pops the return instruction pointer, return code
segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers, respectively, and then
resumes execution of the interrupted program or procedure. If the return is to another privilege level, the IRET
instruction also pops the stack pointer and SS from the stack, before resuming program execution. If the return
is to virtual-8086 mode, the processor also pops the data segment registers from the stack.

If the NT flag is set, the IRET instruction performs a task switch (return) from a nested task (a task called with a
CALL instruction, an interrupt, or an exception) back to the calling or interrupted task. The updated state of the
task executing the IRET instruction is saved in its TSS. If the task is re-entered later, the code that follows the
IRET instruction is executed.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

CF IRET NP Valid Valid Interrupt return (16-bit operand size).

CF IRETD NP Valid Valid Interrupt return (32-bit operand size).

REX.W + CF IRETQ NP Valid N.E. Interrupt return (64-bit operand size).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 100

If the NT flag is set and the processor is in IA-32e mode, the IRET instruction causes a general protection excep-
tion.

If nonmaskable interrupts (NMIs) are blocked (see Section 6.7.1, “Handling Multiple NMIs” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A), execution of the IRET instruction unblocks NMIs.
This unblocking occurs even if the instruction causes a fault. In such a case, NMIs are unmasked before the
exception handler is invoked.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.W prefix promotes operation to
64 bits (IRETQ). See the summary chart at the beginning of this section for encoding data and limits.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in
VMX non-root operation.

Operation

IF PE = 0
THEN

GOTO REAL-ADDRESS-MODE;
ELSE

IF (IA32_EFER.LMA = 0)
THEN (* Protected mode *)

GOTO PROTECTED-MODE;
ELSE (* IA-32e mode *)

GOTO IA-32e-MODE;
FI;

FI;
REAL-ADDRESS-MODE;

IF OperandSize = 32
THEN

IF top 12 bytes of stack not within stack limits
THEN #SS; FI;

tempEIP ← 4 bytes at end of stack
IF tempEIP[31:16] is not zero THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS ← Pop();
EFLAGS ← (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS; FI;
EIP ← Pop(); (* 16-bit pop; clear upper 16 bits *)
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop();

FI;
END;

PROTECTED-MODE:
IF VM = 1 (* Virtual-8086 mode: PE = 1, VM = 1 *)

THEN
GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE = 1, VM = 1 *)

FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 101

IF NT = 1
THEN

GOTO TASK-RETURN; (* PE = 1, VM = 0, NT = 1 *)
FI;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempEIP ← tempEIP AND FFFFH;
tempEFLAGS ← tempEFLAGS AND FFFFH;

FI;
IF tempEFLAGS(VM) = 1 and CPL = 0

THEN
GOTO RETURN-TO-VIRTUAL-8086-MODE;

ELSE
GOTO PROTECTED-MODE-RETURN;

FI;
IA-32e-MODE:

IF NT = 1
THEN #GP(0);

ELSE IF OperandSize = 32
THEN

IF top 12 bytes of stack not within stack limits
THEN #SS(0); FI;

tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();

ELSE IF OperandSize = 16
THEN

IF top 6 bytes of stack are not within stack limits
THEN #SS(0); FI;

tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempEIP ← tempEIP AND FFFFH;
tempEFLAGS ← tempEFLAGS AND FFFFH;

FI;
ELSE (* OperandSize = 64 *)

THEN
tempRIP ← Pop();
tempCS ← Pop();

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 102

tempEFLAGS ← Pop();
tempRSP ← Pop();
tempSS ← Pop();

FI;
GOTO IA-32e-MODE-RETURN;

RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

IF IOPL = 3 (* Virtual mode: PE = 1, VM = 1, IOPL = 3 *)
THEN IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
IF instruction pointer not within code segment limits

THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
EFLAGS ← Pop();
(* VM, IOPL,VIP and VIF EFLAG bits not modified by pop *)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS(0); FI;
IF instruction pointer not within code segment limits

THEN #GP(0); FI;
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop(); (* IOPL in EFLAGS not modified by pop *)

FI;
ELSE

#GP(0); (* Trap to virtual-8086 monitor: PE = 1, VM = 1, IOPL < 3 *)
FI;

END;

RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE = 1, CPL=0, VM = 1 in flag image *)
IF top 24 bytes of stack are not within stack segment limits

THEN #SS(0); FI;
IF instruction pointer not within code segment limits

THEN #GP(0); FI;
CS ← tempCS;
EIP ← tempEIP & FFFFH;
EFLAGS ← tempEFLAGS;
TempESP ← Pop();
TempSS ← Pop();
ES ← Pop(); (* Pop 2 words; throw away high-order word *)
DS ← Pop(); (* Pop 2 words; throw away high-order word *)
FS ← Pop(); (* Pop 2 words; throw away high-order word *)
GS ← Pop(); (* Pop 2 words; throw away high-order word *)
SS:ESP ← TempSS:TempESP;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 103

CPL ← 3;
(* Resume execution in Virtual-8086 mode *)

END;

TASK-RETURN: (* PE = 1, VM = 0, NT = 1 *)
Read segment selector in link field of current TSS;
IF local/global bit is set to local
or index not within GDT limits

THEN #TS (TSS selector); FI;
Access TSS for task specified in link field of current TSS;
IF TSS descriptor type is not TSS or if the TSS is marked not busy

THEN #TS (TSS selector); FI;
IF TSS not present

THEN #NP(TSS selector); FI;
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within code segment limit

THEN #GP(0); FI;
END;

PROTECTED-MODE-RETURN: (* PE = 1 *)
IF return code segment selector is NULL

THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN GP(selector); FI;
Read segment descriptor pointed to by the return code segment selector;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI;
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE = 1, RPL = CPL *)
IF new mode ≠ 64-Bit Mode

THEN
IF tempEIP is not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

ELSE (* new mode = 64-bit mode *)
IF tempRIP is non-canonical

THEN #GP(0); FI;
RIP ← tempRIP;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 104

FI;
CS ← tempCS; (* Segment descriptor information also loaded *)
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) ← tempEFLAGS; FI;
IF CPL = 0

 THEN (* VM = 0 in flags image *)
 EFLAGS(IOPL) ← tempEFLAGS;
 IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;
 FI;
END;

RETURN-TO-OUTER-PRIVILEGE-LEVEL:
IF OperandSize = 32

THEN
IF top 8 bytes on stack are not within limits

THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)

IF top 4 bytes on stack are not within limits
THEN #SS(0); FI;

FI;
Read return segment selector;
IF stack segment selector is NULL

THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(SSselector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or the stack segment descriptor does not indicate a a writable data segment;
or the stack segment DPL ≠ RPL of the return code segment selector

THEN #GP(SS selector); FI;
IF stack segment is not present

THEN #SS(SS selector); FI;
IF new mode ≠ 64-Bit Mode

THEN
IF tempEIP is not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

ELSE (* new mode = 64-bit mode *)
IF tempRIP is non-canonical

THEN #GP(0); FI;
RIP ← tempRIP;

FI;
CS ← tempCS;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32

THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 105

IF CPL ≤ IOPL
THEN EFLAGS(IF) ← tempEFLAGS; FI;

IF CPL = 0
THEN

EFLAGS(IOPL) ← tempEFLAGS;
IF OperandSize = 32

THEN EFLAGS(VM, VIF, VIP) ← tempEFLAGS; FI;
IF OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;
FI;
CPL ← RPL of the return code segment selector;
FOR each of segment register (ES, FS, GS, and DS)

DO
IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL (* Stored in hidden part of segment register *)

THEN (* Segment register invalid *)
SegmentSelector ← 0; (* NULL segment selector *)

FI;
OD;

END;

IA-32e-MODE-RETURN: (* IA32_EFER.LMA = 1, PE = 1 *)
IF ((return code segment selector is NULL) or (return RIP is non-canonical) or

(SS selector is NULL going back to compatibility mode) or
(SS selector is NULL going back to CPL3 64-bit mode) or
(RPL ≠ CPL going back to non-CPL3 64-bit mode for a NULL SS selector))

THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN GP(selector); FI;
Read segment descriptor pointed to by the return code segment selector;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI;
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on the mode of operation of the
processor. If performing a return from a nested task to a previous task, the EFLAGS register will be modified
according to the EFLAGS image stored in the previous task’s TSS.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 106

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector is NULL.

If the return instruction pointer is not within the return code segment limit.
#GP(selector) If a segment selector index is outside its descriptor table limits.

If the return code segment selector RPL is less than the CPL.
If the DPL of a conforming-code segment is greater than the return code segment selector
RPL.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment
selector.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment
selector.
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.
If the segment descriptor for a code segment does not indicate it is a code segment.
If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is not busy.
If a TSS segment descriptor specifies that the TSS is not available.

#SS(0) If the top bytes of stack are not within stack limits.
#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is

enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code segment limit.
#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code segment limit.

IF IOPL not equal to 3.
#PF(fault-code) If a page fault occurs.
#SS(0) If the top bytes of stack are not within stack limits.
#AC(0) If an unaligned memory reference occurs and alignment checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#GP(0) If EFLAGS.NT[bit 14] = 1.
Other exceptions same as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If EFLAGS.NT[bit 14] = 1.

If the return code segment selector is NULL.
If the stack segment selector is NULL going back to compatibility mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 107

If the stack segment selector is NULL going back to CPL3 64-bit mode.
If a NULL stack segment selector RPL is not equal to CPL going back to non-CPL3 64-bit
mode.
If the return instruction pointer is not within the return code segment limit.
If the return instruction pointer is non-canonical.

#GP(Selector) If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the segment descriptor for a code segment does not indicate it is a code segment.
If the proposed new code segment descriptor has both the D-bit and L-bit set.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment
selector.
If CPL is greater than the RPL of the code segment selector.
If the DPL of a conforming-code segment is greater than the return code segment selector
RPL.
If the stack segment is not a writable data segment.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment
selector.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.
If an attempt to pop a value off the stack causes a non-canonical address to be referenced.

#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is

enabled.
#UD If the LOCK prefix is used.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 108

LFENCE—Load Fence

Instruction Operand Encoding

Description

Performs a serializing operation on all load-from-memory instructions that were issued prior the LFENCE instruc-
tion. Specifically, LFENCE does not execute until all prior instructions have completed locally, and no later instruc-
tion begins execution until LFENCE completes. In particular, an instruction that loads from memory and that
precedes an LFENCE receives data from memory prior to completion of the LFENCE. (An LFENCE that follows an
instruction that stores to memory might complete before the data being stored have become globally visible.)
Instructions following an LFENCE may be fetched from memory before the LFENCE, but they will not execute until
the LFENCE completes.

Weakly ordered memory types can be used to achieve higher processor performance through such techniques as
out-of-order issue and speculative reads. The degree to which a consumer of data recognizes or knows that the
data is weakly ordered varies among applications and may be unknown to the producer of this data. The LFENCE
instruction provides a performance-efficient way of ensuring load ordering between routines that produce weakly-
ordered results and routines that consume that data.

Processors are free to fetch and cache data speculatively from regions of system memory that use the WB, WC,
and WT memory types. This speculative fetching can occur at any time and is not tied to instruction execution.
Thus, it is not ordered with respect to executions of the LFENCE instruction; data can be brought into the caches
speculatively just before, during, or after the execution of an LFENCE instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Specification of the instruction's opcode above indicates a ModR/M byte of E8. For this instruction, the processor
ignores the r/m field of the ModR/M byte. Thus, LFENCE is encoded by any opcode of the form 0F AE Ex, where x
is in the range 8-F.

Operation

Wait_On_Following_Instructions_Until(preceding_instructions_complete);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_lfence(void)

Exceptions (All Modes of Operation)
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.
...

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AE E8 LFENCE NP Valid Valid Serializes load operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 109

LMSW—Load Machine Status Word

Instruction Operand Encoding

Description

Loads the source operand into the machine status word, bits 0 through 15 of register CR0. The source operand
can be a 16-bit general-purpose register or a memory location. Only the low-order 4 bits of the source operand
(which contains the PE, MP, EM, and TS flags) are loaded into CR0. The PG, CD, NW, AM, WP, NE, and ET flags of
CR0 are not affected. The operand-size attribute has no effect on this instruction.

If the PE flag of the source operand (bit 0) is set to 1, the instruction causes the processor to switch to protected
mode. While in protected mode, the LMSW instruction cannot be used to clear the PE flag and force a switch back
to real-address mode.

The LMSW instruction is provided for use in operating-system software; it should not be used in application
programs. In protected or virtual-8086 mode, it can only be executed at CPL 0.

This instruction is provided for compatibility with the Intel 286 processor; programs and procedures intended to
run on the Pentium 4, Intel Xeon, P6 family, Pentium, Intel486, and Intel386 processors should use the MOV
(control registers) instruction to load the whole CR0 register. The MOV CR0 instruction can be used to set and
clear the PE flag in CR0, allowing a procedure or program to switch between protected and real-address modes.

This instruction is a serializing instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Note that the operand size is fixed
at 16 bits.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in
VMX non-root operation.

Operation

CR0[0:3] ← SRC[0:3];

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 /6 LMSW r/m16 M Valid Valid Loads r/m16 in machine status word of CR0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 110

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The LMSW instruction is not recognized in real-address mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
...

MFENCE—Memory Fence

Instruction Operand Encoding

Description

Performs a serializing operation on all load-from-memory and store-to-memory instructions that were issued
prior the MFENCE instruction. This serializing operation guarantees that every load and store instruction that
precedes the MFENCE instruction in program order becomes globally visible before any load or store instruction
that follows the MFENCE instruction.1 The MFENCE instruction is ordered with respect to all load and store instruc-
tions, other MFENCE instructions, any LFENCE and SFENCE instructions, and any serializing instructions (such as
the CPUID instruction). MFENCE does not serialize the instruction stream.

Weakly ordered memory types can be used to achieve higher processor performance through such techniques as
out-of-order issue, speculative reads, write-combining, and write-collapsing. The degree to which a consumer of
data recognizes or knows that the data is weakly ordered varies among applications and may be unknown to the
producer of this data. The MFENCE instruction provides a performance-efficient way of ensuring load and store
ordering between routines that produce weakly-ordered results and routines that consume that data.

Processors are free to fetch and cache data speculatively from regions of system memory that use the WB, WC,
and WT memory types. This speculative fetching can occur at any time and is not tied to instruction execution.
Thus, it is not ordered with respect to executions of the MFENCE instruction; data can be brought into the caches
speculatively just before, during, or after the execution of an MFENCE instruction.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AE F0 MFENCE NP Valid Valid Serializes load and store operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. A load instruction is considered to become globally visible when the value to be loaded into its destination register is determined.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 111

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Specification of the instruction's opcode above indicates a ModR/M byte of F0. For this instruction, the processor
ignores the r/m field of the ModR/M byte. Thus, MFENCE is encoded by any opcode of the form 0F AE Fx, where x
is in the range 0-7.

Operation

Wait_On_Following_Loads_And_Stores_Until(preceding_loads_and_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_mfence(void)

Exceptions (All Modes of Operation)
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.
...

MOVNTI—Store Doubleword Using Non-Temporal Hint

Instruction Operand Encoding

Description

Moves the doubleword integer in the source operand (second operand) to the destination operand (first operand)
using a non-temporal hint to minimize cache pollution during the write to memory. The source operand is a
general-purpose register. The destination operand is a 32-bit memory location.

The non-temporal hint is implemented by using a write combining (WC) memory type protocol when writing the
data to memory. Using this protocol, the processor does not write the data into the cache hierarchy, nor does it
fetch the corresponding cache line from memory into the cache hierarchy. The memory type of the region being
written to can override the non-temporal hint, if the memory address specified for the non-temporal store is in an
uncacheable (UC) or write protected (WP) memory region. For more information on non-temporal stores, see
“Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented
with the SFENCE or MFENCE instruction should be used in conjunction with MOVNTI instructions if multiple
processors might use different memory types to read/write the destination memory locations.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the
beginning of this section for encoding data and limits.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F C3 /r MOVNTI m32, r32 MR Valid Valid Move doubleword from r32 to m32 using non-
temporal hint.

REX.W + 0F C3 /r MOVNTI m64, r64 MR Valid N.E. Move quadword from r64 to m64 using non-
temporal hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 112

Operation

DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTI: void _mm_stream_si32 (int *p, int a)

MOVNTI: void _mm_stream_si64(__int64 *p, __int64 a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 113

MPSADBW — Compute Multiple Packed Sums of Absolute Difference

Instruction Operand Encoding

Description

(V)MPSADBW calculates packed word results of sum-absolute-difference (SAD) of unsigned bytes from two
blocks of 32-bit dword elements, using two select fields in the immediate byte to select the offsets of the two
blocks within the first source operand and the second operand. Packed SAD word results are calculated within
each 128-bit lane. Each SAD word result is calculated between a stationary block_2 (whose offset within the
second source operand is selected by a two bit select control, multiplied by 32 bits) and a sliding block_1 at
consecutive byte-granular position within the first source operand. The offset of the first 32-bit block of block_1
is selectable using a one bit select control, multiplied by 32 bits.
128-bit Legacy SSE version: Imm8[1:0]*32 specifies the bit offset of block_2 within the second source operand.
Imm[2]*32 specifies the initial bit offset of the block_1 within the first source operand. The first source operand
and destination operand are the same. The first source and destination operands are XMM registers. The second
source operand is either an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding
YMM destination register remain unchanged. Bits 7:3 of the immediate byte are ignored.
VEX.128 encoded version: Imm8[1:0]*32 specifies the bit offset of block_2 within the second source operand.
Imm[2]*32 specifies the initial bit offset of the block_1 within the first source operand. The first source and desti-
nation operands are XMM registers. The second source operand is either an XMM register or a 128-bit memory
location. Bits (127:128) of the corresponding YMM register are zeroed. Bits 7:3 of the immediate byte are
ignored.
VEX.256 encoded version: The sum-absolute-difference (SAD) operation is repeated 8 times for MPSADW
between the same block_2 (fixed offset within the second source operand) and a variable block_1 (offset is
shifted by 8 bits for each SAD operation) in the first source operand. Each 16-bit result of eight SAD operations
between block_2 and block_1 is written to the respective word in the lower 128 bits of the destination operand.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 3A 42 /r ib

MPSADBW xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Sums absolute 8-bit integer difference of
adjacent groups of 4 byte integers in xmm1
and xmm2/m128 and writes the results in
xmm1. Starting offsets within xmm1 and
xmm2/m128 are determined by imm8.

VEX.NDS.128.66.0F3A.WIG 42 /r ib

VMPSADBW xmm1, xmm2, xmm3/m128, imm8

RVMI V/V AVX Sums absolute 8-bit integer difference of
adjacent groups of 4 byte integers in xmm2
and xmm3/m128 and writes the results in
xmm1. Starting offsets within xmm2 and
xmm3/m128 are determined by imm8.

VEX.NDS.256.66.0F3A.WIG 42 /r ib

VMPSADBW ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX2 Sums absolute 8-bit integer difference of
adjacent groups of 4 byte integers in xmm2
and ymm3/m128 and writes the results in
ymm1. Starting offsets within ymm2 and
xmm3/m128 are determined by imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 114

Additionally, VMPSADBW performs another eight SAD operations on block_4 of the second source operand and
block_3 of the first source operand. (Imm8[4:3]*32 + 128) specifies the bit offset of block_4 within the second
source operand. (Imm[5]*32+128) specifies the initial bit offset of the block_3 within the first source operand.
Each 16-bit result of eight SAD operations between block_4 and block_3 is written to the respective word in the
upper 128 bits of the destination operand.
The first source operand is a YMM register. The second source register can be a YMM register or a 256-bit memory
location. The destination operand is a YMM register. Bits 7:6 of the immediate byte are ignored.
Note: If VMPSADBW is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will
cause an #UD exception.

Figure 3-27 256-bit VMPSADBW Operation

Abs. Diff.

Sum

Imm[4:3]*32+128

Imm[5]*32+128
Src2

Src1

128255 144

128255 224 192

Abs. Diff.

Sum

Imm[1:0]*32

Imm[2]*32
Src2

Destination

0127 16

0127 96 64

Destination

Src1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 115

Operation

VMPSADBW (VEX.256 encoded version)
BLK2_OFFSET imm8[1:0]*32
BLK1_OFFSET imm8[2]*32
SRC1_BYTE0 SRC1[BLK1_OFFSET+7:BLK1_OFFSET]
SRC1_BYTE1 SRC1[BLK1_OFFSET+15:BLK1_OFFSET+8]
SRC1_BYTE2 SRC1[BLK1_OFFSET+23:BLK1_OFFSET+16]
SRC1_BYTE3 SRC1[BLK1_OFFSET+31:BLK1_OFFSET+24]
SRC1_BYTE4 SRC1[BLK1_OFFSET+39:BLK1_OFFSET+32]
SRC1_BYTE5 SRC1[BLK1_OFFSET+47:BLK1_OFFSET+40]
SRC1_BYTE6 SRC1[BLK1_OFFSET+55:BLK1_OFFSET+48]
SRC1_BYTE7 SRC1[BLK1_OFFSET+63:BLK1_OFFSET+56]
SRC1_BYTE8 SRC1[BLK1_OFFSET+71:BLK1_OFFSET+64]
SRC1_BYTE9 SRC1[BLK1_OFFSET+79:BLK1_OFFSET+72]
SRC1_BYTE10 SRC1[BLK1_OFFSET+87:BLK1_OFFSET+80]
SRC2_BYTE0 SRC2[BLK2_OFFSET+7:BLK2_OFFSET]
SRC2_BYTE1 SRC2[BLK2_OFFSET+15:BLK2_OFFSET+8]
SRC2_BYTE2 SRC2[BLK2_OFFSET+23:BLK2_OFFSET+16]
SRC2_BYTE3 SRC2[BLK2_OFFSET+31:BLK2_OFFSET+24]

TEMP0 ABS(SRC1_BYTE0 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE1 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE2 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE3 - SRC2_BYTE3)
DEST[15:0] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(SRC1_BYTE1 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE2 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE3 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE4 - SRC2_BYTE3)
DEST[31:16] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(SRC1_BYTE2 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE3 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE4 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE5 - SRC2_BYTE3)
DEST[47:32] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(SRC1_BYTE3 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE4 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE5 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE6 - SRC2_BYTE3)
DEST[63:48] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(SRC1_BYTE4 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE5 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE6 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE7 - SRC2_BYTE3)
DEST[79:64] TEMP0 + TEMP1 + TEMP2 + TEMP3

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 116

TEMP0 ABS(SRC1_BYTE5 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE6 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE7 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE8 - SRC2_BYTE3)
DEST[95:80] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(SRC1_BYTE6 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE7 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE8 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE9 - SRC2_BYTE3)
DEST[111:96] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(SRC1_BYTE7 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE8 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE9 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE10 - SRC2_BYTE3)
DEST[127:112] TEMP0 + TEMP1 + TEMP2 + TEMP3

BLK2_OFFSET imm8[4:3]*32 + 128
BLK1_OFFSET imm8[5]*32 + 128
SRC1_BYTE0 SRC1[BLK1_OFFSET+7:BLK1_OFFSET]
SRC1_BYTE1 SRC1[BLK1_OFFSET+15:BLK1_OFFSET+8]
SRC1_BYTE2 SRC1[BLK1_OFFSET+23:BLK1_OFFSET+16]
SRC1_BYTE3 SRC1[BLK1_OFFSET+31:BLK1_OFFSET+24]
SRC1_BYTE4 SRC1[BLK1_OFFSET+39:BLK1_OFFSET+32]
SRC1_BYTE5 SRC1[BLK1_OFFSET+47:BLK1_OFFSET+40]
SRC1_BYTE6 SRC1[BLK1_OFFSET+55:BLK1_OFFSET+48]
SRC1_BYTE7 SRC1[BLK1_OFFSET+63:BLK1_OFFSET+56]
SRC1_BYTE8 SRC1[BLK1_OFFSET+71:BLK1_OFFSET+64]
SRC1_BYTE9 SRC1[BLK1_OFFSET+79:BLK1_OFFSET+72]
SRC1_BYTE10 SRC1[BLK1_OFFSET+87:BLK1_OFFSET+80]

SRC2_BYTE0 SRC2[BLK2_OFFSET+7:BLK2_OFFSET]
SRC2_BYTE1 SRC2[BLK2_OFFSET+15:BLK2_OFFSET+8]
SRC2_BYTE2 SRC2[BLK2_OFFSET+23:BLK2_OFFSET+16]
SRC2_BYTE3 SRC2[BLK2_OFFSET+31:BLK2_OFFSET+24]

TEMP0 ABS(SRC1_BYTE0 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE1 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE2 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE3 - SRC2_BYTE3)
DEST[143:128] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(SRC1_BYTE1 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE2 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE3 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE4 - SRC2_BYTE3)
DEST[159:144] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(SRC1_BYTE2 - SRC2_BYTE0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 117

TEMP1 ABS(SRC1_BYTE3 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE4 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE5 - SRC2_BYTE3)
DEST[175:160] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(SRC1_BYTE3 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE4 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE5 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE6 - SRC2_BYTE3)
DEST[191:176] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(SRC1_BYTE4 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE5 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE6 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE7 - SRC2_BYTE3)
DEST[207:192] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(SRC1_BYTE5 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE6 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE7 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE8 - SRC2_BYTE3)
DEST[223:208] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(SRC1_BYTE6 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE7 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE8 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE9 - SRC2_BYTE3)
DEST[239:224] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(SRC1_BYTE7 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE8 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE9 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE10 - SRC2_BYTE3)
DEST[255:240] TEMP0 + TEMP1 + TEMP2 + TEMP3

VMPSADBW (VEX.128 encoded version)
BLK2_OFFSET imm8[1:0]*32
BLK1_OFFSET imm8[2]*32
SRC1_BYTE0 SRC1[BLK1_OFFSET+7:BLK1_OFFSET]
SRC1_BYTE1 SRC1[BLK1_OFFSET+15:BLK1_OFFSET+8]
SRC1_BYTE2 SRC1[BLK1_OFFSET+23:BLK1_OFFSET+16]
SRC1_BYTE3 SRC1[BLK1_OFFSET+31:BLK1_OFFSET+24]
SRC1_BYTE4 SRC1[BLK1_OFFSET+39:BLK1_OFFSET+32]
SRC1_BYTE5 SRC1[BLK1_OFFSET+47:BLK1_OFFSET+40]
SRC1_BYTE6 SRC1[BLK1_OFFSET+55:BLK1_OFFSET+48]
SRC1_BYTE7 SRC1[BLK1_OFFSET+63:BLK1_OFFSET+56]
SRC1_BYTE8 SRC1[BLK1_OFFSET+71:BLK1_OFFSET+64]
SRC1_BYTE9 SRC1[BLK1_OFFSET+79:BLK1_OFFSET+72]
SRC1_BYTE10 SRC1[BLK1_OFFSET+87:BLK1_OFFSET+80]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 118

SRC2_BYTE0 SRC2[BLK2_OFFSET+7:BLK2_OFFSET]
SRC2_BYTE1 SRC2[BLK2_OFFSET+15:BLK2_OFFSET+8]
SRC2_BYTE2 SRC2[BLK2_OFFSET+23:BLK2_OFFSET+16]
SRC2_BYTE3 SRC2[BLK2_OFFSET+31:BLK2_OFFSET+24]

TEMP0 ABS(SRC1_BYTE0 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE1 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE2 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE3 - SRC2_BYTE3)
DEST[15:0] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(SRC1_BYTE1 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE2 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE3 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE4 - SRC2_BYTE3)
DEST[31:16] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(SRC1_BYTE2 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE3 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE4 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE5 - SRC2_BYTE3)
DEST[47:32] TEMP0 + TEMP1 + TEMP2 + TEMP3
TEMP0 ABS(SRC1_BYTE3 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE4 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE5 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE6 - SRC2_BYTE3)
DEST[63:48] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(SRC1_BYTE4 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE5 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE6 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE7 - SRC2_BYTE3)
DEST[79:64] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(SRC1_BYTE5 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE6 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE7 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE8 - SRC2_BYTE3)
DEST[95:80] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(SRC1_BYTE6 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE7 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE8 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE9 - SRC2_BYTE3)
DEST[111:96] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(SRC1_BYTE7 - SRC2_BYTE0)
TEMP1 ABS(SRC1_BYTE8 - SRC2_BYTE1)
TEMP2 ABS(SRC1_BYTE9 - SRC2_BYTE2)
TEMP3 ABS(SRC1_BYTE10 - SRC2_BYTE3)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 119

DEST[127:112] TEMP0 + TEMP1 + TEMP2 + TEMP3
DEST[VLMAX-1:128] 0

MPSADBW (128-bit Legacy SSE version)
SRC_OFFSET imm8[1:0]*32
DEST_OFFSET imm8[2]*32
DEST_BYTE0 DEST[DEST_OFFSET+7:DEST_OFFSET]
DEST_BYTE1 DEST[DEST_OFFSET+15:DEST_OFFSET+8]
DEST_BYTE2 DEST[DEST_OFFSET+23:DEST_OFFSET+16]
DEST_BYTE3 DEST[DEST_OFFSET+31:DEST_OFFSET+24]
DEST_BYTE4 DEST[DEST_OFFSET+39:DEST_OFFSET+32]
DEST_BYTE5 DEST[DEST_OFFSET+47:DEST_OFFSET+40]
DEST_BYTE6 DEST[DEST_OFFSET+55:DEST_OFFSET+48]
DEST_BYTE7 DEST[DEST_OFFSET+63:DEST_OFFSET+56]
DEST_BYTE8 DEST[DEST_OFFSET+71:DEST_OFFSET+64]
DEST_BYTE9 DEST[DEST_OFFSET+79:DEST_OFFSET+72]
DEST_BYTE10 DEST[DEST_OFFSET+87:DEST_OFFSET+80]

SRC_BYTE0 SRC[SRC_OFFSET+7:SRC_OFFSET]
SRC_BYTE1 SRC[SRC_OFFSET+15:SRC_OFFSET+8]
SRC_BYTE2 SRC[SRC_OFFSET+23:SRC_OFFSET+16]
SRC_BYTE3 SRC[SRC_OFFSET+31:SRC_OFFSET+24]

TEMP0 ABS(DEST_BYTE0 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE1 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE2 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE3 - SRC_BYTE3)
DEST[15:0] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(DEST_BYTE1 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE2 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE3 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE4 - SRC_BYTE3)
DEST[31:16] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(DEST_BYTE2 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE3 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE4 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE5 - SRC_BYTE3)
DEST[47:32] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(DEST_BYTE3 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE4 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE5 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE6 - SRC_BYTE3)
DEST[63:48] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(DEST_BYTE4 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE5 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE6 - SRC_BYTE2)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 120

TEMP3 ABS(DEST_BYTE7 - SRC_BYTE3)
DEST[79:64] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(DEST_BYTE5 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE6 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE7 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE8 - SRC_BYTE3)
DEST[95:80] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(DEST_BYTE6 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE7 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE8 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE9 - SRC_BYTE3)
DEST[111:96] TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ABS(DEST_BYTE7 - SRC_BYTE0)
TEMP1 ABS(DEST_BYTE8 - SRC_BYTE1)
TEMP2 ABS(DEST_BYTE9 - SRC_BYTE2)
TEMP3 ABS(DEST_BYTE10 - SRC_BYTE3)
DEST[127:112] TEMP0 + TEMP1 + TEMP2 + TEMP3
DEST[VLMAX-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

(V)MPSADBW: __m128i _mm_mpsadbw_epu8 (__m128i s1, __m128i s2, const int mask);

VMPSADBW: __m256i _mm256_mpsadbw_epu8 (__m256i s1, __m256i s2, const int mask);

Flags Affected

None

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 121

16.Updates to Chapter 4, Volume 2B
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B: Instruction Set Reference, N-Z.

--
...

4.1.3 Aggregation Operation

All 256 (64) possible comparisons are always performed. The individual Boolean results of those comparisons are
referred by “BoolRes[Reg/Mem element index, Reg element index].” Comparisons evaluating to “True” are repre-
sented with a 1, False with a 0 (positive logic). The initial results are then aggregated into a 16-bit (8-bit) inter-
mediate result (IntRes1) using one of the modes described in the table below, as determined by Imm8 Control
Byte bit[3:2].

Table 4-2 Aggregation Operation

Imm8[3:2] Mode Comparison

00b Equal any The arithmetic comparison is “equal.”

01b Ranges Arithmetic comparison is “greater than or equal” between even indexed bytes/words of reg and
each byte/word of reg/mem.

Arithmetic comparison is “less than or equal” between odd indexed bytes/words of reg and each
byte/word of reg/mem.

(reg/mem[m] >= reg[n] for n = even, reg/mem[m] <= reg[n] for n = odd)

10b Equal each The arithmetic comparison is “equal.”

11b Equal ordered The arithmetic comparison is “equal.”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 122

See Section 4.1.6 for a description of the overrideIfDataInvalid() function used in Table 4-3.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 123

...

Table 4-3 Aggregation Operation

Mode Pseudocode

Equal any

(find characters from a set)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For j = 0 to UpperBound, j++

For i = 0 to UpperBound, i++

IntRes1[j] OR= overrideIfDataInvalid(BoolRes[j,i])

Ranges

(find characters from ranges)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For j = 0 to UpperBound, j++

For i = 0 to UpperBound, i+=2

IntRes1[j] OR= (overrideIfDataInvalid(BoolRes[j,i]) AND
overrideIfDataInvalid(BoolRes[j,i+1]))

Equal each

(string compare)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For i = 0 to UpperBound, i++

IntRes1[i] = overrideIfDataInvalid(BoolRes[i,i])

Equal ordered

(substring search)

UpperBound = imm8[0] ? 7 :15;

IntRes1 = imm8[0] ? FFH : FFFFH

For j = 0 to UpperBound, j++

For i = 0 to UpperBound-j, k=j to UpperBound, k++, i++

IntRes1[j] AND= overrideIfDataInvalid(BoolRes[k,i])

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 124

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

...

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 74 /r1

PCMPEQB mm, mm/m64

RM V/V MMX Compare packed bytes in mm/m64 and mm
for equality.

66 0F 74 /r

PCMPEQB xmm1, xmm2/m128

RM V/V SSE2 Compare packed bytes in xmm2/m128 and
xmm1 for equality.

0F 75 /r1

PCMPEQW mm, mm/m64

RM V/V MMX Compare packed words in mm/m64 and mm
for equality.

66 0F 75 /r

PCMPEQW xmm1, xmm2/m128

RM V/V SSE2 Compare packed words in xmm2/m128 and
xmm1 for equality.

0F 76 /r1

PCMPEQD mm, mm/m64

RM V/V MMX Compare packed doublewords in mm/m64 and
mm for equality.

66 0F 76 /r

PCMPEQD xmm1, xmm2/m128

RM V/V SSE2 Compare packed doublewords in xmm2/m128
and xmm1 for equality.

VEX.NDS.128.66.0F.WIG 74 /r

VPCMPEQB xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed bytes in xmm3/m128 and
xmm2 for equality.

VEX.NDS.128.66.0F.WIG 75 /r

VPCMPEQW xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed words in xmm3/m128 and
xmm2 for equality.

VEX.NDS.128.66.0F.WIG 76 /r

VPCMPEQD xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed doublewords in xmm3/m128
and xmm2 for equality.

VEX.NDS.256.66.0F.WIG 74 /r RVM V/V AVX2 Compare packed bytes in ymm3/m256 and
ymm2 for equality.VPCMPEQB ymm1, ymm2, ymm3 /m256

VEX.NDS.256.66.0F.WIG 75 /r

VPCMPEQW ymm1, ymm2, ymm3 /m256

RVM V/V AVX2 Compare packed words in ymm3/m256 and
ymm2 for equality.

VEX.NDS.256.66.0F.WIG 76 /r

VPCMPEQD ymm1, ymm2, ymm3 /m256

RVM V/V AVX2 Compare packed doublewords in ymm3/m256
and ymm2 for equality.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 125

POPCNT — Return the Count of Number of Bits Set to 1

Instruction Operand Encoding

Description

This instruction calculates of number of bits set to 1 in the second operand (source) and returns the count in the
first operand (a destination register).

Operation

Count = 0;
For (i=0; i < OperandSize; i++)
{ IF (SRC[i] = 1) // i’th bit

THEN Count++; FI;
}
DEST Count;

Flags Affected

OF, SF, ZF, AF, CF, PF are all cleared. ZF is set if SRC = 0, otherwise ZF is cleared.

Intel C/C++ Compiler Intrinsic Equivalent

POPCNT: int _mm_popcnt_u32(unsigned int a);

POPCNT: int64_t _mm_popcnt_u64(unsigned __int64 a);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS segments.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF (fault-code) For a page fault.
#AC(0) If an unaligned memory reference is made while the current privilege level is 3 and alignment

checking is enabled.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F3 0F B8 /r POPCNT r16, r/m16 RM Valid Valid POPCNT on r/m16

F3 0F B8 /r POPCNT r32, r/m32 RM Valid Valid POPCNT on r/m32

F3 REX.W 0F B8 /r POPCNT r64, r/m64 RM Valid N.E. POPCNT on r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 126

Real-Address Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF (fault-code) For a page fault.
#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 127

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

Instruction Operand Encoding

Description

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size attribute is 32) and stores the
value in the EFLAGS register, or pops a word from the top of the stack (if the operand-size attribute is 16) and
stores it in the lower 16 bits of the EFLAGS register (that is, the FLAGS register). These instructions reverse the
operation of the PUSHF/PUSHFD instructions.

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same opcode. The POPF instruction
is intended for use when the operand-size attribute is 16; the POPFD instruction is intended for use when the
operand-size attribute is 32. Some assemblers may force the operand size to 16 for POPF and to 32 for POPFD.
Others may treat the mnemonics as synonyms (POPF/POPFD) and use the setting of the operand-size attribute to
determine the size of values to pop from the stack.

The effect of POPF/POPFD on the EFLAGS register changes, depending on the mode of operation. See the Table 4-
12 and key below for details.

When operating in protected, compatibility, or 64-bit mode at privilege level 0 (or in real-address mode, the
equivalent to privilege level 0), all non-reserved flags in the EFLAGS register except RF1, VIP, VIF, and VM may be
modified. VIP, VIF and VM remain unaffected.

When operating in protected, compatibility, or 64-bit mode with a privilege level greater than 0, but less than or
equal to IOPL, all flags can be modified except the IOPL field and RF1, IF, VIP, VIF, and VM; these remain unaf-
fected. The AC and ID flags can only be modified if the operand-size attribute is 32. The interrupt flag (IF) is
altered only when executing at a level at least as privileged as the IOPL. If a POPF/POPFD instruction is executed
with insufficient privilege, an exception does not occur but privileged bits do not change.

When operating in virtual-8086 mode (EFLAGS.VM = 1) without the virtual-8086 mode extensions (CR4.VME =
0), the POPF/POPFD instructions can be used only if IOPL = 3; otherwise, a general-protection exception (#GP)
occurs. If the virtual-8086 mode extensions are enabled (CR4.VME = 1), POPF (but not POPFD) can be executed
in virtual-8086 mode with IOPL < 3.

In 64-bit mode, use REX.W to pop the top of stack to RFLAGS. The mnemonic assigned is POPFQ (note that the
32-bit operand is not encodable). POPFQ pops 64 bits from the stack, loads the lower 32 bits into RFLAGS, and
zero extends the upper bits of RFLAGS.

See Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more infor-
mation about the EFLAGS registers.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

9D POPF NP Valid Valid Pop top of stack into lower 16 bits of EFLAGS.

9D POPFD NP N.E. Valid Pop top of stack into EFLAGS.

9D POPFQ NP Valid N.E. Pop top of stack and zero-extend into RFLAGS.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. RF is always zero after the execution of POPF. This is because POPF, like all instructions, clears RF as it begins to execute.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 128

Operation

IF VM = 0 (* Not in Virtual-8086 Mode *)
THEN IF CPL = 0

THEN
IF OperandSize = 32;

THEN
EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified;
VIP, VIF, VM, and all reserved bits are unaffected. RF is cleared. *)

Table 4-12 Effect of POPF/POPFD on the EFLAGS Register

Mode Operand
Size

CPL IOPL
Flags

Notes
21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

Real-Address
Mode (CR0.PE

= 0)

16 0 0-3 N N N N N 0 S S S S S S S S S S S

32 0 0-3 S N N S N 0 S S S S S S S S S S S

Protected,
Compatibility,

and 64-Bit
Modes

(CR0.PE = 1,
EFLAGS.VM =

0)

16 0 0-3 N N N N N 0 S S S S S S S S S S S

16 1-3 <CPL N N N N N 0 S N S S N S S S S S S

16 1-3 ≥CPL N N N N N 0 S N S S S S S S S S S

32, 64 0 0-3 S N N S N 0 S S S S S S S S S S S

32, 64 1-3 <CPL S N N S N 0 S N S S N S S S S S S

32, 64 1-3 ≥CPL S N N S N 0 S N S S S S S S S S S

Virtual-8086
(CR0.PE = 1,
EFLAGS.VM =

1,
CR4.VME = 0)

16 3 0-2 X X X X X X X X X X X X X X X X X 1

16 3 3 N N N N N 0 S N S S S S S S S S S

32 3 0-2 X X X X X X X X X X X X X X X X X 1

32 3 3 S N N S N 0 S N S S S S S S S S S

VME
(CR0.PE = 1,
EFLAGS.VM =

1,
CR4.VME = 1)

16 3 0-2 N/
X

N/
X

SV/
X

N/
X

N/
X

0/
X

S/
X

N/X S/
X

S/
X

N/
X

S/
X

S/
X

S/
X

S/
X

S/
X

S/
X

2

16 3 3 N N N N N 0 S N S S S S S S S S S

32 3 0-2 X X X X X X X X X X X X X X X X X 1

32 3 3 S N N S N 0 S N S S S S S S S S S

NOTES:
1. #GP fault - no flag update
2. #GP fault with no flag update if VIP=1 in EFLAGS register and IF=1 in FLAGS value on stack

Key

S Updated from stack

SV Updated from IF (bit 9) in FLAGS value on stack

N No change in value

X No EFLAGS update

0 Value is cleared

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 129

ELSE IF (Operandsize = 64)
RFLAGS = Pop(); (* 64-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified;
VIP, VIF, VM, and all reserved bits are unaffected. RF is cleared. *)

ELSE (* OperandSize = 16 *)
EFLAGS[15:0] ← Pop(); (* 16-bit pop *)
(* All non-reserved flags can be modified. *)

FI;
ELSE (* CPL > 0 *)

IF OperandSize = 32
THEN

IF CPL > IOPL
THEN

EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved bits except IF, IOPL, VIP, VIF, VM and RF can be modified;
IF, IOPL, VIP, VIF, VM and all reserved bits are unaffected; RF is cleared. *)

ELSE
EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved bits except IOPL, VIP, VIF, VM and RF can be modified;
IOPL, VIP, VIF, VM and all reserved bits are unaffected; RF is cleared. *)

FI;
ELSE IF (Operandsize = 64)

IF CPL > IOPL
THEN

RFLAGS ← Pop(); (* 64-bit pop *)
(* All non-reserved bits except IF, IOPL, VIP, VIF, VM and RF can be modified;
IF, IOPL, VIP, VIF, VM and all reserved bits are unaffected; RF is cleared. *)

ELSE
RFLAGS ← Pop(); (* 64-bit pop *)
(* All non-reserved bits except IOPL, VIP, VIF, VM and RF can be modified;
IOPL, VIP, VIF, VM and all reserved bits are unaffected; RF is cleared. *)

FI;
ELSE (* OperandSize = 16 *)

EFLAGS[15:0] ← Pop(); (* 16-bit pop *)
(* All non-reserved bits except IOPL can be modified; IOPL and all
reserved bits are unaffected. *)

FI;
FI;

ELSE IF CR4.VME = 1 (* In Virtual-8086 Mode with VME Enabled *)
IF IOPL = 3

THEN IF OperandSize = 32
THEN

EFLAGS ← Pop();
(* All non-reserved bits except IOPL, VIP, VIF, VM, and RF can be modified;
VIP, VIF, VM, IOPL and all reserved bits are unaffected. RF is cleared. *)

ELSE
EFLAGS[15:0] ← Pop(); FI;
(* All non-reserved bits except IOPL can be modified;
IOPL and all reserved bits are unaffected. *)

FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 130

ELSE (* IOPL < 3 *)
IF (Operandsize = 32)

THEN
#GP(0); (* Trap to virtual-8086 monitor. *)

ELSE (* Operandsize = 16 *)
tempFLAGS ← Pop();
IF EFLAGS.VIP = 1 AND tempFLAGS[9] = 1

 THEN #GP(0);
 ELSE
 EFLAGS.VIF ← tempFLAGS[9];
 EFLAGS[15:0] ← tempFLAGS;

(* All non-reserved bits except IOPL and IF can be modified;
 IOPL, IF, and all reserved bits are unaffected. *)

FI;
FI;

FI;
ELSE (* In Virtual-8086 Mode *)

IF IOPL = 3
THEN IF OperandSize = 32

THEN
EFLAGS ← Pop();
(* All non-reserved bits except IOPL, VIP, VIF, VM, and RF can be modified;
VIP, VIF, VM, IOPL and all reserved bits are unaffected. RF is cleared. *)

ELSE
EFLAGS[15:0] ← Pop(); FI;
(* All non-reserved bits except IOPL can be modified;
IOPL and all reserved bits are unaffected. *)

ELSE (* IOPL < 3 *)
#GP(0); (* Trap to virtual-8086 monitor. *)

FI;
FI;

FI;

Flags Affected

All flags may be affected; see the Operation section for details.

Protected Mode Exceptions
#SS(0) If the top of stack is not within the stack segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current privilege level is 3 and alignment

checking is enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#SS If the top of stack is not within the stack segment.
#UD If the LOCK prefix is used.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 131

Virtual-8086 Mode Exceptions
#GP(0) If the I/O privilege level is less than 3.

If an attempt is made to execute the POPF/POPFD instruction with an operand-size override
prefix.

#SS(0) If the top of stack is not within the stack segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.

...

PREFETCHWT1—Prefetch Vector Data Into Caches with Intent to Write and T1 Hint

Instruction Operand Encoding

Description

Fetches the line of data from memory that contains the byte specified with the source operand to a location in the
cache hierarchy specified by an intent to write hint (so that data is brought into ‘Exclusive’ state via a request for
ownership) and a locality hint:
• T1 (temporal data with respect to first level cache)—prefetch data into the second level cache.
The source operand is a byte memory location. (The locality hints are encoded into the machine level instruction
using bits 3 through 5 of the ModR/M byte. Use of any ModR/M value other than the specified ones will lead to
unpredictable behavior.)
If the line selected is already present in the cache hierarchy at a level closer to the processor, no data movement
occurs. Prefetches from uncacheable or WC memory are ignored.
The PREFETCHh instruction is merely a hint and does not affect program behavior. If executed, this instruction
moves data closer to the processor in anticipation of future use.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID Feature
Flag

Description

0F 0D /2
PREFETCHWT1 m8

M V/V PREFETCHWT1 Move data from m8 closer to the processor using T1 hint
with intent to write.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 132

The implementation of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by
a processor implementation. The amount of data prefetched is also processor implementation-dependent. It will,
however, be a minimum of 32 bytes.
It should be noted that processors are free to speculatively fetch and cache data from system memory regions
that are assigned a memory-type that permits speculative reads (that is, the WB, WC, and WT memory types). A
PREFETCHh instruction is considered a hint to this speculative behavior. Because this speculative fetching can
occur at any time and is not tied to instruction execution, a PREFETCHh instruction is not ordered with respect to
the fence instructions (MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHh instruction is
also unordered with respect to CLFLUSH instructions, other PREFETCHh instructions, or any other general instruc-
tion. It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT, and MOV CR.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.

Prefetch (m8, Level = 1, EXCLUSIVE=1);

Flags Affected

All flags are affected

C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch(char const *, int hint= _MM_HINT_ET1);

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 133

RDSEED—Read Random SEED

Instruction Operand Encoding

Description

Loads a hardware generated random value and store it in the destination register. The random value is generated
from an Enhanced NRBG (Non Deterministic Random Bit Generator) that is compliant to NIST SP800-90B and
NIST SP800-90C in the XOR construction mode. The size of the random value is determined by the destination
register size and operating mode. The Carry Flag indicates whether a random value is available at the time the
instruction is executed. CF=1 indicates that the data in the destination is valid. Otherwise CF=0 and the data in
the destination operand will be returned as zeros for the specified width. All other flags are forced to 0 in either
situation. Software must check the state of CF=1 for determining if a valid random seed value has been returned,
otherwise it is expected to loop and retry execution of RDSEED (see Section 1.2).
The RDSEED instruction is available at all privilege levels. The RDSEED instruction executes normally either inside
or outside a transaction region.
In 64-bit mode, the instruction's default operation size is 32 bits. Using a REX prefix in the form of REX.B permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bit
operands. See the summary chart at the beginning of this section for encoding data and limits.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID
Feature
Flag

Description

0F C7 /7
RDSEED r16

M V/V RDSEED Read a 16-bit NIST SP800-90B & C compliant random value and
store in the destination register.

0F C7 /7
RDSEED r32

M V/V RDSEED Read a 32-bit NIST SP800-90B & C compliant random value and
store in the destination register.

REX.W + 0F C7 /7
RDSEED r64

M V/I RDSEED Read a 64-bit NIST SP800-90B & C compliant random value and
store in the destination register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 134

Operation

IF HW_NRND_GEN.ready = 1
THEN

CASE of
osize is 64: DEST[63:0] ← HW_NRND_GEN.data;
osize is 32: DEST[31:0] ← HW_NRND_GEN.data;
osize is 16: DEST[15:0] ← HW_NRND_GEN.data;

ESAC;
CF ← 1;

ELSE
CASE of

osize is 64: DEST[63:0] ← 0;
osize is 32: DEST[31:0] ← 0;
osize is 16: DEST[15:0] ← 0;

ESAC;
CF ← 0;

FI;

OF, SF, ZF, AF, PF ← 0;

Flags Affected

The CF flag is set according to the result (see the "Operation" section above). The OF, SF, ZF, AF, and PF flags
are set to 0.

C/C++ Compiler Intrinsic Equivalent

RDSEED int _rdseed16_step(unsigned short *);

RDSEED int _rdseed32_step(unsigned int *);

RDSEED int _rdseed64_step(unsigned __int64 *);

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If the F2H or F3H prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit 18] = 0.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If the F2H or F3H prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit 18] = 0.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

If the F2H or F3H prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit 18] = 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 135

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

If the F2H or F3H prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit 18] = 0.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If the F2H or F3H prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit 18] = 0.

...

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix
Opcode Instruction Op/

En
64-Bit
Mode

Compat/
Leg Mode

Description

F3 6C REP INS m8, DX NP Valid Valid Input (E)CX bytes from port DX into ES:[(E)DI].

F3 6C REP INS m8, DX NP Valid N.E. Input RCX bytes from port DX into [RDI].

F3 6D REP INS m16, DX NP Valid Valid Input (E)CX words from port DX into ES:[(E)DI.]

F3 6D REP INS m32, DX NP Valid Valid Input (E)CX doublewords from port DX into
ES:[(E)DI].

F3 6D REP INS r/m32, DX NP Valid N.E. Input RCX default size from port DX into [RDI].

F3 A4 REP MOVS m8, m8 NP Valid Valid Move (E)CX bytes from DS:[(E)SI] to ES:[(E)DI].

F3 REX.W A4 REP MOVS m8, m8 NP Valid N.E. Move RCX bytes from [RSI] to [RDI].

F3 A5 REP MOVS m16, m16 NP Valid Valid Move (E)CX words from DS:[(E)SI] to ES:[(E)DI].

F3 A5 REP MOVS m32, m32 NP Valid Valid Move (E)CX doublewords from DS:[(E)SI] to
ES:[(E)DI].

F3 REX.W A5 REP MOVS m64, m64 NP Valid N.E. Move RCX quadwords from [RSI] to [RDI].

F3 6E REP OUTS DX, r/m8 NP Valid Valid Output (E)CX bytes from DS:[(E)SI] to port DX.

F3 REX.W 6E REP OUTS DX, r/m8* NP Valid N.E. Output RCX bytes from [RSI] to port DX.

F3 6F REP OUTS DX, r/m16 NP Valid Valid Output (E)CX words from DS:[(E)SI] to port DX.

F3 6F REP OUTS DX, r/m32 NP Valid Valid Output (E)CX doublewords from DS:[(E)SI] to
port DX.

F3 REX.W 6F REP OUTS DX, r/m32 NP Valid N.E. Output RCX default size from [RSI] to port DX.

F3 AC REP LODS AL NP Valid Valid Load (E)CX bytes from DS:[(E)SI] to AL.

F3 REX.W AC REP LODS AL NP Valid N.E. Load RCX bytes from [RSI] to AL.

F3 AD REP LODS AX NP Valid Valid Load (E)CX words from DS:[(E)SI] to AX.

F3 AD REP LODS EAX NP Valid Valid Load (E)CX doublewords from DS:[(E)SI] to
EAX.

F3 REX.W AD REP LODS RAX NP Valid N.E. Load RCX quadwords from [RSI] to RAX.

F3 AA REP STOS m8 NP Valid Valid Fill (E)CX bytes at ES:[(E)DI] with AL.

F3 REX.W AA REP STOS m8 NP Valid N.E. Fill RCX bytes at [RDI] with AL.

F3 AB REP STOS m16 NP Valid Valid Fill (E)CX words at ES:[(E)DI] with AX.

F3 AB REP STOS m32 NP Valid Valid Fill (E)CX doublewords at ES:[(E)DI] with EAX.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 136

Instruction Operand Encoding

Description

Repeats a string instruction the number of times specified in the count register or until the indicated condition of
the ZF flag is no longer met. The REP (repeat), REPE (repeat while equal), REPNE (repeat while not equal), REPZ
(repeat while zero), and REPNZ (repeat while not zero) mnemonics are prefixes that can be added to one of the
string instructions. The REP prefix can be added to the INS, OUTS, MOVS, LODS, and STOS instructions, and the
REPE, REPNE, REPZ, and REPNZ prefixes can be added to the CMPS and SCAS instructions. (The REPZ and REPNZ

F3 REX.W AB REP STOS m64 NP Valid N.E. Fill RCX quadwords at [RDI] with RAX.

F3 A6 REPE CMPS m8, m8 NP Valid Valid Find nonmatching bytes in ES:[(E)DI] and
DS:[(E)SI].

F3 REX.W A6 REPE CMPS m8, m8 NP Valid N.E. Find non-matching bytes in [RDI] and [RSI].

F3 A7 REPE CMPS m16, m16 NP Valid Valid Find nonmatching words in ES:[(E)DI] and
DS:[(E)SI].

F3 A7 REPE CMPS m32, m32 NP Valid Valid Find nonmatching doublewords in ES:[(E)DI]
and DS:[(E)SI].

F3 REX.W A7 REPE CMPS m64, m64 NP Valid N.E. Find non-matching quadwords in [RDI] and
[RSI].

F3 AE REPE SCAS m8 NP Valid Valid Find non-AL byte starting at ES:[(E)DI].

F3 REX.W AE REPE SCAS m8 NP Valid N.E. Find non-AL byte starting at [RDI].

F3 AF REPE SCAS m16 NP Valid Valid Find non-AX word starting at ES:[(E)DI].

F3 AF REPE SCAS m32 NP Valid Valid Find non-EAX doubleword starting at
ES:[(E)DI].

F3 REX.W AF REPE SCAS m64 NP Valid N.E. Find non-RAX quadword starting at [RDI].

F2 A6 REPNE CMPS m8, m8 NP Valid Valid Find matching bytes in ES:[(E)DI] and DS:[(E)SI].

F2 REX.W A6 REPNE CMPS m8, m8 NP Valid N.E. Find matching bytes in [RDI] and [RSI].

F2 A7 REPNE CMPS m16, m16 NP Valid Valid Find matching words in ES:[(E)DI] and
DS:[(E)SI].

F2 A7 REPNE CMPS m32, m32 NP Valid Valid Find matching doublewords in ES:[(E)DI] and
DS:[(E)SI].

F2 REX.W A7 REPNE CMPS m64, m64 NP Valid N.E. Find matching doublewords in [RDI] and [RSI].

F2 AE REPNE SCAS m8 NP Valid Valid Find AL, starting at ES:[(E)DI].

F2 REX.W AE REPNE SCAS m8 NP Valid N.E. Find AL, starting at [RDI].

F2 AF REPNE SCAS m16 NP Valid Valid Find AX, starting at ES:[(E)DI].

F2 AF REPNE SCAS m32 NP Valid Valid Find EAX, starting at ES:[(E)DI].

F2 REX.W AF REPNE SCAS m64 NP Valid N.E. Find RAX, starting at [RDI].

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 137

prefixes are synonymous forms of the REPE and REPNE prefixes, respectively.) The F3H prefix is defined for the
following instructions and undefined for the rest:

• F3H as REP/REPE/REPZ for string and input/output instruction.

• F3H is a mandatory prefix for POPCNT, LZCNT, and ADOX.

The REP prefixes apply only to one string instruction at a time. To repeat a block of instructions, use the LOOP
instruction or another looping construct. All of these repeat prefixes cause the associated instruction to be
repeated until the count in register is decremented to 0. See Table 4-14.

The REPE, REPNE, REPZ, and REPNZ prefixes also check the state of the ZF flag after each iteration and terminate
the repeat loop if the ZF flag is not in the specified state. When both termination conditions are tested, the cause
of a repeat termination can be determined either by testing the count register with a JECXZ instruction or by
testing the ZF flag (with a JZ, JNZ, or JNE instruction).

When the REPE/REPZ and REPNE/REPNZ prefixes are used, the ZF flag does not require initialization because both
the CMPS and SCAS instructions affect the ZF flag according to the results of the comparisons they make.

A repeating string operation can be suspended by an exception or interrupt. When this happens, the state of the
registers is preserved to allow the string operation to be resumed upon a return from the exception or interrupt
handler. The source and destination registers point to the next string elements to be operated on, the EIP register
points to the string instruction, and the ECX register has the value it held following the last successful iteration of
the instruction. This mechanism allows long string operations to proceed without affecting the interrupt response
time of the system.

When a fault occurs during the execution of a CMPS or SCAS instruction that is prefixed with REPE or REPNE, the
EFLAGS value is restored to the state prior to the execution of the instruction. Since the SCAS and CMPS instruc-
tions do not use EFLAGS as an input, the processor can resume the instruction after the page fault handler.

Use the REP INS and REP OUTS instructions with caution. Not all I/O ports can handle the rate at which these
instructions execute. Note that a REP STOS instruction is the fastest way to initialize a large block of memory.

In 64-bit mode, the operand size of the count register is associated with the address size attribute. Thus the
default count register is RCX; REX.W has no effect on the address size and the count register. In 64-bit mode, if
67H is used to override address size attribute, the count register is ECX and any implicit source/destination
operand will use the corresponding 32-bit index register. See the summary chart at the beginning of this section
for encoding data and limits.

Table 4-14 Repeat Prefixes

Repeat Prefix Termination Condition 1* Termination Condition 2

REP RCX or (E)CX = 0 None

REPE/REPZ RCX or (E)CX = 0 ZF = 0

REPNE/REPNZ RCX or (E)CX = 0 ZF = 1

NOTES:
* Count register is CX, ECX or RCX by default, depending on attributes of the operating modes.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 138

Operation

IF AddressSize = 16
 THEN
 Use CX for CountReg;
 Implicit Source/Dest operand for memory use of SI/DI;
 ELSE IF AddressSize = 64
 THEN Use RCX for CountReg;
 Implicit Source/Dest operand for memory use of RSI/RDI;
 ELSE
 Use ECX for CountReg;
 Implicit Source/Dest operand for memory use of ESI/EDI;
FI;
WHILE CountReg ≠ 0

DO
Service pending interrupts (if any);
Execute associated string instruction;
CountReg ← (CountReg – 1);
IF CountReg = 0

THEN exit WHILE loop; FI;
IF (Repeat prefix is REPZ or REPE) and (ZF = 0)
or (Repeat prefix is REPNZ or REPNE) and (ZF = 1)

THEN exit WHILE loop; FI;
OD;

Flags Affected

None; however, the CMPS and SCAS instructions do set the status flags in the EFLAGS register.

Exceptions (All Operating Modes)

Exceptions may be generated by an instruction associated with the prefix.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 139

RET—Return from Procedure

Instruction Operand Encoding

Description

Transfers program control to a return address located on the top of the stack. The address is usually placed on the
stack by a CALL instruction, and the return is made to the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after the return address is
popped; the default is none. This operand can be used to release parameters from the stack that were passed to
the called procedure and are no longer needed. It must be used when the CALL instruction used to switch to a new
procedure uses a call gate with a non-zero word count to access the new procedure. Here, the source operand for
the RET instruction must specify the same number of bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:
• Near return — A return to a calling procedure within the current code segment (the segment currently

pointed to by the CS register), sometimes referred to as an intrasegment return.
• Far return — A return to a calling procedure located in a different segment than the current code segment,

sometimes referred to as an intersegment return.
• Inter-privilege-level far return — A far return to a different privilege level than that of the currently

executing program or procedure.

The inter-privilege-level return type can only be executed in protected mode. See the section titled “Calling Proce-
dures Using Call and RET” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for detailed information on near, far, and inter-privilege-level returns.

When executing a near return, the processor pops the return instruction pointer (offset) from the top of the stack
into the EIP register and begins program execution at the new instruction pointer. The CS register is unchanged.

When executing a far return, the processor pops the return instruction pointer from the top of the stack into the
EIP register, then pops the segment selector from the top of the stack into the CS register. The processor then
begins program execution in the new code segment at the new instruction pointer.

The mechanics of an inter-privilege-level far return are similar to an intersegment return, except that the
processor examines the privilege levels and access rights of the code and stack segments being returned to deter-
mine if the control transfer is allowed to be made. The DS, ES, FS, and GS segment registers are cleared by the
RET instruction during an inter-privilege-level return if they refer to segments that are not allowed to be accessed
at the new privilege level. Since a stack switch also occurs on an inter-privilege level return, the ESP and SS regis-
ters are loaded from the stack.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

C3 RET NP Valid Valid Near return to calling procedure.

CB RET NP Valid Valid Far return to calling procedure.

C2 iw RET imm16 I Valid Valid Near return to calling procedure and pop
imm16 bytes from stack.

CA iw RET imm16 I Valid Valid Far return to calling procedure and pop imm16
bytes from stack.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

I imm16 NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 140

If parameters are passed to the called procedure during an inter-privilege level call, the optional source operand
must be used with the RET instruction to release the parameters on the return. Here, the parameters are released
both from the called procedure’s stack and the calling procedure’s stack (that is, the stack being returned to).

In 64-bit mode, the default operation size of this instruction is the stack-address size, i.e. 64 bits. This applies to
near returns, not far returns; the default operation size of far returns is 32 bits.

Operation

(* Near return *)
IF instruction = near return

THEN;
IF OperandSize = 32

THEN
IF top 4 bytes of stack not within stack limits

THEN #SS(0); FI;
EIP ← Pop();

ELSE
IF OperandSize = 64

THEN
IF top 8 bytes of stack not within stack limits

THEN #SS(0); FI;
RIP ← Pop();

ELSE (* OperandSize = 16 *)
IF top 2 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempEIP ← tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

FI;
FI;

IF instruction has immediate operand
THEN (* Release parameters from stack *)

IF StackAddressSize = 32
THEN

ESP ← ESP + SRC;
ELSE

IF StackAddressSize = 64
THEN

RSP ← RSP + SRC;
ELSE (* StackAddressSize = 16 *)

SP ← SP + SRC;
FI;

FI;
FI;

FI;

(* Real-address mode or virtual-8086 mode *)
IF ((PE = 0) or (PE = 1 AND VM = 1)) and instruction = far return

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 141

THEN
IF OperandSize = 32

THEN
IF top 8 bytes of stack not within stack limits

THEN #SS(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE (* OperandSize = 16 *)
IF top 4 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempEIP ← tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;
CS ← Pop(); (* 16-bit pop *)

FI;
IF instruction has immediate operand

THEN (* Release parameters from stack *)
SP ← SP + (SRC AND FFFFH);

FI;
FI;

(* Protected mode, not virtual-8086 mode *)
IF (PE = 1 and VM = 0 and IA32_EFER.LMA = 0) and instruction = far return

THEN
IF OperandSize = 32

THEN
IF second doubleword on stack is not within stack limits

THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)

IF second word on stack is not within stack limits
THEN #SS(0); FI;

FI;
IF return code segment selector is NULL

THEN #GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN #GP(selector); FI;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is non-conforming and return code
segment DPL ≠ return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 142

THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL;

FI;
FI;

RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE (* OperandSize = 16 *)
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)

FI;
IF instruction has immediate operand

THEN (* Release parameters from stack *)
IF StackAddressSize = 32

THEN
ESP ← ESP + SRC;

ELSE (* StackAddressSize = 16 *)
SP ← SP + SRC;

FI;
FI;

RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)

THEN #SS(0); FI;
Read return segment selector;
IF stack segment selector is NULL

THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL ≠ RPL of the return code segment selector

THEN #GP(selector); FI;
IF stack segment not present

THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;
CPL ← ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32

THEN

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 143

EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded; segment descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32

THEN
ESP ← ESP + SRC;

ELSE (* StackAddressSize = 16 *)
SP ← SP + SRC;

FI;
FI;
tempESP ← Pop();
tempSS ← Pop(); (* 32-bit pop, high-order 16 bits discarded; seg. descriptor loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE (* OperandSize = 16 *)
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop; segment descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32

THEN
ESP ← ESP + SRC;

ELSE (* StackAddressSize = 16 *)
SP ← SP + SRC;

FI;
FI;
tempESP ← Pop();
tempSS ← Pop(); (* 16-bit pop; segment descriptor loaded *)
ESP ← tempESP;
SS ← tempSS;

FI;

FOR each of segment register (ES, FS, GS, and DS)
DO

IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL (* DPL in hidden part of segment register *)

THEN SegmentSelector ← 0; (* Segment selector invalid *)
FI;

OD;

IF instruction has immediate operand
THEN (* Release parameters from calling procedure’s stack *)

IF StackAddressSize = 32
THEN

ESP ← ESP + SRC;
ELSE (* StackAddressSize = 16 *)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 144

SP ← SP + SRC;
FI;

FI;

(* IA-32e Mode *)
IF (PE = 1 and VM = 0 and IA32_EFER.LMA = 1) and instruction = far return

THEN
IF OperandSize = 32

THEN
IF second doubleword on stack is not within stack limits

THEN #SS(0); FI;
IF first or second doubleword on stack is not in canonical space

THEN #SS(0); FI;
ELSE

IF OperandSize = 16
THEN

IF second word on stack is not within stack limits
THEN #SS(0); FI;

IF first or second word on stack is not in canonical space
THEN #SS(0); FI;

ELSE (* OperandSize = 64 *)
IF first or second quadword on stack is not in canonical space

THEN #SS(0); FI;
FI

FI;
IF return code segment selector is NULL

THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN GP(selector); FI;
IF return code segment selector addresses descriptor in non-canonical space

THEN GP(selector); FI;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment descriptor has L-bit = 1 and D-bit = 1

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is non-conforming
and return code segment DPL ≠ return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL;

FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 145

FI;
IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;
IF the return instruction pointer is not within canonical address space

THEN #GP(0); FI;
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE
IF OperandSize = 16

THEN
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)

ELSE (* OperandSize = 64 *)
RIP ← Pop();
CS ← Pop(); (* 64-bit pop, high-order 48 bits discarded *)

FI;
FI;
IF instruction has immediate operand

THEN (* Release parameters from stack *)
IF StackAddressSize = 32

THEN
ESP ← ESP + SRC;

ELSE
IF StackAddressSize = 16

THEN
SP ← SP + SRC;

ELSE (* StackAddressSize = 64 *)
RSP ← RSP + SRC;

FI;
FI;

FI;

IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)

THEN #SS(0); FI;
IF top (16 + SRC) bytes of stack are not in canonical address space (OperandSize = 32)
or top (8 + SRC) bytes of stack are not in canonical address space (OperandSize = 16)
or top (32 + SRC) bytes of stack are not in canonical address space (OperandSize = 64)

THEN #SS(0); FI;
Read return stack segment selector;
IF stack segment selector is NULL

THEN
IF new CS descriptor L-bit = 0

THEN #GP(selector);
IF stack segment selector RPL = 3

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 146

THEN #GP(selector);
FI;
IF return stack segment descriptor is not within descriptor table limits

THEN #GP(selector); FI;
IF return stack segment descriptor is in non-canonical address space

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL ≠ RPL of the return code segment selector

THEN #GP(selector); FI;
IF stack segment not present

THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI:
IF the return instruction pointer is not within canonical address space

THEN #GP(0); FI;
CPL ← ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32

THEN
ESP ← ESP + SRC;

ELSE
IF StackAddressSize = 16

THEN
SP ← SP + SRC;

ELSE (* StackAddressSize = 64 *)
RSP ← RSP + SRC;

FI;
FI;

FI;
tempESP ← Pop();
tempSS ← Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE
IF OperandSize = 16

THEN
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop; segment descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 147

IF StackAddressSize = 32
THEN

ESP ← ESP + SRC;
ELSE

IF StackAddressSize = 16
THEN

SP ← SP + SRC;
ELSE (* StackAddressSize = 64 *)

RSP ← RSP + SRC;
FI;

FI;
FI;
tempESP ← Pop();
tempSS ← Pop(); (* 16-bit pop; segment descriptor loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE (* OperandSize = 64 *)
RIP ← Pop();
CS ← Pop(); (* 64-bit pop; high-order 48 bits discarded; seg. descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
RSP ← RSP + SRC;

FI;
tempESP ← Pop();
tempSS ← Pop(); (* 64-bit pop; high-order 48 bits discarded; seg. desc. loaded *)
ESP ← tempESP;
SS ← tempSS;

FI;
FI;

FOR each of segment register (ES, FS, GS, and DS)
DO

IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)

THEN SegmentSelector ← 0; (* SegmentSelector invalid *)
FI;

OD;

IF instruction has immediate operand
THEN (* Release parameters from calling procedure’s stack *)

IF StackAddressSize = 32
THEN

ESP ← ESP + SRC;
ELSE

IF StackAddressSize = 16
THEN

SP ← SP + SRC;
ELSE (* StackAddressSize = 64 *)

RSP ← RSP + SRC;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 148

FI;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector NULL.

If the return instruction pointer is not within the return code segment limit
#GP(selector) If the RPL of the return code segment selector is less then the CPL.

If the return code or stack segment selector index is not within its descriptor table limits.
If the return code segment descriptor does not indicate a code segment.
If the return code segment is non-conforming and the segment selector’s DPL is not equal to
the RPL of the code segment’s segment selector
If the return code segment is conforming and the segment selector’s DPL greater than the
RPL of the code segment’s segment selector
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment
selector.

#SS(0) If the top bytes of stack are not within stack limits.
If the return stack segment is not present.

#NP(selector) If the return code segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when the CPL is 3 and alignment checking is enabled.

Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code segment limit
#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code segment limit
#SS(0) If the top bytes of stack are not within stack limits.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when alignment checking is enabled.

Compatibility Mode Exceptions
Same as 64-bit mode exceptions.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 149

64-Bit Mode Exceptions
#GP(0) If the return instruction pointer is non-canonical.

If the return instruction pointer is not within the return code segment limit.
If the stack segment selector is NULL going back to compatibility mode.
If the stack segment selector is NULL going back to CPL3 64-bit mode.
If a NULL stack segment selector RPL is not equal to CPL going back to non-CPL3 64-bit
mode.
If the return code segment selector is NULL.

#GP(selector) If the proposed segment descriptor for a code segment does not indicate it is a code
segment.
If the proposed new code segment descriptor has both the D-bit and L-bit set.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment
selector.
If CPL is greater than the RPL of the code segment selector.
If the DPL of a conforming-code segment is greater than the return code segment selector
RPL.
If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the stack segment is not a writable data segment.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment
selector.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.
If an attempt to pop a value off the stack causes a non-canonical address to be referenced.

#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
...

RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point Value
Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 52 /r

RSQRTSS xmm1, xmm2/m32

RM V/V SSE Computes the approximate reciprocal of the
square root of the low single-precision
floating-point value in xmm2/m32 and stores
the results in xmm1.

VEX.NDS.LIG.F3.0F.WIG 52 /r
VRSQRTSS xmm1, xmm2, xmm3/m32

RVM V/V AVX Computes the approximate reciprocal of the
square root of the low single precision
floating-point value in xmm3/m32 and stores
the results in xmm1. Also, upper single
precision floating-point values (bits[127:32])
from xmm2 are copied to xmm1[127:32].

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 150

Instruction Operand Encoding

Description

Computes an approximate reciprocal of the square root of the low single-precision floating-point value in the
source operand (second operand) stores the single-precision floating-point result in the destination operand. The
source operand can be an XMM register or a 32-bit memory location. The destination operand is an XMM register.
The three high-order doublewords of the destination operand remain unchanged. See Figure 10-6 in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a scalar single-precision
floating-point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12

The RSQRTSS instruction is not affected by the rounding control bits in the MXCSR register. When a source value
is a 0.0, an ∞ of the sign of the source value is returned. A denormal source value is treated as a 0.0 (of the same
sign). When a source value is a negative value (other than −0.0), a floating-point indefinite is returned. When a
source value is an SNaN or QNaN, the SNaN is converted to a QNaN or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers
(XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-
1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

RSQRTSS (128-bit Legacy SSE version)
DEST[31:0] APPROXIMATE(1/SQRT(SRC2[31:0]))
DEST[VLMAX-1:32] (Unmodified)

VRSQRTSS (VEX.128 encoded version)
DEST[31:0] APPROXIMATE(1/SQRT(SRC2[31:0]))
DEST[127:32] SRC1[127:32]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

RSQRTSS: __m128 _mm_rsqrt_ss(__m128 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5.
...

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 151

SFENCE—Store Fence

Instruction Operand Encoding

Description

Performs a serializing operation on all store-to-memory instructions that were issued prior the SFENCE instruc-
tion. This serializing operation guarantees that every store instruction that precedes the SFENCE instruction in
program order becomes globally visible before any store instruction that follows the SFENCE instruction. The
SFENCE instruction is ordered with respect to store instructions, other SFENCE instructions, any LFENCE and
MFENCE instructions, and any serializing instructions (such as the CPUID instruction). It is not ordered with
respect to load instructions.

Weakly ordered memory types can be used to achieve higher processor performance through such techniques as
out-of-order issue, write-combining, and write-collapsing. The degree to which a consumer of data recognizes or
knows that the data is weakly ordered varies among applications and may be unknown to the producer of this
data. The SFENCE instruction provides a performance-efficient way of ensuring store ordering between routines
that produce weakly-ordered results and routines that consume this data.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Specification of the instruction's opcode above indicates a ModR/M byte of F8. For this instruction, the processor
ignores the r/m field of the ModR/M byte. Thus, SFENCE is encoded by any opcode of the form 0F AE Fx, where x
is in the range 8-F.

Operation

Wait_On_Following_Stores_Until(preceding_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_sfence(void)

Exceptions (All Operating Modes)
#UD If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.
...

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AE F8 SFENCE NP Valid Valid Serializes store operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 152

STAC—Set AC Flag in EFLAGS Register

Instruction Operand Encoding

Description

Sets the AC flag bit in EFLAGS register. This may enable alignment checking of user-mode data accesses. This
allows explicit supervisor-mode data accesses to user-mode pages even if the SMAP bit is set in the CR4 register.
This instruction's operation is the same in non-64-bit modes and 64-bit mode. Attempts to execute STAC when
CPL > 0 cause #UD.

Operation

EFLAGS.AC ← 1;

Flags Affected

AC set. Other flags are unaffected.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If the CPL > 0.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0.

Virtual-8086 Mode Exceptions
#UD The STAC instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

If the CPL > 0.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If the CPL > 0.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0.

...

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

0F 01 CB STAC NP Valid Valid Set the AC flag in the EFLAGS register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 153

STC—Set Carry Flag

Instruction Operand Encoding

Description

Sets the CF flag in the EFLAGS register. Operation is the same in all modes.

Operation

CF ← 1;

Flags Affected

The CF flag is set. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
...

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F9 STC NP Valid Valid Set CF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 154

STD—Set Direction Flag

Instruction Operand Encoding

Description

Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations decrement the index regis-
ters (ESI and/or EDI). Operation is the same in all modes.

Operation

DF ← 1;

Flags Affected

The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
...

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

FD STD NP Valid Valid Set DF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 155

STI—Set Interrupt Flag

Instruction Operand Encoding

Description

If protected-mode virtual interrupts are not enabled, STI sets the interrupt flag (IF) in the EFLAGS register. After
the IF flag is set, the processor begins responding to external, maskable interrupts after the next instruction is
executed. The delayed effect of this instruction is provided to allow interrupts to be enabled just before returning
from a procedure (or subroutine). For instance, if an STI instruction is followed by an RET instruction, the RET
instruction is allowed to execute before external interrupts are recognized1. If the STI instruction is followed by a
CLI instruction (which clears the IF flag), the effect of the STI instruction is negated.

The IF flag and the STI and CLI instructions do not prohibit the generation of exceptions and NMI interrupts. NMI
interrupts (and SMIs) may be blocked for one macroinstruction following an STI.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than 3; STI sets the VIF flag in the
EFLAGS register, leaving IF unaffected.

Table 4-16 indicates the action of the STI instruction depending on the processor’s mode of operation and the
CPL/IOPL settings of the running program or procedure.

Operation is the same in all modes.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

FB STI NP Valid Valid Set interrupt flag; external, maskable
interrupts enabled at the end of the next
instruction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. The STI instruction delays recognition of interrupts only if it is executed with EFLAGS.IF = 0. In a sequence of STI instructions, only
the first instruction in the sequence is guaranteed to delay interrupts.

In the following instruction sequence, interrupts may be recognized before RET executes:
STI
STI
RET

Table 4-16 Decision Table for STI Results
CR0.PE EFLAGS.VM EFLAGS.IOPL CS.CPL CR4.PVI EFLAGS.VIP CR4.VME STI Result

0 X X X X X X IF = 1
1 0 ≥ CPL X X X X IF = 1

1 0 < CPL 3 1 X X VIF = 1

1 0 < CPL < 3 X X X GP Fault

1 0 < CPL X 0 X X GP Fault

1 0 < CPL X X 1 X GP Fault

1 1 3 X X X X IF = 1
1 1 < 3 X X 0 1 VIF = 1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 156

Operation

IF PE = 0 (* Executing in real-address mode *)
THEN

IF ← 1; (* Set Interrupt Flag *)
ELSE (* Executing in protected mode or virtual-8086 mode *)

IF VM = 0 (* Executing in protected mode*)
THEN

IF IOPL ≥ CPL
THEN

IF ← 1; (* Set Interrupt Flag *)
ELSE

IF (IOPL < CPL) and (CPL = 3) and (PVI = 1)
THEN

VIF ← 1; (* Set Virtual Interrupt Flag *)
ELSE

#GP(0);
FI;

FI;
ELSE (* Executing in Virtual-8086 mode *)

IF IOPL = 3
THEN

IF ← 1; (* Set Interrupt Flag *)
ELSE

IF ((IOPL < 3) and (VIP = 0) and (VME = 1))
THEN

VIF ← 1; (* Set Virtual Interrupt Flag *)
ELSE

#GP(0); (* Trap to virtual-8086 monitor *)
FI;)

FI;
FI;

FI;

Flags Affected

The IF flag is set to 1; or the VIF flag is set to 1. Other flags are unaffected.

Protected Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current program or procedure.
#UD If the LOCK prefix is used.

1 1 < 3 X X 1 X GP Fault

1 1 < 3 X X X 0 GP Fault

NOTES:
X = This setting has no impact.

Table 4-16 Decision Table for STI Results
CR0.PE EFLAGS.VM EFLAGS.IOPL CS.CPL CR4.PVI EFLAGS.VIP CR4.VME STI Result

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 157

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...

VGATHERDPD/VGATHERQPD — Gather Packed DP FP Values Using Signed Dword/Qword
Indices

Instruction Operand Encoding

Opcode/
Instruction

Op/
En

64/
32-
bit
Mode

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W1 92 /r RMV V/V AVX2 Using dword indices specified in vm32x, gather double-pre-
cision FP values from memory conditioned on mask speci-
fied by xmm2. Conditionally gathered elements are merged
into xmm1.

VGATHERDPD xmm1, vm32x, xmm2

VEX.DDS.128.66.0F38.W1 93 /r RMV V/V AVX2 Using qword indices specified in vm64x, gather double-pre-
cision FP values from memory conditioned on mask speci-
fied by xmm2. Conditionally gathered elements are merged
into xmm1.

VGATHERQPD xmm1, vm64x, xmm2

VEX.DDS.256.66.0F38.W1 92 /r RMV V/V AVX2 Using dword indices specified in vm32x, gather double-pre-
cision FP values from memory conditioned on mask speci-
fied by ymm2. Conditionally gathered elements are merged
into ymm1.

VGATHERDPD ymm1, vm32x, ymm2

VEX.DDS.256.66.0F38.W1 93 /r RMV V/V AVX2 Using qword indices specified in vm64y, gather double-pre-
cision FP values from memory conditioned on mask speci-
fied by ymm2. Conditionally gathered elements are merged
into ymm1.

VGATHERQPD ymm1, vm64y, ymm2

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMV ModRM:reg (r,w) BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

VEX.vvvv (r, w) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 158

Description

The instruction conditionally loads up to 2 or 4 double-precision floating-point values from memory addresses
specified by the memory operand (the second operand) and using qword indices. The memory operand uses the
VSIB form of the SIB byte to specify a general purpose register operand as the common base, a vector register
for an array of indices relative to the base and a constant scale factor.
The mask operand (the third operand) specifies the conditional load operation from each memory address and the
corresponding update of each data element of the destination operand (the first operand). Conditionality is spec-
ified by the most significant bit of each data element of the mask register. If an element’s mask bit is not set, the
corresponding element of the destination register is left unchanged. The width of data element in the destination
register and mask register are identical. The entire mask register will be set to zero by this instruction unless the
instruction causes an exception.
Using dword indices in the lower half of the mask register, the instruction conditionally loads up to 2 or 4 double-
precision floating-point values from the VSIB addressing memory operand, and updates the destination register.
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destina-
tion register and the mask operand are partially updated; those elements that have been gathered are placed into
the destination register and have their mask bits set to zero. If any traps or interrupts are pending from already
gathered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an
instruction breakpoint is not re-triggered when the instruction is continued.
If the data size and index size are different, part of the destination register and part of the mask register do not
correspond to any elements being gathered. This instruction sets those parts to zero. It may do this to one or
both of those registers even if the instruction triggers an exception, and even if the instruction triggers the excep-
tion before gathering any elements.
VEX.128 version: The instruction will gather two double-precision floating-point values. For dword indices, only
the lower two indices in the vector index register are used.
VEX.256 version: The instruction will gather four double-precision floating-point values. For dword indices, only
the lower four indices in the vector index register are used.
Note that:
• If any pair of the index, mask, or destination registers are the same, this instruction results a #UD fault.
• The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-

64 memory-ordering model.
• Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all

elements closer to the LSB of the destination will be completed (and non-faulting). Individual elements closer
to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered in the
conventional order.

• Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements
to the left of a faulting one may be gathered before the fault is delivered. A given implementation of this
instruction is repeatable - given the same input values and architectural state, the same set of elements to the
left of the faulting one will be gathered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• This instruction will cause a #UD if the address size attribute is 16-bit.
• This instruction will cause a #UD if the memory operand is encoded without the SIB byte.
• This instruction should not be used to access memory mapped I/O as the ordering of the individual loads it

does is implementation specific, and some implementations may use loads larger than the data element size
or load elements an indeterminate number of times.

• The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-
bit mode, if the scale is greater than one). In this case, the most significant bits beyond the number of
address bits are ignored.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 159

Operation

DEST SRC1;
BASE_ADDR: base register encoded in VSIB addressing;
VINDEX: the vector index register encoded by VSIB addressing;
SCALE: scale factor encoded by SIB:[7:6];
DISP: optional 1, 4 byte displacement;
MASK SRC3;

VGATHERDPD (VEX.128 version)
FOR j 0 to 1

i j * 64;
IF MASK[63+i] THEN

MASK[i +63:i] FFFFFFFF_FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +63:i] 0;
FI;

ENDFOR
FOR j 0 to 1

k j * 32;
i j * 64;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX[k+31:k])*SCALE + DISP;
IF MASK[63+i] THEN

DEST[i +63:i] FETCH_64BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +63: i] 0;

ENDFOR
MASK[VLMAX-1:128] 0;
DEST[VLMAX-1:128] 0;
(non-masked elements of the mask register have the content of respective element cleared)

VGATHERQPD (VEX.128 version)
FOR j 0 to 1

i j * 64;
IF MASK[63+i] THEN

MASK[i +63:i] FFFFFFFF_FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +63:i] 0;
FI;

ENDFOR
FOR j 0 to 1

i j * 64;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX1[i+63:i])*SCALE + DISP;
IF MASK[63+i] THEN

DEST[i +63:i] FETCH_64BITS(DATA_ADDR); // a fault exits this instruction
FI;
MASK[i +63: i] 0;

ENDFOR
MASK[VLMAX-1:128] 0;
DEST[VLMAX-1:128] 0;
(non-masked elements of the mask register have the content of respective element cleared)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 160

VGATHERQPD (VEX.256 version)
FOR j 0 to 3

i j * 64;
IF MASK[63+i] THEN

MASK[i +63:i] FFFFFFFF_FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +63:i] 0;
FI;

ENDFOR
FOR j 0 to 3

i j * 64;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX1[i+63:i])*SCALE + DISP;
IF MASK[63+i] THEN

DEST[i +63:i] FETCH_64BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +63: i] 0;

ENDFOR
(non-masked elements of the mask register have the content of respective element cleared)

VGATHERDPD (VEX.256 version)
FOR j 0 to 3

i j * 64;
IF MASK[63+i] THEN

MASK[i +63:i] FFFFFFFF_FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +63:i] 0;
FI;

ENDFOR
FOR j 0 to 3

k j * 32;
i j * 64;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX1[k+31:k])*SCALE + DISP;
IF MASK[63+i] THEN

DEST[i +63:i] FETCH_64BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +63:i] 0;

ENDFOR
(non-masked elements of the mask register have the content of respective element cleared)

Intel C/C++ Compiler Intrinsic Equivalent

VGATHERDPD: __m128d _mm_i32gather_pd (double const * base, __m128i index, const int scale);

VGATHERDPD: __m128d _mm_mask_i32gather_pd (__m128d src, double const * base, __m128i index, __m128d mask, const int
scale);

VGATHERDPD: __m256d _mm256_i32gather_pd (double const * base, __m128i index, const int scale);

VGATHERDPD: __m256d _mm256_mask_i32gather_pd (__m256d src, double const * base, __m128i index, __m256d mask, const int
scale);

VGATHERQPD: __m128d _mm_i64gather_pd (double const * base, __m128i index, const int scale);

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 161

VGATHERQPD: __m128d _mm_mask_i64gather_pd (__m128d src, double const * base, __m128i index, __m128d mask, const int
scale);

VGATHERQPD: __m256d _mm256_i64gather_pd (double const * base, __m256i index, const int scale);

VGATHERQPD: __m256d _mm256_mask_i64gather_pd (__m256d src, double const * base, __m256i index, __m256d mask, const int
scale);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 12
...

VGATHERDPS/VGATHERQPS — Gather Packed SP FP values Using Signed Dword/Qword Indices

Instruction Operand Encoding

Description

The instruction conditionally loads up to 4 or 8 single-precision floating-point values from memory addresses
specified by the memory operand (the second operand) and using dword indices. The memory operand uses the
VSIB form of the SIB byte to specify a general purpose register operand as the common base, a vector register
for an array of indices relative to the base and a constant scale factor.

Opcode/
Instruction

Op/
En

64/
32-bit
Mode

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W0 92 /r RMV V/V AVX2 Using dword indices specified in vm32x, gather single-preci-
sion FP values from memory conditioned on mask specified
by xmm2. Conditionally gathered elements are merged into
xmm1.

VGATHERDPS xmm1, vm32x, xmm2

VEX.DDS.128.66.0F38.W0 93 /r RMV V/V AVX2 Using qword indices specified in vm64x, gather single-preci-
sion FP values from memory conditioned on mask specified
by xmm2. Conditionally gathered elements are merged into
xmm1.

VGATHERQPS xmm1, vm64x, xmm2

VEX.DDS.256.66.0F38.W0 92 /r RMV V/V AVX2 Using dword indices specified in vm32y, gather single-preci-
sion FP values from memory conditioned on mask specified
by ymm2. Conditionally gathered elements are merged into
ymm1.

VGATHERDPS ymm1, vm32y, ymm2

VEX.DDS.256.66.0F38.W0 93 /r RMV V/V AVX2 Using qword indices specified in vm64y, gather single-preci-
sion FP values from memory conditioned on mask specified
by xmm2. Conditionally gathered elements are merged into
xmm1.

VGATHERQPS xmm1, vm64y, xmm2

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r,w) BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

VEX.vvvv (r, w) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 162

The mask operand (the third operand) specifies the conditional load operation from each memory address and the
corresponding update of each data element of the destination operand (the first operand). Conditionality is spec-
ified by the most significant bit of each data element of the mask register. If an element’s mask bit is not set, the
corresponding element of the destination register is left unchanged. The width of data element in the destination
register and mask register are identical. The entire mask register will be set to zero by this instruction unless the
instruction causes an exception.
Using qword indices, the instruction conditionally loads up to 2 or 4 single-precision floating-point values from the
VSIB addressing memory operand, and updates the lower half of the destination register. The upper 128 or 256
bits of the destination register are zero’ed with qword indices.
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destina-
tion register and the mask operand are partially updated; those elements that have been gathered are placed into
the destination register and have their mask bits set to zero. If any traps or interrupts are pending from already
gathered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an
instruction breakpoint is not re-triggered when the instruction is continued.
If the data size and index size are different, part of the destination register and part of the mask register do not
correspond to any elements being gathered. This instruction sets those parts to zero. It may do this to one or
both of those registers even if the instruction triggers an exception, and even if the instruction triggers the excep-
tion before gathering any elements.
VEX.128 version: For dword indices, the instruction will gather four single-precision floating-point values. For
qword indices, the instruction will gather two values and zeroes the upper 64 bits of the destination.
VEX.256 version: For dword indices, the instruction will gather eight single-precision floating-point values. For
qword indices, the instruction will gather four values and zeroes the upper 128 bits of the destination.
Note that:
• If any pair of the index, mask, or destination registers are the same, this instruction results a UD fault.
• The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-

64 memory-ordering model.
• Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all

elements closer to the LSB of the destination will be completed (and non-faulting). Individual elements closer
to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered in the
conventional order.

• Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements
to the left of a faulting one may be gathered before the fault is delivered. A given implementation of this
instruction is repeatable - given the same input values and architectural state, the same set of elements to the
left of the faulting one will be gathered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• This instruction will cause a #UD if the address size attribute is 16-bit.
• This instruction will cause a #UD if the memory operand is encoded without the SIB byte.
• This instruction should not be used to access memory mapped I/O as the ordering of the individual loads it

does is implementation specific, and some implementations may use loads larger than the data element size
or load elements an indeterminate number of times.

• The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-
bit mode, if the scale is greater than one). In this case, the most significant bits beyond the number of
address bits are ignored.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 163

Operation

DEST SRC1;
BASE_ADDR: base register encoded in VSIB addressing;
VINDEX: the vector index register encoded by VSIB addressing;
SCALE: scale factor encoded by SIB:[7:6];
DISP: optional 1, 4 byte displacement;
MASK SRC3;

VGATHERDPS (VEX.128 version)
FOR j 0 to 3

i j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] 0;
FI;

ENDFOR
MASK[VLMAX-1:128] 0;
FOR j 0 to 3

i j * 32;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX[i+31:i])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] 0;

ENDFOR
DEST[VLMAX-1:128] 0;
(non-masked elements of the mask register have the content of respective element cleared)

VGATHERQPS (VEX.128 version)
FOR j 0 to 3

i j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] 0;
FI;

ENDFOR
MASK[VLMAX-1:128] 0;
FOR j 0 to 1

k j * 64;
i j * 32;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] 0;

ENDFOR
MASK[127:64] 0;
DEST[VLMAX-1:64] 0;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 164

(non-masked elements of the mask register have the content of respective element cleared)

VGATHERDPS (VEX.256 version)
FOR j 0 to 7

i j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] 0;
FI;

ENDFOR
FOR j 0 to 7

i j * 32;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX1[i+31:i])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] 0;

ENDFOR
(non-masked elements of the mask register have the content of respective element cleared)

VGATHERQPS (VEX.256 version)
FOR j 0 to 7

i j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] 0;
FI;

ENDFOR
FOR j 0 to 3

k j * 64;
i j * 32;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] 0;

ENDFOR
MASK[VLMAX-1:128] 0;
DEST[VLMAX-1:128] 0;
(non-masked elements of the mask register have the content of respective element cleared)

Intel C/C++ Compiler Intrinsic Equivalent

VGATHERDPS: __m128 _mm_i32gather_ps (float const * base, __m128i index, const int scale);

VGATHERDPS: __m128 _mm_mask_i32gather_ps (__m128 src, float const * base, __m128i index, __m128 mask, const int scale);

VGATHERDPS: __m256 _mm256_i32gather_ps (float const * base, __m256i index, const int scale);

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 165

VGATHERDPS: __m256 _mm256_mask_i32gather_ps (__m256 src, float const * base, __m256i index, __m256 mask, const int
scale);

VGATHERQPS: __m128 _mm_i64gather_ps (float const * base, __m128i index, const int scale);

VGATHERQPS: __m128 _mm_mask_i64gather_ps (__m128 src, float const * base, __m128i index, __m128 mask, const int scale);

VGATHERQPS: __m128 _mm256_i64gather_ps (float const * base, __m256i index, const int scale);

VGATHERQPS: __m128 _mm256_mask_i64gather_ps (__m128 src, float const * base, __m256i index, __m128 mask, const int
scale);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 12
...

VPGATHERDD/VPGATHERQD — Gather Packed Dword Values Using Signed Dword/Qword
Indices

Instruction Operand Encoding

Description

The instruction conditionally loads up to 4 or 8 dword values from memory addresses specified by the memory
operand (the second operand) and using dword indices. The memory operand uses the VSIB form of the SIB byte

Opcode/
Instruction

Op/
En

64/
32-bit
Mode

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W0 90 /r RMV V/V AVX2 Using dword indices specified in vm32x, gather dword val-
ues from memory conditioned on mask specified by
xmm2. Conditionally gathered elements are merged into
xmm1.

VPGATHERDD xmm1, vm32x, xmm2

VEX.DDS.128.66.0F38.W0 91 /r RMV V/V AVX2 Using qword indices specified in vm64x, gather dword val-
ues from memory conditioned on mask specified by
xmm2. Conditionally gathered elements are merged into
xmm1.

VPGATHERQD xmm1, vm64x, xmm2

VEX.DDS.256.66.0F38.W0 90 /r RMV V/V AVX2 Using dword indices specified in vm32y, gather dword
from memory conditioned on mask specified by ymm2.
Conditionally gathered elements are merged into ymm1.

VPGATHERDD ymm1, vm32y, ymm2

VEX.DDS.256.66.0F38.W0 91 /r RMV V/V AVX2 Using qword indices specified in vm64y, gather dword val-
ues from memory conditioned on mask specified by
xmm2. Conditionally gathered elements are merged into
xmm1.

VPGATHERQD xmm1, vm64y, xmm2

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMV ModRM:reg (r,w) BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

VEX.vvvv (r, w) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 166

to specify a general purpose register operand as the common base, a vector register for an array of indices rela-
tive to the base and a constant scale factor.
The mask operand (the third operand) specifies the conditional load operation from each memory address and the
corresponding update of each data element of the destination operand (the first operand). Conditionality is spec-
ified by the most significant bit of each data element of the mask register. If an element’s mask bit is not set, the
corresponding element of the destination register is left unchanged. The width of data element in the destination
register and mask register are identical. The entire mask register will be set to zero by this instruction unless the
instruction causes an exception.
Using qword indices, the instruction conditionally loads up to 2 or 4 dword values from the VSIB addressing
memory operand, and updates the lower half of the destination register. The upper 128 or 256 bits of the desti-
nation register are zero’ed with qword indices.
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destina-
tion register and the mask operand are partially updated; those elements that have been gathered are placed into
the destination register and have their mask bits set to zero. If any traps or interrupts are pending from already
gathered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an
instruction breakpoint is not re-triggered when the instruction is continued.
If the data size and index size are different, part of the destination register and part of the mask register do not
correspond to any elements being gathered. This instruction sets those parts to zero. It may do this to one or
both of those registers even if the instruction triggers an exception, and even if the instruction triggers the excep-
tion before gathering any elements.
VEX.128 version: For dword indices, the instruction will gather four dword values. For qword indices, the instruc-
tion will gather two values and zeroes the upper 64 bits of the destination.
VEX.256 version: For dword indices, the instruction will gather eight dword values. For qword indices, the instruc-
tion will gather four values and zeroes the upper 128 bits of the destination.
Note that:
• If any pair of the index, mask, or destination registers are the same, this instruction results a UD fault.
• The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-

64 memory-ordering model.
• Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all

elements closer to the LSB of the destination will be completed (and non-faulting). Individual elements closer
to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered in the
conventional order.

• Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements
to the left of a faulting one may be gathered before the fault is delivered. A given implementation of this
instruction is repeatable - given the same input values and architectural state, the same set of elements to the
left of the faulting one will be gathered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• This instruction will cause a #UD if the address size attribute is 16-bit.
• This instruction will cause a #UD if the memory operand is encoded without the SIB byte.
• This instruction should not be used to access memory mapped I/O as the ordering of the individual loads it

does is implementation specific, and some implementations may use loads larger than the data element size
or load elements an indeterminate number of times.

• The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-
bit mode, if the scale is greater than one). In this case, the most significant bits beyond the number of
address bits are ignored.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 167

Operation

DEST SRC1;
BASE_ADDR: base register encoded in VSIB addressing;
VINDEX: the vector index register encoded by VSIB addressing;
SCALE: scale factor encoded by SIB:[7:6];
DISP: optional 1, 4 byte displacement;
MASK SRC3;

VPGATHERDD (VEX.128 version)
FOR j 0 to 3

i j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] 0;
FI;

ENDFOR
MASK[VLMAX-1:128] 0;
FOR j 0 to 3

i j * 32;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX[i+31:i])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] 0;

ENDFOR
DEST[VLMAX-1:128] 0;
(non-masked elements of the mask register have the content of respective element cleared)

VPGATHERQD (VEX.128 version)
FOR j 0 to 3

i j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] 0;
FI;

ENDFOR
MASK[VLMAX-1:128] 0;
FOR j 0 to 1

k j * 64;
i j * 32;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] 0;

ENDFOR
MASK[127:64] 0;
DEST[VLMAX-1:64] 0;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 168

(non-masked elements of the mask register have the content of respective element cleared)

VPGATHERDD (VEX.256 version)
FOR j 0 to 7

i j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] 0;
FI;

ENDFOR
FOR j 0 to 7

i j * 32;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX1[i+31:i])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] 0;

ENDFOR
(non-masked elements of the mask register have the content of respective element cleared)

VPGATHERQD (VEX.256 version)
FOR j 0 to 7

i j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] 0;
FI;

ENDFOR
FOR j 0 to 3

k j * 64;
i j * 32;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] 0;

ENDFOR
MASK[VLMAX-1:128] 0;
DEST[VLMAX-1:128] 0;
(non-masked elements of the mask register have the content of respective element cleared)

Intel C/C++ Compiler Intrinsic Equivalent

VPGATHERDD: __m128i _mm_i32gather_epi32 (int const * base, __m128i index, const int scale);

VPGATHERDD: __m128i _mm_mask_i32gather_epi32 (__m128i src, int const * base, __m128i index, __m128i mask, const int scale);

VPGATHERDD: __m256i _mm256_i32gather_epi32 (int const * base, __m256i index, const int scale);

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 169

VPGATHERDD: __m256i _mm256_mask_i32gather_epi32 (__m256i src, int const * base, __m256i index, __m256i mask, const int
scale);

VPGATHERQD: __m128i _mm_i64gather_epi32 (int const * base, __m128i index, const int scale);

VPGATHERQD: __m128i _mm_mask_i64gather_epi32 (__m128i src, int const * base, __m128i index, __m128i mask, const int scale);

VPGATHERQD: __m128i _mm256_i64gather_epi32 (int const * base, __m256i index, const int scale);

VPGATHERQD: __m128i _mm256_mask_i64gather_epi32 (__m128i src, int const * base, __m256i index, __m128i mask, const int
scale);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 12
...

VPGATHERDQ/VPGATHERQQ — Gather Packed Qword Values Using Signed Dword/Qword
Indices

Instruction Operand Encoding

Description

The instruction conditionally loads up to 2 or 4 qword values from memory addresses specified by the memory
operand (the second operand) and using qword indices. The memory operand uses the VSIB form of the SIB byte

Opcode/
Instruction

Op/
En

64/
32-bit
Mode

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W1 90 /r RMV V/V AVX2 Using dword indices specified in vm32x, gather qword val-
ues from memory conditioned on mask specified by
xmm2. Conditionally gathered elements are merged into
xmm1.

VPGATHERDQ xmm1, vm32x, xmm2

VEX.DDS.128.66.0F38.W1 91 /r RMV V/V AVX2 Using qword indices specified in vm64x, gather qword val-
ues from memory conditioned on mask specified by
xmm2. Conditionally gathered elements are merged into
xmm1.

VPGATHERQQ xmm1, vm64x, xmm2

VEX.DDS.256.66.0F38.W1 90 /r RMV V/V AVX2 Using dword indices specified in vm32x, gather qword val-
ues from memory conditioned on mask specified by
ymm2. Conditionally gathered elements are merged into
ymm1.

VPGATHERDQ ymm1, vm32x, ymm2

VEX.DDS.256.66.0F38.W1 91 /r RMV V/V AVX2 Using qword indices specified in vm64y, gather qword val-
ues from memory conditioned on mask specified by
ymm2. Conditionally gathered elements are merged into
ymm1.

VPGATHERQQ ymm1, vm64y, ymm2

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r,w) BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

VEX.vvvv (r, w) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 170

to specify a general purpose register operand as the common base, a vector register for an array of indices rela-
tive to the base and a constant scale factor.
The mask operand (the third operand) specifies the conditional load operation from each memory address and the
corresponding update of each data element of the destination operand (the first operand). Conditionality is spec-
ified by the most significant bit of each data element of the mask register. If an element’s mask bit is not set, the
corresponding element of the destination register is left unchanged. The width of data element in the destination
register and mask register are identical. The entire mask register will be set to zero by this instruction unless the
instruction causes an exception.
Using dword indices in the lower half of the mask register, the instruction conditionally loads up to 2 or 4 qword
values from the VSIB addressing memory operand, and updates the destination register.
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destina-
tion register and the mask operand are partially updated; those elements that have been gathered are placed into
the destination register and have their mask bits set to zero. If any traps or interrupts are pending from already
gathered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an
instruction breakpoint is not re-triggered when the instruction is continued.
If the data size and index size are different, part of the destination register and part of the mask register do not
correspond to any elements being gathered. This instruction sets those parts to zero. It may do this to one or
both of those registers even if the instruction triggers an exception, and even if the instruction triggers the excep-
tion before gathering any elements.
VEX.128 version: The instruction will gather two qword values. For dword indices, only the lower two indices in
the vector index register are used.
VEX.256 version: The instruction will gather four qword values. For dword indices, only the lower four indices in
the vector index register are used.
Note that:
• If any pair of the index, mask, or destination registers are the same, this instruction results a UD fault.
• The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-

64 memory-ordering model.
• Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all

elements closer to the LSB of the destination will be completed (and non-faulting). Individual elements closer
to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered in the
conventional order.

• Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements
to the left of a faulting one may be gathered before the fault is delivered. A given implementation of this
instruction is repeatable - given the same input values and architectural state, the same set of elements to the
left of the faulting one will be gathered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• This instruction will cause a #UD if the address size attribute is 16-bit.
• This instruction will cause a #UD if the memory operand is encoded without the SIB byte.
• This instruction should not be used to access memory mapped I/O as the ordering of the individual loads it

does is implementation specific, and some implementations may use loads larger than the data element size
or load elements an indeterminate number of times.

• The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-
bit mode, if the scale is greater than one). In this case, the most significant bits beyond the number of
address bits are ignored.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 171

Operation

DEST SRC1;
BASE_ADDR: base register encoded in VSIB addressing;
VINDEX: the vector index register encoded by VSIB addressing;
SCALE: scale factor encoded by SIB:[7:6];
DISP: optional 1, 4 byte displacement;
MASK SRC3;

VPGATHERDQ (VEX.128 version)
FOR j 0 to 1

i j * 64;
IF MASK[63+i] THEN

MASK[i +63:i] FFFFFFFF_FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +63:i] 0;
FI;

ENDFOR
FOR j 0 to 1

k j * 32;
i j * 64;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX[k+31:k])*SCALE + DISP;
IF MASK[63+i] THEN

DEST[i +63:i] FETCH_64BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +63:i] 0;

ENDFOR
MASK[VLMAX-1:128] 0;
DEST[VLMAX-1:128] 0;
(non-masked elements of the mask register have the content of respective element cleared)

VPGATHERQQ (VEX.128 version)
FOR j 0 to 1

i j * 64;
IF MASK[63+i] THEN

MASK[i +63:i] FFFFFFFF_FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +63:i] 0;
FI;

ENDFOR
FOR j 0 to 1

i j * 64;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX1[i+63:i])*SCALE + DISP;
IF MASK[63+i] THEN

DEST[i +63:i] FETCH_64BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +63:i] 0;

ENDFOR
MASK[VLMAX-1:128] 0;
DEST[VLMAX-1:128] 0;
(non-masked elements of the mask register have the content of respective element cleared)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 172

VPGATHERQQ (VEX.256 version)
FOR j 0 to 3

i j * 64;
IF MASK[63+i] THEN

MASK[i +63:i] FFFFFFFF_FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +63:i] 0;
FI;

ENDFOR
FOR j 0 to 3

i j * 64;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX1[i+63:i])*SCALE + DISP;
IF MASK[63+i] THEN

DEST[i +63:i] FETCH_64BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +63:i] 0;

ENDFOR
(non-masked elements of the mask register have the content of respective element cleared)

VPGATHERDQ (VEX.256 version)
FOR j 0 to 3

i j * 64;
IF MASK[63+i] THEN

MASK[i +63:i] FFFFFFFF_FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +63:i] 0;
FI;

ENDFOR
FOR j 0 to 3

k j * 32;
i j * 64;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX1[k+31:k])*SCALE + DISP;
IF MASK[63+i] THEN

DEST[i +63:i] FETCH_64BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +63:i] 0;

ENDFOR
(non-masked elements of the mask register have the content of respective element cleared)

Intel C/C++ Compiler Intrinsic Equivalent

VPGATHERDQ: __m128i _mm_i32gather_epi64 (int64 const * base, __m128i index, const int scale);

VPGATHERDQ: __m128i _mm_mask_i32gather_epi64 (__m128i src, int64 const * base, __m128i index, __m128i mask, const int
scale);

VPGATHERDQ: __m256i _mm256_i32gather_epi64 (int64 const * base, __m128i index, const int scale);

VPGATHERDQ: __m256i _mm256_mask_i32gather_epi64 (__m256i src, int64 const * base, __m128i index, __m256i mask, const int
scale);

VPGATHERQQ: __m128i _mm_i64gather_epi64 (int64 const * base, __m128i index, const int scale);

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 173

VPGATHERQQ: __m128i _mm_mask_i64gather_epi64 (__m128i src, int64 const * base, __m128i index, __m128i mask, const int
scale);

VPGATHERQQ: __m256i _mm256_i64gather_epi64 (int64 const * base, __m256i index, const int scale);

VPGATHERQQ: __m256i _mm256_mask_i64gather_epi64 (__m256i src, int64 const * base, __m256i index, __m256i mask, const int
scale);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 12
...

17.Updates to Chapter 5, Volume 2B
Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B: Instruction Set Reference, N-Z.

--
...

GETSEC[SENTER]—Enter a Measured Environment

Description

The GETSEC[SENTER] instruction initiates the launch of a measured environment and places the initiating logical
processor (ILP) into the authenticated code execution mode. The SENTER leaf of GETSEC is selected with EAX set
to 4 at execution. The physical base address of the AC module to be loaded and authenticated is specified in EBX.
The size of the module in bytes is specified in ECX. EDX controls the level of functionality supported by the
measured environment launch. To enable the full functionality of the protected environment launch, EDX must be
initialized to zero.

The authenticated code base address and size parameters (in bytes) are passed to the GETSEC[SENTER] instruc-
tion using EBX and ECX respectively. The ILP evaluates the contents of these registers according to the rules for
the AC module address in GETSEC[ENTERACCS]. AC module execution follows the same rules, as set by
GETSEC[ENTERACCS].

The launching software must ensure that the TPM.ACCESS_0.activeLocality bit is clear before executing the
GETSEC[SENTER] instruction.

There are restrictions enforced by the processor for execution of the GETSEC[SENTER] instruction:
• Execution is not allowed unless the processor is in protected mode or IA-32e mode with CPL = 0 and

EFLAGS.VM = 0.
• Processor cache must be available and not disabled using the CR0.CD and NW bits.

Opcode Instruction Description

0F 37

(EAX=4)

GETSEC[SENTER] Launch a measured environment

EBX holds the SINIT authenticated code module physical base address.

ECX holds the SINIT authenticated code module size (bytes).

EDX controls the level of functionality supported by the measured environment launch.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 174

• For enforcing consistency of operation with numeric exception reporting using Interrupt 16, CR0.NE must be
set.

• An Intel TXT-capable chipset must be present as communicated to the processor by sampling of the power-on
configuration capability field after reset.

• The processor can not be in authenticated code execution mode or already in a measured environment (as
launched by a previous GETSEC[ENTERACCS] or GETSEC[SENTER] instruction).

• To avoid potential operability conflicts between modes, the processor is not allowed to execute this instruction
if it currently is in SMM or VMX operation.

• To insure consistent handling of SIPI messages, the processor executing the GETSEC[SENTER] instruction
must also be designated the BSP (boot-strap processor) as defined by A32_APIC_BASE.BSP (Bit 8).

• EDX must be initialized to a setting supportable by the processor. Unless enumeration by the GETSEC[PARAM-
ETERS] leaf reports otherwise, only a value of zero is supported.

Failure to abide by the above conditions results in the processor signaling a general protection violation.

This instruction leaf starts the launch of a measured environment by initiating a rendezvous sequence for all
logical processors in the platform. The rendezvous sequence involves the initiating logical processor sending a
message (by executing GETSEC[SENTER]) and other responding logical processors (RLPs) acknowledging the
message, thus synchronizing the RLP(s) with the ILP.

In response to a message signaling the completion of rendezvous, RLPs clear the bootstrap processor indicator
flag (IA32_APIC_BASE.BSP) and enter an SENTER sleep state. In this sleep state, RLPs enter an idle processor
condition while waiting to be activated after a measured environment has been established by the system execu-
tive. RLPs in the SENTER sleep state can only be activated by the GETSEC leaf function WAKEUP in a measured
environment.

A successful launch of the measured environment results in the initiating logical processor entering the authenti-
cated code execution mode. Prior to reaching this point, the ILP performs the following steps internally:
• Inhibit processor response to the external events: INIT, A20M, NMI, and SMI.
• Establish and check the location and size of the authenticated code module to be executed by the ILP.
• Check for the existence of an Intel® TXT-capable chipset.
• Verify the current power management configuration is acceptable.
• Broadcast a message to enable protection of memory and I/O from activities from other processor agents.
• Load the designated AC module into authenticated code execution area.
• Isolate the content of authenticated code execution area from further state modification by external agents.
• Authenticate the AC module.
• Updated the Trusted Platform Module (TPM) with the authenticated code module's hash.
• Initialize processor state based on the authenticated code module header information.
• Unlock the Intel® TXT-capable chipset private configuration register space and TPM locality 3 space.
• Begin execution in the authenticated code module at the defined entry point.

As an integrity check for proper processor hardware operation, execution of GETSEC[SENTER] will also check the
contents of all the machine check status registers (as reported by the MSRs IA32_MCi_STATUS) for any valid
uncorrectable error condition. In addition, the global machine check status register IA32_MCG_STATUS MCIP bit
must be cleared and the IERR processor package pin (or its equivalent) must be not asserted, indicating that no
machine check exception processing is currently in-progress. These checks are performed twice: once by the ILP
prior to the broadcast of the rendezvous message to RLPs, and later in response to RLPs acknowledging the
rendezvous message. Any outstanding valid uncorrectable machine check error condition present in the machine
check status registers at the first check point will result in the ILP signaling a general protection violation. If an
outstanding valid uncorrectable machine check error condition is present at the second check point, then this will

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 175

result in the corresponding logical processor signaling the more severe TXT-shutdown condition with an error
code of 12.

Before loading and authentication of the target code module is performed, the processor also checks that the
current voltage and bus ratio encodings correspond to known good values supportable by the processor. The MSR
IA32_PERF_STATUS values are compared against either the processor supported maximum operating target
setting, system reset setting, or the thermal monitor operating target. If the current settings do not meet any of
these criteria then the SENTER function will attempt to change the voltage and bus ratio select controls in a
processor-specific manner. This adjustment may be to the thermal monitor, minimum (if different), or maximum
operating target depending on the processor.

This implies that some thermal operating target parameters configured by BIOS may be overridden by SENTER.
The measured environment software may need to take responsibility for restoring such settings that are deemed
to be safe, but not necessarily recognized by SENTER. If an adjustment is not possible when an out of range
setting is discovered, then the processor will abort the measured launch. This may be the case for chipset
controlled settings of these values or if the controllability is not enabled on the processor. In this case it is the
responsibility of the external software to program the chipset voltage ID and/or bus ratio select settings to known
good values recognized by the processor, prior to executing SENTER.

NOTE
For a mobile processor, an adjustment can be made according to the thermal monitor operating
target. For a quad-core processor the SENTER adjustment mechanism may result in a more
conservative but non-uniform voltage setting, depending on the pre-SENTER settings per core.

The ILP and RLPs mask the response to the assertion of the external signals INIT#, A20M, NMI#, and SMI#. The
purpose of this masking control is to prevent exposure to existing external event handlers until a protected
handler has been put in place to directly handle these events. Masked external pin events may be unmasked
conditionally or unconditionally via the GETSEC[EXITAC], GETSEC[SEXIT], GETSEC[SMCTRL] or for specific VMX
related operations such as a VM entry or the VMXOFF instruction (see respective GETSEC leaves and Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3C for more details).The state of the A20M pin is
masked and forced internally to a de-asserted state so that external assertion is not recognized. A20M masking
as set by GETSEC[SENTER] is undone only after taking down the measured environment with the GETSEC[SEXIT]
instruction or processor reset. INTR is masked by simply clearing the EFLAGS.IF bit. It is the responsibility of
system software to control the processor response to INTR through appropriate management of EFLAGS.

To prevent other (logical) processors from interfering with the ILP operating in authenticated code execution
mode, memory (excluding implicit write-back transactions) and I/O activities originating from other processor
agents are blocked. This protection starts when the ILP enters into authenticated code execution mode. Only
memory and I/O transactions initiated from the ILP are allowed to proceed. Exiting authenticated code execution
mode is done by executing GETSEC[EXITAC]. The protection of memory and I/O activities remains in effect until
the ILP executes GETSEC[EXITAC].

Once the authenticated code module has been loaded into the authenticated code execution area, it is protected
against further modification from external bus snoops. There is also a requirement that the memory type for the
authenticated code module address range be WB (via initialization of the MTRRs prior to execution of this instruc-
tion). If this condition is not satisfied, it is a violation of security and the processor will force a TXT system reset
(after writing an error code to the chipset LT.ERRORCODE register). This action is referred to as a Intel® TXT reset
condition. It is performed when it is considered unreliable to signal an error through the conventional exception
reporting mechanism.

To conform to the minimum granularity of MTRR MSRs for specifying the memory type, authenticated code RAM
(ACRAM) is allocated to the processor in 4096 byte granular blocks. If an AC module size as specified in ECX is not
a multiple of 4096 then the processor will allocate up to the next 4096 byte boundary for mapping as ACRAM with
indeterminate data. This pad area will not be visible to the authenticated code module as external memory nor
can it depend on the value of the data used to fill the pad area.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 176

Once successful authentication has been completed by the ILP, the computed hash is stored in a trusted storage
facility in the platform. The following trusted storage facility are supported:
• If the platform register FTM_INTERFACE_ID.[bits 3:0] = 0, the computed hash is stored to the platform’s TPM

at PCR17 after this register is implicitly reset. PCR17 is a dedicated register for holding the computed hash of
the authenticated code module loaded and subsequently executed by the GETSEC[SENTER]. As part of this
process, the dynamic PCRs 18-22 are reset so they can be utilized by subsequently software for registration
of code and data modules.

• If the platform register FTM_INTERFACE_ID.[bits 3:0] = 1, the computed hash is stored in a firmware trusted
module (FTM) using a modified protocol similar to the protocol used to write to TPM’s PCR17.

After successful execution of SENTER, either PCR17 (if FTM is not enabled) or the FTM (if enabled) contains the
measurement of AC code and the SENTER launching parameters.

After authentication is completed successfully, the private configuration space of the Intel® TXT-capable chipset
is unlocked so that the authenticated code module and measured environment software can gain access to this
normally restricted chipset state. The Intel® TXT-capable chipset private configuration space can be locked later
by software writing to the chipset LT.CMD.CLOSE-PRIVATE register or unconditionally using the GETSEC[SEXIT]
instruction.

The SENTER leaf function also initializes some processor architecture state for the ILP from contents held in the
header of the authenticated code module. Since the authenticated code module is relocatable, all address refer-
ences are relative to the base address passed in via EBX. The ILP GDTR base value is initialized to EBX + [GDTBa-
sePtr] and GDTR limit set to [GDTLimit]. The CS selector is initialized to the value held in the AC module header
field SegSel, while the DS, SS, and ES selectors are initialized to CS+8. The segment descriptor fields are initial-
ized implicitly with BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write/accessed for DS, SS, and ES, while
execute/read/accessed for CS. Execution in the authenticated code module for the ILP begins with the EIP set to
EBX + [EntryPoint]. AC module defined fields used for initializing processor state are consistency checked with a
failure resulting in an TXT-shutdown condition.

Table 5-6 provides a summary of processor state initialization for the ILP and RLP(s) after successful completion
of GETSEC[SENTER]. For both ILP and RLP(s), paging is disabled upon entry to the measured environment. It is
up to the ILP to establish a trusted paging environment, with appropriate mappings, to meet protection require-
ments established during the launch of the measured environment. RLP state initialization is not completed until
a subsequent wake-up has been signaled by execution of the GETSEC[WAKEUP] function by the ILP.

Table 5-6 Register State Initialization after GETSEC[SENTER] and GETSEC[WAKEUP]

Register State ILP after GETSEC[SENTER] RLP after GETSEC[WAKEUP]

CR0 PG←0, AM←0, WP←0; Others unchanged PG←0, CD←0, NW←0, AM←0, WP←0; PE←1, NE←1

CR4 00004000H 00004000H

EFLAGS 00000002H 00000002H

IA32_EFER 0H 0

EIP [EntryPoint from MLE header1] [LT.MLE.JOIN + 12]

EBX Unchanged [SINIT.BASE] Unchanged

EDX SENTER control flags Unchanged

EBP SINIT.BASE Unchanged

CS Sel=[SINIT SegSel], base=0, limit=FFFFFh, G=1,
D=1, AR=9BH

Sel = [LT.MLE.JOIN + 8], base = 0, limit = FFFFFH, G =
1, D = 1, AR = 9BH

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 177

Segmentation related processor state that has not been initialized by GETSEC[SENTER] requires appropriate
initialization before use. Since a new GDT context has been established, the previous state of the segment
selector values held in FS, GS, TR, and LDTR may no longer be valid. The IDTR will also require reloading with a
new IDT context after launching the measured environment before exceptions or the external interrupts INTR and
NMI can be handled. In the meantime, the programmer must take care in not executing an INT n instruction or
any other condition that would result in an exception or trap signaling.

Debug exception and trap related signaling is also disabled as part of execution of GETSEC[SENTER]. This is
achieved by clearing DR7, TF in EFLAGs, and the MSR IA32_DEBUGCTL as defined in Table 5-6. These can be re-
enabled once supporting exception handler(s), descriptor tables, and debug registers have been properly re-
initialized following SENTER. Also, any pending single-step trap condition will be cleared at the completion of
SENTER for both the ILP and RLP(s).

Performance related counters and counter control registers are cleared as part of execution of SENTER on both
the ILP and RLP. This implies any active performance counters at the time of SENTER execution will be disabled.
To reactive the processor performance counters, this state must be re-initialized and re-enabled.

Since MCE along with all other state bits (with the exception of SMXE) are cleared in CR4 upon execution of
SENTER processing, any enabled machine check error condition that occurs will result in the processor performing
the TXT-shutdown action. This also applies to an RLP while in the SENTER sleep state. For each logical processor
CR4.MCE must be reestablished with a valid machine check exception handler to otherwise avoid an TXT-shut-
down under such conditions.

The MSR IA32_EFER is also unconditionally cleared as part of the processor state initialized by SENTER for both
the ILP and RLP. Since paging is disabled upon entering authenticated code execution mode, a new paging envi-
ronment will have to be re-established if it is desired to enable IA-32e mode while operating in authenticated code
execution mode.

The miscellaneous feature control MSR, IA32_MISC_ENABLE, is initialized as part of the measured environment
launch. Certain bits of this MSR are preserved because preserving these bits may be important to maintain previ-
ously established platform settings. See the footnote for Table 5-5 The remaining bits are cleared for the purpose
of establishing a more consistent environment for the execution of authenticated code modules. Among the
impact of initializing this MSR, any previous condition established by the MONITOR instruction will be cleared.

DS, ES, SS Sel=[SINIT SegSel] +8, base=0, limit=FFFFFh, G=1,
D=1, AR=93H

Sel = [LT.MLE.JOIN + 8] +8, base = 0, limit = FFFFFH,
G = 1, D = 1, AR = 93H

GDTR Base= SINIT.base (EBX) + [SINIT.GDTBasePtr],
Limit=[SINIT.GDTLimit]

Base = [LT.MLE.JOIN + 4], Limit = [LT.MLE.JOIN]

DR7 00000400H 00000400H

IA32_DEBUGCTL 0H 0H

Performance
counters and counter
control registers

0H 0H

IA32_MISC_ENABLE See Table 5-5 See Table 5-5

IA32_SMM_MONITOR
_CTL

Bit 2←0 Bit 2←0

NOTES:
1. See Intel® Trusted Execution Technology Measured Launched Environment Programming Guide for MLE header

format.

Table 5-6 Register State Initialization after GETSEC[SENTER] and GETSEC[WAKEUP]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 178

Effect of MSR IA32_FEATURE_CONTROL MSR

Bits 15:8 of the IA32_FEATURE_CONTROL MSR affect the execution of GETSEC[SENTER]. These bits consist of
two fields:
• Bit 15: a global enable control for execution of SENTER.
• Bits 14:8: a parameter control field providing the ability to qualify SENTER execution based on the level of

functionality specified with corresponding EDX parameter bits 6:0.

The layout of these fields in the IA32_FEATURE_CONTROL MSR is shown in Table 5-1.

Prior to the execution of GETSEC[SENTER], the lock bit of IA32_FEATURE_CONTROL MSR must be bit set to affirm
the settings to be used. Once the lock bit is set, only a power-up reset condition will clear this MSR. The
IA32_FEATURE_CONTROL MSR must be configured in accordance to the intended usage at platform initialization.
Note that this MSR is only available on SMX or VMX enabled processors. Otherwise, IA32_FEATURE_CONTROL is
treated as reserved.

The Intel® Trusted Execution Technology Measured Launched Environment Programming Guide provides additional details and
requirements for programming measured environment software to launch in an Intel TXT platform.

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)
GETSEC[SENTER] (ILP only):
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((in VMX root operation) or

(CR0.PE=0) or (CR0.CD=1) or (CR0.NW=1) or (CR0.NE=0) or
(CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or (TXT chipset not present) or
(SENTERFLAG=1) or (ACMODEFLAG=1) or (IN_SMM=1) or
(TPM interface is not present) or
(EDX ≠ (SENTER_EDX_support_mask & EDX)) or
(IA32_FEATURE_CONTROL[0]=0) or (IA32_FEATURE_CONTROL[15]=0) or
((IA32_FEATURE_CONTROL[14:8] & EDX[6:0]) ≠ EDX[6:0]))

THEN #GP(0);
IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)

FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO
IF IA32_MC[I]_STATUS = uncorrectable error

THEN #GP(0);
FI;

OD;
FI;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN #GP(0);
ACBASE← EBX;
ACSIZE← ECX;
IF (((ACBASE MOD 4096) ≠ 0) or ((ACSIZE MOD 64) ≠ 0) or (ACSIZE < minimum

module size) or (ACSIZE > AC RAM capacity) or ((ACBASE+ACSIZE) > (2^32 -1)))
THEN #GP(0);

Mask SMI, INIT, A20M, and NMI external pin events;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 179

SignalTXTMsg(SENTER);
DO
WHILE (no SignalSENTER message);

TXT_SENTER__MSG_EVENT (ILP & RLP):
Mask and clear SignalSENTER event;
Unmask SignalSEXIT event;
IF (in VMX operation)

THEN TXT-SHUTDOWN(#IllegalEvent);
FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO

IF IA32_MC[I]_STATUS = uncorrectable error
THEN TXT-SHUTDOWN(#UnrecovMCError);

FI;
OD;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN TXT-SHUTDOWN(#UnrecovMCError);
IF (Voltage or bus ratio status are NOT at a known good state)

THEN IF (Voltage select and bus ratio are internally adjustable)
THEN

Make product-specific adjustment on operating parameters;
ELSE

TXT-SHUTDOWN(#IIlegalVIDBRatio);
FI;

IA32_MISC_ENABLE← (IA32_MISC_ENABLE & MASK_CONST*)
(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M← 0;
IA32_DEBUGCTL← 0;
Invalidate processor TLB(s);
Drain outgoing transactions;
Clear performance monitor counters and control;
SENTERFLAG← 1;
SignalTXTMsg(SENTERAck);
IF (logical processor is not ILP)

THEN GOTO RLP_SENTER_ROUTINE;
(* ILP waits for all logical processors to ACK *)
DO

DONE← TXT.READ(LT.STS);
WHILE (not DONE);
SignalTXTMsg(SENTERContinue);
SignalTXTMsg(ProcessorHold);
FOR I=ACBASE to ACBASE+ACSIZE-1 DO

ACRAM[I-ACBASE].ADDR← I;
ACRAM[I-ACBASE].DATA← LOAD(I);

OD;
IF (ACRAM memory type ≠ WB)

THEN TXT-SHUTDOWN(#BadACMMType);
IF (AC module header version is not supported) OR (ACRAM[ModuleType] ≠ 2)

THEN TXT-SHUTDOWN(#UnsupportedACM);
KEY← GETKEY(ACRAM, ACBASE);

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 180

KEYHASH← HASH(KEY);
CSKEYHASH← LT.READ(LT.PUBLIC.KEY);
IF (KEYHASH ≠ CSKEYHASH)

THEN TXT-SHUTDOWN(#AuthenticateFail);
SIGNATURE← DECRYPT(ACRAM, ACBASE, KEY);
(* The value of SIGNATURE_LEN_CONST is implementation-specific*)
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.I]← SIGNATURE[I];
COMPUTEDSIGNATURE← HASH(ACRAM, ACBASE, ACSIZE);
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I]← COMPUTEDSIGNATURE[I];
IF (SIGNATURE ≠ COMPUTEDSIGNATURE)

THEN TXT-SHUTDOWN(#AuthenticateFail);
ACMCONTROL← ACRAM[CodeControl];
IF ((ACMCONTROL.0 = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))

THEN TXT-SHUTDOWN(#UnexpectedHITM);
IF (ACMCONTROL reserved bits are set)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[GDTBasePtr] < (ACRAM[HeaderLen] * 4 + Scratch_size)) OR

((ACRAM[GDTBasePtr] + ACRAM[GDTLimit]) >= ACSIZE))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACMCONTROL.0 = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified
line detected on ACRAM load))
THEN ACEntryPoint← ACBASE+ACRAM[ErrorEntryPoint];

ELSE
ACEntryPoint← ACBASE+ACRAM[EntryPoint];

IF ((ACEntryPoint >= ACSIZE) or (ACEntryPoint < (ACRAM[HeaderLen] * 4 + Scratch_size)))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[SegSel] > (ACRAM[GDTLimit] - 15)) or (ACRAM[SegSel] < 8))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[SegSel].TI=1) or (ACRAM[SegSel].RPL≠0))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF (FTM_INTERFACE_ID.[3:0] = 1) (* Alternate FTM Interface has been enabled *)
THEN (* TPM_LOC_CTRL_4 is located at 0FED44008H, TMP_DATA_BUFFER_4 is located at 0FED44080H *)

WRITE(TPM_LOC_CTRL_4) ← 01H; (* Modified HASH.START protocol *)
(* Write to firmware storage *)
WRITE(TPM_DATA_BUFFER_4) ← SIGNATURE_LEN_CONST + 4;
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

WRITE(TPM_DATA_BUFFER_4 + 2 + I)← ACRAM[SCRATCH.I];
WRITE(TPM_DATA_BUFFER_4 + 2 + SIGNATURE_LEN_CONST) ← EDX;
WRITE(FTM.LOC_CTRL) ← 06H; (* Modified protocol combining HASH.DATA and HASH.END *)

ELSE IF (FTM_INTERFACE_ID.[3:0] = 0) (* Use standard TPM Interface *)
ACRAM[SCRATCH.SIGNATURE_LEN_CONST]← EDX;
WRITE(TPM.HASH.START)← 0;
FOR I=0 to SIGNATURE_LEN_CONST + 3 DO

WRITE(TPM.HASH.DATA)← ACRAM[SCRATCH.I];
WRITE(TPM.HASH.END)← 0;

FI;
ACMODEFLAG← 1;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 181

CR0.[PG.AM.WP]← 0;
CR4← 00004000h;
EFLAGS← 00000002h;
IA32_EFER← 0;
EBP← ACBASE;
GDTR.BASE← ACBASE+ACRAM[GDTBasePtr];
GDTR.LIMIT← ACRAM[GDTLimit];
CS.SEL← ACRAM[SegSel];
CS.BASE← 0;
CS.LIMIT← FFFFFh;
CS.G← 1;
CS.D← 1;
CS.AR← 9Bh;
DS.SEL← ACRAM[SegSel]+8;
DS.BASE← 0;
DS.LIMIT← FFFFFh;
DS.G← 1;
DS.D← 1;
DS.AR← 93h;
SS← DS;
ES← DS;
DR7← 00000400h;
IA32_DEBUGCTL← 0;
SignalTXTMsg(UnlockSMRAM);
SignalTXTMsg(OpenPrivate);
SignalTXTMsg(OpenLocality3);
EIP← ACEntryPoint;
END;

RLP_SENTER_ROUTINE: (RLP only)
Mask SMI, INIT, A20M, and NMI external pin events
Unmask SignalWAKEUP event;
Wait for SignalSENTERContinue message;
IA32_APIC_BASE.BSP← 0;
GOTO SENTER sleep state;
END;

Flags Affected

All flags are cleared.

Use of Prefixes
LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 182

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) If CR0.CD = 1 or CR0.NW = 1 or CR0.NE = 0 or CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If in VMX root operation.
If the initiating processor is not designated as the bootstrap processor via the MSR bit
IA32_APIC_BASE.BSP.
If an Intel® TXT-capable chipset is not present.
If an Intel® TXT-capable chipset interface to TPM is not detected as present.
If a protected partition is already active or the processor is already in authenticated code
mode.
If the processor is in SMM.
If a valid uncorrectable machine check error is logged in IA32_MC[I]_STATUS.
If the authenticated code base is not on a 4096 byte boundary.
If the authenticated code size > processor's authenticated code execution area storage
capacity.
If the authenticated code size is not modulo 64.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SENTER] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].
#GP(0) GETSEC[SENTER] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.
#GP IF AC code module does not reside in physical address below 2^32 -1.

64-Bit Mode Exceptions
All protected mode exceptions apply.
#GP IF AC code module does not reside in physical address below 2^32 -1.

VM-Exit Condition
Reason (GETSEC) IF in VMX non-root operation.
...

18.Updates to Appendix B, Volume 2B
Change bars show changes to Appendix B of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B: Instruction Set Reference, N-Z.

--

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 183

...

Table B-39 shows the formats and encodings of the floating-point instructions.

Table B-39 Floating-Point Instruction Formats and Encodings

Instruction and Format Encoding

F2XM1 – Compute 2ST(0) – 1 11011 001 : 1111 0000

FABS – Absolute Value 11011 001 : 1110 0001

FADD – Add

 ST(0) ← ST(0) + 32-bit memory 11011 000 : mod 000 r/m

ST(0) ← ST(0) + 64-bit memory 11011 100 : mod 000 r/m

ST(d) ← ST(0) + ST(i) 11011 d00 : 11 000 ST(i)

FADDP – Add and Pop

ST(0) ← ST(0) + ST(i) 11011 110 : 11 000 ST(i)

FBLD – Load Binary Coded Decimal 11011 111 : mod 100 r/m

FBSTP – Store Binary Coded Decimal and Pop 11011 111 : mod 110 r/m

FCHS – Change Sign 11011 001 : 1110 0000

FCLEX – Clear Exceptions 11011 011 : 1110 0010

FCOM – Compare Real

32-bit memory 11011 000 : mod 010 r/m

64-bit memory 11011 100 : mod 010 r/m

ST(i) 11011 000 : 11 010 ST(i)

FCOMP – Compare Real and Pop

32-bit memory 11011 000 : mod 011 r/m

64-bit memory 11011 100 : mod 011 r/m

ST(i) 11011 000 : 11 011 ST(i)

FCOMPP – Compare Real and Pop Twice 11011 110 : 11 011 001

FCOMIP – Compare Real, Set EFLAGS, and Pop 11011 111 : 11 110 ST(i)

FCOS – Cosine of ST(0) 11011 001 : 1111 1111

FDECSTP – Decrement Stack-Top Pointer 11011 001 : 1111 0110

FDIV – Divide

ST(0) ← ST(0) ÷ 32-bit memory 11011 000 : mod 110 r/m

ST(0) ← ST(0) ÷ 64-bit memory 11011 100 : mod 110 r/m

ST(d) ← ST(0) ÷ ST(i) 11011 d00 : 1111 R ST(i)

FDIVP – Divide and Pop

ST(0) ← ST(0) ÷ ST(i) 11011 110 : 1111 1 ST(i)

FDIVR – Reverse Divide

ST(0) ← 32-bit memory ÷ ST(0) 11011 000 : mod 111 r/m

ST(0) ← 64-bit memory ÷ ST(0) 11011 100 : mod 111 r/m

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 184

ST(d) ← ST(i) ÷ ST(0) 11011 d00 : 1111 R ST(i)

FDIVRP – Reverse Divide and Pop

ST(0) ¨ ST(i) ÷ ST(0) 11011 110 : 1111 0 ST(i)

FFREE – Free ST(i) Register 11011 101 : 1100 0 ST(i)

FIADD – Add Integer

ST(0) ← ST(0) + 16-bit memory 11011 110 : mod 000 r/m

ST(0) ← ST(0) + 32-bit memory 11011 010 : mod 000 r/m

FICOM – Compare Integer

16-bit memory 11011 110 : mod 010 r/m

32-bit memory 11011 010 : mod 010 r/m

FICOMP – Compare Integer and Pop

16-bit memory 11011 110 : mod 011 r/m

32-bit memory 11011 010 : mod 011 r/m

FIDIV – Divide

ST(0) ← ST(0) ÷ 16-bit memory 11011 110 : mod 110 r/m

ST(0) ← ST(0) ÷ 32-bit memory 11011 010 : mod 110 r/m

FIDIVR – Reverse Divide

ST(0) ← 16-bit memory ÷ ST(0) 11011 110 : mod 111 r/m

ST(0) ← 32-bit memory ÷ ST(0) 11011 010 : mod 111 r/m

FILD – Load Integer

16-bit memory 11011 111 : mod 000 r/m

32-bit memory 11011 011 : mod 000 r/m

64-bit memory 11011 111 : mod 101 r/m

FIMUL– Multiply

ST(0) ← ST(0) × 16-bit memory 11011 110 : mod 001 r/m

ST(0) ← ST(0) × 32-bit memory 11011 010 : mod 001 r/m

FINCSTP – Increment Stack Pointer 11011 001 : 1111 0111

FINIT – Initialize Floating-Point Unit

FIST – Store Integer

16-bit memory 11011 111 : mod 010 r/m

32-bit memory 11011 011 : mod 010 r/m

FISTP – Store Integer and Pop

16-bit memory 11011 111 : mod 011 r/m

32-bit memory 11011 011 : mod 011 r/m

64-bit memory 11011 111 : mod 111 r/m

FISUB – Subtract

Table B-39 Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 185

ST(0) ← ST(0) - 16-bit memory 11011 110 : mod 100 r/m

ST(0) ← ST(0) - 32-bit memory 11011 010 : mod 100 r/m

FISUBR – Reverse Subtract

ST(0) ← 16-bit memory − ST(0) 11011 110 : mod 101 r/m

ST(0) ← 32-bit memory − ST(0) 11011 010 : mod 101 r/m

FLD – Load Real

32-bit memory 11011 001 : mod 000 r/m

64-bit memory 11011 101 : mod 000 r/m

80-bit memory 11011 011 : mod 101 r/m

ST(i) 11011 001 : 11 000 ST(i)

FLD1 – Load +1.0 into ST(0) 11011 001 : 1110 1000

FLDCW – Load Control Word 11011 001 : mod 101 r/m

FLDENV – Load FPU Environment 11011 001 : mod 100 r/m

FLDL2E – Load log2(ε) into ST(0) 11011 001 : 1110 1010

FLDL2T – Load log2(10) into ST(0) 11011 001 : 1110 1001

FLDLG2 – Load log10(2) into ST(0) 11011 001 : 1110 1100

FLDLN2 – Load logε(2) into ST(0) 11011 001 : 1110 1101

FLDPI – Load π into ST(0) 11011 001 : 1110 1011

FLDZ – Load +0.0 into ST(0) 11011 001 : 1110 1110

FMUL – Multiply

ST(0) ← ST(0) × 32-bit memory 11011 000 : mod 001 r/m

ST(0) ← ST(0) × 64-bit memory 11011 100 : mod 001 r/m

ST(d) ← ST(0) × ST(i) 11011 d00 : 1100 1 ST(i)

FMULP – Multiply

ST(i) ← ST(0) × ST(i) 11011 110 : 1100 1 ST(i)

FNOP – No Operation 11011 001 : 1101 0000

FPATAN – Partial Arctangent 11011 001 : 1111 0011

FPREM – Partial Remainder 11011 001 : 1111 1000

FPREM1 – Partial Remainder (IEEE) 11011 001 : 1111 0101

FPTAN – Partial Tangent 11011 001 : 1111 0010

FRNDINT – Round to Integer 11011 001 : 1111 1100

FRSTOR – Restore FPU State 11011 101 : mod 100 r/m

FSAVE – Store FPU State 11011 101 : mod 110 r/m

FSCALE – Scale 11011 001 : 1111 1101

FSIN – Sine 11011 001 : 1111 1110

FSINCOS – Sine and Cosine 11011 001 : 1111 1011

Table B-39 Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 186

FSQRT – Square Root 11011 001 : 1111 1010

FST – Store Real

32-bit memory 11011 001 : mod 010 r/m

64-bit memory 11011 101 : mod 010 r/m

ST(i) 11011 101 : 11 010 ST(i)

FSTCW – Store Control Word 11011 001 : mod 111 r/m

FSTENV – Store FPU Environment 11011 001 : mod 110 r/m

FSTP – Store Real and Pop

32-bit memory 11011 001 : mod 011 r/m

64-bit memory 11011 101 : mod 011 r/m

80-bit memory 11011 011 : mod 111 r/m

ST(i) 11011 101 : 11 011 ST(i)

FSTSW – Store Status Word into AX 11011 111 : 1110 0000

FSTSW – Store Status Word into Memory 11011 101 : mod 111 r/m

FSUB – Subtract

ST(0) ← ST(0) – 32-bit memory 11011 000 : mod 100 r/m

ST(0) ← ST(0) – 64-bit memory 11011 100 : mod 100 r/m

ST(d) ← ST(0) – ST(i) 11011 d00 : 1110 R ST(i)

FSUBP – Subtract and Pop

ST(0) ← ST(0) – ST(i) 11011 110 : 1110 1 ST(i)

FSUBR – Reverse Subtract

ST(0) ← 32-bit memory – ST(0) 11011 000 : mod 101 r/m

ST(0) ← 64-bit memory – ST(0) 11011 100 : mod 101 r/m

ST(d) ← ST(i) – ST(0) 11011 d00 : 1110 R ST(i)

FSUBRP – Reverse Subtract and Pop

ST(i) ← ST(i) – ST(0) 11011 110 : 1110 0 ST(i)

FTST – Test 11011 001 : 1110 0100

FUCOM – Unordered Compare Real 11011 101 : 1110 0 ST(i)

FUCOMP – Unordered Compare Real and Pop 11011 101 : 1110 1 ST(i)

FUCOMPP – Unordered Compare Real and Pop Twice 11011 010 : 1110 1001

FUCOMI – Unorderd Compare Real and Set EFLAGS 11011 011 : 11 101 ST(i)

FUCOMIP – Unorderd Compare Real, Set EFLAGS, and Pop 11011 111 : 11 101 ST(i)

FXAM – Examine 11011 001 : 1110 0101

FXCH – Exchange ST(0) and ST(i) 11011 001 : 1100 1 ST(i)

FXTRACT – Extract Exponent and Significand 11011 001 : 1111 0100

FYL2X – ST(1) × log2(ST(0)) 11011 001 : 1111 0001

Table B-39 Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 187

...

19. Updates to Chapter 1, Volume 3A
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Core™2 Extreme QX9000 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series

FYL2XP1 – ST(1) × log2(ST(0) + 1.0) 11011 001 : 1111 1001

FWAIT – Wait until FPU Ready 1001 1011 (same instruction as WAIT)

Table B-39 Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 188

• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v3 product family
• The Intel® Core™ M processor family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on
Enhanced Intel® Core™ microarchitecture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture and supports Intel 64 archi-
tecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel®
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32nm version of
Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and
various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These
processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name
Sandy Bridge and support Intel 64 architecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 189

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2
product family and 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code name
Ivy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families and Intel® Xeon® processor E5-2400/1400
v2 product families are based on the Intel® microarchitecture code name Ivy Bridge-EP and support Intel 64
architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th generation Intel® Core™ processors are based on
the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

The Intel® Core™ M processor family is based on the Intel® microarchitecture code name Broadwell and supports
Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors,
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel®
64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is a
superset of and compatible with IA-32 architecture.

...

20. Updates to Chapter 2, Volume 3A
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

2.2.1 Extended Feature Enable Register
The IA32_EFER MSR provides several fields related to IA-32e mode enabling and operation. It also provides one
field that relates to page-access right modification (see Section 4.6, “Access Rights”). The layout of the
IA32_EFER MSR is shown in Figure 2-4.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 190

...

2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER
The system flags and IOPL field of the EFLAGS register control I/O, maskable hardware interrupts, debugging,
task switching, and the virtual-8086 mode (see Figure 2-5). Only privileged code (typically operating system or
executive code) should be allowed to modify these bits.

The system flags and IOPL are:

TF Trap (bit 8) — Set to enable single-step mode for debugging; clear to disable single-step mode. In
single-step mode, the processor generates a debug exception after each instruction. This allows the
execution state of a program to be inspected after each instruction. If an application program sets the TF

Figure 2-4 IA32_EFER MSR Layout

Reserved

IA-32e Mode Active

0178910111263

IA32_EFER

IA-32e Mode Enable

Execute Disable Bit Enable

SYSCALL Enable

Table 2-1 IA32_EFER MSR Information
Bit Description

0 SYSCALL Enable: IA32_EFER.SCE (R/W)

Enables SYSCALL/SYSRET instructions in 64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable: IA32_EFER.LME (R/W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active: IA32_EFER.LMA (R)

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable: IA32_EFER.NXE (R/W)

Enables page access restriction by preventing instruction fetches from PAE pages with the XD bit set (See Section 4.6).

63:12 Reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 191

flag using a POPF, POPFD, or IRET instruction, a debug exception is generated after the instruction that
follows the POPF, POPFD, or IRET.

IF Interrupt enable (bit 9) — Controls the response of the processor to maskable hardware interrupt
requests (see also: Section 6.3.2, “Maskable Hardware Interrupts”). The flag is set to respond to mask-
able hardware interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does not affect the
generation of exceptions or nonmaskable interrupts (NMI interrupts). The CPL, IOPL, and the state of the
VME flag in control register CR4 determine whether the IF flag can be modified by the CLI, STI, POPF,
POPFD, and IRET.

IOPL I/O privilege level field (bits 12 and 13) — Indicates the I/O privilege level (IOPL) of the currently
running program or task. The CPL of the currently running program or task must be less than or equal to
the IOPL to access the I/O address space. The POPF and IRET instructions can modify this field only when
operating at a CPL of 0.

The IOPL is also one of the mechanisms that controls the modification of the IF flag and the handling of
interrupts in virtual-8086 mode when virtual mode extensions are in effect (when CR4.VME = 1). See
also: Chapter 16, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1.

NT Nested task (bit 14) — Controls the chaining of interrupted and called tasks. The processor sets this
flag on calls to a task initiated with a CALL instruction, an interrupt, or an exception. It examines and
modifies this flag on returns from a task initiated with the IRET instruction. The flag can be explicitly set
or cleared with the POPF/POPFD instructions; however, changing to the state of this flag can generate
unexpected exceptions in application programs.

See also: Section 7.4, “Task Linking.”

RF Resume (bit 16) — Controls the processor’s response to instruction-breakpoint conditions. When set,
this flag temporarily disables debug exceptions (#DB) from being generated for instruction breakpoints
(although other exception conditions can cause an exception to be generated). When clear, instruction
breakpoints will generate debug exceptions.

The primary function of the RF flag is to allow the restarting of an instruction following a debug exception
that was caused by an instruction breakpoint condition. Here, debug software must set this flag in the
EFLAGS image on the stack just prior to returning to the interrupted program with IRETD (to prevent the
instruction breakpoint from causing another debug exception). The processor then automatically clears

Figure 2-5 System Flags in the EFLAGS Register

31 22 21 20 19 18 17 16

R
F

I
D

A
C

V
M

VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— I/O Privilege Level
IF — Interrupt Enable Flag

AC — Alignment Check / Access Control

ID — Identification Flag
VIP — Virtual Interrupt Pending

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

0 C
F

A
F

P
F 1D

F
I
F

T
F

S
F

Z
F

N
T 00

V
I
P

V
I
F

O
F

I
O
P
L

VIF — Virtual Interrupt Flag

TF — Trap Flag

Reserved

Reserved (set to 0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 192

this flag after the instruction returned to has been successfully executed, enabling instruction breakpoint
faults again.

See also: Section 17.3.1.1, “Instruction-Breakpoint Exception Condition.”

VM Virtual-8086 mode (bit 17) — Set to enable virtual-8086 mode; clear to return to protected mode.

See also: Section 20.2.1, “Enabling Virtual-8086 Mode.”

AC Alignment check or access control (bit 18) — If the AM bit is set in the CR0 register, alignment
checking of user-mode data accesses is enabled if and only if this flag is 1. An alignment-check exception
is generated when reference is made to an unaligned operand, such as a word at an odd byte address or
a doubleword at an address which is not an integral multiple of four. Alignment-check exceptions are
generated only in user mode (privilege level 3). Memory references that default to privilege level 0, such
as segment descriptor loads, do not generate this exception even when caused by instructions executed
in user-mode.

The alignment-check exception can be used to check alignment of data. This is useful when exchanging
data with processors which require all data to be aligned. The alignment-check exception can also be used
by interpreters to flag some pointers as special by misaligning the pointer. This eliminates overhead of
checking each pointer and only handles the special pointer when used.

If the SMAP bit is set in the CR4 register, explicit supervisor-mode data accesses to user-mode pages are
allowed if and only if this bit is 1. See Section 4.6, “Access Rights.”

VIF Virtual Interrupt (bit 19) — Contains a virtual image of the IF flag. This flag is used in conjunction with
the VIP flag. The processor only recognizes the VIF flag when either the VME flag or the PVI flag in control
register CR4 is set and the IOPL is less than 3. (The VME flag enables the virtual-8086 mode extensions;
the PVI flag enables the protected-mode virtual interrupts.)

See also: Section 20.3.3.5, “Method 6: Software Interrupt Handling,” and Section 20.4, “Protected-Mode
Virtual Interrupts.”

VIP Virtual interrupt pending (bit 20) — Set by software to indicate that an interrupt is pending; cleared
to indicate that no interrupt is pending. This flag is used in conjunction with the VIF flag. The processor
reads this flag but never modifies it. The processor only recognizes the VIP flag when either the VME flag
or the PVI flag in control register CR4 is set and the IOPL is less than 3. The VME flag enables the virtual-
8086 mode extensions; the PVI flag enables the protected-mode virtual interrupts.

See Section 20.3.3.5, “Method 6: Software Interrupt Handling,” and Section 20.4, “Protected-Mode
Virtual Interrupts.”

ID Identification (bit 21). — The ability of a program or procedure to set or clear this flag indicates
support for the CPUID instruction.

...

2.5 CONTROL REGISTERS
Control registers (CR0, CR1, CR2, CR3, and CR4; see Figure 2-7) determine operating mode of the processor and
the characteristics of the currently executing task. These registers are 32 bits in all 32-bit modes and compati-
bility mode.

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions are used to manipulate the
register bits. Operand-size prefixes for these instructions are ignored. The following is also true:
• Bits 63:32 of CR0 and CR4 are reserved and must be written with zeros. Writing a nonzero value to any of the

upper 32 bits results in a general-protection exception, #GP(0).
• All 64 bits of CR2 are writable by software.
• Bits 51:40 of CR3 are reserved and must be 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 193

• The MOV CRn instructions do not check that addresses written to CR2 and CR3 are within the linear-address
or physical-address limitations of the implementation.

• Register CR8 is available in 64-bit mode only.

The control registers are summarized below, and each architecturally defined control field in these control regis-
ters are described individually. In Figure 2-7, the width of the register in 64-bit mode is indicated in parenthesis
(except for CR0).
• CR0 — Contains system control flags that control operating mode and states of the processor.
• CR1 — Reserved.
• CR2 — Contains the page-fault linear address (the linear address that caused a page fault).
• CR3 — Contains the physical address of the base of the paging-structure hierarchy and two flags (PCD and

PWT). Only the most-significant bits (less the lower 12 bits) of the base address are specified; the lower 12
bits of the address are assumed to be 0. The first paging structure must thus be aligned to a page (4-KByte)
boundary. The PCD and PWT flags control caching of that paging structure in the processor’s internal data
caches (they do not control TLB caching of page-directory information).

When using the physical address extension, the CR3 register contains the base address of the page-directory-
pointer table In IA-32e mode, the CR3 register contains the base address of the PML4 table.

See also: Chapter 4, “Paging.”
• CR4 — Contains a group of flags that enable several architectural extensions, and indicate operating system

or executive support for specific processor capabilities. The control registers can be read and loaded (or
modified) using the move-to-or-from-control-registers forms of the MOV instruction. In protected mode, the
MOV instructions allow the control registers to be read or loaded (at privilege level 0 only). This restriction
means that application programs or operating-system procedures (running at privilege levels 1, 2, or 3) are
prevented from reading or loading the control registers.

• CR8 — Provides read and write access to the Task Priority Register (TPR). It specifies the priority threshold
value that operating systems use to control the priority class of external interrupts allowed to interrupt the
processor. This register is available only in 64-bit mode. However, interrupt filtering continues to apply in
compatibility mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 194

When loading a control register, reserved bits should always be set to the values previously read. The flags in
control registers are:

PG Paging (bit 31 of CR0) — Enables paging when set; disables paging when clear. When paging is
disabled, all linear addresses are treated as physical addresses. The PG flag has no effect if the PE flag (bit
0 of register CR0) is not also set; setting the PG flag when the PE flag is clear causes a general-protection
exception (#GP). See also: Chapter 4, “Paging.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also requires modifying CR0.PG.

CD Cache Disable (bit 30 of CR0) — When the CD and NW flags are clear, caching of memory locations for
the whole of physical memory in the processor’s internal (and external) caches is enabled. When the CD
flag is set, caching is restricted as described in Table 11-5. To prevent the processor from accessing and
updating its caches, the CD flag must be set and the caches must be invalidated so that no cache hits can
occur.

See also: Section 11.5.3, “Preventing Caching,” and Section 11.5, “Cache Control.”

NW Not Write-through (bit 29 of CR0) — When the NW and CD flags are clear, write-back (for Pentium 4,
Intel Xeon, P6 family, and Pentium processors) or write-through (for Intel486 processors) is enabled for
writes that hit the cache and invalidation cycles are enabled. See Table 11-5 for detailed information
about the affect of the NW flag on caching for other settings of the CD and NW flags.

AM Alignment Mask (bit 18 of CR0) — Enables automatic alignment checking when set; disables align-
ment checking when clear. Alignment checking is performed only when the AM flag is set, the AC flag in
the EFLAGS register is set, CPL is 3, and the processor is operating in either protected or virtual-8086
mode.

Figure 2-7 Control Registers

CR1

W
P

A
M

Page-Directory Base

V
M
E

P
S
E

T
S
D

D
E

P
V
I

P
G
E

M
C
E

P
A
E

P
C
E

N
W

P
G

C
D

P
W
T

P
C
D

Page-Fault Linear Address

P
E

E
M

M
P

T
S

N
E

E
T

CR2

CR0

CR4

Reserved

CR3

Reserved

31 2930 28 19 18 17 16 15 6 5 4 3 2 1 0

31(63) 0

31(63) 0

31(63) 12 11 5 4 3 2

31(63) 9 8 7 6 5 4 3 2 1 0

(PDBR)

13 12 11 10

OSFXSR
OSXMMEXCPT

V
M
X
EE

X
M
S

1418

OSXSAVE PCIDE

17

S
M
E
P

20

FSGSBASE

16 15

S
M
A
P

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 195

WP Write Protect (bit 16 of CR0) — When set, inhibits supervisor-level procedures from writing into read-
only pages; when clear, allows supervisor-level procedures to write into read-only pages (regardless of
the U/S bit setting; see Section 4.1.3 and Section 4.6). This flag facilitates implementation of the copy-
on-write method of creating a new process (forking) used by operating systems such as UNIX.

NE Numeric Error (bit 5 of CR0) — Enables the native (internal) mechanism for reporting x87 FPU errors
when set; enables the PC-style x87 FPU error reporting mechanism when clear. When the NE flag is clear
and the IGNNE# input is asserted, x87 FPU errors are ignored. When the NE flag is clear and the IGNNE#
input is deasserted, an unmasked x87 FPU error causes the processor to assert the FERR# pin to generate
an external interrupt and to stop instruction execution immediately before executing the next waiting
floating-point instruction or WAIT/FWAIT instruction.

The FERR# pin is intended to drive an input to an external interrupt controller (the FERR# pin emulates
the ERROR# pin of the Intel 287 and Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and
FERR# pin are used with external logic to implement PC-style error reporting. Using FERR# and IGNNE#
to handle floating-point exceptions is deprecated by modern operating systems; this non-native approach
also limits newer processors to operate with one logical processor active.

See also: “Software Exception Handling” in Chapter 8, “Programming with the x87 FPU,” and Appendix A,
“EFLAGS Cross-Reference,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1.

ET Extension Type (bit 4 of CR0) — Reserved in the Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors. In the Pentium 4, Intel Xeon, and P6 family processors, this flag is hardcoded to 1. In the Intel386
and Intel486 processors, this flag indicates support of Intel 387 DX math coprocessor instructions when
set.

TS Task Switched (bit 3 of CR0) — Allows the saving of the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4
context on a task switch to be delayed until an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is
actually executed by the new task. The processor sets this flag on every task switch and tests it when
executing x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

• If the TS flag is set and the EM flag (bit 2 of CR0) is clear, a device-not-available exception (#NM) is
raised prior to the execution of any x87 FPU/MMX/SSE/ SSE2/SSE3/SSSE3/SSE4 instruction; with the
exception of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and
POPCNT. See the paragraph below for the special case of the WAIT/FWAIT instructions.

• If the TS flag is set and the MP flag (bit 1 of CR0) and EM flag are clear, an #NM exception is not raised
prior to the execution of an x87 FPU WAIT/FWAIT instruction.

• If the EM flag is set, the setting of the TS flag has no affect on the execution of x87 FPU/MMX/SSE/
SSE2/SSE3/SSSE3/SSE4 instructions.

Table 2-2 shows the actions taken when the processor encounters an x87 FPU instruction based on the
settings of the TS, EM, and MP flags. Table 12-1 and 13-1 show the actions taken when the processor
encounters an MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction.

The processor does not automatically save the context of the x87 FPU, XMM, and MXCSR registers on a
task switch. Instead, it sets the TS flag, which causes the processor to raise an #NM exception whenever
it encounters an x87 FPU/MMX/SSE /SSE2/SSE3/SSSE3/SSE4 instruction in the instruction stream for the
new task (with the exception of the instructions listed above).

The fault handler for the #NM exception can then be used to clear the TS flag (with the CLTS instruction)
and save the context of the x87 FPU, XMM, and MXCSR registers. If the task never encounters an x87
FPU/MMX/SSE/SSE2/SSE3//SSSE3/SSE4 instruction; the x87 FPU/MMX/SSE/SSE2/ SSE3/SSSE3/SSE4
context is never saved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 196

EM Emulation (bit 2 of CR0) — Indicates that the processor does not have an internal or external x87 FPU
when set; indicates an x87 FPU is present when clear. This flag also affects the execution of MMX/SSE/
SSE2/SSE3/SSSE3/SSE4 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a device-not-available exception
(#NM). This flag must be set when the processor does not have an internal x87 FPU or is not connected
to an external math coprocessor. Setting this flag forces all floating-point instructions to be handled by
software emulation. Table 9-2 shows the recommended setting of this flag, depending on the IA-32
processor and x87 FPU or math coprocessor present in the system. Table 2-2 shows the interaction of the
EM, MP, and TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an invalid-opcode exception (#UD)
to be generated (see Table 12-1). Thus, if an IA-32 or Intel 64 processor incorporates MMX technology,
the EM flag must be set to 0 to enable execution of MMX instructions.

Similarly for SSE/SSE2/SSE3/SSSE3/SSE4 extensions, when the EM flag is set, execution of most SSE/
SSE2/SSE3/SSSE3/SSE4 instructions causes an invalid opcode exception (#UD) to be generated (see
Table 13-1). If an IA-32 or Intel 64 processor incorporates the SSE/SSE2/SSE3/SSSE3/SSE4 extensions,
the EM flag must be set to 0 to enable execution of these extensions. SSE/SSE2/SSE3/SSSE3/SSE4
instructions not affected by the EM flag include: PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE,
MOVNTI, CLFLUSH, CRC32, and POPCNT.

MP Monitor Coprocessor (bit 1 of CR0). — Controls the interaction of the WAIT (or FWAIT) instruction with
the TS flag (bit 3 of CR0). If the MP flag is set, a WAIT instruction generates a device-not-available excep-
tion (#NM) if the TS flag is also set. If the MP flag is clear, the WAIT instruction ignores the setting of the
TS flag. Table 9-2 shows the recommended setting of this flag, depending on the IA-32 processor and x87
FPU or math coprocessor present in the system. Table 2-2 shows the interaction of the MP, EM, and TS
flags.

PE Protection Enable (bit 0 of CR0) — Enables protected mode when set; enables real-address mode
when clear. This flag does not enable paging directly. It only enables segment-level protection. To enable
paging, both the PE and PG flags must be set.

See also: Section 9.9, “Mode Switching.”

PCD Page-level Cache Disable (bit 4 of CR3) — Controls the memory type used to access the first paging
structure of the current paging-structure hierarchy. See Section 4.9, “Paging and Memory Typing”. This
bit is not used if paging is disabled, with PAE paging, or with IA-32e paging if CR4.PCIDE=1.

PWT Page-level Write-Through (bit 3 of CR3) — Controls the memory type used to access the first paging
structure of the current paging-structure hierarchy. See Section 4.9, “Paging and Memory Typing”. This
bit is not used if paging is disabled, with PAE paging, or with IA-32e paging if CR4.PCIDE=1.

Table 2-2 Action Taken By x87 FPU Instructions for Different Combinations of EM, MP, and TS

CR0 Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT

0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.

1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.

1 1 1 #NM Exception #NM exception.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 197

VME Virtual-8086 Mode Extensions (bit 0 of CR4) — Enables interrupt- and exception-handling exten-
sions in virtual-8086 mode when set; disables the extensions when clear. Use of the virtual mode exten-
sions can improve the performance of virtual-8086 applications by eliminating the overhead of calling the
virtual-8086 monitor to handle interrupts and exceptions that occur while executing an 8086 program
and, instead, redirecting the interrupts and exceptions back to the 8086 program’s handlers. It also
provides hardware support for a virtual interrupt flag (VIF) to improve reliability of running 8086
programs in multitasking and multiple-processor environments.

See also: Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode.”

PVI Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware support for a virtual interrupt
flag (VIF) in protected mode when set; disables the VIF flag in protected mode when clear.

See also: Section 20.4, “Protected-Mode Virtual Interrupts.”

TSD Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the RDTSC instruction to procedures
running at privilege level 0 when set; allows RDTSC instruction to be executed at any privilege level when
clear. This bit also applies to the RDTSCP instruction if supported (if CPUID.80000001H:EDX[27] = 1).

DE Debugging Extensions (bit 3 of CR4) — References to debug registers DR4 and DR5 cause an unde-
fined opcode (#UD) exception to be generated when set; when clear, processor aliases references to
registers DR4 and DR5 for compatibility with software written to run on earlier IA-32 processors.

See also: Section 17.2.2, “Debug Registers DR4 and DR5.”

PSE Page Size Extensions (bit 4 of CR4) — Enables 4-MByte pages with 32-bit paging when set; restricts
32-bit paging to pages to 4 KBytes when clear.

See also: Section 4.3, “32-Bit Paging.”

PAE Physical Address Extension (bit 5 of CR4) — When set, enables paging to produce physical addresses
with more than 32 bits. When clear, restricts physical addresses to 32 bits. PAE must be set before
entering IA-32e mode.

See also: Chapter 4, “Paging.”

MCE Machine-Check Enable (bit 6 of CR4) — Enables the machine-check exception when set; disables the
machine-check exception when clear.

See also: Chapter 15, “Machine-Check Architecture.”

PGE Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family processors.) Enables the global page
feature when set; disables the global page feature when clear. The global page feature allows frequently
used or shared pages to be marked as global to all users (done with the global flag, bit 8, in a page-direc-
tory or page-table entry). Global pages are not flushed from the translation-lookaside buffer (TLB) on a
task switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting the PG flag in control register
CR0) before the PGE flag is set. Reversing this sequence may affect program correctness, and processor
performance will be impacted.

See also: Section 4.10, “Caching Translation Information.”

PCE Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables execution of the RDPMC instruc-
tion for programs or procedures running at any protection level when set; RDPMC instruction can be
executed only at protection level 0 when clear.

OSFXSR
Operating System Support for FXSAVE and FXRSTOR instructions (bit 9 of CR4) — When set, this
flag: (1) indicates to software that the operating system supports the use of the FXSAVE and FXRSTOR
instructions, (2) enables the FXSAVE and FXRSTOR instructions to save and restore the contents of the
XMM and MXCSR registers along with the contents of the x87 FPU and MMX registers, and (3) enables the
processor to execute SSE/SSE2/SSE3/SSSE3/SSE4 instructions, with the exception of the PAUSE,
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 198

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and restore the contents of the x87
FPU and MMX instructions, but they may not save and restore the contents of the XMM and MXCSR regis-
ters. Also, the processor will generate an invalid opcode exception (#UD) if it attempts to execute any
SSE/SSE2/SSE3 instruction, with the exception of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE,
MOVNTI, CLFLUSH, CRC32, and POPCNT. The operating system or executive must explicitly set this flag.

NOTE
CPUID feature flags FXSR indicates availability of the FXSAVE/FXRSTOR instructions. The OSFXSR
bit provides operating system software with a means of enabling FXSAVE/FXRSTOR to save/
restore the contents of the X87 FPU, XMM and MXCSR registers. Consequently OSFXSR bit
indicates that the operating system provides context switch support for SSE/SSE2/SSE3/SSSE3/
SSE4.

OSXMMEXCPT
Operating System Support for Unmasked SIMD Floating-Point Exceptions (bit 10 of CR4) —
When set, indicates that the operating system supports the handling of unmasked SIMD floating-point
exceptions through an exception handler that is invoked when a SIMD floating-point exception (#XM) is
generated. SIMD floating-point exceptions are only generated by SSE/SSE2/SSE3/SSE4.1 SIMD floating-
point instructions.

The operating system or executive must explicitly set this flag. If this flag is not set, the processor will
generate an invalid opcode exception (#UD) whenever it detects an unmasked SIMD floating-point
exception.

VMXE
VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See Chapter 23, “Introduction to
Virtual-Machine Extensions.”

SMXE
SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See Chapter 5, “Safer Mode Exten-
sions Reference” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C.

FSGSBASE
FSGSBASE-Enable Bit (bit 16 of CR4) — Enables the instructions RDFSBASE, RDGSBASE, WRFSBASE,
and WRGSBASE.

PCIDE
PCID-Enable Bit (bit 17 of CR4) — Enables process-context identifiers (PCIDs) when set. See Section
4.10.1, “Process-Context Identifiers (PCIDs)”. Can be set only in IA-32e mode (if IA32_EFER.LMA = 1).

OSXSAVE
XSAVE and Processor Extended States-Enable Bit (bit 18 of CR4) — When set, this flag: (1) indi-
cates (via CPUID.01H:ECX.OSXSAVE[bit 27]) that the operating system supports the use of the XGETBV,
XSAVE and XRSTOR instructions by general software; (2) enables the XSAVE and XRSTOR instructions to
save and restore the x87 FPU state (including MMX registers), the SSE state (XMM registers and MXCSR),
along with other processor extended states enabled in XCR0; (3) enables the processor to execute
XGETBV and XSETBV instructions in order to read and write XCR0. See Section 2.6 and Chapter 13,
“System Programming for Instruction Set Extensions and Processor Extended States”.

SMEP
SMEP-Enable Bit (bit 20 of CR4) — Enables supervisor-mode execution prevention (SMEP) when set.
See Section 4.6, “Access Rights”.

SMAP
SMAP-Enable Bit (bit 21 of CR4) — Enables supervisor-mode access prevention (SMAP) when set. See
Section 4.6, “Access Rights.”

TPL
Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corresponding to the highest-

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 199

priority interrupt to be blocked. A value of 0 means all interrupts are enabled. This field is available in 64-
bit mode. A value of 15 means all interrupts will be disabled.

...

21. Updates to Chapter 4, Volume 3A
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

4.1 PAGING MODES AND CONTROL BITS
Paging behavior is controlled by the following control bits:
• The WP and PG flags in control register CR0 (bit 16 and bit 31, respectively).
• The PSE, PAE, PGE, PCIDE, SMEP, and SMAP flags in control register CR4 (bit 4, bit 5, bit 7, bit 17, bit 20, and

bit 21, respectively).
• The LME and NXE flags in the IA32_EFER MSR (bit 8 and bit 11, respectively).
• The AC flag in the EFLAGS register (bit 18).

Software enables paging by using the MOV to CR0 instruction to set CR0.PG. Before doing so, software should
ensure that control register CR3 contains the physical address of the first paging structure that the processor will
use for linear-address translation (see Section 4.2) and that structure is initialized as desired. See Table 4-3,
Table 4-7, and Table 4-12 for the use of CR3 in the different paging modes.

Section 4.1.1 describes how the values of CR0.PG, CR4.PAE, and IA32_EFER.LME determine whether paging is in
use and, if so, which of three paging modes is in use. Section 4.1.2 explains how to manage these bits to establish
or make changes in paging modes. Section 4.1.3 discusses how CR0.WP, CR4.PSE, CR4.PGE, CR4.PCIDE,
CR4.SMEP, CR4.SMAP, and IA32_EFER.NXE modify the operation of the different paging modes.

4.1.1 Three Paging Modes
If CR0.PG = 0, paging is not used. The logical processor treats all linear addresses as if they were physical
addresses. CR4.PAE and IA32_EFER.LME are ignored by the processor, as are CR0.WP, CR4.PSE, CR4.PGE,
CR4.SMEP, CR4.SMAP, and IA32_EFER.NXE.

Paging is enabled if CR0.PG = 1. Paging can be enabled only if protection is enabled (CR0.PE = 1). If paging is
enabled, one of three paging modes is used. The values of CR4.PAE and IA32_EFER.LME determine which paging
mode is used:
• If CR0.PG = 1 and CR4.PAE = 0, 32-bit paging is used. 32-bit paging is detailed in Section 4.3. 32-bit paging

uses CR0.WP, CR4.PSE, CR4.PGE, CR4.SMEP, and CR4.SMAP as described in Section 4.1.3.
• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 0, PAE paging is used. PAE paging is detailed in Section

4.4. PAE paging uses CR0.WP, CR4.PGE, CR4.SMEP, CR4.SMAP, and IA32_EFER.NXE as described in Section
4.1.3.

• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 1, IA-32e paging is used.1 IA-32e paging is detailed in
Section 4.5. IA-32e paging uses CR0.WP, CR4.PGE, CR4.PCIDE, CR4.SMEP, CR4.SMAP, and IA32_EFER.NXE
as described in Section 4.1.3. IA-32e paging is available only on processors that support the Intel 64 archi-
tecture.

The three paging modes differ with regard to the following details:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 200

• Linear-address width. The size of the linear addresses that can be translated.
• Physical-address width. The size of the physical addresses produced by paging.
• Page size. The granularity at which linear addresses are translated. Linear addresses on the same page are

translated to corresponding physical addresses on the same page.
• Support for execute-disable access rights. In some paging modes, software can be prevented from fetching

instructions from pages that are otherwise readable.
• Support for PCIDs. In some paging modes, software can enable a facility by which a logical processor caches

information for multiple linear-address spaces. The processor may retain cached information when software
switches between different linear-address spaces.

Table 4-1 illustrates the key differences between the three paging modes.

Because they are used only if IA32_EFER.LME = 0, 32-bit paging and PAE paging is used only in legacy protected
mode. Because legacy protected mode cannot produce linear addresses larger than 32 bits, 32-bit paging and
PAE paging translate 32-bit linear addresses.

Because it is used only if IA32_EFER.LME = 1, IA-32e paging is used only in IA-32e mode. (In fact, it is the use of
IA-32e paging that defines IA-32e mode.) IA-32e mode has two sub-modes:
• Compatibility mode. This mode uses only 32-bit linear addresses. IA-32e paging treats bits 47:32 of such an

address as all 0.
• 64-bit mode. While this mode produces 64-bit linear addresses, the processor ensures that bits 63:47 of such

an address are identical.1 IA-32e paging does not use bits 63:48 of such addresses.

1. The LMA flag in the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical processor is in IA-32e mode (and thus
using IA-32e paging). The processor always sets IA32_EFER.LMA to CR0.PG & IA32_EFER.LME. Software cannot directly modify
IA32_EFER.LMA; an execution of WRMSR to the IA32_EFER MSR ignores bit 10 of its source operand.

Table 4-1 Properties of Different Paging Modes

Paging
Mode

PG in
CR0

PAE in
CR4

LME in
IA32_EFER

Lin.-
Addr.
Width

Phys.-
Addr.
Width1

Page
Sizes

Supports
Execute-
Disable?

Supports
PCIDs?

None 0 N/A N/A 32 32 N/A No No

32-bit 1 0 02 32
Up to
403

4 KB
4 MB4 No No

PAE 1 1 0 32
Up to
52

4 KB
2 MB

Yes5 No

IA-32e 1 1 1 48
Up to
52

4 KB
2 MB
1 GB6

Yes5 Yes7

NOTES:
1. The physical-address width is always bounded by MAXPHYADDR; see Section 4.1.4.
2. The processor ensures that IA32_EFER.LME must be 0 if CR0.PG = 1 and CR4.PAE = 0.
3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and only if the PSE-36 mechanism is

supported; see Section 4.1.4 and Section 4.3.
4. 4-MByte pages are used with 32-bit paging only if CR4.PSE = 1; see Section 4.3.
5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 4.6.
6. Not all processors that support IA-32e paging support 1-GByte pages; see Section 4.1.4.
7. PCIDs are used only if CR4.PCIDE = 1; see Section 4.10.1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 201

...

4.1.3 Paging-Mode Modifiers
Details of how each paging mode operates are determined by the following control bits:
• The WP flag in CR0 (bit 16).
• The PSE, PGE, PCIDE, SMEP, and SMAP flags in CR4 (bit 4, bit 7, bit 17, bit 20, and bit 21, respectively).
• The NXE flag in the IA32_EFER MSR (bit 11).

CR0.WP allows pages to be protected from supervisor-mode writes. If CR0.WP = 0, supervisor-mode write
accesses are allowed to linear addresses with read-only access rights; if CR0.WP = 1, they are not. (User-mode
write accesses are never allowed to linear addresses with read-only access rights, regardless of the value of
CR0.WP.) Section 4.6 explains how access rights are determined, including the definition of supervisor-mode and
user-mode accesses.

CR4.PSE enables 4-MByte pages for 32-bit paging. If CR4.PSE = 0, 32-bit paging can use only 4-KByte pages; if
CR4.PSE = 1, 32-bit paging can use both 4-KByte pages and 4-MByte pages. See Section 4.3 for more informa-
tion. (PAE paging and IA-32e paging can use multiple page sizes regardless of the value of CR4.PSE.)

CR4.PGE enables global pages. If CR4.PGE = 0, no translations are shared across address spaces; if CR4.PGE =
1, specified translations may be shared across address spaces. See Section 4.10.2.4 for more information.

CR4.PCIDE enables process-context identifiers (PCIDs) for IA-32e paging (CR4.PCIDE can be 1 only when IA-32e
paging is in use). PCIDs allow a logical processor to cache information for multiple linear-address spaces. See
Section 4.10.1 for more information.

CR4.SMEP allows pages to be protected from supervisor-mode instruction fetches. If CR4.SMEP = 1, software
operating in supervisor mode cannot fetch instructions from linear addresses that are accessible in user mode.
Section 4.6 explains how access rights are determined, including the definition of supervisor-mode accesses and
user-mode accessibility.

CR4.SMAP allows pages to be protected from supervisor-mode data accesses. If CR4.SMAP = 1, software oper-
ating in supervisor mode cannot access data at linear addresses that are accessible in user mode. Software can
override this protection by setting EFLAGS.AC. Section 4.6 explains how access rights are determined, including
the definition of supervisor-mode accesses and user-mode accessibility.

IA32_EFER.NXE enables execute-disable access rights for PAE paging and IA-32e paging. If IA32_EFER.NXE = 1,
instructions fetches can be prevented from specified linear addresses (even if data reads from the addresses are
allowed). Section 4.6 explains how access rights are determined. (IA32_EFER.NXE has no effect with 32-bit
paging. Software that wants to use this feature to limit instruction fetches from readable pages must use either
PAE paging or IA-32e paging.)

4.1.4 Enumeration of Paging Features by CPUID
Software can discover support for different paging features using the CPUID instruction:
• PSE: page-size extensions for 32-bit paging.

If CPUID.01H:EDX.PSE [bit 3] = 1, CR4.PSE may be set to 1, enabling support for 4-MByte pages with 32-bit
paging (see Section 4.3).

• PAE: physical-address extension.
If CPUID.01H:EDX.PAE [bit 6] = 1, CR4.PAE may be set to 1, enabling PAE paging (this setting is also
required for IA-32e paging).

1. Such an address is called canonical. Use of a non-canonical linear address in 64-bit mode produces a general-protection exception
(#GP(0)); the processor does not attempt to translate non-canonical linear addresses using IA-32e paging.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 202

• PGE: global-page support.
If CPUID.01H:EDX.PGE [bit 13] = 1, CR4.PGE may be set to 1, enabling the global-page feature (see Section
4.10.2.4).

• PAT: page-attribute table.
If CPUID.01H:EDX.PAT [bit 16] = 1, the 8-entry page-attribute table (PAT) is supported. When the PAT is
supported, three bits in certain paging-structure entries select a memory type (used to determine type of
caching used) from the PAT (see Section 4.9.2).

• PSE-36: page-size extensions with 40-bit physical-address extension.
If CPUID.01H:EDX.PSE-36 [bit 17] = 1, the PSE-36 mechanism is supported, indicating that translations
using 4-MByte pages with 32-bit paging may produce physical addresses with up to 40 bits (see Section 4.3).

• PCID: process-context identifiers.
If CPUID.01H:ECX.PCID [bit 17] = 1, CR4.PCIDE may be set to 1, enabling process-context identifiers (see
Section 4.10.1).

• SMEP: supervisor-mode execution prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMEP [bit 7] = 1, CR4.SMEP may be set to 1, enabling supervisor-mode
execution prevention (see Section 4.6).

• SMAP: supervisor-mode access prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMAP [bit 20] = 1, CR4.SMAP may be set to 1, enabling supervisor-mode
access prevention (see Section 4.6).

• NX: execute disable.
If CPUID.80000001H:EDX.NX [bit 20] = 1, IA32_EFER.NXE may be set to 1, allowing PAE paging and IA-32e
paging to disable execute access to selected pages (see Section 4.6). (Processors that do not support CPUID
function 80000001H do not allow IA32_EFER.NXE to be set to 1.)

• Page1GB: 1-GByte pages.
If CPUID.80000001H:EDX.Page1GB [bit 26] = 1, 1-GByte pages are supported with IA-32e paging (see
Section 4.5).

• LM: IA-32e mode support.
If CPUID.80000001H:EDX.LM [bit 29] = 1, IA32_EFER.LME may be set to 1, enabling IA-32e paging.
(Processors that do not support CPUID function 80000001H do not allow IA32_EFER.LME to be set to 1.)

• CPUID.80000008H:EAX[7:0] reports the physical-address width supported by the processor. (For processors
that do not support CPUID function 80000008H, the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1
and 32 otherwise.) This width is referred to as MAXPHYADDR. MAXPHYADDR is at most 52.

• CPUID.80000008H:EAX[15:8] reports the linear-address width supported by the processor. Generally, this
value is 48 if CPUID.80000001H:EDX.LM [bit 29] = 1 and 32 otherwise. (Processors that do not support
CPUID function 80000008H, support a linear-address width of 32.)

...

4.6 ACCESS RIGHTS
There is a translation for a linear address if the processes described in Section 4.3, Section 4.4.2, and Section 4.5
(depending upon the paging mode) completes and produces a physical address. Whether an access is permitted
by a translation is determined by the access rights specified by the paging-structure entries controlling the trans-
lation;1 paging-mode modifiers in CR0, CR4, and the IA32_EFER MSR; EFLAGS.AC; and the mode of the access.

Every access to a linear address is either a supervisor-mode access or a user-mode access. For all instruction
fetches and most data accesses, this distinction is determined by the current privilege level (CPL): accesses made
while CPL < 3 are supervisor-mode accesses, while accesses made while CPL = 3 are user-mode accesses.

1. With PAE paging, the PDPTEs do not determine access rights.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 203

Some operations implicitly access system data structures with linear addresses; the resulting accesses to those
data structures are supervisor-mode accesses regardless of CPL. Examples of such accesses include the
following: accesses to the global descriptor table (GDT) or local descriptor table (LDT) to load a segment
descriptor; accesses to the interrupt descriptor table (IDT) when delivering an interrupt or exception; and
accesses to the task-state segment (TSS) as part of a task switch or change of CPL. All these accesses are called
implicit supervisor-mode accesses regardless of CPL. Other accesses made while CPL < 3 are called explicit
supervisor-mode accesses.

The following items detail how paging determines access rights:
• For supervisor-mode accesses:

— Explicit data reads.
Access rights depend on the values of CR4.SMAP and EFLAGS.AC:

• If CR4.SMAP = 0 or EFLAGS.AC = 1, data may be read from any linear address with a translation.

• If CR4.SMAP = 1 and EFLAGS.AC = 0, data may be read from any linear address with a translation for
which the U/S flag (bit 2) is 0 in at least one of the paging-structure entries controlling the translation.

— Explicit data writes.
Access rights depend on the values of CR0.WP, CR4.SMAP, and EFLAGS.AC:

• If CR0.WP = 0 and either CR4.SMAP = 0 or EFLAGS.AC = 1, data may be written to any linear address
with a translation.

• If CR0.WP = 0, CR4.SMAP = 1, and EFLAGS.AC = 0, data may be written to any linear address with a
translation for which the U/S flag (bit 2) is 0 in at least one of the paging-structure entries controlling
the translation.

• If CR0.WP = 1 and either CR4.SMAP = 0 or EFLAGS.AC = 1, data may be written to any linear address
with a translation for which the R/W flag (bit 1) is 1 in every paging-structure entry controlling the
translation.

• If CR0.WP = 1, CR4.SMAP = 1, and EFLAGS.AC = 0, data may be written to any linear address with a
translation for which (1) the R/W flag (bit 1) is 1 in every paging-structure entry controlling the trans-
lation; and (2) the U/S flag (bit 2) is 0 in at least one of the paging-structure entries controlling the
translation.

— Implicit data reads.
Access rights depend on the values of CR4.SMAP:

• If CR4.SMAP = 0, data may be read from any linear address with a translation.

• If CR4.SMAP = 1, data may be read from any linear address with a translation for which the U/S flag
(bit 2) is 0 in at least one of the paging-structure entries controlling the translation.

— Implicit data writes.
Access rights depend on the values of CR0.WP and CR4.SMAP:

• If CR0.WP = 0 and CR4.SMAP = 0, data may be written to any linear address with a translation.

• If CR0.WP = 0 and CR4.SMAP = 1, data may be written to any linear address with a translation for
which the U/S flag (bit 2) is 0 in at least one of the paging-structure entries controlling the translation.

• If CR0.WP = 1 and CR4.SMAP = 0, data may be written to any linear address with a translation for
which the R/W flag (bit 1) is 1 in every paging-structure entry controlling the translation.

• If CR0.WP = 1 and CR4.SMAP = 1, data may be written to any linear address with a translation for
which (1) the R/W flag (bit 1) is 1 in every paging-structure entry controlling the translation; and
(2) the U/S flag (bit 2) is 0 in at least one of the paging-structure entries controlling the translation.

— Instruction fetches.

• For 32-bit paging or if IA32_EFER.NXE = 0, access rights depend on the value of CR4.SMEP:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 204

— If CR4.SMEP = 0, instructions may be fetched from any linear address with a translation.

— If CR4.SMEP = 1, instructions may be fetched from any linear address with a translation for which
the U/S flag (bit 2) is 0 in at least one of the paging-structure entries controlling the translation.

• For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, access rights depend on the value of
CR4.SMEP:

— If CR4.SMEP = 0, instructions may be fetched from any linear address with a translation for which
the XD flag (bit 63) is 0 in every paging-structure entry controlling the translation.

— If CR4.SMEP = 1, instructions may be fetched from any linear address with a translation for which
(1) the U/S flag is 0 in at least one of the paging-structure entries controlling the translation; and
(2) the XD flag is 0 in every paging-structure entry controlling the translation.

• For user-mode accesses:

— Data reads.
Data may be read from any linear address with a translation for which the U/S flag (bit 2) is 1 in every
paging-structure entry controlling the translation.

— Data writes.
Data may be written to any linear address with a translation for which both the R/W flag and the U/S flag
are 1 in every paging-structure entry controlling the translation.

— Instruction fetches.

• For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any linear address with
a translation for which the U/S flag is 1 in every paging-structure entry controlling the translation.

• For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, instructions may be fetched from any
linear address with a translation for which the U/S flag is 1 and the XD flag is 0 in every paging-
structure entry controlling the translation.

A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see
Section 4.10). These structures may include information about access rights. The processor may enforce access
rights based on the TLBs and paging-structure caches instead of on the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change access rights, the processor might
not use that change for a subsequent access to an affected linear address (see Section 4.10.4.3). See Section
4.10.4.2 for how software can ensure that the processor uses the modified access rights.

4.7 PAGE-FAULT EXCEPTIONS
Accesses using linear addresses may cause page-fault exceptions (#PF; exception 14). An access to a linear
address may cause page-fault exception for either of two reasons: (1) there is no translation for the linear
address; or (2) there is a translation for the linear address, but its access rights do not permit the access.

As noted in Section 4.3, Section 4.4.2, and Section 4.5, there is no translation for a linear address if the transla-
tion process for that address would use a paging-structure entry in which the P flag (bit 0) is 0 or one that sets a
reserved bit. If there is a translation for a linear address, its access rights are determined as specified in Section
4.6.

Figure 4-12 illustrates the error code that the processor provides on delivery of a page-fault exception. The
following items explain how the bits in the error code describe the nature of the page-fault exception:
• P flag (bit 0).

This flag is 0 if there is no translation for the linear address because the P flag was 0 in one of the paging-
structure entries used to translate that address.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 205

• W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, it is 0. This flag describes
the access causing the page-fault exception, not the access rights specified by paging.

• U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is 0 if a supervisor-mode access did
so. This flag describes the access causing the page-fault exception, not the access rights specified by paging.
User-mode and supervisor-mode accesses are defined in Section 4.6.

• RSVD flag (bit 3).
This flag is 1 if there is no translation for the linear address because a reserved bit was set in one of the
paging-structure entries used to translate that address. (Because reserved bits are not checked in a paging-
structure entry whose P flag is 0, bit 3 of the error code can be set only if bit 0 is also set.1)
Bits reserved in the paging-structure entries are reserved for future functionality. Software developers should
be aware that such bits may be used in the future and that a paging-structure entry that causes a page-fault
exception on one processor might not do so in the future.

• I/D flag (bit 4).
This flag is 1 if (1) the access causing the page-fault exception was an instruction fetch; and (2) either
(a) CR4.SMEP = 1; or (b) both (i) CR4.PAE = 1 (either PAE paging or IA-32e paging is in use); and
(ii) IA32_EFER.NXE = 1. Otherwise, the flag is 0. This flag describes the access causing the page-fault
exception, not the access rights specified by paging.

Page-fault exceptions occur only due to an attempt to use a linear address. Failures to load the PDPTE registers
with PAE paging (see Section 4.4.1) cause general-protection exceptions (#GP(0)) and not page-fault exceptions.

...

Figure 4-12 Page-Fault Error Code

1. Some past processors had errata for some page faults that occur when there is no translation for the linear address because the P
flag was 0 in one of the paging-structure entries used to translate that address. Due to these errata, some such page faults pro-
duced error codes that cleared bit 0 (P flag) and set bit 3 (RSVD flag).

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

A supervisor-mode access caused the fault.
A user-mode access caused the fault.

31 0

Reserved

1234

The fault was not caused by reserved bit violation.
The fault was caused by a reserved bit set to 1 in some

P 0
1

W/R 0
1

U/S 0

RSVD 0
1

1

I/D

I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

PW
/R

U/S
RSVD

paging-structure entry.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 206

4.10.2.3 Details of TLB Use
Because the TLBs cache entries only for linear addresses with translations, there can be a TLB entry for a page
number only if the P flag is 1 and the reserved bits are 0 in each of the paging-structure entries used to translate
that page number. In addition, the processor does not cache a translation for a page number unless the accessed
flag is 1 in each of the paging-structure entries used during translation; before caching a translation, the
processor sets any of these accessed flags that is not already 1.

The processor may cache translations required for prefetches and for accesses that are a result of speculative
execution that would never actually occur in the executed code path.

If the page number of a linear address corresponds to a TLB entry associated with the current PCID, the processor
may use that TLB entry to determine the page frame, access rights, and other attributes for accesses to that
linear address. In this case, the processor may not actually consult the paging structures in memory. The
processor may retain a TLB entry unmodified even if software subsequently modifies the relevant paging-struc-
ture entries in memory. See Section 4.10.4.2 for how software can ensure that the processor uses the modified
paging-structure entries.

If the paging structures specify a translation using a page larger than 4 KBytes, some processors may cache
multiple smaller-page TLB entries for that translation. Each such TLB entry would be associated with a page
number corresponding to the smaller page size (e.g., bits 47:12 of a linear address with IA-32e paging), even
though part of that page number (e.g., bits 20:12) are part of the offset with respect to the page specified by the
paging structures. The upper bits of the physical address in such a TLB entry are derived from the physical
address in the PDE used to create the translation, while the lower bits come from the linear address of the access
for which the translation is created. There is no way for software to be aware that multiple translations for smaller
pages have been used for a large page. For example, an execution of INVLPG for a linear address on such a page
invalidates any and all smaller-page TLB entries for the translation of any linear address on that page.

If software modifies the paging structures so that the page size used for a 4-KByte range of linear addresses
changes, the TLBs may subsequently contain multiple translations for the address range (one for each page size).
A reference to a linear address in the address range may use any of these translations. Which translation is used
may vary from one execution to another, and the choice may be implementation-specific.

...

4.10.4.1 Operations that Invalidate TLBs and Paging-Structure Caches
The following instructions invalidate entries in the TLBs and the paging-structure caches:
• INVLPG. This instruction takes a single operand, which is a linear address. The instruction invalidates any TLB

entries that are for a page number corresponding to the linear address and that are associated with the
current PCID. It also invalidates any global TLB entries with that page number, regardless of PCID (see
Section 4.10.2.4).1 INVLPG also invalidates all entries in all paging-structure caches associated with the
current PCID, regardless of the linear addresses to which they correspond.

• INVPCID. The operation of this instruction is based on instruction operands, called the INVPCID type and the
INVPCID descriptor. Four INVPCID types are currently defined:

— Individual-address. If the INVPCID type is 0, the logical processor invalidates mappings—except global
translations—associated with the PCID specified in the INVPCID descriptor and that would be used to
translate the linear address specified in the INVPCID descriptor.2 (The instruction may also invalidate
global translations, as well as mappings associated with other PCIDs and for other linear addresses.)

1. If the paging structures map the linear address using a page larger than 4 KBytes and there are multiple TLB entries for that page
(see Section 4.10.2.3), the instruction invalidates all of them.

2. If the paging structures map the linear address using a page larger than 4 KBytes and there are multiple TLB entries for that page
(see Section 4.10.2.3), the instruction invalidates all of them.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 207

— Single-context. If the INVPCID type is 1, the logical processor invalidates all mappings—except global
translations—associated with the PCID specified in the INVPCID descriptor. (The instruction may also
invalidate global translations, as well as mappings associated with other PCIDs.)

— All-context, including globals. If the INVPCID type is 2, the logical processor invalidates mappings—
including global translations—associated with all PCIDs.

— All-context. If the INVPCID type is 3, the logical processor invalidates mappings—except global transla-
tions—associated with all PCIDs. (The instruction may also invalidate global translations.)

See Chapter 3 of the Intel 64 and IA-32 Architecture Software Developer’s Manual, Volume 2A for details of
the INVPCID instruction.

• MOV to CR0. The instruction invalidates all TLB entries (including global entries) and all entries in all paging-
structure caches (for all PCIDs) if it changes the value of CR0.PG from 1 to 0.

• MOV to CR3. The behavior of the instruction depends on the value of CR4.PCIDE:

— If CR4.PCIDE = 0, the instruction invalidates all TLB entries associated with PCID 000H except those for
global pages. It also invalidates all entries in all paging-structure caches associated with PCID 000H.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 0, the instruction invalidates all TLB
entries associated with the PCID specified in bits 11:0 of the instruction’s source operand except those for
global pages. It also invalidates all entries in all paging-structure caches associated with that PCID. It is
not required to invalidate entries in the TLBs and paging-structure caches that are associated with other
PCIDs.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 1, the instruction is not required to
invalidate any TLB entries or entries in paging-structure caches.

• MOV to CR4. The behavior of the instruction depends on the bits being modified:

— The instruction invalidates all TLB entries (including global entries) and all entries in all paging-structure
caches (for all PCIDs) if (1) it changes the value of CR4.PGE;1 or (2) it changes the value of the
CR4.PCIDE from 1 to 0.

— The instruction invalidates all TLB entries and all entries in all paging-structure caches for the current
PCID if (1) it changes the value of CR4.PAE; or (2) it changes the value of CR4.SMEP from 0 to 1.

• Task switch. If a task switch changes the value of CR3, it invalidates all TLB entries associated with PCID 000H
except those for global pages. It also invalidates all entries in all paging-structure caches for associated with
PCID 000H.2

• VMX transitions. See Section 4.11.1.

The processor is always free to invalidate additional entries in the TLBs and paging-structure caches. The
following are some examples:
• INVLPG may invalidate TLB entries for pages other than the one corresponding to its linear-address operand.

It may invalidate TLB entries and paging-structure-cache entries associated with PCIDs other than the current
PCID.

• INVPCID may invalidate TLB entries for pages other than the one corresponding to the specified linear
address. It may invalidate TLB entries and paging-structure-cache entries associated with PCIDs other than
the specified PCID.

• MOV to CR0 may invalidate TLB entries even if CR0.PG is not changing. For example, this may occur if either
CR0.CD or CR0.NW is modified.

1. If CR4.PGE is changing from 0 to 1, there were no global TLB entries before the execution; if CR4.PGE is changing from 1 to 0,
there will be no global TLB entries after the execution.

2. Task switches do not occur in IA-32e mode and thus cannot occur with IA-32e paging. Since CR4.PCIDE can be set only with IA-32e
paging, task switches occur only with CR4.PCIDE = 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 208

• MOV to CR3 may invalidate TLB entries for global pages. If CR4.PCIDE = 1 and bit 63 of the instruction’s
source operand is 0, it may invalidate TLB entries and entries in the paging-structure caches associated with
PCIDs other than the current PCID. It may invalidate entries if CR4.PCIDE = 1 and bit 63 of the instruction’s
source operand is 1.

• MOV to CR4 may invalidate TLB entries when changing CR4.PSE or when changing CR4.SMEP from 1 to 0.
• On a processor supporting Hyper-Threading Technology, invalidations performed on one logical processor may

invalidate entries in the TLBs and paging-structure caches used by other logical processors.

(Other instructions and operations may invalidate entries in the TLBs and the paging-structure caches, but the
instructions identified above are recommended.)

In addition to the instructions identified above, page faults invalidate entries in the TLBs and paging-structure
caches. In particular, a page-fault exception resulting from an attempt to use a linear address will invalidate any
TLB entries that are for a page number corresponding to that linear address and that are associated with the
current PCID. it also invalidates all entries in the paging-structure caches that would be used for that linear
address and that are associated with the current PCID.1 These invalidations ensure that the page-fault exception
will not recur (if the faulting instruction is re-executed) if it would not be caused by the contents of the paging
structures in memory (and if, therefore, it resulted from cached entries that were not invalidated after the paging
structures were modified in memory).

As noted in Section 4.10.2, some processors may choose to cache multiple smaller-page TLB entries for a trans-
lation specified by the paging structures to use a page larger than 4 KBytes. There is no way for software to be
aware that multiple translations for smaller pages have been used for a large page. The INVLPG instruction and
page faults provide the same assurances that they provide when a single TLB entry is used: they invalidate all TLB
entries corresponding to the translation specified by the paging structures.

...

22. Updates to Chapter 5, Volume 3A
Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

5.8.3.1 IA-32e Mode Call Gates
Call-gate descriptors in 32-bit mode provide a 32-bit offset for the instruction pointer (EIP); 64-bit extensions
double the size of 32-bit mode call gates in order to store 64-bit instruction pointers (RIP). See Figure 5-9:
• The first eight bytes (bytes 7:0) of a 64-bit mode call gate are similar but not identical to legacy 32-bit mode

call gates. The parameter-copy-count field has been removed.
• Bytes 11:8 hold the upper 32 bits of the target-segment offset in canonical form. A general-protection

exception (#GP) is generated if software attempts to use a call gate with a target offset that is not in canonical
form.

• 16-byte descriptors may reside in the same descriptor table with 16-bit and 32-bit descriptors. A type field,
used for consistency checking, is defined in bits 12:8 of the 64-bit descriptor’s highest dword (cleared to
zero). A general-protection exception (#GP) results if an attempt is made to access the upper half of a 64-bit
mode descriptor as a 32-bit mode descriptor.

1. Unlike INVLPG, page faults need not invalidate all entries in the paging-structure caches, only those that would be used to trans-
late the faulting linear address.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 209

...

23. Updates to Chapter 6, Volume 3A
Change bars show changes to Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

6.13 ERROR CODE
When an exception condition is related to a specific segment selector or IDT vector, the processor pushes an error
code onto the stack of the exception handler (whether it is a procedure or task). The error code has the format
shown in Figure 6-6. The error code resembles a segment selector; however, instead of a TI flag and RPL field, the
error code contains 3 flags:

EXT External event (bit 0) — When set, indicates that the exception occurred during delivery of an
event external to the program, such as an interrupt or an earlier exception.

IDT Descriptor location (bit 1) — When set, indicates that the index portion of the error code refers
to a gate descriptor in the IDT; when clear, indicates that the index refers to a descriptor in the GDT
or the current LDT.

TI GDT/LDT (bit 2) — Only used when the IDT flag is clear. When set, the TI flag indicates that the
index portion of the error code refers to a segment or gate descriptor in the LDT; when clear, it
indicates that the index refers to a descriptor in the current GDT.

Figure 5-9 Call-Gate Descriptor in IA-32e Mode

31 8 7 0

POffset in Segment 31:16
D
P
L

Type

0
4

31 16 15 0

Segment Selector Offset in Segment 15:00 0

.

0011

P
DPL

Gate Valid
Descriptor Privilege Level

31 0

0
12

31 0

Offset in Segment 63:31 8

0000

0

13 12 11 10 9 8 7

16 15 14 13 12 11

Reserved Reserved
Type

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 210

The segment selector index field provides an index into the IDT, GDT, or current LDT to the segment or gate
selector being referenced by the error code. In some cases the error code is null (all bits are clear except possibly
EXT). A null error code indicates that the error was not caused by a reference to a specific segment or that a null
segment selector was referenced in an operation.

The format of the error code is different for page-fault exceptions (#PF). See the “Interrupt 14—Page-Fault
Exception (#PF)” section in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the default interrupt, trap, or task
gate size). To keep the stack aligned for doubleword pushes, the upper half of the error code is reserved. Note
that the error code is not popped when the IRET instruction is executed to return from an exception handler, so
the handler must remove the error code before executing a return.

Error codes are not pushed on the stack for exceptions that are generated externally (with the INTR or LINT[1:0]
pins) or the INT n instruction, even if an error code is normally produced for those exceptions.

...

Interrupt 13—General Protection Exception (#GP)

Exception Class Fault.

Description

Indicates that the processor detected one of a class of protection violations called “general-protection violations.”
The conditions that cause this exception to be generated comprise all the protection violations that do not cause
other exceptions to be generated (such as, invalid-TSS, segment-not-present, stack-fault, or page-fault excep-
tions). The following conditions cause general-protection exceptions to be generated:
• Exceeding the segment limit when accessing the CS, DS, ES, FS, or GS segments.
• Exceeding the segment limit when referencing a descriptor table (except during a task switch or a stack

switch).
• Transferring execution to a segment that is not executable.
• Writing to a code segment or a read-only data segment.
• Reading from an execute-only code segment.
• Loading the SS register with a segment selector for a read-only segment (unless the selector comes from a

TSS during a task switch, in which case an invalid-TSS exception occurs).
• Loading the SS, DS, ES, FS, or GS register with a segment selector for a system segment.
• Loading the DS, ES, FS, or GS register with a segment selector for an execute-only code segment.
• Loading the SS register with the segment selector of an executable segment or a null segment selector.
• Loading the CS register with a segment selector for a data segment or a null segment selector.
• Accessing memory using the DS, ES, FS, or GS register when it contains a null segment selector.
• Switching to a busy task during a call or jump to a TSS.

Figure 6-6 Error Code

31 0

Reserved
I
D
T

T
I

123

Segment Selector Index
E
X
T

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 211

• Using a segment selector on a non-IRET task switch that points to a TSS descriptor in the current LDT. TSS
descriptors can only reside in the GDT. This condition causes a #TS exception during an IRET task switch.

• Violating any of the privilege rules described in Chapter 5, “Protection.”
• Exceeding the instruction length limit of 15 bytes (this only can occur when redundant prefixes are placed

before an instruction).
• Loading the CR0 register with a set PG flag (paging enabled) and a clear PE flag (protection disabled).
• Loading the CR0 register with a set NW flag and a clear CD flag.
• Referencing an entry in the IDT (following an interrupt or exception) that is not an interrupt, trap, or task

gate.
• Attempting to access an interrupt or exception handler through an interrupt or trap gate from virtual-8086

mode when the handler’s code segment DPL is greater than 0.
• Attempting to write a 1 into a reserved bit of CR4.
• Attempting to execute a privileged instruction when the CPL is not equal to 0 (see Section 5.9, “Privileged

Instructions,” for a list of privileged instructions).
• Writing to a reserved bit in an MSR.
• Accessing a gate that contains a null segment selector.
• Executing the INT n instruction when the CPL is greater than the DPL of the referenced interrupt, trap, or task

gate.
• The segment selector in a call, interrupt, or trap gate does not point to a code segment.
• The segment selector operand in the LLDT instruction is a local type (TI flag is set) or does not point to a

segment descriptor of the LDT type.
• The segment selector operand in the LTR instruction is local or points to a TSS that is not available.
• The target code-segment selector for a call, jump, or return is null.
• If the PAE and/or PSE flag in control register CR4 is set and the processor detects any reserved bits in a page-

directory-pointer-table entry set to 1. These bits are checked during a write to control registers CR0, CR3, or
CR4 that causes a reloading of the page-directory-pointer-table entry.

• Attempting to write a non-zero value into the reserved bits of the MXCSR register.
• Executing an SSE/SSE2/SSE3 instruction that attempts to access a 128-bit memory location that is not

aligned on a 16-byte boundary when the instruction requires 16-byte alignment. This condition also applies to
the stack segment.

A program or task can be restarted following any general-protection exception. If the exception occurs while
attempting to call an interrupt handler, the interrupted program can be restartable, but the interrupt may be lost.

Exception Error Code

The processor pushes an error code onto the exception handler's stack. If the fault condition was detected while
loading a segment descriptor, the error code contains a segment selector to or IDT vector number for the
descriptor; otherwise, the error code is 0. The source of the selector in an error code may be any of the following:
• An operand of the instruction.
• A selector from a gate which is the operand of the instruction.
• A selector from a TSS involved in a task switch.
• IDT vector number.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 212

Program State Change

In general, a program-state change does not accompany a general-protection exception, because the invalid
instruction or operation is not executed. An exception handler can be designed to correct all of the conditions that
cause general-protection exceptions and restart the program or task without any loss of program continuity.

If a general-protection exception occurs during a task switch, it can occur before or after the commit-to-new-task
point (see Section 7.3, “Task Switching”). If it occurs before the commit point, no program state change occurs.
If it occurs after the commit point, the processor will load all the state information from the new TSS (without
performing any additional limit, present, or type checks) before it generates the exception. The general-protec-
tion exception handler should thus not rely on being able to use the segment selectors found in the CS, SS, DS,
ES, FS, and GS registers without causing another exception. (See the Program State Change description for
“Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information on how to handle this situ-
ation.)

General Protection Exception in 64-bit Mode

The following conditions cause general-protection exceptions in 64-bit mode:
• If the memory address is in a non-canonical form.
• If a segment descriptor memory address is in non-canonical form.
• If the target offset in a destination operand of a call or jmp is in a non-canonical form.
• If a code segment or 64-bit call gate overlaps non-canonical space.
• If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't have the L-bit set and the

D-bit clear.
• If the EFLAGS.NT bit is set in IRET.
• If the stack segment selector of IRET is null when going back to compatibility mode.
• If the stack segment selector of IRET is null going back to CPL3 and 64-bit mode.
• If a null stack segment selector RPL of IRET is not equal to CPL going back to non-CPL3 and 64-bit mode.
• If the proposed new code segment descriptor of IRET has both the D-bit and the L-bit set.
• If the segment descriptor pointed to by the segment selector in the destination operand is a code segment and

it has both the D-bit and the L-bit set.
• If the segment descriptor from a 64-bit call gate is in non-canonical space.
• If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-gate.
• If the type field of the upper 64 bits of a 64-bit call gate is not 0.
• If an attempt is made to load a null selector in the SS register in compatibility mode.
• If an attempt is made to load null selector in the SS register in CPL3 and 64-bit mode.
• If an attempt is made to load a null selector in the SS register in non-CPL3 and 64-bit mode where RPL is not

equal to CPL.
• If an attempt is made to clear CR0.PG while IA-32e mode is enabled.
• If an attempt is made to set a reserved bit in CR3, CR4 or CR8.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 213

24. Updates to Chapter 8, Volume 3A
Change bars show changes to Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

8.1.2.1 Automatic Locking
The operations on which the processor automatically follows the LOCK semantics are as follows:
• When executing an XCHG instruction that references memory.
• When setting the B (busy) flag of a TSS descriptor — The processor tests and sets the busy flag in the

type field of the TSS descriptor when switching to a task. To ensure that two processors do not switch to the
same task simultaneously, the processor follows the LOCK semantics while testing and setting this flag.

• When updating segment descriptors — When loading a segment descriptor, the processor will set the
accessed flag in the segment descriptor if the flag is clear. During this operation, the processor follows the
LOCK semantics so that the descriptor will not be modified by another processor while it is being updated. For
this action to be effective, operating-system procedures that update descriptors should use the following
steps:

— Use a locked operation to modify the access-rights byte to indicate that the segment descriptor is not-
present, and specify a value for the type field that indicates that the descriptor is being updated.

— Update the fields of the segment descriptor. (This operation may require several memory accesses;
therefore, locked operations cannot be used.)

— Use a locked operation to modify the access-rights byte to indicate that the segment descriptor is valid
and present.

• The Intel386 processor always updates the accessed flag in the segment descriptor, whether it is clear or not.
The Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors only update this flag if it is not already
set.

• When updating page-directory and page-table entries — When updating page-directory and page-table
entries, the processor uses locked cycles to set the accessed and dirty flag in the page-directory and page-
table entries.

• Acknowledging interrupts — After an interrupt request, an interrupt controller may use the data bus to
send the interrupt’s vector to the processor. The processor follows the LOCK semantics during this time to
ensure that no other data appears on the data bus while the vector is being transmitted.

...

8.6.3 Executing Multiple Threads on an Intel® 64 or IA-32 Processor Supporting Hardware
Multi-Threading

Upon completing the operating system boot-up procedure, the bootstrap processor (BSP) executes operating
system code. Other logical processors are placed in the halt state. To execute a code stream (thread) on a halted
logical processor, the operating system issues an interprocessor interrupt (IPI) addressed to the halted logical
processor. In response to the IPI, the processor wakes up and begins executing the code identified by the vector
received as part of the IPI.

To manage execution of multiple threads on logical processors, an operating system can use conventional
symmetric multiprocessing (SMP) techniques. For example, the operating-system can use a time-slice or load
balancing mechanism to periodically interrupt each of the active logical processors. Upon interrupting a logical

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 214

processor, the operating system checks its run queue for a thread waiting to be executed and dispatches the
thread to the interrupted logical processor.

...

8.7.13.3 Thermal Monitor
In a processor that supports Intel Hyper-Threading Technology, logical processors share the catastrophic shut-
down detector and the automatic thermal monitoring mechanism (see Section 14.7, “Thermal Monitoring and
Protection”). Sharing results in the following behavior:
• If the processor’s core temperature rises above the preset catastrophic shutdown temperature, the processor

core halts execution, which causes both logical processors to stop execution.
• When the processor’s core temperature rises above the preset automatic thermal monitor trip temperature,

the frequency of the processor core is automatically modulated, which effects the execution speed of both
logical processors.

For software controlled clock modulation, each logical processor has its own IA32_CLOCK_MODULATION MSR,
allowing clock modulation to be enabled or disabled on a logical processor basis. Typically, if software controlled
clock modulation is going to be used, the feature must be enabled for all the logical processors within a physical
processor and the modulation duty cycle must be set to the same value for each logical processor. If the duty cycle
values differ between the logical processors, the processor clock will be modulated at the highest duty cycle
selected.

...

Example 8-18 Support Routines for Detecting Hardware Multi-Threading and Identifying the Relationships Between
Package, Core and Logical Processors

1. Detect support for Hardware Multi-Threading Support in a processor.

// Returns a non-zero value if CPUID reports the presence of hardware multi-threading
// support in the physical package where the current logical processor is located.
// This does not guarantee BIOS or OS will enable all logical processors in the physical
// package and make them available to applications.
// Returns zero if hardware multi-threading is not present.

#define HWMT_BIT 10000000H

unsigned int HWMTSupported(void)
{

 // ensure cpuid instruction is supported
execute cpuid with eax = 0 to get vendor string
execute cpuid with eax = 1 to get feature flag and signature

// Check to see if this a Genuine Intel Processor

if (vendor string EQ GenuineIntel) {
return (feature_flag_edx & HWMT_BIT); // bit 28

}
return 0;

}

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 215

...

Example 8-20 Support Routines for Identifying Package, Core and Logical Processors from 8-bit Initial APIC ID

a. Find the size of address space for logical processors in a physical processor package.

#define NUM_LOGICAL_BITS 00FF0000H
// Use the mask above and CPUID.1.EBX[23:16] to obtain the max number of addressable IDs
// for logical processors in a physical package,

//Returns the size of address space of logical processors in a physical processor package;
// Software should not assume the value to be a power of 2.

unsigned char MaxLPIDsPerPackage(void)
{

if (!HWMTSupported()) return 1;
execute cpuid with eax = 1

store returned value of ebx
return (unsigned char) ((reg_ebx & NUM_LOGICAL_BITS) >> 16);

b. Find the size of address space for processor cores in a physical processor package.

// Returns the max number of addressable IDs for processor cores in a physical processor package;
// Software should not assume cpuid reports this value to be a power of 2.

unsigned MaxCoreIDsPerPackage(void)
{

if (!HWMTSupported()) return (unsigned char) 1;
if cpuid supports leaf number 4
{ // we can retrieve multi-core topology info using leaf 4

execute cpuid with eax = 4, ecx = 0
store returned value of eax
return (unsigned) ((reg_eax >> 26) +1);

}
else // must be a single-core processor
return 1;

}

c. Query the initial APIC ID of a logical processor.

#define INITIAL_APIC_ID_BITS FF000000H // CPUID.1.EBX[31:24] initial APIC ID

// Returns the 8-bit unique initial APIC ID for the processor running the code.
// Software can use OS services to affinitize the current thread to each logical processor
// available under the OS to gather the initial APIC_IDs for each logical processor.

unsigned GetInitAPIC_ID (void)
{

unsigned int reg_ebx = 0;
execute cpuid with eax = 1
store returned value of ebx
return (unsigned) ((reg_ebx & INITIAL_APIC_ID_BITS) >> 24;

}

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 216

d. Find the width of an extraction bitmask from the maximum count of the bit-field (address size).

// Returns the mask bit width of a bit field from the maximum count that bit field can represent.
// This algorithm does not assume ‘address size’ to have a value equal to power of 2.
// Address size for SMT_ID can be calculated from MaxLPIDsPerPackage()/MaxCoreIDsPerPackage()
// Then use the routine below to derive the corresponding width of SMT extraction bitmask
// Address size for CORE_ID is MaxCoreIDsPerPackage(),
// Derive the bitwidth for CORE extraction mask similarly

unsigned FindMaskWidth(Unsigned Max_Count)
{unsigned int mask_width, cnt = Max_Count;

__asm {
mov eax, cnt
mov ecx, 0
mov mask_width, ecx
dec eax
bsr cx, ax
jz next
inc cx
mov mask_width, ecx
next:
mov eax, mask_width

}
return mask_width;

}

e. Extract a sub ID from an 8-bit full ID, using address size of the sub ID and shift count.

// The routine below can extract SMT_ID, CORE_ID, and PACKAGE_ID respectively from the init APIC_ID
// To extract SMT_ID, MaxSubIDvalue is set to the address size of SMT_ID, Shift_Count = 0
// To extract CORE_ID, MaxSubIDvalue is the address size of CORE_ID, Shift_Count is width of SMT extraction bitmask.
// Returns the value of the sub ID, this is not a zero-based value

Unsigned char GetSubID(unsigned char Full_ID, unsigned char MaxSubIDvalue, unsigned char Shift_Count)
{

MaskWidth = FindMaskWidth(MaxSubIDValue);
MaskBits = ((uchar) (FFH << Shift_Count)) ^ ((uchar) (FFH << Shift_Count + MaskWidth)) ;
SubID = Full_ID & MaskBits;
Return SubID;

}

Software must not assume local APIC_ID values in an MP system are consecutive. Non-consecutive local
APIC_IDs may be the result of hardware configurations or debug features implemented in the BIOS or OS.

An identifier for each hierarchical level can be extracted from an 8-bit APIC_ID using the support routines illus-
trated in Example 8-20. The appropriate bit mask and shift value to construct the appropriate bit mask for each
level must be determined dynamically at runtime.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 217

8.10.6.6 Eliminate Execution-Based Timing Loops
Intel discourages the use of timing loops that depend on a processor’s execution speed to measure time. There
are several reasons:
• Timing loops cause problems when they are calibrated on a IA-32 processor running at one frequency and

then executed on a processor running at another frequency.
• Routines for calibrating execution-based timing loops produce unpredictable results when run on an IA-32

processor supporting Intel Hyper-Threading Technology. This is due to the sharing of execution resources
between the logical processors within a physical package.

To avoid the problems described, timing loop routines must use a timing mechanism for the loop that does not
depend on the execution speed of the logical processors in the system. The following sources are generally avail-
able:
• A high resolution system timer (for example, an Intel 8254).
• A high resolution timer within the processor (such as, the local APIC timer or the time-stamp counter).

For additional information, see the Intel® 64 and IA-32 Architectures Optimization Reference Manual.

...

25. Updates to Chapter 9, Volume 3A
Change bars show changes to Chapter 9 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

9.6 INITIALIZING SSE/SSE2/SSE3/SSSE3 EXTENSIONS
For processors that contain SSE/SSE2/SSE3/SSSE3 extensions, steps must be taken when initializing the
processor to allow execution of these instructions.

1. Check the CPUID feature flags for the presence of the SSE/SSE2/SSE3/SSSE3 extensions (respectively: EDX
bits 25 and 26, ECX bit 0 and 9) and support for the FXSAVE and FXRSTOR instructions (EDX bit 24). Also
check for support for the CLFLUSH instruction (EDX bit 19). The CPUID feature flags are loaded in the EDX and
ECX registers when the CPUID instruction is executed with a 1 in the EAX register.

2. Set the OSFXSR flag (bit 9 in control register CR4) to indicate that the operating system supports saving and
restoring the SSE/SSE2/SSE3/SSSE3 execution environment (XMM and MXCSR registers) with the FXSAVE
and FXRSTOR instructions, respectively. See Section 2.5, “Control Registers,” for a description of the OSFXSR
flag.

3. Set the OSXMMEXCPT flag (bit 10 in control register CR4) to indicate that the operating system supports the
handling of SSE/SSE2/SSE3 SIMD floating-point exceptions (#XM). See Section 2.5, “Control Registers,” for
a description of the OSXMMEXCPT flag.

4. Set the mask bits and flags in the MXCSR register according to the mode of operation desired for SSE/SSE2/
SSE3 SIMD floating-point instructions. See “MXCSR Control and Status Register” in Chapter 10,
“Programming with Streaming SIMD Extensions (SSE),” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for a detailed description of the bits and flags in the MXCSR register.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 218

26. Updates to Chapter 14, Volume 3B
Change bars show changes to Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

14.3.2.3 Required Changes to OS Power Management P-state Policy
Intel Dynamic Acceleration (IDA) and Intel Turbo Boost Technology can provide opportunistic performance
greater than the performance level corresponding to the Processor Base frequency of the processor (see CPUID’s
processor frequency information). System software can use a pair of MSRs to observe performance feedback.
Software must query for the presence of IA32_APERF and IA32_MPERF (see Section 14.2). The ratio between
IA32_APERF and IA32_MPERF is architecturally defined and a value greater than unity indicates performance
increase occurred during the observation period due to IDA. Without incorporating such performance feedback,
the target P-state evaluation algorithm can result in a non-optimal P-state target.

There are other scenarios under which OS power management may want to disable IDA, some of these are listed
below:
• When engaging ACPI defined passive thermal management, it may be more effective to disable IDA for the

duration of passive thermal management.
• When the user has indicated a policy preference of power savings over performance, OS power management

may want to disable IDA while that policy is in effect.

...

14.4.4 Managing HWP
Typically, the OS controls HWP operation for each logical processor via the writing of control hints / constraints to
the IA32_HWP_REQUEST MSR. The layout of the IA32_HWP_REQUEST MSR is shown in Figure 14-7. The bit fields
are described below:

• Minimum_Performance (bits 7:0, RW) — Conveys a hint to the HWP hardware. The OS programs the
minimum performance hint to achieve the required quality of service (QOS) or to meet a service level
agreement (SLA) as needed. Note that an excursion below the level specified is possible due to hardware
constraints. The default value of this field is IA32_HWP_CAPABILITIES.Lowest_Performance.

• Maximum_Performance (bits 15:8, RW) — Conveys a hint to the HWP hardware. The OS programs this
field to limit the maximum performance that is expected to be supplied by the HWP hardware. Excursions

Figure 14-7 IA32_HWP_REQUEST Register

43 0

Reserved

24 781516233132

Energy_Performance_Preference
Desired_Performance
Maximum_Performance

Activity_Window

Minimum_Performance

Package_Control

63 42 41

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 219

above the limit requested by OS are possible due to hardware coordination between the processor cores and
other components in the package. The default value of this field is
IA32_HWP_CAPABILITIES.Highest_Performance.

• Desired_Performance (bits 23:16, RW) — Conveys a hint to the HWP hardware. When set to zero,
hardware autonomous selection determines the performance target. When set to a non-zero value (between
the range of Lowest_Performance and Highest_Performance of IA32_HWP_CAPABILITIES) conveys an explicit
performance request hint to the hardware; effectively disabling HW Autonomous selection. The
Desired_Performance input is non-constraining in terms of Performance and Energy Efficiency optimizations,
which are independently controlled. The default value of this field is 0.

• Energy_Performance_Preference (bits 31:24, RW) — Conveys a hint to the HWP hardware. The OS may
write a range of values from 0 (performance preference) to 0FFH (energy efficiency preference) to influence
the rate of performance increase /decrease and the result of the hardware's energy efficiency and
performance optimizations. The default value of this field is 80H. Note: If CPUID.06H:EAX[bit 10] indicates
that this field is not supported, HWP uses the value of the IA32_ENERGY_PERF_BIAS MSR to determine the
energy efficiency / performance preference.

• Activity_Window (bits 41:32, RW) — Conveys a hint to the HWP hardware specifying a moving workload
history observation window for performance/frequency optimizations. If 0, the hardware will determine the
appropriate window size. When writing a non-zero value to this field, this field is encoded in the format of bits
38:32 as a 7-bit mantissa and bits 41:39 as a 3-bit exponent value in powers of 10. The resultant value is in
microseconds. Thus, the minimal/maximum activity window size is 1 microsecond/1270 seconds. Combined
with the Energy_Performance_Preference input, Activity_Window influences the rate of performance increase
/ decrease. This non-zero hint only has meaning when Desired_Performance = 0. The default value of this
field is 0.

• Package_Control (bit 42, RW) — When set causes this logical processor's IA32_HWP_REQUEST control
inputs to be derived from IA32_HWP_REQUEST_PKG

• Bits 63:43 are reserved and must be zero.

The HWP hardware clips and resolves the field values as necessary to the valid range. Reads return the last value
written not the clipped values.

Processors may support a subset of IA32_HWP_REQUEST fields as indicated by CPUID. Reads of non-supported
fields will return 0. Writes to non-supported fields are ignored.

The OS may override HWP's autonomous selection of performance state with a specific performance target by
setting the Desired_Performance field to a non zero value, however, the effective frequency delivered is subject
to the result of energy efficiency and performance optimizations, which are influenced by the Energy Performance
Preference field.

Software may disable all hardware optimizations by setting Minimum_Performance = Maximum_Performance
(subject to package coordination).

Note: The processor may run below the Minimum_Performance level due to hardware constraints including:
power, thermal, and package coordination constraints. The processor may also run below the
Minimum_Performance level for short durations (few milliseconds) following C-state exit, and when Hardware
Duty Cycling (see Section 14.5) is enabled.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 220

The structure of the IA32_HWP_REQUEST_PKG MSR (package-level) is identical to the IA32_HWP_REQUEST MSR
with the exception of the Package Control field, which does not exist. Field values written to this MSR apply to all
logical processors within the physical package with the exception of logical processors whose
IA32_HWP_REQUEST.Package Control field is clear (zero). Single P-state Control mode is only supported when
IA32_HWP_REQUEST_PKG is not supported.

...

14.5.5 MPERF and APERF Counters Under HDC
HDC operation can be thought of as an average effective frequency drop due to all or some of the Logical Proces-
sors enter an idle state period.

By default, the IA32_MPERF counter counts during forced idle periods as if the logical processor was active. The
IA32_APERF counter does not count during forced idle state. This counting convention allows the OS to compute
the average effective frequency of the Logical Processor between the last MWAIT exit and the next MWAIT entry
(OS visible C0) by ΔACNT/ΔMCNT * TSC Frequency.

...

Figure 14-8 IA32_HWP_REQUEST_PKG Register

Figure 14-20 Example of Effective Frequency Reduction and Forced Idle Period of HDC

0

Reserved

24 781516233132

Energy_Performance_Preference
Desired_Performance
Maximum_Performance

Activity_Window

Minimum_Performance

63 42 41

1600 MHz: 25% Utilization /75% Forced Idle

Effective Frequency @ 100% Utilization: 400 MHz

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 221

27. Updates to Chapter 15, Volume 3B
Change bars show changes to Chapter 15 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

15.3.1.1 IA32_MCG_CAP MSR
The IA32_MCG_CAP MSR is a read-only register that provides information about the machine-check architecture
of the processor. Figure 15-2 shows the layout of the register.

Where:
• Count field, bits 7:0 — Indicates the number of hardware unit error-reporting banks available in a particular

processor implementation.
• MCG_CTL_P (control MSR present) flag, bit 8 — Indicates that the processor implements the

IA32_MCG_CTL MSR when set; this register is absent when clear.
• MCG_EXT_P (extended MSRs present) flag, bit 9 — Indicates that the processor implements the

extended machine-check state registers found starting at MSR address 180H; these registers are absent
when clear.

• MCG_CMCI_P (Corrected MC error counting/signaling extension present) flag, bit 10 — Indicates
(when set) that extended state and associated MSRs necessary to support the reporting of an interrupt on a
corrected MC error event and/or count threshold of corrected MC errors, is present. When this bit is set, it
does not imply this feature is supported across all banks. Software should check the availability of the
necessary logic on a bank by bank basis when using this signaling capability (i.e. bit 30 settable in individual
IA32_MCi_CTL2 register).

• MCG_TES_P (threshold-based error status present) flag, bit 11 — Indicates (when set) that bits 56:53
of the IA32_MCi_STATUS MSR are part of the architectural space. Bits 56:55 are reserved, and bits 54:53 are
used to report threshold-based error status. Note that when MCG_TES_P is not set, bits 56:53 of the
IA32_MCi_STATUS MSR are model-specific.

Figure 15-2 IA32_MCG_CAP Register

MCG_TES_P[11]
MCG_EXT_CNT[23:16]

63 9

Reserved

101112

MCG_CMCI_P[10]

08 7

Count

MCG_EXT_P[9]

15162324

MCG_CTL_P[8]

MCG_SER_P[24]

25

MCG_ELOG_P[26]

27 26

MCG_LMCE_P[27]

MCG_EMC_P[25]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 222

• MCG_EXT_CNT, bits 23:16 — Indicates the number of extended machine-check state registers present.
This field is meaningful only when the MCG_EXT_P flag is set.

• MCG_SER_P (software error recovery support present) flag, bit 24 — Indicates (when set) that the
processor supports software error recovery (see Section 15.6), and IA32_MCi_STATUS MSR bits 56:55 are
used to report the signaling of uncorrected recoverable errors and whether software must take recovery
actions for uncorrected errors. Note that when MCG_TES_P is not set, bits 56:53 of the IA32_MCi_STATUS
MSR are model-specific. If MCG_TES_P is set but MCG_SER_P is not set, bits 56:55 are reserved.

• MCG_EMC_P (Enhanced Machine Check Capability) flag, bit 25 — Indicates (when set) that the
processor supports enhanced machine check capabilities for firmware first signaling.

• MCG_ELOG_P (extended error logging) flag, bit 26 — Indicates (when set) that the processor allows
platform firmware to be invoked when an error is detected so that it may provide additional platform specific
information in an ACPI format “Generic Error Data Entry” that augments the data included in machine check
bank registers.
For additional information about extended error logging interface, see http://www.intel.com/content/www/
us/en/architecture-and-technology/enhanced-mca-logging-xeon-paper.html

• MCG_LMCE_P (local machine check exception) flag, bit 27 — Indicates (when set) that the following
interfaces are present:

— an extended state LMCE_S (located in bit 3 of IA32_MCG_STATUS), and

— the IA32_MCG_EXT_CTL MSR, necessary to support Local Machine Check Exception (LMCE).
A non-zero MCG_LMCE_P indicates that, when LMCE is enabled as described in Section 15.3.1.5, some
machine check errors may be delivered to only a single logical processor.

The effect of writing to the IA32_MCG_CAP MSR is undefined.

...

15.3.2.2 IA32_MCi_STATUS MSRS
Each IA32_MCi_STATUS MSR contains information related to a machine-check error if its VAL (valid) flag is set
(see Figure 15-6). Software is responsible for clearing IA32_MCi_STATUS MSRs by explicitly writing 0s to them;
writing 1s to them causes a general-protection exception.

NOTE
Figure 15-6 depicts the IA32_MCi_STATUS MSR when IA32_MCG_CAP[24] = 1,
IA32_MCG_CAP[11] = 1 and IA32_MCG_CAP[10] = 1. When IA32_MCG_CAP[24] = 0 and
IA32_MCG_CAP[11] = 1, bits 56:55 is reserved and bits 54:53 for threshold-based error
reporting. When IA32_MCG_CAP[11] = 0, bits 56:53 are part of the “Other Information” field. The
use of bits 54:53 for threshold-based error reporting began with Intel Core Duo processors, and is
currently used for cache memory. See Section 15.4, “Enhanced Cache Error reporting,” for more
information. When IA32_MCG_CAP[10] = 0, bits 52:38 are part of the “Other Information” field.
The use of bits 52:38 for corrected MC error count is introduced with Intel 64 processor on which
CPUID reports DisplayFamily_DisplayModel as 06H_1AH.

Where:
• MCA (machine-check architecture) error code field, bits 15:0 — Specifies the machine-check archi-

tecture-defined error code for the machine-check error condition detected. The machine-check architecture-
defined error codes are guaranteed to be the same for all IA-32 processors that implement the machine-check
architecture. See Section 15.9, “Interpreting the MCA Error Codes,” and Chapter 16, “Interpreting Machine-
Check Error Codes”, for information on machine-check error codes.

• Model-specific error code field, bits 31:16 — Specifies the model-specific error code that uniquely
identifies the machine-check error condition detected. The model-specific error codes may differ among IA-32

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 223

processors for the same machine-check error condition. See Chapter 16, “Interpreting Machine-Check Error
Codes”for information on model-specific error codes.

• Reserved, Error Status, and Other Information fields, bits 56:32 —

• If IA32_MCG_CAP.MCG_ELOG_P[bit 25] is 0, bits 37:32 contain “Other Information” that is implemen-
tation-specific and is not part of the machine-check architecture.

• If IA32_MCG_CAP.MCG_ELOG_P is 1, “Other Information” is in bits 36:32. If bit 37 is 0, system
firmware has not changed the contents of IA32_MCi_STATUS. If bit 37 is 1, system firmware may have
edited the contents of IA32_MCi_STATUS.

• If IA32_MCG_CAP.MCG_CMCI_P[bit 10] is 0, bits 52:38 also contain “Other Information” (in the same
sense as bits 37:32).

• If IA32_MCG_CAP[10] is 1, bits 52:38 are architectural (not model-specific). In this case, bits 52:38
reports the value of a 15 bit counter that increments each time a corrected error is observed by the
MCA recording bank. This count value will continue to increment until cleared by software. The most
significant bit, 52, is a sticky count overflow bit.

• If IA32_MCG_CAP[11] is 0, bits 56:53 also contain “Other Information” (in the same sense).

• If IA32_MCG_CAP[11] is 1, bits 56:53 are architectural (not model-specific). In this case, bits 56:53
have the following functionality:

• If IA32_MCG_CAP[24] is 0, bits 56:55 are reserved.

• If IA32_MCG_CAP[24] is 1, bits 56:55 are defined as follows:

• S (Signaling) flag, bit 56 - Signals the reporting of UCR errors in this MC bank. See Section 15.6.2
for additional detail.

• AR (Action Required) flag, bit 55 - Indicates (when set) that MCA error code specific recovery
action must be performed by system software at the time this error was signaled. See Section
15.6.2 for additional detail.

• If the UC bit (Figure 15-6) is 1, bits 54:53 are undefined.

Figure 15-6 IA32_MCi_STATUS Register

63

Threshold-based error status (54:53)**
AR — Recovery action required for UCR error (55)***
S — Signaling an uncorrected recoverable (UCR) error (56)***
PCC — Processor context corrupted (57)

37 32 31 16 0

P
C

AE

ADDRV — MCi_ADDR register valid (58)
MISCV — MCi_MISC register valid (59)
EN — Error reporting enabled (60)
UC — Uncorrected error (61)
OVER — Error overflow (62)
VAL — MCi_STATUS register valid (63)

C

MCA Error Code
U S

R
 Other MSCOD Model

54 53 3862 61 60 59 58 57 56 55 52 15

V
A
L

O
V
E
R

C N
Specific Error Code Info

Corrected Error
Count

** When IA32_MCG_CAP[11] (MCG_TES_P) is not set, these bits are model-specific
 (part of “Other Information”).

*** When IA32_MCG_CAP[11] or IA32_MCG_CAP[24] are not set, these bits are reserved, or
 model-specific (part of “Other Information”).

36

* When IA32_MCG_CAP[25] (MCG_ELOG_P) is set, bit 37 is not part of “Other Information”.

Firmware updated error status indicator (37)*

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 224

• If the UC bit (Figure 15-6) is 0, bits 54:53 indicate the status of the hardware structure that
reported the threshold-based error. See Table 15-1.

• PCC (processor context corrupt) flag, bit 57 — Indicates (when set) that the state of the processor might
have been corrupted by the error condition detected and that reliable restarting of the processor may not be
possible. When clear, this flag indicates that the error did not affect the processor’s state. Software restarting
might be possible.

• ADDRV (IA32_MCi_ADDR register valid) flag, bit 58 — Indicates (when set) that the IA32_MCi_ADDR
register contains the address where the error occurred (see Section 15.3.2.3, “IA32_MCi_ADDR MSRs”).
When clear, this flag indicates that the IA32_MCi_ADDR register is either not implemented or does not contain
the address where the error occurred. Do not read these registers if they are not implemented in the
processor.

• MISCV (IA32_MCi_MISC register valid) flag, bit 59 — Indicates (when set) that the IA32_MCi_MISC
register contains additional information regarding the error. When clear, this flag indicates that the
IA32_MCi_MISC register is either not implemented or does not contain additional information regarding the
error. Do not read these registers if they are not implemented in the processor.

• EN (error enabled) flag, bit 60 — Indicates (when set) that the error was enabled by the associated EEj bit
of the IA32_MCi_CTL register.

• UC (error uncorrected) flag, bit 61 — Indicates (when set) that the processor did not or was not able to
correct the error condition. When clear, this flag indicates that the processor was able to correct the error
condition.

• OVER (machine check overflow) flag, bit 62 — Indicates (when set) that a machine-check error occurred
while the results of a previous error were still in the error-reporting register bank (that is, the VAL bit was
already set in the IA32_MCi_STATUS register). The processor sets the OVER flag and software is responsible
for clearing it. In general, enabled errors are written over disabled errors, and uncorrected errors are written
over corrected errors. Uncorrected errors are not written over previous valid uncorrected errors. For more
information, see Section 15.3.2.2.1, “Overwrite Rules for Machine Check Overflow”.

• VAL (IA32_MCi_STATUS register valid) flag, bit 63 — Indicates (when set) that the information within
the IA32_MCi_STATUS register is valid. When this flag is set, the processor follows the rules given for the
OVER flag in the IA32_MCi_STATUS register when overwriting previously valid entries. The processor sets the
VAL flag and software is responsible for clearing it.

...

28. Updates to Chapter 16, Volume 3B
Change bars show changes to Chapter 16 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

Table 15-1 Bits 54:53 in IA32_MCi_STATUS MSRs when IA32_MCG_CAP[11] = 1 and UC = 0
Bits 54:53 Meaning

00 No tracking - No hardware status tracking is provided for the structure reporting this event.

01 Green - Status tracking is provided for the structure posting the event; the current status is green (below threshold).
For more information, see Section 15.4, “Enhanced Cache Error reporting”.

10 Yellow - Status tracking is provided for the structure posting the event; the current status is yellow (above threshold).
For more information, see Section 15.4, “Enhanced Cache Error reporting”.

11 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 225

16.2.2.2 Processor Model Specific Error Code Field
Type C: Cache Bus Controller Error

...

16.4.3 Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC8_STATUS-
IA32_MC11_STATUS. The supported error codes are follows the architectural MCACOD definition type
1MMMCCCC (see Chapter 15, “Machine-Check Architecture,”). MSR_ERROR_CONTROL.[bit 1] can enable addi-
tional information logging of the IMC. The additional error information logged by the IMC is stored in
IA32_MCi_STATUS and IA32_MCi_MISC; (i = 8, 11).

Table 16-7 Type C Cache Bus Controller Error Codes

MC4_STATUS[31:16] (MSCE) Value Error Description

0000_0000_0000_0001 0001H Inclusion Error from Core 0

0000_0000_0000_0010 0002H Inclusion Error from Core 1

0000_0000_0000_0011 0003H Write Exclusive Error from Core 0

0000_0000_0000_0100 0004H Write Exclusive Error from Core 1

0000_0000_0000_0101 0005H Inclusion Error from FSB

0000_0000_0000_0110 0006H SNP Stall Error from FSB

0000_0000_0000_0111 0007H Write Stall Error from FSB

0000_0000_0000_1000 0008H FSB Arb Timeout Error

0000_0000_0000_1010 000AH Inclusion Error from Core 2

0000_0000_0000_1011 000BH Write Exclusive Error from Core 2

0000_0010_0000_0000 0200H Internal Timeout error

0000_0011_0000_0000 0300H Internal Timeout Error

0000_0100_0000_0000 0400H Intel® Cache Safe Technology Queue Full Error or Disabled-ways-in-a-set overflow

0000_0101_0000_0000 0500H Quiet cycle Timeout Error (correctable)

1100_0000_0000_0010 C002H Correctable ECC event on outgoing Core 0 data

1100_0000_0000_0100 C004H Correctable ECC event on outgoing Core 1 data

1100_0000_0000_1000 C008H Correctable ECC event on outgoing Core 2 data

1110_0000_0000_0010 E002H Uncorrectable ECC error on outgoing Core 0 data

1110_0000_0000_0100 E004H Uncorrectable ECC error on outgoing Core 1 data

1110_0000_0000_1000 E008H Uncorrectable ECC error on outgoing Core 2 data

 — all other encodings — Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 226

Table 16-15 Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 8, 11)

Table 16-16 Intel IMC MC Error Codes for IA32_MCi_MISC (i= 8, 11)

Type Bit No. Bit Function Bit Description

MCA error codes1 0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific
errors

31:16 Reserved except for
the following

001H - Address parity error
002H - HA Wrt buffer Data parity error
004H - HA Wrt byte enable parity error
008H - Corrected patrol scrub error
010H - Uncorrected patrol scrub error
020H - Corrected spare error
040H - Uncorrected spare error

Model specific
errors

36-32 Other info When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first device
error when corrected error is detected during normal read.

37 Reserved Reserved

56-38 See Chapter 15, “Machine-Check Architecture,”

Status register
validity indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Type Bit No. Bit Function Bit Description

MCA addr info1 0-8 See Chapter 15, “Machine-Check Architecture,”

Model specific
errors

13:9 • When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second device
error when corrected error is detected during normal read.

• Otherwise contain parity error if MCi_Status indicates HA_WB_Data or
HA_W_BE parity error.

Model specific
errors

29-14 ErrMask_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error bit
mask.

Model specific
errors

45-30 ErrMask_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error
bit mask.

50:46 FailRank_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error
failing rank.

55:51 FailRank_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error
failing rank.

58:56 Reserved Reserved

61-59 Reserved Reserved

62 Valid_1stErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data
from the first correctable error in a memory device.

63 Valid_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data due
to a second correctable error in a memory device. Use this information only after
there is valid first error info indicated by bit 62.

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 227

...

16.5.2 Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC9_STATUS-
IA32_MC16_STATUS. The supported error codes are follows the architectural MCACOD definition type
1MMMCCCC (see Chapter 15, “Machine-Check Architecture,”).

MSR_ERROR_CONTROL.[bit 1] can enable additional information logging of the IMC. The additional error infor-
mation logged by the IMC is stored in IA32_MCi_STATUS and IA32_MCi_MISC; (i = 9, 16).

Table 16-18 Intel IMC MC Error Codes for IA32-MCi_STATUS (i= 9, 16)

...

Type Bit No. Bit Function Bit Description

MCA error codes1 0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific
errors

31:16 Reserved except for
the following

001H - Address parity error

002H - HA Wrt buffer Data parity error

004H - HA Wrt byte enable parity error

008H - Corrected patrol scrub error

010H - Uncorrected patrol scrub error

020H - Corrected spare error

040H - Uncorrected spare error

080H - Corrected memory read error. (Only applicable with iMC’s “Additional
Error logging” Mode-1 enabled.)

100H - iMC, WDB, parity errors

36-32 Other info When MSR_ERROR_CONTROL.[1] is set, logs an encoded value from the first error
device.

37 Reserved Reserved

56-38 See Chapter 15, “Machine-Check Architecture,”

Status register
validity indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 228

16.6.3.3 Processor Model Specific Error Code Field Type C: Cache Bus Controller Error

...

29. Updates to Chapter 17, Volume 3B
Change bars show changes to Chapter 17 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

17.2 DEBUG REGISTERS
Eight debug registers (see Figure 17-1 for 32-bit operation and Figure 17-2 for 64-bit operation) control the
debug operation of the processor. These registers can be written to and read using the move to/from debug
register form of the MOV instruction. A debug register may be the source or destination operand for one of these
instructions.

Table 16-26 Type C Cache Bus Controller Error Codes

MC4_STATUS[31:16] (MSCE) Value Error Description

0000_0000_0000_0001 0001H Inclusion Error from Core 0

0000_0000_0000_0010 0002H Inclusion Error from Core 1

0000_0000_0000_0011 0003H Write Exclusive Error from Core 0

0000_0000_0000_0100 0004H Write Exclusive Error from Core 1

0000_0000_0000_0101 0005H Inclusion Error from FSB

0000_0000_0000_0110 0006H SNP Stall Error from FSB

0000_0000_0000_0111 0007H Write Stall Error from FSB

0000_0000_0000_1000 0008H FSB Arb Timeout Error

0000_0000_0000_1001 0009H CBC OOD Queue Underflow/overflow

0000_0001_0000_0000 0100H Enhanced Intel SpeedStep Technology TM1-TM2 Error

0000_0010_0000_0000 0200H Internal Timeout error

0000_0011_0000_0000 0300H Internal Timeout Error

0000_0100_0000_0000 0400H Intel® Cache Safe Technology Queue Full Error or Disabled-ways-in-a-set overflow

1100_0000_0000_0001 C001H Correctable ECC event on outgoing FSB data

1100_0000_0000_0010 C002H Correctable ECC event on outgoing Core 0 data

1100_0000_0000_0100 C004H Correctable ECC event on outgoing Core 1 data

1110_0000_0000_0001 E001H Uncorrectable ECC error on outgoing FSB data

1110_0000_0000_0010 E002H Uncorrectable ECC error on outgoing Core 0 data

1110_0000_0000_0100 E004H Uncorrectable ECC error on outgoing Core 1 data

 — all other encodings — Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 229

...

17.2.3 Debug Status Register (DR6)
The debug status register (DR6) reports debug conditions that were sampled at the time the last debug exception
was generated (see Figure 17-1). Updates to this register only occur when an exception is generated. The flags in
this register show the following information:
• B0 through B3 (breakpoint condition detected) flags (bits 0 through 3) — Indicates (when set) that

its associated breakpoint condition was met when a debug exception was generated. These flags are set if the
condition described for each breakpoint by the LENn, and R/Wn flags in debug control register DR7 is true.
They may or may not be set if the breakpoint is not enabled by the Ln or the Gn flags in register DR7.
Therefore on a #DB, a debug handler should check only those B0-B3 bits which correspond to an enabled
breakpoint.

Figure 17-1 Debug Registers

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

DR7L

Reserved

0

1234569101718252627282930

G
0

L
1

L
2

L
3

G
3

L
E

G
E

G
2

G
1

0 0 G
D

R/W
0

LEN
0

R/W
1

LEN
1

R/W
2

LEN
2

R/W
3

LEN
3

31 16 15 1314 12 11 8 7 0

DR6B
0

123456910

B
1

B
2

B
3

0 1 1 1 1 1 1 1 1B
D

B
S

B
T

31 0

DR5

31 0

DR4

31 0

DR3Breakpoint 3 Linear Address

31 0

DR2Breakpoint 2 Linear Address

31 0

DR1Breakpoint 1 Linear Address

31 0

DR0Breakpoint 0 Linear Address

0

Reserved (set to 1)

0
R
T
M

R
T
M

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 230

• BD (debug register access detected) flag (bit 13) — Indicates that the next instruction in the instruction
stream accesses one of the debug registers (DR0 through DR7). This flag is enabled when the GD (general
detect) flag in debug control register DR7 is set. See Section 17.2.4, “Debug Control Register (DR7),” for
further explanation of the purpose of this flag.

• BS (single step) flag (bit 14) — Indicates (when set) that the debug exception was triggered by the single-
step execution mode (enabled with the TF flag in the EFLAGS register). The single-step mode is the highest-
priority debug exception. When the BS flag is set, any of the other debug status bits also may be set.

• BT (task switch) flag (bit 15) — Indicates (when set) that the debug exception resulted from a task switch
where the T flag (debug trap flag) in the TSS of the target task was set. See Section 7.2.1, “Task-State
Segment (TSS),” for the format of a TSS. There is no flag in debug control register DR7 to enable or disable
this exception; the T flag of the TSS is the only enabling flag.

• RTM (restricted transactional memory) flag (bit 16) — Indicates (when clear) that a debug exception
or breakpoint exception (#BP) occurred inside an RTM region while advanced debugging of RTM transactional
regions was enabled (see Section 17.3.3). This bit is set for any other debug exception (including all those
that occur when advanced debugging of RTM transactional regions is not enabled).

Certain debug exceptions may clear bits 0-3. The remaining contents of the DR6 register are never cleared by the
processor. To avoid confusion in identifying debug exceptions, debug handlers should clear the register before
returning to the interrupted task.

17.2.4 Debug Control Register (DR7)
The debug control register (DR7) enables or disables breakpoints and sets breakpoint conditions (see Figure 17-
1). The flags and fields in this register control the following things:
• L0 through L3 (local breakpoint enable) flags (bits 0, 2, 4, and 6) — Enables (when set) the breakpoint

condition for the associated breakpoint for the current task. When a breakpoint condition is detected and its
associated Ln flag is set, a debug exception is generated. The processor automatically clears these flags on
every task switch to avoid unwanted breakpoint conditions in the new task.

• G0 through G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7) — Enables (when set) the
breakpoint condition for the associated breakpoint for all tasks. When a breakpoint condition is detected and
its associated Gn flag is set, a debug exception is generated. The processor does not clear these flags on a
task switch, allowing a breakpoint to be enabled for all tasks.

• LE and GE (local and global exact breakpoint enable) flags (bits 8, 9) — This feature is not supported
in the P6 family processors, later IA-32 processors, and Intel 64 processors. When set, these flags cause the
processor to detect the exact instruction that caused a data breakpoint condition. For backward and forward
compatibility with other Intel processors, we recommend that the LE and GE flags be set to 1 if exact
breakpoints are required.

• RTM (restricted transactional memory) flag (bit 11) — Enables (when set) advanced debugging of RTM
transactional regions (see Section 17.3.3). This advanced debugging is enabled only if IA32_DEBUGCTL.RTM
is also set.

• GD (general detect enable) flag (bit 13) — Enables (when set) debug-register protection, which causes a
debug exception to be generated prior to any MOV instruction that accesses a debug register. When such a
condition is detected, the BD flag in debug status register DR6 is set prior to generating the exception. This
condition is provided to support in-circuit emulators.
When the emulator needs to access the debug registers, emulator software can set the GD flag to prevent
interference from the program currently executing on the processor.
The processor clears the GD flag upon entering to the debug exception handler, to allow the handler access to
the debug registers.

• R/W0 through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28, and 29) — Specifies the
breakpoint condition for the corresponding breakpoint. The DE (debug extensions) flag in control register CR4

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 231

determines how the bits in the R/Wn fields are interpreted. When the DE flag is set, the processor interprets
bits as follows:

00 — Break on instruction execution only.
01 — Break on data writes only.
10 — Break on I/O reads or writes.
11 — Break on data reads or writes but not instruction fetches.

When the DE flag is clear, the processor interprets the R/Wn bits the same as for the Intel386™ and Intel486™
processors, which is as follows:

00 — Break on instruction execution only.
01 — Break on data writes only.
10 — Undefined.
11 — Break on data reads or writes but not instruction fetches.

• LEN0 through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and 31) — Specify the size of the
memory location at the address specified in the corresponding breakpoint address register (DR0 through
DR3). These fields are interpreted as follows:

00 — 1-byte length.
01 — 2-byte length.
10 — Undefined (or 8 byte length, see note below).
11 — 4-byte length.

If the corresponding RWn field in register DR7 is 00 (instruction execution), then the LENn field should also be 00.
The effect of using other lengths is undefined. See Section 17.2.5, “Breakpoint Field Recognition,” below.

NOTES
For Pentium® 4 and Intel® Xeon® processors with a CPUID signature corresponding to family 15
(model 3, 4, and 6), break point conditions permit specifying 8-byte length on data read/write
with an of encoding 10B in the LENn field.
Encoding 10B is also supported in processors based on Intel Core microarchitecture or enhanced
Intel Core microarchitecture, the respective CPUID signatures corresponding to family 6, model
15, and family 6, DisplayModel value 23 (see CPUID instruction in Chapter 3, “Instruction Set
Reference, A-M” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A). The Encoding 10B is supported in processors based on Intel® Atom™ microarchitecture, with
CPUID signature of family 6, DisplayModel value 28. The encoding 10B is undefined for other
processors.

...

17.3.3 Debug Exceptions, Breakpoint Exceptions, and Restricted Transactional Memory
(RTM)

Chapter 15, “Programming with Intel® Transactional Synchronization Extensions‚” of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1 describes Restricted Transactional Memory (RTM). This is an
instruction-set interface that allows software to identify transactional regions (or critical sections) using the
XBEGIN and XEND instructions.

Execution of an RTM transactional region begins with an XBEGIN instruction. If execution of the region success-
fully reaches an XEND instruction, the processor ensures that all memory operations performed within the region
appear to have occurred instantaneously when viewed from other logical processors. Execution of an RTM trans-
action region does not succeed if the processor cannot commit the updates atomically. When this happens, the
processor rolls back the execution, a process referred to as a transactional abort. In this case, the processor
discards all updates performed in the region, restores architectural state to appear as if the execution had not
occurred, and resumes execution at a fallback instruction address that was specified with the XBEGIN instruction.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 232

If debug exception (#DB) or breakpoint exception (#BP) occurs within an RTM transaction region, a transactional
abort occurs, the processor sets EAX[4], and no exception is delivered.

Software can enable advanced debugging of RTM transactional regions by setting DR7.RTM[bit 11] and
IA32_DEBUGCTL.RTM[bit 15]. If these bits are both set, the transactional abort caused by a #DB or #BP within
an RTM transaction region does not resume execution at the fallback instruction address specified with the
XBEGIN instruction that begin the region. Instead, execution is resumed at that XBEGIN instruction, and a #DB is
delivered. (A #DB is delivered even if the transactional abort was caused by a #BP.) Such a #DB will clear
DR6.RTM[bit 16] (all other debug exceptions set DR6[16]).

...

17.4.1 IA32_DEBUGCTL MSR
The IA32_DEBUGCTL MSR provides bit field controls to enable debug trace interrupts, debug trace stores, trace
messages enable, single stepping on branches, last branch record recording, and to control freezing of LBR stack
or performance counters on a PMI request. IA32_DEBUGCTL MSR is located at register address 01D9H.

See Figure 17-3 for the MSR layout and the bullets below for a description of the flags:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace of

the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug exception
being generated) in the last branch record (LBR) stack. For more information, see the Section 17.5.1, “LBR
Stack” (Intel® Core™2 Duo and Intel® Atom™ Processor Family) and Section 17.6.1, “LBR Stack” (processors
based on Intel® Microarchitecture code name Nehalem).

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism
allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on Branches,”
for more information about the BTF flag.

• TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the
processor detects a taken branch, interrupt, or exception; it sends the branch record out on the system bus
as a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,” for more information about
the TR flag.

• BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bit 8) — When set, the BTS facilities generate an interrupt when the
BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5,
“Branch Trace Store (BTS),” for a description of this mechanism.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 233

• BTS_OFF_OS (branch trace off in privileged code) flag (bit 9) — When set, BTS or BTM is skipped if CPL
is 0. See Section 17.9.2.

• BTS_OFF_USR (branch trace off in user code) flag (bit 10) — When set, BTS or BTM is skipped if CPL is
greater than 0. See Section 17.9.2.

• FREEZE_LBRS_ON_PMI flag (bit 11) — When set, the LBR stack is frozen on a hardware PMI request (e.g.
when a counter overflows and is configured to trigger PMI).

• FREEZE_PERFMON_ON_PMI flag (bit 12) — When set, a PMI request clears each of the “ENABLE” field of
MSR_PERF_GLOBAL_CTRL MSR (see Figure 18-3) to disable all the counters.

• FREEZE_WHILE_SMM_EN (bit 14) — If this bit is set, upon the delivery of an SMI, the processor will clear
all the enable bits of IA32_PERF_GLOBAL_CTRL, save a copy of the content of IA32_DEBUGCTL and disable
LBR, BTF, TR, and BTS fields of IA32_DEBUGCTL before transferring control to the SMI handler. Subsequently,
the enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of IA32_DEBUGCTL prior to SMI
delivery will be restored, after the SMI handler issues RSM to complete its service. Note that system software
must check if the processor supports the IA32_DEBUGCTL.FREEZE_WHILE_SMM_EN control bit.
IA32_DEBUGCTL.FREEZE_WHILE_SMM_EN is supported if
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 18.16 for details of
detecting the presence of IA32_PERF_CAPABILITIES MSR.

• RTM (bit 15) — If this bit is set, advanced debugging of RTM transactional regions is enabled if DR7.RTM is
also set. See Section 17.3.3.

...

17.13 TIME-STAMP COUNTER
The Intel 64 and IA-32 architectures (beginning with the Pentium processor) define a time-stamp counter mech-
anism that can be used to monitor and identify the relative time occurrence of processor events. The counter’s
architecture includes the following components:
• TSC flag — A feature bit that indicates the availability of the time-stamp counter. The counter is available in

an if the function CPUID.1:EDX.TSC[bit 4] = 1.

Figure 17-3 IA32_DEBUGCTL MSR for Processors based
on Intel Core microarchitecture

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

Reserved

910

BTS_OFF_OS — BTS off in OS
BTS_OFF_USR — BTS off in user code
FREEZE_LBRS_ON_PMI
FREEZE_PERFMON_ON_PMI

111214

FREEZE_WHILE_SMM_EN

15

RTM

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 234

• IA32_TIME_STAMP_COUNTER MSR (called TSC MSR in P6 family and Pentium processors) — The MSR
used as the counter.

• RDTSC instruction — An instruction used to read the time-stamp counter.
• TSD flag — A control register flag is used to enable or disable the time-stamp counter (enabled if

CR4.TSD[bit 2] = 1).

The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M, Pentium 4, Intel Xeon, Intel Core
Solo and Intel Core Duo processors and later processors) is a 64-bit counter that is set to 0 following a RESET of
the processor. Following a RESET, the counter increments even when the processor is halted by the HLT instruc-
tion or the external STPCLK# pin. Note that the assertion of the external DPSLP# pin may cause the time-stamp
counter to stop.

Processor families increment the time-stamp counter differently:
• For Pentium M processors (family [06H], models [09H, 0DH]); for Pentium 4 processors, Intel Xeon

processors (family [0FH], models [00H, 01H, or 02H]); and for P6 family processors: the time-stamp counter
increments with every internal processor clock cycle.
The internal processor clock cycle is determined by the current core-clock to bus-clock ratio. Intel®
SpeedStep® technology transitions may also impact the processor clock.

• For Pentium 4 processors, Intel Xeon processors (family [0FH], models [03H and higher]); for Intel Core Solo
and Intel Core Duo processors (family [06H], model [0EH]); for the Intel Xeon processor 5100 series and Intel
Core 2 Duo processors (family [06H], model [0FH]); for Intel Core 2 and Intel Xeon processors (family [06H],
DisplayModel [17H]); for Intel Atom processors (family [06H],
DisplayModel [1CH]): the time-stamp counter increments at a constant rate. That rate may be set by the
maximum core-clock to bus-clock ratio of the processor or may be set by the maximum resolved frequency at
which the processor is booted. The maximum resolved frequency may differ from the processor base
frequency, see Section 18.15.5 for more detail. On certain processors, the TSC frequency may not be the
same as the frequency in the brand string.
The specific processor configuration determines the behavior. Constant TSC behavior ensures that the
duration of each clock tick is uniform and supports the use of the TSC as a wall clock timer even if the
processor core changes frequency. This is the architectural behavior moving forward.

NOTE
To determine average processor clock frequency, Intel recommends the use of performance
monitoring logic to count processor core clocks over the period of time for which the average is
required. See Section 18.15, “Counting Clocks,” and Chapter 19, “Performance-
Monitoring Events,” for more information.

The RDTSC instruction reads the time-stamp counter and is guaranteed to return a monotonically increasing
unique value whenever executed, except for a 64-bit counter wraparound. Intel guarantees that the time-stamp
counter will not wraparound within 10 years after being reset. The period for counter wrap is longer for Pentium
4, Intel Xeon, P6 family, and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures running at any privilege level and
in virtual-8086 mode. The TSD flag allows use of this instruction to be restricted to programs and procedures
running at privilege level 0. A secure operating system would set the TSD flag during system initialization to
disable user access to the time-stamp counter. An operating system that disables user access to the time-stamp
counter should emulate the instruction through a user-accessible programming interface.

The RDTSC instruction is not serializing or ordered with other instructions. It does not necessarily wait until all
previous instructions have been executed before reading the counter. Similarly, subsequent instructions may
begin execution before the RDTSC instruction operation is performed.

The RDMSR and WRMSR instructions read and write the time-stamp counter, treating the time-stamp counter as
an ordinary MSR (address 10H). In the Pentium 4, Intel Xeon, and P6 family processors, all 64-bits of the time-

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 235

stamp counter are read using RDMSR (just as with RDTSC). When WRMSR is used to write the time-stamp
counter on processors before family [0FH], models [03H, 04H]: only the low-order 32-bits of the time-stamp
counter can be written (the high-order 32 bits are cleared to 0). For family [0FH], models [03H, 04H, 06H]; for
family [06H]], model [0EH, 0FH]; for family [06H]], DisplayModel [17H, 1AH, 1CH, 1DH]: all 64 bits are writable.

...

17.15.1 CQE Architecture Introduction
The fundamental goal of CQE is to enable resource allocation based on application priority or Class of Service
(COS or CLOS). The processor exposes a set of Classes of Service into which applications (or individual threads)
can be assigned. Cache allocation for the respective applications or threads is then restricted based on the class
with which they are associated. Each Class of Service can be configured using bitmasks which represent capacity
and indicate the degree of overlap and isolation between classes. For each logical processor there is a register
exposed (referred to here as the IA32_PQR_ASSOC MSR or PQR) to allow the OS/VMM to specify a COS when an
application, thread or VM is scheduled. Cache QoS Enforcement for the indicated application/thread/VM is then
controlled automatically by the hardware based on the class and the bitmask associated with that class. Bitmasks
are configured via the IA32_resourceType_QOS_MASK_n MSRs, where resourceType indicates a resource type
(e.g. “L3” for the L3 cache) and n indicates a COS number.

The basic ingredients of CQE are as follows:
• An architecturally exposed mechanism using CPUID to indicate whether PQoS Enforcement is supported, and

what resource types are available for PQoS Enforcement,
• For each available resourceType, CPUID also enumerates the total number of Classes of Services and the

length of the capacity bitmasks that can be used to enforce cache allocation to applications on the platform,
• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to configure the

behavior of different classes of service using the bitmasks available,
• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to assign a COS to an

executing software thread (i.e. associating the active CR3 of a logical processor with the COS in
IA32_PQR_ASSOC),

• Implementation-dependent mechanisms to indicate which COS is associated with a memory access and to
enforce the cache allocation on a per COS basis.

A capacity bitmask (CBM) provides a hint to the hardware indicating the cache space an application should be
limited to as well as providing an indication of overlap and isolation in the CQE-capable cache from other applica-
tions contending for the cache. The bitlength of the capacity mask available generally depends on the configura-
tion of the cache and is specified in the enumeration process for CQE in CPUID (this may vary between models in
a processor family as well).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 236

Sample cache capacity bitmasks for a bitlength of 8 are shown in Figure 17-26. Please note that all (and only)
contiguous '1' combinations are allowed (e.g. FFFFH, 0FF0H, 003CH, etc.). It is generally expected that in way-
based implementations, one capacity mask bit corresponds to some number of ways in cache, but the specific
mapping is implementation-dependent. In all cases, a mask bit set to '1' specifies that a particular Class of
Service can allocate into the cache subset represented by that bit. A value of '0' in a mask bit specifies that a Class
of Service cannot allocate into the given cache subset. In general, allocating more cache to a given application is
usually beneficial to its performance.

Figure 17-26 also shows three examples of sets of Cache Capacity Bitmasks. For simplicity these are represented
as 8-bit vectors, though this may vary depending on the implementation and how the mask is mapped to the
available cache capacity. The first example shows the default case where all 4 Classes of Service (the total
number of COS are implementation-dependent) have full access to the cache. The second case shows an over-
lapped case, which would allow some lower-priority threads share cache space with the highest priority threads.
The third case shows various non-overlapped partitioning schemes. As a matter of software policy for extensibility
COS0 should typically be considered and configured as the highest priority COS, followed by COS1, and so on,
though there is no hardware restriction enforcing this mapping. When the system boots all threads are initialized
to COS0, which has full access to the cache by default.

Though the representation of the CBMs looks similar to a way-based mapping they are independent of any specific
enforcement implementation (e.g. way partitioning.) Rather, this is a convenient manner to represent capacity,
overlap and isolation of cache space. For example, executing a POPCNT instruction (population count of set bits)
on the capacity bitmask can provide the fraction of cache space that a class of service can allocate into. In addition

Figure 17-26 Examples of Cache Capacity Bitmasks

M7 M6 M5 M4 M3 M2 M1 M0

A A A A A A A A

A A A A A A A A

A A A A A A A A

A A A A A A A A

COS0

COS1

COS2

COS3

Default Bitmask

M7 M6 M5 M4 M3 M2 M1 M0

A A A A

A A

A

A

COS0

COS1

COS2

COS3

Isolated Bitmask

M7 M6 M5 M4 M3 M2 M1 M0

A A A A A A A A

A A A A

A A

A

COS0

COS1

COS2

COS3

Overlapped Bitmask

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 237

to the fraction, the exact location of the bits also shows whether the class of service overlaps with other classes
of service or is entirely isolated in terms of cache space used.

...

17.15.2.1 Enumeration and Detection Support of CQE
Availability of Platform QoS Enforcement can be detected by calling CPUID leaf 7 and sub leaf 0 (Set EAX=07H,
Set ECX=00H, call CPUID). This function is used to enumerate the extended feature flags supported by the
processor. It loads feature flags in EAX, ECX, EBX and EDX registers. Bit position 15 in the EBX (EBX[15]) register
indicates support for Platform QoS Enforcement. If the value of this bit is set to 1 then it implies that the processor
supports PQoS Enforcement.

Software can query processor support of QoS Enforcement capabilities by executing CPUID instruction with EAX
= 07H, ECX = 0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQE[bit 15] reports 1, the processor supports PQoS
Enforcement. Software must use CPUID leaf 10H to enumerate additional details of available resource types,
classes of services and capability bitmasks. The programming interfaces provided by PQoS Enforcement include:
• CPUID leaf function 10H (PQoS Enforcement Enumeration leaf) and its sub-functions provide information on

available resource types, and PQoS Enforcement capability for each resource type (see Section 17.15.2.2).
• IA32_L3_QOS_MASK_n: A range of MSRs is provided for each resource type, each MSR within that range

specifying a software-configured capacity bitmask for each class of service. For L3 with CQE support, the CBM
is specified using one of the IA32_L3_QOS_MASK_n MSR, where 'n' corresponds to a number within the
supported range of COS, i.e. the range between 0 and CPUID.(EAX=10FH, ECX=ResID):EDX[15:0], inclusive.
See Section 17.15.2.3 for details.

• IA32_PQR_ASSOC.CLOS: The IA32_PQR_ASSOC MSR provides a COS field that OS/VMM can use to assign a
logical processor to an available COS. See Section 17.15.2.4 for details.

...

30. Updates to Chapter 18, Volume 3B
Change bars show changes to Chapter 18 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

18.2.2.1 Architectural Performance Monitoring Version 2 Facilities
The facilities provided by architectural performance monitoring version 2 can be queried from CPUID leaf 0AH by
examining the content of register EDX:
• Bits 0 through 4 of CPUID.0AH.EDX indicates the number of fixed-function performance counters available per

core,
• Bits 5 through 12 of CPUID.0AH.EDX indicates the bit-width of fixed-function performance counters. Bits

beyond the width of the fixed-function counter are reserved and must be written as zeros.

NOTE
Early generation of processors based on Intel Core microarchitecture may report in
CPUID.0AH:EDX of support for version 2 but indicating incorrect information of version 2 facilities.

The IA32_FIXED_CTR_CTRL MSR include multiple sets of 4-bit field, each 4 bit field controls the operation of
a fixed-function performance counter. Figure 18-2 shows the layout of 4-bit controls for each fixed-function
PMC. Two sub-fields are currently defined within each control. The definitions of the bit fields are:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 238

• Enable field (lowest 2 bits within each 4-bit control) — When bit 0 is set, performance counting is
enabled in the corresponding fixed-function performance counter to increment while the target condition
associated with the architecture performance event occurred at ring 0. When bit 1 is set, performance
counting is enabled in the corresponding fixed-function performance counter to increment while the target
condition associated with the architecture performance event occurred at ring greater than 0. Writing 0 to
both bits stops the performance counter. Writing a value of 11B enables the counter to increment irrespective
of privilege levels.

• PMI field (the fourth bit within each 4-bit control) — When set, the logical processor generates an
exception through its local APIC on overflow condition of the respective fixed-function counter.

IA32_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting of each performance counter.
Figure 18-3 shows the layout of IA32_PERF_GLOBAL_CTRL. Each enable bit in IA32_PERF_GLOBAL_CTRL is
AND’ed with the enable bits for all privilege levels in the respective IA32_PERFEVTSELx or
IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective counters. Counting is enabled if the
AND’ed results is true; counting is disabled when the result is false.

The fixed-function performance counters supported by architectural performance version 2 is listed in Table 18-8,
the pairing between each fixed-function performance counter to an architectural performance event is also
shown.

Figure 18-2 Layout of IA32_FIXED_CTR_CTRL MSR

Figure 18-3 Layout of IA32_PERF_GLOBAL_CTRL MSR

Cntr2 — Controls for IA32_FIXED_CTR2
Cntr1 — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow
Cntr0 — Controls for IA32_FIXED_CTR0

8 7 0

ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II

IA32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable
IA32_FIXED_CTR0 enable
IA32_PMC1 enable

2 1 0

IA32_PMC0 enable

3132333435

Reserved

63

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 239

IA32_PERF_GLOBAL_STATUS MSR provides single-bit status for software to query the overflow condition of each
performance counter. The MSR also provides additional status bit to indicate overflow conditions when counters
are programmed for precise-event-based sampling (PEBS). IA32_PERF_GLOBAL_STATUS MSR also provides a
CondChgd bit to indicate changes to the state of performance monitoring hardware. Figure 18-4 shows the layout
of IA32_PERF_GLOBAL_STATUS. A value of 1 in bits 0, 1, 32 through 34 indicates a counter overflow condition
has occurred in the associated counter.

When a performance counter is configured for PEBS, overflow condition in the counter generates a performance-
monitoring interrupt signaling a PEBS event. On a PEBS event, the processor stores data records into the buffer
area (see Section 18.15.5), clears the counter overflow status., and sets the “OvfBuffer” bit in
IA32_PERF_GLOBAL_STATUS.

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of any general-purpose or
fixed-function counters via a single WRMSR. Software should clear overflow indications when
• Setting up new values in the event select and/or UMASK field for counting or sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling.

The layout of IA32_PERF_GLOBAL_OVF_CTL is shown in Figure 18-5.

...

Figure 18-4 Layout of IA32_PERF_GLOBAL_STATUS MSR

Figure 18-5 Layout of IA32_PERF_GLOBAL_OVF_CTRL MSR

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow
IA32_PMC1 Overflow

2 1 0

IA32_PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfBuffer

62

IA32_FIXED_CTR2 ClrOverflow
IA32_FIXED_CTR1 ClrOverflow
IA32_FIXED_CTR0 ClrOverflow
IA32_PMC1 ClrOverflow

2 1 0

IA32_PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 240

18.4.2 Global Counter Control Facilities
Processors based on Intel Core microarchitecture provides simplified performance counter control that simplifies
the most frequent operations in programming performance events, i.e. enabling/disabling event counting and
checking the status of counter overflows. This is done by the following three MSRs:
• MSR_PERF_GLOBAL_CTRL enables/disables event counting for all or any combination of fixed-function PMCs

(MSR_PERF_FIXED_CTRx) or general-purpose PMCs via a single WRMSR.
• MSR_PERF_GLOBAL_STATUS allows software to query counter overflow conditions on any combination of

fixed-function PMCs (MSR_PERF_FIXED_CTRx) or general-purpose PMCs via a single RDMSR.
• MSR_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow conditions on any combination of

fixed-function PMCs (MSR_PERF_FIXED_CTRx) or general-purpose PMCs via a single WRMSR.

MSR_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting in each performance counter (see
Figure 18-11). Each enable bit in MSR_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels
in the respective IA32_PERFEVTSELx or MSR_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respec-
tive counters. Counting is enabled if the AND’ed results is true; counting is disabled when the result is false.

MSR_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to query the overflow condition of
each performance counter. The MSR also provides additional status bit to indicate overflow conditions when coun-
ters are programmed for precise-event-based sampling (PEBS). The MSR_PERF_GLOBAL_STATUS MSR also
provides a CondChgd bit to indicate changes to the state of performance monitoring hardware (see Figure 18-12).
A value of 1 in bits 34:32, 1, 0 indicates an overflow condition has occurred in the associated counter.

Figure 18-11 Layout of MSR_PERF_GLOBAL_CTRL MSR

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable
PMC1 enable

2 1 0

PMC0 enable

3132333435

Reserved

63

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 241

When a performance counter is configured for PEBS, an overflow condition in the counter will arm PEBS. On the
subsequent event following overflow, the processor will generate a PEBS event. On a PEBS event, the processor
will perform bounds checks based on the parameters defined in the DS Save Area (see Section 17.4.9). Upon
successful bounds checks, the processor will store the data record in the defined buffer area, clear the counter
overflow status, and reload the counter. If the bounds checks fail, the PEBS will be skipped entirely. In the event
that the PEBS buffer fills up, the processor will set the OvfBuffer bit in MSR_PERF_GLOBAL_STATUS.

MSR_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators for general-purpose or fixed-
function counters via a single WRMSR (see Figure 18-13). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling

...

18.4.4.3 Writing a PEBS Interrupt Service Routine
The PEBS facilities share the same interrupt vector and interrupt service routine (called the DS ISR) with the non-
precise event-based sampling and BTS facilities. To handle PEBS interrupts, PEBS handler code must be included

Figure 18-12 Layout of MSR_PERF_GLOBAL_STATUS MSR

Figure 18-13 Layout of MSR_PERF_GLOBAL_OVF_CTRL MSR

62

FIXED_CTR2 Overflow
FIXED_CTR1 Overflow
FIXED_CTR0 Overflow
PMC1 Overflow

2 1 0

PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfBuffer

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC1 ClrOverflow

2 1 0

PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 242

in the DS ISR. See Section 17.4.9.1, “DS Save Area and IA-32e Mode Operation,” for guidelines when writing the
DS ISR.

The service routine can query MSR_PERF_GLOBAL_STATUS to determine which counter(s) caused of overflow
condition. The service routine should clear overflow indicator by writing to MSR_PERF_GLOBAL_OVF_CTL.

A comparison of the sequence of requirements to program PEBS for processors based on Intel Core and Intel
NetBurst microarchitectures is listed in Table 18-11.

...

Table 18-11 Requirements to Program PEBS

For Processors based on Intel Core
microarchitecture

For Processors based on Intel NetBurst
microarchitecture

Verify PEBS support of processor/
OS

• IA32_MISC_ENABLE.EMON_AVAILABE (bit 7) is set.
• IA32_MISC_ENABLE.PEBS_UNAVAILABE (bit 12) is clear.

Ensure counters are in disabled On initial set up or changing event
configurations, write
MSR_PERF_GLOBAL_CTRL MSR (38FH) with 0.

On subsequent entries:

• Clear all counters if “Counter Freeze on PMI“
is not enabled.

• If IA32_DebugCTL.Freeze is enabled,
counters are automatically disabled.

Counters MUST be stopped before writing.1

Optional

Disable PEBS. Clear ENABLE PMC0 bit in IA32_PEBS_ENABLE
MSR (3F1H).

Optional

Check overflow conditions. Check MSR_PERF_GLOBAL_STATUS MSR
(38EH) handle any overflow conditions.

Check OVF flag of each CCCR for overflow
condition

Clear overflow status. Clear MSR_PERF_GLOBAL_STATUS MSR
(38EH) using IA32_PERF_GLOBAL_OVF_CTRL
MSR (390H).

Clear OVF flag of each CCCR.

Write “sample-after“ values. Configure the counter(s) with the sample after value.

Configure specific counter
configuration MSR.

• Set local enable bit 22 - 1.
• Do NOT set local counter PMI/INT bit, bit 20

- 0.
• Event programmed must be PEBS capable.

• Set appropriate OVF_PMI bits - 1.
• Only CCCR for MSR_IQ_COUNTER4 support

PEBS.

Allocate buffer for PEBS states. Allocate a buffer in memory for the precise information.

Program the IA32_DS_AREA MSR. Program the IA32_DS_AREA MSR.

Configure the PEBS buffer
management records.

Configure the PEBS buffer management records in the DS buffer management area.

Configure/Enable PEBS. Set Enable PMC0 bit in IA32_PEBS_ENABLE
MSR (3F1H).

Configure MSR_PEBS_ENABLE,
MSR_PEBS_MATRIX_VERT and
MSR_PEBS_MATRIX_HORZ as needed.

Enable counters. Set Enable bits in MSR_PERF_GLOBAL_CTRL
MSR (38FH).

Set each CCCR enable bit 12 - 1.

NOTES:
1. Counters read while enabled are not guaranteed to be precise with event counts that occur in timing proximity to the RDMSR.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 243

18.6.1.1 Precise Event Based Sampling (PEBS)
Processors based on the Silvermont microarchitecture support precise event based sampling (PEBS). PEBS is
supported using IA32_PMC0 (see also Section 17.4.9, “BTS and DS Save Area”).

PEBS uses a debug store mechanism to store a set of architectural state information for the processor. The infor-
mation provides architectural state of the instruction executed after the instruction that caused the event (See
Section 18.4.4).

The list of PEBS events supported in the Silvermont microarchitecture is shown in Table 18-12.

PEBS Record Format The PEBS record format supported by processors based on the Intel Silvermont microarchi-
tecture is shown in Table 18-13, and each field in the PEBS record is 64 bits long.

Table 18-12 PEBS Performance Events for the Silvermont Microarchitecture
Event Name Event Select Sub-event UMask

BR_INST_RETIRED C4H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

CALL F9H

REL_CALL FDH

IND_CALL FBH

NON_RETURN_IND EBH

FAR_BRANCH BFH

RETURN F7H

BR_MISP_RETIRED C5H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

IND_CALL FBH

NON_RETURN_IND EBH

RETURN F7H

MEM_UOPS_RETIRED 04H L2_HIT_LOADS 02H

L2_MISS_LOADS 04H

DLTB_MISS_LOADS 08H

HITM 20H

REHABQ 03H LD_BLOCK_ST_FORWARD 01H

LD_SPLITS 08H

Table 18-13 PEBS Record Format for the Silvermont Microarchitecture

Byte Offset Field Byte Offset Field

00H R/EFLAGS 60H R10

08H R/EIP 68H R11

10H R/EAX 70H R12

18H R/EBX 78H R13

20H R/ECX 80H R14

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 244

18.6.2 Offcore Response Event
Event number 0B7H support offcore response monitoring using an associated configuration MSR,
MSR_OFFCORE_RSP0 (address 1A6H) in conjunction with umask value 01H or MSR_OFFCORE_RSP1 (address
1A7H) in conjunction with umask value 02H. Table 19-19 lists the event code, mask value and additional off-core
configuration MSR that must be programmed to count off-core response events using IA32_PMCx.

The layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 are shown in Figure 18-32 and Figure 18-33. Bits
15:0 specifies the request type of a transaction request to the uncore. Bits 30:16 specifies supplier information,
bits 37:31 specifies snoop response information.

Additionally, MSR_OFFCORE_RSP0 provides bit 38 to enable measurement of average latency of specific type of
offcore transaction requests using two programmable counter simultaneously, see Section 18.6.3 for details.

28H R/EDX 88H R15

30H R/ESI 90H IA32_PERF_GLOBAL_STATUS

38H R/EDI 98H Reserved

40H R/EBP A0H Reserved

48H R/ESP A8H Reserved

50H R8 80H EventingRIP

58H R9 B8H Reserved

Table 18-13 PEBS Record Format for the Silvermont Microarchitecture

Byte Offset Field Byte Offset Field

Table 18-14 OffCore Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-3 B7H 01H MSR_OFFCORE_RSP0 (address 1A6H)

PMC0-3 B7H 02H MSR_OFFCORE_RSP1 (address 1A7H)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 245

Figure 18-14 Request_Type Fields for MSR_OFFCORE_RSPx

Table 18-15 MSR_OFFCORE_RSPx Request_Type Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand and DCU prefetch data reads of full and partial
cachelines as well as demand data page table entry cacheline reads. Does not count L2 data
read prefetches or instruction fetches.

DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for ownership (RFO) requests
generated by a write to data cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction cacheline reads. Does
not count L2 code read prefetches.

WB 3 (R/W). Counts the number of writeback (modified to exclusive) transactions.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 prefetchers.

PARTIAL_READ 7 (R/W). Counts the number of demand reads of partial cache lines (including UC and WC).

PARTIAL_WRITE 8 (R/W). Counts the number of demand RFO requests to write to partial cache lines (includes
UC, WT and WP)

UC_IFETCH 9 (R/W). Counts the number of UC instruction fetches.

BUS_LOCKS 10 (R/W). Bus lock and split lock requests

STRM_ST 11 (R/W). Streaming store requests

SW_PREFETCH 12 (R/W). Counts software prefetch requests

PF_DATA_RD 13 (R/W). Counts DCU hardware prefetcher data read requests

RESPONSE TYPE — Other (R/W)
REQUEST TYPE — PARTIAL_STRM_ST (R/W)

8 7 0

REQUEST TYPE — STRM_ST (R/W)

11 312 1

Reserved

63 249 5610131415

REQUEST TYPE — BUS_LOCKS (R/W)
REQUEST TYPE — UC_IFETCH (R/W)
REQUEST TYPE — PARTIAL_WRITE (R/W)
REQUEST TYPE — PARTIAL_READ (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 00000000_00000000H

37

See Figure 18-30

REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — SW_PREFETCH (R/W)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 246

...

18.6.3 Average Offcore Request Latency Measurement
Measurement of average latency of offcore transaction requests can be enabled using MSR_OFFCORE_RSP0.[bit
38] with the choice of request type specified in MSR_OFFCORE_RSP0.[bit 15:0] and MSR_OFFCORE_RSP0.[bit
37:16] set to 0.

When average latency measurement is enabled, e.g. with IA32_PERFEVTSEL0.[bits 15:0] = 01B7H and chosen
value of MSR_OFFCORE_RSP0, IA32_PMC0 will accumulate weighted cycles of outstanding transaction requests
for the specified transaction request type. At the same time, IA32_PMC1 should be configured to accumulate the
number of occurrences each time a new transaction request of specified type is made.

...

18.7.1 Enhancements of Performance Monitoring in the Processor Core
The notable enhancements in the monitoring of performance events in the processor core include:
• Four general purpose performance counters, IA32_PMCx, associated counter configuration MSRs,

IA32_PERFEVTSELx, and global counter control MSR supporting simplified control of four counters. Each of
the four performance counter can support precise event based sampling (PEBS) and thread-qualification of
architectural and non-architectural performance events. Width of IA32_PMCx supported by hardware has
been increased. The width of counter reported by CPUID.0AH:EAX[23:16] is 48 bits. The PEBS facility in Intel
microarchitecture code name Nehalem has been enhanced to include new data format to capture additional
information, such as load latency.

• Load latency sampling facility. Average latency of memory load operation can be sampled using load-latency
facility in processors based on Intel microarchitecture code name Nehalem. This field measures the load
latency from load's first dispatch of till final data writeback from the memory subsystem. The latency is
reported for retired demand load operations and in core cycles (it accounts for re-dispatches). This facility is
used in conjunction with the PEBS facility.

• Off-core response counting facility. This facility in the processor core allows software to count certain
transaction responses between the processor core to sub-systems outside the processor core (uncore).
Counting off-core response requires additional event qualification configuration facility in conjunction with
IA32_PERFEVTSELx. Two off-core response MSRs are provided to use in conjunction with specific event codes
that must be specified with IA32_PERFEVTSELx.

18.7.1.1 Precise Event Based Sampling (PEBS)
All four general-purpose performance counters, IA32_PMCx, can be used for PEBS if the performance event
supports PEBS. Software uses IA32_MISC_ENABLE[7] and IA32_MISC_ENABLE[12] to detect whether the perfor-
mance monitoring facility and PEBS functionality are supported in the processor. The MSR IA32_PEBS_ENABLE
provides 4 bits that software must use to enable which IA32_PMCx overflow condition will cause the PEBS record
to be captured.

Additionally, the PEBS record is expanded to allow latency information to be captured. The MSR
IA32_PEBS_ENABLE provides 4 additional bits that software must use to enable latency data recording in the

PARTIAL_STRM_ST 14 (R/W). Streaming store requests

ANY 15 (R/W). Any request that crosses IDI, including I/O.

Table 18-15 MSR_OFFCORE_RSPx Request_Type Field Definition (Contd.)

Bit Name Offset Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 247

PEBS record upon the respective IA32_PMCx overflow condition. The layout of IA32_PEBS_ENABLE for processors
based on Intel microarchitecture code name Nehalem is shown in Figure 18-17.

When a counter is enabled to capture machine state (PEBS_EN_PMCx = 1), the processor will write machine state
information to a memory buffer specified by software as detailed below. When the counter IA32_PMCx overflows
from maximum count to zero, the PEBS hardware is armed.

Upon occurrence of the next PEBS event, the PEBS hardware triggers an assist and causes a PEBS record to be
written. The format of the PEBS record is indicated by the bit field IA32_PERF_CAPABILITIES[11:8] (see
Figure 18-43).

The behavior of PEBS assists is reported by IA32_PERF_CAPABILITIES[6] (see Figure 18-43). The return instruc-
tion pointer (RIP) reported in the PEBS record will point to the instruction after (+1) the instruction that causes
the PEBS assist. The machine state reported in the PEBS record is the machine state after the instruction that
causes the PEBS assist is retired. For instance, if the instructions:

mov eax, [eax] ; causes PEBS assist

nop

are executed, the PEBS record will report the address of the nop, and the value of EAX in the PEBS record will
show the value read from memory, not the target address of the read operation.

The PEBS record format is shown in Table 18-18, and each field in the PEBS record is 64 bits long. The PEBS
record format, along with debug/store area storage format, does not change regardless of IA-32e mode is active
or not. CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-inde-
pendent. When set, it uses 64-bit DS storage format.

Figure 18-17 Layout of IA32_PEBS_ENABLE MSR

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 00000000_00000000H

Table 18-18 PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field

00H R/EFLAGS 58H R9

08H R/EIP 60H R10

10H R/EAX 68H R11

18H R/EBX 70H R12

20H R/ECX 78H R13

28H R/EDX 80H R14

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 248

In IA-32e mode, the full 64-bit value is written to the register. If the processor is not operating in IA-32e mode,
32-bit value is written to registers with bits 63:32 zeroed. Registers not defined when the processor is not in IA-
32e mode are written to zero.

Bytes AFH:90H are enhancement to the PEBS record format. Support for this enhanced PEBS record format is
indicated by IA32_PERF_CAPABILITIES[11:8] encoding of 0001B.

The value written to bytes 97H:90H is the state of the IA32_PERF_GLOBAL_STATUS register before the PEBS
assist occurred. This value is written so software can determine which counters overflowed when this PEBS record
was written. Note that this field indicates the overflow status for all counters, regardless of whether they were
programmed for PEBS or not.

Programming PEBS Facility

Only a subset of non-architectural performance events in the processor support PEBS. The subset of precise
events are listed in Table 18-10. In addition to using IA32_PERFEVTSELx to specify event unit/mask settings and
setting the EN_PMCx bit in the IA32_PEBS_ENABLE register for the respective counter, the software must also
initialize the DS_BUFFER_MANAGEMENT_AREA data structure in memory to support capturing PEBS records for
precise events.

NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero:
AnyThread, Edge, Invert, CMask.

The beginning linear address of the DS_BUFFER_MANAGEMENT_AREA data structure must be programmed into
the IA32_DS_AREA register. The layout of the DS_BUFFER_MANAGEMENT_AREA is shown in Figure 18-18.
• PEBS Buffer Base: This field is programmed with the linear address of the first byte of the PEBS buffer

allocated by software. The processor reads this field to determine the base address of the PEBS buffer.
Software should allocate this memory from the non-paged pool.

30H R/ESI 88H R15

38H R/EDI 90H IA32_PERF_GLOBAL_STATUS

40H R/EBP 98H Data Linear Address

48H R/ESP A0H Data Source Encoding

50H R8 A8H Latency value (core cycles)

Table 18-18 PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 249

• PEBS Index: This field is initially programmed with the same value as the PEBS Buffer Base field, or the
beginning linear address of the PEBS buffer. The processor reads this field to determine the location of the
next PEBS record to write to. After a PEBS record has been written, the processor also updates this field with
the address of the next PEBS record to be written. The figure above illustrates the state of PEBS Index after
the first PEBS record is written.

• PEBS Absolute Maximum: This field represents the absolute address of the maximum length of the
allocated PEBS buffer plus the starting address of the PEBS buffer. The processor will not write any PEBS
record beyond the end of PEBS buffer, when PEBS Index equals PEBS Absolute Maximum. No signaling is
generated when PEBS buffer is full. Software must reset the PEBS Index field to the beginning of the PEBS
buffer address to continue capturing PEBS records.

• PEBS Interrupt Threshold: This field specifies the threshold value to trigger a performance interrupt and
notify software that the PEBS buffer is nearly full. This field is programmed with the linear address of the first
byte of the PEBS record within the PEBS buffer that represents the threshold record. After the processor
writes a PEBS record and updates PEBS Index, if the PEBS Index reaches the threshold value of this field,
the processor will generate a performance interrupt. This is the same interrupt that is generated by a
performance counter overflow, as programmed in the Performance Monitoring Counters vector in the Local
Vector Table of the Local APIC. When a performance interrupt due to PEBS buffer full is generated, the
IA32_PERF_GLOBAL_STATUS.PEBS_Ovf bit will be set.

Figure 18-18 PEBS Programming Environment

BTS Buffer Base

BTS Index

BTS Absolute

BTS Interrupt

PEBS Absolute

PEBS Interrupt

PEBS

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter0 Reset

Reserved

0H

8H

10H

18H

20H

28H

30H

38H

40H

48H

50H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR

58H

60H

PEBS
Counter1 Reset

PEBS
Counter2 Reset

PEBS
Counter3 Reset

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 250

• PEBS CounterX Reset: This field allows software to set up PEBS counter overflow condition to occur at a rate
useful for profiling workload, thereby generating multiple PEBS records to facilitate characterizing the profile
the execution of test code. After each PEBS record is written, the processor checks each counter to see if it
overflowed and was enabled for PEBS (the corresponding bit in IA32_PEBS_ENABLED was set). If these
conditions are met, then the reset value for each overflowed counter is loaded from the DS Buffer
Management Area. For example, if counter IA32_PMC0 caused a PEBS record to be written, then the value of
“PEBS Counter 0 Reset” would be written to counter IA32_PMC0. If a counter is not enabled for PEBS, its value
will not be modified by the PEBS assist.

Performance Counter Prioritization

Performance monitoring interrupts are triggered by a counter transitioning from maximum count to zero
(assuming IA32_PerfEvtSelX.INT is set). This same transition will cause PEBS hardware to arm, but not trigger.
PEBS hardware triggers upon detection of the first PEBS event after the PEBS hardware has been armed (a 0 to 1
transition of the counter). At this point, a PEBS assist will be undertaken by the processor.

Performance counters (fixed and general-purpose) are prioritized in index order. That is, counter IA32_PMC0
takes precedence over all other counters. Counter IA32_PMC1 takes precedence over counters IA32_PMC2 and
IA32_PMC3, and so on. This means that if simultaneous overflows or PEBS assists occur, the appropriate action
will be taken for the highest priority performance counter. For example, if IA32_PMC1 cause an overflow interrupt
and IA32_PMC2 causes an PEBS assist simultaneously, then the overflow interrupt will be serviced first.

The PEBS threshold interrupt is triggered by the PEBS assist, and is by definition prioritized lower than the PEBS
assist. Hardware will not generate separate interrupts for each counter that simultaneously overflows. General-
purpose performance counters are prioritized over fixed counters.

If a counter is programmed with a precise (PEBS-enabled) event and programmed to generate a counter overflow
interrupt, the PEBS assist is serviced before the counter overflow interrupt is serviced. If in addition the PEBS
interrupt threshold is met, the

threshold interrupt is generated after the PEBS assist completes, followed by the counter overflow interrupt (two
separate interrupts are generated).

Uncore counters may be programmed to interrupt one or more processor cores (see Section 18.7.2). It is possible
for interrupts posted from the uncore facility to occur coincident with counter overflow interrupts from the
processor core. Software must check core and uncore status registers to determine the exact origin of counter
overflow interrupts.

18.7.1.2 Load Latency Performance Monitoring Facility
The load latency facility provides software a means to characterize the average load latency to different levels of
cache/memory hierarchy. This facility requires processor supporting enhanced PEBS record format in the PEBS
buffer, see Table 18-18. This field measures the load latency from load's first dispatch of till final data writeback
from the memory subsystem. The latency is reported for retired demand load operations and in core cycles (it
accounts for re-dispatches).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit MEM_INST_RETIRED, and the

LATENCY_ABOVE_THRESHOLD event mask must be specified (IA32_PerfEvtSelX[15:0] = 100H). The corre-
sponding counter IA32_PMCx will accumulate event counts for architecturally visible loads which exceed the
programmed latency threshold specified separately in a MSR. Stores are ignored when this event is
programmed. The CMASK or INV fields of the IA32_PerfEvtSelX register used for counting load latency must
be 0. Writing other values will result in undefined behavior.

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired latency threshold in core clock
cycles. Loads with latencies greater than this value are eligible for counting and latency data reporting. The
minimum value that may be programmed in this register is 3 (the minimum detectable load latency is 4 core
clock cycles).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 251

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corresponding IA32_PMCx counter
register. This means that both the PEBS_EN_CTRX and LL_EN_CTRX bits must be set for the counter(s) of
interest. For example, to enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register must
be programmed with the 64-bit value 00000001_00000001H.

When the load-latency facility is enabled, load operations are randomly selected by hardware and tagged to carry
information related to data source locality and latency. Latency and data source information of tagged loads are
updated internally.

When a PEBS assist occurs, the last update of latency and data source information are captured by the assist and
written as part of the PEBS record. The PEBS sample after value (SAV), specified in PEBS CounterX Reset, oper-
ates orthogonally to the tagging mechanism. Loads are randomly tagged to collect latency data. The SAV controls
the number of tagged loads with latency information that will be written into the PEBS record field by the PEBS
assists. The load latency data written to the PEBS record will be for the last tagged load operation which retired
just before the PEBS assist was invoked.

The load-latency information written into a PEBS record (see Table 18-18, bytes AFH:98H) consists of:
• Data Linear Address: This is the linear address of the target of the load operation.
• Latency Value: This is the elapsed cycles of the tagged load operation between dispatch to GO, measured in

processor core clock domain.
• Data Source: The encoded value indicates the origin of the data obtained by the load instruction. The

encoding is shown in Table 18-19. In the descriptions local memory refers to system memory physically
attached to a processor package, and remote memory referrals to system memory physically attached to
another processor package.

Table 18-19 Data Source Encoding for Load Latency Record

Encoding Description

00H Unknown L3 cache miss

01H Minimal latency core cache hit. This request was satisfied by the L1 data cache.

02H Pending core cache HIT. Outstanding core cache miss to same cache-line address was already underway.

03H This data request was satisfied by the L2.

04H L3 HIT. Local or Remote home requests that hit L3 cache in the uncore with no coherency actions required (snooping).

05H L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced by another processor core with a cross
core snoop where no modified copies were found. (clean).

06H L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced by another processor core with a cross
core snoop where modified copies were found. (HITM).

07H1 Reserved/LLC Snoop HitM. Local or Remote home requests that hit the last level cache and was serviced by another
core with a cross core snoop where modified copies found

08H L3 MISS. Local homed requests that missed the L3 cache and was serviced by forwarded data following a cross
package snoop where no modified copies found. (Remote home requests are not counted).

09H Reserved

0AH L3 MISS. Local home requests that missed the L3 cache and was serviced by local DRAM (go to shared state).

0BH L3 MISS. Remote home requests that missed the L3 cache and was serviced by remote DRAM (go to shared state).

0CH L3 MISS. Local home requests that missed the L3 cache and was serviced by local DRAM (go to exclusive state).

0DH L3 MISS. Remote home requests that missed the L3 cache and was serviced by remote DRAM (go to exclusive state).

0EH I/O, Request of input/output operation

0FH The request was to un-cacheable memory.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 252

The layout of MSR_PEBS_LD_LAT_THRESHOLD is shown in Figure 18-19.

Bits 15:0 specifies the threshold load latency in core clock cycles. Performance events with latencies greater than
this value are counted in IA32_PMCx and their latency information is reported in the PEBS record. Otherwise, they
are ignored. The minimum value that may be programmed in this field is 3.

18.7.1.3 Off-core Response Performance Monitoring in the Processor Core
Programming a performance event using the off-core response facility can choose any of the four
IA32_PERFEVTSELx MSR with specific event codes and predefine mask bit value. Each event code for off-core
response monitoring requires programming an associated configuration MSR, MSR_OFFCORE_RSP_0. There is
only one off-core response configuration MSR. Table 18-20 lists the event code, mask value and additional off-
core configuration MSR that must be programmed to count off-core response events using IA32_PMCx.

The layout of MSR_OFFCORE_RSP_0 is shown in Figure 18-20. Bits 7:0 specifies the request type of a transaction
request to the uncore. Bits 15:8 specifies the response of the uncore subsystem.

NOTES:
1. Bit 7 is supported only for processor with CPUID DisplayFamily_DisplayModel signature of 06_2A, and 06_2E; otherwise it is

reserved.

Figure 18-19 Layout of MSR_PEBS_LD_LAT MSR

1615 0

Reserved

63

THRHLD - Load latency threshold

RESET Value — 00000000_00000000H

Table 18-20 Off-Core Response Event Encoding

Event code in
IA32_PERFEVTSELx

Mask Value in
IA32_PERFEVTSELx Required Off-core Response MSR

B7H 01H MSR_OFFCORE_RSP_0 (address 1A6H)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 253

...

18.8.1 Intel® Xeon® Processor E7 Family Performance Monitoring Facility
The performance monitoring facility in the processor core of the Intel® Xeon® processor E7 family is the same as
those supported in the Intel Xeon processor 5600 series1. The uncore subsystem in the Intel Xeon processor E7
family is similar to those of the Intel Xeon processor 7500 series. The high level construction of the uncore sub-
system is similar to that shown in Figure 18-27, with the additional capability that up to 10 C-Box units are
supported.

Table 18-24 summarizes the number MSRs for uncore PMU for each box.

Figure 18-20 Layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 to Configure Off-core Response
Events

1. Exceptions are indicated for event code 0FH in Table 19-14; and valid bits of data source encoding field of each load
latency record is limited to bits 5:4 of Table 18-28.

RESPONSE TYPE — NON_DRAM (R/W)
RESPONSE TYPE — LOCAL_DRAM (R/W)
RESPONSE TYPE — REMOTE_DRAM (R/W)
RESPONSE TYPE — REMOTE_CACHE_FWD (R/W)

8 7 0

RESPONSE TYPE — RESERVED

11 312 1

Reserved

63 249 5610131415

RESPONSE TYPE — OTHER_CORE_HITM (R/W)
RESPONSE TYPE — OTHER_CORE_HIT_SNP (R/W)
RESPONSE TYPE — UNCORE_HIT (R/W)
REQUEST TYPE — OTHER (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 00000000_00000000H

Table 18-24 Uncore PMU MSR Summary for Intel® Xeon® Processor E7 Family

Box # of Boxes Counters per Box
Counter
Width

General
Purpose

Global
Enable Sub-control MSRs

C-Box 10 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes

R-Box 1 16 (2 port, 8 per port) 48 Yes per-box Yes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 254

Details of the uncore performance monitoring facility of Intel Xeon Processor E7 family is available in “Intel®
Xeon® Processor E7 Uncore Performance Monitoring Programming Reference Manual”.

...

18.9.1 Global Counter Control Facilities In Intel® Microarchitecture Code Name Sandy Bridge
The number of general-purpose performance counters visible to a logical processor can vary across Processors
based on Intel microarchitecture code name Sandy Bridge. Software must use CPUID to determine the number
performance counters/event select registers (See Section 18.2.1.1).

Figure 18-11 depicts the layout of IA32_PERF_GLOBAL_CTRL MSR. The enable bits (PMC4_EN, PMC5_EN,
PMC6_EN, PMC7_EN) corresponding to IA32_PMC4-IA32_PMC7 are valid only if CPUID.0AH:EAX[15:8] reports a
value of ‘8’. If CPUID.0AH:EAX[15:8] = 4, attempts to set the invalid bits will cause #GP.

Each enable bit in IA32_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels in the respec-
tive IA32_PERFEVTSELx or IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective counters.
Counting is enabled if the AND’ed results is true; counting is disabled when the result is false.
IA32_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to query the overflow condition of
each performance counter. The MSR also provides additional status bit to indicate overflow conditions when coun-
ters are programmed for precise-event-based sampling (PEBS). The IA32_PERF_GLOBAL_STATUS MSR also
provides a CondChgd bit to indicate changes to the state of performance monitoring hardware (see Figure 18-29).
A value of 1 in each bit of the PMCx_OVF field indicates an overflow condition has occurred in the associated
counter.

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None

Table 18-24 Uncore PMU MSR Summary for Intel® Xeon® Processor E7 Family

Box # of Boxes Counters per Box
Counter
Width

General
Purpose

Global
Enable Sub-control MSRs

Figure 18-28 IA32_PERF_GLOBAL_CTRL MSR in Intel® Microarchitecture Code Name Sandy Bridge

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable

PMC7_EN (if PMC7 present)

2 1 0

PMC6_EN (if PMC6 present)

3132333435

Reserved

63

PMC5_EN (if PMC5 present)
PMC4_EN (if PMC4 present)
PMC3_EN
PMC2_EN
PMC1_EN

Valid if CPUID.0AH:EAX[15:8] = 8, else reserved.

PMC0_EN

8 7 6 5 4 3

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 255

When a performance counter is configured for PEBS, an overflow condition in the counter will arm PEBS. On the
subsequent event following overflow, the processor will generate a PEBS event. On a PEBS event, the processor
will perform bounds checks based on the parameters defined in the DS Save Area (see Section 17.4.9). Upon
successful bounds checks, the processor will store the data record in the defined buffer area, clear the counter
overflow status, and reload the counter. If the bounds checks fail, the PEBS will be skipped entirely. In the event
that the PEBS buffer fills up, the processor will set the OvfBuffer bit in MSR_PERF_GLOBAL_STATUS.

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators for general-purpose or fixed-
function counters via a single WRMSR (see Figure 18-30). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling

Figure 18-29 IA32_PERF_GLOBAL_STATUS MSR in Intel® Microarchitecture Code Name Sandy Bridge

62

FIXED_CTR2 Overflow (RO)
FIXED_CTR1 Overflow (RO)
FIXED_CTR0 Overflow (RO)
PMC7_OVF (RO, If PMC7 present)

2 1 0

PMC6_OVF (RO, If PMC6 present)

3132333435

Reserved

63

CondChgd
OvfBuffer

8 7 6 5 4 3

PMC5_OVF (RO, If PMC5 present)
PMC4_OVF (RO, If PMC4 present)
PMC3_OVF (RO)
PMC2_OVF (RO)
PMC1_OVF (RO)
PMC0_OVF (RO)

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 256

...

18.9.4 PEBS Support in Intel® Microarchitecture Code Name Sandy Bridge
Processors based on Intel microarchitecture code name Sandy Bridge support PEBS, similar to those offered in
prior generation, with several enhanced features. The key components and differences of PEBS facility relative to
Intel microarchitecture code name Westmere is summarized in Table 18-26.

Figure 18-30 IA32_PERF_GLOBAL_OVF_CTRL MSR in Intel microarchitecture code name Sandy Bridge

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC7_ClrOvf (if PMC7 present)

2 1 0

PMC6_ClrOvf (if PMC6 present)

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer

8 7 6 5 4 3

PMC5_ClrOvf (if PMC5 present)
PMC4_ClrOvf (if PMC4 present)
PMC3_ClrOvf
PMC2_ClrOvf
PMC1_ClrOvf
PMC0_ClrOvf

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

Table 18-26 PEBS Facility Comparison

Box
Intel® microarchitecture code name
Sandy Bridge

Intel® microarchitecture
code name Westmere Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7

PEBS Buffer Programming Section 18.7.1.1 Section 18.7.1.1 Unchanged

IA32_PEBS_ENABLE
Layout

 Figure 18-31 Figure 18-17

PEBS record layout Physical Layout same as Table 18-18 Table 18-18 Enhanced fields at offsets 98H,
A0H, A8H

PEBS Events See Table 18-27 See Table 18-10 IA32_PMC4-IA32_PMC7 do not
support PEBS.

PEBS-Load Latency See Table 18-28 Table 18-19

PEBS-Precise Store yes; see Section 18.9.4.3 No IA32_PMC3 only

PEBS-PDIR yes No IA32_PMC1 only

PEBS skid from EventingIP 1 (or 2 if micro+macro fusion) 1

SAMPLING Restriction Small SAV(CountDown) value incur higher overhead than prior
generation.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 257

Only IA32_PMC0 through IA32_PMC3 support PEBS.

NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero:
AnyThread, Edge, Invert, CMask.

In a PMU with PDIR capability, PEBS behavior is unpredictable if IA32_PERFEVTSELx or
IA32_PMCx is changed for a PEBS-enabled counter while an event is being counted. To avoid this,
changes to the programming or value of a PEBS-enabled counter should be performed when the
counter is disabled.

In IA32_PEBS_ENABLE MSR, bit 63 is defined as PS_ENABLE: When set, this enables IA32_PMC3 to capture
precise store information. Only IA32_PMC3 supports the precise store facility. In typical usage of PEBS, the bit
fields in IA32_PEBS_ENABLE are written to when the agent software starts PEBS operation; the enabled bit fields
should be modified only when re-programming another PEBS event or cleared when the agent uses the perfor-
mance counters for non-PEBS operations.

...

18.9.4.2 Load Latency Performance Monitoring Facility
The load latency facility in Intel microarchitecture code name Sandy Bridge is similar to that in prior microarchi-
tecture. It provides software a means to characterize the average load latency to different levels of cache/
memory hierarchy. This facility requires processor supporting enhanced PEBS record format in the PEBS buffer,
see Table 18-18 and Section 18.9.4.1. This field measures the load latency from load's first dispatch of till final
data writeback from the memory subsystem. The latency is reported for retired demand load operations and in
core cycles (it accounts for re-dispatches).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit MEM_TRANS_RETIRED, and the

LATENCY_ABOVE_THRESHOLD event mask must be specified (IA32_PerfEvtSelX[15:0] = 1CDH). The corre-
sponding counter IA32_PMCx will accumulate event counts for architecturally visible loads which exceed the
programmed latency threshold specified separately in a MSR. Stores are ignored when this event is
programmed. The CMASK or INV fields of the IA32_PerfEvtSelX register used for counting load latency must
be 0. Writing other values will result in undefined behavior.

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired latency threshold in core clock
cycles. Loads with latencies greater than this value are eligible for counting and latency data reporting. The
minimum value that may be programmed in this register is 3 (the minimum detectable load latency is 4 core
clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corresponding IA32_PMCx counter
register. This means that both the PEBS_EN_CTRX and LL_EN_CTRX bits must be set for the counter(s) of
interest. For example, to enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register must
be programmed with the 64-bit value 00000001_00000001H.

• When Load latency event is enabled, no other PEBS event can be configured with other counters.

When the load-latency facility is enabled, load operations are randomly selected by hardware and tagged to carry
information related to data source locality and latency. Latency and data source information of tagged loads are
updated internally. The MEM_TRANS_RETIRED event for load latency counts only tagged retired loads. If a load is
cancelled it will not be counted and the internal state of the load latency facility will not be updated. In this case
the hardware will tag the next available load.

When a PEBS assist occurs, the last update of latency and data source information are captured by the assist and
written as part of the PEBS record. The PEBS sample after value (SAV), specified in PEBS CounterX Reset, oper-

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 258

ates orthogonally to the tagging mechanism. Loads are randomly tagged to collect latency data. The SAV controls
the number of tagged loads with latency information that will be written into the PEBS record field by the PEBS
assists. The load latency data written to the PEBS record will be for the last tagged load operation which retired
just before the PEBS assist was invoked.

The physical layout of the PEBS records is the same as shown in Table 18-18. The specificity of Data Source entry
at offset A0H has been enhanced to report three piece of information.

The layout of MSR_PEBS_LD_LAT_THRESHOLD is the same as shown in Figure 18-19.

...

18.9.5 Off-core Response Performance Monitoring
The core PMU in processors based on Intel microarchitecture code name Sandy Bridge provides off-core response
facility similar to prior generation. Off-core response can be programmed only with a specific pair of event select
and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attri-
butes of the off-core transaction. Two event codes are dedicated for off-core response event programming. Each
event code for off-core response monitoring requires programming an associated configuration MSR,
MSR_OFFCORE_RSP_x. Table 18-30 lists the event code, mask value and additional off-core configuration MSR
that must be programmed to count off-core response events using IA32_PMCx.

The layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 are shown in Figure 18-32 and Figure 18-33.
Bits 15:0 specifies the request type of a transaction request to the uncore. Bits 30:16 specifies supplier informa-
tion, bits 37:31 specifies snoop response information.

...

18.9.6 Uncore Performance Monitoring Facilities In Intel® Core™ i7-2xxx, Intel® Core™ i5-
2xxx, Intel® Core™ i3-2xxx Processor Series

The uncore sub-system in Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
provides a unified L3 that can support up to four processor cores. The L3 cache consists multiple slices, each slice
interface with a processor via a coherence engine, referred to as a C-Box. Each C-Box provides dedicated facility

Table 18-28 Layout of Data Source Field of Load Latency Record

Field Position Description

Source 3:0 See Table 18-19

STLB_MISS 4 0: The load did not miss the STLB (hit the DTLB or STLB).

1: The load missed the STLB.

Lock 5 0: The load was not part of a locked transaction.

1: The load was part of a locked transaction.

Reserved 63:6 Reserved

Table 18-30 Off-Core Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-3 B7H 01H MSR_OFFCORE_RSP_0 (address 1A6H)

PMC0-3 BBH 01H MSR_OFFCORE_RSP_1 (address 1A7H)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 259

of MSRs to select uncore performance monitoring events and each C-Box event select MSR is paired with a
counter register, similar in style as those described in Section 18.7.2.2. The ARB unit in the uncore also provides
its local performance counters and event select MSRs. The layout of the event select MSRs in the C-Boxes and the
ARB unit are shown in Figure 18-34.

The bit fields of the uncore event select MSRs for a C-box unit or the ARB unit are summarized below:
• Event_Select (bits 7:0) and UMASK (bits 15:8): Specifies the microarchitectural condition to count in a local

uncore PMU counter, see Table 19-11.
• E (bit 18): Enables edge detection filtering, if 1.
• OVF_EN (bit 20): Enables the overflow indicator from the uncore counter forwarded to

MSR_UNC_PERF_GLOBAL_CTRL, if 1.
• EN (bit 22): Enables the local counter associated with this event select MSR.
• INV (bit 23): Event count increments with non-negative value if 0, with negated value if 1.
• CMASK (bits 28:24): Specifies a positive threshold value to filter raw event count input.

At the uncore domain level, there is a master set of control MSRs that centrally manages all the performance
monitoring facility of uncore units. Figure 18-35 shows the layout of the uncore domain global control.

When an uncore counter overflows, a PMI can be routed to a processor core. Bits 3:0 of
MSR_UNC_PERF_GLOBAL_CTRL can be used to select which processor core to handle the uncore PMI. Software
must then write to bit 13 of IA32_DEBUG_CTL (at address 1D9H) to enable this capability.
• PMI_SEL_Core#: Enables the forwarding of an uncore PMI request to a processor core, if 1. If bit 30

(WakePMI) is ‘1’, a wake request is sent to the respective processor core prior to sending the PMI.
• EN: Enables the fixed uncore counter, the ARB counters, and the CBO counters in the uncore PMU, if 1. This

bit is cleared if bit 31 (FREEZE) is set and any enabled uncore counters overflow.
• WakePMI: Controls sending a wake request to any halted processor core before issuing the uncore PMI

request. If a processor core was halted and not sent a wake request, the uncore PMI will not be serviced by
the processor core.

• FREEZE: Provides the capability to freeze all uncore counters when an overflow condition occurs in a unit
counter. When this bit is set, and a counter overflow occurs, the uncore PMU logic will clear the global enable
bit (bit 29).

Figure 18-34 Layout of Uncore PERFEVTSEL MSR for a C-Box Unit or the ARB Unit

28

INV—Invert counter mask
EN—Enable counter

E—Edge detect

8 7 0

Event Select
Counter Mask

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

OVF_EN—Overflow forwarding

RESET Value — 00000000_00000000H

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 260

...

18.9.7 Intel® Xeon® Processor E5 Family Performance Monitoring Facility
The Intel® Xeon® Processor E5 Family (and Intel® Core™ i7-3930K Processor) are based on Intel microarchitec-
ture code name Sandy Bridge-E. While the processor cores share the same microarchitecture as those of the
Intel® Xeon® Processor E3 Family and 2nd generation Intel Core i7-2xxx, Intel Core i5-2xxx, Intel Core i3-2xxx
processor series, the uncore subsystems are different. An overview of the uncore performance monitoring facili-
ties of the Intel Xeon processor E5 family (and Intel Core i7-3930K processor) is described in Section 18.9.8.

Thus, the performance monitoring facilities in the processor core generally are the same as those described in
Section 18.9 through Section 18.9.5. However, the MSR_OFFCORE_RSP_0/MSR_OFFCORE_RSP_1 Response
Supplier Info field shown in Table 18-32 applies to Intel Core Processors with CPUID signature of
DisplayFamily_DisplayModel encoding of 06_2AH; Intel Xeon processor with CPUID signature of
DisplayFamily_DisplayModel encoding of 06_2DH supports an additional field for remote DRAM controller shown
in Table 18-35. Additionally, the are some small differences in the non-architectural performance monitoring
events (see Table 19-9).

...

Figure 18-35 Layout of MSR_UNC_PERF_GLOBAL_CTRL MSR for Uncore

FREEZE—Freeze counters

EN—Enable all uncore counters

02829303132

Reserved

63

WakePMI—Wake cores on PMI

RESET Value — 00000000_00000000H

4 3 2 1

PMI_Sel_Core3 — Uncore PMI to core 3
PMI_Sel_Core2 — Uncore PMI to core 2
PMI_Sel_Core1 — Uncore PMI to core 1
PMI_Sel_Core0 — Uncore PMI to core 0

Table 18-35 MSR_OFFCORE_RSP_x Supplier Info Field Definitions

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier Info NO_SUPP 17 (R/W). No Supplier Information available

LLC_HITM 18 (R/W). M-state initial lookup stat in L3.

LLC_HITE 19 (R/W). E-state

LLC_HITS 20 (R/W). S-state

LLC_HITF 21 (R/W). F-state

LOCAL 22 (R/W). Local DRAM Controller

Remote 30:23 (R/W): Remote DRAM Controller (either all 0s or all 1s)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 261

18.9.8 Intel® Xeon® Processor E5 Family Uncore Performance Monitoring Facility
The uncore subsystem in the Intel Xeon processor E5-2600 product family has some similarities with those of the
Intel Xeon processor E7 family. Within the uncore subsystem, localized performance counter sets are provided at
logic control unit scope. For example, each Cbox caching agent has a set of local performance counters, and the
power controller unit (PCU) has its own local performance counters. Up to 8 C-Box units are supported in the
uncore sub-system.

Table 18-36 summarizes the uncore PMU facilities providing MSR interfaces.

Details of the uncore performance monitoring facility of Intel Xeon Processor E5 family is available in “Intel®
Xeon® Processor E5 Uncore Performance Monitoring Programming Reference Manual”.

18.10 3RD GENERATION INTEL® CORE™ PROCESSOR PERFORMANCE
MONITORING FACILITY

The 3rd generation Intel® Core™ processor family and Intel® Xeon® processor E3-1200v2 product family are
based on the Ivy Bridge microarchitecture. The performance monitoring facilities in the processor core generally
are the same as those described in Section 18.9 through Section 18.9.5. The non-architectural performance
monitoring events supported by the processor core are listed in Table 19-9.

18.10.1 Intel® Xeon® Processor E5 v2 and E7 v2 Family Uncore Performance Monitoring
Facility

The uncore subsystem in the Intel Xeon processor E5 v2 and Intel Xeon Processor E7 v2 product families are
based on the Ivy Bridge-E microarchitecture. There are some similarities with those of the Intel Xeon processor
E5 family based on the Sandy Bridge microarchitecture. Within the uncore subsystem, localized performance
counter sets are provided at logic control unit scope.

Details of the uncore performance monitoring facility of Intel Xeon Processor E5 v2 and Intel Xeon Processor E7
v2 families are available in “Intel® Xeon® Processor E5 v2 and E7 v2 Uncore Performance Monitoring Program-
ming Reference Manual”.

18.11 4TH GENERATION INTEL® CORE™ PROCESSOR PERFORMANCE
MONITORING FACILITY

The 4th generation Intel® Core™ processor and Intel® Xeon® processor E3-1200 v3 product family are based on
the Haswell microarchitecture. The core PMU supports architectural performance monitoring capability with
version ID 3 (see Section 18.2.2.2) and a host of non-architectural monitoring capabilities.

Architectural performance monitoring events and non-architectural monitoring events are programmed using
fixed counters and programmable counters/event select MSRS as described in Section 18.2.2.2.

Table 18-36 Uncore PMU MSR Summary for Intel® Xeon® Processor E5 Family

Box # of Boxes Counters per Box
Counter
Width

General
Purpose

Global
Enable Sub-control MSRs

C-Box 8 4 44 Yes per-box None

PCU 1 4 48 Yes per-box Match/Mask

U-Box 1 2 44 Yes uncore None

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 262

The core PMU’s capability is similar to those described in Section 18.9 through Section 18.9.5, with some differ-
ences and enhancements summarized in Table 18-37. Additionally, the core PMU provides some enhancement to
support performance monitoring when the target workload contains instruction streams using Intel® Transac-
tional Synchronization Extensions (TSX), see Section 18.11.5. For details of Intel TSX, see Chapter 15, “Program-
ming with Intel® Transactional Synchronization Extensions” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.

18.11.1 Precise Event Based Sampling (PEBS) Facility
The PEBS facility in the Next Generation Intel Core processor is similar to those in processors based on Intel
microarchitecture code name Sandy Bridge, with several enhanced features. The key components and differences
of PEBS facility relative to Intel microarchitecture code name Sandy Bridge is summarized in Table 18-38.

Table 18-37 Core PMU Comparison

Box
Intel® microarchitecture code
name Haswell

Intel® microarchitecture code
name Sandy Bridge Comment

of Fixed counters per thread 3 3

of general-purpose counters
per core

8 8

Counter width (R,W) R:48 , W: 32/48 R:48 , W: 32/48 See Section 18.2.2.3.

of programmable counters per
thread

4 or (8 if a core not shared by two
threads)

4 or (8 if a core not shared by
two threads)

Use CPUID to enumerate
of counters.

Precise Event Based Sampling
(PEBS) Events

See Table 18-27 See Table 18-27 IA32_PMC4-IA32_PMC7
do not support PEBS.

PEBS-Load Latency See Section 18.9.4.2; See Section 18.9.4.2;

PEBS-Precise Store No, replaced by Data Address
profiling

Section 18.9.4.3

PEBS-PDIR yes (using precise
INST_RETIRED.ALL)

yes (using precise
INST_RETIRED.ALL)

PEBS-EventingIP yes no

Data Address Profiling yes no

LBR Profiling yes yes

Call Stack Profiling yes, see Section 17.8 no Use LBR facility

Off-core Response Event MSR 1A6H and 1A7H; Extended
request and response types

MSR 1A6H and 1A7H; Extended
request and response types

Intel TSX support for Perfmon See Section 18.11.5; no

Table 18-38 PEBS Facility Comparison

Box
Intel® microarchitecture code
name Haswell

Intel® microarchitecture code
name Sandy Bridge Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7

PEBS Buffer Programming Section 18.7.1.1 Section 18.7.1.1 Unchanged

IA32_PEBS_ENABLE Layout Figure 18-17 Figure 18-31

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 263

Only IA32_PMC0 through IA32_PMC3 support PEBS.

NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero:
AnyThread, Edge, Invert, CMask.

In a PMU with PDIR capability, PEBS behavior is unpredictable if IA32_PERFEVTSELx or
IA32_PMCx is changed for a PEBS-enabled counter while an event is being counted. To avoid this,
changes to the programming or value of a PEBS-enabled counter should be performed when the
counter is disabled.

18.11.2 PEBS Data Format
The PEBS record format for the Next Generation Intel Core processor is shown in Table 18-39. The PEBS record
format, along with debug/store area storage format, does not change regardless of whether IA-32e mode is
active or not. CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-
independent. When set, it uses 64-bit DS storage format.

PEBS record layout Table 18-39, Enhanced fields at
offsets 98H, A0H, A8H, B0H

Table 18-18, Enhanced fields
at offsets 98H, A0H, A8H

PEBS Events See Table 18-27 See Table 18-27 IA32_PMC4-IA32_PMC7 do not
support PEBS.

PEBS-Load Latency See Table 18-28 Table 18-28

PEBS-Precise Store no, replaced by data address
profiling

yes; see Section 18.9.4.3

PEBS-PDIR yes yes IA32_PMC1 only

PEBS skid from EventingIP 1 (or 2 if micro+macro fusion) 1

SAMPLING Restriction Small SAV(CountDown) value incur higher overhead than prior
generation.

Table 18-38 PEBS Facility Comparison

Box
Intel® microarchitecture code
name Haswell

Intel® microarchitecture code
name Sandy Bridge Comment

Table 18-39 PEBS Record Format for Next Generation Intel Core Processor Family

Byte Offset Field Byte Offset Field

00H R/EFLAGS 60H R10

08H R/EIP 68H R11

10H R/EAX 70H R12

18H R/EBX 78H R13

20H R/ECX 80H R14

28H R/EDX 88H R15

30H R/ESI 90H IA32_PERF_GLOBAL_STATUS

38H R/EDI 98H Data Linear Address

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 264

The layout of PEBS records are almost identical to those shown in Table 18-18. Offset B0H is a new field that
records the eventing IP address of the retired instruction that triggered the PEBS assist.

The PEBS records at offsets 98H, A0H, and ABH record data gathered from three of the PEBS capabilities in prior
processor generations: load latency facility (Section 18.9.4.2), PDIR (Section 18.9.4.4), and precise store
(Section 18.9.4.3).

In the core PMU of the next generation processor, load latency facility and PDIR capabilities are unchanged.
However, precise store is replaced by an enhanced capability, data address profiling, that is not restricted to store
address. Data address profiling also records information in PEBS records at offsets 98H, A0H, and ABH.

18.11.3 PEBS Data Address Profiling
The Data Linear Address facility is also abbreviated as DataLA. The facility is a replacement or extension of the
precise store facility in previous processor generations. The DataLA facility complements the load latency facility
by providing a means to profile load and store memory references in the system, leverages the PEBS facility, and
provides additional information about sampled loads and stores. Having precise memory reference events with
linear address information for both loads and stores provides information to improve data structure layout, elim-
inate remote node references, and identify cache-line conflicts in NUMA systems.

The DataLA facility in the next generation processor supports the following events configured to use PEBS:

...

18.11.5.1 Intel TSX and PEBS Support
If a PEBS event would have occurred inside a transactional region, then the transactional region first aborts, and
then the PEBS event is processed.

40H R/EBP A0H Data Source Encoding

48H R/ESP A8H Latency value (core cycles)

50H R8 B0H EventingIP

58H R9 B8H TX Abort Information (Section 18.11.5.1)

Table 18-39 PEBS Record Format for Next Generation Intel Core Processor Family

Byte Offset Field Byte Offset Field

Table 18-40 Precise Events That Supports Data Linear Address Profiling
Event Name Event Name

MEM_UOPS_RETIRED.STLB_MISS_LOADS MEM_UOPS_RETIRED.STLB_MISS_STORES

MEM_UOPS_RETIRED.LOCK_LOADS MEM_UOPS_RETIRED.SPLIT_STORES

MEM_UOPS_RETIRED.SPLIT_LOADS MEM_UOPS_RETIRED.ALL_STORES

MEM_UOPS_RETIRED.ALL_LOADS MEM_LOAD_UOPS_LLC_MISS_RETIRED.LOCAL_DRAM

MEM_LOAD_UOPS_RETIRED.L1_HIT MEM_LOAD_UOPS_RETIRED.L2_HIT

MEM_LOAD_UOPS_RETIRED.L3_HIT MEM_LOAD_UOPS_RETIRED.L1_MISS

MEM_LOAD_UOPS_RETIRED.L2_MISS MEM_LOAD_UOPS_RETIRED.L3_MISS

MEM_LOAD_UOPS_RETIRED.HIT_LFB MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS

MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM

UOPS_RETIRED.ALL (if load or store is tagged) MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_NONE

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 265

Two of the TSX performance monitoring events in Table 19-4 also support using PEBS facility to capture additional
information. They are:
• HLE_RETIRED.ABORT ED (encoding C8H mask 04H),
• RTM_RETIRED.ABORTED (encoding C9H mask 04H).

A transactional abort (HLE_RETIRED.ABORTED,RTM_RETIRED.ABORTED) can also be programmed to cause PEBS
events. In this scenario, a PEBS event is processed following the abort.

Pending a PEBS record inside of a transactional region will cause a transactional abort. If a PEBS record was
pended at the time of the abort or on an overflow of the TSX PEBS events listed above, only the following PEBS
entries will be valid (enumerated by PEBS entry offset B8H bits[33:32] to indicate an HLE abort or an RTM abort):
• Offset B0H: EventingIP,
• Offset B8H: TX Abort Information

These fields are set for all PEBS events.
• Offset 08H (RIP/EIP) corresponds to the instruction following the outermost XACQUIRE in HLE or the first

instruction of the fallback handler of the outermost XBEGIN instruction in RTM. This is useful to identify the
aborted transactional region.

In the case of HLE, an aborted transaction will restart execution deterministically at the start of the HLE region. In
the case of RTM, an aborted transaction will transfer execution to the RTM fallback handler.

The layout of the TX Abort Information field is given in Table 18-43.

18.11.6 Uncore Performance Monitoring Facilities in the 4th Generation Intel® Core™
Processors

The uncore sub-system in the 4th Generation Intel® Core™ processors provides its own performance monitoring
facility. The uncore PMU facility provides dedicated MSRs to select uncore performance monitoring events in a
similar manner as those described in Section 18.9.6.

Table 18-43 TX Abort Information Field Definition

Bit Name Offset Description

Cycles_Last_TX 31:0 The number of cycles in the last TSX region, regardless of whether that region had aborted or
committed.

HLE_Abort 32 If set, the abort information corresponds to an aborted HLE execution

RTM_Abort 33 If set, the abort information corresponds to an aborted RTM execution

Instruction_Abort 34 If set, the abort was associated with the instruction corresponding to the eventing IP (offset
0B0H) within the transactional region.

Non_Instruction_Abort 35 If set, the instruction corresponding to the eventing IP may not necessarily be related to the
transactional abort.

Retry 36 If set, retrying the transactional execution may have succeeded.

Data_Conflict 37 If set, another logical processor conflicted with a memory address that was part of the
transactional region that aborted.

Capacity Writes 38 If set, the transactional region aborted due to exceeding resources for transactional writes.

Capacity Reads 39 If set, the transactional region aborted due to exceeding resources for transactional reads.

Reserved 63:40 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 266

The ARB unit and each C-Box provide local pairs of event select MSR and counter register. The layout of the event
select MSRs in the C-Boxes are identical as shown in Figure 18-34.

At the uncore domain level, there is a master set of control MSRs that centrally manages all the performance
monitoring facility of uncore units. Figure 18-35 shows the layout of the uncore domain global control.

Additionally, there is also a fixed counter, counting uncore clockticks, for the uncore domain. Table 18-34 summa-
rizes the number MSRs for uncore PMU for each box.

The uncore performance events for the C-Box and ARB units are listed in Table 19-5.

18.12 INTEL® CORE™ M PROCESSOR PERFORMANCE MONITORING FACILITY
The Intel® Core™ M processor family is based on the Broadwell microarchitecture. The core PMU supports archi-
tectural performance monitoring capability with version ID 3 (see Section 18.2.2.2) and a host of non-architec-
tural monitoring capabilities.

Architectural performance monitoring events and non-architectural monitoring events are programmed using
fixed counters and programmable counters/event select MSRS as described in Section 18.2.2.2.

The core PMU’s capability is the same as those described in Section 18.11. The specifics of non-architectural
performance events are listed in Chapter 19, “Performance Monitoring Events”.

...

18.15 COUNTING CLOCKS
The count of cycles, also known as clockticks, forms a the basis for measuring how long a program takes to
execute. Clockticks are also used as part of efficiency ratios like cycles per instruction (CPI). Processor clocks may
stop ticking under circumstances like the following:
• The processor is halted when there is nothing for the CPU to do. For example, the processor may halt to save

power while the computer is servicing an I/O request. When Intel Hyper-Threading Technology is enabled,
both logical processors must be halted for performance-monitoring counters to be powered down.

• The processor is asleep as a result of being halted or because of a power-management scheme. There are
different levels of sleep. In the some deep sleep levels, the time-stamp counter stops counting.

In addition, processor core clocks may undergo transitions at different ratios relative to the processor’s bus clock
frequency. Some of the situations that can cause processor core clock to undergo frequency transitions include:
• TM2 transitions
• Enhanced Intel SpeedStep Technology transitions (P-state transitions)

Table 18-44 Uncore PMU MSR Summary

Box # of Boxes
Counters per
Box

Counter
Width

General
Purpose

Global
Enable Comment

C-Box SKU specific 2 44 Yes Per-box Up to 4, seeTable 35-16
MSR_UNC_CBO_CONFIG

ARB 1 2 44 Yes Uncore

Fixed
Counter

N.A. N.A. 48 No Uncore

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 267

For Intel processors that support Intel Dynamic Acceleration or XE operation, the processor core clocks may
operate at a frequency that differs from the Processor Base frequency (as indicated by processor frequency infor-
mation reported by CPUID instruction). See Section 18.15.5 for more detail.

There are several ways to count processor clock cycles to monitor performance. These are:
• Non-halted clockticks — Measures clock cycles in which the specified logical processor is not halted and is

not in any power-saving state. When Intel Hyper-Threading Technology is enabled, ticks can be measured on
a per-logical-processor basis. There are also performance events on dual-core processors that measure
clockticks per logical processor when the processor is not halted.

• Non-sleep clockticks — Measures clock cycles in which the specified physical processor is not in a sleep
mode or in a power-saving state. These ticks cannot be measured on a logical-processor basis.

• Time-stamp counter — Measures clock cycles in which the physical processor is not in deep sleep. These
ticks cannot be measured on a logical-processor basis.

• Reference clockticks — TM2 or Enhanced Intel SpeedStep technology are two examples of processor
features that can cause processor core clockticks to represent non-uniform tick intervals due to change of bus
ratios. Performance events that counts clockticks of a constant reference frequency was introduced Intel Core
Duo and Intel Core Solo processors. The mechanism is further enhanced on processors based on Intel Core
microarchitecture.

Some processor models permit clock cycles to be measured when the physical processor is not in deep sleep (by
using the time-stamp counter and the RDTSC instruction). Note that such ticks cannot be measured on a per-
logical-processor basis. See Section 17.13, “Time-Stamp Counter,” for detail on processor capabilities.

The first two methods use performance counters and can be set up to cause an interrupt upon overflow (for
sampling). They may also be useful where it is easier for a tool to read a performance counter than to use a time
stamp counter (the timestamp counter is accessed using the RDTSC instruction).

For applications with a significant amount of I/O, there are two ratios of interest:
• Non-halted CPI — Non-halted clockticks/instructions retired measures the CPI for phases where the CPU

was being used. This ratio can be measured on a logical-processor basis when Intel Hyper-Threading
Technology is enabled.

• Nominal CPI — Time-stamp counter ticks/instructions retired measures the CPI over the duration of a
program, including those periods when the machine halts while waiting for I/O.

...

18.15.5 Cycle Counting and Opportunistic Processor Operation
As a result of the state transitions due to opportunistic processor performance operation (see Chapter 14, “Power
and Thermal Management”), a logical processor or a processor core can operate at frequency different from the
Processor Base frequency.

The following items are expected to hold true irrespective of when opportunistic processor operation causes state
transitions:
• The time stamp counter operates at a fixed-rate frequency of the processor.
• The IA32_MPERF counter increments at the same TSC frequency irrespective of any transitions caused by

opportunistic processor operation.
• The IA32_FIXED_CTR2 counter increments at the same TSC frequency irrespective of any transitions caused

by opportunistic processor operation.
• The Local APIC timer operation is unaffected by opportunistic processor operation.
• The TSC, IA32_MPERF, and IA32_FIXED_CTR2 operate at the same, maximum-resolved frequency of the

platform, which is equal to the product of scalable bus frequency and maximum resolved bus ratio.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 268

For processors based on Intel Core microarchitecture, the scalable bus frequency is encoded in the bit field
MSR_FSB_FREQ[2:0] at (0CDH), see Chapter 35, “Model-Specific Registers (MSRs)”. The maximum resolved bus
ratio can be read from the following bit field:
• If XE operation is disabled, the maximum resolved bus ratio can be read in MSR_PLATFORM_ID[12:8]. It

corresponds to the Processor Base frequency.
• IF XE operation is enabled, the maximum resolved bus ratio is given in MSR_PERF_STAT[44:40], it

corresponds to the maximum XE operation frequency configured by BIOS.

XE operation of an Intel 64 processor is implementation specific. XE operation can be enabled only by BIOS. If
MSR_PERF_STAT[31] is set, XE operation is enabled. The MSR_PERF_STAT[31] field is read-only.

...

31. Updates to Chapter 19, Volume 3B
Change bars show changes to Chapter 19 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...
This chapter lists the performance-monitoring events that can be monitored with the Intel 64 or IA-32 processors.
The ability to monitor performance events and the events that can be monitored in these processors are mostly
model-specific, except for architectural performance events, described in Section 19.1.

Non-architectural performance events (i.e. model-specific events) are listed for each generation of microarchitec-
ture:
• Section 19.2 - Processors based on Broadwell microarchitecture.
• Section 19.3 - Processors based on Haswell microarchitecture.
• Section 19.4 - Processors based on Ivy Bridge microarchitecture.
• Section 19.5 - Processors based on Sandy Bridge microarchitecture
• Section 19.6 - Processors based on Intel® microarchitecture code name Nehalem
• Section 19.7 - Processors based on Intel® microarchitecture code name Westmere
• Section 19.8 - Processors based on Enhanced Intel® Core™ microarchitecture
• Section 19.9 - Processors based on Intel® Core™ microarchitecture
• Section 19.10 - Processors based on the Silvermont microarchitecture
• Section 19.11 - Processors based on Intel® Atom™ microarchitecture
• Section 19.12 - Intel® Core™ Solo and Intel® Core™ Duo processors
• Section 19.13 - Processors based on Intel NetBurst® microarchitecture
• Section 19.14 - Pentium® M family processors
• Section 19.15 - P6 family processors
• Section 19.16 - Pentium® processors

NOTE
These performance-monitoring events are intended to be used as guides for performance tuning.
The counter values reported by the performance-monitoring events are approximate and believed

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 269

to be useful as relative guides for tuning software. Known discrepancies are documented where
applicable.
All performance event encodings not documented in the appropriate tables for the given
processor are considered reserved, and their use will result in undefined counter updates with
associated overflow actions.
The event tables list this chapter provide information for tool developers to support architectural
and non-architectural performance monitoring events. Details of performance event implemen-
tation for end-user (including additional details beyond event code/umask) can found at the
“perfmon” repository provided by The Intel Open Source Technology Center (https://
download.01.org/perfmon/).

...

19.2 PERFORMANCE MONITORING EVENTS FOR THE INTEL® CORE™ M
PROCESSORS

The Intel® Core™ M processors are based on the Broadwell microarchitecture. They support the architectural
performance-monitoring events listed in Table 19-1. Non-architectural performance-monitoring events in the
processor core are listed in Table 19-3. The events in Table 19-3 apply to processors with CPUID signature of
DisplayFamily_DisplayModel encoding with the following values: 06_3DH. Table 19-4 lists performance events
supporting Intel TSX (see Section 18.11.5) and are available on processor based Broadwell microarchitecture.

Non-architectural performance monitoring events that are located in the uncore sub-system are implementation
specific between different platforms using processors based on Haswell microarchitecture and with different
DisplayFamily_DisplayModel signatures. Processors with CPUID signature of DisplayFamily_DisplayModel 06_3FH
support performance events listed in Table 19-5.

Table 19-2 Non-Architectural Performance Events In the Processor Core of the Intel® Core™ M Processors
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD loads blocked by overlapping with store buffer that
cannot be forwarded .

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are
temporarily blocked because all resources for
handling the split accesses are in use.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS
_ALIAS

False dependencies in MOB due to partial compare
on address.

08H 01H DTLB_LOAD_MISSES.MISS_CAUS
ES_A_WALK

Misses in all TLB levels that cause a page walk of any
page size.

08H 02H DTLB_LOAD_MISSES.WALK_COM
PLETED_4K

Completed page walks due to demand load misses
that caused 4K page walks in any TLB levels.

08H 10H DTLB_LOAD_MISSES.WALK_DUR
ATION

Cycle PMH is busy with a walk.

08H 20H DTLB_LOAD_MISSES.STLB_HIT_
4K

Load misses that missed DTLB but hit STLB (4K).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 270

0DH 03H INT_MISC.RECOVERY_CYCLES Cycles waiting to recover after Machine Clears
except JEClear. Set Cmask= 1.

Set Edge to count
occurrences

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the
RAT to RS.

Set Cmask = 1, Inv = 1, Any= 1to count stalled cycles
of this core.

Set Cmask = 1, Inv = 1to
count stalled cycles

0EH 10H UOPS_ISSUED.FLAGS_MERGE Number of flags-merge uops allocated. Such uops
adds delay.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such
uop has 3 sources (e.g. 2 sources + immediate)
regardless if as a result of LEA instruction or not.

0EH 40H UOPS_ISSUED.SiNGLE_MUL Number of multiply packed/scalar single precision
uops allocated.

14H 01H ARITH.FPU_DIV_ACTIVE Cycles when divider is busy executing divide
operations

24H 21H L2_RQSTS.DEMAND_DATA_RD_
MISS

Demand Data Read requests that missed L2, no
rejects.

24H 41H L2_RQSTS.DEMAND_DATA_RD_
HIT

Demand Data Read requests that hit L2 cache.

24H 50H L2_RQSTS.L2_PF_HIT Counts all L2 HW prefetcher requests that hit L2.

24H 30H L2_RQSTS.L2_PF_MISS Counts all L2 HW prefetcher requests that missed
L2.

24H E1H L2_RQSTS.ALL_DEMAND_DATA
_RD

Counts any demand and L1 HW prefetch data load
requests to L2.

24H E2H L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H E4H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H F8H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher requests.

27H 50H L2_DEMAND_RQSTS.WB_HIT Not rejected writebacks that hit L2 cache

2EH 4FH LONGEST_LAT_CACHE.REFEREN
CE

This event counts requests originating from the core
that reference a cache line in the last level cache.

see Table 19-1

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache.

see Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD_
P

Counts the number of thread cycles while the thread
is not in a halt state. The thread enters the halt state
when it is running the HLT instruction. The core
frequency may change from time to time due to
power or thermal throttling.

see Table 19-1

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK

Increments at the frequency of XCLK (100 MHz)
when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmaks = 1 and Edge =1 to count
occurrences.

Counter 2 only;

Set Cmask = 1 to count
cycles.

Table 19-2 Non-Architectural Performance Events In the Processor Core of the Intel® Core™ M Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 271

49H 01H DTLB_STORE_MISSES.MISS_CAU
SES_A_WALK

Miss in all TLB levels causes an page walk of any
page size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_CO
MPLETED_4K

Completed page walks due to store misses in one or
more TLB levels of 4K page structure.

49H 10H DTLB_STORE_MISSES.WALK_DU
RATION

Cycles PMH is busy with this walk.

49H 20H DTLB_STORE_MISSES.STLB_HIT
_4K

Store misses that missed DTLB but hit STLB (4K).

4CH 02H LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for H/W prefetch.

4FH 10H EPT.WALK_CYCLES Cycles of Extended Page Table walks

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

58H 04H MOVE_ELIMINATION.INT_NOT_E
LIMINATED

Number of integer Move Elimination candidate uops
that were not eliminated.

58H 08H MOVE_ELIMINATION.SIMD_NOT_
ELIMINATED

Number of SIMD Move Elimination candidate uops
that were not eliminated.

58H 01H MOVE_ELIMINATION.INT_ELIMIN
ATED

Number of integer Move Elimination candidate uops
that were eliminated.

58H 02H MOVE_ELIMINATION.SIMD_ELIMI
NATED

Number of SIMD Move Elimination candidate uops
that were eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count
transition

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring 0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read transactions
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is off

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Offcore outstanding Demand code Read transactions
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is off

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to
uncore. Set Cmask=1 to count cycles.

Use only when HTT is off

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Offcore outstanding cacheable data read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

Use only when HTT is off

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC_
LOCK_DURATION

Cycles in which the L1D and L2 are locked, due to a
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_DU
RATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ from
MITE path.

Set Cmask = 1 to count cycles.

Can combine Umask 04H
and 20H

Table 19-2 Non-Architectural Performance Events In the Processor Core of the Intel® Core™ M Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 272

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ
from DSB path.

Set Cmask = 1 to count cycles.

Can combine Umask 08H
and 10H

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by DSB. Set Cmask = 1 to count
cycles. Add Edge=1 to count # of delivery.

Can combine Umask 04H,
08H

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ from
MS by either DSB or MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UO
PS

Counts cycles DSB is delivered at least one uops. Set
Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Counts cycles DSB is delivered four uops. Set Cmask
= 4.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UO
PS

Counts cycles MITE is delivered at least one uops. Set
Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. Set Cmask
= 4.

79H 3CH IDQ.MITE_ALL_UOPS # of uops delivered to IDQ from any path.

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A_
WALK

Misses in ITLB that causes a page walk of any page
size.

85H 02H ITLB_MISSES.WALK_COMPLETE
D_4K

Completed page walks due to misses in ITLB 4K page
entries.

85H 10H ITLB_MISSES.WALK_DURATION Cycle PMH is busy with a walk.

85H 20H ITLB_MISSES.STLB_HIT_4K ITLB misses that hit STLB (4K).

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions
executed, but not necessarily retired.

Must combine with
umask 40H, 80H

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions
excluding calls and indirect branches.

Must combine with
umask 80H

88H 04H BR_INST_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify executed indirect near branch instructions
that are not calls nor returns.

Must combine with
umask 80H

88H 08H BR_INST_EXEC.RETURN_NEAR Qualify indirect near branches that have a return
mnemonic.

Must combine with
umask 80H

88H 10H BR_INST_EXEC.DIRECT_NEAR_C
ALL

Qualify unconditional near call branch instructions,
excluding non call branch, executed.

Must combine with
umask 80H

88H 20H BR_INST_EXEC.INDIRECT_NEAR
_CALL

Qualify indirect near calls, including both register and
memory indirect, executed.

Must combine with
umask 80H

Table 19-2 Non-Architectural Performance Events In the Processor Core of the Intel® Core™ M Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 273

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H
only

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must combine
with 01H,02H, 04H, 08H, 10H, 20H.

88H FFH BR_INST_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions
mispredicted.

Must combine with
umask 40H, 80H

89H 04H BR_MISP_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify mispredicted indirect near branch
instructions that are not calls nor returns.

Must combine with
umask 80H

89H 08H BR_MISP_EXEC.RETURN_NEAR Qualify mispredicted indirect near branches that
have a return mnemonic.

Must combine with
umask 80H

89H 10H BR_MISP_EXEC.DIRECT_NEAR_C
ALL

Qualify mispredicted unconditional near call branch
instructions, excluding non call branch, executed.

Must combine with
umask 80H

89H 20H BR_MISP_EXEC.INDIRECT_NEAR
_CALL

Qualify mispredicted indirect near calls, including
both register and memory indirect, executed.

Must combine with
umask 80H

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches
executed.

Applicable to umask 01H
only

89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed.
Must combine with 01H,02H, 04H, 08H, 10H, 20H.

89H FFH BR_MISP_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

9CH 01H IDQ_UOPS_NOT_DELIVERED.CO
RE

Count number of non-delivered uops to RAT per
thread.

Use Cmask to qualify uop
b/w

A1H 01H UOPS_DISPATCHED_PORT.PORT
_0

Cycles which a Uop is dispatched on port 0 in this
thread.

Set AnyThread to count
per core

A1H 02H UOPS_DISPATCHED_PORT.PORT
_1

Cycles which a Uop is dispatched on port 1 in this
thread.

Set AnyThread to count
per core

A1H 04H UOPS_DISPATCHED_PORT.PORT
_2

Cycles which a uop is dispatched on port 2 in this
thread.

Set AnyThread to count
per core

A1H 08H UOPS_DISPATCHED_PORT.PORT
_3

Cycles which a uop is dispatched on port 3 in this
thread.

Set AnyThread to count
per core

A1H 10H UOPS_DISPATCHED_PORT.PORT
_4

Cycles which a uop is dispatched on port 4 in this
thread.

Set AnyThread to count
per core

A1H 20H UOPS_DISPATCHED_PORT.PORT
_5

Cycles which a uop is dispatched on port 5 in this
thread.

Set AnyThread to count
per core

A1H 40H UOPS_DISPATCHED_PORT.PORT
_6

Cycles which a Uop is dispatched on port 6 in this
thread.

Set AnyThread to count
per core

A1H 80H UOPS_DISPATCHED_PORT.PORT
_7

Cycles which a Uop is dispatched on port 7 in this
thread

Set AnyThread to count
per core

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related
reason.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available.

Table 19-2 Non-Architectural Performance Events In the Processor Core of the Intel® Core™ M Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 274

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A8H 01H LSD.UOPS Number of Uops delivered by the LSD.

ABH 02H DSB2MITE_SWITCHES.PENALTY
_CYCLES

Cycles of delay due to Decode Stream Buffer to MITE
switches

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes 4k/2M/
4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_
DATA_RD

Demand data read requests sent to uncore. Use only when HTT is off

B0H 02H OFFCORE_REQUESTS.DEMAND_
CODE_RD

Demand code read requests sent to uncore. Use only when HTT is off

B0H 04H OFFCORE_REQUESTS.DEMAND_
RFO

Demand RFO read requests sent to uncore, including
regular RFOs, locks, ItoM.

Use only when HTT is off

B0H 08H OFFCORE_REQUESTS.ALL_DATA
_RD

Data read requests sent to uncore (demand and
prefetch).

Use only when HTT is off

B1H 01H UOPS_EXECUTED.THREAD Counts total number of uops to be executed per-
logical-processor each cycle.

Use Cmask to count stall
cycles

B1H 02H UOPS_EXECUTED.CORE Counts total number of uops to be executed per-core
each cycle.

Do not need to set ANY

B7H 01H OFF_CORE_RESPONSE_0 see Section 18.9.5, “Off-core Response Performance
Monitoring”.

Requires MSR 01A6H

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.9.5, “Off-core Response Performance
Monitoring”.

Requires MSR 01A7H

BCH 11H PAGE_WALKER_LOADS.DTLB_L1 Number of DTLB page walker loads that hit in the
L1+FB.

BCH 21H PAGE_WALKER_LOADS.ITLB_L1 Number of ITLB page walker loads that hit in the
L1+FB.

BCH 12H PAGE_WALKER_LOADS.DTLB_L2 Number of DTLB page walker loads that hit in the L2.

BCH 22H PAGE_WALKER_LOADS.ITLB_L2 Number of ITLB page walker loads that hit in the L2.

BCH 14H PAGE_WALKER_LOADS.DTLB_L3 Number of DTLB page walker loads that hit in the L3.

BCH 24H PAGE_WALKER_LOADS.ITLB_L3 Number of ITLB page walker loads that hit in the L3.

BCH 18H PAGE_WALKER_LOADS.DTLB_M
EMORY

Number of DTLB page walker loads from memory.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only;

C0H 02H INST_RETIRED.X87 FP operations retired. X87 FP operations that have
no exceptions

C1H 08H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE
when penalty applicable.

Table 19-2 Non-Architectural Performance Events In the Processor Core of the Intel® Core™ M Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 275

C1H 10H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when
penalty applicable.

C1H 40H OTHER_ASSISTS.ANY_WB_ASSI
ST

Number of microcode assists invoked by HW upon
uop writeback.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use
cmask=1 and invert to count active cycles or stalled
cycles.

Supports PEBS and
DataLA, use Any=1 for
core granular.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

Supports PEBS

C3H 01H MACHINE_CLEARS.CYCLES Counts cycles while a machine clears. stalled forward
progress of a logical processor or a processor core.

C3H 02H MACHINE_CLEARS.MEMORY_OR
DERING

Counts the number of machine clears due to memory
order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears
detected.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load
operations that refer to an illegal address range with
the mask bits set to 0.

C4H 00H BR_INST_RETIRED.ALL_BRANC
HES

Branch instructions at retirement. See Table 19-1

C4H 01H BR_INST_RETIRED.CONDITIONA
L

Counts the number of conditional branch instructions
retired.

Supports PEBS

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS

C4H 04H BR_INST_RETIRED.ALL_BRANC
HES

Counts the number of branch instructions retired. Supports PEBS

C4H 08H BR_INST_RETIRED.NEAR_RETU
RN

Counts the number of near return instructions
retired.

Supports PEBS

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions
retired.

C4H 20H BR_INST_RETIRED.NEAR_TAKE
N

Number of near taken branches retired. Supports PEBS

C4H 40H BR_INST_RETIRED.FAR_BRANC
H

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted branch instructions at retirement See Table 19-1

C5H 01H BR_MISP_RETIRED.CONDITIONA
L

Mispredicted conditional branch instructions retired. Supports PEBS

C5H 04H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted macro branch instructions retired. Supports PEBS

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 FP assists due to Output values.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 FP assists due to input values.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to Output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

Table 19-2 Non-Architectural Performance Events In the Processor Core of the Intel® Core™ M Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 276

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSER
TS

Count cases of saving new LBR records by hardware.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY

Randomly sampled loads whose latency is above a
user defined threshold. A small fraction of the overall
loads are sampled due to randomization.

Specify threshold in MSR
3F6H

D0H 01H MEM_UOPS_RETIRED.LOADS Qualify retired memory uops that are loads. Combine
with umask 10H, 20H, 40H, 80H.

Supports PEBS and
DataLA

D0H 02H MEM_UOPS_RETIRED.STORES Qualify retired memory uops that are stores.
Combine with umask 10H, 20H, 40H, 80H.

Supports PEBS and
DataLA

D0H 10H MEM_UOPS_RETIRED.STLB_MIS
S

Qualify retired memory uops with STLB miss. Must
combine with umask 01H, 02H, to produce counts.

Supports PEBS and
DataLA

D0H 40H MEM_UOPS_RETIRED.SPLIT Qualify retired memory uops with line split. Must
combine with umask 01H, 02H, to produce counts.

Supports PEBS and
DataLA

D0H 80H MEM_UOPS_RETIRED.ALL Qualify any retired memory uops. Must combine with
umask 01H, 02H, to produce counts.

Supports PEBS and
DataLA

D1H 01H MEM_LOAD_UOPS_RETIRED.L1_
HIT

Retired load uops with L1 cache hits as data sources. Supports PEBS and
DataLA

D1H 02H MEM_LOAD_UOPS_RETIRED.L2_
HIT

Retired load uops with L2 cache hits as data sources. Supports PEBS and
DataLA

D1H 04H MEM_LOAD_UOPS_RETIRED.L3_
HIT

Retired load uops with L3 cache hits as data sources. Supports PEBS and
DataLA

D1H 08H MEM_LOAD_UOPS_RETIRED.L1_
MISS

Retired load uops missed L1 cache as data sources. Supports PEBS and
DataLA

D1H 10H MEM_LOAD_UOPS_RETIRED.L2_
MISS

Retired load uops missed L2. Unknown data source
excluded.

Supports PEBS and
DataLA

D1H 20H MEM_LOAD_UOPS_RETIRED.L3_
MISS

Retired load uops missed L3. Excludes unknown data
source .

Supports PEBS and
DataLA

D1H 40H MEM_LOAD_UOPS_RETIRED.HIT
_LFB

Retired load uops which data sources were load uops
missed L1 but hit FB due to preceding miss to the
same cache line with data not ready.

Supports PEBS and
DataLA

D2H 01H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_MISS

Retired load uops which data sources were L3 hit
and cross-core snoop missed in on-pkg core cache.

Supports PEBS and
DataLA

D2H 02H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HIT

Retired load uops which data sources were L3 and
cross-core snoop hits in on-pkg core cache.

Supports PEBS and
DataLA

D2H 04H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HITM

Retired load uops which data sources were HitM
responses from shared L3.

Supports PEBS and
DataLA

D2H 08H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_NONE

Retired load uops which data sources were hits in L3
without snoops required.

Supports PEBS and
DataLA

D3H 01H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.LOCAL_DRAM

Retired load uops which data sources missed L3 but
serviced from local dram.

Supports PEBS and
DataLA.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

Table 19-2 Non-Architectural Performance Events In the Processor Core of the Intel® Core™ M Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 277

19.3 PERFORMANCE MONITORING EVENTS FOR THE 4TH GENERATION
INTEL® CORE™ PROCESSORS

4th generation Intel® Core™ processors and Intel Xeon processor E3-1200 v3 product family are based on the
Haswell microarchitecture. They support the architectural performance-monitoring events listed in Table 19-1.
Non-architectural performance-monitoring events in the processor core are listed in Table 19-3. The events in
Table 19-3 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following
values: 06_3CH, 06_45H and 06_46H. Table 19-4 lists performance events focused on supporting Intel TSX (see
Section 18.11.5).

Additional information on event specifics (e.g. derivative events using specific IA32_PERFEVTSELx modifiers,
limitations, special notes and recommendations) can be found at http://software.intel.com/en-us/forums/soft-
ware-tuning-performance-optimization-platform-monitoring.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF Any MLC or L3 HW prefetch accessing L2, including
rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover
rejects.

F2H 05H L2_LINES_OUT.DEMAND_CLEAN Clean L2 cache lines evicted by demand.

Table 19-2 Non-Architectural Performance Events In the Processor Core of the Intel® Core™ M Processors (Contd.)
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Table 19-3 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD loads blocked by overlapping with store buffer that
cannot be forwarded .

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are
temporarily blocked because all resources for
handling the split accesses are in use.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops
dispatched to L1D.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 278

07H 01H LD_BLOCKS_PARTIAL.ADDRESS
_ALIAS

False dependencies in MOB due to partial compare
on address.

08H 01H DTLB_LOAD_MISSES.MISS_CAUS
ES_A_WALK

Misses in all TLB levels that cause a page walk of any
page size.

08H 02H DTLB_LOAD_MISSES.WALK_COM
PLETED_4K

Completed page walks due to demand load misses
that caused 4K page walks in any TLB levels.

08H 04H DTLB_LOAD_MISSES.WALK_COM
PLETED_2M_4M

Completed page walks due to demand load misses
that caused 2M/4M page walks in any TLB levels.

08H 0EH DTLB_LOAD_MISSES.WALK_COM
PLETED

Completed page walks in any TLB of any page size
due to demand load misses

08H 10H DTLB_LOAD_MISSES.WALK_DUR
ATION

Cycle PMH is busy with a walk.

08H 20H DTLB_LOAD_MISSES.STLB_HIT_
4K

Load misses that missed DTLB but hit STLB (4K).

08H 40H DTLB_LOAD_MISSES.STLB_HIT_
2M

Load misses that missed DTLB but hit STLB (2M).

08H 60H DTLB_LOAD_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

08H 80H DTLB_LOAD_MISSES.PDE_CACH
E_MISS

DTLB demand load misses with low part of linear-to-
physical address translation missed

0DH 03H INT_MISC.RECOVERY_CYCLES Cycles waiting to recover after Machine Clears
except JEClear. Set Cmask= 1.

Set Edge to count
occurrences

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the
RAT to RS.

Set Cmask = 1, Inv = 1, Any= 1to count stalled cycles
of this core.

Set Cmask = 1, Inv = 1to
count stalled cycles

0EH 10H UOPS_ISSUED.FLAGS_MERGE Number of flags-merge uops allocated. Such uops
adds delay.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such
uop has 3 sources (e.g. 2 sources + immediate)
regardless if as a result of LEA instruction or not.

0EH 40H UOPS_ISSUED.SiNGLE_MUL Number of multiply packed/scalar single precision
uops allocated.

24H 21H L2_RQSTS.DEMAND_DATA_RD_
MISS

Demand Data Read requests that missed L2, no
rejects.

24H 41H L2_RQSTS.DEMAND_DATA_RD_
HIT

Demand Data Read requests that hit L2 cache.

24H E1H L2_RQSTS.ALL_DEMAND_DATA
_RD

Counts any demand and L1 HW prefetch data load
requests to L2.

24H 42H L2_RQSTS.RFO_HIT Counts the number of store RFO requests that hit
the L2 cache.

24H 22H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache.

Table 19-3 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 279

24H E2H L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 44H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache.

24H 24H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2
cache.

24H 27H L2_RQSTS.ALL_DEMAND_MISS Demand requests that miss L2 cache.

24H E7H L2_RQSTS.ALL_DEMAND_REFE
RENCES

Demand requests to L2 cache.

24H E4H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 50H L2_RQSTS.L2_PF_HIT Counts all L2 HW prefetcher requests that hit L2.

24H 30H L2_RQSTS.L2_PF_MISS Counts all L2 HW prefetcher requests that missed
L2.

24H F8H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher requests.

24H 3FH L2_RQSTS.MISS All requests that missed L2.

24H FFH L2_RQSTS.REFERENCES All requests to L2 cache.

27H 50H L2_DEMAND_RQSTS.WB_HIT Not rejected writebacks that hit L2 cache

2EH 4FH LONGEST_LAT_CACHE.REFEREN
CE

This event counts requests originating from the core
that reference a cache line in the last level cache.

see Table 19-1

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache.

see Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD_
P

Counts the number of thread cycles while the thread
is not in a halt state. The thread enters the halt state
when it is running the HLT instruction. The core
frequency may change from time to time due to
power or thermal throttling.

see Table 19-1

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK

Increments at the frequency of XCLK (100 MHz)
when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmaks = 1 and Edge =1 to count
occurrences.

Counter 2 only;

Set Cmask = 1 to count
cycles.

49H 01H DTLB_STORE_MISSES.MISS_CAU
SES_A_WALK

Miss in all TLB levels causes an page walk of any
page size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_CO
MPLETED_4K

Completed page walks due to store misses in one or
more TLB levels of 4K page structure.

49H 04H DTLB_STORE_MISSES.WALK_CO
MPLETED_2M_4M

Completed page walks due to store misses in one or
more TLB levels of 2M/4M page structure.

49H 0EH DTLB_STORE_MISSES.WALK_CO
MPLETED

Completed page walks due to store miss in any TLB
levels of any page size (4K/2M/4M/1G).

49H 10H DTLB_STORE_MISSES.WALK_DU
RATION

Cycles PMH is busy with this walk.

49H 20H DTLB_STORE_MISSES.STLB_HIT
_4K

Store misses that missed DTLB but hit STLB (4K).

Table 19-3 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 280

49H 40H DTLB_STORE_MISSES.STLB_HIT
_2M

Store misses that missed DTLB but hit STLB (2M).

49H 60H DTLB_STORE_MISSES.STLB_HIT Store operations that miss the first TLB level but hit
the second and do not cause page walks.

49H 80H DTLB_STORE_MISSES.PDE_CAC
HE_MISS

DTLB store misses with low part of linear-to-physical
address translation missed.

4CH 01H LOAD_HIT_PRE.SW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for H/W prefetch.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

58H 04H MOVE_ELIMINATION.INT_NOT_E
LIMINATED

Number of integer Move Elimination candidate uops
that were not eliminated.

58H 08H MOVE_ELIMINATION.SIMD_NOT_
ELIMINATED

Number of SIMD Move Elimination candidate uops
that were not eliminated.

58H 01H MOVE_ELIMINATION.INT_ELIMIN
ATED

Number of integer Move Elimination candidate uops
that were eliminated.

58H 02H MOVE_ELIMINATION.SIMD_ELIMI
NATED

Number of SIMD Move Elimination candidate uops
that were eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count
transition

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring 0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read transactions
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is off

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Offcore outstanding Demand code Read transactions
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is off

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to
uncore. Set Cmask=1 to count cycles.

Use only when HTT is off

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Offcore outstanding cacheable data read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

Use only when HTT is off

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC_
LOCK_DURATION

Cycles in which the L1D and L2 are locked, due to a
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_DU
RATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ from
MITE path.

Set Cmask = 1 to count cycles.

Can combine Umask 04H
and 20H

Table 19-3 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 281

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ
from DSB path.

Set Cmask = 1 to count cycles.

Can combine Umask 08H
and 10H

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by DSB. Set Cmask = 1 to count
cycles. Add Edge=1 to count # of delivery.

Can combine Umask 04H,
08H

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ from
MS by either DSB or MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UO
PS

Counts cycles DSB is delivered at least one uops. Set
Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Counts cycles DSB is delivered four uops. Set Cmask
= 4.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UO
PS

Counts cycles MITE is delivered at least one uops. Set
Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. Set Cmask
= 4.

79H 3CH IDQ.MITE_ALL_UOPS # of uops delivered to IDQ from any path.

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A_
WALK

Misses in ITLB that causes a page walk of any page
size.

85H 02H ITLB_MISSES.WALK_COMPLETE
D_4K

Completed page walks due to misses in ITLB 4K page
entries.

85H 04H ITLB_MISSES.WALK_COMPLETE
D_2M_4M

Completed page walks due to misses in ITLB 2M/4M
page entries.

85H 0EH ITLB_MISSES.WALK_COMPLETE
D

Completed page walks in ITLB of any page size.

85H 10H ITLB_MISSES.WALK_DURATION Cycle PMH is busy with a walk.

85H 20H ITLB_MISSES.STLB_HIT_4K ITLB misses that hit STLB (4K).

85H 40H ITLB_MISSES.STLB_HIT_2M ITLB misses that hit STLB (2M).

85H 60H ITLB_MISSES.STLB_HIT ITLB misses that hit STLB. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions
executed, but not necessarily retired.

Must combine with
umask 40H, 80H

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions
excluding calls and indirect branches.

Must combine with
umask 80H

Table 19-3 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 282

88H 04H BR_INST_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify executed indirect near branch instructions
that are not calls nor returns.

Must combine with
umask 80H

88H 08H BR_INST_EXEC.RETURN_NEAR Qualify indirect near branches that have a return
mnemonic.

Must combine with
umask 80H

88H 10H BR_INST_EXEC.DIRECT_NEAR_C
ALL

Qualify unconditional near call branch instructions,
excluding non call branch, executed.

Must combine with
umask 80H

88H 20H BR_INST_EXEC.INDIRECT_NEAR
_CALL

Qualify indirect near calls, including both register and
memory indirect, executed.

Must combine with
umask 80H

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H
only

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must combine
with 01H,02H, 04H, 08H, 10H, 20H.

88H FFH BR_INST_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions
mispredicted.

Must combine with
umask 40H, 80H

89H 04H BR_MISP_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify mispredicted indirect near branch
instructions that are not calls nor returns.

Must combine with
umask 80H

89H 08H BR_MISP_EXEC.RETURN_NEAR Qualify mispredicted indirect near branches that
have a return mnemonic.

Must combine with
umask 80H

89H 10H BR_MISP_EXEC.DIRECT_NEAR_C
ALL

Qualify mispredicted unconditional near call branch
instructions, excluding non call branch, executed.

Must combine with
umask 80H

89H 20H BR_MISP_EXEC.INDIRECT_NEAR
_CALL

Qualify mispredicted indirect near calls, including
both register and memory indirect, executed.

Must combine with
umask 80H

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches
executed.

Applicable to umask 01H
only

89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed.
Must combine with 01H,02H, 04H, 08H, 10H, 20H.

89H FFH BR_MISP_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

9CH 01H IDQ_UOPS_NOT_DELIVERED.CO
RE

Count number of non-delivered uops to RAT per
thread.

Use Cmask to qualify uop
b/w

A1H 01H UOPS_EXECUTED_PORT.PORT_
0

Cycles which a Uop is dispatched on port 0 in this
thread.

Set AnyThread to count
per core

A1H 02H UOPS_EXECUTED_PORT.PORT_
1

Cycles which a Uop is dispatched on port 1 in this
thread.

Set AnyThread to count
per core

A1H 04H UOPS_EXECUTED_PORT.PORT_
2

Cycles which a uop is dispatched on port 2 in this
thread.

Set AnyThread to count
per core

A1H 08H UOPS_EXECUTED_PORT.PORT_
3

Cycles which a uop is dispatched on port 3 in this
thread.

Set AnyThread to count
per core

A1H 10H UOPS_EXECUTED_PORT.PORT_
4

Cycles which a uop is dispatched on port 4 in this
thread.

Set AnyThread to count
per core

Table 19-3 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 283

A1H 20H UOPS_EXECUTED_PORT.PORT_
5

Cycles which a uop is dispatched on port 5 in this
thread.

Set AnyThread to count
per core

A1H 40H UOPS_EXECUTED_PORT.PORT_
6

Cycles which a Uop is dispatched on port 6 in this
thread.

Set AnyThread to count
per core

A1H 80H UOPS_EXECUTED_PORT.PORT_
7

Cycles which a Uop is dispatched on port 7 in this
thread

Set AnyThread to count
per core

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related
reason.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_PE
NDING

Cycles with pending L2 miss loads. Set Cmask=2 to
count cycle.

Use only when HTT is off

A3H 02H CYCLE_ACTIVITY.CYCLES_LDM_
PENDING

Cycles with pending memory loads. Set Cmask=2 to
count cycle.

A3H 05H CYCLE_ACTIVITY.STALLS_L2_PE
NDING

Number of loads missed L2. Use only when HTT is off

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_P
ENDING

Cycles with pending L1 data cache miss loads. Set
Cmask=8 to count cycle.

PMC2 only

A3H 0CH CYCLE_ACTIVITY.STALLS_L1D_P
ENDING

Execution stalls due to L1 data cache miss loads. Set
Cmask=0CH.

PMC2 only

A8H 01H LSD.UOPS Number of Uops delivered by the LSD.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes 4k/2M/
4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_
DATA_RD

Demand data read requests sent to uncore. Use only when HTT is off

B0H 02H OFFCORE_REQUESTS.DEMAND_
CODE_RD

Demand code read requests sent to uncore. Use only when HTT is off

B0H 04H OFFCORE_REQUESTS.DEMAND_
RFO

Demand RFO read requests sent to uncore, including
regular RFOs, locks, ItoM.

Use only when HTT is off

B0H 08H OFFCORE_REQUESTS.ALL_DATA
_RD

Data read requests sent to uncore (demand and
prefetch).

Use only when HTT is off

B1H 02H UOPS_EXECUTED.CORE Counts total number of uops to be executed per-core
each cycle.

Do not need to set ANY

B7H 01H OFF_CORE_RESPONSE_0 see Section 18.9.5, “Off-core Response Performance
Monitoring”.

Requires MSR 01A6H

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.9.5, “Off-core Response Performance
Monitoring”.

Requires MSR 01A7H

BCH 11H PAGE_WALKER_LOADS.DTLB_L1 Number of DTLB page walker loads that hit in the
L1+FB.

Table 19-3 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 284

BCH 21H PAGE_WALKER_LOADS.ITLB_L1 Number of ITLB page walker loads that hit in the
L1+FB.

BCH 12H PAGE_WALKER_LOADS.DTLB_L2 Number of DTLB page walker loads that hit in the L2.

BCH 22H PAGE_WALKER_LOADS.ITLB_L2 Number of ITLB page walker loads that hit in the L2.

BCH 14H PAGE_WALKER_LOADS.DTLB_L3 Number of DTLB page walker loads that hit in the L3.

BCH 24H PAGE_WALKER_LOADS.ITLB_L3 Number of ITLB page walker loads that hit in the L3.

BCH 18H PAGE_WALKER_LOADS.DTLB_M
EMORY

Number of DTLB page walker loads from memory.

BCH 28H PAGE_WALKER_LOADS.ITLB_ME
MORY

Number of ITLB page walker loads from memory.

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only;

C1H 08H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE
when penalty applicable.

C1H 10H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when
penalty applicable.

C1H 40H OTHER_ASSISTS.ANY_WB_ASSI
ST

Number of microcode assists invoked by HW upon
uop writeback.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use
cmask=1 and invert to count active cycles or stalled
cycles.

Supports PEBS and
DataLA, use Any=1 for
core granular.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

Supports PEBS

C3H 02H MACHINE_CLEARS.MEMORY_OR
DERING

Counts the number of machine clears due to memory
order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears
detected.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load
operations that refer to an illegal address range with
the mask bits set to 0.

C4H 00H BR_INST_RETIRED.ALL_BRANC
HES

Branch instructions at retirement. See Table 19-1

C4H 01H BR_INST_RETIRED.CONDITIONA
L

Counts the number of conditional branch instructions
retired.

Supports PEBS

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS

C4H 04H BR_INST_RETIRED.ALL_BRANC
HES

Counts the number of branch instructions retired. Supports PEBS

Table 19-3 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 285

C4H 08H BR_INST_RETIRED.NEAR_RETU
RN

Counts the number of near return instructions
retired.

Supports PEBS

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions
retired.

C4H 20H BR_INST_RETIRED.NEAR_TAKE
N

Number of near taken branches retired. Supports PEBS

C4H 40H BR_INST_RETIRED.FAR_BRANC
H

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted branch instructions at retirement See Table 19-1

C5H 01H BR_MISP_RETIRED.CONDITIONA
L

Mispredicted conditional branch instructions retired. Supports PEBS

C5H 04H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted macro branch instructions retired. Supports PEBS

C5H 20H BR_MISP_RETIRED.NEAR_TAKE
N

Number of near branch instructions retired that
were taken but mispredicted.

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 FP assists due to Output values.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 FP assists due to input values.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to Output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSER
TS

Count cases of saving new LBR records by hardware.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY

Randomly sampled loads whose latency is above a
user defined threshold. A small fraction of the overall
loads are sampled due to randomization.

Specify threshold in MSR
3F6H

D0H 01H MEM_UOPS_RETIRED.LOADS Qualify retired memory uops that are loads. Combine
with umask 10H, 20H, 40H, 80H.

Supports PEBS and
DataLA

D0H 10H MEM_UOPS_RETIRED.STLB_MIS
S

Qualify retired memory uops with STLB miss. Must
combine with umask 01H, 02H, to produce counts.

Supports PEBS and
DataLA

D0H 40H MEM_UOPS_RETIRED.SPLIT Qualify retired memory uops with line split. Must
combine with umask 01H, 02H, to produce counts.

Supports PEBS and
DataLA

D0H 80H MEM_UOPS_RETIRED.ALL Qualify any retired memory uops. Must combine with
umask 01H, 02H, to produce counts.

Supports PEBS and
DataLA

D1H 01H MEM_LOAD_UOPS_RETIRED.L1_
HIT

Retired load uops with L1 cache hits as data sources. Supports PEBS and
DataLA

D1H 02H MEM_LOAD_UOPS_RETIRED.L2_
HIT

Retired load uops with L2 cache hits as data sources. Supports PEBS and
DataLA

D1H 04H MEM_LOAD_UOPS_RETIRED.L3_
HIT

Retired load uops with L3 cache hits as data sources. Supports PEBS and
DataLA

D1H 08H MEM_LOAD_UOPS_RETIRED.L1_
MISS

Retired load uops missed L1 cache as data sources. Supports PEBS and
DataLA

Table 19-3 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 286

D1H 10H MEM_LOAD_UOPS_RETIRED.L2_
MISS

Retired load uops missed L2. Unknown data source
excluded.

Supports PEBS and
DataLA

D1H 20H MEM_LOAD_UOPS_RETIRED.L3_
MISS

Retired load uops missed L3. Excludes unknown data
source .

Supports PEBS and
DataLA

D1H 40H MEM_LOAD_UOPS_RETIRED.HIT
_LFB

Retired load uops which data sources were load uops
missed L1 but hit FB due to preceding miss to the
same cache line with data not ready.

Supports PEBS and
DataLA

D2H 01H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_MISS

Retired load uops which data sources were L3 hit
and cross-core snoop missed in on-pkg core cache.

Supports PEBS and
DataLA

D2H 02H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HIT

Retired load uops which data sources were L3 and
cross-core snoop hits in on-pkg core cache.

Supports PEBS and
DataLA

D2H 04H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HITM

Retired load uops which data sources were HitM
responses from shared L3.

Supports PEBS and
DataLA

D2H 08H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_NONE

Retired load uops which data sources were hits in L3
without snoops required.

Supports PEBS and
DataLA

D3H 01H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.LOCAL_DRAM

Retired load uops which data sources missed L3 but
serviced from local dram.

Supports PEBS and
DataLA.

E6H 1FH BACLEARS.ANY Number of front end re-steers due to BPU
misprediction.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF Any MLC or L3 HW prefetch accessing L2, including
rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover
rejects.

F2H 05H L2_LINES_OUT.DEMAND_CLEAN Clean L2 cache lines evicted by demand.

F2H 06H L2_LINES_OUT.DEMAND_DIRTY Dirty L2 cache lines evicted by demand.

Table 19-3 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 287

Table 19-4 Intel TSX Performance Events in processors based on Haswell Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

54H 01H TX_MEM.ABORT_CONFLICT Number of times a transactional abort was signaled due
to a data conflict on a transactionally accessed address

54H 02H TX_MEM.ABORT_CAPACITY_W
RITE

Number of times a transactional abort was signaled due
to a data capacity limitation for transactional writes

54H 04H TX_MEM.ABORT_HLE_STORE_
TO_ELIDED_LOCK

Number of times a HLE transactional region aborted due
to a non XRELEASE prefixed instruction writing to an
elided lock in the elision buffer

54H 08H TX_MEM.ABORT_HLE_ELISION
_BUFFER_NOT_EMPTY

Number of times an HLE transactional execution aborted
due to NoAllocatedElisionBuffer being non-zero.

54H 10H TX_MEM.ABORT_HLE_ELISION
_BUFFER_MISMATCH

Number of times an HLE transactional execution aborted
due to XRELEASE lock not satisfying the address and
value requirements in the elision buffer.

54H 20H TX_MEM.ABORT_HLE_ELISION
_BUFFER_UNSUPPORTED_ALI
GNMENT

Number of times an HLE transactional execution aborted
due to an unsupported read alignment from the elision
buffer.

54H 40H TX_MEM.HLE_ELISION_BUFFE
R_FULL

Number of times HLE lock could not be elided due to
ElisionBufferAvailable being zero.

5DH 01H TX_EXEC.MISC1 Counts the number of times a class of instructions that
may cause a transactional abort was executed. Since this
is the count of execution, it may not always cause a
transactional abort.

5DH 02H TX_EXEC.MISC2 Counts the number of times a class of instructions (e.g.
vzeroupper) that may cause a transactional abort was
executed inside a transactional region

5DH 04H TX_EXEC.MISC3 Counts the number of times an instruction execution
caused the transactional nest count supported to be
exceeded

5DH 08H TX_EXEC.MISC4 Counts the number of times an XBEGIN instruction was
executed inside an HLE transactional region

5DH 10H TX_EXEC.MISC5 Counts the number of times an instruction with HLE-
XACQUIRE semantic was executed inside an RTM
transactional region

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 288

Non-architectural performance monitoring events that are located in the uncore sub-system are implementation
specific between different platforms using processors based on Haswell microarchitecture and with different
DisplayFamily_DisplayModel signatures. Processors with CPUID signature of DisplayFamily_DisplayModel 06_3CH
and 06_45H support performance events listed in Table 19-5.

C8H 01H HLE_RETIRED.START Number of times an HLE execution started. IF HLE is supported

C8H 02H HLE_RETIRED.COMMIT Number of times an HLE execution successfully
committed

C8H 04H HLE_RETIRED.ABORTED Number of times an HLE execution aborted due to any
reasons (multiple categories may count as one). Supports
PEBS

C8H 08H HLE_RETIRED.ABORTED_MISC
1

Number of times an HLE execution aborted due to
various memory events (e.g. read/write capacity and
conflicts)

C8H 10H HLE_RETIRED.ABORTED_MISC
2

Number of times an HLE execution aborted due to
uncommon conditions

C8H 20H HLE_RETIRED.ABORTED_MISC
3

Number of times an HLE execution aborted due to HLE-
unfriendly instructions

C8H 40H HLE_RETIRED.ABORTED_MISC
4

Number of times an HLE execution aborted due to
incompatible memory type

C8H 80H HLE_RETIRED.ABORTED_MISC
5

Number of times an HLE execution aborted due to none
of the previous 4 categories (e.g. interrupts)

C9H 01H RTM_RETIRED.START Number of times an RTM execution started. IF RTM is supported

C9H 02H RTM_RETIRED.COMMIT Number of times an RTM execution successfully
committed

C9H 04H RTM_RETIRED.ABORTED Number of times an RTM execution aborted due to any
reasons (multiple categories may count as one). Supports
PEBS

C9H 08H RTM_RETIRED.ABORTED_MISC
1

Number of times an RTM execution aborted due to
various memory events (e.g. read/write capacity and
conflicts)

IF RTM is supported

C9H 10H RTM_RETIRED.ABORTED_MISC
2

Number of times an RTM execution aborted due to
uncommon conditions

C9H 20H RTM_RETIRED.ABORTED_MISC
3

Number of times an RTM execution aborted due to HLE-
unfriendly instructions

C9H 40H RTM_RETIRED.ABORTED_MISC
4

Number of times an RTM execution aborted due to
incompatible memory type

C9H 80H RTM_RETIRED.ABORTED_MISC
5

Number of times an RTM execution aborted due to none
of the previous 4 categories (e.g. interrupt)

Table 19-4 Intel TSX Performance Events in processors based on Haswell Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 289

Table 19-5 Non-Architectural Uncore Performance Events In the 4th Generation Intel® Core™ Processors
Event
Num.1

Umask
Value Event Mask Mnemonic Description Comment

22H 01H UNC_CBO_XSNP_RESPONSE.M
ISS

A snoop misses in some processor core. Must combine with
one of the umask
values of 20H, 40H,
80H

22H 02H UNC_CBO_XSNP_RESPONSE.I
NVAL

A snoop invalidates a non-modified line in some
processor core.

22H 04H UNC_CBO_XSNP_RESPONSE.H
IT

A snoop hits a non-modified line in some processor
core.

22H 08H UNC_CBO_XSNP_RESPONSE.H
ITM

A snoop hits a modified line in some processor core.

22H 10H UNC_CBO_XSNP_RESPONSE.I
NVAL_M

A snoop invalidates a modified line in some processor
core.

22H 20H UNC_CBO_XSNP_RESPONSE.E
XTERNAL_FILTER

Filter on cross-core snoops initiated by this Cbox due
to external snoop request.

Must combine with at
least one of 01H, 02H,
04H, 08H, 10H22H 40H UNC_CBO_XSNP_RESPONSE.X

CORE_FILTER
Filter on cross-core snoops initiated by this Cbox due
to processor core memory request.

22H 80H UNC_CBO_XSNP_RESPONSE.E
VICTION_FILTER

Filter on cross-core snoops initiated by this Cbox due
to L3 eviction.

34H 01H UNC_CBO_CACHE_LOOKUP.M L3 lookup request that access cache and found line in
M-state.

Must combine with
one of the umask
values of 10H, 20H,
40H, 80H

34H 06H UNC_CBO_CACHE_LOOKUP.ES L3 lookup request that access cache and found line in E
or S state.

34H 08H UNC_CBO_CACHE_LOOKUP.I L3 lookup request that access cache and found line in I-
state.

34H 10H UNC_CBO_CACHE_LOOKUP.RE
AD_FILTER

Filter on processor core initiated cacheable read
requests. Must combine with at least one of 01H, 02H,
04H, 08H.

34H 20H UNC_CBO_CACHE_LOOKUP.WR
ITE_FILTER

Filter on processor core initiated cacheable write
requests. Must combine with at least one of 01H, 02H,
04H, 08H.

34H 40H UNC_CBO_CACHE_LOOKUP.EX
TSNP_FILTER

Filter on external snoop requests. Must combine with
at least one of 01H, 02H, 04H, 08H.

34H 80H UNC_CBO_CACHE_LOOKUP.AN
Y_REQUEST_FILTER

Filter on any IRQ or IPQ initiated requests including
uncacheable, non-coherent requests. Must combine
with at least one of 01H, 02H, 04H, 08H.

80H 01H UNC_ARB_TRK_OCCUPANCY.A
LL

Counts cycles weighted by the number of requests
waiting for data returning from the memory controller.
Accounts for coherent and non-coherent requests
initiated by IA cores, processor graphic units, or L3.

Counter 0 only

81H 01H UNC_ARB_TRK_REQUEST.ALL Counts the number of coherent and in-coherent
requests initiated by IA cores, processor graphic units,
or L3.

81H 20H UNC_ARB_TRK_REQUEST.WRI
TES

Counts the number of allocated write entries, include
full, partial, and L3 evictions.

81H 80H UNC_ARB_TRK_REQUEST.EVIC
TIONS

Counts the number of L3 evictions allocated.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 290

19.4 PERFORMANCE MONITORING EVENTS FOR 3RD GENERATION
INTEL® CORE™ PROCESSORS

3rd generation Intel® Core™ processors and Intel Xeon processor E3-1200 v2 product family are based on Intel
microarchitecture code name Ivy Bridge. They support architectural performance-monitoring events listed in
Table 19-1. Non-architectural performance-monitoring events in the processor core are listed in Table 19-6. The
events in Table 19-6 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the
following values: 06_3AH.

Additional informations on event specifics (e.g. derivative events using specific IA32_PERFEVTSELx modifiers,
limitations, special notes and recommendations) can be found at http://software.intel.com/en-us/forums/soft-
ware-tuning-performance-optimization-platform-monitoring.

83H 01H UNC_ARB_COH_TRK_OCCUPA
NCY.ALL

Cycles weighted by number of requests pending in
Coherency Tracker.

Counter 0 only

84H 01H UNC_ARB_COH_TRK_REQUES
T.ALL

Number of requests allocated in Coherency Tracker.

NOTES:
1. The uncore events must be programmed using MSRs located in specific performance monitoring units in the uncore. UNC_CBO*

events are supported using MSR_UNC_CBO* MSRs; UNC_ARB* events are supported using MSR_UNC_ARB*MSRs.

Table 19-5 Non-Architectural Uncore Performance Events In the 4th Generation Intel® Core™ Processors (Contd.)
Event
Num.1

Umask
Value Event Mask Mnemonic Description Comment

Table 19-6 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD loads blocked by overlapping with store buffer that
cannot be forwarded .

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are
temporarily blocked because all resources for
handling the split accesses are in use.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS_
ALIAS

False dependencies in MOB due to partial compare
on address.

08H 81H DTLB_LOAD_MISSES.MISS_CAUSE
S_A_WALK

Misses in all TLB levels that cause a page walk of
any page size from demand loads.

08H 82H DTLB_LOAD_MISSES.WALK_COM
PLETED

Misses in all TLB levels that caused page walk
completed of any size by demand loads.

08H 84H DTLB_LOAD_MISSES.WALK_DUR
ATION

Cycle PMH is busy with a walk due to demand loads.

08H 88H DTLB_LOAD_MISSES.LARGE_PAG
E_WALK_DURATION

 Page walk for a large page completed for Demand
load

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 291

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the
RAT to RS.

Set Cmask = 1, Inv = 1, Any= 1to count stalled
cycles of this core.

Set Cmask = 1, Inv = 1to
count stalled cycles

0EH 10H UOPS_ISSUED.FLAGS_MERGE Number of flags-merge uops allocated. Such uops
adds delay.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such
uop has 3 sources (e.g. 2 sources + immediate)
regardless if as a result of LEA instruction or not.

0EH 40H UOPS_ISSUED.SiNGLE_MUL Number of multiply packed/scalar single precision
uops allocated.

10H 01H FP_COMP_OPS_EXE.X87 Counts number of X87 uops executed.

10H 10H FP_COMP_OPS_EXE.SSE_FP_PAC
KED_DOUBLE

Counts number of SSE* or AVX-128 double
precision FP packed uops executed.

10H 20H FP_COMP_OPS_EXE.SSE_FP_SCA
LAR_SINGLE

Counts number of SSE* or AVX-128 single precision
FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_PACKED
SINGLE

Counts number of SSE* or AVX-128 single precision
FP packed uops executed.

10H 80H FP_COMP_OPS_EXE.SSE_SCALAR
_DOUBLE

Counts number of SSE* or AVX-128 double
precision FP scalar uops executed.

11H 01H SIMD_FP_256.PACKED_SINGLE Counts 256-bit packed single-precision floating-
point instructions.

11H 02H SIMD_FP_256.PACKED_DOUBLE Counts 256-bit packed double-precision floating-
point instructions.

14H 01H ARITH.FPU_DIV_ACTIVE Cycles that the divider is active, includes INT and FP.
Set 'edge =1, cmask=1' to count the number of
divides.

24H 01H L2_RQSTS.DEMAND_DATA_RD_H
IT

Demand Data Read requests that hit L2 cache

24H 03H L2_RQSTS.ALL_DEMAND_DATA_
RD

Counts any demand and L1 HW prefetch data load
requests to L2.

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO requests that hit
the L2 cache.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache.

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 10H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache.

24H 20H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2
cache.

24H 30H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Counts all L2 HW prefetcher requests that hit L2.

Table 19-6 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 292

24H 80H L2_RQSTS.PF_MISS Counts all L2 HW prefetcher requests that missed
L2.

24H C0H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher requests.

27H 01H L2_STORE_LOCK_RQSTS.MISS RFOs that miss cache lines

27H 08H L2_STORE_LOCK_RQSTS.HIT_M RFOs that hit cache lines in M state

27H 0FH L2_STORE_LOCK_RQSTS.ALL RFOs that access cache lines in any state

28H 01H L2_L1D_WB_RQSTS.MISS Not rejected writebacks that missed LLC.

28H 04H L2_L1D_WB_RQSTS.HIT_E Not rejected writebacks from L1D to L2 cache lines
in E state.

28H 08H L2_L1D_WB_RQSTS.HIT_M Not rejected writebacks from L1D to L2 cache lines
in M state.

28H 0FH L2_L1D_WB_RQSTS.ALL Not rejected writebacks from L1D to L2 cache lines
in any state.

2EH 4FH LONGEST_LAT_CACHE.REFERENC
E

This event counts requests originating from the
core that reference a cache line in the last level
cache.

see Table 19-1

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache.

see Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD_P Counts the number of thread cycles while the
thread is not in a halt state. The thread enters the
halt state when it is running the HLT instruction.
The core frequency may change from time to time
due to power or thermal throttling.

see Table 19-1

3CH 01H CPU_CLK_THREAD_UNHALTED.R
EF_XCLK

Increments at the frequency of XCLK (100 MHz)
when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmaks = 1 and Edge =1 to count
occurrences.

PMC2 only;

Set Cmask = 1 to count
cycles.

49H 01H DTLB_STORE_MISSES.MISS_CAUS
ES_A_WALK

Miss in all TLB levels causes an page walk of any
page size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_CO
MPLETED

Miss in all TLB levels causes a page walk that
completes of any page size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSES.WALK_DUR
ATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSES.STLB_HIT Store operations that miss the first TLB level but hit
the second and do not cause page walks

4CH 01H LOAD_HIT_PRE.SW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for H/W prefetch.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

Table 19-6 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 293

58H 04H MOVE_ELIMINATION.INT_NOT_EL
IMINATED

Number of integer Move Elimination candidate uops
that were not eliminated.

58H 08H MOVE_ELIMINATION.SIMD_NOT_E
LIMINATED

Number of SIMD Move Elimination candidate uops
that were not eliminated.

58H 01H MOVE_ELIMINATION.INT_ELIMINA
TED

Number of integer Move Elimination candidate uops
that were eliminated.

58H 02H MOVE_ELIMINATION.SIMD_ELIMIN
ATED

Number of SIMD Move Elimination candidate uops
that were eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count
transition

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring
0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

5FH 04H DTLB_LOAD_MISSES.STLB_HIT Counts load operations that missed 1st level DTLB
but hit the 2nd level.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Offcore outstanding Demand Code Read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to
uncore. Set Cmask=1 to count cycles.

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Offcore outstanding cacheable data read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC_L
OCK_DURATION

Cycles in which the L1D and L2 are locked, due to a
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_DUR
ATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ
from MITE path.

Set Cmask = 1 to count cycles.

Can combine Umask 04H
and 20H

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ
from DSB path.

Set Cmask = 1 to count cycles.

Can combine Umask 08H
and 10H

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by DSB. Set Cmask = 1 to count
cycles. Add Edge=1 to count # of delivery.

Can combine Umask 04H,
08H

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H

Table 19-6 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 294

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ
from MS by either DSB or MITE. Set Cmask = 1 to
count cycles.

Can combine Umask 04H,
08H

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UOP
S

Counts cycles DSB is delivered at least one uops.
Set Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Counts cycles DSB is delivered four uops. Set Cmask
= 4.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UOP
S

Counts cycles MITE is delivered at least one uops.
Set Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. Set
Cmask = 4.

79H 3CH IDQ.MITE_ALL_UOPS # of uops delivered to IDQ from any path.

80H 04H ICACHE.IFETCH_STALL Cycles where a code-fetch stalled due to L1
instruction-cache miss or an iTLB miss

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A_W
ALK

Misses in all ITLB levels that cause page walks

85H 02H ITLB_MISSES.WALK_COMPLETED Misses in all ITLB levels that cause completed page
walks

85H 04H ITLB_MISSES.WALK_DURATION Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions
executed, but not necessarily retired.

Must combine with
umask 40H, 80H

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions
excluding calls and indirect branches.

Must combine with
umask 80H

88H 04H BR_INST_EXEC.INDIRECT_JMP_N
ON_CALL_RET

Qualify executed indirect near branch instructions
that are not calls nor returns.

Must combine with
umask 80H

88H 08H BR_INST_EXEC.RETURN_NEAR Qualify indirect near branches that have a return
mnemonic.

Must combine with
umask 80H

88H 10H BR_INST_EXEC.DIRECT_NEAR_C
ALL

Qualify unconditional near call branch instructions,
excluding non call branch, executed.

Must combine with
umask 80H

88H 20H BR_INST_EXEC.INDIRECT_NEAR_
CALL

Qualify indirect near calls, including both register
and memory indirect, executed.

Must combine with
umask 80H

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H
only

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must
combine with 01H,02H, 04H, 08H, 10H, 20H.

Table 19-6 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 295

88H FFH BR_INST_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions
mispredicted.

Must combine with
umask 40H, 80H

89H 04H BR_MISP_EXEC.INDIRECT_JMP_N
ON_CALL_RET

Qualify mispredicted indirect near branch
instructions that are not calls nor returns.

Must combine with
umask 80H

89H 08H BR_MISP_EXEC.RETURN_NEAR Qualify mispredicted indirect near branches that
have a return mnemonic.

Must combine with
umask 80H

89H 10H BR_MISP_EXEC.DIRECT_NEAR_C
ALL

Qualify mispredicted unconditional near call branch
instructions, excluding non call branch, executed.

Must combine with
umask 80H

89H 20H BR_MISP_EXEC.INDIRECT_NEAR_
CALL

Qualify mispredicted indirect near calls, including
both register and memory indirect, executed.

Must combine with
umask 80H

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches
executed.

Applicable to umask 01H
only

89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed.
Must combine with 01H,02H, 04H, 08H, 10H, 20H.

89H FFH BR_MISP_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

9CH 01H IDQ_UOPS_NOT_DELIVERED.COR
E

Count number of non-delivered uops to RAT per
thread.

Use Cmask to qualify uop
b/w

A1H 01H UOPS_DISPATCHED_PORT.PORT_
0

Cycles which a Uop is dispatched on port 0.

A1H 02H UOPS_DISPATCHED_PORT.PORT_
1

Cycles which a Uop is dispatched on port 1

A1H 0CH UOPS_DISPATCHED_PORT.PORT_
2

Cycles which a Uop is dispatched on port 2.

A1H 30H UOPS_DISPATCHED_PORT.PORT_
3

Cycles which a Uop is dispatched on port 3.

A1H 40H UOPS_DISPATCHED_PORT.PORT_
4

Cycles which a Uop is dispatched on port 4.

A1H 80H UOPS_DISPATCHED_PORT.PORT_
5

Cycles which a Uop is dispatched on port 5.

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related
reason.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_PEN
DING

Cycles with pending L2 miss loads. Set AnyThread
to count per core.

A3H 02H CYCLE_ACTIVITY.CYCLES_LDM_P
ENDING

Cycles with pending memory loads. Set AnyThread
to count per core.

PMC0-3 only.

Table 19-6 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 296

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_PE
NDING

Cycles with pending L1 cache miss loads. Set
AnyThread to count per core.

PMC2 only

A3H 04H CYCLE_ACTIVITY.CYCLES_NO_EX
ECUTE

Cycles of dispatch stalls. Set AnyThread to count
per core.

A8H 01H LSD.UOPS Number of Uops delivered by the LSD.

ABH 01H DSB2MITE_SWITCHES.COUNT Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHES.PENALTY_
CYCLES

Cycles DSB to MITE switches caused delay.

ACH 08H DSB_FILL.EXCEED_DSB_LINES DSB Fill encountered > 3 DSB lines.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes 4k/2M/
4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_D
ATA_RD

Demand data read requests sent to uncore.

B0H 02H OFFCORE_REQUESTS.DEMAND_C
ODE_RD

Demand code read requests sent to uncore.

B0H 04H OFFCORE_REQUESTS.DEMAND_R
FO

Demand RFO read requests sent to uncore,
including regular RFOs, locks, ItoM

B0H 08H OFFCORE_REQUESTS.ALL_DATA_
RD

Data read requests sent to uncore (demand and
prefetch).

B1H 01H UOPS_EXECUTED.THREAD Counts total number of uops to be executed per-
thread each cycle. Set Cmask = 1, INV =1 to count
stall cycles.

B1H 02H UOPS_EXECUTED.CORE Counts total number of uops to be executed per-
core each cycle.

Do not need to set ANY

B7H 01H OFFCORE_RESPONSE_0 see Section 18.9.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A6H

BBH 01H OFFCORE_RESPONSE_1 See Section 18.9.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A7H

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only

C1H 08H OTHER_ASSISTS.AVX_STORE Number of assists associated with 256-bit AVX
store operations.

C1H 10H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE
when penalty applicable.

C1H 20H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when
penalty applicable.

C1H 80H OTHER_ASSISTS.WB Number of times microcode assist is invoked by
hardware upon uop writeback

Table 19-6 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 297

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use
cmask=1 and invert to count active cycles or stalled
cycles.

Supports PEBS, use
Any=1 for core granular.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

Supports PEBS

C3H 02H MACHINE_CLEARS.MEMORY_ORD
ERING

Counts the number of machine clears due to
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears
detected.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load
operations that refer to an illegal address range
with the mask bits set to 0.

C4H 00H BR_INST_RETIRED.ALL_BRANCH
ES

Branch instructions at retirement. See Table 19-1

C4H 01H BR_INST_RETIRED.CONDITIONAL Counts the number of conditional branch
instructions retired.

Supports PEBS

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS

C4H 04H BR_INST_RETIRED.ALL_BRANCH
ES

Counts the number of branch instructions retired. Supports PEBS

C4H 08H BR_INST_RETIRED.NEAR_RETUR
N

Counts the number of near return instructions
retired.

Supports PEBS

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions
retired.

Supports PEBS

C4H 20H BR_INST_RETIRED.NEAR_TAKEN Number of near taken branches retired. Supports PEBS

C4H 40H BR_INST_RETIRED.FAR_BRANCH Number of far branches retired. Supports PEBS

C5H 00H BR_MISP_RETIRED.ALL_BRANCH
ES

Mispredicted branch instructions at retirement. See Table 19-1

C5H 01H BR_MISP_RETIRED.CONDITIONAL Mispredicted conditional branch instructions retired. Supports PEBS

C5H 04H BR_MISP_RETIRED.ALL_BRANCH
ES

Mispredicted macro branch instructions retired. Supports PEBS

C5H 20H BR_MISP_RETIRED.NEAR_TAKEN Mispredicted taken branch instructions retired. Supports PEBS

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 FP assists due to Output values. Supports PEBS

CAH 04H FP_ASSIST.X87_INPUT Number of X87 FP assists due to input values. Supports PEBS

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to Output values. Supports PEBS

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSERT
S

Count cases of saving new LBR records by
hardware.

CDH 01H MEM_TRANS_RETIRED.LOAD_LA
TENCY

Randomly sampled loads whose latency is above a
user defined threshold. A small fraction of the
overall loads are sampled due to randomization.

Specify threshold in MSR
3F6H

Table 19-6 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 298

CDH 02H MEM_TRANS_RETIRED.PRECISE_
STORE

Sample stores and collect precise store operation
via PEBS record. PMC3 only.

See Section 18.9.4.3

D0H 01H MEM_UOPS_RETIRED.LOADS Qualify retired memory uops that are loads.
Combine with umask 10H, 20H, 40H, 80H.

Supports PEBS

D0H 10H MEM_UOPS_RETIRED.STLB_MISS Qualify retired memory uops with STLB miss. Must
combine with umask 01H, 02H, to produce counts.

Supports PEBS

D0H 40H MEM_UOPS_RETIRED.SPLIT Qualify retired memory uops with line split. Must
combine with umask 01H, 02H, to produce counts.

Supports PEBS

D0H 80H MEM_UOPS_RETIRED.ALL Qualify any retired memory uops. Must combine
with umask 01H, 02H, to produce counts.

Supports PEBS

D1H 01H MEM_LOAD_UOPS_RETIRED.L1_
HIT

Retired load uops with L1 cache hits as data
sources.

Supports PEBS

D1H 02H MEM_LOAD_UOPS_RETIRED.L2_
HIT

Retired load uops with L2 cache hits as data
sources.

Supports PEBS

D1H 04H MEM_LOAD_UOPS_RETIRED.LLC_
HIT

Retired load uops whose data source was LLC hit
with no snoop required.

Supports PEBS

D1H 08H MEM_LOAD_UOPS_RETIRED.L1_
MISS

Retired load uops whose data source followed an
L1 miss

Supports PEBS

D1H 10H MEM_LOAD_UOPS_RETIRED.L2_
MISS

Retired load uops that missed L2, excluding
unknown sources

Supports PEBS

D1H 20H MEM_LOAD_UOPS_RETIRED.LLC_
MISS

Retired load uops whose data source is LLC miss Supports PEBS

D1H 40H MEM_LOAD_UOPS_RETIRED.HIT_
LFB

Retired load uops which data sources were load
uops missed L1 but hit FB due to preceding miss to
the same cache line with data not ready.

Supports PEBS

D2H 01H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_MISS

Retired load uops whose data source was an on-
package core cache LLC hit and cross-core snoop
missed.

Supports PEBS

D2H 02H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_HIT

Retired load uops whose data source was an on-
package LLC hit and cross-core snoop hits.

Supports PEBS

D2H 04H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_HITM

Retired load uops whose data source was an on-
package core cache with HitM responses.

Supports PEBS

D2H 08H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_NONE

Retired load uops whose data source was LLC hit
with no snoop required.

Supports PEBS

D3H 01H MEM_LOAD_UOPS_LLC_MISS_RE
TIRED.LOCAL_DRAM

Retired load uops whose data source was local
memory (cross-socket snoop not needed or missed).

Supports PEBS.

E6H 1FH BACLEARS.ANY Number of front end re-steers due to BPU
misprediction.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

Table 19-6 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 299

...

19.5 PERFORMANCE MONITORING EVENTS FOR 2ND GENERATION
INTEL® CORE™ I7-2XXX, INTEL® CORE™ I5-2XXX, INTEL® CORE™ I3-2XXX
PROCESSOR SERIES

2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series, and Intel
Xeon processor E3-1200 product family are based on the Intel microarchitecture code name Sandy Bridge. They
support architectural performance-monitoring events listed in Table 19-1. Non-architectural performance-moni-
toring events in the processor core are listed in Table 19-8, Table 19-9, and Table 19-10. The events in Table 19-
8 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following values:
06_2AH and 06_2DH. The events in Table 19-9 apply to processors with CPUID signature 06_2AH. The events in
Table 19-10 apply to processors with CPUID signature 06_2DH.

Additional informations on event specifics (e.g. derivative events using specific IA32_PERFEVTSELx modifiers,
limitations, special notes and recommendations) can be found at http://software.intel.com/en-us/forums/soft-
ware-tuning-performance-optimization-platform-monitoring.

F0H 08H L2_TRANS.ALL_PF Any MLC or LLC HW prefetch accessing L2, including
rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover
rejects.

F2H 01H L2_LINES_OUT.DEMAND_CLEAN Clean L2 cache lines evicted by demand.

F2H 02H L2_LINES_OUT.DEMAND_DIRTY Dirty L2 cache lines evicted by demand.

F2H 04H L2_LINES_OUT.PF_CLEAN Clean L2 cache lines evicted by the MLC prefetcher.

F2H 08H L2_LINES_OUT.PF_DIRTY Dirty L2 cache lines evicted by the MLC prefetcher.

F2H 0AH L2_LINES_OUT.DIRTY_ALL Dirty L2 cache lines filling the L2. Counting does not cover
rejects.

Table 19-6 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 300

Table 19-8 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 01H LD_BLOCKS.DATA_UNKNOWN blocked loads due to store buffer blocks with
unknown data.

03H 02H LD_BLOCKS.STORE_FORWARD loads blocked by overlapping with store buffer that
cannot be forwarded .

03H 08H LD_BLOCKS.NO_SR # of Split loads blocked due to resource not
available.

03H 10H LD_BLOCKS.ALL_BLOCK Number of cases where any load is blocked but has
no DCU miss.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRES
S_ALIAS

False dependencies in MOB due to partial compare
on address.

07H 08H LD_BLOCKS_PARTIAL.ALL_STA
_BLOCK

The number of times that load operations are
temporarily blocked because of older stores, with
addresses that are not yet known. A load operation
may incur more than one block of this type.

08H 01H DTLB_LOAD_MISSES.MISS_CA
USES_A_WALK

Misses in all TLB levels that cause a page walk of
any page size.

08H 02H DTLB_LOAD_MISSES.WALK_CO
MPLETED

Misses in all TLB levels that caused page walk
completed of any size.

08H 04H DTLB_LOAD_MISSES.WALK_DU
RATION

Cycle PMH is busy with a walk.

08H 10H DTLB_LOAD_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

0DH 03H INT_MISC.RECOVERY_CYCLES Cycles waiting to recover after Machine Clears or
JEClear. Set Cmask= 1.

Set Edge to count
occurrences

0DH 40H INT_MISC.RAT_STALL_CYCLES Cycles RAT external stall is sent to IDQ for this
thread.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the
RAT to RS.

Set Cmask = 1, Inv = 1, Any= 1to count stalled cycles
of this core.

Set Cmask = 1, Inv = 1to
count stalled cycles

10H 01H FP_COMP_OPS_EXE.X87 Counts number of X87 uops executed.

10H 10H FP_COMP_OPS_EXE.SSE_FP_P
ACKED_DOUBLE

Counts number of SSE* double precision FP packed
uops executed.

10H 20H FP_COMP_OPS_EXE.SSE_FP_S
CALAR_SINGLE

Counts number of SSE* single precision FP scalar
uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_PACK
ED SINGLE

Counts number of SSE* single precision FP packed
uops executed.

10H 80H FP_COMP_OPS_EXE.SSE_SCAL
AR_DOUBLE

Counts number of SSE* double precision FP scalar
uops executed.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 301

11H 01H SIMD_FP_256.PACKED_SINGLE Counts 256-bit packed single-precision floating-
point instructions.

11H 02H SIMD_FP_256.PACKED_DOUBL
E

Counts 256-bit packed double-precision floating-
point instructions.

14H 01H ARITH.FPU_DIV_ACTIVE Cycles that the divider is active, includes INT and FP.
Set 'edge =1, cmask=1' to count the number of
divides.

17H 01H INSTS_WRITTEN_TO_IQ.INSTS Counts the number of instructions written into the
IQ every cycle.

24H 01H L2_RQSTS.DEMAND_DATA_RD
_HIT

Demand Data Read requests that hit L2 cache.

24H 03H L2_RQSTS.ALL_DEMAND_DAT
A_RD

Counts any demand and L1 HW prefetch data load
requests to L2.

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO requests that hit
the L2 cache.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache.

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 10H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache.

24H 20H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2
cache.

24H 30H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Requests from L2 Hardware prefetcher that hit L2.

24H 80H L2_RQSTS.PF_MISS Requests from L2 Hardware prefetcher that missed
L2.

24H C0H L2_RQSTS.ALL_PF Any requests from L2 Hardware prefetchers.

27H 01H L2_STORE_LOCK_RQSTS.MISS RFOs that miss cache lines.

27H 04H L2_STORE_LOCK_RQSTS.HIT_
E

RFOs that hit cache lines in E state.

27H 08H L2_STORE_LOCK_RQSTS.HIT_
M

RFOs that hit cache lines in M state.

27H 0FH L2_STORE_LOCK_RQSTS.ALL RFOs that access cache lines in any state.

28H 01H L2_L1D_WB_RQSTS.MISS Not rejected writebacks from L1D to L2 cache lines
that missed L2.

28H 02H L2_L1D_WB_RQSTS.HIT_S Not rejected writebacks from L1D to L2 cache lines
in S state.

28H 04H L2_L1D_WB_RQSTS.HIT_E Not rejected writebacks from L1D to L2 cache lines
in E state.

28H 08H L2_L1D_WB_RQSTS.HIT_M Not rejected writebacks from L1D to L2 cache lines
in M state.

28H 0FH L2_L1D_WB_RQSTS.ALL Not rejected writebacks from L1D to L2 cache.

Table 19-8 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 302

2EH 4FH LONGEST_LAT_CACHE.REFERE
NCE

This event counts requests originating from the
core that reference a cache line in the last level
cache.

see Table 19-1

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache.

see Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD
_P

Counts the number of thread cycles while the
thread is not in a halt state. The thread enters the
halt state when it is running the HLT instruction.
The core frequency may change from time to time
due to power or thermal throttling.

see Table 19-1

3CH 01H CPU_CLK_THREAD_UNHALTED
.REF_XCLK

Increments at the frequency of XCLK (100 MHz)
when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmaks = 1 and Edge =1 to count
occurrences.

PMC2 only;

Set Cmask = 1 to count
cycles.

49H 01H DTLB_STORE_MISSES.MISS_CA
USES_A_WALK

Miss in all TLB levels causes an page walk of any
page size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_C
OMPLETED

Miss in all TLB levels causes a page walk that
completes of any page size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSES.WALK_D
URATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSES.STLB_HI
T

Store operations that miss the first TLB level but hit
the second and do not cause page walks.

4CH 01H LOAD_HIT_PRE.SW_PF Not SW-prefetch load dispatches that hit fill buffer
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Not SW-prefetch load dispatches that hit fill buffer
allocated for H/W prefetch.

4EH 02H HW_PRE_REQ.DL1_MISS Hardware Prefetch requests that miss the L1D
cache. A request is being counted each time it
access the cache & miss it, including if a block is
applicable or if hit the Fill Buffer for example.

This accounts for both L1
streamer and IP-based
(IPP) HW prefetchers.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

51H 02H L1D.ALLOCATED_IN_M Counts the number of allocations of modified L1D
cache lines.

51H 04H L1D.EVICTION Counts the number of modified lines evicted from
the L1 data cache due to replacement.

51H 08H L1D.ALL_M_REPLACEMENT Cache lines in M state evicted out of L1D due to
Snoop HitM or dirty line replacement.

59H 20H PARTIAL_RAT_STALLS.FLAGS_
MERGE_UOP

Increments the number of flags-merge uops in flight
each cycle.

Set Cmask = 1 to count cycles.

Table 19-8 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 303

59H 40H PARTIAL_RAT_STALLS.SLOW_
LEA_WINDOW

Cycles with at least one slow LEA uop allocated.

59H 80H PARTIAL_RAT_STALLS.MUL_SI
NGLE_UOP

Number of Multiply packed/scalar single precision
uops allocated.

5BH 0CH RESOURCE_STALLS2.ALL_FL_
EMPTY

Cycles stalled due to free list empty. PMC0-3 only regardless
HTT

5BH 0FH RESOURCE_STALLS2.ALL_PRF
_CONTROL

Cycles stalled due to control structures full for
physical registers.

5BH 40H RESOURCE_STALLS2.BOB_FUL
L

Cycles Allocator is stalled due Branch Order Buffer.

5BH 4FH RESOURCE_STALLS2.OOO_RS
RC

Cycles stalled due to out of order resources full.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count
transition

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring
0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

60H 01H OFFCORE_REQUESTS_OUTSTA
NDING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

60H 04H OFFCORE_REQUESTS_OUTSTA
NDING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to
uncore. Set Cmask=1 to count cycles.

60H 08H OFFCORE_REQUESTS_OUTSTA
NDING.ALL_DATA_RD

Offcore outstanding cacheable data read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC
_LOCK_DURATION

Cycles in which the L1D and L2 are locked, due to a
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_D
URATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ
from MITE path.

Set Cmask = 1 to count cycles.

Can combine Umask 04H
and 20H

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ
from DSB path.

Set Cmask = 1 to count cycles.

Can combine Umask 08H
and 10H

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ
when MS busy by DSB. Set Cmask = 1 to count
cycles MS is busy. Set Cmask=1 and Edge =1 to
count MS activations.

Can combine Umask 08H
and 10H

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ
when MS is busy by MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H
and 20H

Table 19-8 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 304

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ
from MS by either DSB or MITE. Set Cmask = 1 to
count cycles.

Can combine Umask 04H,
08H and 30H

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A
_WALK

Misses in all ITLB levels that cause page walks.

85H 02H ITLB_MISSES.WALK_COMPLET
ED

Misses in all ITLB levels that cause completed page
walks.

85H 04H ITLB_MISSES.WALK_DURATIO
N

Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 41H BR_INST_EXEC.NONTAKEN_CO
NDITIONAL

Not-taken macro conditional branches

88H 81H BR_INST_EXEC.TAKEN_CONDI
TIONAL

Taken speculative and retired conditional branches

88H 82H BR_INST_EXEC.TAKEN_DIRECT
_JUMP

Taken speculative and retired conditional branches
excluding calls and indirects

88H 84H BR_INST_EXEC.TAKEN_INDIRE
CT_JUMP_NON_CALL_RET

Taken speculative and retired indirect branches
excluding calls and returns

88H 88H BR_INST_EXEC.TAKEN_INDIRE
CT_NEAR_RETURN

Taken speculative and retired indirect branches that
are returns

88H 90H BR_INST_EXEC.TAKEN_DIRECT
_NEAR_CALL

Taken speculative and retired direct near calls

88H A0H BR_INST_EXEC.TAKEN_INDIRE
CT_NEAR_CALL

Taken speculative and retired indirect near calls

88H C1H BR_INST_EXEC.ALL_CONDITIO
NAL

Speculative and retired conditional branches

88H C2H BR_INST_EXEC.ALL_DIRECT_J
UMP

Speculative and retired conditional branches
excluding calls and indirects

88H C4H BR_INST_EXEC.ALL_INDIRECT
_JUMP_NON_CALL_RET

Speculative and retired indirect branches excluding
calls and returns

88H C8H BR_INST_EXEC.ALL_INDIRECT
_NEAR_RETURN

Speculative and retired indirect branches that are
returns

88H D0H BR_INST_EXEC.ALL_NEAR_CA
LL

Speculative and retired direct near calls

88H FFH BR_INST_EXEC.ALL_BRANCHE
S

Speculative and retired branches

Table 19-8 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 305

89H 41H BR_MISP_EXEC.NONTAKEN_CO
NDITIONAL

Not-taken mispredicted macro conditional branches

89H 81H BR_MISP_EXEC.TAKEN_CONDI
TIONAL

Taken speculative and retired mispredicted
conditional branches

89H 84H BR_MISP_EXEC.TAKEN_INDIRE
CT_JUMP_NON_CALL_RET

Taken speculative and retired mispredicted indirect
branches excluding calls and returns

89H 88H BR_MISP_EXEC.TAKEN_RETUR
N_NEAR

Taken speculative and retired mispredicted indirect
branches that are returns

89H 90H BR_MISP_EXEC.TAKEN_DIRECT
_NEAR_CALL

Taken speculative and retired mispredicted direct
near calls

89H A0H BR_MISP_EXEC.TAKEN_INDIRE
CT_NEAR_CALL

Taken speculative and retired mispredicted indirect
near calls

89H C1H BR_MISP_EXEC.ALL_CONDITIO
NAL

Speculative and retired mispredicted conditional
branches

89H C4H BR_MISP_EXEC.ALL_INDIRECT
_JUMP_NON_CALL_RET

Speculative and retired mispredicted indirect
branches excluding calls and returns

89H D0H BR_MISP_EXEC.ALL_NEAR_CA
LL

Speculative and retired mispredicted direct near
calls

89H FFH BR_MISP_EXEC.ALL_BRANCHE
S

Speculative and retired mispredicted branches

9CH 01H IDQ_UOPS_NOT_DELIVERED.C
ORE

Count number of non-delivered uops to RAT per
thread.

Use Cmask to qualify uop
b/w

A1H 01H UOPS_DISPATCHED_PORT.POR
T_0

Cycles which a Uop is dispatched on port 0.

A1H 02H UOPS_DISPATCHED_PORT.POR
T_1

Cycles which a Uop is dispatched on port 1.

A1H 0CH UOPS_DISPATCHED_PORT.POR
T_2

Cycles which a Uop is dispatched on port 2.

A1H 30H UOPS_DISPATCHED_PORT.POR
T_3

Cycles which a Uop is dispatched on port 3.

A1H 40H UOPS_DISPATCHED_PORT.POR
T_4

Cycles which a Uop is dispatched on port 4.

A1H 80H UOPS_DISPATCHED_PORT.POR
T_5

Cycles which a Uop is dispatched on port 5.

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related
reason.

A2H 02H RESOURCE_STALLS.LB Counts the cycles of stall due to lack of load buffers.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available. (not
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A2H 20H RESOURCE_STALLS.FCSW Cycles stalled due to writing the FPU control word.

Table 19-8 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 306

A3H 02H CYCLE_ACTIVITY.CYCLES_L1D_
PENDING

Cycles with pending L1 cache miss loads.Set
AnyThread to count per core.

PMC2 only

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_P
ENDING

Cycles with pending L2 miss loads. Set AnyThread
to count per core.

A3H 04H CYCLE_ACTIVITY.CYCLES_NO_
DISPATCH

Cycles of dispatch stalls. Set AnyThread to count per
core.

PMC0-3 only

A8H 01H LSD.UOPS Number of Uops delivered by the LSD.

ABH 01H DSB2MITE_SWITCHES.COUNT Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHES.PENALT
Y_CYCLES

Cycles DSB to MITE switches caused delay.

ACH 02H DSB_FILL.OTHER_CANCEL Cases of cancelling valid DSB fill not because of
exceeding way limit.

ACH 08H DSB_FILL.EXCEED_DSB_LINES DSB Fill encountered > 3 DSB lines.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes 4k/2M/
4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND
_DATA_RD

Demand data read requests sent to uncore.

B0H 04H OFFCORE_REQUESTS.DEMAND
_RFO

Demand RFO read requests sent to uncore, including
regular RFOs, locks, ItoM.

B0H 08H OFFCORE_REQUESTS.ALL_DAT
A_RD

Data read requests sent to uncore (demand and
prefetch).

B1H 01H UOPS_DISPATCHED.THREAD Counts total number of uops to be dispatched per-
thread each cycle. Set Cmask = 1, INV =1 to count
stall cycles.

PMC0-3 only regardless
HTT

B1H 02H UOPS_DISPATCHED.CORE Counts total number of uops to be dispatched per-
core each cycle.

Do not need to set ANY

B2H 01H OFFCORE_REQUESTS_BUFFER
.SQ_FULL

Offcore requests buffer cannot take more entries
for this thread core.

B6H 01H AGU_BYPASS_CANCEL.COUNT Counts executed load operations with all the
following traits: 1. addressing of the format [base +
offset], 2. the offset is between 1 and 2047, 3. the
address specified in the base register is in one page
and the address [base+offset] is in another page.

B7H 01H OFF_CORE_RESPONSE_0 see Section 18.9.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A6H

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.9.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A7H

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

BFH 05H L1D_BLOCKS.BANK_CONFLICT
_CYCLES

Cycles when dispatched loads are cancelled due to
L1D bank conflicts with other load ports.

cmask=1

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1

Table 19-8 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 307

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only; Must quiesce
other PMCs.

C1H 02H OTHER_ASSISTS.ITLB_MISS_R
ETIRED

Instructions that experienced an ITLB miss.

C1H 08H OTHER_ASSISTS.AVX_STORE Number of assists associated with 256-bit AVX
store operations.

C1H 10H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE
when penalty applicable.

C1H 20H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when
penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use
cmask=1 and invert to count active cycles or stalled
cycles.

Supports PEBS

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

Supports PEBS

C3H 02H MACHINE_CLEARS.MEMORY_O
RDERING

Counts the number of machine clears due to
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Counts the number of times that a program writes
to a code section.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load
operations that refer to an illegal address range
with the mask bits set to 0.

C4H 00H BR_INST_RETIRED.ALL_BRAN
CHES

Branch instructions at retirement. See Table 19-1

C4H 01H BR_INST_RETIRED.CONDITION
AL

Counts the number of conditional branch
instructions retired.

Supports PEBS

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS

C4H 04H BR_INST_RETIRED.ALL_BRAN
CHES

Counts the number of branch instructions retired. Supports PEBS

C4H 08H BR_INST_RETIRED.NEAR_RET
URN

Counts the number of near return instructions
retired.

Supports PEBS

C4H 10H BR_INST_RETIRED.NOT_TAKE
N

Counts the number of not taken branch instructions
retired.

C4H 20H BR_INST_RETIRED.NEAR_TAK
EN

Number of near taken branches retired. Supports PEBS

C4H 40H BR_INST_RETIRED.FAR_BRAN
CH

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted branch instructions at retirement. See Table 19-1

C5H 01H BR_MISP_RETIRED.CONDITION
AL

Mispredicted conditional branch instructions retired. Supports PEBS

Table 19-8 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 308

C5H 02H BR_MISP_RETIRED.NEAR_CAL
L

Direct and indirect mispredicted near call
instructions retired.

Supports PEBS

C5H 04H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted macro branch instructions retired. Supports PEBS

C5H 10H BR_MISP_RETIRED.NOT_TAKE
N

Mispredicted not taken branch instructions retired. Supports PEBS

C5H 20H BR_MISP_RETIRED.TAKEN Mispredicted taken branch instructions retired. Supports PEBS

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 assists due to output value.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 assists due to input value.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSE
RTS

Count cases of saving new LBR records by
hardware.

CDH 01H MEM_TRANS_RETIRED.LOAD_
LATENCY

Randomly sampled loads whose latency is above a
user defined threshold. A small fraction of the
overall loads are sampled due to randomization.
PMC3 only.

Specify threshold in MSR
3F6H

CDH 02H MEM_TRANS_RETIRED.PRECIS
E_STORE

Sample stores and collect precise store operation
via PEBS record. PMC3 only.

See Section 18.9.4.3

D0H 11H MEM_UOP_RETIRED.STLB_MIS
S_LOADS

Load uops with true STLB miss retired to
architectural path.

Supports PEBS. PMC0-3
only regardless HTT.

D0H 12H MEM_UOP_RETIRED.STLB_MIS
S_STORES

Store uops with true STLB miss retired to
architectural path.

Supports PEBS. PMC0-3
only regardless HTT.

D0H 21H MEM_UOP_RETIRED.LOCK_LO
ADS

Load uops with lock access retired to architectural
path.

Supports PEBS. PMC0-3
only regardless HTT.

D0H 22H MEM_UOP_RETIRED.LOCK_ST
ORES

Store uops with lock access retired to architectural
path.

Supports PEBS. PMC0-3
only regardless HTT.

D0H 41H MEM_UOP_RETIRED.SPLIT_LO
ADS

Load uops with cacheline split retired to
architectural path.

Supports PEBS. PMC0-3
only regardless HTT.

D0H 42H MEM_UOP_RETIRED.SPLIT_ST
ORES

Store uops with cacheline split retired to
architectural path.

Supports PEBS. PMC0-3
only regardless HTT.

D0H 81H MEM_UOP_RETIRED.ALL_LOA
DS

ALL Load uops retired to architectural path. Supports PEBS. PMC0-3
only regardless HTT.

D0H 82H MEM_UOP_RETIRED.ALL_STO
RES

ALL Store uops retired to architectural path. Supports PEBS. PMC0-3
only regardless HTT.

D0H 80H MEM_UOP_RETIRED.ALL Qualify any retired memory uops. Must combine
with umask 01H, 02H, to produce counts.

D1H 01H MEM_LOAD_UOPS_RETIRED.L
1_HIT

Retired load uops with L1 cache hits as data
sources.

Supports PEBS. PMC0-3
only regardless HTT

D1H 02H MEM_LOAD_UOPS_RETIRED.L
2_HIT

Retired load uops with L2 cache hits as data
sources.

Supports PEBS

Table 19-8 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 309

D1H 04H MEM_LOAD_UOPS_RETIRED.LL
C_HIT

Retired load uops which data sources were data hits
in LLC without snoops required.

Supports PEBS

D1H 20H MEM_LOAD_UOPS_RETIRED.LL
C_MISS

Retired load uops which data sources were data
missed LLC (excluding unknown data source).

D1H 40H MEM_LOAD_UOPS_RETIRED.HI
T_LFB

Retired load uops which data sources were load
uops missed L1 but hit FB due to preceding miss to
the same cache line with data not ready.

Supports PEBS

D2H 01H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_MISS

Retired load uops whose data source was an on-
package core cache LLC hit and cross-core snoop
missed.

Supports PEBS

D2H 02H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HIT

Retired load uops whose data source was an on-
package LLC hit and cross-core snoop hits.

Supports PEBS

D2H 04H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HITM

Retired load uops whose data source was an on-
package core cache with HitM responses.

Supports PEBS

D2H 08H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_NONE

Retired load uops whose data source was LLC hit
with no snoop required.

Supports PEBS

E6H 01H BACLEARS.ANY Counts the number of times the front end is re-
steered, mainly when the BPU cannot provide a
correct prediction and this is corrected by other
branch handling mechanisms at the front end.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF L2 or LLC HW prefetches that access L2 cache. including rejects

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover
rejects.

F2H 01H L2_LINES_OUT.DEMAND_CLEA
N

Clean L2 cache lines evicted by demand.

F2H 02H L2_LINES_OUT.DEMAND_DIRT
Y

Dirty L2 cache lines evicted by demand.

F2H 04H L2_LINES_OUT.PF_CLEAN Clean L2 cache lines evicted by L2 prefetch.

Table 19-8 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 310

Non-architecture performance monitoring events in the processor core that are applicable only to Intel processor
with CPUID signature of DisplayFamily_DisplayModel 06_2AH are listed in Table 19-9.

F2H 08H L2_LINES_OUT.PF_DIRTY Dirty L2 cache lines evicted by L2 prefetch.

F2H 0AH L2_LINES_OUT.DIRTY_ALL Dirty L2 cache lines filling the L2. Counting does not cover
rejects.

F4H 10H SQ_MISC.SPLIT_LOCK Split locks in SQ.

Table 19-8 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Table 19-9 Non-Architectural Performance Events applicable only to the Processor core for 2nd Generation Intel®
Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

D2H 01H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_MISS

Retired load uops which data sources were LLC hit and
cross-core snoop missed in on-pkg core cache.

Supports PEBS. PMC0-
3 only regardless HTT

D2H 02H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HIT

Retired load uops which data sources were LLC and
cross-core snoop hits in on-pkg core cache.

D2H 04H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HITM

Retired load uops which data sources were HitM
responses from shared LLC.

D2H 08H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_NONE

Retired load uops which data sources were hits in LLC
without snoops required.

D4H 02H MEM_LOAD_UOPS_MISC_RETI
RED.LLC_MISS

Retired load uops with unknown information as data
source in cache serviced the load.

Supports PEBS. PMC0-
3 only regardless HTT

B7H/BBH 01H OFF_CORE_RESPONSE_N Sub-events of OFF_CORE_RESPONSE_N (suffix N = 0,
1) programmed using MSR 01A6H/01A7H with values
shown in the comment column.

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT_N 10003C0244H

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0244H

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.SNOOP_MISS_N 2003C0244H

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.MISS_DRAM_N 300400244H

OFFCORE_RESPONSE.ALL_DATA_RD.LLC_HIT.ANY_RESPONSE_N 3F803C0091H

OFFCORE_RESPONSE.ALL_DATA_RD.LLC_MISS.DRAM_N 300400091H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.ANY_RESPONSE_N 3F803C0240H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0240H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.HITM_OTHER_CORE_N 10003C0240H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0240H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.SNOOP_MISS_N 2003C0240H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_MISS.DRAM_N 300400240H

OFFCORE_RESPONSE.ALL_PF_DATA_RD.LLC_MISS.DRAM_N 300400090H

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.ANY_RESPONSE_N 3F803C0120H

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0120H

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.HITM_OTHER_CORE_N 10003C0120H

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 311

OFFCORE_RESPONSE.ALL_PF_RfO.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0120H

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.SNOOP_MISS_N 2003C0120H

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_MISS.DRAM_N 300400120H

OFFCORE_RESPONSE.ALL_READS.LLC_MISS.DRAM_N 3004003F7H

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.ANY_RESPONSE_N 3F803C0122H

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0122H

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.HITM_OTHER_CORE_N 10003C0122H

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0122H

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.SNOOP_MISS_N 2003C0122H

OFFCORE_RESPONSE.ALL_RFO.LLC_MISS.DRAM_N 300400122H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.HITM_OTHER_CORE_N 10003C0004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.SNOOP_MISS_N 2003C0004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.DRAM_N 300400004H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.DRAM_N 300400001H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.ANY_RESPONSE_N 3F803C0002H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0002H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HITM_OTHER_CORE_N 10003C0002H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0002H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.SNOOP_MISS_N 2003C0002H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_MISS.DRAM_N 300400002H

OFFCORE_RESPONSE.OTHER.ANY_RESPONSE_N 18000H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0040H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.HITM_OTHER_CORE_N 10003C0040H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0040H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.SNOOP_MISS_N 2003C0040H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_MISS.DRAM_N 300400040H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.DRAM_N 300400010H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.ANY_RESPONSE_N 3F803C0020H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0020H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.HITM_OTHER_CORE_N 10003C0020H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0020H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.SNOOP_MISS_N 2003C0020H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_MISS.DRAM_N 300400020H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0200H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.HITM_OTHER_CORE_N 10003C0200H

Table 19-9 Non-Architectural Performance Events applicable only to the Processor core for 2nd Generation Intel®
Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 312

Non-architecture performance monitoring events in the processor core that are applicable only to Intel Xeon
processor E5 family (and Intel Core i7-3930 processor) based on Intel microarchitecture code name Sandy
Bridge, with CPUID signature of DisplayFamily_DisplayModel 06_2DH, are listed in Table 19-10.

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0200H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.SNOOP_MISS_N 2003C0200H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_MISS.DRAM_N 300400200H

OFFCORE_RESPONSE.PF_LLC_DATA_RD.LLC_MISS.DRAM_N 300400080H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.ANY_RESPONSE_N 3F803C0100H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0100H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.HITM_OTHER_CORE_N 10003C0100H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0100H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.SNOOP_MISS_N 2003C0100H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_MISS.DRAM_N 300400100H

Table 19-9 Non-Architectural Performance Events applicable only to the Processor core for 2nd Generation Intel®
Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Table 19-10 Non-Architectural Performance Events Applicable only to the Processor Core of
Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

CDH 01H MEM_TRANS_RETIRED.LOAD_
LATENCY

Additional Configuration: Disable BL bypass and direct2core, and if the memory
is remotely homed. The count is not reliable If the memory is locally homed.

D1H 04H MEM_LOAD_UOPS_RETIRED.LL
C_HIT

Additional Configuration: Disable BL bypass. Supports PEBS.

D1H 20H MEM_LOAD_UOPS_RETIRED.LL
C_MISS

Additional Configuration: Disable BL bypass and direct2core. Supports PEBS.

D2H 01H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_MISS

Additional Configuration: Disable bypass. Supports PEBS.

D2H 02H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HIT

Additional Configuration: Disable bypass. Supports PEBS.

D2H 04H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HITM

Additional Configuration: Disable bypass. Supports PEBS.

D2H 08H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_NONE

Additional Configuration: Disable bypass. Supports PEBS.

D3H 01H MEM_LOAD_UOPS_LLC_MISS_
RETIRED.LOCAL_DRAM

Retired load uops which data sources were data
missed LLC but serviced by local DRAM. Supports
PEBS.

Disable BL bypass and
direct2core (see MSR
3C9H)

D3H 04H MEM_LOAD_UOPS_LLC_MISS_
RETIRED.REMOTE_DRAM

Retired load uops which data sources were data
missed LLC but serviced by remote DRAM. Supports
PEBS.

Disable BL bypass and
direct2core (see MSR
3C9H)

B7H/
BBH

01H OFF_CORE_RESPONSE_N Sub-events of OFF_CORE_RESPONSE_N (suffix N = 0,
1) programmed using MSR 01A6H/01A7H with values
shown in the comment column.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 313

...

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.ANY_RESPONSE_N 3FFFC00004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.LOCAL_DRAM_N 600400004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE_DRAM_N 67F800004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE_HIT_FWD_N 87F800004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE_HITM_N 107FC00004H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_DRAM_N 67FC00001H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_RESPONSE_N 3F803C0001H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.LOCAL_DRAM_N 600400001H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE_DRAM_N 67F800001H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE_HIT_FWD_N 87F800001H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE_HITM_N 107FC00001H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_MISS.ANY_RESPONSE_N 3F803C0040H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_DRAM_N 67FC00010H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_RESPONSE_N 3F803C0010H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.LOCAL_DRAM_N 600400010H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_DRAM_N 67F800010H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HIT_FWD_N 87F800010H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HITM_N 107FC00010H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_MISS.ANY_RESPONSE_N 3FFFC00200H

OFFCORE_RESPONSE.PF_LLC_DATA_RD.LLC_MISS.ANY_RESPONSE_N 3FFFC00080H

Table 19-10 Non-Architectural Performance Events Applicable only to the Processor Core of
Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 314

19.10 PERFORMANCE MONITORING EVENTS FOR PROCESSORS BASED ON THE
SILVERMONT MICROARCHITECTURE

Processors based on the Silvermont microarchitecture support the architectural performance-monitoring events
listed in Table 19-1 and fixed-function performance events using fixed counter. In addition, they also support the
following non-architectural performance-monitoring events listed in Table 19-19.

Table 19-19 Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

03H 01H REHABQ.LD_BLOCK_S
T_FORWARD

Loads blocked due to
store forward
restriction

This event counts the number of retired loads that were
prohibited from receiving forwarded data from the store
because of address mismatch.

03H 02H REHABQ.LD_BLOCK_S
TD_NOTREADY

Loads blocked due to
store data not ready

This event counts the cases where a forward was technically
possible, but did not occur because the store data was not
available at the right time

03H 04H REHABQ.ST_SPLITS Store uops that split
cache line boundary

This event counts the number of retire stores that experienced
cache line boundary splits

03H 08H REHABQ.LD_SPLITS Load uops that split
cache line boundary

This event counts the number of retire loads that experienced
cache line boundary splits

03H 10H REHABQ.LOCK Uops with lock
semantics

This event counts the number of retired memory operations
with lock semantics. These are either implicit locked instructions
such as the XCHG instruction or instructions with an explicit
LOCK prefix (F0H).

03H 20H REHABQ.STA_FULL Store address buffer
full

This event counts the number of retired stores that are delayed
because there is not a store address buffer available.

03H 40H REHABQ.ANY_LD Any reissued load uops This event counts the number of load uops reissued from
Rehabq

03H 80H REHABQ.ANY_ST Any reissued store
uops

This event counts the number of store uops reissued from
Rehabq

REAHBQ is an internal queue in the Silvermont microarchitecture that holds memory reference micro-ops which cannot complete for
one reason or another. The micro-ops remain in the REHABQ until they can be re-issued and successfully completed.

Examples of bottlenecks that cause micro-ops to go into REHABQ include, but are not limited to: cache line splits, blocked store forward
and data not ready. There are many other conditions that might cause a load or store to be sent to the REHABQ-- for instance, if an
older store has an unknown address, all subsequent stores must be sent to the REHABQ until that older stores address becomes
known

04H 01H MEM_UOPS_RETIRED.L
1_MISS_LOADS

Loads retired that
missed L1 data cache

This event counts the number of load ops retired that miss in L1
Data cache. Note that prefetch misses will not be counted.

04H 02H MEM_UOPS_RETIRED.L
2_HIT_LOADS

Loads retired that hit
L2

This event counts the number of load micro-ops retired that hit
L2.

04H 04H MEM_UOPS_RETIRED.L
2_MISS_LOADS

Loads retired that
missed L2

This event counts the number of load micro-ops retired that
missed L2.

04H 08H MEM_UOPS_RETIRED.
DTLB_MISS_LOADS

Loads missed DTLB This event counts the number of load ops retired that had DTLB
miss.

04H 10H MEM_UOPS_RETIRED.
UTLB_MISS

Loads missed UTLB This event counts the number of load ops retired that had UTLB
miss.

04H 20H MEM_UOPS_RETIRED.
HITM

Cross core or cross
module hitm

This event counts the number of load ops retired that got data
from the other core or from the other module.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 315

04H 40H MEM_UOPS_RETIRED.
ALL_LOADS

All Loads This event counts the number of load ops retired

04H 80H MEM_UOP_RETIRED.A
LL_STORES

All Stores This event counts the number of store ops retired

05H 01H PAGE_WALKS.D_SIDE_
CYCLES

Duration of D-side
page-walks in core
cycles

This event counts every cycle when a D-side (walks due to a
load) page walk is in progress. Page walk duration divided by
number of page walks is the average duration of page-walks.

Edge trigger bit must be cleared. Set Edge to count the number
of page walks.

05H 02H PAGE_WALKS.I_SIDE_C
YCLES

Duration of I-side page-
walks in core cycles

This event counts every cycle when a I-side (walks due to an
instruction fetch) page walk is in progress. Page walk duration
divided by number of page walks is the average duration of
page-walks.

Edge trigger bit must be cleared. Set Edge to count the number
of page walks.

05H 03H PAGE_WALKS.WALKS Total number of page-
walks that are
completed (I-side and
D-side)

This event counts when a data (D) page walk or an instruction (I)
page walk is completed or started. Since a page walk implies a
TLB miss, the number of TLB misses can be counted by counting
the number of pagewalks.

Edge trigger bit must be set. Clear Edge to count the number of
cycles.

2EH 41H LONGEST_LAT_CACHE.
MISS

L2 cache request
misses

This event counts the total number of L2 cache references and
the number of L2 cache misses respectively.

L3 is not supported in Silvermont microarchitecture.

2EH 4FH LONGEST_LAT_CACHE.
REFERENCE

L2 cache requests
from this core

This event counts requests originating from the core that
references a cache line in the L2 cache.

L3 is not supported in Silvermont microarchitecture.

30H 00H L2_REJECT_XQ.ALL Counts the number of
request from the L2
that were not accepted
into the XQ

This event counts the number of demand and prefetch
transactions that the L2 XQ rejects due to a full or near full
condition which likely indicates back pressure from the IDI link.
The XQ may reject transactions from the L2Q (non-cacheable
requests), BBS (L2 misses) and WOB (L2 write-back victims)

When a memory reference misses the 1st level cache, the request goes to the L2 Queue (L2Q). If the request also misses the 2nd level
cache, the request is sent to the XQ, where it waits for an opportunity to be issued to memory across the IDI link. Note that since the
L2 is shared between a pair of processor cores, a single L2Q is shared between those two cores. Similarly, there is a single XQ for a pair
of processors, situated between the L2Q and the IDI link.

The XQ will fill up when the response rate from the IDI link is smaller than the rate at which new requests arrive at the XQ. The event
L2_reject_XQ indicates that a request is unable to move from the L2 Queue to the XQ because the XQ is full, and thus indicates that
the memory system is oversubscribed

Table 19-19 Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 316

31H 00H CORE_REJECT_L2Q.ALL Counts the number of
request that were not
accepted into the L2Q
because the L2Q is
FULL.

This event counts the number of demand and L1 prefetcher
requests rejected by the L2Q due to a full or nearly full condition
which likely indicates back pressure from L2Q. It also counts
requests that would have gone directly to the XQ, but are
rejected due to a full or nearly full condition, indicating back
pressure from the IDI link. The L2Q may also reject transactions
from a core to insure fairness between cores, or to delay a core's
dirty eviction when the address conflicts incoming external
snoops. (Note that L2 prefetcher requests that are dropped are
not counted by this event.).

The core_reject event indicates that a request from the core cannot be accepted at the L2Q. However, there are several additional
reasons why a request might be rejected from the L2Q. Beyond rejecting a request because the L2Q is full, a request from one core
can be rejected to maintain fairness to the other core. That is, one core is not permitted to monopolize the shared connection to the
L2Q/cache/XQ/IDI links, and might have its requests rejected even when there is room available in the L2Q. In addition, if the request
from the core is a dirty L1 cache eviction, the hardware must insure that this eviction does not conflict with any pending request in the
L2Q. (pending requests can include an external snoop). In the event of a conflict, the dirty eviction request might be rejected even
when there is room in the L2Q.

Thus, while the L2_reject_XQ event indicates that the request rate to memory from both cores exceeds the response rate of the
memory, the Core_reject event is more subtle. It can indicate that the request rate to the L2Q exceeds the response rate from the XQ,
or it can indicate the request rate to the L2Q exceeds the response rate from the L2, or it can indicate that one core is attempting to
request more than its fair share of response from the L2Q. Or, it can be an indicator of conflict between dirty evictions and other
pending requests.

In short, the L2_reject_XQ event indicates memory oversubscription. The Core_reject event can indicate either (1) memory
oversubscription, (2) L2 oversubscription, (3) rejecting one cores requests to insure fairness to the other core, or (4) a conflict between
dirty evictions and other pending requests.

3CH 00H CPU_CLK_UNHALTED.C
ORE_P

Core cycles when core
is not halted

This event counts the number of core cycles while the core is not
in a halt state. The core enters the halt state when it is running
the HLT instruction. In mobile systems the core frequency may
change from time to time. For this reason this event may have a
changing ratio with regards to time.

N/A 01H CPU_CLK_UNHALTED.C
ORE

Instructions retired This uses the fixed counter 1 to count the same condition as
CPU_CLK_UNHALTED.CORE_P does.

3CH 01H CPU_CLK_UNHALTED.R
EF_P

Reference cycles when
core is not halted

This event counts the number of reference cycles that the core
is not in a halt state. The core enters the halt state when it is
running the HLT instruction.

In mobile systems the core frequency may change from time.
This event is not affected by core frequency changes but counts
as if the core is running at the maximum frequency all the time.

N/A 02H CPU_CLK_UNHALTED.R
EF_TSC

Instructions retired This uses the fixed counter 2 to count the same condition as
CPU_CLK_UNHALTED.REF_P does.

80H 01H ICACHE.HIT Instruction fetches
from Icache

This event counts all instruction fetches from the instruction
cache.

80H 02H ICACHE.MISSES Icache miss This event counts all instruction fetches that miss the
Instruction cache or produce memory requests. This includes
uncacheable fetches. An instruction fetch miss is counted only
once and not once for every cycle it is outstanding.

Table 19-19 Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 317

80H 03H ICACHE.ACCESSES Instruction fetches This event counts all instruction fetches, including uncacheable
fetches.

B6H 04H NIP_STALL.ICACHE_MI
SS

Counts the number of
cycles the NIP stalls
because of an icache
miss.

Counts the number of cycles the NIP stalls because of an icache
miss. This is a cumulative count of cycles the NIP stalled for all
icache misses

B7H 01H OFFCORE_RESPONSE_
0

see Section 18.6.2 Requires MSR_OFFCORE_RESP0 to specify request type and
response.

B7H 02H OFFCORE_RESPONSE_
1

see Section 18.6.2 Requires MSR_OFFCORE_RESP1 to specify request type and
response.

C0H 00H INST_RETIRED.ANY_P Instructions retired
(PEBS supported with
IA32_PMC0).

This event counts the number of instructions that retire
execution. For instructions that consist of multiple micro-ops,
this event counts the retirement of the last micro-op of the
instruction. The counter continues counting during hardware
interrupts, traps, and inside interrupt handlers.

N/A 00H INST_RETIRED.ANY Instructions retired This uses the fixed counter 0 to count the same condition as
INST_RETIRED.ANY_P does.

C2H 01H UOPS_RETIRED.MS MSROM micro-ops
retired

This event counts the number of micro-ops retired that were
supplied from MSROM.

C2H 10H UOPS_RETIRED.ALL Micro-ops retired This event counts the number of micro-ops retired.

The processor decodes complex macro instructions into a sequence of simpler micro-ops. Most instructions are composed of one or two
micro-ops. Some instructions are decoded into longer sequences such as repeat instructions, floating point transcendental instructions,
and assists. In some cases micro-op sequences are fused or whole instructions are fused into one micro-op. See other UOPS_RETIRED
events for differentiating retired fused and non-fused micro-ops.

C3H 01H MACHINE_CLEARS.SMC Self-Modifying Code
detected

This event counts the number of times that a program writes to
a code section. Self-modifying code causes a severe penalty in all
Intel® architecture processors.

C3H 02H MACHINE_CLEARS.ME
MORY_ORDERING

Stalls due to Memory
ordering

This event counts the number of times that pipeline was cleared
due to memory ordering issues.

C3H 04H MACHINE_CLEARS.FP_
ASSIST

Stalls due to FP assists This event counts the number of times that pipeline stalled due
to FP operations needing assists.

C3H 08H MACHINE_CLEARS.ALL Stalls due to any
causes

This event counts the number of times that pipeline stalled due
to due to any causes (including SMC, MO, FP assist, etc).

Table 19-19 Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 318

There are many conditions that might cause a machine clear (including the receipt of an interrupt, or a trap or a fault). All those
conditions (including but not limited to MO, SMC and FP) are captured in the ANY event. In addition, some conditions can be specifically
counted (i.e. SMC, MO, FP). However, the sum of SMC, MO and FP machine clears will not necessarily equal the number of ANY.

FP Assist: Most of the time, the floating point execute unit can properly produce the correct output bits. On rare occasions, it needs a
little help. When help is needed, a machine clear is asserted against the instruction. After this machine clear (as described above), the
front end of the machine begins to deliver instructions that will figure out exactly what FP operation was asked for, and they will do
the extra work to produce the correct FP result (for instance, if the result was a floating point denormal, sometimes the hardware asks
the help to produce the correctly rounded IEEE compliant result).

SMC: (Self modifying code) The SMC happens when the machine fears that an instruction “in flight” is being changed. For instance, if
you wrote a piece of code that wrote to the instruction stream ahead of where you were executing. In the Silvermont
microarchitecture, the detection works in a 1K aligned region.

If you write to memory within 1K of where you are executing, the hardware may get concerned that an instruction is being modified
and a machine clear might be signaled. Since the machine clear allows the store pipeline to drain, when front end restart occurs the
correct instructions (after the write) will be executed.

MO: (Memory order) The MO machine clear happens when a snoop request occurs and the machine is uncertain if memory ordering will
be preserved. For instance, suppose you have two loads, one to address X followed by another to address Y in the program order. Both
loads have been issued; however, load to Y completes first and all the dependent ops on this load continue with the data loaded by this
load. Load to X is still waiting for the data. Suppose that at the same time another processor writes to the same address Y and causes
a snoop to address Y.

This presents a problem: the load to Y got the old value, but we have not yet finished loading X. So the other processor saw the loads
in a different order by not consuming the latest value from the store to address Y. So we need to un-do everything from the load to
address Y so that we will see the post-write data. Note we do not have to un-do load Y if there were no other pending reads-- the fact
that the load to X is not yet finished causes this ordering problem.

C4H 00H BR_INST_RETIRED.ALL
_BRANCHES

Retired branch
instructions

This event counts the number of branch instructions retired.

C4H 7EH BR_INST_RETIRED.JCC Retired branch
instructions that were
conditional jumps

This event counts the number of branch instructions retired that
were conditional jumps.

C4H BFH BR_INST_RETIRED.FAR
_BRANCH

Retired far branch
instructions

This event counts the number of far branch instructions retired.

C4H EBH BR_INST_RETIRED.NO
N_RETURN_IND

Retired instructions of
near indirect Jmp or call

This event counts the number of branch instructions retired that
were near indirect call or near indirect jmp.

C4H F7H BR_INST_RETIRED.RET
URN

Retired near return
instructions

This event counts the number of near RET branch instructions
retired

C4H F9H BR_INST_RETIRED.CAL
L

Retired near call
instructions

This event counts the number of near CALL branch instructions
retired

C4H FBH BR_INST_RETIRED.IND
_CALL

Retired near indirect
call instructions

This event counts the number of near indirect CALL branch
instructions retired

C4H FDH BR_INST_RETIRED.REL
_CALL

Retired near relative
call instructions

This event counts the number of near relative CALL branch
instructions retired

C4H FEH BR_INST_RETIRED.TAK
EN_JCC

Retired conditional
jumps that were
predicted taken

This event counts the number of branch instructions retired that
were conditional jumps and predicted taken.

C5H 00H BR_MISP_RETIRED.ALL
_BRANCHES

Retired mispredicted
branch instructions

This event counts the number of mispredicted branch
instructions retired.

Table 19-19 Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 319

C5H 7EH BR_MISP_RETIRED.JCC Retired mispredicted
conditional jumps

This event counts the number of mispredicted branch
instructions retired that were conditional jumps.

C5H BFH BR_MISP_RETIRED.FA
R

Retired mispredicted
far branch instructions

This event counts the number of mispredicted far branch
instructions retired.

C5H EBH BR_MISP_RETIRED.NO
N_RETURN_IND

Retired mispredicted
instructions of near
indirect Jmp or call

This event counts the number of mispredicted branch
instructions retired that were near indirect call or near indirect
jmp.

C5H F7H BR_MISP_RETIRED.RE
TURN

Retired mispredicted
near return
instructions

This event counts the number of mispredicted near RET branch
instructions retired

C5H F9H BR_MISP_RETIRED.CAL
L

Retired mispredicted
near call instructions

This event counts the number of mispredicted near CALL branch
instructions retired

C5H FBH BR_MISP_RETIRED.IND
_CALL

Retired mispredicted
near indirect call
instructions

This event counts the number of mispredicted near indirect CALL
branch instructions retired

C5H FDH BR_MISP_RETIRED.REL
_CALL

Retired mispredicted
near relative call
instructions

This event counts the number of mispredicted near relative CALL
branch instructions retired

C5H FEH BR_MISP_RETIRED.TA
KEN_JCC

Retired mispredicted
conditional jumps that
were predicted taken

This event counts the number of mispredicted branch
instructions retired that were conditional jumps and predicted
taken.

CAH 01H NO_ALLOC_CYCLES.RO
B_FULL

Counts the number of
cycles when no uops
are allocated and the
ROB is full (less than 2
entries available)

Counts the number of cycles when no uops are allocated and the
ROB is full (less than 2 entries available)

CAH 20H NO_ALLOC_CYCLES.RA
T_STALL

Counts the number of
cycles when no uops
are allocated and a
RATstall is asserted.

Counts the number of cycles when no uops are allocated and a
RATstall is asserted.

CAH 3FH NO_ALLOC_CYCLES.AL
L

Front end not
delivering

This event counts the number of cycles when the front-end does
not provide any instructions to be allocated for any reason

CAH 50H NO_ALLOC_CYCLES.NO
T_DELIVERED

Front end not
delivering backend not
stalled

This event counts the number of cycles when the front-end does
not provide any instructions to be allocated but the back end is
not stalled

The front-end is responsible for fetching the instruction, decoding into micro-ops (uops) and putting them into a micro-op queue to be
consumed by back end. The back-end then takes these micro-ops, allocates the required resources. When all resources are ready,
micro-ops are executed. If the back-end is not ready to accept micro-ops from the front-end, then we do not want to count these as
front-end bottlenecks. However, whenever we have bottlenecks in the back-end, we will have allocation unit stalls and eventually
forcing the front-end to wait until the back-end is ready to receive more UOPS. This event counts the cycles only when back-end is
requesting more micro-uops and front-end is not able to provide them.

CBH 01H RS_FULL_STALL.MEC MEC RS full This event counts the number of cycles the allocation pipe line
stalled due to the RS for the MEC cluster is full

CBH 1FH RS_FULL_STALL.ALL Any RS full This event counts the number of cycles that the allocation pipe
line stalled due to any one of the RS is full

Table 19-19 Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 320

...

19.13 PENTIUM® 4 AND INTEL® XEON® PROCESSOR PERFORMANCE-
MONITORING EVENTS

Tables Table 19-22, 19-23 and list performance-monitoring events that can be counted or sampled on processors
based on Intel NetBurst® microarchitecture. Table 19-22 lists the non-retirement events, and Table 19-23 lists
the at-retirement events. Tables 19-25, 19-26, and 19-27 describes three sets of parameters that are available
for three of the at-retirement counting events defined in Table 19-23. Table 19-28 shows which of the non-retire-
ment and at retirement events are logical processor specific (TS) (see Section 18.14.4, “Performance Monitoring
Events”) and which are non-logical processor specific (TI).

Some of the Pentium 4 and Intel Xeon processor performance-monitoring events may be available only to specific
models. The performance-monitoring events listed in Tables Table 19-22 and 19-23 apply to processors with
CPUID signature that matches family encoding 15, model encoding 0, 1, 2 3, 4, or 6. Table applies to processors
with a CPUID signature that matches family encoding 15, model encoding 3, 4 or 6.

The functionality of performance-monitoring events in Pentium 4 and Intel Xeon processors is also available when
IA-32e mode is enabled.

The Silvermont microarchitecture has an allocation pipeline (AKA the RAT) that moves UOPS from the front end to the backend. At the
end of the allocate pipe a UOP needs to be written into one of 6 reservation stations (the RS). Each RS holds UOPS that are to be sent
to a specific execution (or memory) cluster. Each RS has a finite capacity, and it may accumulate UOPS when it is unable to send a UOP
to its execution cluster. Typical reasons why an RS may fill include, but are not limited to, execution of long latency UOPS like divide, or
inability to schedule UOPS due to dependencies, or too many outstanding memory references. When the RS becomes full, it is unable to
accept more UOPS, and it will stall the allocation pipeline. The RS_FULL_STALL.ANY event will be asserted on any cycle when the
allocation is stalled for any one of the RSs being full and not for other reasons. (i.e. the allocate pipeline might be stalled for some other
reason, but if RS is not full, the RS_FULL_STALL.ANY will not count) The subevents allow discovery of exactly which RS (or RSs) that
are full that prevent further allocation.

CDH 01H CYCLES_DIV_BUSY.AN
Y

Divider Busy This event counts the number of cycles the divider is busy.

This event counts the cycles when the divide unit is unable to accept a new divide UOP because it is busy processing a previously
dispatched UOP. The cycles will be counted irrespective of whether or not another divide UOP is waiting to enter the divide unit (from
the RS). This event will count cycles while a divide is in progress even if the RS is empty.

E6H 01H BACLEARS.ALL BACLEARS asserted for
any branch

This event counts the number of baclears for any type of branch.

E6H 08H BACLEARS.RETURN BACLEARS asserted for
return branch

This event counts the number of baclears for return branches.

E6H 10H BACLEARS.COND BACLEARS asserted for
conditional branch

This event counts the number of baclears for conditional
branches.

E7H 01H MS_DECODED.MS_ENT
RY

MS Decode starts This event counts the number of times the MSROM starts a flow
of UOPS.

Table 19-19 Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 321

Table 19-22 Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting

Event Name Event Parameters Parameter Value Description

TC_deliver_mode This event counts the duration (in clock cycles) of the operating
modes of the trace cache and decode engine in the processor
package. The mode is specified by one or more of the event mask
bits.

ESCR restrictions MSR_TC_ESCR0

MSR_TC_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit

0: DD

1: DB

2: DI

ESCR[24:9]

Both logical processors are in deliver mode.

Logical processor 0 is in deliver mode and logical processor 1 is in
build mode.

Logical processor 0 is in deliver mode and logical processor 1 is
either halted, under a machine clear condition or transitioning to a
long microcode flow.

3: BD

4: BB

Logical processor 0 is in build mode and logical processor 1 is in
deliver mode.

Both logical processors are in build mode.

5: BI Logical processor 0 is in build mode and logical processor 1 is either
halted, under a machine clear condition or transitioning to a long
microcode flow.

6: ID

7: IB

Logical processor 0 is either halted, under a machine clear condition
or transitioning to a long microcode flow. Logical processor 1 is in
deliver mode.

Logical processor 0 is either halted, under a machine clear condition
or transitioning to a long microcode flow. Logical processor 1 is in
build mode.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If only one logical processor is available from a physical processor
package, the event mask should be interpreted as logical processor 1
is halted. Event mask bit 2 was previously known as “DELIVER”, bit 5
was previously known as “BUILD”.

BPU_fetch_
request

This event counts instruction fetch requests of specified request
type by the Branch Prediction unit. Specify one or more mask bits to
qualify the request type(s).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 322

ESCR restrictions MSR_BPU_ESCR0
MSR_BPU_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 0: TCMISS

ESCR[24:9]

Trace cache lookup miss

CCCR Select 00H CCCR[15:13]

ITLB_reference This event counts translations using the Instruction Translation
Look-aside Buffer (ITLB).

ESCR restrictions MSR_ITLB_ESCR0

MSR_ITLB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 18H ESCR[31:25]

ESCR Event Mask

Bit

0: HIT

1: MISS

2: HIT_UC

ESCR[24:9]

ITLB hit

ITLB miss

Uncacheable ITLB hit

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

All page references regardless of the page size are looked up as
actual 4-KByte pages. Use the page_walk_type event with the
ITMISS mask for a more conservative count.

memory_cancel This event counts the canceling of various type of request in the
Data cache Address Control unit (DAC). Specify one or more mask
bits to select the type of requests that are canceled.

ESCR restrictions MSR_DAC_ESCR0

MSR_DAC_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit

2: ST_RB_FULL

3: 64K_CONF

ESCR[24:9]

Replayed because no store request buffer is available

Conflicts due to 64-KByte aliasing

Table 19-22 Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 323

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

All_CACHE_MISS includes uncacheable memory in count.

memory_
complete

This event counts the completion of a load split, store split,
uncacheable (UC) split, or UC load. Specify one or more mask bits to
select the operations to be counted.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit

0: LSC

1: SSC

ESCR[24:9]

Load split completed, excluding UC/WC loads

Any split stores completed

CCCR Select 02H CCCR[15:13]

load_port_replay This event counts replayed events at the load port. Specify one or
more mask bits to select the cause of the replay.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 04H ESCR[31:25]

ESCR Event Mask

Bit 1: SPLIT_LD

ESCR[24:9]

Split load.

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

Must use ESCR1 for at-retirement counting.

store_port_replay This event counts replayed events at the store port. Specify one or
more mask bits to select the cause of the replay.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask

Bit 1: SPLIT_ST

ESCR[24:9]

Split store

Table 19-22 Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 324

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

Must use ESCR1 for at-retirement counting.

MOB_load_replay This event triggers if the memory order buffer (MOB) caused a load
operation to be replayed. Specify one or more mask bits to select the
cause of the replay.

ESCR restrictions MSR_MOB_ESCR0

MSR_MOB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit

1: NO_STA

3: NO_STD

ESCR[24:9]

Replayed because of unknown store address.

Replayed because of unknown store data.

4: PARTIAL_DATA

5: UNALGN_ADDR

Replayed because of partially overlapped data access between the
load and store operations.

Replayed because the lower 4 bits of the linear address do not
match between the load and store operations.

CCCR Select 02H CCCR[15:13]

page_walk_type This event counts various types of page walks that the page miss
handler (PMH) performs.

ESCR restrictions MSR_PMH_
ESCR0

MSR_PMH_
ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit

0: DTMISS

1: ITMISS

ESCR[24:9]

Page walk for a data TLB miss (either load or store).

Page walk for an instruction TLB miss.

CCCR Select 04H CCCR[15:13]

Table 19-22 Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 325

BSQ_cache
_reference

This event counts cache references (2nd level cache or 3rd level
cache) as seen by the bus unit.

Specify one or more mask bit to select an access according to the
access type (read type includes both load and RFO, write type
includes writebacks and evictions) and the access result (hit, misses).

ESCR restrictions MSR_BSU_
ESCR0

MSR_BSU_
ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 0CH ESCR[31:25]

Bit

0: RD_2ndL_HITS

1: RD_2ndL_HITE

2: RD_2ndL_HITM

3: RD_3rdL_HITS

ESCR[24:9]

Read 2nd level cache hit Shared (includes load and RFO)

Read 2nd level cache hit Exclusive (includes load and RFO)

Read 2nd level cache hit Modified (includes load and RFO)

Read 3rd level cache hit Shared (includes load and RFO)

4: RD_3rdL_HITE

5: RD_3rdL_HITM

Read 3rd level cache hit Exclusive (includes load and RFO)

Read 3rd level cache hit Modified (includes load and RFO)

ESCR Event Mask 8: RD_2ndL_MISS

9: RD_3rdL_MISS

10: WR_2ndL_MISS

Read 2nd level cache miss (includes load and RFO)

Read 3rd level cache miss (includes load and RFO)

A Writeback lookup from DAC misses the 2nd level cache (unlikely to
happen)

CCCR Select 07H CCCR[15:13]

Event Specific
Notes

1: The implementation of this event in current Pentium 4 and Xeon
processors treats either a load operation or a request for
ownership (RFO) request as a “read” type operation.

2: Currently this event causes both over and undercounting by as
much as a factor of two due to an erratum.

3: It is possible for a transaction that is started as a prefetch to
change the transaction's internal status, making it no longer a
prefetch. or change the access result status (hit, miss) as seen by
this event.

Table 19-22 Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 326

IOQ_allocation This event counts the various types of transactions on the bus. A
count is generated each time a transaction is allocated into the IOQ
that matches the specified mask bits. An allocated entry can be a
sector (64 bytes) or a chunks of 8 bytes.

Requests are counted once per retry. The event mask bits constitute
4 bit fields. A transaction type is specified by interpreting the values
of each bit field.

Specify one or more event mask bits in a bit field to select the value
of the bit field.

Each field (bits 0-4 are one field) are independent of and can be
ORed with the others. The request type field is further combined
with bit 5 and 6 to form a binary expression. Bits 7 and 8 form a bit
field to specify the memory type of the target address.

Bits 13 and 14 form a bit field to specify the source agent of the
request. Bit 15 affects read operation only. The event is triggered by
evaluating the logical expression: (((Request type) OR Bit 5 OR Bit 6)
OR (Memory type)) AND (Source agent).

ESCR restrictions MSR_FSB_ESCR0,
MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1;

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bits

0-4 (single field)

 5: ALL_READ

 6: ALL_WRITE

 7: MEM_UC

 8: MEM_WC

ESCR[24:9]

Bus request type (use 00001 for invalid or default)

Count read entries

Count write entries

Count UC memory access entries

Count WC memory access entries

 9: MEM_WT

10: MEM_WP

Count write-through (WT) memory access entries.

Count write-protected (WP) memory access entries

11: MEM_WB

13: OWN

Count WB memory access entries.

Count all store requests driven by processor, as opposed to other
processor or DMA.

14: OTHER

15: PREFETCH

Count all requests driven by other processors or DMA.

Include HW and SW prefetch requests in the count.

CCCR Select 06H CCCR[15:13]

Table 19-22 Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 327

Event Specific
Notes

1: If PREFETCH bit is cleared, sectors fetched using prefetch are
excluded in the counts. If PREFETCH bit is set, all sectors or chunks
read are counted.

2: Specify the edge trigger in CCCR to avoid double counting.

3: The mapping of interpreted bit field values to transaction types
may differ with different processor model implementations of the
Pentium 4 processor family. Applications that program
performance monitoring events should use CPUID to determine
processor models when using this event. The logic equations that
trigger the event are model-specific (see 4a and 4b below).

4a:For Pentium 4 and Xeon Processors starting with CPUID Model
field encoding equal to 2 or greater, this event is triggered by
evaluating the logical expression ((Request type) and (Bit 5 or Bit
6) and (Memory type) and (Source agent)).

4b:For Pentium 4 and Xeon Processors with CPUID Model field
encoding less than 2, this event is triggered by evaluating the
logical expression [((Request type) or Bit 5 or Bit 6) or (Memory
type)] and (Source agent). Note that event mask bits for memory
type are ignored if either ALL_READ or ALL_WRITE is specified.

5: This event is known to ignore CPL in early implementations of
Pentium 4 and Xeon Processors. Both user requests and OS
requests are included in the count. This behavior is fixed starting
with Pentium 4 and Xeon Processors with CPUID signature F27H
(Family 15, Model 2, Stepping 7).

6: For write-through (WT) and write-protected (WP) memory types,
this event counts reads as the number of 64-byte sectors. Writes
are counted by individual chunks.

7: For uncacheable (UC) memory types, this events counts the
number of 8-byte chunks allocated.

8: For Pentium 4 and Xeon Processors with CPUID Signature less
than F27H, only MSR_FSB_ESCR0 is available.

IOQ_active_
entries

This event counts the number of entries (clipped at 15) in the IOQ
that are active. An allocated entry can be a sector (64 bytes) or a
chunks of 8 bytes.

The event must be programmed in conjunction with IOQ_allocation.
Specify one or more event mask bits to select the transactions that
is counted.

ESCR restrictions MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR1: 2, 3

ESCR Event Select 01AH ESCR[30:25]

Table 19-22 Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 328

ESCR Event Mask

Bits

0-4 (single field)

5: ALL_READ

6: ALL_WRITE

7: MEM_UC

8: MEM_WC

ESCR[24:9]

Bus request type (use 00001 for invalid or default).

Count read entries.

Count write entries.

Count UC memory access entries.

Count WC memory access entries.

9: MEM_WT

10: MEM_WP

Count write-through (WT) memory access entries.

Count write-protected (WP) memory access entries.

11: MEM_WB

13: OWN

Count WB memory access entries.

Count all store requests driven by processor, as opposed to other
processor or DMA.

14: OTHER

15: PREFETCH

Count all requests driven by other processors or DMA.

Include HW and SW prefetch requests in the count.

CCCR Select 06H CCCR[15:13]

Event Specific
Notes

1: Specified desired mask bits in ESCR0 and ESCR1.
2: See the ioq_allocation event for descriptions of the mask bits.

3: Edge triggering should not be used when counting cycles.

4: The mapping of interpreted bit field values to transaction types
may differ across different processor model implementations of
the Pentium 4 processor family. Applications that programs
performance monitoring events should use the CPUID instruction
to detect processor models when using this event. The logical
expression that triggers this event as describe below:

5a:For Pentium 4 and Xeon Processors starting with CPUID MODEL
field encoding equal to 2 or greater, this event is triggered by
evaluating the logical expression ((Request type) and (Bit 5 or Bit
6) and (Memory type) and (Source agent)).

5b:For Pentium 4 and Xeon Processors starting with CPUID MODEL
field encoding less than 2, this event is triggered by evaluating
the logical expression [((Request type) or Bit 5 or Bit 6) or
(Memory type)] and (Source agent). Event mask bits for memory
type are ignored if either ALL_READ or ALL_WRITE is specified.

5c: This event is known to ignore CPL in the current implementations
of Pentium 4 and Xeon Processors Both user requests and OS
requests are included in the count.

6: An allocated entry can be a full line (64 bytes) or in individual
chunks of 8 bytes.

Table 19-22 Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 329

FSB_data_
activity

This event increments once for each DRDY or DBSY event that
occurs on the front side bus. The event allows selection of a specific
DRDY or DBSY event.

ESCR restrictions MSR_FSB_ESCR0
MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 17H ESCR[31:25]

ESCR Event Mask

Bit 0:

ESCR[24:9]

DRDY_DRV Count when this processor drives data onto the bus - includes writes
and implicit writebacks.

Asserted two processor clock cycles for partial writes and 4
processor clocks (usually in consecutive bus clocks) for full line
writes.

1: DRDY_OWN Count when this processor reads data from the bus - includes loads
and some PIC transactions. Asserted two processor clock cycles for
partial reads and 4 processor clocks (usually in consecutive bus
clocks) for full line reads.

Count DRDY events that we drive.

Count DRDY events sampled that we own.

2: DRDY_OTHER Count when data is on the bus but not being sampled by the
processor. It may or may not be being driven by this processor.

Asserted two processor clock cycles for partial transactions and 4
processor clocks (usually in consecutive bus clocks) for full line
transactions.

3: DBSY_DRV Count when this processor reserves the bus for use in the next bus
cycle in order to drive data. Asserted for two processor clock cycles
for full line writes and not at all for partial line writes.

May be asserted multiple times (in consecutive bus clocks) if we stall
the bus waiting for a cache lock to complete.

4: DBSY_OWN Count when some agent reserves the bus for use in the next bus
cycle to drive data that this processor will sample.

Asserted for two processor clock cycles for full line writes and not at
all for partial line writes. May be asserted multiple times (all one bus
clock apart) if we stall the bus for some reason.

5:DBSY_OTHER Count when some agent reserves the bus for use in the next bus
cycle to drive data that this processor will NOT sample. It may or may
not be being driven by this processor.

Asserted two processor clock cycles for partial transactions and 4
processor clocks (usually in consecutive bus clocks) for full line
transactions.

CCCR Select 06H CCCR[15:13]

Table 19-22 Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 330

Event Specific
Notes

Specify edge trigger in the CCCR MSR to avoid double counting.

DRDY_OWN and DRDY_OTHER are mutually exclusive; similarly for
DBSY_OWN and DBSY_OTHER.

BSQ_allocation This event counts allocations in the Bus Sequence Unit (BSQ)
according to the specified mask bit encoding. The event mask bits
consist of four sub-groups:

• request type,
• request length
• memory type
• and sub-group consisting mostly of independent bits (bits 5, 6, 7,

8, 9, and 10)
Specify an encoding for each sub-group.

ESCR restrictions MSR_BSU_ESCR0

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask Bit

0: REQ_TYPE0
1: REQ_TYPE1

ESCR[24:9]

Request type encoding (bit 0 and 1) are:

0 – Read (excludes read invalidate)
1 – Read invalidate
2 – Write (other than writebacks)
3 – Writeback (evicted from cache). (public)

2: REQ_LEN0
3: REQ_LEN1

Request length encoding (bit 2, 3) are:

0 – 0 chunks
1 – 1 chunks
3 – 8 chunks

5: REQ_IO_TYPE

6: REQ_LOCK_
 TYPE

7: REQ_CACHE_
 TYPE

Request type is input or output.

Request type is bus lock.

Request type is cacheable.

8: REQ_SPLIT_
 TYPE

9: REQ_DEM_TYPE

10: REQ_ORD_
 TYPE

Request type is a bus 8-byte chunk split across 8-byte boundary.

Request type is a demand if set. Request type is HW.SW prefetch
if 0.

Request is an ordered type.

Table 19-22 Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 331

11: MEM_TYPE0
12: MEM_TYPE1
13: MEM_TYPE2

Memory type encodings (bit 11-13) are:

0 – UC
1 – WC
4 – WT
5 – WP
6 – WB

CCCR Select 07H CCCR[15:13]

Event Specific
Notes

1: Specify edge trigger in CCCR to avoid double counting.
2: A writebacks to 3rd level cache from 2nd level cache counts as a

separate entry, this is in additional to the entry allocated for a
request to the bus.

3: A read request to WB memory type results in a request to the
64-byte sector, containing the target address, followed by a
prefetch request to an adjacent sector.

4: For Pentium 4 and Xeon processors with CPUID model encoding
value equals to 0 and 1, an allocated BSQ entry includes both the
demand sector and prefetched 2nd sector.

5: An allocated BSQ entry for a data chunk is any request less than
64 bytes.

6a:This event may undercount for requests of split type transactions
if the data address straddled across modulo-64 byte boundary.

6b:This event may undercount for requests of read request of
16-byte operands from WC or UC address.

6c: This event may undercount WC partial requests originated from
store operands that are
dwords.

bsq_active_
entries

This event represents the number
of BSQ entries (clipped at 15) currently active (valid) which meet the
subevent mask criteria during allocation in the BSQ. Active request
entries are allocated on the BSQ until de-allocated.

De-allocation of an entry does not necessarily imply the request is
filled. This event must be programmed in conjunction with
BSQ_allocation. Specify one or more event mask bits to select the
transactions that is counted.

ESCR restrictions ESCR1

Counter numbers
per ESCR

ESCR1: 2, 3

ESCR Event Select 06H ESCR[30:25]

ESCR Event Mask ESCR[24:9]

CCCR Select 07H CCCR[15:13]

Event Specific
Notes

1: Specified desired mask bits in ESCR0 and ESCR1.
2: See the BSQ_allocation event for descriptions of the mask bits.
3: Edge triggering should not be used when counting cycles.

Table 19-22 Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 332

4: This event can be used to estimate the latency of a transaction
from allocation to de-allocation in the BSQ. The latency observed
by BSQ_allocation includes the latency of FSB, plus additional
overhead.

5: Additional overhead may include the time it takes to issue two
requests (the sector by demand and the adjacent sector via
prefetch). Since adjacent sector prefetches have lower priority
that demand fetches, on a heavily used system there is a high
probability that the adjacent sector prefetch will have to wait
until the next bus arbitration.

6: For Pentium 4 and Xeon processors with CPUID model encoding
value less than 3, this event is updated every clock.

7: For Pentium 4 and Xeon processors with CPUID model encoding
value equals to 3 or 4, this event is updated every other clock.

SSE_input_assist This event counts the number of times an assist is requested to
handle problems with input operands for SSE/SSE2/SSE3 operations;
most notably denormal source operands when the DAZ bit is not set.
Set bit 15 of the event mask to use this event.

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 34H ESCR[31:25]

ESCR Event Mask

15: ALL

ESCR[24:9]

Count assists for SSE/SSE2/SSE3 μops.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

1: Not all requests for assists are actually taken. This event is known
to overcount in that it counts requests for assists from
instructions on the non-retired path that do not incur a
performance penalty. An assist is actually taken only for non-
bogus μops. Any appreciable counts for this event are an
indication that the DAZ or FTZ bit should be set and/or the source
code should be changed to eliminate the condition.

2: Two common situations for an SSE/SSE2/SSE3 operation needing
an assist are: (1) when a denormal constant is used as an input and
the Denormals-Are-Zero (DAZ) mode is not set, (2) when the input
operand uses the underflowed result of a previous SSE/SSE2/
SSE3 operation and neither the DAZ nor Flush-To-Zero (FTZ)
modes are set.

3: Enabling the DAZ mode prevents SSE/SSE2/SSE3 operations from
needing assists in the first situation. Enabling the FTZ mode
prevents SSE/SSE2/SSE3 operations from needing assists in the
second situation.

Table 19-22 Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 333

packed_SP_uop This event increments for each packed single-precision μop,
specified through the event mask for detection.

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on packed single-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

1: If an instruction contains more than one packed SP μops, each
packed SP μop that is specified by the event mask will be counted.

2: This metric counts instances of packed memory μops in a repeat
move string.

packed_DP_uop This event increments for each packed double-precision μop,
specified through the event mask for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0CH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on packed double-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more than one packed DP μops, each
packed DP μop that is specified by the event mask will be counted.

scalar_SP_uop This event increments for each scalar single-precision μop, specified
through the event mask for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0AH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on scalar single-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more than one scalar SP μops, each scalar
SP μop that is specified by the event mask will be counted.

Table 19-22 Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 334

scalar_DP_uop This event increments for each scalar double-precision μop, specified
through the event mask for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0EH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on scalar double-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more than one scalar DP μops, each scalar
DP μop that is specified by the event mask is counted.

64bit_MMX_uop This event increments for each MMX instruction, which operate on
64-bit SIMD operands.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on 64- bit SIMD integer operands in memory
or MMX registers.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more than one 64-bit MMX μops, each 64-
bit MMX μop that is specified by the event mask will be counted.

128bit_MMX_uop This event increments for each integer SIMD SSE2 instruction, which
operate on 128-bit SIMD operands.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 1AH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on 128-bit SIMD integer operands in
memory or XMM registers.

CCCR Select 01H CCCR[15:13]

Table 19-22 Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 335

Event Specific
Notes

If an instruction contains more than one 128-bit MMX μops, each
128-bit MMX μop that is specified by the event mask will be counted.

x87_FP_uop This event increments for each x87 floating-point μop, specified
through the event mask for detection.

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 04H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all x87 FP μops.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

1: If an instruction contains more than one x87 FP μops, each x87
FP μop that is specified by the event mask will be counted.

2: This event does not count x87 FP μop for load, store, move
between registers.

TC_misc This event counts miscellaneous events detected by the TC. The
counter will count twice for each occurrence.

ESCR restrictions MSR_TC_ESCR0
MSR_TC_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 06H ESCR[31:25]

CCCR Select 01H CCCR[15:13]

ESCR Event Mask

Bit 4: FLUSH

ESCR[24:9]

Number of flushes

global_power
_events

This event accumulates the time during which a processor is not
stopped.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 013H ESCR[31:25]

ESCR Event Mask Bit 0: Running ESCR[24:9]

The processor is active (includes the handling of HLT STPCLK and
throttling.

CCCR Select 06H CCCR[15:13]

tc_ms_xfer This event counts the number of times that uop delivery changed
from TC to MS ROM.

Table 19-22 Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 336

ESCR restrictions MSR_MS_ESCR0

MSR_MS_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask

Bit 0: CISC

ESCR[24:9]

A TC to MS transfer occurred.

CCCR Select 0H CCCR[15:13]

uop_queue_
writes

This event counts the number of valid uops written to the uop
queue. Specify one or more mask bits to select the source type of
writes.

ESCR restrictions MSR_MS_ESCR0

MSR_MS_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 09H ESCR[31:25]

ESCR Event Mask

Bit

0: FROM_TC_
BUILD

ESCR[24:9]

The uops being written are from TC build mode.

1: FROM_TC_
DELIVER

2: FROM_ROM

The uops being written are from TC deliver mode.

The uops being written are from microcode ROM.

CCCR Select 0H CCCR[15:13]

retired_mispred

_branch_type

This event counts retiring mispredicted branches by type.

ESCR restrictions MSR_TBPU_ESCR0

MSR_TBPU_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 05H ESCR[30:25]

ESCR Event Mask

Bit

1: CONDITIONAL

2: CALL

ESCR[24:9]

Conditional jumps.

Indirect call branches.

3: RETURN

4: INDIRECT

Return branches.

Returns, indirect calls, or indirect jumps.

CCCR Select 02H CCCR[15:13]

Table 19-22 Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 337

Event Specific
Notes

This event may overcount conditional branches if:

• Mispredictions cause the trace cache and delivery engine to build
new traces.

• When the processor's pipeline is being cleared.

retired_branch

_type

This event counts retiring branches by type. Specify one or more
mask bits to qualify the branch by its type.

ESCR restrictions MSR_TBPU_ESCR0

MSR_TBPU_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 04H ESCR[30:25]

ESCR Event Mask

Bit

1: CONDITIONAL

2: CALL

ESCR[24:9]

Conditional jumps.

Direct or indirect calls.

3: RETURN

4: INDIRECT

Return branches.

Returns, indirect calls, or indirect jumps.

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

This event may overcount conditional branches if :

• Mispredictions cause the trace cache and delivery engine to build
new traces.

• When the processor's pipeline is being cleared.

resource_stall This event monitors the occurrence or latency of stalls in the
Allocator.

ESCR restrictions MSR_ALF_ESCR0

MSR_ALF_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16
ESCR1: 14, 15, 17

ESCR Event Select 01H ESCR[30:25]

Event Masks

Bit

ESCR[24:9]

5: SBFULL A Stall due to lack of store buffers.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

This event may not be supported in all models of the processor
family.

WC_Buffer This event counts Write Combining Buffer operations that are
selected by the event mask.

Table 19-22 Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 338

ESCR restrictions MSR_DAC_ESCR0

MSR_DAC_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 05H ESCR[30:25]

Event Masks

Bit

ESCR[24:9]

0: WCB_EVICTS WC Buffer evictions of all causes.

1: WCB_FULL_
 EVICT

WC Buffer eviction: no WC buffer is available.

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

This event is useful for detecting the subset of 64K aliasing cases
that are more costly (i.e. 64K aliasing cases involving stores) as long
as there are no significant contributions due to write combining
buffer full or hit-modified conditions.

b2b_cycles This event can be configured to count the number back-to-back bus
cycles using sub-event mask bits 1 through 6.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 016H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported in all models of the processor
family.

bnr This event can be configured to count bus not ready conditions using
sub-event mask bits 0 through 2.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 08H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported in all models of the processor
family.

snoop This event can be configured to count snoop hit modified bus traffic
using sub-event mask bits 2, 6 and 7.

Table 19-22 Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 339

...

32. Updates to Chapter 22, Volume 3B
Change bars show changes to Chapter 22 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

22.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor Initialization
When initializing an Intel486 SX processor and an Intel 487 SX math coprocessor, the initialization routine should
check the presence of the math coprocessor and should set the FPU related flags (EM, MP, and NE) in control
register CR0 accordingly (see Section 2.5, “Control Registers,” for a complete description of these flags). Table
Table 22-2 gives the recommended settings for these flags when the math coprocessor is present. The FSTCW
instruction will give a value of FFFFH for the Intel486 SX microprocessor and 037FH for the Intel 487 SX math
coprocessor.

ESCR restrictions MSR_FSB_ESCR0
MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 06H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported in all models of the processor
family.

Response This event can be configured to count different types of responses
using sub-event mask bits 1,2, 8, and 9.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 04H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported in all models of the processor
family.

Table 19-22 Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture
for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 340

The EM and MP flags in register CR0 are interpreted as shown in Table 22-3.

Following is an example code sequence to initialize the system and check for the presence of Intel486 SX
processor/Intel 487 SX math coprocessor.

fninit
fstcw mem_loc
mov ax, mem_loc
cmp ax, 037fh
jz Intel487_SX_Math_CoProcessor_present ;ax=037fh
jmp Intel486_SX_microprocessor_present ;ax=ffffh

If the Intel 487 SX math coprocessor is not present, the following code can be run to set the CR0 register for the
Intel486 SX processor.

mov eax, cr0
and eax, fffffffdh ;make MP=0
or eax, 0024h ;make EM=1, NE=1
mov cr0, eax

This initialization will cause any floating-point instruction to generate a device not available exception (#NH),
interrupt 7. The software emulation will then take control to execute these instructions. This code is not required
if an Intel 487 SX math coprocessor is present in the system. In that case, the typical initialization routine for the
Intel486 SX microprocessor will be adequate.

Also, when designing an Intel486 SX processor based system with an Intel 487 SX math coprocessor, timing
loops should be independent of frequency and clocks per instruction. One way to attain this is to implement these
loops in hardware and not in software (for example, BIOS).

...

Table 22-2 Recommended Values of the EM, MP, and NE Flags for Intel486 SX Microprocessor/Intel 487 SX Math
Coprocessor System

CR0 Flags Intel486 SX Processor Only Intel 487 SX Math Coprocessor Present

EM 1 0

MP 0 1

NE 1 0, for MS-DOS* systems
1, for user-defined exception handler

Table 22-3 EM and MP Flag Interpretation

EM MP Interpretation

0 0 Floating-point instructions are passed to FPU; WAIT/FWAIT and other waiting-type instructions
ignore TS.

0 1 Floating-point instructions are passed to FPU; WAIT/FWAIT and other waiting-type instructions
test TS.

1 0 Floating-point instructions trap to emulator; WAIT/FWAIT and other waiting-type instructions
ignore TS.

1 1 Floating-point instructions trap to emulator; WAIT/FWAIT and other waiting-type instructions
test TS.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 341

22.25 EXCEPTIONS AND/OR EXCEPTION CONDITIONS
This section describes the new exceptions and exception conditions added to the 32-bit IA-32 processors and
implementation differences in existing exception handling. See Chapter 6, “Interrupt and Exception Handling,” for
a detailed description of the IA-32 exceptions.

The Pentium III processor introduced new state with the XMM registers. Computations involving data in these
registers can produce exceptions. A new MXCSR control/status register is used to determine which exception or
exceptions have occurred. When an exception associated with the XMM registers occurs, an interrupt is gener-
ated.
• SIMD floating-point exception (#XM, interrupt 19) — New exceptions associated with the SIMD floating-point

registers and resulting computations.

No new exceptions were added with the Pentium Pro and Pentium II processors. The set of available exceptions is
the same as for the Pentium processor. However, the following exception condition was added to the IA-32 with
the Pentium Pro processor:
• Machine-check exception (#MC, interrupt 18) — New exception conditions. Many exception conditions have

been added to the machine-check exception and a new architecture has been added for handling and
reporting on hardware errors. See Chapter 15, “Machine-Check Architecture,” for a detailed description of the
new conditions.

The following exceptions and/or exception conditions were added to the IA-32 with the Pentium processor:
• Machine-check exception (#MC, interrupt 18) — New exception. This exception reports parity and other

hardware errors. It is a model-specific exception and may not be implemented or implemented differently in
future processors. The MCE flag in control register CR4 enables the machine-check exception. When this bit is
clear (which it is at reset), the processor inhibits generation of the machine-check exception.

• General-protection exception (#GP, interrupt 13) — New exception condition added. An attempt to write a 1
to a reserved bit position of a special register causes a general-protection exception to be generated.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. When a 1 is detected in any of the
reserved bit positions of a page-table entry, page-directory entry, or page-directory pointer during address
translation, a page-fault exception is generated.

The following exception was added to the Intel486 processor:
• Alignment-check exception (#AC, interrupt 17) — New exception. Reports unaligned memory references

when alignment checking is being performed.

The following exceptions and/or exception conditions were added to the Intel386 processor:
• Divide-error exception (#DE, interrupt 0)

— Change in exception handling. Divide-error exceptions on the Intel386 processors always leave the saved
CS:IP value pointing to the instruction that failed. On the 8086 processor, the CS:IP value points to the
next instruction.

— Change in exception handling. The Intel386 processors can generate the largest negative number as a
quotient for the IDIV instruction (80H and 8000H). The 8086 processor generates a divide-error exception
instead.

• Invalid-opcode exception (#UD, interrupt 6) — New exception condition added. Improper use of the LOCK
instruction prefix can generate an invalid-opcode exception.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. If paging is enabled in a 16-bit
program, a page-fault exception can be generated as follows. Paging can be used in a system with 16-bit
tasks if all tasks use the same page directory. Because there is no place in a 16-bit TSS to store the PDBR
register, switching to a 16-bit task does not change the value of the PDBR register. Tasks ported from the Intel
286 processor should be given 32-bit TSSs so they can make full use of paging.

• General-protection exception (#GP, interrupt 13) — New exception condition added. The Intel386 processor
sets a limit of 15 bytes on instruction length. The only way to violate this limit is by putting redundant prefixes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 342

before an instruction. A general-protection exception is generated if the limit on instruction length is violated.
The 8086 processor has no instruction length limit.

...

22.33.1 Segment Wraparound
On the 8086 processor, an attempt to access a memory operand that crosses offset 65,535 or 0FFFFH or offset 0
(for example, moving a word to offset 65,535 or pushing a word when the stack pointer is set to 1) causes the
offset to wrap around modulo 65,536 or 010000H. With the Intel 286 processor, any base and offset combination
that addresses beyond 16 MBytes wraps around to the 1 MByte of the address space. The P6 family, Pentium,
Intel486, and Intel386 processors in real-address mode generate an exception in these cases:
• A general-protection exception (#GP) if the segment is a data segment (that is, if the CS, DS, ES, FS, or GS

register is being used to address the segment).
• A stack-fault exception (#SS) if the segment is a stack segment (that is, if the SS register is being used).

An exception to this behavior occurs when a stack access is data aligned, and the stack pointer is pointing to the
last aligned piece of data that size at the top of the stack (ESP is FFFFFFFCH). When this data is popped, no
segment limit violation occurs and the stack pointer will wrap around to 0.

The address space of the P6 family, Pentium, and Intel486 processors may wraparound at 1 MByte in real-address
mode. An external A20M# pin forces wraparound if enabled. On Intel 8086 processors, it is possible to specify
addresses greater than 1 MByte. For example, with a selector value FFFFH and an offset of FFFFH, the effective
address would be 10FFEFH (1 MByte plus 65519 bytes). The 8086 processor, which can form addresses up to 20
bits long, truncates the uppermost bit, which “wraps” this address to FFEFH. However, the P6 family, Pentium, and
Intel486 processors do not truncate this bit if A20M# is not enabled.

If a stack operation wraps around the address limit, shutdown occurs. (The 8086 processor does not have a shut-
down mode or a limit.)

The behavior when executing near the limit of a 4-GByte selector (limit = FFFFFFFFH) is different between the
Pentium Pro and the Pentium 4 family of processors. On the Pentium Pro, instructions which cross the limit -- for
example, a two byte instruction such as INC EAX that is encoded as FFH C0H starting exactly at the limit faults for
a segment violation (a one byte instruction at FFFFFFFFH does not cause an exception). Using the Pentium 4
microprocessor family, neither of these situations causes a fault.

Segment wraparound and the functionality of A20M# is used primarily by older operating systems and not used
by modern operating systems. On newer Intel 64 processors, A20M# may be absent.

...

33. Updates to Chapter 23, Volume 3B
Change bars show changes to Chapter 23 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

23.8 RESTRICTIONS ON VMX OPERATION
VMX operation places restrictions on processor operation. These are detailed below:
• In VMX operation, processors may fix certain bits in CR0 and CR4 to specific values and not support other

values. VMXON fails if any of these bits contains an unsupported value (see “VMXON—Enter VMX Operation”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 343

in Chapter 30). Any attempt to set one of these bits to an unsupported value while in VMX operation (including
VMX root operation) using any of the CLTS, LMSW, or MOV CR instructions causes a general-protection
exception. VM entry or VM exit cannot set any of these bits to an unsupported value. Software should consult
the VMX capability MSRs IA32_VMX_CR0_FIXED0 and IA32_VMX_CR0_FIXED1 to determine how bits in CR0
are fixed. (see Appendix A.7). For CR4, software should consult the VMX capability MSRs
IA32_VMX_CR4_FIXED0 and IA32_VMX_CR4_FIXED1 (see Appendix A.8).

NOTES
The first processors to support VMX operation require that the following bits be 1 in VMX
operation: CR0.PE, CR0.NE, CR0.PG, and CR4.VMXE. The restrictions on CR0.PE and CR0.PG
imply that VMX operation is supported only in paged protected mode (including IA-32e mode).
Therefore, guest software cannot be run in unpaged protected mode or in real-address mode. See
Section 31.2, “Supporting Processor Operating Modes in Guest Environments,” for a discussion of
how a VMM might support guest software that expects to run in unpaged protected mode or in
real-address mode.
Later processors support a VM-execution control called “unrestricted guest” (see Section 24.6.2).
If this control is 1, CR0.PE and CR0.PG may be 0 in VMX non-root operation (even if the capability
MSR IA32_VMX_CR0_FIXED0 reports otherwise).1 Such processors allow guest software to run in
unpaged protected mode or in real-address mode.

• VMXON fails if a logical processor is in A20M mode (see “VMXON—Enter VMX Operation” in Chapter 30). Once
the processor is in VMX operation, A20M interrupts are blocked. Thus, it is impossible to be in A20M mode in
VMX operation.

• The INIT signal is blocked whenever a logical processor is in VMX root operation. It is not blocked in VMX non-
root operation. Instead, INITs cause VM exits (see Section 25.2, “Other Causes of VM Exits”).

...

34. Updates to Chapter 24, Volume 3B
Change bars show changes to Chapter 24 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

24.4.2 Guest Non-Register State
In addition to the register state described in Section 24.4.1, the guest-state area includes the following fields that
characterize guest state but which do not correspond to processor registers:
• Activity state (32 bits). This field identifies the logical processor’s activity state. When a logical processor is

executing instructions normally, it is in the active state. Execution of certain instructions and the occurrence
of certain events may cause a logical processor to transition to an inactive state in which it ceases to execute
instructions.
The following activity states are defined:2

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VMX non-root operation functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.

2. Execution of the MWAIT instruction may put a logical processor into an inactive state. However, this VMCS field never reflects this
state. See Section 27.1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 344

— 0: Active. The logical processor is executing instructions normally.

— 1: HLT. The logical processor is inactive because it executed the HLT instruction.

— 2: Shutdown. The logical processor is inactive because it incurred a triple fault1 or some other serious
error.

— 3: Wait-for-SIPI. The logical processor is inactive because it is waiting for a startup-IPI (SIPI).
Future processors may include support for other activity states. Software should read the VMX capability MSR
IA32_VMX_MISC (see Appendix A.6) to determine what activity states are supported.

• Interruptibility state (32 bits). The IA-32 architecture includes features that permit certain events to be
blocked for a period of time. This field contains information about such blocking. Details and the format of this
field are given in Table 24-3.

• Pending debug exceptions (64 bits; 32 bits on processors that do not support Intel 64 architecture). IA-32
processors may recognize one or more debug exceptions without immediately delivering them.2 This field
contains information about such exceptions. This field is described in Table 24-4.

1. A triple fault occurs when a logical processor encounters an exception while attempting to deliver a double fault.

Table 24-3 Format of Interruptibility State

Bit
Position(s)

Bit Name Notes

0 Blocking by STI See the “STI—Set Interrupt Flag” section in Chapter 4 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2B.

Execution of STI with RFLAGS.IF = 0 blocks interrupts (and, optionally, other events) for one
instruction after its execution. Setting this bit indicates that this blocking is in effect.

1 Blocking by
MOV SS

See the “MOV—Move a Value from the Stack” from Chapter 3 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A, and “POP—Pop a Value from the
Stack” from Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B, and Section 6.8.3 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

Execution of a MOV to SS or a POP to SS blocks interrupts for one instruction after its
execution. In addition, certain debug exceptions are inhibited between a MOV to SS or a POP to
SS and a subsequent instruction. Setting this bit indicates that the blocking of all these events
is in effect. This document uses the term “blocking by MOV SS,” but it applies equally to POP SS.

2 Blocking by SMI See Section 34.2. System-management interrupts (SMIs) are disabled while the processor is in
system-management mode (SMM). Setting this bit indicates that blocking of SMIs is in effect.

3 Blocking by NMI See Section 6.7.1 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A and Section 34.8.

Delivery of a non-maskable interrupt (NMI) or a system-management interrupt (SMI) blocks
subsequent NMIs until the next execution of IRET. See Section 25.3 for how this behavior of
IRET may change in VMX non-root operation. Setting this bit indicates that blocking of NMIs is
in effect. Clearing this bit does not imply that NMIs are not (temporarily) blocked for other
reasons.

If the “virtual NMIs” VM-execution control (see Section 24.6.1) is 1, this bit does not control the
blocking of NMIs. Instead, it refers to “virtual-NMI blocking” (the fact that guest software is not
ready for an NMI).

31:4 Reserved VM entry will fail if these bits are not 0. See Section 26.3.1.5.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 345

• VMCS link pointer (64 bits). If the “VMCS shadowing” VM-execution control is 1, the VMREAD and VMWRITE
instructions access the VMCS referenced by this pointer (see Section 24.10). Otherwise, software should set
this field to FFFFFFFF_FFFFFFFFH to avoid VM-entry failures (see Section 26.3.1.5).

• VMX-preemption timer value (32 bits). This field is supported only on processors that support the 1-
setting of the “activate VMX-preemption timer” VM-execution control. This field contains the value that the
VMX-preemption timer will use following the next VM entry with that setting. See Section 25.5.1 and Section
26.6.4.

• Page-directory-pointer-table entries (PDPTEs; 64 bits each). These four (4) fields (PDPTE0, PDPTE1,
PDPTE2, and PDPTE3) are supported only on processors that support the 1-setting of the “enable EPT” VM-
execution control. They correspond to the PDPTEs referenced by CR3 when PAE paging is in use (see Section
4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). They are used only if
the “enable EPT” VM-execution control is 1.

• Guest interrupt status (16 bits). This field is supported only on processors that support the 1-setting of the
“virtual-interrupt delivery” VM-execution control. It characterizes part of the guest’s virtual-APIC state and
does not correspond to any processor or APIC registers. It comprises two 8-bit subfields:

— Requesting virtual interrupt (RVI). This is the low byte of the guest interrupt status. The processor
treats this value as the vector of the highest priority virtual interrupt that is requesting service. (The value
0 implies that there is no such interrupt.)

— Servicing virtual interrupt (SVI). This is the high byte of the guest interrupt status. The processor
treats this value as the vector of the highest priority virtual interrupt that is in service. (The value 0 implies
that there is no such interrupt.)

See Chapter 29 for more information on the use of this field.

...

2. For example, execution of a MOV to SS or a POP to SS may inhibit some debug exceptions for one instruction. See Section 6.8.3 of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In addition, certain events incident to an instruction
(for example, an INIT signal) may take priority over debug traps generated by that instruction. See Table 6-2 in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Table 24-4 Format of Pending-Debug-Exceptions

Bit
Position(s)

Bit Name Notes

3:0 B3 – B0 When set, each of these bits indicates that the corresponding breakpoint condition was met.
Any of these bits may be set even if the corresponding enabling bit in DR7 is not set.

11:4 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5.

12 Enabled
breakpoint

When set, this bit indicates that at least one data or I/O breakpoint was met and was enabled in
DR7.

13 Reserved VM entry fails if this bit is not 0. See Section 26.3.1.5.

14 BS When set, this bit indicates that a debug exception would have been triggered by single-step
execution mode.

63:15 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5. Bits 63:32 exist only on processors
that support Intel 64 architecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 346

24.5 HOST-STATE AREA
This section describes fields contained in the host-state area of the VMCS. As noted earlier, processor state is
loaded from these fields on every VM exit (see Section 27.5).

All fields in the host-state area correspond to processor registers:
• CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel 64 architecture).
• RSP and RIP (64 bits each; 32 bits on processors that do not support Intel 64 architecture).
• Selector fields (16 bits each) for the segment registers CS, SS, DS, ES, FS, GS, and TR. There is no field in the

host-state area for the LDTR selector.
• Base-address fields for FS, GS, TR, GDTR, and IDTR (64 bits each; 32 bits on processors that do not support

Intel 64 architecture).
• The following MSRs:

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on processors that do not support Intel
64 architecture).

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on processors that support the 1-setting
of the “load IA32_PERF_GLOBAL_CTRL” VM-exit control.

— IA32_PAT (64 bits). This field is supported only on processors that support the 1-setting of the “load
IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on processors that support the 1-setting of the “load
IA32_EFER” VM-exit control.

In addition to the state identified here, some processor state components are loaded with fixed values on every
VM exit; there are no fields corresponding to these components in the host-state area. See Section 27.5 for
details of how state is loaded on VM exits.

...

24.6.2 Processor-Based VM-Execution Controls
The processor-based VM-execution controls constitute two 32-bit vectors that govern the handling of synchro-
nous events, mainly those caused by the execution of specific instructions.1 These are the primary processor-
based VM-execution controls and the secondary processor-based VM-execution controls.

Table 24-6 lists the primary processor-based VM-execution controls. See Chapter 25 for more details of how these
controls affect processor behavior in VMX non-root operation.

1. Some instructions cause VM exits regardless of the settings of the processor-based VM-execution controls (see Section 25.1.2), as
do task switches (see Section 25.2).

Table 24-6 Definitions of Primary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

2 Interrupt-window
exiting

If this control is 1, a VM exit occurs at the beginning of any instruction if RFLAGS.IF = 1 and
there are no other blocking of interrupts (see Section 24.4.2).

3 Use TSC offsetting This control determines whether executions of RDTSC, executions of RDTSCP, and executions
of RDMSR that read from the IA32_TIME_STAMP_COUNTER MSR return a value modified by
the TSC offset field (see Section 24.6.5 and Section 25.3).

7 HLT exiting This control determines whether executions of HLT cause VM exits.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 347

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs
IA32_VMX_PROCBASED_CTLS and IA32_VMX_TRUE_PROCBASED_CTLS (see Appendix A.3.2) to determine how
to set reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section
26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 1, 4–6, 8, 13–
16, and 26. The VMX capability MSR IA32_VMX_PROCBASED_CTLS will always report that these bits must be 1.
Logical processors that support the 0-settings of any of these bits will support the VMX capability MSR
IA32_VMX_TRUE_PROCBASED_CTLS MSR, and software should consult this MSR to discover support for the 0-

9 INVLPG exiting This determines whether executions of INVLPG cause VM exits.

10 MWAIT exiting This control determines whether executions of MWAIT cause VM exits.

11 RDPMC exiting This control determines whether executions of RDPMC cause VM exits.

12 RDTSC exiting This control determines whether executions of RDTSC and RDTSCP cause VM exits.

15 CR3-load exiting In conjunction with the CR3-target controls (see Section 24.6.7), this control determines
whether executions of MOV to CR3 cause VM exits. See Section 25.1.3.

The first processors to support the virtual-machine extensions supported only the 1-setting
of this control.

16 CR3-store exiting This control determines whether executions of MOV from CR3 cause VM exits.

The first processors to support the virtual-machine extensions supported only the 1-setting
of this control.

19 CR8-load exiting This control determines whether executions of MOV to CR8 cause VM exits.

20 CR8-store exiting This control determines whether executions of MOV from CR8 cause VM exits.

21 Use TPR shadow Setting this control to 1 enables TPR virtualization and other APIC-virtualization features. See
Chapter 29.

22 NMI-window
exiting

If this control is 1, a VM exit occurs at the beginning of any instruction if there is no virtual-
NMI blocking (see Section 24.4.2).

23 MOV-DR exiting This control determines whether executions of MOV DR cause VM exits.

24 Unconditional I/O
exiting

This control determines whether executions of I/O instructions (IN, INS/INSB/INSW/INSD, OUT,
and OUTS/OUTSB/OUTSW/OUTSD) cause VM exits.

25 Use I/O bitmaps This control determines whether I/O bitmaps are used to restrict executions of I/O instructions
(see Section 24.6.4 and Section 25.1.3).

For this control, “0” means “do not use I/O bitmaps” and “1” means “use I/O bitmaps.” If the I/O
bitmaps are used, the setting of the “unconditional I/O exiting” control is ignored.

27 Monitor trap flag If this control is 1, the monitor trap flag debugging feature is enabled. See Section 25.5.2.

28 Use MSR bitmaps This control determines whether MSR bitmaps are used to control execution of the RDMSR
and WRMSR instructions (see Section 24.6.9 and Section 25.1.3).

For this control, “0” means “do not use MSR bitmaps” and “1” means “use MSR bitmaps.” If the
MSR bitmaps are not used, all executions of the RDMSR and WRMSR instructions cause
VM exits.

29 MONITOR exiting This control determines whether executions of MONITOR cause VM exits.

30 PAUSE exiting This control determines whether executions of PAUSE cause VM exits.

31 Activate secondary
controls

This control determines whether the secondary processor-based VM-execution controls are
used. If this control is 0, the logical processor operates as if all the secondary processor-based
VM-execution controls were also 0.

Table 24-6 Definitions of Primary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 348

settings of these bits. Software that is not aware of the functionality of any one of these bits should set that bit to
1.

Bit 31 of the primary processor-based VM-execution controls determines whether the secondary processor-based
VM-execution controls are used. If that bit is 0, VM entry and VMX non-root operation function as if all the
secondary processor-based VM-execution controls were 0. Processors that support only the 0-setting of bit 31 of
the primary processor-based VM-execution controls do not support the secondary processor-based VM-execution
controls.

Table 24-7 lists the secondary processor-based VM-execution controls. See Chapter 25 for more details of how
these controls affect processor behavior in VMX non-root operation.

All other bits in this field are reserved to 0. Software should consult the VMX capability MSR
IA32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3) to determine which bits may be set to 1. Failure to clear
reserved bits causes subsequent VM entries to fail (see Section 26.2.1.1).

Table 24-7 Definitions of Secondary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

0 Virtualize APIC
accesses

If this control is 1, the logical processor treats specially accesses to the page with the APIC-
access address. See Section 29.4.

1 Enable EPT If this control is 1, extended page tables (EPT) are enabled. See Section 28.2.

2 Descriptor-table
exiting

This control determines whether executions of LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, and
STR cause VM exits.

3 Enable RDTSCP If this control is 0, any execution of RDTSCP causes an invalid-opcode exception (#UD).

4 Virtualize x2APIC
mode

If this control is 1, the logical processor treats specially RDMSR and WRMSR to APIC MSRs (in
the range 800H–8FFH). See Section 29.5.

5 Enable VPID If this control is 1, cached translations of linear addresses are associated with a virtual-
processor identifier (VPID). See Section 28.1.

6 WBINVD exiting This control determines whether executions of WBINVD cause VM exits.

7 Unrestricted guest This control determines whether guest software may run in unpaged protected mode or in real-
address mode.

8 APIC-register
virtualization

If this control is 1, the logical processor virtualizes certain APIC accesses. See Section 29.4 and
Section 29.5.

9 Virtual-interrupt
delivery

This controls enables the evaluation and delivery of pending virtual interrupts as well as the
emulation of writes to the APIC registers that control interrupt prioritization.

10 PAUSE-loop exiting This control determines whether a series of executions of PAUSE can cause a VM exit (see
Section 24.6.13 and Section 25.1.3).

11 RDRAND exiting This control determines whether executions of RDRAND cause VM exits.

12 Enable INVPCID If this control is 0, any execution of INVPCID causes a #UD.

13 Enable
VM functions

Setting this control to 1 enables use of the VMFUNC instruction in VMX non-root operation. See
Section 25.5.5.

14 VMCS shadowing If this control is 1, executions of VMREAD and VMWRITE in VMX non-root operation may access
a shadow VMCS (instead of causing VM exits). See Section 24.10 and Section 30.3.

16 RDSEED exiting This control determines whether executions of RDSEED cause VM exits.

18 EPT-violation #VE If this control is 1, EPT violations may cause virtualization exceptions (#VE) instead of VM exits.
See Section 25.5.6.

20 Enable XSAVES/
XRSTORS

If this control is 0, any execution of XSAVES or XRSTORS causes a #UD.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 349

...

35. Updates to Chapter 25, Volume 3C
Change bars show changes to Chapter 25 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

25.1.3 Instructions That Cause VM Exits Conditionally
Certain instructions cause VM exits in VMX non-root operation depending on the setting of the VM-execution
controls. The following instructions can cause “fault-like” VM exits based on the conditions described:1

• CLTS. The CLTS instruction causes a VM exit if the bits in position 3 (corresponding to CR0.TS) are set in both
the CR0 guest/host mask and the CR0 read shadow.

• HLT. The HLT instruction causes a VM exit if the “HLT exiting” VM-execution control is 1.
• IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD. The behavior of each of these

instructions is determined by the settings of the “unconditional I/O exiting” and “use I/O bitmaps”
VM-execution controls:

— If both controls are 0, the instruction executes normally.

— If the “unconditional I/O exiting” VM-execution control is 1 and the “use I/O bitmaps” VM-execution
control is 0, the instruction causes a VM exit.

— If the “use I/O bitmaps” VM-execution control is 1, the instruction causes a VM exit if it attempts to access
an I/O port corresponding to a bit set to 1 in the appropriate I/O bitmap (see Section 24.6.4). If an I/O
operation “wraps around” the 16-bit I/O-port space (accesses ports FFFFH and 0000H), the I/O instruction
causes a VM exit (the “unconditional I/O exiting” VM-execution control is ignored if the “use I/O bitmaps”
VM-execution control is 1).

See Section 25.1.1 for information regarding the priority of VM exits relative to faults that may be caused by
the INS and OUTS instructions.

• INVLPG. The INVLPG instruction causes a VM exit if the “INVLPG exiting” VM-execution control is 1.
• INVPCID. The INVPCID instruction causes a VM exit if the “INVLPG exiting” and “enable INVPCID”

VM-execution controls are both 1.
• LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR. These instructions cause VM exits if the “descriptor-

table exiting” VM-execution control is 1.
• LMSW. In general, the LMSW instruction causes a VM exit if it would write, for any bit set in the low 4 bits of

the CR0 guest/host mask, a value different than the corresponding bit in the CR0 read shadow. LMSW never
clears bit 0 of CR0 (CR0.PE); thus, LMSW causes a VM exit if either of the following are true:

— The bits in position 0 (corresponding to CR0.PE) are set in both the CR0 guest/mask and the source
operand, and the bit in position 0 is clear in the CR0 read shadow.

— For any bit position in the range 3:1, the bit in that position is set in the CR0 guest/mask and the values
of the corresponding bits in the source operand and the CR0 read shadow differ.

• MONITOR. The MONITOR instruction causes a VM exit if the “MONITOR exiting” VM-execution control is 1.

1. Many of the items in this section refer to secondary processor-based VM-execution controls. If bit 31 of the primary processor-
based VM-execution controls is 0, VMX non-root operation functions as if these controls were all 0. See Section 24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 350

• MOV from CR3. The MOV from CR3 instruction causes a VM exit if the “CR3-store exiting” VM-execution
control is 1. The first processors to support the virtual-machine extensions supported only the 1-setting of this
control.

• MOV from CR8. The MOV from CR8 instruction causes a VM exit if the “CR8-store exiting” VM-execution
control is 1.

• MOV to CR0. The MOV to CR0 instruction causes a VM exit unless the value of its source operand matches,
for the position of each bit set in the CR0 guest/host mask, the corresponding bit in the CR0 read shadow. (If
every bit is clear in the CR0 guest/host mask, MOV to CR0 cannot cause a VM exit.)

• MOV to CR3. The MOV to CR3 instruction causes a VM exit unless the “CR3-load exiting” VM-execution
control is 0 or the value of its source operand is equal to one of the CR3-target values specified in the VMCS.
If the CR3-target count in n, only the first n CR3-target values are considered; if the CR3-target count is 0,
MOV to CR3 always causes a VM exit.
The first processors to support the virtual-machine extensions supported only the 1-setting of the “CR3-load
exiting” VM-execution control. These processors always consult the CR3-target controls to determine
whether an execution of MOV to CR3 causes a VM exit.

• MOV to CR4. The MOV to CR4 instruction causes a VM exit unless the value of its source operand matches,
for the position of each bit set in the CR4 guest/host mask, the corresponding bit in the CR4 read shadow.

• MOV to CR8. The MOV to CR8 instruction causes a VM exit if the “CR8-load exiting” VM-execution control is 1.
• MOV DR. The MOV DR instruction causes a VM exit if the “MOV-DR exiting” VM-execution control is 1. Such

VM exits represent an exception to the principles identified in Section 25.1.1 in that they take priority over the
following: general-protection exceptions based on privilege level; and invalid-opcode exceptions that occur
because CR4.DE=1 and the instruction specified access to DR4 or DR5.

• MWAIT. The MWAIT instruction causes a VM exit if the “MWAIT exiting” VM-execution control is 1. If this
control is 0, the behavior of the MWAIT instruction may be modified (see Section 25.3).

• PAUSE.The behavior of each of this instruction depends on CPL and the settings of the “PAUSE exiting” and
“PAUSE-loop exiting” VM-execution controls:

— CPL = 0.

• If the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls are both 0, the PAUSE
instruction executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction causes a VM exit (the “PAUSE-
loop exiting” VM-execution control is ignored if CPL = 0 and the “PAUSE exiting” VM-execution control
is 1).

• If the “PAUSE exiting” VM-execution control is 0 and the “PAUSE-loop exiting” VM-execution control is
1, the following treatment applies.

The processor determines the amount of time between this execution of PAUSE and the previous
execution of PAUSE at CPL 0. If this amount of time exceeds the value of the VM-execution control field
PLE_Gap, the processor considers this execution to be the first execution of PAUSE in a loop. (It also
does so for the first execution of PAUSE at CPL 0 after VM entry.)

Otherwise, the processor determines the amount of time since the most recent execution of PAUSE
that was considered to be the first in a loop. If this amount of time exceeds the value of the VM-
execution control field PLE_Window, a VM exit occurs.

For purposes of these computations, time is measured based on a counter that runs at the same rate
as the timestamp counter (TSC).

— CPL > 0.

• If the “PAUSE exiting” VM-execution control is 0, the PAUSE instruction executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction causes a VM exit.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 351

The “PAUSE-loop exiting” VM-execution control is ignored if CPL > 0.
• RDMSR. The RDMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the ranges 00000000H – 00001FFFH and C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in read bitmap for low MSRs is 1,
where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in read bitmap for high MSRs is 1,
where n is the value of ECX & 00001FFFH.

See Section 24.6.9 for details regarding how these bitmaps are identified.
• RDPMC. The RDPMC instruction causes a VM exit if the “RDPMC exiting” VM-execution control is 1.
• RDRAND. The RDRAND instruction causes a VM exit if the “RDRAND exiting” VM-execution control is 1.
• RDSEED. The RDSEED instruction causes a VM exit if the “RDSEED exiting” VM-execution control is 1.
• RDTSC. The RDTSC instruction causes a VM exit if the “RDTSC exiting” VM-execution control is 1.
• RDTSCP. The RDTSCP instruction causes a VM exit if the “RDTSC exiting” and “enable RDTSCP” VM-execution

controls are both 1.
• RSM. The RSM instruction causes a VM exit if executed in system-management mode (SMM).1

• VMREAD. The VMREAD instruction causes a VM exit if any of the following are true:

— The “VMCS shadowing” VM-execution control is 0.

— Bits 63:15 (bits 31:15 outside 64-bit mode) of the register source operand are not all 0.

— Bit n in VMREAD bitmap is 1, where n is the value of bits 14:0 of the register source operand. See Section
24.6.15 for details regarding how the VMREAD bitmap is identified.

If the VMREAD instruction does not cause a VM exit, it reads from the VMCS referenced by the VMCS link
pointer. See Chapter 30, “VMREAD—Read Field from Virtual-Machine Control Structure” for details of the
operation of the VMREAD instruction.

• VMWRITE. The VMWRITE instruction causes a VM exit if any of the following are true:

— The “VMCS shadowing” VM-execution control is 0.

— Bits 63:15 (bits 31:15 outside 64-bit mode) of the register source operand are not all 0.

— Bit n in VMWRITE bitmap is 1, where n is the value of bits 14:0 of the register source operand. See Section
24.6.15 for details regarding how the VMWRITE bitmap is identified.

If the VMWRITE instruction does not cause a VM exit, it writes to the VMCS referenced by the VMCS link
pointer. See Chapter 30, “VMWRITE—Write Field to Virtual-Machine Control Structure” for details of the
operation of the VMWRITE instruction.

• WBINVD. The WBINVD instruction causes a VM exit if the “WBINVD exiting” VM-execution control is 1.
• WRMSR. The WRMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the ranges 00000000H – 00001FFFH and C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in write bitmap for low MSRs is 1,
where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in write bitmap for high MSRs is 1,
where n is the value of ECX & 00001FFFH.

1. Execution of the RSM instruction outside SMM causes an invalid-opcode exception regardless of whether the processor is in VMX
operation. It also does so in VMX root operation in SMM; see Section 34.15.3.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 352

See Section 24.6.9 for details regarding how these bitmaps are identified.
• XRSTORS. The XRSTORS instruction causes a VM exit if the “enable XSAVES/XRSTORS” VM-execution

control is 1and any bit is set in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR,
and the XSS-exiting bitmap (see Section 24.6.17).

• XSAVES. The XSAVES instruction causes a VM exit if the “enable XSAVES/XRSTORS” VM-execution control is
1and any bit is set in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the
XSS-exiting bitmap (see Section 24.6.17).

...

25.3 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT OPERATION
The behavior of some instructions is changed in VMX non-root operation. Some of these changes are determined
by the settings of certain VM-execution control fields. The following items detail such changes:1

• CLTS. Behavior of the CLTS instruction is determined by the bits in position 3 (corresponding to CR0.TS) in
the CR0 guest/host mask and the CR0 read shadow:

— If bit 3 in the CR0 guest/host mask is 0, CLTS clears CR0.TS normally (the value of bit 3 in the CR0 read
shadow is irrelevant in this case), unless CR0.TS is fixed to 1 in VMX operation (see Section 23.8), in which
case CLTS causes a general-protection exception.

— If bit 3 in the CR0 guest/host mask is 1 and bit 3 in the CR0 read shadow is 0, CLTS completes but does
not change the contents of CR0.TS.

— If the bits in position 3 in the CR0 guest/host mask and the CR0 read shadow are both 1, CLTS causes a
VM exit.

• INVPCID. Behavior of the INVPCID instruction is determined first by the setting of the “enable INVPCID”
VM-execution control:

— If the “enable INVPCID” VM-execution control is 0, INVPCID causes an invalid-opcode exception (#UD).

— If the “enable INVPCID” VM-execution control is 1, treatment is based on the setting of the “INVLPG
exiting” VM-execution control:

• If the “INVLPG exiting” VM-execution control is 0, INVPCID operates normally.

• If the “INVLPG exiting” VM-execution control is 1, INVPCID causes a VM exit.
• IRET. Behavior of IRET with regard to NMI blocking (see Table 24-3) is determined by the settings of the “NMI

exiting” and “virtual NMIs” VM-execution controls:

— If the “NMI exiting” VM-execution control is 0, IRET operates normally and unblocks NMIs. (If the “NMI
exiting” VM-execution control is 0, the “virtual NMIs” control must be 0; see Section 26.2.1.1.)

— If the “NMI exiting” VM-execution control is 1, IRET does not affect blocking of NMIs. If, in addition, the
“virtual NMIs” VM-execution control is 1, the logical processor tracks virtual-NMI blocking. In this case,
IRET removes any virtual-NMI blocking.

The unblocking of NMIs or virtual NMIs specified above occurs even if IRET causes a fault.
• LMSW. Outside of VMX non-root operation, LMSW loads its source operand into CR0[3:0], but it does not

clear CR0.PE if that bit is set. In VMX non-root operation, an execution of LMSW that does not cause a VM exit
(see Section 25.1.3) leaves unmodified any bit in CR0[3:0] corresponding to a bit set in the CR0 guest/host
mask. An attempt to set any other bit in CR0[3:0] to a value not supported in VMX operation (see Section
23.8) causes a general-protection exception. Attempts to clear CR0.PE are ignored without fault.

1. Some of the items in this section refer to secondary processor-based VM-execution controls. If bit 31 of the primary processor-
based VM-execution controls is 0, VMX non-root operation functions as if these controls were all 0. See Section 24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 353

• MOV from CR0. The behavior of MOV from CR0 is determined by the CR0 guest/host mask and the CR0 read
shadow. For each position corresponding to a bit clear in the CR0 guest/host mask, the destination operand is
loaded with the value of the corresponding bit in CR0. For each position corresponding to a bit set in the CR0
guest/host mask, the destination operand is loaded with the value of the corresponding bit in the CR0 read
shadow. Thus, if every bit is cleared in the CR0 guest/host mask, MOV from CR0 reads normally from CR0; if
every bit is set in the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read shadow.
Depending on the contents of the CR0 guest/host mask and the CR0 read shadow, bits may be set in the
destination that would never be set when reading directly from CR0.

• MOV from CR3. If the “enable EPT” VM-execution control is 1 and an execution of MOV from CR3 does not
cause a VM exit (see Section 25.1.3), the value loaded from CR3 is a guest-physical address; see Section
28.2.1.

• MOV from CR4. The behavior of MOV from CR4 is determined by the CR4 guest/host mask and the CR4 read
shadow. For each position corresponding to a bit clear in the CR4 guest/host mask, the destination operand is
loaded with the value of the corresponding bit in CR4. For each position corresponding to a bit set in the CR4
guest/host mask, the destination operand is loaded with the value of the corresponding bit in the CR4 read
shadow. Thus, if every bit is cleared in the CR4 guest/host mask, MOV from CR4 reads normally from CR4; if
every bit is set in the CR4 guest/host mask, MOV from CR4 returns the value of the CR4 read shadow.
Depending on the contents of the CR4 guest/host mask and the CR4 read shadow, bits may be set in the
destination that would never be set when reading directly from CR4.

• MOV from CR8. If the MOV from CR8 instruction does not cause a VM exit (see Section 25.1.3), its behavior
is modified if the “use TPR shadow” VM-execution control is 1; see Section 29.3.

• MOV to CR0. An execution of MOV to CR0 that does not cause a VM exit (see Section 25.1.3) leaves
unmodified any bit in CR0 corresponding to a bit set in the CR0 guest/host mask. Treatment of attempts to
modify other bits in CR0 depends on the setting of the “unrestricted guest” VM-execution control:

— If the control is 0, MOV to CR0 causes a general-protection exception if it attempts to set any bit in CR0 to
a value not supported in VMX operation (see Section 23.8).

— If the control is 1, MOV to CR0 causes a general-protection exception if it attempts to set any bit in CR0
other than bit 0 (PE) or bit 31 (PG) to a value not supported in VMX operation. It remains the case,
however, that MOV to CR0 causes a general-protection exception if it would result in CR0.PE = 0 and
CR0.PG = 1 or if it would result in CR0.PG = 1, CR4.PAE = 0, and IA32_EFER.LME = 1.

• MOV to CR3. If the “enable EPT” VM-execution control is 1 and an execution of MOV to CR3 does not cause a
VM exit (see Section 25.1.3), the value loaded into CR3 is treated as a guest-physical address; see Section
28.2.1.

— If PAE paging is not being used, the instruction does not use the guest-physical address to access memory
and it does not cause it to be translated through EPT.1

— If PAE paging is being used, the instruction translates the guest-physical address through EPT and uses
the result to load the four (4) page-directory-pointer-table entries (PDPTEs). The instruction does not use
the guest-physical addresses the PDPTEs to access memory and it does not cause them to be translated
through EPT.

• MOV to CR4. An execution of MOV to CR4 that does not cause a VM exit (see Section 25.1.3) leaves
unmodified any bit in CR4 corresponding to a bit set in the CR4 guest/host mask. Such an execution causes a
general-protection exception if it attempts to set any bit in CR4 (not corresponding to a bit set in the CR4
guest/host mask) to a value not supported in VMX operation (see Section 23.8).

• MOV to CR8. If the MOV to CR8 instruction does not cause a VM exit (see Section 25.1.3), its behavior is
modified if the “use TPR shadow” VM-execution control is 1; see Section 29.3.

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 354

• MWAIT. Behavior of the MWAIT instruction (which always causes an invalid-opcode exception—#UD—if
CPL > 0) is determined by the setting of the “MWAIT exiting” VM-execution control:

— If the “MWAIT exiting” VM-execution control is 1, MWAIT causes a VM exit.

— If the “MWAIT exiting” VM-execution control is 0, MWAIT operates normally if one of the following are
true: (1) ECX[0] is 0; (2) RFLAGS.IF = 1; or both of the following are true: (a) the “interrupt-window
exiting” VM-execution control is 0; and (b) the logical processor has not recognized a pending virtual
interrupt (see Section 29.2.1).

— If the “MWAIT exiting” VM-execution control is 0, ECX[0] = 1, and RFLAGS.IF = 0, MWAIT does not cause
the processor to enter an implementation-dependent optimized state if either the “interrupt-window
exiting” VM-execution control is 1 or the logical processor has recognized a pending virtual interrupt;
instead, control passes to the instruction following the MWAIT instruction.

• RDMSR. Section 25.1.3 identifies when executions of the RDMSR instruction cause VM exits. If such an
execution causes neither a fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified for
certain values of ECX:

— If ECX contains 10H (indicating the IA32_TIME_STAMP_COUNTER MSR), the value returned by the
instruction is determined by the setting of the “use TSC offsetting” VM-execution control as well as the
TSC offset:

• If the control is 0, the instruction operates normally, loading EAX:EDX with the value of the
IA32_TIME_STAMP_COUNTER MSR.

• If the control is 1, the instruction loads EAX:EDX with the sum (using signed addition) of the value of
the IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset (interpreted as a signed value).

The 1-setting of the “use TSC-offsetting” VM-execution control does not effect executions of RDMSR if ECX
contains 6E0H (indicating the IA32_TSC_DEADLINE MSR). Such executions return the APIC-timer
deadline relative to the actual timestamp counter without regard to the TSC offset.

— If ECX is in the range 800H–8FFH (indicating an APIC MSR), instruction behavior may be modified if the
“virtualize x2APIC mode” VM-execution control is 1; see Section 29.5.

• RDTSC. Behavior of the RDTSC instruction is determined by the settings of the “RDTSC exiting” and “use TSC
offsetting” VM-execution controls as well as the TSC offset:

— If both controls are 0, RDTSC operates normally.

— If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting” VM-execution control is 1,
RDTSC loads EAX:EDX with the sum (using signed addition) of the value of the
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset (interpreted as a signed value).

— If the “RDTSC exiting” VM-execution control is 1, RDTSC causes a VM exit.
• RDTSCP. Behavior of the RDTSCP instruction is determined first by the setting of the “enable RDTSCP”

VM-execution control:

— If the “enable RDTSCP” VM-execution control is 0, RDTSCP causes an invalid-opcode exception (#UD).

— If the “enable RDTSCP” VM-execution control is 1, treatment is based on the settings of the “RDTSC
exiting” and “use TSC offsetting” VM-execution controls as well as the TSC offset:

• If both controls are 0, RDTSCP operates normally.

• If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting” VM-execution control is
1, RDTSCP loads EAX:EDX with the sum (using signed addition) of the value of the
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset (interpreted as a signed value); it
also loads ECX with the value of bits 31:0 of the IA32_TSC_AUX MSR.

• If the “RDTSC exiting” VM-execution control is 1, RDTSCP causes a VM exit.
• SMSW. The behavior of SMSW is determined by the CR0 guest/host mask and the CR0 read shadow. For each

position corresponding to a bit clear in the CR0 guest/host mask, the destination operand is loaded with the

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 355

value of the corresponding bit in CR0. For each position corresponding to a bit set in the CR0 guest/host mask,
the destination operand is loaded with the value of the corresponding bit in the CR0 read shadow. Thus, if
every bit is cleared in the CR0 guest/host mask, MOV from CR0 reads normally from CR0; if every bit is set in
the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read shadow.
Note the following: (1) for any memory destination or for a 16-bit register destination, only the low 16 bits of
the CR0 guest/host mask and the CR0 read shadow are used (bits 63:16 of a register destination are left
unchanged); (2) for a 32-bit register destination, only the low 32 bits of the CR0 guest/host mask and the
CR0 read shadow are used (bits 63:32 of the destination are cleared); and (3) depending on the contents of
the CR0 guest/host mask and the CR0 read shadow, bits may be set in the destination that would never be set
when reading directly from CR0.

• WRMSR. Section 25.1.3 identifies when executions of the WRMSR instruction cause VM exits. If such an
execution neither a fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified for certain
values of ECX:

— If ECX contains 79H (indicating IA32_BIOS_UPDT_TRIG MSR), no microcode update is loaded, and control
passes to the next instruction. This implies that microcode updates cannot be loaded in VMX non-root
operation.

— If ECX contains 808H (indicating the TPR MSR), 80BH (the EOI MSR), or 83FH (self-IPI MSR), instruction
behavior may modified if the “virtualize x2APIC mode” VM-execution control is 1; see Section 29.5.

• XRSTORS. Behavior of the XRSTORS instruction is determined first by the setting of the “enable XSAVES/
XRSTORS” VM-execution control:

— If the “enable XSAVES/XRSTORS” VM-execution control is 0, XRSTORS causes an invalid-opcode
exception (#UD).

— If the “enable XSAVES/XRSTORS” VM-execution control is 1, treatment is based on the value of the XSS-
exiting bitmap (see Section 24.6.17):

• XRSTORS causes a VM exit if any bit is set in the logical-AND of the following three values: EDX:EAX,
the IA32_XSS MSR, and the XSS-exiting bitmap.

• Otherwise, XRSTORS operates normally.
• XSAVES. Behavior of the XSAVES instruction is determined first by the setting of the “enable XSAVES/

XRSTORS” VM-execution control:

— If the “enable XSAVES/XRSTORS” VM-execution control is 0, XSAVES causes an invalid-opcode exception
(#UD).

— If the “enable XSAVES/XRSTORS” VM-execution control is 1, treatment is based on the value of the XSS-
exiting bitmap (see Section 24.6.17):

• XSAVES causes a VM exit if any bit is set in the logical-AND of the following three values: EDX:EAX,
the IA32_XSS MSR, and the XSS-exiting bitmap.

• Otherwise, XSAVES operates normally.

...

36. Updates to Chapter 26, Volume 3C
Change bars show changes to Chapter 26 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 356

26.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRs
The following items describe how guest control registers, debug registers, and MSRs are loaded on VM entry:
• CR0 is loaded from the CR0 field with the exception of the following bits, which are never modified on

VM entry: ET (bit 4); reserved bits 15:6, 17, and 28:19; NW (bit 29) and CD (bit 30).1 The values of these
bits in the CR0 field are ignored.

• CR3 and CR4 are loaded from the CR3 field and the CR4 field, respectively.
• If the “load debug controls” VM-entry control is 1, DR7 is loaded from the DR7 field with the exception that

bit 12 and bits 15:14 are always 0 and bit 10 is always 1. The values of these bits in the DR7 field are ignored.
The first processors to support the virtual-machine extensions supported only the 1-setting of the “load
debug controls” VM-entry control and thus always loaded DR7 from the DR7 field.

• The following describes how some MSRs are loaded using fields in the guest-state area:

— If the “load debug controls” VM-entry control is 1, the IA32_DEBUGCTL MSR is loaded from the
IA32_DEBUGCTL field. The first processors to support the virtual-machine extensions supported only the
1-setting of this control and thus always loaded the IA32_DEBUGCTL MSR from the IA32_DEBUGCTL field.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field. Since this field has only 32
bits, bits 63:32 of the MSR are cleared to 0.

— The IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are loaded from the IA32_SYSENTER_ESP field
and the IA32_SYSENTER_EIP field, respectively. On processors that do not support Intel 64 architecture,
these fields have only 32 bits; bits 63:32 of the MSRs are cleared to 0.

— The following are performed on processors that support Intel 64 architecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields for FS and GS, respectively
(see Section 26.3.2.2).

• If the “load IA32_EFER” VM-entry control is 0, bits in the IA32_EFER MSR are modified as follows:

— IA32_EFER.LMA is loaded with the setting of the “IA-32e mode guest” VM-entry control.

— If CR0 is being loaded so that CR0.PG = 1, IA32_EFER.LME is also loaded with the setting of the
“IA-32e mode guest” VM-entry control.2 Otherwise, IA32_EFER.LME is unmodified.

See below for the case in which the “load IA32_EFER” VM-entry control is 1

— If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, the IA32_PERF_GLOBAL_CTRL MSR is
loaded from the IA32_PERF_GLOBAL_CTRL field.

— If the “load IA32_PAT” VM-entry control is 1, the IA32_PAT MSR is loaded from the IA32_PAT field.

— If the “load IA32_EFER” VM-entry control is 1, the IA32_EFER MSR is loaded from the IA32_EFER field.
With the exception of FS.base and GS.base, any of these MSRs is subsequently overwritten if it appears in
the VM-entry MSR-load area. See Section 26.4.

• The SMBASE register is unmodified by all VM entries except those that return from SMM.

...

1. Bits 15:6, bit 17, and bit 28:19 of CR0 and CR0.ET are unchanged by executions of MOV to CR0. Bits 15:6, bit 17, and bit 28:19 of
CR0 are always 0 and CR0.ET is always 1.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, VM entry must be loading CR0 so
that CR0.PG = 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution
controls are both 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 357

37. Updates to Chapter 27, Volume 3C
Change bars show changes to Chapter 27 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

27.2.1 Basic VM-Exit Information
Section 24.9.1 defines the basic VM-exit information fields. The following items detail their use.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. It is loaded with a number indicating the general cause
of the VM exit. Appendix C lists the numbers used and their meaning.

— The remainder of the field (bits 31:16) is cleared to 0 (certain SMM VM exits may set some of these bits;
see Section 34.15.2.3).1

• Exit qualification. This field is saved for VM exits due to the following causes: debug exceptions; page-fault
exceptions; start-up IPIs (SIPIs); system-management interrupts (SMIs) that arrive immediately after the
retirement of I/O instructions; task switches; INVEPT; INVLPG; INVPCID; INVVPID; LGDT; LIDT; LLDT; LTR;
SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON; XRSTORS; XSAVES;
control-register accesses; MOV DR; I/O instructions; MWAIT; accesses to the APIC-access page (see Section
29.4); EPT violations; EOI virtualization (Section 29.1.4); and APIC-write emulation (see Section 29.4.3.3).
For all other VM exits, this field is cleared. The following items provide details:

— For a debug exception, the exit qualification contains information about the debug exception. The
information has the format given in Table 24-4.

— For a page-fault exception, the exit qualification contains the linear address that caused the page fault. On
processors that support Intel 64 architecture, bits 63:32 are cleared if the logical processor was not in 64-
bit mode before the VM exit.

— For a start-up IPI (SIPI), the exit qualification contains the SIPI vector information in bits 7:0. Bits 63:8
of the exit qualification are cleared to 0.

— For a task switch, the exit qualification contains details about the task switch, encoded as shown in Table
27-2.

— For INVLPG, the exit qualification contains the linear-address operand of the instruction.

1. Bit 13 of this field is set on certain VM-entry failures; see Section 26.7.

Table 27-1 Exit Qualification for Debug Exceptions

Bit Position(s) Contents

3:0 B3 – B0. When set, each of these bits indicates that the corresponding breakpoint condition was met. Any of
these bits may be set even if its corresponding enabling bit in DR7 is not set.

12:4 Reserved (cleared to 0).

13 BD. When set, this bit indicates that the cause of the debug exception is “debug register access detected.”

14 BS. When set, this bit indicates that the cause of the debug exception is either the execution of a single
instruction (if RFLAGS.TF = 1 and IA32_DEBUGCTL.BTF = 0) or a taken branch (if
RFLAGS.TF = DEBUGCTL.BTF = 1).

63:15 Reserved (cleared to 0). Bits 63:32 exist only on processors that support Intel 64 architecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 358

• On processors that support Intel 64 architecture, bits 63:32 are cleared if the logical processor was
not in 64-bit mode before the VM exit.

• If the INVLPG source operand specifies an unusable segment, the linear address specified in the exit
qualification will match the linear address that the INVLPG would have used if no VM exit occurred.
This address is not architecturally defined and may be implementation-specific.

— For INVEPT, INVPCID, INVVPID, LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR, VMCLEAR, VMPTRLD,
VMPTRST, VMREAD, VMWRITE, VMXON, XRSTORS, and XSAVES, the exit qualification receives the value
of the instruction’s displacement field, which is sign-extended to 64 bits if necessary (32 bits on
processors that do not support Intel 64 architecture). If the instruction has no displacement (for example,
has a register operand), zero is stored into the exit qualification.

On processors that support Intel 64 architecture, an exception is made for RIP-relative addressing (used
only in 64-bit mode). Such addressing causes an instruction to use an address that is the sum of the
displacement field and the value of RIP that references the following instruction. In this case, the exit
qualification is loaded with the sum of the displacement field and the appropriate RIP value.

In all cases, bits of this field beyond the instruction’s address size are undefined. For example, suppose
that the address-size field in the VM-exit instruction-information field (see Section 24.9.4 and Section
27.2.4) reports an n-bit address size. Then bits 63:n (bits 31:n on processors that do not support Intel
64 architecture) of the instruction displacement are undefined.

— For a control-register access, the exit qualification contains information about the access and has the
format given in Table 27-3.

— For MOV DR, the exit qualification contains information about the instruction and has the format given in
Table 27-4.

— For an I/O instruction, the exit qualification contains information about the instruction and has the format
given in Table 27-5.

— For MWAIT, the exit qualification contains a value that indicates whether address-range monitoring
hardware was armed. The exit qualification is set either to 0 (if address-range monitoring hardware is not
armed) or to 1 (if address-range monitoring hardware is armed).

— For an APIC-access VM exit resulting from a linear access or a guest-physical access to the APIC-access
page (see Section 29.4), the exit qualification contains information about the access and has the format
given in Table 27-6.1

Table 27-2 Exit Qualification for Task Switch

Bit Position(s) Contents

15:0 Selector of task-state segment (TSS) to which the guest attempted to switch

29:16 Reserved (cleared to 0)

31:30 Source of task switch initiation:

0: CALL instruction
1: IRET instruction
2: JMP instruction
3: Task gate in IDT

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 64 architecture.

1. The exit qualification is undefined if the access was part of the logging of a branch record or a precise-event-based-sampling
(PEBS) record to the DS save area. It is recommended that software configure the paging structures so that no address in the DS
save area translates to an address on the APIC-access page.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 359

Such a VM exit that set bits 15:12 of the exit qualification to 0000b (data read during instruction
execution) or 0001b (data write during instruction execution) set bit 12—which distinguishes data read
from data write—to that which would have been stored in bit 1—W/R—of the page-fault error code had the
access caused a page fault instead of an APIC-access VM exit. This implies the following:

• For an APIC-access VM exit caused by the CLFLUSH instruction, the access type is “data read during
instruction execution.”

• For an APIC-access VM exit caused by the ENTER instruction, the access type is “data write during
instruction execution.”

• For an APIC-access VM exit caused by the MASKMOVQ instruction or the MASKMOVDQU instruction,
the access type is “data write during instruction execution.”

• For an APIC-access VM exit caused by the MONITOR instruction, the access type is “data read during
instruction execution.”

Table 27-3 Exit Qualification for Control-Register Accesses

Bit Positions Contents

3:0 Number of control register (0 for CLTS and LMSW). Bit 3 is always 0 on processors that do not support Intel 64
architecture as they do not support CR8.

5:4 Access type:

0 = MOV to CR
1 = MOV from CR
2 = CLTS
3 = LMSW

6 LMSW operand type:

0 = register
1 = memory

For CLTS and MOV CR, cleared to 0

7 Reserved (cleared to 0)

11:8 For MOV CR, the general-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

For CLTS and LMSW, cleared to 0

15:12 Reserved (cleared to 0)

31:16 For LMSW, the LMSW source data

For CLTS and MOV CR, cleared to 0

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 64 architecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 360

Such a VM exit stores 1 for bit 31 for IDT-vectoring information field (see Section 27.2.3) if and only if it
sets bits 15:12 of the exit qualification to 0011b (linear access during event delivery) or 1010b (guest-
physical access during event delivery).

See Section 29.4.4 for further discussion of these instructions and APIC-access VM exits.

For APIC-access VM exits resulting from physical accesses to the APIC-access page (see Section 29.4.6),
the exit qualification is undefined.

— For an EPT violation, the exit qualification contains information about the access causing the EPT violation
and has the format given in Table 27-7.

An EPT violation that occurs during as a result of execution of a read-modify-write operation sets bit 1
(data write). Whether it also sets bit 0 (data read) is implementation-specific and, for a given implemen-
tation, may differ for different kinds of read-modify-write operations.

Table 27-4 Exit Qualification for MOV DR

Bit Position(s) Contents

2:0 Number of debug register

3 Reserved (cleared to 0)

4 Direction of access (0 = MOV to DR; 1 = MOV from DR)

7:5 Reserved (cleared to 0)

11:8 General-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8 –15 = R8 – R15, respectively

63:12 Reserved (cleared to 0)

Table 27-5 Exit Qualification for I/O Instructions

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)

5 REP prefixed (0 = not REP; 1 = REP)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 361

Bit 12 is undefined in any of the following cases:

• If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs” VM-execution control is 0.

• If the VM exit sets the valid bit in the IDT-vectoring information field (see Section 27.2.3).

Otherwise, bit 12 is defined as follows:

• If the “virtual NMIs” VM-execution control is 0, the EPT violation was caused by a memory access as
part of execution of the IRET instruction, and blocking by NMI (see Table 24-3) was in effect before
execution of IRET, bit 12 is set to 1.

• If the “virtual NMIs” VM-execution control is 1,the EPT violation was caused by a memory access as
part of execution of the IRET instruction, and virtual-NMI blocking was in effect before execution of
IRET, bit 12 is set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.

— For VM exits caused as part of EOI virtualization (Section 29.1.4), bits 7:0 of the exit qualification are set
to vector of the virtual interrupt that was dismissed by the EOI virtualization. Bits above bit 7 are cleared.

— For APIC-write VM exits (Section 29.4.3.3), bits 11:0 of the exit qualification are set to the page offset of
the write access that caused the VM exit.1 Bits above bit 11 are cleared.

• Guest-linear address. For some VM exits, this field receives a linear address that pertains to the VM exit.
The field is set for different VM exits as follows:

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in DX or in an immediate operand)

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 64 architecture.

Table 27-5 Exit Qualification for I/O Instructions (Contd.)

Bit Position(s) Contents

Table 27-6 Exit Qualification for APIC-Access VM Exits from Linear Accesses and Guest-Physical Accesses

Bit Position(s) Contents

11:0 • If the APIC-access VM exit is due to a linear access, the offset of access within the APIC page.
• Undefined if the APIC-access VM exit is due a guest-physical access

15:12 Access type:

0 = linear access for a data read during instruction execution
1 = linear access for a data write during instruction execution
2 = linear access for an instruction fetch
3 = linear access (read or write) during event delivery
10 = guest-physical access during event delivery
15 = guest-physical access for an instruction fetch or during instruction execution

Other values not used

63:16 Reserved (cleared to 0). Bits 63:32 exist only on processors that support Intel 64 architecture.

1. Execution of WRMSR with ECX = 83FH (self-IPI MSR) can lead to an APIC-write VM exit; the exit qualification for such an APIC-
write VM exit is 3F0H.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 362

— VM exits due to attempts to execute LMSW with a memory operand. In these cases, this field receives the
linear address of that operand. Bits 63:32 are cleared if the logical processor was not in 64-bit mode
before the VM exit.

— VM exits due to attempts to execute INS or OUTS for which the relevant segment is usable (if the relevant
segment is not usable, the value is undefined). (ES is always the relevant segment for INS; for OUTS, the
relevant segment is DS unless overridden by an instruction prefix.) The linear address is the base address
of relevant segment plus (E)DI (for INS) or (E)SI (for OUTS). Bits 63:32 are cleared if the logical
processor was not in 64-bit mode before the VM exit.

— VM exits due to EPT violations that set bit 7 of the exit qualification (see Table 27-7; these are all EPT
violations except those resulting from an attempt to load the PDPTEs as of execution of the MOV CR
instruction). The linear address may translate to the guest-physical address whose access caused the EPT
violation. Alternatively, translation of the linear address may reference a paging-structure entry whose
access caused the EPT violation. Bits 63:32 are cleared if the logical processor was not in 64-bit mode
before the VM exit.

— For all other VM exits, the field is undefined.
• Guest-physical address. For a VM exit due to an EPT violation or an EPT misconfiguration, this field receives

the guest-physical address that caused the EPT violation or EPT misconfiguration. For all other VM exits, the
field is undefined.

Table 27-7 Exit Qualification for EPT Violations

Bit Position(s) Contents

0 Set if the access causing the EPT violation was a data read.1

1 Set if the access causing the EPT violation was a data write.1

2 Set if the access causing the EPT violation was an instruction fetch.

3 The logical-AND of bit 0 in the EPT paging-structure entries used to translate the guest-physical address of the
access causing the EPT violation (indicates that the guest-physical address was readable).2

4 The logical-AND of bit 1 in the EPT paging-structure entries used to translate the guest-physical address of the
access causing the EPT violation (indicates that the guest-physical address was writeable).

5 The logical-AND of bit 2 in the EPT paging-structure entries used to translate the guest-physical address of the
access causing the EPT violation (indicates that the guest-physical address was executable).

6 Reserved (cleared to 0).

7 Set if the guest linear-address field is valid.

The guest linear-address field is valid for all EPT violations except those resulting from an attempt to load the
guest PDPTEs as part of the execution of the MOV CR instruction.

8 If bit 7 is 1:

• Set if the access causing the EPT violation is to a guest-physical address that is the translation of a linear
address.

• Clear if the access causing the EPT violation is to a paging-structure entry as part of a page walk or the
update of an accessed or dirty bit.

Reserved if bit 7 is 0 (cleared to 0).

11:9 Reserved (cleared to 0).

12 NMI unblocking due to IRET

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 363

...

27.2.4 Information for VM Exits Due to Instruction Execution
Section 24.9.4 defined fields containing information for VM exits that occur due to instruction execution. (The VM-
exit instruction length is also used for VM exits that occur during the delivery of a software interrupt or software
exception.) The following items detail their use.
• VM-exit instruction length. This field is used in the following cases:

— For fault-like VM exits due to attempts to execute one of the following instructions that cause VM exits
unconditionally (see Section 25.1.2) or based on the settings of VM-execution controls (see Section
25.1.3): CLTS, CPUID, GETSEC, HLT, IN, INS, INVD, INVEPT, INVLPG, INVPCID, INVVPID, LGDT, LIDT,
LLDT, LMSW, LTR, MONITOR, MOV CR, MOV DR, MWAIT, OUT, OUTS, PAUSE, RDMSR, RDPMC, RDRAND,
RDSEED, RDTSC, RDTSCP, RSM, SGDT, SIDT, SLDT, STR, VMCALL, VMCLEAR, VMLAUNCH, VMPTRLD,
VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, VMXON, WBINVD, WRMSR, XRSTORS, XSETBV, and
XSAVES.1

— For VM exits due to software exceptions (those generated by executions of INT3 or INTO).

— For VM exits due to faults encountered during delivery of a software interrupt, privileged software
exception, or software exception.

— For VM exits due to attempts to effect a task switch via instruction execution. These are VM exits that
produce an exit reason indicating task switch and either of the following:

• An exit qualification indicating execution of CALL, IRET, or JMP instruction.

• An exit qualification indicating a task gate in the IDT and an IDT-vectoring information field indicating
that the task gate was encountered during delivery of a software interrupt, privileged software
exception, or software exception.

— For APIC-access VM exits resulting from accesses (see Section 29.4) during delivery of a software
interrupt, privileged software exception, or software exception.2

— For VM exits due executions of VMFUNC that fail because one of the following is true:

• EAX indicates a VM function that is not enabled (the bit at position EAX is 0 in the VM-function
controls; see Section 25.5.5.2).

63:13 Reserved (cleared to 0).

NOTES:
1. If accessed and dirty flags for EPT are enabled, processor accesses to guest paging-structure entries are treated as writes with

regard to EPT violations (see Section 28.2.3.2). If such an access causes an EPT violation, the processor sets both bit 0 and bit 1 of
the exit qualification.

2. Bits 5:3 are cleared to 0 if any of EPT paging-structure entries used to translate the guest-physical address of the access causing the
EPT violation is not present (see Section 28.2.2).

Table 27-7 Exit Qualification for EPT Violations (Contd.)

Bit Position(s) Contents

1. This item applies only to fault-like VM exits. It does not apply to trap-like VM exits following executions of the MOV to CR8 instruc-
tion when the “use TPR shadow” VM-execution control is 1 or to those following executions of the WRMSR instruction when the
“virtualize x2APIC mode” VM-execution control is 1.

2. The VM-exit instruction-length field is not defined following APIC-access VM exits resulting from physical accesses (see Section
29.4.6) even if encountered during delivery of a software interrupt, privileged software exception, or software exception.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 364

• EAX = 0 and either ECX ≥ 512 or the value of ECX selects an invalid tentative EPTP value (see Section
25.5.5.3).

In all the above cases, this field receives the length in bytes (1–15) of the instruction (including any
instruction prefixes) whose execution led to the VM exit (see the next paragraph for one exception).
The cases of VM exits encountered during delivery of a software interrupt, privileged software exception, or
software exception include those encountered during delivery of events injected as part of VM entry (see
Section 26.5.1.2). If the original event was injected as part of VM entry, this field receives the value of the
VM-entry instruction length.
All VM exits other than those listed in the above items leave this field undefined.

• VM-exit instruction information. For VM exits due to attempts to execute INS, INVEPT, INVPCID, INVVPID,
LIDT, LGDT, LLDT, LTR, OUTS, RDRAND, RDSEED, SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST,
VMREAD, VMWRITE, VMXON, XRSTORS, or XSAVES, this field receives information about the instruction that
caused the VM exit. The format of the field depends on the identity of the instruction causing the VM exit:

— For VM exits due to attempts to execute INS or OUTS, the field has the format is given in Table 27-8.1

— For VM exits due to attempts to execute INVEPT, INVPCID, or INVVPID, the field has the format is given in
Table 27-9.

— For VM exits due to attempts to execute LIDT, LGDT, SIDT, or SGDT, the field has the format is given in
Table 27-10.

— For VM exits due to attempts to execute LLDT, LTR, SLDT, or STR, the field has the format is given in
Table 27-11.

— For VM exits due to attempts to execute RDRAND or RDSEED, the field has the format is given in Table 27-
12.

1. The format of the field was undefined for these VM exits on the first processors to support the virtual-machine extensions. Soft-
ware can determine whether the format specified in Table 27-8 is used by consulting the VMX capability MSR IA32_VMX_BASIC
(see Appendix A.1).

Table 27-8 Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS
Bit Position(s) Content

6:0 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

14:10 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for VM exits due to execution of INS.

31:18 Undefined.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 365

— For VM exits due to attempts to execute VMCLEAR, VMPTRLD, VMPTRST, VMXON, XRSTORS, or XSAVES,
the field has the format is given in Table 27-13.

— For VM exits due to attempts to execute VMREAD or VMWRITE, the field has the format is given in
Table 27-14.

For all other VM exits, the field is undefined.

...

Table 27-12 Format of the VM-Exit Instruction-Information Field as Used for RDRAND and RDSEED

...

38. Updates to Chapter 30, Volume 3C
Change bars show changes to Chapter 30 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

INVEPT— Invalidate Translations Derived from EPT

Bit Position(s) Content

2:0 Undefined.

6:3 Destination register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

10:7 Undefined.

12:11 Operand size:

0: 16-bit
1: 32-bit
2: 64-bit

The value 3 is not used.

31:13 Undefined.

Opcode Instruction Description

66 0F 38 80 INVEPT r64, m128 Invalidates EPT-derived entries in the TLBs and paging-structure caches (in 64-
bit mode)

66 0F 38 80 INVEPT r32, m128 Invalidates EPT-derived entries in the TLBs and paging-structure caches (outside
64-bit mode)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 366

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-structure caches that were derived
from extended page tables (EPT). (See Chapter 28, “VMX Support for Address Translation”.) Invalidation is based
on the INVEPT type specified in the register operand and the INVEPT descriptor specified in the memory
operand.

Outside IA-32e mode, the register operand is always 32 bits, regardless of the value of CS.D; in 64-bit mode, the
register operand has 64 bits (the instruction cannot be executed in compatibility mode).

The INVEPT types supported by a logical processors are reported in the IA32_VMX_EPT_VPID_CAP MSR (see
Appendix A, “VMX Capability Reporting Facility”). There are two INVEPT types currently defined:
• Single-context invalidation. If the INVEPT type is 1, the logical processor invalidates all mappings associated

with bits 51:12 of the EPT pointer (EPTP) specified in the INVEPT descriptor. It may invalidate other mappings
as well.

• Global invalidation: If the INVEPT type is 2, the logical processor invalidates mappings associated with all
EPTPs.

If an unsupported INVEPT type is specified, the instruction fails.

INVEPT invalidates all the specified mappings for the indicated EPTP(s) regardless of the VPID and PCID values
with which those mappings may be associated.

The INVEPT descriptor comprises 128 bits and contains a 64-bit EPTP value in bits 63:0 (see Figure 30-1).

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

INVEPT_TYPE ← value of register operand;
IF IA32_VMX_EPT_VPID_CAP MSR indicates that processor does not support INVEPT_TYPE

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE // INVEPT_TYPE must be 1 or 2

INVEPT_DESC ← value of memory operand;
EPTP ← INVEPT_DESC[63:0];
CASE INVEPT_TYPE OF

1: // single-context invalidation
IF VM entry with the “enable EPT“ VM execution control set to 1
would fail due to the EPTP value

THEN VMfail(Invalid operand to INVEPT/INVVPID);

Figure 30-1 INVEPT Descriptor

127 64 63 0

Reserved (must be zero) EPT pointer (EPTP)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 367

ELSE
Invalidate mappings associated with EPTP[51:12];
VMsucceed;

FI;
BREAK;

2: // global invalidation
Invalidate mappings associated with all EPTPs;
VMsucceed;
BREAK;

ESAC;
FI;

FI;

Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If not in VMX operation.

If the logical processor does not support EPT (IA32_VMX_PROCBASED_CTLS2[33]=0).
If the logical processor supports EPT (IA32_VMX_PROCBASED_CTLS2[33]=1) but does not
support the INVEPT instruction (IA32_VMX_EPT_VPID_CAP[20]=0).

Real-Address Mode Exceptions
#UD If executed outside VMX root operation.

Virtual-8086 Mode Exceptions
#UD The INVEPT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The INVEPT instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand is in the CS, DS, ES, FS, or GS segments and the memory address is
in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand is in the SS segment and the memory address is in a non-canonical

form.
#UD If not in VMX operation.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 368

If the logical processor does not support EPT (IA32_VMX_PROCBASED_CTLS2[33]=0).
If the logical processor supports EPT (IA32_VMX_PROCBASED_CTLS2[33]=1) but does not
support the INVEPT instruction (IA32_VMX_EPT_VPID_CAP[20]=0).

...

INVVPID— Invalidate Translations Based on VPID

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-structure caches based on virtual-
processor identifier (VPID). (See Chapter 28, “VMX Support for Address Translation”.) Invalidation is based on
the INVVPID type specified in the register operand and the INVVPID descriptor specified in the memory
operand.

Outside IA-32e mode, the register operand is always 32 bits, regardless of the value of CS.D; in 64-bit mode, the
register operand has 64 bits (the instruction cannot be executed in compatibility mode).

The INVVPID types supported by a logical processors are reported in the IA32_VMX_EPT_VPID_CAP MSR (see
Appendix A, “VMX Capability Reporting Facility”). There are four INVVPID types currently defined:
• Individual-address invalidation: If the INVVPID type is 0, the logical processor invalidates mappings for the

linear address and VPID specified in the INVVPID descriptor. In some cases, it may invalidate mappings for
other linear addresses (or other VPIDs) as well.

• Single-context invalidation: If the INVVPID type is 1, the logical processor invalidates all mappings tagged
with the VPID specified in the INVVPID descriptor. In some cases, it may invalidate mappings for other VPIDs
as well.

• All-contexts invalidation: If the INVVPID type is 2, the logical processor invalidates all mappings tagged with
all VPIDs except VPID 0000H. In some cases, it may invalidate translations with VPID 0000H as well.

• Single-context invalidation, retaining global translations: If the INVVPID type is 3, the logical processor
invalidates all mappings tagged with the VPID specified in the INVVPID descriptor except global translations.
In some cases, it may invalidate global translations (and mappings with other VPIDs) as well. See the
“Caching Translation Information” section in Chapter 4 of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 3A for information about global translations.

If an unsupported INVVPID type is specified, the instruction fails.

INVVPID invalidates all the specified mappings for the indicated VPID(s) regardless of the EPTP and PCID values
with which those mappings may be associated.

The INVVPID descriptor comprises 128 bits and consists of a VPID and a linear address as shown in Figure 30-2.

Opcode Instruction Description

66 0F 38 81 INVVPID r64, m128 Invalidates entries in the TLBs and paging-structure caches based on VPID (in
64-bit mode)

66 0F 38 81 INVVPID r32, m128 Invalidates entries in the TLBs and paging-structure caches based on VPID
(outside 64-bit mode)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 369

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

INVVPID_TYPE ← value of register operand;
IF IA32_VMX_EPT_VPID_CAP MSR indicates that processor does not support
INVVPID_TYPE

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE // INVVPID_TYPE must be in the range 0–3

INVVPID_DESC ← value of memory operand;
IF INVVPID_DESC[63:16] ≠ 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

CASE INVVPID_TYPE OF
0: // individual-address invalidation

VPID ← INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

GL_ADDR ← INVVPID_DESC[127:64];
IF (GL_ADDR is not in a canonical form)

THEN
VMfail(Invalid operand to INVEPT/INVVPID);

ELSE
Invalidate mappings for GL_ADDR tagged with VPID;
VMsucceed;

FI;
FI;
BREAK;

1: // single-context invalidation
VPID ← INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate all mappings tagged with VPID;
VMsucceed;

Figure 30-2 INVVPID Descriptor

127 64 63 01516

Reserved (must be zero)Linear Address VPID

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 370

FI;
BREAK;

2: // all-context invalidation
Invalidate all mappings tagged with all non-zero VPIDs;
VMsucceed;
BREAK;

3: // single-context invalidation retaining globals
VPID ← INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate all mappings tagged with VPID except global translations;
VMsucceed;

FI;
BREAK;

ESAC;
FI;

FI;
FI;

Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If not in VMX operation.

If the logical processor does not support VPIDs (IA32_VMX_PROCBASED_CTLS2[37]=0).
If the logical processor supports VPIDs (IA32_VMX_PROCBASED_CTLS2[37]=1) but does
not support the INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).

Real-Address Mode Exceptions
#UD If executed outside VMX root operation.

Virtual-8086 Mode Exceptions
#UD The INVVPID instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The INVVPID instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 371

If the memory operand is in the CS, DS, ES, FS, or GS segments and the memory address is
in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory destination operand is in the SS segment and the memory address is in a non-

canonical form.
#UD If not in VMX operation.

If the logical processor does not support VPIDs (IA32_VMX_PROCBASED_CTLS2[37]=0).
If the logical processor supports VPIDs (IA32_VMX_PROCBASED_CTLS2[37]=1) but does
not support the INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).

...

VMCALL—Call to VM Monitor

Description

This instruction allows guest software can make a call for service into an underlying VM monitor. The details of the
programming interface for such calls are VMM-specific; this instruction does nothing more than cause a VM exit,
registering the appropriate exit reason.

Use of this instruction in VMX root operation invokes an SMM monitor (see Section 34.15.2). This invocation will
activate the dual-monitor treatment of system-management interrupts (SMIs) and system-management mode
(SMM) if it is not already active (see Section 34.15.6).

Operation

IF not in VMX operation
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF CPL > 0
THEN #GP(0);

ELSIF in SMM or the logical processor does not support the dual-monitor treatment of SMIs and SMM or the valid bit in the
IA32_SMM_MONITOR_CTL MSR is clear

THEN VMfail (VMCALL executed in VMX root operation);
ELSIF dual-monitor treatment of SMIs and SMM is active

THEN perform an SMM VM exit (see Section 34.15.2);
ELSIF current-VMCS pointer is not valid

THEN VMfailInvalid;
ELSIF launch state of current VMCS is not clear

THEN VMfailValid(VMCALL with non-clear VMCS);
ELSIF VM-exit control fields are not valid (see Section 34.15.6.1)

THEN VMfailValid (VMCALL with invalid VM-exit control fields);
ELSE

enter SMM;

Opcode Instruction Description

0F 01 C1 VMCALL Call to VM monitor by causing VM exit.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 372

read revision identifier in MSEG;
IF revision identifier does not match that supported by processor

THEN
leave SMM;
VMfailValid(VMCALL with incorrect MSEG revision identifier);

ELSE
read SMM-monitor features field in MSEG (see Section 34.15.6.2);
IF features field is invalid

THEN
leave SMM;
VMfailValid(VMCALL with invalid SMM-monitor features);

ELSE activate dual-monitor treatment of SMIs and SMM (see Section 34.15.6);
FI;

FI;
FI;

Flags Affected
See the operation section and Section 30.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0 and the logical processor is in VMX root operation.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD If executed outside VMX operation.

Virtual-8086 Mode Exceptions
#UD If executed outside VMX non-root operation.

Compatibility Mode Exceptions
#UD If executed outside VMX non-root operation.

64-Bit Mode Exceptions
#UD If executed outside VMX operation.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 373

VMCLEAR—Clear Virtual-Machine Control Structure

Description

This instruction applies to the VMCS whose VMCS region resides at the physical address contained in the instruc-
tion operand. The instruction ensures that VMCS data for that VMCS (some of these data may be currently main-
tained on the processor) are copied to the VMCS region in memory. It also initializes parts of the VMCS region (for
example, it sets the launch state of that VMCS to clear). See Chapter 24, “Virtual-Machine Control Structures”.

The operand of this instruction is always 64 bits and is always in memory. If the operand is the current-VMCS
pointer, then that pointer is made invalid (set to FFFFFFFF_FFFFFFFFH).

Note that the VMCLEAR instruction might not explicitly write any VMCS data to memory; the data may be already
resident in memory before the VMCLEAR is executed.

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory operand;
IF addr is not 4KB-aligned OR
addr sets any bits beyond the physical-address width1

THEN VMfail(VMCLEAR with invalid physical address);
ELSIF addr = VMXON pointer

THEN VMfail(VMCLEAR with VMXON pointer);
ELSE

ensure that data for VMCS referenced by the operand is in memory;
initialize implementation-specific data in VMCS region;
launch state of VMCS referenced by the operand ← “clear”
IF operand addr = current-VMCS pointer

THEN current-VMCS pointer ← FFFFFFFF_FFFFFFFFH;
FI;
VMsucceed;

FI;
FI;

Flags Affected
See the operation section and Section 30.2.

Opcode Instruction Description

66 0F C7 /6 VMCLEAR m64 Copy VMCS data to VMCS region in memory.

1. If IA32_VMX_BASIC[48] is read as 1, VMfail occurs if addr sets any bits in the range 63:32; see Appendix A.1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 374

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions
#UD If executed outside VMX root operation.

Virtual-8086 Mode Exceptions
#UD The VMCLEAR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMCLEAR instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the source operand is in the CS, DS, ES, FS, or GS segments and the memory address is in
a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the source operand is in the SS segment and the memory address is in a non-canonical

form.
#UD If operand is a register.

If not in VMX operation.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 375

VMFUNC—Invoke VM function

Description

This instruction allows software in VMX non-root operation to invoke a VM function, which is processor functionality
enabled and configured by software in VMX root operation. The value of EAX selects the specific VM function being
invoked.

The behavior of each VM function (including any additional fault checking) is specified in Section 25.5.5,
“VM Functions”.

Operation

Perform functionality of the VM function specified in EAX;

Flags Affected
Depends on the VM function specified in EAX. See Section 25.5.5, “VM Functions”.

Protected Mode Exceptions (not including those defined by specific VM functions)
#UD If executed outside VMX non-root operation.

If “enable VM functions” VM-execution control is 0.
If EAX ≥ 64.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...

Opcode Instruction Description

0F 01 D4 VMFUNC Invoke VM function specified in EAX.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 376

VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

Description

Effects a VM entry managed by the current VMCS.
• VMLAUNCH fails if the launch state of current VMCS is not “clear”. If the instruction is successful, it sets the

launch state to “launched.”
• VMRESUME fails if the launch state of the current VMCS is not “launched.”

If VM entry is attempted, the logical processor performs a series of consistency checks as detailed in Chapter 26,
“VM Entries”. Failure to pass checks on the VMX controls or on the host-state area passes control to the instruction
following the VMLAUNCH or VMRESUME instruction. If these pass but checks on the guest-state area fail, the
logical processor loads state from the host-state area of the VMCS, passing control to the instruction referenced
by the RIP field in the host-state area.

VM entry is not allowed when events are blocked by MOV SS or POP SS. Neither VMLAUNCH nor VMRESUME
should be used immediately after either MOV to SS or POP to SS.

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF events are being blocked by MOV SS
THEN VMfailValid(VM entry with events blocked by MOV SS);

ELSIF (VMLAUNCH and launch state of current VMCS is not “clear”)
THEN VMfailValid(VMLAUNCH with non-clear VMCS);

ELSIF (VMRESUME and launch state of current VMCS is not “launched”)
THEN VMfailValid(VMRESUME with non-launched VMCS);
ELSE

Check settings of VMX controls and host-state area;
IF invalid settings

THEN VMfailValid(VM entry with invalid VMX-control field(s)) or
VMfailValid(VM entry with invalid host-state field(s)) or
VMfailValid(VM entry with invalid executive-VMCS pointer)) or
VMfailValid(VM entry with non-launched executive VMCS) or
VMfailValid(VM entry with executive-VMCS pointer not VMXON pointer) or
VMfailValid(VM entry with invalid VM-execution control fields in executive
VMCS)
as appropriate;

ELSE
Attempt to load guest state and PDPTRs as appropriate;

Opcode Instruction Description

0F 01 C2 VMLAUNCH Launch virtual machine managed by current VMCS.

0F 01 C3 VMRESUME Resume virtual machine managed by current VMCS.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 377

clear address-range monitoring;
IF failure in checking guest state or PDPTRs

THEN VM entry fails (see Section 26.7);
ELSE

Attempt to load MSRs from VM-entry MSR-load area;
IF failure

THEN VM entry fails
(see Section 26.7);
ELSE

IF VMLAUNCH
THEN launch state of VMCS ← “launched”;

FI;
IF in SMM and “entry to SMM” VM-entry control is 0

THEN
IF “deactivate dual-monitor treatment” VM-entry
control is 0

THEN SMM-transfer VMCS pointer ←
current-VMCS pointer;

FI;
IF executive-VMCS pointer is VMXON pointer

THEN current-VMCS pointer ←
VMCS-link pointer;
ELSE current-VMCS pointer ←
executive-VMCS pointer;

FI;
leave SMM;

FI;
VM entry succeeds;

FI;
FI;

FI;
FI;

Further details of the operation of the VM-entry appear in Chapter 26.

Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD If executed outside VMX root operation.

Virtual-8086 Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized in virtual-8086 mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 378

Compatibility Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If executed outside VMX operation.

...

VMPTRLD—Load Pointer to Virtual-Machine Control Structure

Description

Marks the current-VMCS pointer valid and loads it with the physical address in the instruction operand. The
instruction fails if its operand is not properly aligned, sets unsupported physical-address bits, or is equal to the
VMXON pointer. In addition, the instruction fails if the 32 bits in memory referenced by the operand do not match
the VMCS revision identifier supported by this processor.1

The operand of this instruction is always 64 bits and is always in memory.

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned OR
addr sets any bits beyond the physical-address width2

THEN VMfail(VMPTRLD with invalid physical address);
ELSIF addr = VMXON pointer

THEN VMfail(VMPTRLD with VMXON pointer);
ELSE

rev ← 32 bits located at physical address addr;
IF rev[30:0] ≠ VMCS revision identifier supported by processor OR
rev[31] = 1 AND processor does not support 1-setting of “VMCS shadowing”

THEN VMfail(VMPTRLD with incorrect VMCS revision identifier);
ELSE

current-VMCS pointer ← addr;
VMsucceed;

Opcode Instruction Description

0F C7 /6 VMPTRLD m64 Loads the current VMCS pointer from memory.

1. Software should consult the VMX capability MSR VMX_BASIC to discover the VMCS revision identifier supported by this processor
(see Appendix A, “VMX Capability Reporting Facility”).

2. If IA32_VMX_BASIC[48] is read as 1, VMfail occurs if addr sets any bits in the range 63:32; see Appendix A.1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 379

FI;
FI;

FI;

Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory source operand effective address is outside the CS, DS, ES, FS, or GS segment
limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the memory source operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions
#UD If executed outside VMX root operation.

Virtual-8086 Mode Exceptions
#UD The VMPTRLD instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMPTRLD instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the source operand is in the CS, DS, ES, FS, or GS segments and the memory address is in
a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the source operand is in the SS segment and the memory address is in a non-canonical

form.
#UD If operand is a register.

If not in VMX operation.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 380

VMPTRST—Store Pointer to Virtual-Machine Control Structure

Description

Stores the current-VMCS pointer into a specified memory address. The operand of this instruction is always 64
bits and is always in memory.

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

64-bit in-memory destination operand ← current-VMCS pointer;
VMsucceed;

FI;

Flags Affected
See the operation section and Section 30.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory destination operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the destination operand is located in a read-only data segment or any code segment.

#PF(fault-code) If a page fault occurs in accessing the memory destination operand.
#SS(0) If the memory destination operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions
#UD If executed outside VMX root operation.

Virtual-8086 Mode Exceptions
#UD The VMPTRST instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMPTRST instruction is not recognized in compatibility mode.

Opcode Instruction Description

0F C7 /7 VMPTRST m64 Stores the current VMCS pointer into memory.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 381

...

VMREAD—Read Field from Virtual-Machine Control Structure

Description

Reads a specified field from a VMCS and stores it into a specified destination operand (register or memory). In
VMX root operation, the instruction reads from the current VMCS. If executed in VMX non-root operation, the
instruction reads from the VMCS referenced by the VMCS link pointer field in the current VMCS.

The VMCS field is specified by the VMCS-field encoding contained in the register source operand. Outside IA-32e
mode, the source operand has 32 bits, regardless of the value of CS.D. In 64-bit mode, the source operand has
64 bits.

The effective size of the destination operand, which may be a register or in memory, is always 32 bits outside IA-
32e mode (the setting of CS.D is ignored with respect to operand size) and 64 bits in 64-bit mode. If the VMCS
field specified by the source operand is shorter than this effective operand size, the high bits of the destination
operand are cleared to 0. If the VMCS field is longer, then the high bits of the field are not read.

Note that any faults resulting from accessing a memory destination operand can occur only after determining, in
the operation section below, that the relevant VMCS pointer is valid and that the specified VMCS field is
supported.

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation AND (“VMCS shadowing” is 0 OR source operand sets bits in range 63:15 OR
VMREAD bit corresponding to bits 14:0 of source operand is 1)1

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSIF (in VMX root operation AND current-VMCS pointer is not valid) OR
(in VMX non-root operation AND VMCS link pointer is not valid)

THEN VMfailInvalid;
ELSIF source operand does not correspond to any VMCS field

THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);
ELSE

IF in VMX root operation
THEN destination operand ← contents of field indexed by source operand in current VMCS;
ELSE destination operand ← contents of field indexed by source operand in VMCS referenced by VMCS link pointer;

FI;
VMsucceed;

FI;

Opcode Instruction Description

0F 78 VMREAD r/m64, r64 Reads a specified VMCS field (in 64-bit mode).

0F 78 VMREAD r/m32, r32 Reads a specified VMCS field (outside 64-bit mode).

1. The VMREAD bit for a source operand is defined as follows. Let x be the value of bits 14:0 of the source operand and let addr be
the VMREAD-bitmap address. The corresponding VMREAD bit is in bit position x & 7 of the byte at physical address addr | (x » 3).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 382

Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory destination operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the destination operand is located in a read-only data segment or any code segment.

#PF(fault-code) If a page fault occurs in accessing a memory destination operand.
#SS(0) If a memory destination operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If not in VMX operation.

Real-Address Mode Exceptions
#UD If executed outside VMX root operation.

Virtual-8086 Mode Exceptions
#UD The VMREAD instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMREAD instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory destination operand is in the CS, DS, ES, FS, or GS segments and the memory
address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing a memory destination operand.
#SS(0) If the memory destination operand is in the SS segment and the memory address is in a non-

canonical form.
#UD If not in VMX operation.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 383

VMWRITE—Write Field to Virtual-Machine Control Structure

Description

Writes the contents of a primary source operand (register or memory) to a specified field in a VMCS. In VMX root
operation, the instruction writes to the current VMCS. If executed in VMX non-root operation, the instruction
writes to the VMCS referenced by the VMCS link pointer field in the current VMCS.

The VMCS field is specified by the VMCS-field encoding contained in the register secondary source operand.
Outside IA-32e mode, the secondary source operand is always 32 bits, regardless of the value of CS.D. In 64-bit
mode, the secondary source operand has 64 bits.

The effective size of the primary source operand, which may be a register or in memory, is always 32 bits outside
IA-32e mode (the setting of CS.D is ignored with respect to operand size) and 64 bits in 64-bit mode. If the VMCS
field specified by the secondary source operand is shorter than this effective operand size, the high bits of the
primary source operand are ignored. If the VMCS field is longer, then the high bits of the field are cleared to 0.

Note that any faults resulting from accessing a memory source operand occur after determining, in the operation
section below, that the relevant VMCS pointer is valid but before determining if the destination VMCS field is
supported.

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation AND (“VMCS shadowing” is 0 OR secondary source operand sets bits in range 63:15 OR
VMWRITE bit corresponding to bits 14:0 of secondary source operand is 1)1

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSIF (in VMX root operation AND current-VMCS pointer is not valid) OR
(in VMX non-root operation AND VMCS-link pointer is not valid)

THEN VMfailInvalid;
ELSIF secondary source operand does not correspond to any VMCS field

THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);
ELSIF VMCS field indexed by secondary source operand is a VM-exit information field AND
processor does not support writing to such fields2

THEN VMfailValid(VMWRITE to read-only VMCS component);
ELSE

IF in VMX root operation
THEN field indexed by secondary source operand in current VMCS ← primary source operand;
ELSE field indexed by secondary source operand in VMCS referenced by VMCS link pointer ← primary source operand;

Opcode Instruction Description

0F 79 VMWRITE r64, r/m64 Writes a specified VMCS field (in 64-bit mode)

0F 79 VMWRITE r32, r/m32 Writes a specified VMCS field (outside 64-bit mode)

1. The VMWRITE bit for a secondary source operand is defined as follows. Let x be the value of bits 14:0 of the secondary source
operand and let addr be the VMWRITE-bitmap address. The corresponding VMWRITE bit is in bit position x & 7 of the byte at phys-
ical address addr | (x » 3).

2. Software can discover whether these fields can be written by reading the VMX capability MSR IA32_VMX_MISC (see Appendix
A.6).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 384

FI;
VMsucceed;

Flags Affected
See the operation section and Section 30.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory source operand effective address is outside the CS, DS, ES, FS, or GS segment
limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing a memory source operand.
#SS(0) If a memory source operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If not in VMX operation.

Real-Address Mode Exceptions
#UD If executed outside VMX root operation.

Virtual-8086 Mode Exceptions
#UD The VMWRITE instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMWRITE instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory source operand is in the CS, DS, ES, FS, or GS segments and the memory
address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing a memory source operand.
#SS(0) If the memory source operand is in the SS segment and the memory address is in a non-

canonical form.
#UD If not in VMX operation.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 385

VMXOFF—Leave VMX Operation

Description

Takes the logical processor out of VMX operation, unblocks INIT signals, conditionally re-enables A20M, and clears
any address-range monitoring.1

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF dual-monitor treatment of SMIs and SMM is active
THEN VMfail(VMXOFF under dual-monitor treatment of SMIs and SMM);
ELSE

leave VMX operation;
unblock INIT;
IF IA32_SMM_MONITOR_CTL[2] = 02

THEN unblock SMIs;
IF outside SMX operation3

THEN unblock and enable A20M;
FI;
clear address-range monitoring;
VMsucceed;

FI;

Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.
#UD If executed outside VMX operation.

Opcode Instruction Description

0F 01 C4 VMXOFF Leaves VMX operation.

1. See the information on MONITOR/MWAIT in Chapter 8, “Multiple-Processor Management,” of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A.

2. Setting IA32_SMM_MONITOR_CTL[bit 2] to 1 prevents VMXOFF from unblocking SMIs regardless of the value of the register’s
value bit (bit 0). Not all processors allow this bit to be set to 1. Software should consult the VMX capability MSR IA32_VMX_MISC
(see Appendix A.6) to determine whether this is allowed.

3. A logical processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after
the last execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference.”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 386

Real-Address Mode Exceptions
#UD If executed outside VMX root operation.

Virtual-8086 Mode Exceptions
#UD The VMXOFF instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMXOFF instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.
#UD If executed outside VMX operation.

...

VMXON—Enter VMX Operation

Description

Puts the logical processor in VMX operation with no current VMCS, blocks INIT signals, disables A20M, and clears
any address-range monitoring established by the MONITOR instruction.1

The operand of this instruction is a 4KB-aligned physical address (the VMXON pointer) that references the VMXON
region, which the logical processor may use to support VMX operation. This operand is always 64 bits and is
always in memory.

Operation

IF (register operand) or (CR0.PE = 0) or (CR4.VMXE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF not in VMX operation
THEN

IF (CPL > 0) or (in A20M mode) or
(the values of CR0 and CR4 are not supported in VMX operation; see Section 23.8) or
(bit 0 (lock bit) of IA32_FEATURE_CONTROL MSR is clear) or
(in SMX operation2 and bit 1 of IA32_FEATURE_CONTROL MSR is clear) or
(outside SMX operation and bit 2 of IA32_FEATURE_CONTROL MSR is clear)

THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory source operand;

Opcode Instruction Description

F3 0F C7 /6 VMXON m64 Enter VMX root operation.

1. See the information on MONITOR/MWAIT in Chapter 8, “Multiple-Processor Management,” of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A.

2. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A log-
ical processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference.”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 387

IF addr is not 4KB-aligned or
addr sets any bits beyond the physical-address width1

THEN VMfailInvalid;
ELSE

rev ← 32 bits located at physical address addr;
IF rev[30:0] ≠ VMCS revision identifier supported by processor OR rev[31] = 1

THEN VMfailInvalid;
ELSE

current-VMCS pointer ← FFFFFFFF_FFFFFFFFH;
enter VMX operation;
block INIT signals;
block and disable A20M;
clear address-range monitoring;
VMsucceed;

FI;
FI;

FI;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE VMfail(“VMXON executed in VMX root operation”);

FI;

Flags Affected
See the operation section and Section 30.2.

Protected Mode Exceptions
#GP(0) If executed outside VMX operation with CPL>0 or with invalid CR0 or CR4 fixed bits.

If executed in A20M mode.
If the memory source operand effective address is outside the CS, DS, ES, FS, or GS segment
limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the memory source operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If operand is a register.

If executed with CR4.VMXE = 0.

Real-Address Mode Exceptions
#UD If executed outside VMX root operation.

Virtual-8086 Mode Exceptions
#UD The VMXON instruction is not recognized in virtual-8086 mode.

1. If IA32_VMX_BASIC[48] is read as 1, VMfailInvalid occurs if addr sets any bits in the range 63:32; see Appendix A.1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 388

Compatibility Mode Exceptions
#UD The VMXON instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If executed outside VMX operation with CPL > 0 or with invalid CR0 or CR4 fixed bits.

If executed in A20M mode.
If the source operand is in the CS, DS, ES, FS, or GS segments and the memory address is in
a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the source operand is in the SS segment and the memory address is in a non-canonical

form.
#UD If operand is a register.

If executed with CR4.VMXE = 0.

...

39. Updates to Chapter 34, Volume 3C
Change bars show changes to Chapter 34 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

34.15.6.6 Loading Host State
The VMCS that is current during an SMM VM exit that activates the dual-monitor treatment was established by the
executive monitor. It does not contain the VM-exit controls and host state required to initialize the STM. For this
reason, such SMM VM exits do not load processor state as described in Section 27.5. Instead, state is set to fixed
values or loaded based on the content of the MSEG header (see Table 34-10):
• CR0 is set to as follows:

— PG, NE, ET, MP, and PE are all set to 1.

— CD and NW are left unchanged.

— All other bits are cleared to 0.
• CR3 is set as follows:

— Bits 63:32 are cleared on processors that supports IA-32e mode.

— Bits 31:12 are set to bits 31:12 of the sum of the MSEG base address and the CR3-offset field in the MSEG
header.

— Bits 11:5 and bits 2:0 are cleared (the corresponding bits in the CR3-offset field in the MSEG header are
ignored).

— Bits 4:3 are set to bits 4:3 of the CR3-offset field in the MSEG header.
• CR4 is set as follows:

— MCE and PGE are cleared.

— PAE is set to the value of the IA-32e mode SMM feature bit.

— If the IA-32e mode SMM feature bit is clear, PSE is set to 1 if supported by the processor; if the bit is set,
PSE is cleared.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 389

— All other bits are unchanged.
• DR7 is set to 400H.
• The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.
• The registers CS, SS, DS, ES, FS, and GS are loaded as follows:

— All registers are usable.

— CS.selector is loaded from the corresponding field in the MSEG header (the high 16 bits are ignored), with
bits 2:0 cleared to 0. If the result is 0000H, CS.selector is set to 0008H.

— The selectors for SS, DS, ES, FS, and GS are set to CS.selector+0008H. If the result is 0000H (if the CS
selector was FFF8H), these selectors are instead set to 0008H.

— The base addresses of all registers are cleared to zero.

— The segment limits for all registers are set to FFFFFFFFH.

— The AR bytes for the registers are set as follows:

• CS.Type is set to 11 (execute/read, accessed, non-conforming code segment).

• For SS, DS, FS, and GS, the Type is set to 3 (read/write, accessed, expand-up data segment).

• The S bits for all registers are set to 1.

• The DPL for each register is set to 0.

• The P bits for all registers are set to 1.

• On processors that support Intel 64 architecture, CS.L is loaded with the value of the IA-32e mode
SMM feature bit.

• CS.D is loaded with the inverse of the value of the IA-32e mode SMM feature bit.

• For each of SS, DS, FS, and GS, the D/B bit is set to 1.

• The G bits for all registers are set to 1.
• LDTR is unusable. The LDTR selector is cleared to 0000H, and the register is otherwise undefined (although

the base address is always canonical)
• GDTR.base is set to the sum of the MSEG base address and the GDTR base-offset field in the MSEG header

(bits 63:32 are always cleared on processors that supports IA-32e mode). GDTR.limit is set to the corre-
sponding field in the MSEG header (the high 16 bits are ignored).

• IDTR.base is unchanged. IDTR.limit is cleared to 0000H.
• RIP is set to the sum of the MSEG base address and the value of the RIP-offset field in the MSEG header

(bits 63:32 are always cleared on logical processors that support IA-32e mode).
• RSP is set to the sum of the MSEG base address and the value of the RSP-offset field in the MSEG header

(bits 63:32 are always cleared on logical processor that supports IA-32e mode).
• RFLAGS is cleared, except bit 1, which is always set.
• The logical processor is left in the active state.
• Event blocking after the SMM VM exit is as follows:

— There is no blocking by STI or by MOV SS.

— There is blocking by non-maskable interrupts (NMIs) and by SMIs.
• There are no pending debug exceptions after the SMM VM exit.
• For processors that support IA-32e mode, the IA32_EFER MSR is modified so that LME and LMA both contain

the value of the IA-32e mode SMM feature bit.

If any of CR3[63:5], CR4.PAE, CR4.PSE, or IA32_EFER.LMA is changing, the TLBs are updated so that, after
VM exit, the logical processor does not use translations that were cached before the transition. This is not neces-

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 390

sary for changes that would not affect paging due to the settings of other bits (for example, changes to CR4.PSE
if IA32_EFER.LMA was 1 before and after the transition).

...

40. Updates to Chapter 35, Volume 3C
Change bars show changes to Chapter 35 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...
This chapter list MSRs across Intel processor families. All MSRs listed can be read with the RDMSR and written
with the WRMSR instructions.

Register addresses are given in both hexadecimal and decimal. The register name is the mnemonic register name
and the bit description describes individual bits in registers.

Model specific registers and its bit-fields may be supported for a finite range of processor families/models. To
distinguish between different processor family and/or models, software must use CPUID.01H leaf function to
query the combination of DisplayFamily and DisplayModel to determine model-specific availability of MSRs (see
CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A). Table 35-1 lists the signature values of DisplayFamily and DisplayModel for
various processor families or processor number series.

Table 35-1 CPUID Signature Values of DisplayFamily_DisplayModel
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_4EH Future Generation Intel Core Processor

06_3DH Intel CoreTM M Processor based on Broadwell microarchitecture.

06_3FH Next Generation Intel Xeon Processor based on Haswell microarchitecture.

06_3CH, 06_45H, 06_46H 4th Generation Intel Core Processor and Intel Xeon Processor E3-1200 v3 Product Family based on
Haswell microarchitecture.

06_3EH Intel Xeon Processor E7-8800 v2/E7-4800 v2/E7-2800 v2 Family based on Ivy Bridge-EP
microarchitecture

06_3EH Intel Xeon Processor E5-1600 v2/E5-2400 v2/E5-2600 v2 Product Families based on Ivy Bridge-EP
microarchitecture, Intel Core i7-49xx Processor Extreme Edition

06_3AH 3rd Generation Intel Core Processor and Intel Xeon Processor E3-1200 v2 Product Family based on
Ivy Bridge microarchitecture.

06_2DH Intel Xeon Processor E5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core
i7-39xx Processor Extreme Edition

06_2FH Intel Xeon Processor E7 Family

06_2AH Intel Xeon Processor E3-1200 Product Family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx
Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon Processor 3400, 3500, 5500 series

06_1DH Intel Xeon Processor MP 7400 series

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 391

35.1 ARCHITECTURAL MSRS
Many MSRs have carried over from one generation of IA-32 processors to the next and to Intel 64 processors. A
subset of MSRs and associated bit fields, which do not change on future processor generations, are now consid-
ered architectural MSRs. For historical reasons (beginning with the Pentium 4 processor), these “architectural
MSRs” were given the prefix “IA32_”. Table 35-1 lists the architectural MSRs, their addresses, their current
names, their names in previous IA-32 processors, and bit fields that are considered architectural. MSR addresses
outside Table 35-1 and certain bitfields in an MSR address that may overlap with architectural MSR addresses are
model-specific. Code that accesses a machine specified MSR and that is executed on a processor that does not
support that MSR will generate an exception.

Architectural MSR or individual bit fields in an architectural MSR may be introduced or transitioned at the granu-
larity of certain processor family/model or the presence of certain CPUID feature flags. The right-most column of
Table 35-1 provides information on the introduction of each architectural MSR or its individual fields. This informa-
tion is expressed either as signature values of “DF_DM” (see Table 35-1) or via CPUID flags.

Certain bit field position may be related to the maximum physical address width, the value of which is expressed
as “MAXPHYWID” in Table 35-1. “MAXPHYWID” is reported by CPUID.8000_0008H leaf.

06_17H Intel Xeon Processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000
series

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series,
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel
Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_4AH, 06_5AH, 06_5DH Future Intel Atom Processor Based on Silvermont Microarchitecture

06_37H Intel Atom Processor E3000 series, Z3000 series

06_4DH Intel Atom Processor C2000 series

06_36H Intel Atom Processor S1000 Series

06_1CH, 06_26H, 06_27H,
06_35H, 06_36H

Intel Atom Processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D
processors

0F_03H, 0F_04H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor

06_01H Intel Pentium Pro Processor

05_01H, 05_02H, 05_04H Intel Pentium Processor, Intel Pentium Processor with MMX Technology

Table 35-1 CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 392

MSR address range between 40000000H - 400000FFH is marked as a specially reserved range. All existing and
future processors will not implement any features using any MSR in this range.

Table 35-1 IA-32 Architectural MSRs

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

0H 0 IA32_P5_MC_ADDR (P5_MC_ADDR) See Section 35.19, “MSRs in Pentium
Processors.”

Pentium Processor
(05_01H)

1H 1 IA32_P5_MC_TYPE (P5_MC_TYPE) See Section 35.19, “MSRs in Pentium
Processors.”

DF_DM = 05_01H

6H 6 IA32_MONITOR_FILTER_SIZE See Section 8.10.5, “Monitor/Mwait
Address Range Determination.”

0F_03H

10H 16 IA32_TIME_STAMP_
COUNTER (TSC)

See Section 17.13, “Time-Stamp Counter.” 05_01H

17H 23 IA32_PLATFORM_ID
(MSR_PLATFORM_ID)

Platform ID (RO)
The operating system can use this MSR to
determine “slot” information for the
processor and the proper microcode update
to load.

06_01H

49:0 Reserved.

52:50 Platform Id (RO)

Contains information concerning the
intended platform for the processor.

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

1BH 27 IA32_APIC_BASE (APIC_BASE) 06_01H

7:0 Reserved

8 BSP flag (R/W)

9 Reserved

10 Enable x2APIC mode 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYWID - 1):12 APIC Base (R/W)

63: MAXPHYWID Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 393

3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64 Processor
(R/W)

If CPUID.01H: ECX[bit 5 or
bit 6] = 1

0 Lock bit (R/WO): (1 = locked). When set,
locks this MSR from being written, writes
to this bit will result in GP(0).

Note: Once the Lock bit is set, the contents
of this register cannot be modified.
Therefore the lock bit must be set after
configuring support

If CPUID.01H:ECX[bit 5 or
bit 6] = 1

for Intel Virtualization Technology and prior
to transferring control to an option ROM or
the OS. Hence, once the Lock bit is set, the
entire

IA32_FEATURE_CONTROL_MSR contents
are preserved across RESET when
PWRGOOD is not deasserted.

1 Enable VMX inside SMX operation (R/WL):
This bit enables a system executive to use
VMX in conjunction with SMX to support
Intel® Trusted Execution Technology.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag and
SMX feature flag set (ECX bits 5 and 6
respectively).

If CPUID.01H:ECX[bit 5 and
bit 6] are set to 1

2 Enable VMX outside SMX operation (R/WL):
This bit enables VMX for system executive
that do not require SMX.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag set
(ECX bit 5).

If CPUID.01H:ECX[bit 5 or
bit 6] = 1

7:3 Reserved

14:8 SENTER Local Function Enables (R/WL):
When set, each bit in the field represents
an enable control for a corresponding
SENTER function. This bit is supported only
if CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[bit 6] = 1

15 SENTER Global Enable (R/WL): This bit must
be set to enable SENTER leaf functions.
This bit is supported only if
CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[bit 6] = 1

19:16 Reserved

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 394

20 LMCE On (R/WL): When set, system
software can program the MSRs associated
with LMCE to configure delivery of some
machine check exceptions to a single logical
processor.

63:21 Reserved

3BH 59 IA32_TSC_ADJUST Per Logical Processor TSC Adjust (R/Write
to clear)

If CPUID.(EAX=07H,
ECX=0H): EBX[1] = 1

63:0 THREAD_ADJUST:

Local offset value of the IA32_TSC for a
logical processor. Reset value is Zero. A
write to IA32_TSC will modify the local
offset in IA32_TSC_ADJUST and the
content of IA32_TSC, but does not affect
the internal invariant TSC hardware.

79H 121 IA32_BIOS_UPDT_TRIG
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR instruction to this MSR
causes a microcode update to be loaded
into the processor. See Section 9.11.6,
“Microcode Update Loader.”

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

8BH 139 IA32_BIOS_SIGN_ID (BIOS_SIGN/
BBL_CR_D3)

BIOS Update Signature (RO)

Returns the microcode update signature
following the execution of CPUID.01H.

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

31:0 Reserved

63:32 It is recommended that this field be pre-
loaded with 0 prior to executing CPUID.

If the field remains 0 following the
execution of CPUID; this indicates that no
microcode update is loaded. Any non-zero
value is the microcode update signature.

9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration (R/W) If CPUID.01H: ECX[bit 5 or
bit 6] = 1

0 Valid (R/W)

1 Reserved

2 Controls SMI unblocking by VMXOFF (see
Section 34.14.4)

If IA32_VMX_MISC[bit 28])

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 395

11:3 Reserved

31:12 MSEG Base (R/W)

63:32 Reserved

9EH 158 IA32_SMBASE Base address of the logical processor’s
SMRAM image (RO, SMM only)

If IA32_VMX_MISC[bit 15])

C1H 193 IA32_PMC0 (PERFCTR0) General Performance Counter 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

C2H 194 IA32_PMC1 (PERFCTR1) General Performance Counter 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

C3H 195 IA32_PMC2 General Performance Counter 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

C4H 196 IA32_PMC3 General Performance Counter 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

C5H 197 IA32_PMC4 General Performance Counter 4 (R/W) If CPUID.0AH: EAX[15:8] >
4

C6H 198 IA32_PMC5 General Performance Counter 5 (R/W) If CPUID.0AH: EAX[15:8] >
5

C7H 199 IA32_PMC6 General Performance Counter 6 (R/W) If CPUID.0AH: EAX[15:8] >
6

C8H 200 IA32_PMC7 General Performance Counter 7 (R/W) If CPUID.0AH: EAX[15:8] >
7

E7H 231 IA32_MPERF TSC Frequency Clock Counter (R/Write to
clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_MCNT: C0 TSC Frequency Clock Count

Increments at fixed interval (relative to TSC
freq.) when the logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_APERF.

E8H 232 IA32_APERF Actual Performance Clock Counter (R/Write
to clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_ACNT: C0 Actual Frequency Clock
Count

Accumulates core clock counts at the
coordinated clock frequency, when the
logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_MPERF.

FEH 254 IA32_MTRRCAP (MTRRcap) MTRR Capability (RO) Section 11.11.2.1,
“IA32_MTRR_DEF_TYPE MSR.”

06_01H

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 396

7:0 VCNT: The number of variable memory
type ranges in the processor.

8 Fixed range MTRRs are supported when
set.

9 Reserved.

10 WC Supported when set.

11 SMRR Supported when set.

63:12 Reserved.

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector

63:16 Reserved.

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H

179H 377 IA32_MCG_CAP (MCG_CAP) Global Machine Check Capability (RO) 06_01H

7:0 Count: Number of reporting banks.

8 MCG_CTL_P: IA32_MCG_CTL is present if
this bit is set

9 MCG_EXT_P: Extended machine check
state registers are present if this bit is set

10 MCP_CMCI_P: Support for corrected MC
error event is present.

06_01H

11 MCG_TES_P: Threshold-based error status
register are present if this bit is set.

15:12 Reserved

23:16 MCG_EXT_CNT: Number of extended
machine check state registers present.

24 MCG_SER_P: The processor supports
software error recovery if this bit is set.

25 Reserved.

26 MCG_ELOG_P: Indicates that the processor
allows platform firmware to be invoked
when an error is detected so that it may
provide additional platform specific
information in an ACPI format “Generic
Error Data Entry” that augments the data
included in machine check bank registers.

06_3EH

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 397

27 MCG_LMCE_P: Indicates that the processor
support extended state in
IA32_MCG_STATUS and associated
MSR necessary to configure Local
Machine Check Exception (LMCE).

06_3EH

63:28 Reserved.

17AH 378 IA32_MCG_STATUS (MCG_STATUS) Global Machine Check Status (R/W0) 06_01H

0 RIPV. Restart IP valid 06_01H

1 EIPV. Error IP valid 06_01H

2 MCIP. Machine check in progress 06_01H

3 LMCE_S. If IA32_MCG_CAP.LMCE_P
=1

63:4 Reserved.

17BH 379 IA32_MCG_CTL (MCG_CTL) Global Machine Check Control (R/W) 06_01H

180H-
185H

384-
389

Reserved 06_0EH1

186H 390 IA32_PERFEVTSEL0 (PERFEVTSEL0) Performance Event Select Register 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

7:0 Event Select: Selects a performance event
logic unit.

15:8 UMask: Qualifies the microarchitectural
condition to detect on the selected event
logic.

16 USR: Counts while in privilege level is not
ring 0.

17 OS: Counts while in privilege level is ring 0.

18 Edge: Enables edge detection if set.

19 PC: enables pin control.

20 INT: enables interrupt on counter overflow.

21 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

22 EN: enables the corresponding performance
counter to commence counting when this
bit is set.

23 INV: invert the CMASK.

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 398

31:24 CMASK: When CMASK is not zero, the
corresponding performance counter
increments each cycle if the event count is
greater than or equal to the CMASK.

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 (PERFEVTSEL1) Performance Event Select Register 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

188H 392 IA32_PERFEVTSEL2 Performance Event Select Register 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

189H 393 IA32_PERFEVTSEL3 Performance Event Select Register 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

18AH-
197H

394-
407

Reserved 06_0EH2

198H 408 IA32_PERF_STATUS (RO) 0F_03H

15:0 Current performance State Value

63:16 Reserved.

199H 409 IA32_PERF_CTL (R/W) 0F_03H

15:0 Target performance State Value

31:16 Reserved.

32 IDA Engage. (R/W)

When set to 1: disengages IDA

06_0FH (Mobile only)

63:33 Reserved.

19AH 410 IA32_CLOCK_MODULATION Clock Modulation Control (R/W)

See Section 14.7.3, “Software Controlled
Clock Modulation.”

0F_0H

0 Extended On-Demand Clock Modulation
Duty Cycle:

If CPUID.06H:EAX[5] = 1

3:1 On-Demand Clock Modulation Duty Cycle:
Specific encoded values for target duty
cycle modulation.

4 On-Demand Clock Modulation Enable: Set 1
to enable modulation.

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the processor’s thermal
sensors and thermal monitor.

See Section 14.7.2, “Thermal Monitor.”

0F_0H

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 399

0 High-Temperature Interrupt Enable

1 Low-Temperature Interrupt Enable

2 PROCHOT# Interrupt Enable

3 FORCEPR# Interrupt Enable

4 Critical Temperature Interrupt Enable

7:5 Reserved.

14:8 Threshold #1 Value

15 Threshold #1 Interrupt Enable

22:16 Threshold #2 Value

23 Threshold #2 Interrupt Enable

24 Power Limit Notification Enable If CPUID.06H:EAX[4] = 1

63:25 Reserved.

19CH 412 IA32_THERM_STATUS Thermal Status Information (RO)

Contains status information about the
processor’s thermal sensor and automatic
thermal monitoring facilities.

See Section 14.7.2, “Thermal Monitor”

0F_0H

0 Thermal Status (RO):

1 Thermal Status Log (R/W):

2 PROCHOT # or FORCEPR# event (RO)

3 PROCHOT # or FORCEPR# log (R/WC0)

4 Critical Temperature Status (RO)

5 Critical Temperature Status log (R/WC0)

6 Thermal Threshold #1 Status (RO) If CPUID.01H:ECX[8] = 1

7 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1

8 Thermal Threshold #2 Status (RO) If CPUID.01H:ECX[8] = 1

9 Thermal Threshold #2 log (R/WC0) If CPUID.01H:ECX[8] = 1

10 Power Limitation Status (RO) If CPUID.06H:EAX[4] = 1

11 Power Limitation log (R/WC0) If CPUID.06H:EAX[4] = 1

12 Current Limit Status (RO) If CPUID.06H:EAX[7] = 1

13 Current Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

14 Cross Domain Limit Status (RO) If CPUID.06H:EAX[7] = 1

15 Cross Domain Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

22:16 Digital Readout (RO) If CPUID.06H:EAX[0] = 1

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 400

26:23 Reserved.

30:27 Resolution in Degrees Celsius (RO) If CPUID.06H:EAX[0] = 1

31 Reading Valid (RO) If CPUID.06H:EAX[0] = 1

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to
be enabled and disabled.

0 Fast-Strings Enable

When set, the fast-strings feature (for REP
MOVS and REP STORS) is enabled (default);
when clear, fast-strings are disabled.

0F_0H

2:1 Reserved.

3 Automatic Thermal Control Circuit Enable
(R/W)

1 = Setting this bit enables the thermal
control circuit (TCC) portion of the
Intel Thermal Monitor feature. This
allows the processor to automatically
reduce power consumption in
response to TCC activation.

0 = Disabled (default).
Note: In some products clearing this bit
might be ignored in critical thermal
conditions, and TM1, TM2 and adaptive
thermal throttling will still be activated.

0F_0H

6:4 Reserved

7 Performance Monitoring Available (R)

1 = Performance monitoring enabled
0 = Performance monitoring disabled

0F_0H

10:8 Reserved.

11 Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch
trace storage (BTS)

0 = BTS is supported

0F_0H

12 Precise Event Based Sampling (PEBS)
Unavailable (RO)

1 = PEBS is not supported;
0 = PEBS is supported.

06_0FH

15:13 Reserved.

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 401

16 Enhanced Intel SpeedStep Technology
Enable (R/W)

0= Enhanced Intel SpeedStep
Technology disabled

1 = Enhanced Intel SpeedStep
Technology enabled

If CPUID.01H: ECX[7] =1

17 Reserved.

18 ENABLE MONITOR FSM (R/W)

When this bit is set to 0, the MONITOR
feature flag is not set (CPUID.01H:ECX[bit
3] = 0). This indicates that MONITOR/
MWAIT are not supported.

Software attempts to execute MONITOR/
MWAIT will cause #UD when this bit is 0.

When this bit is set to 1 (default),
MONITOR/MWAIT are supported
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag ECX[0] is not set
(CPUID.01H:ECX[bit 0] = 0), the OS must
not attempt to alter this bit. BIOS must
leave it in the default state. Writing this bit
when the SSE3 feature flag is set to 0 may
generate a #GP exception.

0F_03H

21:19 Reserved.

22 Limit CPUID Maxval (R/W)

When this bit is set to 1, CPUID.00H returns
a maximum value in EAX[7:0] of 3.

BIOS should contain a setup question that
allows users to specify when the installed
OS does not support CPUID functions
greater than 3.

Before setting this bit, BIOS must execute
the CPUID.0H and examine the maximum
value returned in EAX[7:0]. If the maximum
value is greater than 3, the bit is supported.

Otherwise, the bit is not supported. Writing
to this bit when the maximum value is
greater than 3 may generate a #GP
exception.

Setting this bit may cause unexpected
behavior in software that depends on the
availability of CPUID leaves greater than 3.

0F_03H

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 402

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are
disabled. xTPR messages are optional
messages that allow the processor to
inform the chipset of its priority.

if CPUID.01H:ECX[14] = 1

33:24 Reserved.

34 XD Bit Disable (R/W)

When set to 1, the Execute Disable Bit
feature (XD Bit) is disabled and the XD Bit
extended feature flag will be clear
(CPUID.80000001H: EDX[20]=0).

When set to a 0 (default), the Execute
Disable Bit feature (if available) allows the
OS to enable PAE paging and take
advantage of data only pages.

BIOS must not alter the contents of this bit
location, if XD bit is not supported.. Writing
this bit to 1 when the XD Bit extended
feature flag is set to 0 may generate a #GP
exception.

if
CPUID.80000001H:EDX[2
0] = 1

63:35 Reserved.

1B0H 432 IA32_ENERGY_PERF_BIAS Performance Energy Bias Hint (R/W) if CPUID.6H:ECX[3] = 1

3:0 Power Policy Preference:

0 indicates preference to highest
performance.

15 indicates preference to maximize
energy saving.

63:4 Reserved.

1B1H 433 IA32_PACKAGE_THERM_STATUS Package Thermal Status Information (RO)

Contains status information about the
package’s thermal sensor.

See Section 14.8, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg Thermal Status (RO):

1 Pkg Thermal Status Log (R/W):

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature Status (RO)

5 Pkg Critical Temperature Status log (R/
WC0)

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 403

6 Pkg Thermal Threshold #1 Status (RO)

7 Pkg Thermal Threshold #1 log (R/WC0)

8 Pkg Thermal Threshold #2 Status (RO)

9 Pkg Thermal Threshold #1 log (R/WC0)

10 Pkg Power Limitation Status (RO)

11 Pkg Power Limitation log (R/WC0)

15:12 Reserved.

22:16 Pkg Digital Readout (RO)

63:23 Reserved.

1B2H 434 IA32_PACKAGE_THERM_INTERRUPT Pkg Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the package’s thermal
sensor.

See Section 14.8, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg High-Temperature Interrupt Enable

1 Pkg Low-Temperature Interrupt Enable

2 Pkg PROCHOT# Interrupt Enable

3 Reserved.

4 Pkr Overheat Interrupt Enable

7:5 Reserved.

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt Enable

22:16 Pkg Threshold #2 Value

23 Pkg Threshold #2 Interrupt Enable

24 Pkg Power Limit Notification Enable

63:25 Reserved.

1D9H 473 IA32_DEBUGCTL (MSR_DEBUGCTLA,
MSR_DEBUGCTLB)

Trace/Profile Resource Control (R/W) 06_0EH

0 LBR: Setting this bit to 1 enables the
processor to record a running trace of the
most recent branches taken by the
processor in the LBR stack.

06_01H

1 BTF: Setting this bit to 1 enables the
processor to treat EFLAGS.TF as single-step
on branches instead of single-step on
instructions.

06_01H

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 404

5:2 Reserved.

6 TR: Setting this bit to 1 enables branch
trace messages to be sent.

06_0EH

7 BTS: Setting this bit enables branch trace
messages (BTMs) to be logged in a BTS
buffer.

06_0EH

8 BTINT: When clear, BTMs are logged in a
BTS buffer in circular fashion. When this bit
is set, an interrupt is generated by the BTS
facility when the BTS buffer is full.

06_0EH

9 1: BTS_OFF_OS: When set, BTS or BTM is
skipped if CPL = 0.

06_0FH

10 BTS_OFF_USR: When set, BTS or BTM is
skipped if CPL > 0.

06_0FH

11 FREEZE_LBRS_ON_PMI: When set, the LBR
stack is frozen on a PMI request.

If CPUID.01H: ECX[15] = 1
and CPUID.0AH: EAX[7:0] >
1

12 FREEZE_PERFMON_ON_PMI: When set,
each ENABLE bit of the global counter
control MSR are frozen (address 3BFH) on a
PMI request

If CPUID.01H: ECX[15] = 1
and CPUID.0AH: EAX[7:0] >
1

13 ENABLE_UNCORE_PMI: When set, enables
the logical processor to receive and
generate PMI on behalf of the uncore.

06_1AH

14 FREEZE_WHILE_SMM: When set, freezes
perfmon and trace messages while in SMM.

if
IA32_PERF_CAPABILITIES[
12] = '1

15 RTM_DEBUG: When set, enables DR7 debug
bit on XBEGIN

If (CPUID.(EAX=07H,
ECX=0):EBX[bit 11] = 1)

63:16 Reserved.

1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address (Writeable only in
SMM)

Base address of SMM memory range.

If IA32_MTRR_CAP[SMRR]
= 1

7:0 Type. Specifies memory type of the range.

11:8 Reserved.

31:12 PhysBase.

SMRR physical Base Address.

63:32 Reserved.

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask. (Writeable only in
SMM)

Range Mask of SMM memory range.

If IA32_MTRR_CAP[SMRR]
= 1

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 405

10:0 Reserved.

11 Valid

Enable range mask.

31:12 PhysMask

SMRR address range mask.

63:32 Reserved.

1F8H 504 IA32_PLATFORM_DCA_CAP DCA Capability (R) 06_0FH

1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-Hint type.

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and Control register. 06_2EH

0 DCA_ACTIVE: Set by HW when DCA is fuse-
enabled and no defeatures are set.

2:1 TRANSACTION

6:3 DCA_TYPE

10:7 DCA_QUEUE_SIZE

12:11 Reserved.

16:13 DCA_DELAY: Writes will update the register
but have no HW side-effect.

23:17 Reserved.

24 SW_BLOCK: SW can request DCA block by
setting this bit.

25 Reserved.

26 HW_BLOCK: Set when DCA is blocked by
HW (e.g. CR0.CD = 1).

31:27 Reserved.

200H 512 IA32_MTRR_PHYSBASE0
(MTRRphysBase0)

See Section 11.11.2.3, “Variable Range
MTRRs.”

06_01H

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 06_01H

202H 514 IA32_MTRR_PHYSBASE1 MTRRphysBase1 06_01H

203H 515 IA32_MTRR_PHYSMASK1 MTRRphysMask1 06_01H

204H 516 IA32_MTRR_PHYSBASE2 MTRRphysBase2 06_01H

205H 517 IA32_MTRR_PHYSMASK2 MTRRphysMask2 06_01H

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 06_01H

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 06_01H

208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 06_01H

209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 06_01H

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 06_01H

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 406

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 06_01H

20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 06_01H

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 06_01H

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 06_01H

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 06_01H

210H 528 IA32_MTRR_PHYSBASE8 MTRRphysBase8 if IA32_MTRR_CAP[7:0] >
8

211H 529 IA32_MTRR_PHYSMASK8 MTRRphysMask8 if IA32_MTRR_CAP[7:0] >
8

212H 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 if IA32_MTRR_CAP[7:0] >
9

213H 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 if IA32_MTRR_CAP[7:0] >
9

250H 592 IA32_MTRR_FIX64K_00000 MTRRfix64K_00000 06_01H

258H 600 IA32_MTRR_FIX16K_80000 MTRRfix16K_80000 06_01H

259H 601 IA32_MTRR_FIX16K_A0000 MTRRfix16K_A0000 06_01H

268H 616 IA32_MTRR_FIX4K_C0000
(MTRRfix4K_C0000)

See Section 11.11.2.2, “Fixed Range
MTRRs.”

06_01H

269H 617 IA32_MTRR_FIX4K_C8000 MTRRfix4K_C8000 06_01H

26AH 618 IA32_MTRR_FIX4K_D0000 MTRRfix4K_D0000 06_01H

26BH 619 IA32_MTRR_FIX4K_D8000 MTRRfix4K_D8000 06_01H

26CH 620 IA32_MTRR_FIX4K_E0000 MTRRfix4K_E0000 06_01H

26DH 621 IA32_MTRR_FIX4K_E8000 MTRRfix4K_E8000 06_01H

26EH 622 IA32_MTRR_FIX4K_F0000 MTRRfix4K_F0000 06_01H

26FH 623 IA32_MTRR_FIX4K_F8000 MTRRfix4K_F8000 06_01H

277H 631 IA32_PAT IA32_PAT (R/W) 06_05H

2:0 PA0

7:3 Reserved.

10:8 PA1

15:11 Reserved.

18:16 PA2

23:19 Reserved.

26:24 PA3

31:27 Reserved.

34:32 PA4

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 407

39:35 Reserved.

42:40 PA5

47:43 Reserved.

50:48 PA6

55:51 Reserved.

58:56 PA7

63:59 Reserved.

280H 640 IA32_MC0_CTL2 (R/W) 06_1AH

14:0 Corrected error count threshold.

29:15 Reserved.

30 CMCI_EN

63:31 Reserved.

281H 641 IA32_MC1_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

282H 642 IA32_MC2_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

283H 643 IA32_MC3_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

284H 644 IA32_MC4_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

285H 645 IA32_MC5_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

286H 646 IA32_MC6_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

287H 647 IA32_MC7_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

288H 648 IA32_MC8_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

289H 649 IA32_MC9_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28AH 650 IA32_MC10_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28BH 651 IA32_MC11_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28CH 652 IA32_MC12_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28DH 653 IA32_MC13_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28EH 654 IA32_MC14_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28FH 655 IA32_MC15_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

290H 656 IA32_MC16_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

291H 657 IA32_MC17_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

292H 658 IA32_MC18_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

293H 659 IA32_MC19_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

294H 660 IA32_MC20_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

295H 661 IA32_MC21_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

296H 662 IA32_MC22_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 408

297H 663 IA32_MC23_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

298H 664 IA32_MC24_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

299H 665 IA32_MC25_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29AH 666 IA32_MC26_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29BH 667 IA32_MC27_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29CH 668 IA32_MC28_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29DH 669 IA32_MC29_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29EH 670 IA32_MC30_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29FH 671 IA32_MC31_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType (R/W) 06_01H

2:0 Default Memory Type

9:3 Reserved.

10 Fixed Range MTRR Enable

11 MTRR Enable

63:12 Reserved.

309H 777 IA32_FIXED_CTR0
(MSR_PERF_FIXED_CTR0)

Fixed-Function Performance Counter 0 (R/
W): Counts Instr_Retired.Any.

If CPUID.0AH: EDX[4:0] > 0

30AH 778 IA32_FIXED_CTR1
(MSR_PERF_FIXED_CTR1)

Fixed-Function Performance Counter 1 0
(R/W): Counts CPU_CLK_Unhalted.Core

If CPUID.0AH: EDX[4:0] > 1

30BH 779 IA32_FIXED_CTR2
(MSR_PERF_FIXED_CTR2)

Fixed-Function Performance Counter 0 0
(R/W): Counts CPU_CLK_Unhalted.Ref

If CPUID.0AH: EDX[4:0] > 2

345H 837 IA32_PERF_CAPABILITIES RO If CPUID.01H: ECX[15] = 1

5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is supported.

13 1: Full width of counter writable via
IA32_A_PMCx.

63:14 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL
(MSR_PERF_FIXED_CTR_CTRL)

Fixed-Function Performance Counter
Control (R/W)

Counter increments while the results of
ANDing respective enable bit in
IA32_PERF_GLOBAL_CTRL with the
corresponding OS or USR bits in this MSR is
true.

If CPUID.0AH: EAX[7:0] > 1

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 409

0 EN0_OS: Enable Fixed Counter 0 to count
while CPL = 0.

1 EN0_Usr: Enable Fixed Counter 0 to count
while CPL > 0.

2 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

3 EN0_PMI: Enable PMI when fixed counter 0
overflows.

4 EN1_OS: Enable Fixed Counter 1to count
while CPL = 0.

5 EN1_Usr: Enable Fixed Counter 1to count
while CPL > 0.

6 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

7 EN1_PMI: Enable PMI when fixed counter 1
overflows.

8 EN2_OS: Enable Fixed Counter 2 to count
while CPL = 0.

9 EN2_Usr: Enable Fixed Counter 2 to count
while CPL > 0.

10 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

11 EN2_PMI: Enable PMI when fixed counter 2
overflows.

63:12 Reserved.

38EH 910 IA32_PERF_GLOBAL_STATUS
(MSR_PERF_GLOBAL_STATUS)

Global Performance Counter Status (RO) If CPUID.0AH: EAX[7:0] > 0

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 410

0 Ovf_PMC0: Overflow status of IA32_PMC0. If CPUID.0AH: EAX[15:8] >
0

1 Ovf_PMC1: Overflow status of IA32_PMC1. If CPUID.0AH: EAX[15:8] >
1

2 Ovf_PMC2: Overflow status of IA32_PMC2. 06_2EH

3 Ovf_PMC3: Overflow status of IA32_PMC3. 06_2EH

31:4 Reserved.

32 Ovf_FixedCtr0: Overflow status of
IA32_FIXED_CTR0.

If CPUID.0AH: EAX[7:0] > 1

33 Ovf_FixedCtr1: Overflow status of
IA32_FIXED_CTR1.

If CPUID.0AH: EAX[7:0] > 1

34 Ovf_FixedCtr2: Overflow status of
IA32_FIXED_CTR2.

If CPUID.0AH: EAX[7:0] > 1

54:35 Reserved.

55 Trace_ToPA_PMI: A PMI occurred due to a
ToPA entry memory buffer was completely
filled.

If IA32_RTIT_CTL.ToPA = 1

60:56 Reserved.

61 Ovf_Uncore: Uncore counter overflow
status.

If CPUID.0AH: EAX[7:0] > 2

62 OvfBuf: DS SAVE area Buffer overflow
status.

If CPUID.0AH: EAX[7:0] > 0

63 CondChgd: status bits of this register has
changed.

If CPUID.0AH: EAX[7:0] > 0

38FH 911 IA32_PERF_GLOBAL_CTRL
(MSR_PERF_GLOBAL_CTRL)

Global Performance Counter Control (R/W)

Counter increments while the result of
ANDing respective enable bit in this MSR
with the corresponding OS or USR bits in
the general-purpose or fixed counter
control MSR is true.

If CPUID.0AH: EAX[7:0] > 0

0 EN_PMC0 If CPUID.0AH: EAX[7:0] > 0

1 EN_PMC1 If CPUID.0AH: EAX[7:0] > 0

31:2 Reserved.

32 EN_FIXED_CTR0 If CPUID.0AH: EAX[7:0] > 1

33 EN_FIXED_CTR1 If CPUID.0AH: EAX[7:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH: EAX[7:0] > 1

63:35 Reserved.

390H 912 IA32_PERF_GLOBAL_OVF_CTRL
(MSR_PERF_GLOBAL_OVF_CTRL)

Global Performance Counter Overflow
Control (R/W)

If CPUID.0AH: EAX[7:0] > 0

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 411

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[7:0] > 0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[7:0] > 0

31:2 Reserved.

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EAX[7:0] > 1

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EAX[7:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EAX[7:0] > 1

60:35 Reserved.

61 Set 1 to Clear Ovf_Uncore: bit. 06_2EH

62 Set 1 to Clear OvfBuf: bit. If CPUID.0AH: EAX[7:0] > 0

63 Set to 1to clear CondChgd: bit. If CPUID.0AH: EAX[7:0] > 0

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0. 06_0FH

1-3 Reserved or Model specific.

31:4 Reserved.

35-32 Reserved or Model specific.

63:36 Reserved.

400H 1024 IA32_MC0_CTL MC0_CTL 06_01H

401H 1025 IA32_MC0_STATUS MC0_STATUS 06_01H

402H 1026 IA32_MC0_ADDR1 MC0_ADDR 06_01H

403H 1027 IA32_MC0_MISC MC0_MISC 06_01H

404H 1028 IA32_MC1_CTL MC1_CTL 06_01H

405H 1029 IA32_MC1_STATUS MC1_STATUS 06_01H

406H 1030 IA32_MC1_ADDR2 MC1_ADDR 06_01H

407H 1031 IA32_MC1_MISC MC1_MISC 06_01H

408H 1032 IA32_MC2_CTL MC2_CTL 06_01H

409H 1033 IA32_MC2_STATUS MC2_STATUS 06_01H

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR 06_01H

40BH 1035 IA32_MC2_MISC MC2_MISC 06_01H

40CH 1036 IA32_MC3_CTL MC3_CTL 06_01H

40DH 1037 IA32_MC3_STATUS MC3_STATUS 06_01H

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR 06_01H

40FH 1039 IA32_MC3_MISC MC3_MISC 06_01H

410H 1040 IA32_MC4_CTL MC4_CTL 06_01H

411H 1041 IA32_MC4_STATUS MC4_STATUS 06_01H

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 412

412H 1042 IA32_MC4_ADDR1 MC4_ADDR 06_01H

413H 1043 IA32_MC4_MISC MC4_MISC 06_01H

414H 1044 IA32_MC5_CTL MC5_CTL 06_0FH

415H 1045 IA32_MC5_STATUS MC5_STATUS 06_0FH

416H 1046 IA32_MC5_ADDR1 MC5_ADDR 06_0FH

417H 1047 IA32_MC5_MISC MC5_MISC 06_0FH

418H 1048 IA32_MC6_CTL MC6_CTL 06_1DH

419H 1049 IA32_MC6_STATUS MC6_STATUS 06_1DH

41AH 1050 IA32_MC6_ADDR1 MC6_ADDR 06_1DH

41BH 1051 IA32_MC6_MISC MC6_MISC 06_1DH

41CH 1052 IA32_MC7_CTL MC7_CTL 06_1AH

41DH 1053 IA32_MC7_STATUS MC7_STATUS 06_1AH

41EH 1054 IA32_MC7_ADDR1 MC7_ADDR 06_1AH

41FH 1055 IA32_MC7_MISC MC7_MISC 06_1AH

420H 1056 IA32_MC8_CTL MC8_CTL 06_1AH

421H 1057 IA32_MC8_STATUS MC8_STATUS 06_1AH

422H 1058 IA32_MC8_ADDR1 MC8_ADDR 06_1AH

423H 1059 IA32_MC8_MISC MC8_MISC 06_1AH

424H 1060 IA32_MC9_CTL MC9_CTL 06_2EH

425H 1061 IA32_MC9_STATUS MC9_STATUS 06_2EH

426H 1062 IA32_MC9_ADDR1 MC9_ADDR 06_2EH

427H 1063 IA32_MC9_MISC MC9_MISC 06_2EH

428H 1064 IA32_MC10_CTL MC10_CTL 06_2EH

429H 1065 IA32_MC10_STATUS MC10_STATUS 06_2EH

42AH 1066 IA32_MC10_ADDR1 MC10_ADDR 06_2EH

42BH 1067 IA32_MC10_MISC MC10_MISC 06_2EH

42CH 1068 IA32_MC11_CTL MC11_CTL 06_2EH

42DH 1069 IA32_MC11_STATUS MC11_STATUS 06_2EH

42EH 1070 IA32_MC11_ADDR1 MC11_ADDR 06_2EH

42FH 1071 IA32_MC11_MISC MC11_MISC 06_2EH

430H 1072 IA32_MC12_CTL MC12_CTL 06_2EH

431H 1073 IA32_MC12_STATUS MC12_STATUS 06_2EH

432H 1074 IA32_MC12_ADDR1 MC12_ADDR 06_2EH

433H 1075 IA32_MC12_MISC MC12_MISC 06_2EH

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 413

434H 1076 IA32_MC13_CTL MC13_CTL 06_2EH

435H 1077 IA32_MC13_STATUS MC13_STATUS 06_2EH

436H 1078 IA32_MC13_ADDR1 MC13_ADDR 06_2EH

437H 1079 IA32_MC13_MISC MC13_MISC 06_2EH

438H 1080 IA32_MC14_CTL MC14_CTL 06_2EH

439H 1081 IA32_MC14_STATUS MC14_STATUS 06_2EH

43AH 1082 IA32_MC14_ADDR1 MC14_ADDR 06_2EH

43BH 1083 IA32_MC14_MISC MC14_MISC 06_2EH

43CH 1084 IA32_MC15_CTL MC15_CTL 06_2EH

43DH 1085 IA32_MC15_STATUS MC15_STATUS 06_2EH

43EH 1086 IA32_MC15_ADDR1 MC15_ADDR 06_2EH

43FH 1087 IA32_MC15_MISC MC15_MISC 06_2EH

440H 1088 IA32_MC16_CTL MC16_CTL 06_2EH

441H 1089 IA32_MC16_STATUS MC16_STATUS 06_2EH

442H 1090 IA32_MC16_ADDR1 MC16_ADDR 06_2EH

443H 1091 IA32_MC16_MISC MC16_MISC 06_2EH

444H 1092 IA32_MC17_CTL MC17_CTL 06_2EH

445H 1093 IA32_MC17_STATUS MC17_STATUS 06_2EH

446H 1094 IA32_MC17_ADDR1 MC17_ADDR 06_2EH

447H 1095 IA32_MC17_MISC MC17_MISC 06_2EH

448H 1096 IA32_MC18_CTL MC18_CTL 06_2EH

449H 1097 IA32_MC18_STATUS MC18_STATUS 06_2EH

44AH 1098 IA32_MC18_ADDR1 MC18_ADDR 06_2EH

44BH 1099 IA32_MC18_MISC MC18_MISC 06_2EH

44CH 1100 IA32_MC19_CTL MC19_CTL 06_2EH

44DH 1101 IA32_MC19_STATUS MC19_STATUS 06_2EH

44EH 1102 IA32_MC19_ADDR1 MC19_ADDR 06_2EH

44FH 1103 IA32_MC19_MISC MC19_MISC 06_2EH

450H 1104 IA32_MC20_CTL MC20_CTL 06_2EH

451H 1105 IA32_MC20_STATUS MC20_STATUS 06_2EH

452H 1106 IA32_MC20_ADDR1 MC20_ADDR 06_2EH

453H 1107 IA32_MC20_MISC MC20_MISC 06_2EH

454H 1108 IA32_MC21_CTL MC21_CTL 06_2EH

455H 1109 IA32_MC21_STATUS MC21_STATUS 06_2EH

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 414

456H 1110 IA32_MC21_ADDR1 MC21_ADDR 06_2EH

457H 1111 IA32_MC21_MISC MC21_MISC 06_2EH

480H 1152 IA32_VMX_BASIC Reporting Register of Basic VMX
Capabilities (R/O)

See Appendix A.1, “Basic VMX Information.”

If CPUID.01H:ECX.[bit 5] =
1

481H 1153 IA32_VMX_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If CPUID.01H:ECX.[bit 5] =
1

482H 1154 IA32_VMX_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-based VM-execution Controls
(R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If CPUID.01H:ECX.[bit 5] =
1

483H 1155 IA32_VMX_EXIT_CTLS Capability Reporting Register of VM-exit
Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If CPUID.01H:ECX.[bit 5] =
1

484H 1156 IA32_VMX_ENTRY_CTLS Capability Reporting Register of VM-
entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If CPUID.01H:ECX.[bit 5] =
1

485H 1157 IA32_VMX_MISC Reporting Register of Miscellaneous
VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data.”

If CPUID.01H:ECX.[bit 5] =
1

486H 1158 IA32_VMX_CRO_FIXED0 Capability Reporting Register of CR0 Bits
Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[bit 5] =
1

487H 1159 IA32_VMX_CRO_FIXED1 Capability Reporting Register of CR0 Bits
Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[bit 5] =
1

488H 1160 IA32_VMX_CR4_FIXED0 Capability Reporting Register of CR4 Bits
Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[bit 5] =
1

489H 1161 IA32_VMX_CR4_FIXED1 Capability Reporting Register of CR4 Bits
Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[bit 5] =
1

48AH 1162 IA32_VMX_VMCS_ENUM Capability Reporting Register of VMCS
Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration.”

If CPUID.01H:ECX.[bit 5] =
1

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 415

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Capability Reporting Register of
Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3.3, “Secondary Processor-
Based VM-Execution Controls.”

If (CPUID.01H:ECX.[bit 5]
and
IA32_VMX_PROCBASED_C
TLS[bit 63])

48CH 1164 IA32_VMX_EPT_VPID_CAP Capability Reporting Register of EPT and
VPID (R/O)

See Appendix A.10, “VPID and EPT
Capabilities.”

If (CPUID.01H:ECX.[bit 5],
IA32_VMX_PROCBASED_C
TLS[bit 63], and either
IA32_VMX_PROCBASED_C
TLS2[bit 33] or
IA32_VMX_PROCBASED_C
TLS2[bit 37])

48DH 1165 IA32_VMX_TRUE_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Flex Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If (CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-based VM-execution Flex
Controls (R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Capability Reporting Register of VM-exit
Flex Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Capability Reporting Register of VM-
entry Flex Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

491H 1169 IA32_VMX_VMFUNC Capability Reporting Register of VM-
function Controls (R/O)

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

4C1H 1217 IA32_A_PMC0 Full Width Writable IA32_PMC0 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
0) &

IA32_PERF_CAPABILITIES[
13] = 1

4C2H 1218 IA32_A_PMC1 Full Width Writable IA32_PMC1 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
1) &

IA32_PERF_CAPABILITIES[
13] = 1

4C3H 1219 IA32_A_PMC2 Full Width Writable IA32_PMC2 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
2) &

IA32_PERF_CAPABILITIES[
13] = 1

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 416

4C4H 1220 IA32_A_PMC3 Full Width Writable IA32_PMC3 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
3) &

IA32_PERF_CAPABILITIES[
13] = 1

4C5H 1221 IA32_A_PMC4 Full Width Writable IA32_PMC4 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
4) &

IA32_PERF_CAPABILITIES[
13] = 1

4C6H 1222 IA32_A_PMC5 Full Width Writable IA32_PMC5 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
5) &

IA32_PERF_CAPABILITIES[
13] = 1

4C7H 1223 IA32_A_PMC6 Full Width Writable IA32_PMC6 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
6) &

IA32_PERF_CAPABILITIES[
13] = 1

4C8H 1224 IA32_A_PMC7 Full Width Writable IA32_PMC7 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
7) &

IA32_PERF_CAPABILITIES[
13] = 1

4D0H 1232 IA32_MCG_EXT_CTL (R/W) If IA32_MCG_CAP.LMCE_P
=1

0 LMCE_EN.

63:1 Reserved.

560H 1376 IA32_RTIT_OUTPUT_BASE Trace Output Base Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)

6:0 Reserved

MAXPHYADDR3-1:7 Base physical address of the current ToPA
table.

63:MAXPHYADDR Reserved.

561H 1377 IA32_RTIT_OUTPUT_MASK_PTRS Trace Output Mask Pointers Register (R/
W)

If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)

6:0 Reserved

31:7 MaskOrTableOffset

63:32 Output Offset.

570H 1392 IA32_RTIT_CTL Trace Packet Control Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)

0 TraceEn

1 Reserved,

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 417

2 OS

3 User

6:4 Reserved,

7 CR3 filter

8 ToPA

9 Reserved,

10 TSCEn

11 DisRETC

12 Reserved,

13 BranchEn

63:14 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Tracing Status Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)

0 Reserved,

1 ContexEn, (writes ignored)

2 TriggerEn, (writes ignored)

3 Reserved

4 Error

5 Stopped

63:6 Reserved.

572H 1394 IA32_RTIT_CR3_MATCH Trace Filter CR3 Match Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)

4:0 Reserved

63:5 CR3[63:5] value to match

600H 1536 IA32_DS_AREA DS Save Area (R/W)

Points to the linear address of the first
byte of the DS buffer management area,
which is used to manage the BTS and PEBS
buffers.

See Section 18.13.4, “Debug Store (DS)
Mechanism.”

0F_0H

63:0 The linear address of the first byte of the
DS buffer management area, if IA-32e
mode is active.

31:0 The linear address of the first byte of the
DS buffer management area, if not in IA-
32e mode.

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 418

63:32 Reserved if not in IA-32e mode.

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s TSC Deadline
Mode (R/W)

If(CPUID.01H:ECX.[bit 25]
= 1

770H 1904 IA32_PM_ENABLE Enable/disable HWP (R/W) If(CPUID.06H:EAX.[bit 7] =
1

0 HWP_ENABLE (R/W1-Once).

See Section 14.4.2, “Enabling HWP”

If(CPUID.06H:EAX.[bit 7] =
1

63:1 Reserved.

771H 1905 IA32_HWP_CAPABILITIES HWP Performance Range Enumeration
(RO)

If(CPUID.06H:EAX.[bit 7] =
1

7:0 Highest_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If(CPUID.06H:EAX.[bit 7] =
1

15:8 Guaranteed_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If(CPUID.06H:EAX.[bit 7] =
1

23:16 Most_Efficient_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If(CPUID.06H:EAX.[bit 7] =
1

31:24 Lowest_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If(CPUID.06H:EAX.[bit 7] =
1

63:32 Reserved.

772H 1906 IA32_HWP_REQUEST_PKG Power Management Control Hints for All
Logical Processors in a Package (R/W)

If(CPUID.06H:EAX.[bit 11]
= 1

7:0 Minimum_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1

15:8 Maximum_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1

23:16 Desired_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1

31:24 Energy_Performance_Preference

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1 and

CPUID.06HEAX.[bit 10] = 1

41:32 Activity_Window

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1 and

CPUID.06HEAX.[bit 9] = 1

63:42 Reserved.

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 419

773H 1907 IA32_HWP_INTERRUPT Control HWP Native Interrupts (R/W) If(CPUID.06H:EAX.[bit 8] =
1

0 EN_Guaranteed_Performance_Change.

See Section 14.4.6, “HWP Notifications”

If(CPUID.06H:EAX.[bit 8] =
1

1 EN_Excursion_Minimum.

See Section 14.4.6, “HWP Notifications”

If(CPUID.06H:EAX.[bit 8] =
1

63:2 Reserved.

774H 1908 IA32_HWP_REQUEST Power Management Control Hints to a
Logical Processor (R/W)

If(CPUID.06H:EAX.[bit 7] =
1

7:0 Minimum_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 7] =
1

15:8 Maximum_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 7] =
1

23:16 Desired_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 7] =
1

31:24 Energy_Performance_Preference

See Section 14.4.4, “Managing HWP”

If CPUID.06HEAX.[bit 7] =
1 and (CPUID.06H:EAX.[bit
10] = 1

41:32 Activity_Window

See Section 14.4.4, “Managing HWP”

If CPUID.06HEAX.[bit 7] =
1 and (CPUID.06H:EAX.[bit
9] = 1

42 Package_Control

See Section 14.4.4, “Managing HWP”

IfCPUID.06HEAX.[bit 7] = 1
and (CPUID.06H:EAX.[bit
11] = 1

63:43 Reserved.

777H 1911 IA32_HWP_STATUS Log bits indicating changes to
Guaranteed & excursions to Minimum (R/
W)

If(CPUID.06H:EAX.[bit 7] =
1

0 Guaranteed_Performance_Change (R/
WC0).

See Section 14.4.5, “HWP Feedback”

If(CPUID.06H:EAX.[bit 7] =
1

1 Reserved.

2 Excursion_To_Minimum (R/WC0).

See Section 14.4.5, “HWP Feedback”

If(CPUID.06H:EAX.[bit 7] =
1

63:3 Reserved.

802H 2050 IA32_X2APIC_APICID x2APIC ID Register (R/O)

See x2APIC Specification

If (CPUID.01H:ECX.[bit 21]
= 1)

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register (R/O) If (CPUID.01H:ECX.[bit 21]
= 1)

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 420

808H 2056 IA32_X2APIC_TPR x2APIC Task Priority Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority Register (R/O) If (CPUID.01H:ECX.[bit 21]
= 1)

80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register (W/O) If (CPUID.01H:ECX.[bit 21]
= 1)

80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination Register (R/
O)

If (CPUID.01H:ECX.[bit 21]
= 1)

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt Vector
Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register Bits 31:0 (R/
O)

If (CPUID.01H:ECX.[bit 21]
= 1)

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register Bits 63:32
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register Bits 95:64
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register Bits 127:96
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register Bits 159:128
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register Bits 191:160
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register Bits 223:192
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register Bits 255:224
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode Register Bits 31:0
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode Register Bits 63:32
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode Register Bits 95:64
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode Register Bits
127:96 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode Register Bits
159:128 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode Register Bits
191:160 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode Register Bits
223:192 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 421

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode Register Bits
255:224 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request Register Bits
31:0 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request Register Bits
63:32 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request Register Bits
95:64 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request Register Bits
127:96 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request Register Bits
159:128 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request Register Bits
191:160 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request Register Bits
223:192 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request Register Bits
255:224 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

828H 2088 IA32_X2APIC_ESR x2APIC Error Status Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected Machine Check
Interrupt Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command Register (R/
W)

If (CPUID.01H:ECX.[bit 21]
= 1)

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer Interrupt Register (R/
W)

If (CPUID.01H:ECX.[bit 21]
= 1)

833H 2099 IA32_X2APIC_LVT_THERMAL x2APIC LVT Thermal Sensor Interrupt
Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance Monitor
Interrupt Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0 Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1 Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

837H 2103 IA32_X2APIC_LVT_ERROR x2APIC LVT Error Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

838H 2104 IA32_X2APIC_INIT_COUNT x2APIC Initial Count Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

839H 2105 IA32_X2APIC_CUR_COUNT x2APIC Current Count Register (R/O) If (CPUID.01H:ECX.[bit 21]
= 1)

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 422

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide Configuration Register (R/
W)

If (CPUID.01H:ECX.[bit 21]
= 1)

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register (W/O) If (CPUID.01H:ECX.[bit 21]
= 1)

C80H 3200 IA32_DEBUG_INTERFACE Silicon Debug Feature Control (R/W) If(CPUID.01H:ECX.[bit 11]
= 1

0 Enable (R/W).

BIOS set 1 to enable Silicon debug features.
Default is 0

If(CPUID.01H:ECX.[bit 11]
= 1

29:1 Reserved.

30 Lock (R/W): If 1, locks any further change
to the MSR. The lock bit is set automatically
on the first SMI assertion even if not
explicitly set by BIOS. Default is 0.

If(CPUID.01H:ECX.[bit 11]
= 1

31 Debug Occurred (R/O): This “sticky bit” is
set by hardware to indicate the status of
bit 0. Default is 0.

If(CPUID.01H:ECX.[bit 11]
= 1

63:32 Reserved.

C8DH 3213 IA32_QM_EVTSEL QoS Monitoring Event Select Register (R/
W)

If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 12] = 1)

7:0 Event ID: ID of a supported QoS monitoring
event to report via IA32_QM_CTR.

31: 8 Reserved.

N+31:32 Resource Monitoring ID: ID for QoS
monitoring hardware to report monitored
data via IA32_QM_CTR.

N = Ceil (Log2 (
CPUID.(EAX= 0FH,
ECX=0H).EBX[31:0] +1))

63:N+32 Reserved.

C8EH 3214 IA32_QM_CTR QoS Monitoring Counter Register (R/O) If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 12] = 1)

61:0 Resource Monitored Data

62 Unavailable: If 1, indicates data for this
RMID is not available or not monitored for
this resource or RMID.

63 Error: If 1, indicates and unsupported RMID
or event type was written to
IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC QoS Resource Association Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 12] = 1)

N-1:0 Resource Monitoring ID (R/W): ID for QoS
monitoring hardware to track internal
operation, e.g. memory access.

N = Ceil (Log2 (
CPUID.(EAX= 0FH,
ECX=0H).EBX[31:0] +1))

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 423

31:N Reserved

63:32 COS (R/W). The class of service
(COS) to enforce (on writes);
returns the current COS when
read.

If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 15] = 1)

0C90H
-
0D8FH

Reserved MSR Address Space for
Platform QoS Enforcement Mask
Registers

See Section 17.15.2.1, “Enumeration and
Detection Support of CQE”

C90H 3216 IA32_L3_QOS_MASK_0 L3 CQE Mask for COS0 (R/W) If (CPUID.(10H, 0):EBX[bit
1] != 0)

31:0 Capacity Bit Mask (R/W).

63:32 Reserved.

C90H+
n

3216+n IA32_L3_QOS_MASK_n L3 CQE Mask for COSn (R/W) n = CPUID.(10H,
1):EDX[15:0]

31:0 Capacity Bit Mask (R/W).

63:32 Reserved.

DA0H 3488 IA32_XSS Extended Supervisor State Mask (R/W) If(CPUID.(0DH, 1):EAX.[bit
3] = 1

7:0 Reserved

8 Trace Packet Configuration State (R/W).

63:9 Reserved.

DB0H 3504 IA32_PKG_HDC_CTL Package Level Enable/disable HDC (R/W) If(CPUID.06H:EAX.[bit 13]
= 1

0 HDC_Pkg_Enable (R/W).

Force HDC idling or wake up HDC-idled
logical processors in the package. See
Section 14.5.2, “Package level Enabling
HDC”

If(CPUID.06H:EAX.[bit 13]
= 1

63:1 Reserved.

DB1H 3505 IA32_PM_CTL1 Enable/disable HWP (R/W) If(CPUID.06H:EAX.[bit 13]
= 1

0 HDC_Allow_Block (R/W)

Allow/Block this logical processor for
package level HDC control. See Section
14.5.3

If(CPUID.06H:EAX.[bit 13]
= 1

63:1 Reserved.

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 424

DB2H 3506 IA32_THREAD_STALL Per-Logical_Processor HDC Idle
Residency (R/0)

If(CPUID.06H:EAX.[bit 13]
= 1

63:0 Stall_Cycle_Cnt (R/W)

Stalled cycles due to HDC forced idle on this
logical processor. See Section 14.5.4.1

If(CPUID.06H:EAX.[bit 13]
= 1

4000_
0000H
-
4000_
00FFH

Reserved MSR Address Space All existing and future processors will
not implement MSR in this range.

C000_
0080H

IA32_EFER Extended Feature Enables If (
CPUID.80000001.EDX.[bit
20] or
CPUID.80000001.EDX.[bit
29])

0 SYSCALL Enable: IA32_EFER.SCE (R/W)

Enables SYSCALL/SYSRET instructions in
64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable: IA32_EFER.LME (R/
W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active: IA32_EFER.LMA (R)

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable:
IA32_EFER.NXE (R/W)

63:12 Reserved.

C000_
0081H

IA32_STAR System Call Target Address (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0082H

IA32_LSTAR IA-32e Mode System Call Target Address
(R/W)

If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0084H

IA32_FMASK System Call Flag Mask (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0100H

IA32_FS_BASE Map of BASE Address of FS (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 425

...

35.4 MSRS IN THE PROCESSORS BASED ON SILVERMONT
MICROARCHITECTURE

Table 35-6 lists model-specific registers (MSRs) for Intel processors based on the Silvermont microarchitecture
These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_37H, 06_4AH, 06_4DH,
06_5AH, and 06_5DH, see Table 35-1.

The column “Scope” lists the core/shared/package granularity of sharing in the Silvermont microarchitecture.
“Core” means each processor core has a separate MSR, or a bit field not shared with another processor core.
“Shared” means the MSR or the bit field is shared by more than one processor cores in the physical package.
“Package” means all processor cores in the physical package share the same MSR or bit interface.

C000_
0101H

IA32_GS_BASE Map of BASE Address of GS (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0102H

IA32_KERNEL_GS_BASE Swap Target of BASE Address of GS (R/
W)

If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0103H

IA32_TSC_AUX Auxiliary TSC (RW) If CPUID.80000001H:
EDX[27] = 1

31:0 AUX: Auxiliary signature of TSC

63:32 Reserved.
NOTES:

1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are supported, software must treat them as
model-specific. Starting with Intel Core Duo processors, MSR addresses 180H-185H, 188H-197H are reserved.

2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. See Section 15.3.2.3 and Section
15.3.2.4 for more information.

3. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

Table 35-1 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

0H 0 IA32_P5_MC_ADDR Shared See Section 35.19, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Shared See Section 35.19, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Core See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
andTable 35-1

10H 16 IA32_TIME_STAMP_
COUNTER

Core See Section 17.13, “Time-Stamp Counter,” and see Table 35-1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 426

17H 23 IA32_PLATFORM_ID Shared Platform ID (R)
See Table 35-1.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R)

7:0 Reserved.

12:8 Maximum Qualified Ratio (R)

The maximum allowed bus ratio.

49:13 Reserved.

52:50 See Table 35-1

63:33 Reserved.

1BH 27 IA32_APIC_BASE Core See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
1.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W) Enables and
disables processor features;

(R) indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

3 AERR# Drive Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

4 BERR# Enable for initiator bus requests (R/W)

1 = Enabled; 0 = Disabled
Always 0.

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

8 Reserved.

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 427

10 AERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

11 Reserved.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

Always 00B.

19: 18 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio (R/O)

34H 52 MSR_SMI_COUNT Core SMI Counter (R/O)

31:0 SMI Count (R/O)

Running count of SMI events since last RESET.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Core Control Features in Intel 64Processor (R/W)

See Table 35-1.

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Core Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the source
instruction for one of the last eight branches, exceptions, or
interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.11, “Last Branch, Interrupt, and Exception Recording

(Pentium M Processors).”

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Core Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Core Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Core Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 428

44H 68 MSR_
LASTBRANCH_4_FROM_IP

Core Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_FROM_IP

Core Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_FROM_IP

Core Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_FROM_IP

Core Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_TO_IP

Core Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the
destination instruction for one of the last eight branches,
exceptions, or interrupts taken by the processor.

61H 97 MSR_
LASTBRANCH_1_TO_IP

Core Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

62H 98 MSR_
LASTBRANCH_2_TO_IP

Core Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

63H 99 MSR_
LASTBRANCH_3_TO_IP

Core Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

64H 100 MSR_
LASTBRANCH_4_TO_IP

Core Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

65H 101 MSR_
LASTBRANCH_5_TO_IP

Core Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

66H 102 MSR_
LASTBRANCH_6_TO_IP

Core Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

67H 103 MSR_
LASTBRANCH_7_TO_IP

Core Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 35-1.

8BH 139 IA32_BIOS_SIGN_ID Core BIOS Update Signature ID (RO)

See Table 35-1.

C1H 193 IA32_PMC0 Core Performance counter register

See Table 35-1.

C2H 194 IA32_PMC1 Core Performance Counter Register

See Table 35-1.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Silvermont microarchitecture:

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 429

2:0 • 100B: 080.0 MHz
• 000B: 083.3 MHz
• 001B: 100.0 MHz
• 010B: 133.3 MHz
• 011B: 116.7 MHz

63:3 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Shared C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

100b: C4

110b: C6

111b: C7 (Silvermont only).

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Shared Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 430

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to
be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

100b - C4 is the max C-State to include

110b - C6 is the max C-State to include

111b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Core Maximum Performance Frequency Clock Count (RW)

See Table 35-1.

E8H 232 IA32_APERF Core Actual Performance Frequency Clock Count (RW)

See Table 35-1.

FEH 254 IA32_MTRRCAP Core Memory Type Range Register (R)

See Table 35-1.

11EH 281 MSR_BBL_CR_CTL3 Shared

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Core See Table 35-1.

175H 373 IA32_SYSENTER_ESP Core See Table 35-1.

176H 374 IA32_SYSENTER_EIP Core See Table 35-1.

179H 377 IA32_MCG_CAP Core See Table 35-1.

17AH 378 IA32_MCG_STATUS Core

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 431

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Core See Table 35-1.

187H 391 IA32_PERFEVTSEL1 Core See Table 35-1.

198H 408 IA32_PERF_STATUS Shared See Table 35-1.

199H 409 IA32_PERF_CTL Core See Table 35-1.

19AH 410 IA32_CLOCK_MODULATION Core Clock Modulation (R/W)

See Table 35-1.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 35-1.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-1.

1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Core Fast-Strings Enable

See Table 35-1.

2:1 Reserved.

3 Shared Automatic Thermal Control Circuit Enable (R/W)

See Table 35-1.

6:4 Reserved.

7 Core Performance Monitoring Available (R)

See Table 35-1.

10:8 Reserved.

11 Core Branch Trace Storage Unavailable (RO)

See Table 35-1.

12 Core Precise Event Based Sampling Unavailable (RO)

See Table 35-1.

15:13 Reserved.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 432

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-1.

18 Core ENABLE MONITOR FSM (R/W)

See Table 35-1.

21:19 Reserved.

22 Core Limit CPUID Maxval (R/W)

See Table 35-1.

23 Shared xTPR Message Disable (R/W)

See Table 35-1.

33:24 Reserved.

34 Core XD Bit Disable (R/W)

See Table 35-1.

37:35 Reserved.

38 Shared Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Package

15:0 Reserved.

23:16 Temperature Target (R)

The default thermal throttling or PROCHOT# activation
temperature in degree C, The effective temperature for thermal
throttling or PROCHOT# activation is “Temperature Target” +
“Target Offset”

29:24 Target Offset (R/W)

Specifies an offset in degrees C to adjust the throttling and
PROCHOT# activation temperature from the default target
specified in TEMPERATURE_TARGET (bits 23:16).

63:30 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Shared Offcore Response Event Select Register (R/W)

1A7H 423 MSR_OFFCORE_RSP_1 Shared Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode (RW)

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 433

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

1B0H 432 IA32_ENERGY_PERF_BIAS Core See Table 35-1.

1C9H 457 MSR_LASTBRANCH_TOS Core Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-2) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Core Debug Control (R/W)

See Table 35-1.

1DDH 477 MSR_LER_FROM_LIP Core Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Core Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-1.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-1.

200H 512 IA32_MTRR_PHYSBASE0 Core See Table 35-1.

201H 513 IA32_MTRR_PHYSMASK0 Core See Table 35-1.

202H 514 IA32_MTRR_PHYSBASE1 Core See Table 35-1.

203H 515 IA32_MTRR_PHYSMASK1 Core See Table 35-1.

204H 516 IA32_MTRR_PHYSBASE2 Core See Table 35-1.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 434

205H 517 IA32_MTRR_PHYSMASK2 Core See Table 35-1.

206H 518 IA32_MTRR_PHYSBASE3 Core See Table 35-1.

207H 519 IA32_MTRR_PHYSMASK3 Core See Table 35-1.

208H 520 IA32_MTRR_PHYSBASE4 Core See Table 35-1.

209H 521 IA32_MTRR_PHYSMASK4 Core See Table 35-1.

20AH 522 IA32_MTRR_PHYSBASE5 Core See Table 35-1.

20BH 523 IA32_MTRR_PHYSMASK5 Core See Table 35-1.

20CH 524 IA32_MTRR_PHYSBASE6 Core See Table 35-1.

20DH 525 IA32_MTRR_PHYSMASK6 Core See Table 35-1.

20EH 526 IA32_MTRR_PHYSBASE7 Core See Table 35-1.

20FH 527 IA32_MTRR_PHYSMASK7 Core See Table 35-1.

250H 592 IA32_MTRR_FIX64K_
00000

Core See Table 35-1.

258H 600 IA32_MTRR_FIX16K_
80000

Core See Table 35-1.

259H 601 IA32_MTRR_FIX16K_
A0000

Core See Table 35-1.

268H 616 IA32_MTRR_FIX4K_C0000 Core See Table 35-1.

269H 617 IA32_MTRR_FIX4K_C8000 Core See Table 35-1.

26AH 618 IA32_MTRR_FIX4K_D0000 Core See Table 35-1.

26BH 619 IA32_MTRR_FIX4K_D8000 Core See Table 35-1.

26CH 620 IA32_MTRR_FIX4K_E0000 Core See Table 35-1.

26DH 621 IA32_MTRR_FIX4K_E8000 Core See Table 35-1.

26EH 622 IA32_MTRR_FIX4K_F0000 Core See Table 35-1.

26FH 623 IA32_MTRR_FIX4K_F8000 Core See Table 35-1.

277H 631 IA32_PAT Core See Table 35-1.

2FFH 767 IA32_MTRR_DEF_TYPE Core Default Memory Types (R/W)

See Table 35-1.

309H 777 IA32_FIXED_CTR0 Core Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-1.

30AH 778 IA32_FIXED_CTR1 Core Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-1.

30BH 779 IA32_FIXED_CTR2 Core Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-1.

345H 837 IA32_PERF_CAPABILITIES Core See Table 35-1. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 435

38DH 909 IA32_FIXED_CTR_CTRL Core Fixed-Function-Counter Control Register (R/W)

See Table 35-1.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Core See Table 35-1. See Section 18.4.2, “Global Counter Control
Facilities.”

38FH 911 IA32_PERF_GLOBAL_CTRL Core See Table 35-1. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Core See Table 35-1. See Section 18.4.2, “Global Counter Control
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Core See Table 35-1. See Section 18.4.4, “Precise Event Based Sampling
(PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

3FAH 1018 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Counts at the TSC Frequency.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Counts at the TSC Frequency.

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 436

40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40CH 1036 MSR_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

4OEH 1038 MSR_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

480H 1152 IA32_VMX_BASIC Core Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-1.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Core Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-1.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Core Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 437

483H 1155 IA32_VMX_EXIT_CTLS Core Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-1.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Core Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-1.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Core Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-1.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Core Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-1.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Core Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-1.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Core Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-1.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Core Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-1.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Core Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-1.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Core Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Core Capability Reporting Register of EPT and VPID (R/O)

See Table 35-1

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Core Capability Reporting Register of Pin-based VM-execution Flex
Controls (R/O)

See Table 35-1

48EH 1166 IA32_VMX_TRUE_PROCBA
SED_CTLS

Core Capability Reporting Register of Primary Processor-based
VM-execution Flex Controls (R/O)

See Table 35-1

48FH 1167 IA32_VMX_TRUE_EXIT_CT
LS

Core Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 35-1

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 438

Table 35-7 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor E3000 Series (CPUID
signature with DisplayFamily_DisplayModel of 06_37H) and future Intel Atom processors (CPUID signatures with
DisplayFamily_DisplayModel of 06_4AH, 06_5AH, 06_5DH).

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Core Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 35-1

491H 1169 IA32_VMX_FMFUNC Core Capability Reporting Register of VM-function Controls (R/O)

See Table 35-1

4C1H 1217 IA32_A_PMC0 Core See Table 35-1.

4C2H 1218 IA32_A_PMC1 Core See Table 35-1.

600H 1536 IA32_DS_AREA Core DS Save Area (R/W)

See Table 35-1.

See Section 18.13.4, “Debug Store (DS) Mechanism.”

660H 1632 MSR_CORE_C1_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C1 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C1
states. Counts at the TSC frequency.

6E0H 1760 IA32_TSC_DEADLINE Core TSC Target of Local APIC’s TSC Deadline Mode (R/W)

See Table 35-1

C000_
0080H

IA32_EFER Core Extended Feature Enables

See Table 35-1.

C000_
0081H

IA32_STAR Core System Call Target Address (R/W)

See Table 35-1.

C000_
0082H

IA32_LSTAR Core IA-32e Mode System Call Target Address (R/W)

See Table 35-1.

C000_
0084H

IA32_FMASK Core System Call Flag Mask (R/W)

See Table 35-1.

C000_
0100H

IA32_FS_BASE Core Map of BASE Address of FS (R/W)

See Table 35-1.

C000_
0101H

IA32_GS_BASE Core Map of BASE Address of GS (R/W)

See Table 35-1.

C000_
0102H

IA32_KERNEL_GSBASE Core Swap Target of BASE Address of GS (R/W) See Table 35-1.

C000_
0103H

IA32_TSC_AUX Core AUXILIARY TSC Signature. (R/W) See Table 35-1

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 439

Table 35-7 Specific MSRs Supported by Intel® Atom™ Processors with CPUID Signature 06_37H, 06_4AH, 06_5AH,
06_5DH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.9.1, “RAPL Interfaces.”

3:0 Power Units.

Power related information (in milliWatts) is based on the multiplier,
2^PU; where PU is an unsigned integer represented by bits 3:0.
Default value is 0101b, indicating power unit is in 32 milliWatts
increment.

7:4 Reserved

12:8 Energy Status Units.

Energy related information (in microJoules) is based on the
multiplier, 2^ESU; where ESU is an unsigned integer represented
by bits 12:8. Default value is 00101b, indicating energy unit is in
32 microJoules increment.

15:13 Reserved

19:16 Time Units.

Time related information (in seconds) is based on the multiplier,
(1/2)^ESU; where ESU is an unsigned integer represented by bits
19:16. Default value is 0000b, indicating time unit is in one second
increment

63:20 Reserved

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

14:0 Package Power Limit #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.” and
MSR_RAPL_POWER_UNIT in Table 35-7.

15 Enable Power Limit #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

16 Package Clamping Limitation #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

23:17 Time Window for Power Limit #1. (R/W)

Time Limit = 2^Y * (1.0+Z/4.0) seconds.

Y and Z: see definition of MSR_RAPL_POWER_UNIT in Table 35-7

31:24 Reserved

46:32 Package Power Limit #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.” and
MSR_RAPL_POWER_UNIT in Table 35-7.

47 Enable Power Limit #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 440

Table 35-8 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor E3000 Series (CPUID
signature with DisplayFamily_DisplayModel of 06_37H).

48 Package Clamping Limitation #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

55:49 Time Window for Power Limit #1. (R/W)

Time Limit = 2^Y * (1.0+Z/4.0) seconds.

Y and Z: see definition of MSR_RAPL_POWER_UNIT in Table 35-7.

63:56 Reserved

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O)

See Section 14.9.3, “Package RAPL Domain.” and
MSR_RAPL_POWER_UNIT in Table 35-7

639H 1593 MSR_PP0_ENERGY_STATU
S

Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.” and
MSR_RAPL_POWER_UNIT in Table 35-7

Table 35-7 Specific MSRs Supported by Intel® Atom™ Processors with CPUID Signature 06_37H, 06_4AH, 06_5AH,
06_5DH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-8 Specific MSRs Supported by Intel® Atom™ Processor E3000 Series with CPUID Signature 06_37H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

668H 1640 MSR_CC6_DEMOTION_POLI
CY_CONFIG

Package Core C6 demotion policy config MSR

63:0 Controls per-core C6 demotion policy. Writing a value of 0 disables
core level HW demotion policy.

669H 1641 MSR_MC6_DEMOTION_POLI
CY_CONFIG

Package Module C6 demotion policy config MSR

63:0 Controls module (i.e. two cores sharing the second-level cache) C6
demotion policy. Writing a value of 0 disables module level HW
demotion policy.

664H 1636 MSR_MC6_RESIDENCY_COU
NTER

Module Module C6 Residency Counter (R/0)

Note: C-state values are processor specific C-state code names,

unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Time that this module is in module-specific C6 states since last

reset. Counts at 1 Mhz frequency.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 441

Table 35-9 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor C2000 Series (CPUID
signature with DisplayFamily_DisplayModel of 06_4DH).

35.5 MSRS IN THE INTEL® MICROARCHITECTURE CODE NAME NEHALEM
Table 35-10 lists model-specific registers (MSRs) that are common for Intel® microarchitecture code name
Nehalem. These include Intel Core i7 and i5 processor family. Architectural MSR addresses are also included in
Table 35-10. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_1AH, 06_1EH,
06_1FH, 06_2EH, see Table 35-1. Additional MSRs specific to 06_1AH, 06_1EH, 06_1FH are listed in Table 35-10.
Some MSRs listed in these tables are used by BIOS. More information about these MSR can be found at http://
biosbits.org.

Table 35-9 Specific MSRs Supported by Intel® Atom™ Processor C2000 Series with CPUID Signature 06_4DH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.9.1, “RAPL Interfaces.”

3:0 Power Units.

Power related information (in milliWatts) is based on the multiplier,
2^PU; where PU is an unsigned integer represented by bits 3:0.
Default value is 0011b, indicating power unit is in 8 milliWatts
increment.

7:4 Reserved

12:8 Energy Status Units.

Energy related information (in microJoules) is based on the
multiplier, 2^ESU; where ESU is an unsigned integer represented
by bits 12:8. Default value is 00101b, indicating energy unit is in
32 microJoules increment.

15:13 Reserved

19:16 Time Units.

Time related information (in seconds) is based on the multiplier,
(1/2)^ESU; where ESU is an unsigned integer represented by bits
19:16. Default value is 0000b, indicating time unit is in one second
increment

63:20 Reserved

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.9.3, “Package RAPL Domain.”

66EH 1646 MSR_PKG_POWER_INFO Package PKG RAPL Parameter (R/0)

14:0 Thermal Spec Power. (R/0)

The unsigned integer value is the equivalent of thermal
specification power of the package domain. The unit of this field is
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT

63:15 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 442

The column “Scope” represents the package/core/thread scope of individual bit field of an MSR. “Thread” means
this bit field must be programmed on each logical processor independently. “Core” means the bit field must be
programmed on each processor core independently, logical processors in the same core will be affected by change
of this bit on the other logical processor in the same core. “Package“ means the bit field must be programmed
once for each physical package. Change of a bit filed with a package scope will affect all logical processors in that
physical package.

Table 35-10 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem

Register
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 35.19, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 35.19, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,”
and Table 35-1.

10H 16 IA32_TIME_
STAMP_COUNTER

Thread See Section 17.13, “Time-Stamp Counter,” and see Table 35-1.

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 35-1.

17H 23 MSR_PLATFORM_ID Package Model Specific Platform ID (R)

49:0 Reserved.

52:50 See Table 35-1.

63:53 Reserved.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
1.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

Running count of SMI events since last RESET.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 35-1.

79H 121 IA32_BIOS_
UPDT_TRIG

Core BIOS Update Trigger Register (W)

See Table 35-1.

8BH 139 IA32_BIOS_
SIGN_ID

Thread BIOS Update Signature ID (RO)

See Table 35-1.

C1H 193 IA32_PMC0 Thread Performance Counter Register

See Table 35-1.

C2H 194 IA32_PMC1 Thread Performance Counter Register

See Table 35-1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 443

C3H 195 IA32_PMC2 Thread Performance Counter Register

See Table 35-1.

C4H 196 IA32_PMC3 Thread Performance Counter Register

See Table 35-1.

CEH 206 MSR_PLATFORM_INFO Package see http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at. The
invariant TSC frequency can be computed by multiplying this ratio
by 133.33 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDC-TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDC/TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDC and TDP Limits for
Turbo mode are not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 133.33MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States. See http://biosbits.org.

Table 35-10 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 444

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

010b: C3

011b: C6

100b: C7

101b and 110b: Reserved

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions.

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

23:16 Reserved.

24 Interrupt filtering enable (R/W)

When set, processor cores in a deep C-State will wake only when
the event message is destined for that core. When 0, all processor
cores in a deep C-State will wake for an event message.

25 C3 state auto demotion enable (R/W)

When set, the processor will conditionally demote C6/C7 requests
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W)

When set, the processor will conditionally demote C3/C6/C7
requests to C1 based on uncore auto-demote information.

63:27 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

Table 35-10 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 445

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to
be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 35-1.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 35-1.

FEH 254 IA32_MTRRCAP Thread See Table 35-1.

174H 372 IA32_SYSENTER_CS Thread See Table 35-1.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-1.

176H 374 IA32_SYSENTER_EIP Thread See Table 35-1.

179H 377 IA32_MCG_CAP Thread See Table 35-1.

17AH 378 IA32_MCG_STATUS Thread

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

Table 35-10 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 446

186H 390 IA32_PERFEVTSEL0 Thread See Table 35-1.

187H 391 IA32_PERFEVTSEL1 Thread See Table 35-1.

188H 392 IA32_PERFEVTSEL2 Thread See Table 35-1.

189H 393 IA32_PERFEVTSEL3 Thread See Table 35-1.

198H 408 IA32_PERF_STATUS Core See Table 35-1.

15:0 Current Performance State Value.

63:16 Reserved.

199H 409 IA32_PERF_CTL Thread See Table 35-1.

19AH 410 IA32_CLOCK_MODULATION Thread Clock Modulation (R/W)

See Table 35-1.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

0 Reserved.

3:1 On demand Clock Modulation Duty Cycle (R/W)

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 35-1.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-1.

1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Thread Fast-Strings Enable

See Table 35-1.

2:1 Reserved.

3 Thread Automatic Thermal Control Circuit Enable (R/W)

See Table 35-1.

6:4 Reserved.

7 Thread Performance Monitoring Available (R)

See Table 35-1.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable (RO)

See Table 35-1.

Table 35-10 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 447

12 Thread Precise Event Based Sampling Unavailable (RO)

See Table 35-1.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-1.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 35-1.

21:19 Reserved.

22 Thread Limit CPUID Maxval (R/W)

See Table 35-1.

23 Thread xTPR Message Disable (R/W)

See Table 35-1.

33:24 Reserved.

34 Thread XD Bit Disable (R/W)

See Table 35-1.

37:35 Reserved.

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Thread

15:0 Reserved.

23:16 Temperature Target (R)

The minimum temperature at which PROCHOT# will be asserted.
The value is degree C.

63:24 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT See http://biosbits.org.

Table 35-10 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 448

0 Package EIST Hardware Coordination Disable (R/W)

When 0, enables hardware coordination of Enhanced Intel
Speedstep Technology request from processor cores; When 1,
disables hardware coordination of Enhanced Intel Speedstep
Technology requests.

1 Thread Energy/Performance Bias Enable (R/W)

This bit makes the IA32_ENERGY_PERF_BIAS register (MSR 1B0h)
visible to software with Ring 0 privileges. This bit’s status (1 or 0)
is also reflected by CPUID.(EAX=06h):ECX[3].

63:2 Reserved.

1ACH 428 MSR_TURBO_POWER_
CURRENT_LIMIT

See http://biosbits.org.

14:0 Package TDP Limit (R/W)

TDP limit in 1/8 Watt granularity.

15 Package TDP Limit Override Enable (R/W)

A value = 0 indicates override is not active, and a value = 1
indicates active.

30:16 Package TDC Limit (R/W)

TDC limit in 1/8 Amp granularity.

31 Package TDC Limit Override Enable (R/W)

A value = 0 indicates override is not active, and a value = 1
indicates active.

63:32 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register (R/W)

See Section 17.6.2, “Filtering of Last Branch Records.”

Table 35-10 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 449

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 35-1.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-1.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-1.

1FCH 508 MSR_POWER_CTL Core Power Control Register. See http://biosbits.org.

0 Reserved.

1 Package C1E Enable (R/W)

When set to ‘1’, will enable the CPU to switch to the Minimum
Enhanced Intel SpeedStep Technology operating point when all
execution cores enter MWAIT (C1).

63:2 Reserved.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 35-1.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 35-1.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 35-1.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 35-1.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 35-1.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 35-1.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 35-1.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 35-1.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 35-1.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 35-1.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 35-1.

Table 35-10 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 450

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 35-1.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 35-1.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 35-1.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 35-1.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 35-1.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 35-1.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 35-1.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 35-1.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 35-1.

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 35-1.

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 35-1.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 35-1.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 35-1.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 35-1.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 35-1.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 35-1.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 35-1.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 35-1.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 35-1.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 35-1.

277H 631 IA32_PAT Thread See Table 35-1.

280H 640 IA32_MC0_CTL2 Package See Table 35-1.

281H 641 IA32_MC1_CTL2 Package See Table 35-1.

282H 642 IA32_MC2_CTL2 Core See Table 35-1.

283H 643 IA32_MC3_CTL2 Core See Table 35-1.

284H 644 IA32_MC4_CTL2 Core See Table 35-1.

285H 645 IA32_MC5_CTL2 Core See Table 35-1.

286H 646 IA32_MC6_CTL2 Package See Table 35-1.

287H 647 IA32_MC7_CTL2 Package See Table 35-1.

288H 648 IA32_MC8_CTL2 Package See Table 35-1.

Table 35-10 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 451

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W)

See Table 35-1.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-1.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-1.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-1.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 35-1. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 35-1.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 35-1.

11:8 PEBS_REC_FORMAT. See Table 35-1.

12 SMM_FREEZE. See Table 35-1.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 35-1.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Thread See Table 35-1. See Section 18.4.2, “Global Counter Control
Facilities.”

38EH 910 MSR_PERF_GLOBAL_STAUS Thread (RO)

61 UNC_Ovf

Uncore overflowed if 1.

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-1. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-1. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 MSR_PERF_GLOBAL_OVF_
CTRL

Thread (R/W)

61 CLR_UNC_Ovf

Set 1 to clear UNC_Ovf.

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.7.1.1, “Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

Table 35-10 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 452

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

3F6H 1014 MSR_PEBS_LD_LAT Thread See Section 18.7.1.2, “Load Latency Performance Monitoring
Facility.”

15:0 Minimum threshold latency value of tagged load operation that will
be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Count at the same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

Table 35-10 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 453

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

403H 1027 MSR_MC0_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC1_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

407H 1031 MSR_MC1_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40BH 1035 MSR_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 MSR_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

Table 35-10 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 454

40FH 1039 MSR_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

413H 1043 MSR_MC4_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

414H 1044 MSR_MC5_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 MSR_MC5_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-1.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-1.

See Appendix A.3, “VM-Execution Controls.”

Table 35-10 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 455

482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-1.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-1.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-1.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-1.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-1.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-1.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-1.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration (R/
O).

See Table 35-1.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-1.

See Section 18.13.4, “Debug Store (DS) Mechanism.”

Table 35-10 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 456

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
source instruction for one of the last sixteen branches,
exceptions, or interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_FROM_IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-10 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 457

68FH 1679 MSR_
LASTBRANCH_15_FROM_IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
destination instruction for one of the last sixteen branches,
exceptions, or interrupts taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 35-10 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 458

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

802H 2050 IA32_X2APIC_APICID Thread x2APIC ID register (R/O) See x2APIC Specification.

803H 2051 IA32_X2APIC_VERSION Thread x2APIC Version register (R/O)

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority register (R/W)

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority register (R/O)

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI register (W/O)

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination register (R/O)

80FH 2063 IA32_X2APIC_SIVR Thread x2APIC Spurious Interrupt Vector register (R/W)

810H 2064 IA32_X2APIC_ISR0 Thread x2APIC In-Service register bits [31:0] (R/O)

811H 2065 IA32_X2APIC_ISR1 Thread x2APIC In-Service register bits [63:32] (R/O)

812H 2066 IA32_X2APIC_ISR2 Thread x2APIC In-Service register bits [95:64] (R/O)

813H 2067 IA32_X2APIC_ISR3 Thread x2APIC In-Service register bits [127:96] (R/O)

814H 2068 IA32_X2APIC_ISR4 Thread x2APIC In-Service register bits [159:128] (R/O)

815H 2069 IA32_X2APIC_ISR5 Thread x2APIC In-Service register bits [191:160] (R/O)

816H 2070 IA32_X2APIC_ISR6 Thread x2APIC In-Service register bits [223:192] (R/O)

817H 2071 IA32_X2APIC_ISR7 Thread x2APIC In-Service register bits [255:224] (R/O)

818H 2072 IA32_X2APIC_TMR0 Thread x2APIC Trigger Mode register bits [31:0] (R/O)

819H 2073 IA32_X2APIC_TMR1 Thread x2APIC Trigger Mode register bits [63:32] (R/O)

81AH 2074 IA32_X2APIC_TMR2 Thread x2APIC Trigger Mode register bits [95:64] (R/O)

81BH 2075 IA32_X2APIC_TMR3 Thread x2APIC Trigger Mode register bits [127:96] (R/O)

81CH 2076 IA32_X2APIC_TMR4 Thread x2APIC Trigger Mode register bits [159:128] (R/O)

81DH 2077 IA32_X2APIC_TMR5 Thread x2APIC Trigger Mode register bits [191:160] (R/O)

81EH 2078 IA32_X2APIC_TMR6 Thread x2APIC Trigger Mode register bits [223:192] (R/O)

81FH 2079 IA32_X2APIC_TMR7 Thread x2APIC Trigger Mode register bits [255:224] (R/O)

820H 2080 IA32_X2APIC_IRR0 Thread x2APIC Interrupt Request register bits [31:0] (R/O)

821H 2081 IA32_X2APIC_IRR1 Thread x2APIC Interrupt Request register bits [63:32] (R/O)

822H 2082 IA32_X2APIC_IRR2 Thread x2APIC Interrupt Request register bits [95:64] (R/O)

823H 2083 IA32_X2APIC_IRR3 Thread x2APIC Interrupt Request register bits [127:96] (R/O)

824H 2084 IA32_X2APIC_IRR4 Thread x2APIC Interrupt Request register bits [159:128] (R/O)

825H 2085 IA32_X2APIC_IRR5 Thread x2APIC Interrupt Request register bits [191:160] (R/O)

826H 2086 IA32_X2APIC_IRR6 Thread x2APIC Interrupt Request register bits [223:192] (R/O)

827H 2087 IA32_X2APIC_IRR7 Thread x2APIC Interrupt Request register bits [255:224] (R/O)

Table 35-10 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 459

...

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status register (R/W)

82FH 2095 IA32_X2APIC_LVT_CMCI Thread x2APIC LVT Corrected Machine Check Interrupt register (R/W)

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command register (R/W)

832H 2098 IA32_X2APIC_LVT_TIMER Thread x2APIC LVT Timer Interrupt register (R/W)

833H 2099 IA32_X2APIC_LVT_THERM
AL

Thread x2APIC LVT Thermal Sensor Interrupt register (R/W)

834H 2100 IA32_X2APIC_LVT_PMI Thread x2APIC LVT Performance Monitor register (R/W)

835H 2101 IA32_X2APIC_LVT_LINT0 Thread x2APIC LVT LINT0 register (R/W)

836H 2102 IA32_X2APIC_LVT_LINT1 Thread x2APIC LVT LINT1 register (R/W)

837H 2103 IA32_X2APIC_LVT_ERROR Thread x2APIC LVT Error register (R/W)

838H 2104 IA32_X2APIC_INIT_COUNT Thread x2APIC Initial Count register (R/W)

839H 2105 IA32_X2APIC_CUR_COUNT Thread x2APIC Current Count register (R/O)

83EH 2110 IA32_X2APIC_DIV_CONF Thread x2APIC Divide Configuration register (R/W)

83FH 2111 IA32_X2APIC_SELF_IPI Thread x2APIC Self IPI register (W/O)

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 35-1.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 35-1.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 35-1.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 35-1.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 35-1.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 35-1.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W) See Table 35-1.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W) See Table 35-1 and Section
17.13.2, “IA32_TSC_AUX Register and RDTSCP Support.”

Table 35-10 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 460

35.8 MSRS IN INTEL® PROCESSOR FAMILY BASED ON INTEL®
MICROARCHITECTURE CODE NAME SANDY BRIDGE

Table 35-15 lists model-specific registers (MSRs) that are common to Intel® processor family based on Intel
microarchitecture code name Sandy Bridge. All architectural MSRs listed in Table 35-1 are supported. These
processors have a CPUID signature with DisplayFamily_DisplayModel of 06_2AH, 06_2DH, see Table 35-1. Addi-
tional MSRs specific to 06_2AH are listed in Table 35-16.

Table 35-15 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge

Register
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 35.19, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 35.19, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,”
and Table 35-1.

10H 16 IA32_TIME_STAMP_
COUNTER

Thread See Section 17.13, “Time-Stamp Counter,” and see Table 35-1.

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 35-1.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
1.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

Count SMIs.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 35-1.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 35-1.

8BH 139 IA32_BIOS_SIGN_ID Thread BIOS Update Signature ID (RO)

See Table 35-1.

C1H 193 IA32_PMC0 Thread Performance Counter Register

See Table 35-1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 461

C2H 194 IA32_PMC1 Thread Performance Counter Register

See Table 35-1.

C3H 195 IA32_PMC2 Thread Performance Counter Register

See Table 35-1.

C4H 196 IA32_PMC3 Thread Performance Counter Register

See Table 35-1.

C5H 197 IA32_PMC4 Core Performance Counter Register

See Table 35-1.

C6H 198 IA32_PMC5 Core Performance Counter Register

See Table 35-1.

C7H 199 IA32_PMC6 Core Performance Counter Register

See Table 35-1.

C8H 200 IA32_PMC7 Core Performance Counter Register

See Table 35-1.

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

63:48 Reserved.

Table 35-15 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 462

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

24:16 Reserved.

25 C3 state auto demotion enable (R/W)

When set, the processor will conditionally demote C6/C7 requests
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W)

When set, the processor will conditionally demote C3/C6/C7
requests to C1 based on uncore auto-demote information.

27 Enable C3 undemotion (R/W)

When set, enables undemotion from demoted C3.

28 Enable C1 undemotion (R/W)

When set, enables undemotion from demoted C1.

63:29 Reserved.

Table 35-15 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 463

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is
the IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name
to be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 35-1.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 35-1.

FEH 254 IA32_MTRRCAP Thread See Table 35-1.

174H 372 IA32_SYSENTER_CS Thread See Table 35-1.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-1.

176H 374 IA32_SYSENTER_EIP Thread See Table 35-1.

179H 377 IA32_MCG_CAP Thread See Table 35-1.

17AH 378 IA32_MCG_STATUS Thread

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

Table 35-15 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 464

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Thread See Table 35-1.

187H 391 IA32_
PERFEVTSEL1

Thread See Table 35-1.

188H 392 IA32_
PERFEVTSEL2

Thread See Table 35-1.

189H 393 IA32_
PERFEVTSEL3

Thread See Table 35-1.

18AH 394 IA32_
PERFEVTSEL4

Core See Table 35-1; If CPUID.0AH:EAX[15:8] = 8

18BH 395 IA32_
PERFEVTSEL5

Core See Table 35-1; If CPUID.0AH:EAX[15:8] = 8

18CH 396 IA32_
PERFEVTSEL6

Core See Table 35-1; If CPUID.0AH:EAX[15:8] = 8

18DH 397 IA32_
PERFEVTSEL7

Core See Table 35-1; If CPUID.0AH:EAX[15:8] = 8

198H 408 IA32_PERF_STATUS Package See Table 35-1.

15:0 Current Performance State Value.

63:16 Reserved.

198H 408 MSR_PERF_STATUS Package

47:32 Core Voltage (R/O)

P-state core voltage can be computed by

MSR_PERF_STATUS[37:32] * (float) 1/(2^13).

199H 409 IA32_PERF_CTL Thread See Table 35-1.

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation (R/W)

See Table 35-1

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

3:0 On demand Clock Modulation Duty Cycle (R/W)

In 6.25% increment

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

Table 35-15 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 465

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 35-1.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-1.

0 Thermal status (RO)

See Table 35-1.

1 Thermal status log (R/WC0)

See Table 35-1.

2 PROTCHOT # or FORCEPR# status (RO)

See Table 35-1.

3 PROTCHOT # or FORCEPR# log (R/WC0)

See Table 35-1.

4 Critical Temperature status (RO)

See Table 35-1.

5 Critical Temperature status log (R/WC0)

See Table 35-1.

6 Thermal threshold #1 status (RO)

See Table 35-1.

7 Thermal threshold #1 log (R/WC0)

See Table 35-1.

8 Thermal threshold #2 status (RO)

See Table 35-1.

9 Thermal threshold #2 log (R/WC0)

See Table 35-1.

10 Power Limitation status (RO)

See Table 35-1.

11 Power Limitation log (R/WC0)

See Table 35-1.

15:12 Reserved.

22:16 Digital Readout (RO)

See Table 35-1.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

See Table 35-1.

Table 35-15 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 466

31 Reading Valid (RO)

See Table 35-1.

63:32 Reserved.

1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Thread Fast-Strings Enable

See Table 35-1

6:1 Reserved.

7 Thread Performance Monitoring Available (R)

See Table 35-1.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable (RO)

See Table 35-1.

12 Thread Precise Event Based Sampling Unavailable (RO)

See Table 35-1.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-1.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 35-1.

21:19 Reserved.

22 Thread Limit CPUID Maxval (R/W)

See Table 35-1.

23 Thread xTPR Message Disable (R/W)

See Table 35-1.

33:24 Reserved.

34 Thread XD Bit Disable (R/W)

See Table 35-1.

37:35 Reserved.

Table 35-15 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 467

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Unique

15:0 Reserved.

23:16 Temperature Target (R)

The minimum temperature at which PROCHOT# will be asserted.
The value is degree C.

63:24 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1A7H 422 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT See http://biosbits.org.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 35-1.

1B1H 433 IA32_PACKAGE_THERM_
STATUS

Package See Table 35-1.

1B2H 434 IA32_PACKAGE_THERM_
INTERRUPT

Package See Table 35-1.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

See Section 17.6.2, “Filtering of Last Branch Records.”

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 35-1.

0 LBR: Last Branch Record

1 BTF

5:2 Reserved.

6 TR: Branch Trace

Table 35-15 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 468

7 BTS: Log Branch Trace Message to BTS buffer

8 BTINT

9 BTS_OFF_OS

10 BTS_OFF_USER

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

63:15 Reserved.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-1.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-1.

1FCH 508 MSR_POWER_CTL Core See http://biosbits.org.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 35-1.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 35-1.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 35-1.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 35-1.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 35-1.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 35-1.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 35-1.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 35-1.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 35-1.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 35-1.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 35-1.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 35-1.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 35-1.

Table 35-15 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 469

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 35-1.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 35-1.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 35-1.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 35-1.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 35-1.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 35-1.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 35-1.

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 35-1.

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 35-1.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 35-1.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 35-1.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 35-1.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 35-1.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 35-1.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 35-1.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 35-1.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 35-1.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 35-1.

277H 631 IA32_PAT Thread See Table 35-1.

280H 640 IA32_MC0_CTL2 Core See Table 35-1.

281H 641 IA32_MC1_CTL2 Core See Table 35-1.

282H 642 IA32_MC2_CTL2 Core See Table 35-1.

283H 643 IA32_MC3_CTL2 Core See Table 35-1.

284H 644 MSR_MC4_CTL2 Package Always 0 (CMCI not supported).

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W)

See Table 35-1.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-1.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-1.

Table 35-15 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 470

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-1.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 35-1. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 35-1.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 35-1.

11:8 PEBS_REC_FORMAT. See Table 35-1.

12 SMM_FREEZE. See Table 35-1.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 35-1.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Thread See Table 35-1. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Ovf_PMC0

1 Ovf_PMC1

2 Ovf_PMC2

3 Ovf_PMC3

31:4 Reserved.

32 Ovf_FixedCtr0

33 Ovf_FixedCtr1

34 Ovf_FixedCtr2

60:35 Reserved.

61 Ovf_Uncore

62 Ovf_BufDSSAVE

63 CondChgd

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-1. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-1. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Set 1 to clear Ovf_PMC0

1 Set 1 to clear Ovf_PMC1

2 Set 1 to clear Ovf_PMC2

3 Set 1 to clear Ovf_PMC3

31:4 Reserved.

Table 35-15 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 471

32 Set 1 to clear Ovf_FixedCtr0

33 Set 1 to clear Ovf_FixedCtr1

34 Set 1 to clear Ovf_FixedCtr2

60:35 Reserved.

61 Set 1 to clear Ovf_Uncore

62 Set 1 to clear Ovf_BufDSSAVE

63 Set 1 to clear CondChgd

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.7.1.1, “Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

3F6H 1014 MSR_PEBS_LD_LAT Thread see See Section 18.7.1.2, “Load Latency Performance Monitoring
Facility.”

15:0 Minimum threshold latency value of tagged load operation that will
be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Count at the same frequency as the TSC.

Table 35-15 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 472

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Count at the same frequency as the TSC.

3FEH 1022 MSR_CORE_C7_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C7 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C7
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

403H 1027 IA32_MC0_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

406H 1030 IA32_MC1_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

407H 1031 IA32_MC1_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 35-15 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 473

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

0 PCU Hardware Error (R/W)

When set, enables signaling of PCU hardware detected errors.

1 PCU Controller Error (R/W)

When set, enables signaling of PCU controller detected errors

2 PCU Firmware Error (R/W)

When set, enables signaling of PCU firmware detected errors

63:2 Reserved.

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-1.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-1.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-1.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-1.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-1.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-1.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

Table 35-15 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 474

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-1.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-1.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-1.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-1.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Thread Capability Reporting Register of EPT and VPID (R/O)

See Table 35-1

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Thread Capability Reporting Register of Pin-based VM-execution Flex
Controls (R/O)

See Table 35-1

48EH 1166 IA32_VMX_TRUE_PROCBA
SED_CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Flex Controls (R/O)

See Table 35-1

48FH 1167 IA32_VMX_TRUE_EXIT_CT
LS

Thread Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 35-1

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Thread Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 35-1

4C1H 1217 IA32_A_PMC0 Thread See Table 35-1.

4C2H 1218 IA32_A_PMC1 Thread See Table 35-1.

4C3H 1219 IA32_A_PMC2 Thread See Table 35-1.

4C4H 1220 IA32_A_PMC3 Thread See Table 35-1.

4C5H 1221 IA32_A_PMC4 Core See Table 35-1.

4C6H 1222 IA32_A_PMC5 Core See Table 35-1.

4C7H 1223 IA32_A_PMC6 Core See Table 35-1.

4C8H 200 IA32_A_PMC7 Core See Table 35-1.

Table 35-15 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 475

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-1.

See Section 18.13.4, “Debug Store (DS) Mechanism.”

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.9.1, “RAPL Interfaces.”

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C3 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60BH 1547 MSR_PKGC6_IRTL Package Package C6 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the package to exit from
C6 to a C0 state, where interrupt request can be delivered to the
core and serviced. Additional core-exit latency amy be applicable
depending on the actual C-state the core is in.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C6 state.

Table 35-15 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 476

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C2 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C2
states. Count at the same frequency as the TSC.

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.9.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATU
S

Package PKG Energy Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) See Section 14.9.3, “Package RAPL
Domain.”

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERGY_STATU
S

Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
source instruction for one of the last sixteen branches,
exceptions, or interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

Table 35-15 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 477

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_
IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_FROM_
IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_
IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_
IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_
IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_FROM_
IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-15 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 478

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
destination instruction for one of the last sixteen branches,
exceptions, or interrupts taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6E0H 1760 IA32_TSC_DEADLINE Thread See Table 35-1.

Table 35-15 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 479

...

35.9 MSRS IN THE 3RD GENERATION INTEL® CORE™ PROCESSOR FAMILY
(BASED ON IVY BRIDGE MICROARCHITECTURE)

The 3rd generation Intel® Core™ processor family and Intel Xeon processor E3-1200v2 product family (based on
Ivy Bridge microarchitecture) supports the MSR interfaces listed in Table 35-15, Table 35-16 and Table 35-18.

802H-
83FH

X2APIC MSRs Thread See Table 35-1.

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 35-1.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 35-1.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 35-1.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 35-1.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 35-1.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 35-1.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W)

See Table 35-1.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature (R/W)

See Table 35-1 and Section 17.13.2, “IA32_TSC_AUX Register and
RDTSCP Support.”

Table 35-15 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-18 Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Ivy Bridge
microarchitecture)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 480

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

31:30 Reserved.

32 Package Low Power Mode Support (LPM) (R/O)

When set to 1, indicates that LPM is supported, and when set to 0,
indicates LPM is not supported.

34:33 Package Number of ConfigTDP Levels (R/O)

00: Only Base TDP level available.

01: One additional TDP level available.

02: Two additional TDP level available.

11: Reserved

39:35 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

55:48 Package Minimum Operating Ratio (R/O)

Contains the minimum supported

operating ratio in units of 100 MHz.

63:56 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

See http://biosbits.org.

Table 35-18 Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Ivy Bridge
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 481

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register specified
by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

24:16 Reserved.

25 C3 state auto demotion enable (R/W)

When set, the processor will conditionally demote C6/C7 requests
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W)

When set, the processor will conditionally demote C3/C6/C7
requests to C1 based on uncore auto-demote information.

27 Enable C3 undemotion (R/W)

When set, enables undemotion from demoted C3.

28 Enable C1 undemotion (R/W)

When set, enables undemotion from demoted C1.

63:29 Reserved.

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Base TDP Ratio (R/O)

7:0 Config_TDP_Base

Base TDP level ratio to be used for this specific processor (in units
of 100 MHz).

Table 35-18 Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Ivy Bridge
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 482

63:8 Reserved.

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O)

14:0 PKG_TDP_LVL1. Power setting for ConfigTDP Level 1.

15 Reserved

23:16 Config_TDP_LVL1_Ratio. ConfigTDP level 1 ratio to be used for this
specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL1. Max Power setting allowed for ConfigTDP
Level 1.

47 Reserved

62:48 PKG_MIN_PWR_LVL1. MIN Power setting allowed for ConfigTDP
Level 1.

63 Reserved.

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O)

14:0 PKG_TDP_LVL2. Power setting for ConfigTDP Level 2.

15 Reserved

23:16 Config_TDP_LVL2_Ratio. ConfigTDP level 2 ratio to be used for this
specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL2. Max Power setting allowed for ConfigTDP
Level 2.

47 Reserved

62:48 PKG_MIN_PWR_LVL2. MIN Power setting allowed for ConfigTDP
Level 2.

63 Reserved.

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

1:0 TDP_LEVEL (RW/L)

System BIOS can program this field.

30:2 Reserved.

31 Config_TDP_Lock (RW/L)

When this bit is set, the content of this register is locked until a
reset.

63:32 Reserved.

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

Table 35-18 Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Ivy Bridge
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 483

35.10 MSRS IN THE 4TH GENERATION INTEL® CORE™ PROCESSORS (BASED ON
HASWELL MICROARCHITECTURE)

The 4th generation Intel® Core™ processor family and Intel Xeon processor E3-1200v3 product family (based on
Haswell microarchitecture), with CPUID DisplayFamily_DisplayModel signature 06_3CH/06_45H/06_46H,
support the MSR interfaces listed in Table 35-15, Table 35-16, Table 35-18, and Table 35-21.

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field.

30:8 Reserved.

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is locked until a
reset.

63:32 Reserved.

Table 35-18 Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Ivy Bridge
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-21 Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell
microarchitecture)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3BH 59 IA32_TSC_ADJUST THREAD Per-Logical-Processor TSC ADJUST (R/W)

See Table 35-1.

CEH 206 MSR_PLATFORM_INFO Package See Table Table 35-18

186H 390 IA32_PERFEVTSEL0 THREAD Performance Event Select for Counter 0 (R/W)

Supports all fields described inTable 35-1 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

187H 391 IA32_PERFEVTSEL1 THREAD Performance Event Select for Counter 1 (R/W)

Supports all fields described inTable 35-1 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

188H 392 IA32_PERFEVTSEL2 THREAD Performance Event Select for Counter 2 (R/W)

Supports all fields described inTable 35-1 and the fields below.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 484

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

33 IN_TXCP: see Section 18.11.5.1

When IN_TXCP=1 & IN_TX=1 and in sampling, spurious PMI may
occur and transactions may continuously abort near overflow
conditions. Software should favor using IN_TXCP for counting over
sampling. If sampling, software should use large “sample-after“
value after clearing the counter configured to use IN_TXCP and
also always reset the counter even when no overflow condition
was reported.

189H 393 IA32_PERFEVTSEL3 THREAD Performance Event Select for Counter 3 (R/W)

Supports all fields described inTable 35-1 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 35-1.

0 LBR: Last Branch Record

1 BTF

5:2 Reserved.

6 TR: Branch Trace

7 BTS: Log Branch Trace Message to BTS buffer

8 BTINT

9 BTS_OFF_OS

10 BTS_OFF_USER

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

15 RTM_DEBUG

63:15 Reserved.

491H 1169 IA32_VMX_FMFUNC THREAD Capability Reporting Register of VM-function Controls (R/O)

See Table 35-1

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Base TDP Ratio (R/O)

See Table 35-18

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O). See Table 35-18

Table 35-21 Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 485

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O). See Table 35-18

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

See Table 35-18

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

See Table 35-18

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating
system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system
request due to Processor Graphics driver override.

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system
request because the processor has detected that utilization is low.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Core Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

Table 35-21 Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 486

12 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating system
request due to multi-core turbo limits.

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating system
request due to Turbo transition attenuation. This prevents
performance degradation due to frequent operating ratio changes.

15:14 Reserved

16 PROCHOT Log

When set, indicates that the corresponding PROCHOT Status bit is
set. Software can write 0 to this bit to clear PROCHOT Status.

17 Thermal Log

When set, indicates that the corresponding Thermal status bit was
set since it was last cleared by software. Software can write 0 to
this bit to clear Thermal Status.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the corresponding Graphics Driver status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear Graphics Driver Status.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the corresponding Autonomous
Utilization-Based Frequency Control status bit was set since it was
last cleared by software. Software can write 0 to this bit to clear
Autonomous Utilization-Based Frequency Control Status.

22 VR Therm Alert Log

When set, indicates that the corresponding VR Therm Alert Status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear VR Therm Alert Status.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the corresponding EDP Status bit was set
since it was last cleared by software. Software can write 0 to this
bit to clear EDP Status.

25 Core Power Limiting Log

When set, indicates that the corresponding Core Power Limiting
Status bit was set since it was last cleared by software. Software
can write 0 to this bit to clear Core Power Limiting Status.

Table 35-21 Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 487

26 Package-Level PL1 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL1 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL1 Status.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL2 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL2 Status.

28 Max Turbo Limit Log

When set, indicates that the corresponding Max Turbo Limit Status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear Max Turbo Limit Status.

29 Turbo Transition Attenuation Log

When set, indicates that the corresponding Turbo Transition
Attenuation Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Turbo Transition
Attenuation Status.

63:30 Reserved.

6B0H 1712 MSR_GRAPHICS_PERF_LIMI
T_REASONS

Package Indicator of Frequency Clipping in the Processor Graphics (R/W)

(frequency refers to processor graphics frequency)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system
request due to Processor Graphics driver override.

5 Reserved.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

Table 35-21 Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 488

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Graphics Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

15:12 Reserved

16 PROCHOT Log

When set, indicates that the corresponding PROCHOT Status bit is
set. Software can write 0 to this bit to clear PROCHOT Status.

17 Thermal Log

When set, indicates that the corresponding Thermal status bit was
set since it was last cleared by software. Software can write 0 to
this bit to clear Thermal Status.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the corresponding Graphics Driver status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear Graphics Driver Status.

21 Reserved.

22 VR Therm Alert Log

When set, indicates that the corresponding VR Therm Alert Status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear VR Therm Alert Status.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the corresponding EDP Status bit was set
since it was last cleared by software. Software can write 0 to this
bit to clear EDP Status.

Table 35-21 Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 489

25 Graphics Power Limiting Log

When set, indicates that the corresponding Graphics Power Limiting
Status bit was set since it was last cleared by software. Software
can write 0 to this bit to clear Graphics Power Limiting Status.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL1 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL1 Status.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL2 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL2 Status.

63:28 Reserved.

6B1H 1713 MSR_RING_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in the Ring Interconnect (R/W)

(frequency refers to ring interconnect in the uncore)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

5:2 Reserved.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Reserved.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

Table 35-21 Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 490

...

35.11 MSRS IN NEXT GENERATION INTEL® XEON® PROCESSORS
The following MSRs are available in next generation of Intel® Xeon® Processor Family (CPUID
DisplayFamily_DisplayModel = 06_3F), based on Haswell microarchitecture.

15:12 Reserved

16 PROCHOT Log

When set, indicates that the corresponding PROCHOT Status bit is
set. Software can write 0 to this bit to clear PROCHOT Status.

17 Thermal Log

When set, indicates that the corresponding Thermal status bit was
set since it was last cleared by software. Software can write 0 to
this bit to clear Thermal Status.

21:18 Reserved.

22 VR Therm Alert Log

When set, indicates that the corresponding VR Therm Alert Status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear VR Therm Alert Status.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the corresponding EDP Status bit was set
since it was last cleared by software. Software can write 0 to this
bit to clear EDP Status.

25 Reserved.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL1 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL1 Status.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL2 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL2 Status.

63:28 Reserved.

C80H 32 IA32_DEBUG_FEATURE Package Silicon Debug Feature Control (R/W)

See Table 35-1.

Table 35-21 Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 491

Table 35-24 Additional MSRs Supported by Next Generation Intel® Xeon® Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is
supported and a host-space interface available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and a host-space interface available to SMM handler.

63:60 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating
system request due to assertion of external PROCHOT.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 492

35.12 MSRS IN INTEL® CORE™ M PROCESSORS
The Intel® Core™ M processor is based on the Broadwell microarchitecture, with CPUID
DisplayFamily_DisplayModel signature 06_3DH, supports the MSR interfaces listed in Table 35-15, Table 35-16,
Table 35-18, Table 35-21, and Table 35-25.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

5:2 Reserved.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

63:9 Reserved.

C8DH 3113 IA32_QM_EVTSEL THREAD QoS Monitoring Event Select Register (R/W).

if CPUID.(EAX=07H, ECX=0):EBX.QoS[bit 12] = 1

7:0 EventID (RW)

31:8 Reserved.

41:32 RMID (RW)

63:42 Reserved.

C8EH 3114 IA32_QM_CTR THREAD QoS Monitoring Counter Register (R/O).

if CPUID.(EAX=07H, ECX=0):EBX.QoS[bit 12] = 1

61:0 Resource Monitored Data

62 Unavailable: If 1, indicates data for this RMID is not available or not
monitored for this resource or RMID.

63 Error: If 1, indicates and unsupported RMID or event type was
written to IA32_PQR_QM_EVTSEL.

C8FH 3115 IA32_PQR_ASSOC THREAD QoS Resource Association Register (R/W).

9:0 RMID

63: 10 Reserved

Table 35-24 Additional MSRs Supported by Next Generation Intel® Xeon® Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 493

Table 35-25 Additional MSRs Supported by Intel® Core™ M Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6core active.

63:48 Reserved.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Thread See Table 35-1. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Ovf_PMC0

1 Ovf_PMC1

2 Ovf_PMC2

3 Ovf_PMC3

31:4 Reserved.

32 Ovf_FixedCtr0

33 Ovf_FixedCtr1

34 Ovf_FixedCtr2

54:35 Reserved.

55 Trace_ToPA_PMI. See Section 36.2.4.1, “Table of Physical
Addresses (ToPA).”

60:56 Reserved.

61 Ovf_Uncore

62 Ovf_BufDSSAVE

63 CondChgd

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-1. See Section 18.4.2, “Global Counter Control
Facilities.”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 494

0 Set 1 to clear Ovf_PMC0

1 Set 1 to clear Ovf_PMC1

2 Set 1 to clear Ovf_PMC2

3 Set 1 to clear Ovf_PMC3

31:4 Reserved.

32 Set 1 to clear Ovf_FixedCtr0

33 Set 1 to clear Ovf_FixedCtr1

34 Set 1 to clear Ovf_FixedCtr2

54:35 Reserved.

55 Set 1 to clear Trace_ToPA_PMI. See Section 36.2.4.1, “Table of
Physical Addresses (ToPA).”

60:56 Reserved.

61 Set 1 to clear Ovf_Uncore

62 Set 1 to clear Ovf_BufDSSAVE

63 Set 1 to clear CondChgd

560H 1376 IA32_RTIT_OUTPUT_BASE THREAD Trace Output Base Register (R/W)

6:0 Reserved.

MAXPHYADDR1-1:7 Base physical address of 1st ToPA table.

63:MAXPHYADDR Reserved.

561H 1377 IA32_RTIT_OUTPUT_MASK
_PTRS

THREAD Trace Output Mask Pointers Register (R/W)

6:0 Reserved.

31:7 MaskOrTableOffset

63:32 Output Offset.

570H 1392 IA32_RTIT_CTL Thread Trace Packet Control Register (R/W)

0 TraceEn

1 Reserved, MBZ.

2 OS

3 User

6:4 Reserved, MBZ

7 CR3 filter

8 ToPA; writing 0 will #GP if also setting TraceEn

9 Reserved, MBZ

10 TSCEn

11 DisRETC

Table 35-25 Additional MSRs Supported by Intel® Core™ M Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 495

35.13 MSRS IN FUTURE GENERATION INTEL® XEON® PROCESSORS
The following MSRs are available in future generation of Intel® Xeon® Processor Family (CPUID
DisplayFamily_DisplayModel = 06_56H).

12 Reserved, MBZ

13 Reserved; writing 0 will #GP if also setting TraceEn

63:14 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Thread Tracing Status Register (R/W)

0 Reserved, writes ignored.

1 ContexEn, writes ignored.

2 TriggerEn, writes ignored.

3 Reserved

4 Error (R/W)

5 Stopped

63:6 Reserved, MBZ.

572H 1394 IA32_RTIT_CR3_MATCH THREAD Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match
NOTES:

1. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

Table 35-25 Additional MSRs Supported by Intel® Core™ M Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-26 Additional MSRs Supported by Future Generation Intel® Xeon® Processors with
DisplayFamily_DisplayModel Signature 06_56H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-1.

0 Thermal status (RO)

See Table 35-1.

1 Thermal status log (R/WC0)

See Table 35-1.

2 PROTCHOT # or FORCEPR# status (RO)

See Table 35-1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 496

3 PROTCHOT # or FORCEPR# log (R/WC0)

See Table 35-1.

4 Critical Temperature status (RO)

See Table 35-1.

5 Critical Temperature status log (R/WC0)

See Table 35-1.

6 Thermal threshold #1 status (RO)

See Table 35-1.

7 Thermal threshold #1 log (R/WC0)

See Table 35-1.

8 Thermal threshold #2 status (RO)

See Table 35-1.

9 Thermal threshold #2 log (R/WC0)

See Table 35-1.

10 Power Limitation status (RO)

See Table 35-1.

11 Power Limitation log (R/WC0)

See Table 35-1.

12 Current Limit status (RO)

See Table 35-1.

13 Current Limit log (R/WC0)

See Table 35-1.

14 Cross Domain Limit status (RO)

See Table 35-1.

15 Cross Domain Limit log (R/WC0)

See Table 35-1.

22:16 Digital Readout (RO)

See Table 35-1.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

See Table 35-1.

31 Reading Valid (RO)

See Table 35-1.

63:32 Reserved.

770H 1904 IA32_PM_ENABLE Package See Section 14.4.2, “Enabling HWP”

Table 35-26 Additional MSRs Supported by Future Generation Intel® Xeon® Processors with
DisplayFamily_DisplayModel Signature 06_56H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 497

35.14 MSRS IN FUTURE GENERATION INTEL® CORE™ PROCESSORS
Future generation Intel® Core™ processor family, with CPUID DisplayFamily_DisplayModel signature 06_4DH,
supports the MSR interfaces listed in Table 35-15, Table 35-16, Table 35-18, Table 35-21, Table 35-25, and Table
35-27.

771H 1905 IA32_HWP_CAPABILITIES Thread See Section 14.4.3, “HWP Performance Range and Dynamic
Capabilities”

774H 1908 IA32_HWP_REQUEST Thread See Section 14.4.4, “Managing HWP”

7:0 Minimum Performance (R/W).

15:8 Maximum Performance (R/W).

23:16 Desired Performance (R/W).

63:24 Reserved.

777H 1911 IA32_HWP_STATUS Thread See Section 14.4.5, “HWP Feedback”

Table 35-26 Additional MSRs Supported by Future Generation Intel® Xeon® Processors with
DisplayFamily_DisplayModel Signature 06_56H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-27 Additional MSRs Supported by Future Generation Intel® Core™ Processors with
DisplayFamily_DisplayModel Signature 06_4DH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-1.

0 Thermal status (RO)

See Table 35-1.

1 Thermal status log (R/WC0)

See Table 35-1.

2 PROTCHOT # or FORCEPR# status (RO)

See Table 35-1.

3 PROTCHOT # or FORCEPR# log (R/WC0)

See Table 35-1.

4 Critical Temperature status (RO)

See Table 35-1.

5 Critical Temperature status log (R/WC0)

See Table 35-1.

6 Thermal threshold #1 status (RO)

See Table 35-1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 498

7 Thermal threshold #1 log (R/WC0)

See Table 35-1.

8 Thermal threshold #2 status (RO)

See Table 35-1.

9 Thermal threshold #2 log (R/WC0)

See Table 35-1.

10 Power Limitation status (RO)

See Table 35-1.

11 Power Limitation log (R/WC0)

See Table 35-1.

12 Current Limit status (RO)

See Table 35-1.

13 Current Limit log (R/WC0)

See Table 35-1.

14 Cross Domain Limit status (RO)

See Table 35-1.

15 Cross Domain Limit log (R/WC0)

See Table 35-1.

22:16 Digital Readout (RO)

See Table 35-1.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

See Table 35-1.

31 Reading Valid (RO)

See Table 35-1.

63:32 Reserved.

64EH 1615 MSR_PPERF THREAD Productive Performance Count. (R/O).

63:0 Hardware’s view of workload scalability. See Section 14.4.5.1

652H 1614 MSR_PKG_HDC_CONFIG Package HDC Configuration (R/W).

2:0 PKG_Cx_Monitor.

Configures Package Cx state threshold for
MSR_PKG_HDC_DEEP_RESIDENCY

63: 3 Reserved

653H 1615 MSR_CORE_HDC_Residency Core Core HDC Idle Residency. (R/O).

63:0 Core_Cx_Duty_Cycle_Cnt.

Table 35-27 Additional MSRs Supported by Future Generation Intel® Core™ Processors with
DisplayFamily_DisplayModel Signature 06_4DH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 499

655H 1617 MSR_PKG_HDC_SHALLOW_
Residency

Package Accumulate the cycles the package was in C2 state and at least one
logical processor was in forced idle. (R/O).

63:0 Pkg_C2_Duty_Cycle_Cnt.

656H 1618 MSR_PKG_HDC_DEEP_Resid
ency

Package Package Cx HDC Idle Residency. (R/O).

63:0 Pkg_Cx_Duty_Cycle_Cnt.

658H 1620 MSR_WEIGHTED_CORE_C0 Package Core-count Weighted C0 Residency. (R/O).

63:0 Increment at the same rate as the TSC. The increment each cycle is
weighted by the number of processor cores in the package that
reside in C0. If N cores are simultaneously in C0, then each cycle the
counter increments by N.

659H 1621 MSR_ANY_CORE_C0 Package Any Core C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is
one if any processor core in the package is in C0.

65AH 1622 MSR_ANY_GFXE_C0 Package Any Graphics Engine C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is
one if any processor graphic device’s compute engines are in C0.

65BH 1623 MSR_CORE_GFXE_OVERLA
P_C0

Package Core and Graphics Engine Overlapped C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is
one if at least one compute engine of the processor graphics is in
C0 and at least one processor core in the package is also in C0.

770H 1904 IA32_PM_ENABLE Package See Section 14.4.2, “Enabling HWP”

771H 1905 IA32_HWP_CAPABILITIES Thread See Section 14.4.3, “HWP Performance Range and Dynamic
Capabilities”

772H 1906 IA32_HWP_REQUEST_PKG Package See Section 14.4.4, “Managing HWP”

773H 1907 IA32_HWP_INTERRUPT Thread See Section 14.4.6, “HWP Notifications”

774H 1908 IA32_HWP_REQUEST Thread See Section 14.4.4, “Managing HWP”

7:0 Minimum Performance (R/W).

15:8 Maximum Performance (R/W).

23:16 Desired Performance (R/W).

31:24 Energy/Performance Preference (R/W).

41:32 Activity Window (R/W).

42 Package Control (R/W).

63:43 Reserved.

777H 1911 IA32_HWP_STATUS Thread See Section 14.4.5, “HWP Feedback”

DB0H 3504 IA32_PKG_HDC_CTL Package See Section 14.5.2, “Package level Enabling HDC”

Table 35-27 Additional MSRs Supported by Future Generation Intel® Core™ Processors with
DisplayFamily_DisplayModel Signature 06_4DH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 500

...

41. New Chapter 36, Volume 3C
Change bars show new Chapter 36 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--
CHAPTER 36

INTEL® PROCESSOR TRACE

36.1 OVERVIEW
Intel® Processor Trace (Intel PT) is an extension of Intel® Architecture that captures information about software
execution using dedicated hardware facilities that cause only minimal performance perturbation to the software
being traced. This information is collected in data packets. The first implementation of Intel PT offers control
flow tracing, which includes in these packets timing and program flow information (e.g. branch targets, branch
taken/not taken indications) and program-induced mode related information (e.g. Intel TSX state transitions,
CR3 changes). These packets may be buffered internally before being sent to the memory subsystem or other
output mechanism available in the platform. Debug software can process the trace data and reconstruct the
program flow.

36.1.1 Features and Capabilities
Intel PT’s control flow trace generates a variety of packets that, when combined with the binaries of a program by
a post-processing tool, can be used to produce an exact execution trace. The packets record flow information such
as instruction pointers (IP), indirect branch targets, and directions of conditional branches within contiguous code
regions (basic blocks).
In addition, the packets record other contextual, timing, and bookkeeping information that enables both func-
tional and performance debugging of applications. Intel PT has several control and filtering capabilities available
to customize the tracing information collected and to append other processor state and timing information to
enable debugging. For example, there are modes that allow packets to be filtered based on the current privilege
level (CPL) or the value of CR3.
Configuration of the packet generation and filtering capabilities are programmed via a set of MSRs. The MSRs
generally follow the naming convention of IA32_RTIT_*.

36.1.1.1 Packet Summary
After a tracing tool has enabled and configured the appropriate MSRs, the processor will collect and generate
trace information in the following types of packets (for more details on the packets, see Section 36.4):

DB1H 3505 IA32_PM_CTL1 Thread See Section 14.5.3, “Logical-Processor Level HDC Control”

DB2H 3506 IA32_THREAD_STALL Thread See Section 14.5.4.1, “IA32_THREAD_STALL”

Table 35-27 Additional MSRs Supported by Future Generation Intel® Core™ Processors with
DisplayFamily_DisplayModel Signature 06_4DH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 501

• Packet Stream Boundary (PSB) packets: PSB packets act as ‘heartbeats’ that are generated at regular
intervals (e.g., every 4K trace packet bytes). These packets allow the packet decoder to find the packet
boundaries within the output data stream; a PSB packet should be the first packet that a decoder looks for
when beginning to decode a trace.

• Taken Not-Taken (TNT) packets: TNT packets track the “direction” of direct conditional branches (taken or not
taken).

• Target IP (TIP) packets: TIP packets record the target IP of indirect branches, exceptions, interrupts, and
other branches or events. These packets can contain the IP, although that IP value may be compressed by
eliminating upper bytes that match the last IP. There are various types of TIP packets; they are covered in
more detail in Section 36.4.2.2.

• Flow Update Packets (FUP): FUPs provide the source IP addresses for asynchronous events (interrupt and
exceptions), as well as other cases where the source address cannot be determined from the binary.

• Paging Information Packet (PIP): PIPs record modifications made to the CR3 register. This information, along
with information from the operating system on the CR3 value of each process, allows the debugger to
attribute linear addresses to their correct application source.

• Time-Stamp Counter (TSC) packets: TSC packets aid in tracking wall-clock time, and contain some portion of
the software-visible time-stamp counter.

• MODE packets: These packets provide the decoder with important processor execution information so that it
can properly interpret the binary and trace log. MODE packets have a variety of formats that indicate details
such as the execution mode (16-bit, 32-bit, or 64-bit).

• Core Bus Ratio (CBR) packets: CBR packets contain the core:bus clock ratio.
• Overflow (OVF) packets: OVF packets are sent when the processor experiences an internal buffer overflow,

resulting in packets being dropped. This packet notifies the decoder of the loss and can help the decoder to
respond to this situation.

36.2 INTEL® PROCESSOR TRACE OPERATIONAL MODEL
This section describes the overall Intel Processor Trace mechanism and the essential concepts relevant to how it
operates.

36.2.1 Change of Flow Instruction (COFI) Tracing
A basic program block is a section of code where no jumps or branches occur. The instruction pointers (IPs) in this
block of code need not be traced, as the processor will execute them from start to end without redirecting code
flow. Instructions such as branches, and events such as exceptions or interrupts, can change the program flow.
These instructions and events that change program flow are called Change of Flow Instructions (COFI). There are
three categories of COFI:
• Direct transfer COFI.
• Indirect transfer COFI.
• Far transfer COFI.
The following subsections describe the COFI events that result in trace packet generation. Table 36-1. lists branch
instruction by COFI types. For detailed description of specific instructions, see Intel® 64 and IA-32 Architectures
Software Developer’s Manual.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 502

36.2.1.1 Direct Transfer COFI
Direct Transfer COFI are relative branches. This means that their target is an IP whose offset from the current IP
is embedded in the instruction bytes. It is not necessary to indicate target of these instructions in the trace output
since it can be obtained through the source disassembly. Conditional branches need to indicate only whether the
branch is taken or not. Unconditional branches do not need any recording in the trace output. There are two sub-
categories:
• Conditional Branch (Jcc, J*CXZ) and LOOP

To track this type of instruction, the processor encodes a single bit (taken or not taken — TNT) to indicate the
program flow after the instruction.

Jcc, J*CXZ, and LOOP can be traced with TNT bits. To improve the trace packet output efficiency, the
processor will compact several TNT bits into a single packet.

• Unconditional Direct Jumps

There is no trace output for direct unconditional jumps (like JMP near relative or CALL near relative) since they
can be directly inferred from the application assembly. Direct unconditional jumps do not generate a TNT bit
or a Target IP packet.

36.2.1.2 Indirect Transfer COFI
Indirect transfer instructions involve updating the IP from a register or memory location. Since the register or
memory contents can vary at any time during execution, there is no way to know the target of the indirect
transfer until the register or memory contents are read. As a result, the disassembled code is not sufficient to
determine the target of this type of COFI. Therefore, tracing hardware must send out the destination IP in the
trace packet for debug software to determine the target address of the COFI. Note that this IP may be a linear or
effective address (see Section 36.3.1.1)
An indirect transfer instruction generates a Target IP Packet (TIP) that contains the target address of the branch.
There are two sub-categories:
• Near JMP Indirect and Near Call Indirect

As previously mentioned, the target of an indirect COFI resides in the contents of either a register or
memory location. Therefore, the processor must generate a packet that includes this target address to allow
the decoder to determine the program flow.

• Near RET
When a CALL instruction executes, it pushes onto the stack the address of the next instruction following the
CALL. Upon completion of the call procedure, the RET instruction is often used to pop the return address off
of the call stack and redirect code flow back to the instruction following the CALL.
A RET instruction simply transfers program flow to the address it popped off the stack. Because a called
procedure may change the return address on the stack before executing the RET instruction, debug software

Table 36-1. COFI Type for Branch Instructions

COFI Type Instructions

Conditional Branch JA, JAE, JB, JBE, JC, JCXZ< JECXZ, JRCXZ, JE, JG, JGE, JL, JLE, JNA, JNAE, JNB, JNBE, JNC, JNE, JNG, JNGE,
JNL, JNLE, JNO, JNP, JNS, JNZ, JO, JP, JPE, JPO, JS, JZ, LOOP, LOOPE, LOOPNE, LOOPNZ, LOOPZ

Unconditional Direct Branch JMP (E9 xx, EB xx), CALL (E8 xx)

Indirect Branch JMP (FF /4), CALL (FF /2)

Near Ret RET (C3, C2 xx)

Far Transfers INT3, INTn, INTO, IRET, IRETD, IRETQ, JMP (EA xx, REX.W? FF /5), CALL (9A xx, FF /3), RET (CB, CA
xx), SYSCALL, SYSRET, SYSENTER, SYSEXIT

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 503

can be misled if it assumes that code flow will return to the instruction following the last CALL. Therefore,
even for near RET, a Target IP Packet may be sent.

— RET Compression

A special case is applied if the target of the RET is consistent with what would be expected from tracking
the CALL stack. If it is assured that the decoder has seen the corresponding CALL (with “corresponding”
defined as the CALL with matching stack depth), and the RET target is the instruction after that CALL, the
RET target may be “compressed”. In this case, only a single TNT bit of “taken” is generated instead of a
Target IP Packet. To ensure that the decoder will not be confused in cases of RET compression, only RETs
that correspond to CALLs which have been seen since the last PSB packet may be compressed. For details,
see “Indirect Transfer Compression for Returns (RET)” in Section 36.4.2.2.

36.2.1.3 Far Transfer COFI
All operations that change the instruction pointer and are not near jumps are “far transfers”. This includes excep-
tions, interrupts, traps, TSX aborts, and instructions that do far transfers.
All far transfers will produce a Target IP (TIP) packet, which provides the destination IP address. For those far
transfers that cannot be inferred from the binary source (e.g., asynchronous events such as exceptions and inter-
rupts), the TIP will be preceded by a Flow Update packet (FUP), which provides the source IP address at which the
event was taken. Table 36-19 indicates exactly which IP will be included in the FUP generated by a far transfer.
See the packet generation scenarios (Section 36.4.3) for more details on which packets are generated on each
variety of far transfer.

36.2.2 Trace Filtering
Intel Processor Trace provides filtering capabilities, by which the debug/profile tool can control what code is
traced.

36.2.2.1 Filtering by Current Privilege Level (CPL)
Intel PT provides the ability to configure a logical processor to generate trace packets only when CPL = 0, when
CPL > 0, or regardless of CPL.
CPL filtering ensures that no IPs or other architectural state information associated with the filtered CPL can be
seen in the log. For example, if the processor is configured to trace only when CPL > 0, and software executes
SYSCALL (changing the CPL to 0), the destination IP of the SYSCALL will be suppressed from the generated packet
(see the discussion of TIP.PGD in Section 36.4.2.5).
It should be noted that CPL is always 0 in real-address mode and that CPL is always 3 in virtual-8086 mode. To
trace code in these modes, filtering should be configured accordingly.
When software is executing in a non-enabled CPL, ContextEn is cleared. See Section 36.2.3.1 for details.

36.2.2.2 Filtering by CR3
Intel PT supports a CR3-filtering mechanism by which control-flow packet generation can be enabled or disabled
based on the value of CR3. A debugger can use CR3 filtering to trace only a single application without context
switching the state of the RTIT MSRs. To the reconstruction of traces from software with multiple threads, debug
software may wish to context-switch the state of the RTIT MSRs (if the operating system does not provide
context-switch support) to separate the output for the different threads (see Section 36.3.4, “Context Switch
Consideration”).
To trace for only a single CR3 value, software can write that value to the IA32_RTIT_CR3_MATCH MSR, and set
IA32_RTIT_CTL.CR3Filter. When CR3 value does not match IA32_RTIT_CR3_MATCH and
IA32_RTIT_CTL.CR3Filter is 1, ContextEn is forced to 0, and control-flow packets will not be generated. Some

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 504

other packets can be generated when ContextEn is 0; see Section 36.2.3.3 for details. When CR3 does match
IA32_RTIT_CR3_MATCH (or when IA32_RTIT_CTL.CR3Filter is 0), CR3 filtering does not force ContextEn to 0
(although it could be 0 due to other filters or modes).
CR3 matches IA32_RTIT_CR3_MATCH if the two registers are identical for bits 63:5; the lower 5 bits of CR3 and
IA32_RTIT_CR3_MATCH are ignored. CR3 filtering is independent of the value of CR0.PG.
When CR3 filtering is in use, PIP packets may still be seen in the log if the processor is configured to trace when
CPL = 0 (IA32_RTIT_CTL.OS = 1). If not, no PIP packets will be seen.

36.2.3 Packet Generation Enable Controls
Intel Processor Trace includes a variety of controls that determine whether a packet is generated. In general,
most packets are sent only if Packet Enable (PacketEn) is set. PacketEn is an internal state maintained in hard-
ware in response to software configurable enable controls, PacketEn is not visible to software directly. The rela-
tionship of PacketEn to the software-visible controls in the configuration MSRs is described in this section.

36.2.3.1 Packet Enable (PacketEn)
When PacketEn is set, the processor is in the mode that Intel PT is monitoring and all packets can be generated to
log what is being executed. PacketEn is composed of other states according to this relationship:

PacketEn = TriggerEn AND ContextEn

These constituent controls are detailed in the following subsections.
PacketEn ultimately determines when the processor is tracing. When PacketEn is set, all control flow packets are
enabled. When PacketEn is clear, no control flow packets are generated, though other packets (timing and book-
keeping packets) may still be sent. See Section 36.2.4 for details of PacketEn and packet generation.

36.2.3.2 Trigger Enable (TriggerEn)
Trigger Enable (TriggerEn) is the primary indicator that trace packet generation is active. TriggerEn is set when
IA32_RTIT_CTL.TraceEn is set, and cleared by any of the following conditions:
• TraceEn is cleared by software,
• IA32_RTIT_STATUS.Error is set due to an internal error (see Section 36.3.7).
The processor may not update ContextEn when TriggerEn=0. The processor guarantees that ContextEn is
correctly evaluated only when TriggerEn = 1.
Software can discover the current TriggerEn value by reading the IA32_RTIT_STATUS.TriggerEn bit. When Trig-
gerEn is clear, tracing is inactive and no packets are generated.

36.2.3.3 Context Enable (ContextEn)
Context Enable (ContextEn) indicates whether the processor is in the state or mode that software configured
hardware to trace. For example, if execution with CPL = 0 code is not being traced (IA32_RTIT_CTL.OS = 0), then
ContextEn will be 0 when the processor is in CPL0.
Software can discover the current ContextEn value by reading the IA32_RTIT_STATUS.ContextEn bit. ContextEn
is defined as follows:

ContextEn = !((IA32_RTIT_CTL.OS = 0 AND CPL = 0) OR
(IA32_RTIT_CTL.USER = 0 AND CPL > 0) OR
(IA32_RTIT_CTL.CR3Filter = 1 AND IA32_RTIT_CR3_MATCH does not match CR3)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 505

If the clearing of ContextEn causes PacketEn to be cleared, a Packet Generation Disable (TIP.PGD) packet is
generated, but its IP payload is suppressed. If the setting of ContextEn causes PacketEn to be set, a Packet
Generation Enable (TIP.PGE) packet is generated.
When ContextEn is 0, control flow packets TNT, FUP, TIP, PIP, MODE) are not generated, and no LIPs are exposed.
For details of which packets are generated only when ContextEn is set, see Section 36.4.1.
The processor does not update ContextEn when TriggerEn = 0.

36.2.4 Packet Output to Memory
Trace output is written to memory in a collection of variable-sized regions of physical memory. These regions are
linked together by tables of pointers to those regions, referred to as Table of Physical Addresses (ToPA). The
trace output stores bypass the caches and the TLBs, but are not serializing. This is intended to minimize the
performance impact of the output.

36.2.4.1 Table of Physical Addresses (ToPA)
The ToPA mechanism uses a linked list of tables; see Figure 36-1 for an illustrative example. Each entry in the
table contains some attribute bits, a pointer to an output region, and the size of the region. The last entry in the
table may hold a pointer to the next table. This pointer can either point to the top of the current table (for circular
array) or to the base of another table. The table size is not fixed, since the link to the next table can exist at any
entry.
The processor treats the various output regions referenced by the ToPA table(s) as a unified buffer. This means
that a single packet may span the boundary between one output region and the next.
The ToPA mechanism is controlled by three values maintained by the processor:
• proc_trace_table_base.

This is the physical address of the base of the current ToPA table. When tracing is enabled, the processor loads
this value from the IA32_RTIT_OUTPUT_BASE MSR. While tracing is enabled, the processor updates the
IA32_RTIT_OUTPUT_BASE MSR with changes to proc_trace_table_base, but these updates may not be
synchronous to software execution. When tracing is disabled, the processor ensures that the MSR contains
the latest value of proc_trace_table_base.

• proc_trace_table_offset.
This indicates the entry of the current table that is currently in use. (This entry contains the address of the
current output region.) When tracing is enabled, the processor loads this value from bits 31:7 (MaskOrT-
ableOffset) of the IA32_RTIT_OUTPUT_MASK_PTRS. While tracing is enabled, the processor updates
IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset with changes to proc_trace_table_offset, but these
updates may not be synchronous to software execution. When tracing is disabled, the processor ensures that
the MSR contains the latest value of proc_trace_table_offset.

• proc_trace_output_offset.
This a pointer into the current output region and indicates the location of the next write. When tracing is
enabled, the processor loads this value from bits 63:32 (OutputOffset) of the
IA32_RTIT_OUTPUT_MASK_PTRS. While tracing is enabled, the processor updates
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset with changes to proc_trace_output_offset, but these updates
may not be synchronous to software execution. When tracing is disabled, the processor ensures that the MSR
contains the latest value of proc_trace_output_offset.

Figure 36-1 provides an illustration (not to scale) of the table and associated pointers.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 506

With the ToPA mechanism, the processor writes packets to the current output region (identified by
proc_trace_table_base and the proc_trace_table_offset). The offset within that region to which the next byte will
be written is identified by proc_trace_output_offset. When that region is filled with packet output (thus
proc_trace_output_offset = RegionSize–1), proc_trace_table_offset is moved to the next ToPA entry,
proc_trace_output_offset is set to 0, and packet writes begin filling the new output region specified by
proc_trace_table_offset.
Eventually, the regions represented by all entries in the table may become full, and the final entry of the table is
reached. An entry can be identified as the final entry because it has either the END or STOP attribute. The END
attribute indicates that the address in the entry does not point to another output region, but rather to another
ToPA table. The STOP attribute indicates that tracing will be disabled once the corresponding region is filled. See
Section 36.2.4.1 for details on STOP.
When an END entry is reached, the processor loads proc_trace_table_base with the base address held in this END
entry, thereby moving the current table pointer to this new table. The proc_trace_table_offset is reset to 0, as is
the proc_trace_output_offset, and packet writes will resume at the base address indicated in the first entry.
If the table has no STOP or END entry, and trace-packet generation remains enabled, eventually the maximum
table size will be reached (proc_trace_table_offset = FFFFFFFFH). In this case, the proc_trace_table_offset and
proc_trace_output_offset are reset to 0 (wrapping back to the beginning of the current table) once the last output
region is filled.
It is important to note that processor updates to the IA32_RTIT_OUTPUT_BASE and
IA32_RTIT_OUTPUT_MASK_PTRS MSRs are asynchronous to instruction execution. Thus, reads of these MSRs
while Intel PT is enabled may return stale values. Like all IA32_RTIT_* MSRs, the values of these MSRs should not
be trusted or saved unless trace packet generation is first disabled by clearing IA32_RTIT_CTL.TraceEn. This
ensures that all internally buffered packet data are written to memory. When TraceEn is 0, the values of the
IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSR are up to date and do not change. A store

Figure 36-1 ToPA Memory Illustration

0FF_FFFF _FFFFH

STOP=1

proc_trace_output_offset: IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset

proc_trace_table_offset: IA32_RTIT_OUTPUT_MASK_PTRS.TableOffset

proc_trace_table_base: IA32_RTIT_OUTPUT_BASE

0

ToPA Table B

Physical Memory

OutputRegionX

ToPA Table A

OutputRegionY

64K OutputBaseX

4K OutputBaseY

END=1 TableBaseB

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 507

fence or serializing instruction following the clearing of TraceEn may be required to ensure that trace output data
are globally observed.1

The processor may cache internally any number of entries from the current table or from tables that it references
(directly or indirectly). If tracing is enabled, the processor may ignore or delay detection of modifications to these
tables. To ensure that table changes are detected by the processor in a predictable manner, software should clear
TraceEn before modifying the current table (or tables that it references) and only then re-enable packet genera-
tion.
As packets are written out to memory, each store derives its physical address as follows:

trace_store_phys_addr = Base address from current ToPA table entry +
proc_trace_output_offset

There is no guarantee that a packet will be written to memory after some fixed number of cycles after a packet-
producing instruction executes. The only way to assure that all packets generated can be seen in memory is to
clear TraceEn; doing so ensures that all buffered packets are written to memory.

Single Output Region ToPA Implementation

The first processor generation to implement Intel PT supports only ToPA configurations with a single ToPA entry
followed by an END entry that points back to the first entry (creating one circular output buffer). Such processors
enumerate CPUID.(EAX=14H,ECX=0):ECX.MENTRY[bit 1] = 0 and CPUID.(EAX=14H,ECX=0):ECX.TOPAOUT[bit
0] = 1.

ToPA Table Entry Format

The format of ToPA table entries is shown in Figure 36-2. The size of the address field is determined by the
processor’s physical-address width (MAXPHYADDR) in bits, as reported in CPUID.80000008H:EAX[7:0].

Table 36-2 describes the details of the ToPA table entry fields. If reserved bits are set to 1, an error is signaled.

1. Although WRMSR is a serializing instruction, the execution of WRMSR that forces packet writes by clearing TraceEn does not itself
cause these writes to be globally observed.

Figure 36-2 Layout of ToPA Table Entry

11 91012MAXPHYADDR–1

Size

6 5 0

STOP
INT
END

Output Region Base Physical Address

4 13 2

Reserved

63

Table 36-2 ToPA Table Entry Fields

ToPA Entry Field Description

Output Region
Base Physical
Address

If END=0, this is the base physical address of the output region specified by this entry. Note that all regions
must be aligned based on their size. Thus a 2M region must have bits 20:12 clear. If the region is not properly
aligned, an operational error will be signaled when the entry is reached.
If END=1, this is the 4K-aligned base physical address of the next ToPA table (which may be the base of the cur-
rent table, or the first table in the linked list if a circular buffer is desired). If the processor supports only a single
ToPA output region (see above), this address must be the value currently in the IA32_RTIT_OUTPUT_BASE
MSR.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 508

ToPA STOP

Each ToPA entry has a STOP bit. If this bit is set, the processor will set the IA32_RTIT_STATUS.Stopped bit when
the corresponding trace output region is filled. This will clear TriggerEn and thereby cease packet generation. See
Section 36.2.5.3 for details on IA32_RTIT_STATUS.Stopped. This sequence is known as “ToPA Stop”
No TIP.PGD packet will be seen in the output when the ToPA stop occurs, since the disable happens only when the
region is already full. When this occurs, any packets remaining in internal buffers are lost and cannot be recov-
ered.
When ToPA stop occurs, the IA32_RTIT_OUTPUT_BASE MSR will hold the base address of the table whose entry
had STOP=1. IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset will hold the index value for that entry, and
the IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset should be set to the size of the region.

ToPA PMI

Each ToPA entry has an INT bit. If this bit is set, the processor will signal a performance-monitoring interrupt
(PMI) when the corresponding trace output region is filled. This interrupt is not precise, and it is thus likely that
writes to the next region will occur by the time the interrupt is taken.
A usage model envisioned for this attribute is for software to copy output data to external memory before the
output region is full.
The following steps should be taken to configure this interrupt:

1. Enable PMI via the LVT Performance Monitor register (at MMIO offset 340H in xAPIC mode; via MSR 834H in
x2APIC mode). See Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B for more
details on this register. For ToPA PMI, set all fields to 0, save for the interrupt vector, which can be selected by
software.

2. Set the interrupt flag by executing STI.

3. Set the INT bit in the ToPA entry of interest and enable packet generation, using the ToPA output option. Thus,
TraceEn=ToPA=1 in the IA32_RTIT_CTL MSR.

Once the INT region has been filled with packet output data, the interrupt will be signaled. This PMI can be distin-
guished from others by checking bit 55 (Trace_ToPA_PMI) of the IA32_PERF_GLOBAL_STATUS MSR (MSR 38EH).

Size Indicates the size of the associated output region. Encodings are:
0: 4K, 1: 8K, 2: 16K, 3: 32K, 4: 64K, 5: 128K, 6: 256K, 7: 512K,
8: 1M, 9: 2M, 10: 4M, 11: 8M, 12: 16M, 13: 32M, 14: 64M, 15: 128M
This field is ignored if END=1.

STOP When the output region indicated by this entry is filled, software should disable packet generation. This will be
accomplished by setting IA32_RTIT_STATUS.Stopped, which clears TriggerEn. This bit must be 0 if END=1; oth-
erwise it is treated as reserved bit violation (see ToPA Errors)

INT When the output region indicated by this entry is filled, signal Perfmon LVT interrupt.
Note that if both INT and STOP are set in the same entry, the STOP will happen before the INT. Thus the inter-
rupt handler should expect that the IA32_RTIT_STATUS.Stopped bit will be set, and will need to be reset before
tracing can be resumed.
This bit must be 0 if END=1; otherwise it is treated as reserved bit violation (see ToPA Errors)

END If set, indicates that this is an END entry, and thus the address field points to a table base rather than an output
region base.
If END=1, INT and STOP must be set to 0; otherwise it is treated as reserved bit violation (see ToPA Errors). The
Size field is ignored in this case.
If the processor supports only a single ToPA output region (see above), END must be 1 in any ToPA entry other
than the first (whenever proc_trace_table_offset differs from the value in the IA32_RTIT_OUTPUT_BASE MSR.

Table 36-2 ToPA Table Entry Fields

ToPA Entry Field Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 509

Once the ToPA PMI handler has serviced the relevant buffer, writing 1 to IA32_PERF_GLOBAL_OVF_CTL.[bit 55]
will clear IA32_PERF_GLOBAL_STATUS.Trace_ToPA_PMI.
Note that no “freezing” takes place with the ToPA PMI. Thus, packet generation is not frozen, and the interrupt
handler will be traced (though filtering can prevent this). Further, the setting of
IA32_DEBUGCTL.Freeze_Perfmon_on_PMI is ignored and performance counters are not frozen by a ToPA PMI.
Assuming the PMI handler wishes to read any buffered packets for persistent output, software should first disable
packet generation by clearing TraceEn. This ensures that all buffered packets are written to memory and avoids
tracing of the PMI handler. The configuration MSRs can then be used to determine where tracing has stopped. If
packet generation is disabled by the handler, it should then be manually re-enabled before the IRET if continued
tracing is desired.

ToPA PMI and Single Output Region ToPA Implementation

A processor that supports only a single ToPA output region implementation (such that only one output region is
supported; see above) will attempt to signal a ToPA PMI interrupt before the output wraps and overwrites the top
of the buffer. To support this functionality, the PMI handler should disable packet generation as soon as possible.
Due to PMI skid, it is possible, in rare cases, that the wrap will have occurred before the PMI is delivered. Software
can avoid this by setting the STOP bit in the ToPA entry (see Table 36-2); this will disable tracing once the region
is filled, and no wrap will occur. This approach has the downside of disabling packet generation so that some of the
instructions that led up to the PMI will not be traced. If the PMI skid is significant enough to cause the region to
fill and tracing to be disabled, the PMI handler will need to clear the IA32_RTIT_STATUS.Stopped indication before
tracing can resume.

ToPA Errors

When a malformed ToPA entry is found, an operation error results (see Section 36.3.7). A malformed entry can
be any of the following:

1. ToPA entry reserved bit violation.
This describes cases where a bit marked as reserved in Section 36.2.4.1 above is set to 1.

2. ToPA alignment violation.
This includes cases where illegal ToPA entry base address bits are set to 1:

a. ToPA table base address is not 4KB-aligned. The table base can be from a WRMSR to
IA32_RTIT_OUTPUT_BASE, or from a ToPA entry with END=1.

b. ToPA entry base address is not aligned to the ToPA entry size (e.g., a 2MB region with base address[20:12]
not equal to 0).

c. ToPA entry base address sets upper physical address bits not supported by the processor.

3. Illegal ToPA Output Offset (if IA32_RTIT_STATUS.Stopped=0).
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset is greater than or equal to the size of the current ToPA output
region size.

4. ToPA rules violations.
These are similar to ToPA entry reserved bit violations; they are cases when a ToPA entry is encountered with
illegal field combinations. They include the following:

a. Setting the STOP or INT bit on an entry with END=1.

b. Setting the END bit in entry 0 of a ToPA table.

c. On processors that support only a single ToPA entry (see above), two additional illegal settings apply:

i) ToPA table entry 1 with END=0.

ii) ToPA table entry 1 with base address not matching the table base.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 510

In all cases, the error will be logged by setting IA32_RTIT_STATUS.Error, thereby disabling tracing when the prob-
lematic ToPA entry is reached (when proc_trace_table_offset points to the entry containing the error). Any packet
bytes that are internally buffered when the error is detected may be lost.
Note that operational errors may also be signaled due to attempts to access restricted memory. See Section
36.2.4.2 for details.
A tracing software have a range of flexibility using ToPA to manage the interaction of Intel PT with application
buffers, see Section 36.5.

36.2.4.2 Restricted Memory Access
Packet output cannot be directed to any regions of memory that are restricted by the platform. In particular, all
memory accesses on behalf of packet output are checked against the SMRR regions. If there is any overlap with
these regions, trace data collection will not function properly. Exact processor behavior is implementation-depen-
dent; Table 36-3 summarizes several scenarios.

It should also be noted that packet output should not be routed to the 4KB APIC MMIO region, as defined by the
IA32_APIC_BASE MSR. For details about the APIC, refer to Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A. No error is signaled for this case.

Modifications to Restricted Memory Regions

It is recommended that software disable packet generation before modifying the SMRRs to change the scope of
the SMRR regions. This is because the processor reserves the right to cache any number of ToPA table entries
internally, after checking them against restricted memory ranges. Once cached, the entries will not be checked
again, meaning one could potentially route packet output to a newly restricted region. Software can ensure that
any cached entries are written to memory by clearing IA32_RTIT_CTL.TraceEn.

36.2.5 Enabling and Configuration MSRs

36.2.5.1 General Considerations
Trace packet generation is enabled and configured by a collection of model-specific registers (MSRs), which are
detailed below. Some notes on the configuration MSR behavior:
• If Intel Processor Trace is not supported by the processor (see Section 36.3.1), RDMSR or WRMSR of the

IA32_RTIT_* MSRs will cause #GP.
• A WRMSR to any of these configuration MSRs that begins and ends with IA32_RTIT_CTL.TraceEn set will #GP

fault. Packet generation must be disabled before the configuration MSRs can be changed.

Note: Software may write the same value back to IA32_RTIT_CTL without #GP, even if TraceEn=1.
• All configuration MSRs for Intel PT are duplicated per logical processor

Table 36-3 Behavior on Restricted Memory Access

Scenario Description

ToPA output region
overlaps with
SMRR

Stores to the restricted memory region will be dropped, and that packet data will be lost. Any attempt to read
from that restricted region will return all 1s. The processor also may signal an error (Section 36.3.7) and disable
tracing when the output pointer reaches the restricted region. If packet generation remains enabled, then
packet output may continue once stores are no longer directed to restricted memory (on wrap, or if the output
region is larger than the restricted memory region).

ToPA table overlaps
with SMRR

The processor will signal an error (Section 36.3.7) and disable tracing when the ToPA read pointer
(IA32_RTIT_OUTPUT_BASE + (proc_trace_table_offset « 3)) enters the restricted region.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 511

• For each configuration MSR, any MSR write that attempts to change bits marked reserved, or utilize encodings
marked reserved, will cause a #GP fault.

36.2.5.2 IA32_RTIT_CTL MSR
IA32_RTIT_CTL, at address 570H, is the primary enable and control MSR for trace packet generation. Bit positions
are listed in Table 36-4.

Enabling Packet Generation

When TraceEn transitions from 0 to 1, packet generation is enabled, and a series of packets may be generated.
These packets help ensure that the decoder is aware of the state of the processor when the trace begins, and that
it can keep track of any timing or state changes that may have occurred while packet generation was disabled.
This may be a full PSB+ (see Section 36.4.2.12), or it may be a TSC (see Section 36.4.2.10) followed by CBR (see Section
36.4.2.9), if those packets are enabled.

Table 36-4 IA32_RTIT_CTL MSR

Position Bit Name At Reset Bit Description

0 TraceEn 0 If 1, enables tracing; else tracing is disabled if 0

When this bit transitions from 1 to 0, all buffered packets are written to their output
destination.

When this bit transitions from 0 to 1, a series of packets may be generated. This may include
PSB, along with associated status packets (see Section 36.4.2.3), or may include only a TSC
and CBR packet (see Section 36.4.2.9 and Section 36.4.2.10).

If changing this bit changes PacketEN, a TIP.PGE or TIP.PGD will be generated. In the TIP.PGE
case, a MODE packet will precede it, see Section 36.4.2.8.

1 Reserved 0 Must be 0

2 OS 0 0: Packet generation is disabled when CPL = 0

1: Packet generation may be enabled when CPL = 0

3 User 0 0: Packet generation is disabled when CPL > 0

1: Packet generation may be enabled when CPL > 0

6:4 Reserved 0 Must be 0

7 CR3Filter 0 0: Disables CR3 filtering

1: Enables CR3 filtering

8 ToPA 0 1: ToPA output scheme enabled (see Section 36.2.4.1)

WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit causes #GP.

9 Reserved 0 Must be 0

10 TSCEn 0 0: Disable TSC packets

1: Enable TSC packets (see Section 36.4.2.10)

11 DisRETC 0 0: Enable RET compression

1: Disable RET compression (see Section 36.2.1.2)

12 Reserved 0 Must be 0

13 Reserved 0 WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit causes #GP.

63:14 Reserved 0 Must be 0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 512

In addition to the packets above, once PacketEn (Section 36.2.3.1) transitions from 0 to 1 (which may happen
immediately, depending on filtering settings), a MODE.Exec packet (Section 36.4.2.8) followed by a TIP.PGE
packet (Section 36.4.2.3) will be generated. The TIP.PGE and MODE packets could come before or after the PSB
packet, the TSC packet, or the CBR packet.
When TraceEn is set, the processor may read ToPA entries from memory and cache them internally. For this
reason, software should disable packet generation before making modifications to the ToPA tables (or changing
the configuration of restricted memory regions). See Section 36.4.3 for more details of packets that may be
generated with modifications to TraceEn.

Disabling Packet Generation

A WRMSR that clears TraceEn causes any buffered packets to be written to memory. After software disables
packet generation by clearing TraceEn, all packets have been written to memory and that the output MSRs
(IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS) have stable values. (As noted earlier a store
fence or serializing instruction may be required to ensure that trace output data are globally observed.1) No
special packets are generated by disabling packet generation, though a TIP.PGD may result if PacketEn=1 at the
time of disable.

Other Writes to IA32_RTIT_CTL

Any attempt to modify IA32_RTIT_CTL while TraceEn is set will result in a general-protection fault (#GP) unless
the same write also clears TraceEn. However, writes to IA32_RTIT_CTL that do not modify any bits will not cause
a #GP, even if TraceEn remains set.

36.2.5.3 IA32_RTIT_STATUS MSR
The IA32_RTIT_STATUS MSR is readable and writable by software, but some bits (ContextEn, TriggerEn) are
read-only and cannot be directly modified. The WRMSR instruction ignores these bits in the source operand
(attempts to modify these bits are ignored and do not cause WRMSR to fault).
This MSR can only be written when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection
fault (#GP). The processor does not modify the value of this MSR while TraceEn is 0 (software can modify it with
WRMSR).

1. Although WRMSR is a serializing instruction, the execution of WRMSR that forces packet writes by clearing TraceEn does not itself
cause them to be globally observed.

Table 36-5 IA32_RTIT_STATUS MSR

Position Bit Name At Reset Bit Description

0 Reserved 0 Writes are ignored.

1 ContextEn 0 The processor sets this bit to indicate that tracing is allowed for the current context. See
Section 36.2.3.3. Writes are ignored.

2 TriggerEn 0 The processor sets this bit to indicate that tracing is enabled. See Section 36.2.3.2. Writes are
ignored.

3 Reserved 0 Must be 0.

4 Error 0 The processor sets this bit to indicate that an operational error has been encountered. When
this bit is set, TriggerEn is cleared to 0 and packet generation is disabled. For details, see
“ToPA Errors” in Section 36.2.4.1.

When TraceEn is cleared, software can write this bit. Once it is set, only software can clear it.
It is not recommended that software ever set this bit, except in cases where it is restoring a
prior saved state

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 513

36.2.5.4 IA32_RTIT_CR3_MATCH MSR
When IA32_RTIT_CTL.CR3Filter is 1, ContextEn is set on only if CR3 matches the IA32_RTIT_CR3_MATCH MSR.
CR3 matches IA32_RTIT_CR3_MATCH if the two registers are identical for bits 63:5; the lower 5 bits of CR3 and
IA32_RTIT_CR3_MATCH are not compared. For more details, see Section 36.2.2.2.
This MSR can be written only when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection
fault (#GP). IA32_RTIT_CR3_MATCH[4:0] are reserved and must be 0; an attempt to set those bits using WRMSR
causes a #GP.

36.2.5.5 IA32_RTIT_OUTPUT_BASE MSR
This MSR is used to configure the output region of internally-buffered packets. The size of the address field is
determined by the maximum physical address width (MAXPHYADDR), as reported by
CPUID.80000008H:EAX[7:0].
The processor updates this MSR while when packet generation is enabled, and those updates are asynchronous to
instruction execution. Therefore, the values in this MSR should be considered unreliable unless packet generation
is disabled (IA32_RTIT_CTL.TraceEn = 0).
This MSR can be written only when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection
fault (#GP).

5 Stopped 0 The processor sets this bit to indicate that a ToPA Stop condition has been encountered.
When this bit is set, TriggerEn is cleared to 0 and packet generation is disabled. For details,
see “ToPA STOP” in Section 36.2.4.1.

When TraceEn is cleared, software can write this bit. Once it is set, only software can clear it.
It is not recommended that software ever set this bit, except in cases where it is restoring a
prior saved state.

63:6 Reserved 0 Must be 0.

Table 36-5 IA32_RTIT_STATUS MSR

Position Bit Name At Reset Bit Description

Table 36-6 IA32_RTIT_OUTPUT_BASE MSR

Position Bit Name At Reset Bit Description

6:0 Reserved 0 Must be 0.

MAXPHYADDR-1:7 BasePhysAddr 0 The base physical address. How this address is used depends on the value of
IA32_RTIT_CTL.ToPA:

0: This is the base physical address of a single, contiguous physical output region.
This could be mapped to DRAM or to MMIO, depending on the value.

The base address should be aligned with the size of the region, such that none of
the 1s in the mask value(Section 36.2.5.6) overlap with 1s in the base address. If
the base is not aligned, an operational error will result (see Section 36.3.7).

1: The base physical address of the current ToPA table. The address must be 4K
aligned. Writing an address in which bits 11:7 are non-zero will not cause a #GP, but
an operational error will be signaled once TraceEn is set. See “ToPA Errors” in
Section 36.2.4.1 as well as Section 36.3.7.

63:MAXPHYADDR Reserved 0 Must be 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 514

36.2.5.6 IA32_RTIT_OUTPUT_MASK_PTRS MSR
This MSR holds the pointers that indicate the ToPA entry that is currently in use and the offset into that entry’s
output region to which packets are being written. See Section 36.2.4.1 for details.
The processor updates this MSR while when packet generation is enabled, and those updates are asynchronous to
instruction execution. Therefore, the values in this MSR should be considered unreliable unless packet generation
is disabled (IA32_RTIT_CTL.TraceEn = 0).
This MSR can be written only when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection
fault (#GP).

36.2.6 Interaction of Intel® Processor Trace and Other Processor Features

36.2.6.1 Intel® Transactional Synchronization Extensions (Intel® TSX)
The operation of Intel TSX is described in Chapter 14 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1. For tracing purpose, packet generation does not distinguish between hardware lock
elision (HLE) and restricted transactional memory (RTM), but speculative execution does have impacts on the
trace output. Specifically, packets are generated as instructions complete, even for instructions in a transactional
region that is later aborted. For this reason, debugging software will need indication of the beginning and end of
a transactional region; this will allow software to understand when instructions are part of a transactional region
and whether that region has been committed.
To enable this, TSX information is included in a MODE packet leaf. The mode bits in the leaf are:
• InTX: Set to 1 on an TSX transaction begin, and cleared on transaction commit or abort.
• TXAbort: Set to 1 only when InTX transitions from 1 to 0 on an abort. Cleared otherwise.
This MODE packet will be sent each time the transaction status changes. See Table 36-8 for details.

Table 36-7 IA32_RTIT_OUTPUT_MASK_PTRS MSR

Position Bit Name At Reset Bit Description

6:0 LowerMask 7FH Forced to 1, writes are ignored.

31:7 MaskOrTableO
ffset

0 This field holds bits 27:3 of the offset pointer into the current ToPA table. This value can be
added to the IA32_RTIT_OUTPUT_BASE value to produce a pointer to the current ToPA table
entry, which itself is a pointer to the current output region. In this scenario, the lower 7
reserved bits are ignored. This field supports tables up to 256 MBytes in size.

63:32 OutputOffset 0 This field holds bits 31:0 of the offset pointer into the current ToPA output region. This value
will be added to the output region base field, found in the current ToPA table entry, to form
the physical address at which the next byte of trace output data will be written.

This value must be less than the ToPA entry size, otherwise an operational error (Section
36.3.7) will be signaled when TraceEn is set.

Table 36-8 TSX Packet Scenarios

TSX Event Instruction Packets

Transaction Begin Either XBEGIN or XACQUIRE lock (the latter if executed
transactionally)

MODE(TXAbort=0, InTX=1), FUP(CurrentIP).

Transaction
Commit

Either XEND or XRELEASE lock, if transactional execution
ends. This happens only on the outermost commit

MODE(TXAbort=0, InTX=0), FUP(CurrentIP)

Transaction Abort XABORT or other transactional abort MODE(TXAbort=1, InTX=0), FUP(CurrentIP),
TIP(TargetIP)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 515

The CurrentIP listed above is the IP of the associated instruction. The TargetIP is the IP of the next instruction to
be executed; for HLE, this is the XACQUIRE lock; for RTM, this is the fallback handler.
Intel PT stores are non-transactional, and thus packet writes are not rolled back on TSX abort.

36.2.6.2 System Management Mode (SMM)
SMM code has special privileges that non-SMM code does not have. Intel Processor Trace can be used to trace
SMM code, but special care is taken to ensure that SMM handler context is not exposed in any non-SMM trace
collection and that packet output from non-SMM code cannot be written into memory space protected by SMRR.
SMM is entered via a system management interrupt (SMI). SMI delivery saves the value of
IA32_RTIT_CTL.TraceEn into SMRAM and then clears it, thereby disabling packet generation.
The saving and clearing of IA32_RTIT_CTL.TraceEn ensures two things:

1. All internally buffered packet data is written to memory before entering SMM (see Section 36.2.5.2).

2. Packet generation ceases before entering SMM, so any tracing that was configured outside SMM does not
continue into SMM. No SMM instruction pointers or other state will be exposed in the non-SMM trace.

When the RSM instruction is executed to return from SMM, the TraceEn value that was saved by SMI delivery is
restored, allowing tracing to be resumed. As is done any time packet generation is enabled, ContextEn is re-eval-
uated, based on the values of CPL, CR3, etc., established by RSM.
Like other interrupts, delivery of an SMI produces a FUP containing the IP of the next instruction to execute. By
toggling TraceEn, SMI and RSM can produce TIP.PGD and TIP.PGE packets, indicating that tracing was disabled or
re-enabled. Table 36-9 shows an example of the packets that can be expected when an SMI occurs while the
processor is tracing (PacketEn = 1) software outside SMM.

Note that TraceEn must be cleared before executing RSM, otherwise it will cause a shutdown. Further, on proces-
sors that restrict use of Intel PT with LBRs (see Section 36.3.1.2), any RSM that results in enabling of both will
cause a shutdown.

Other One of the following:
• Nested XBEGIN or XACQUIRE lock
• An outer XACQUIRE lock that doesn’t begin a transaction

(InTX not set)
• Non-outermost XEND or XRELEASE lock

None. No change to TSX mode bits for these cases

Table 36-8 TSX Packet Scenarios

TSX Event Instruction Packets

Table 36-9 SMI/RSM Packets When Trace Packet Generation is Enabled Outside SMM

Code Flow Packets

… Non-SMM Code

1004H ADD %ebx, %eax ; #SMI arrives

… Non-SMM Packets

FUP(1006H), TIP.PGD()

38000H JMP bar ; Enters SMM handler

… SMM code

38500H RSM TIP.PGE(1006H)

1006H SUB %ebx, %ebp

… More Non-SMM Code

… More non-SMM packets

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 516

36.2.6.3 Virtual-Machine Extensions (VMX)
Initial implementations of Intel Processor Trace do not support tracing in VMX operation. Execution of the VMXON
instruction clears TraceEn. An attempt to set IA32_RTIT_CTL.TraceEn using WRMSR in VMX operation causes a
general-protection fault (#GP).
This implies that these implementations do not support Intel PT is not supported in a virtualized environment.
Future implementations may relax this restriction.

36.2.6.4 SENTER/ENTERACCS and ACM
GETSEC[SENTER] and GETSEC[ENTERACCS] instructions clear TraceEn, and it is not restored when those instruc-
tion complete. SENTER also causes TraceEn to be cleared on other logical processors when they rendezvous and
enter the SENTER sleep state. In these two cases, the disabling of packet generation is not guaranteed to write
buffered packets to memory. Some packets may be dropped.
When executing an authenticated code module (ACM), packet generation is silently disabled during ACRAM setup.
TraceEn will be cleared, but no TIP.PGD packet is generated. After completion of the module, the TraceEn value
will be restored. There will be no TIP.PGE packet, but timing packets, like TSC and CBR, may be produced.

36.3 CONFIGURATION AND PROGRAMMING GUIDELINE

36.3.1 Detection of Intel Processor Trace and Capability Enumeration
Processor support for Intel Processor Trace is indicated by CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1. CPUID
function 14H is dedicated to enumerate the resource and capability of processors that report
CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1. Different processor generations may have architecturally-defined
variation in capabilities. Table 36-10 describes details of the enumerable capabilities that software must use
across generations of processors that support Intel Processor Trace.

Table 36-10 CPUID Leaf 14H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=0) Name Description Behavior

Register Bits

EAX 31:0 Maximum valid sub-leaf Index Specifies the index of the maximum valid sub-leaf for this CPUID leaf

EBX

0 CR3 Filtering Support 1: Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that
IA32_RTIT_CR3_MATCH MSR can be accessed. See Section 36.2.5.

0: Indicates that writes that set IA32_RTIT_CTL.CR3Filter to 1, or any
access to IA32_RTIT_CR3_MATCH, will #GP fault.

31:1 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 517

36.3.1.1 Packet Decoding of RIP versus LIP
FUP, TIP, TIP.PGE, and TIP.PGE packets can contain an IP payload. On some processor generations, this payload
will be an effective address (RIP), while on others this will be a linear address (LIP). In the former case, the
payload is the offset from the current CS base address, while in the latter it is the sum of the offset and the CS
base address. Which IP type is in use is indicated by enumeration (see Table 36-10).
For software that executes while the CS base address is 0 (including all software executing in 64-bit mode), the
difference is indistinguishable. A trace decoder must account for cases, where the CS base address is not 0 and
the distinction can be seen.

36.3.1.2 Model Specific Capability Restrictions
Some processor generations impose the following restrictions that prevent use of LBRs, BTS, BTM, or LERs when
software has enabled tracing with Intel Processor Trace:
• If packet generation is enabled (IA32_RTIT_CTL.TraceEn = 1), any attempt to enable LBRs, LERs, BTS, or

BTM (setting IA32_DEBUG_CTL.LBR =1 or IA32_DEBUG_CTL.TR = 1) will cause a general-protection fault
(#GP). Further, any read or write of LBRs or LERs will cause a #GP. Enabling packet generation clears the
LBRs, LERs, and the LBR TOS pointer.

• If LBR, BTS, or BTM is enabled, any attempt to enable trace packet generation will cause a #GP.
• A RSM that attempts to set both TraceEn and IA32_DEBUGCTL.LBR or IA32_DEBUGCTL.TR will go to

shutdown.

ECX

0 ToPA Output Supported 1: Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing
the ToPA output scheme (Section 36.2.4.1) IA32_RTIT_OUTPUT_BASE
and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.

0: Enabling tracing (TraceEn=1) with IA32_RTIT_CTL.ToPA=1 or
IA32_RTIT_OUTPUT_MASK_PTRS. MSRs will #GP fault.

1 ToPA Tables Allow Multiple
Output Entries

1: ToPA tables can hold any number of output entries, up to the
maximum allowed by the MaskOrTableOffset field of
IA32_RTIT_OUTPUT_MASK_PTRS.

0: ToPA tables can hold only one output entry, which must be followed
by an END=1 entry which points back to the base of the table.

Further, ToPA PMIs will be delivered before the region is filled. See
ToPA PMI in Section 36.2.4.1.

If there is more than one output entry before the END entry, or if the
END entry has the wrong base address, an operational error will be
signaled (see “ToPA Errors” in Section 36.2.4.1).

30:2 Reserved

31 IP Payloads are LIP 1: Generated packets which contain IP payloads have LIP values, which
include the CS base component.

0: Generated packets which contain IP payloads have RIP values, which
are the offset from CS base.

EDX 31:0 Reserved

Table 36-10 CPUID Leaf 14H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=0) Name Description Behavior

Register Bits

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 518

For processor with CPUID DisplayFamily_DisplayModel signature of 06_3DH and 06_4AH, the use of Intel PT and
LBRs are mutually exclusive.

36.3.2 Enabling and Configuration of Trace Packet Generation
To configure trace packets, enable packet generation, and capture packets, software starts with using CPUID
instruction to detect its feature flag, CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1; followed by enumerating the
capabilities described in Section 36.3.1.
Based on the capability queried from Section 36.3.1, software must configure a number of model-specific regis-
ters. This section describes programming considerations related to those MSRs.

36.3.2.1 Enabling Packet Generation
When configuration and enabling packet generation, the IA32_RTIT_CTL MSR should be written last, since writes
to the other configuration MSRs cause a general-protection fault (#GP) if TraceEn = 1. If a prior trace collection
context is not being restored, then software should first clear IA32_RTIT_STATUS. This is important since the
Stopped, and Error fields are writable; clearing the MSR clears any values that may have persisted from prior
trace packet collection contexts. See Section 36.2.5.2 for details of packets generated by setting TraceEn to 1.
If setting TraceEn to 1 causes an operational error (see Section 36.3.7), there may be a delay after the WRMSR
completes before the error is signaled in the IA32_RTIT_STATUS MSR.
While packet generation is enabled, the values of some configuration MSRs (e.g., IA32_RTIT_STATUS and
IA32_RTIT_OUTPUT_*) are transient, and reads may return values that are out of date. Only after packet gener-
ation is disabled (by clearing TraceEn) do reads of these MSRs return reliable values.

36.3.2.2 Disabling Packet Generation
After disabling packet generation by clearing IA32_RTIT_CTL, it is advisable to read the IA32_RTIT_STATUS MSR
(Section 36.2.5.3):
• If the Error bit is set, an operational error was encountered, and the trace is most likely compromised.

Software should check the source of the error (by examining the output MSR values), correct the source of the
problem, and then attempt to gather the trace again. For details on operational errors, see Section 36.3.7.
Software should clear IA32_RTIT_STATUS.Error before re-enabling packet generation.

• If the Stopped bit is set, software execution encountered the ToPA Stop condition (see “ToPA STOP” in Section
36.2.4.1) before packet generation was disabled.

36.3.3 Forcing Packet Output to Be Written to Memory
Packets are first buffered internally and then written to memory asynchronously. To collect packet output for post-
processing, a collector needs first to ensure that all internally buffered packets have been written to memory.
Software can ensure this by stopping packet generation by clearing IA32_RTIT_CTL.TraceEn (see “Disabling
Packet Generation” in Section 36.2.5.2).
When this operations complete, the IA32_RTIT_OUTPUT_* MSR values can be read to discover where the trace
ended.

36.3.4 Context Switch Consideration
To facilitate construction of instruction execution traces at the granularity of a software process or thread context,
software can save and restore the states of the trace configuration MSRs across the process or thread context

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 519

switch boundary. The principle is the same as saving and restoring the typical architectural processor states
across context switches.
The configuration can be saved and restored through a sequence of WRMSR and RDMSR instructions, respec-
tively. To stop tracing and to ensure that all configuration MSRs contain stable values, software must clear
IA32_RTIT_CTL.TraceEn before reading any other trace configuration MSRs. The recommended method for
saving trace configuration context manually follows:

1. RDMSR IA32_RTIT_CTL, save value to memory

2. WRMSR IA32_RTIT_CTL with saved value from RDMSR above and TraceEn cleared

3. RDMSR all other configuration MSRs whose values had changed from previous saved value, save changed
values to memory

When restoring the trace configuration context, IA32_RTIT_CTL should be restored last:

1. Read saved configuration MSR values, aside from IA32_RTIT_CTL, from memory, and restore them with
WRMSR

2. Read saved IA32_RTIT_CTL value from memory, and restore with WRMSR.

36.3.5 Decoder Synchronization (PSB+)
The PSB packet (Section 36.4.2.12) serves as a synchronization point for a trace-packet decoder. It is a pattern
in the trace log for which the decoder can quickly scan to align packet boundaries. No legal packet combination
can result in such a byte sequence. As such, it serves as the starting point for packet decode. To decode a trace
log properly, the decoder needs more than simply to be aligned: it needs to know some state and potentially some
timing information as well.
When a PSB packet is generated, it is followed by a PSBEND packet (Section 36.4.2.13). One or more packets will
be generated in between those two packets, and these inform the decoder of the current state of the processor.
These packets, known collectively as PSB+, should be interpreted as “status only”, since they do not imply any
change of state at the time of the PSB, nor are they associated directly with any instruction or event. Thus, the
normal binding and ordering rules that apply to these packets outside of PSB+ can be ignored when these packets
are between a PSB and PSBEND. They inform the decoder of the state of the processor at the time of the PSB.
PSB+ can include:
• Timestamp (TSC), if IA32_RTIT_CTL.TSCEn=1
• Paging Info Packet (PIP), if ContextEn=1 and IA32_RTIT_CTL.OS=1
• Core Bus Ratio (CBR)
• MODE, including all supported MODE leaves, if ContextEn=1.
• Flow Update Packet (FUP), if ContextEn=1 The ordering of packets within PSB+ is not guaranteed to match on

all processors implementations.
PSB is generated only when TriggerEn=1; hence PSB+ has the same dependencies.
Note that an overflow can occur during PSB+, and this could cause the PSBEND packet to be lost, potentially
causing the decoder to treat all subsequent packets as “status only” until the next PSB. For this reason, the OVF
packet should also be viewed as terminating PSB+.

36.3.6 Internal Buffer Overflow
In the rare circumstances when new packets need to be generated but the processor’s dedicated internal buffers
are all full, an “internal buffer overflow” occurs. On such an overflow packet generation ceases (as packets would
need to enter the processor’s internal buffer) until the overflow resolves. Once resolved packet generation
resumes.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 520

The buffer overflow condition might not be cleared until the buffer has been completely written to memory and is
empty. When the buffer overflow is cleared naturally, an OVF packet (Section 36.4.2.11) is generated, and the
internal state for compressing LIPs or RETs is cleared. This ensures that the next IP will not be compressed
against a lost IP packet, and any RETs seen whose CALLs occurred before the overflow will not be compressed.
The OVF packet will be followed by a FUP or TIP.PGE, the payload of which will be the Current IP of the first
instruction after the overflow is cleared. Between the OVF and following FUP or TIP.PGE, there may be other
packets that are not dependent on ContextEn, even a full PSB+.
The IP in the FUP or TIP.PGE is that of the instruction at which packet generation resumes. Thus, on clearing of a
buffer overflow, the decoder will know exactly where the processor is now executing, although it will not know the
exact instruction where the buffer overflow occurred.

36.3.7 Operational Errors
Errors are detected as a result of packet output configuration problems, which can include output alignment
issues, ToPA reserved bit violations, or overlapping packet output with restricted memory. See “ToPA Errors” in
Section 36.2.4.1 for details on ToPA errors, and Section 36.2.4.2 for details on restricted memory errors. Opera-
tional errors are only detected and signaled when TraceEn=1.
When an operational error is detected, tracing is disabled and the error is logged. Specifically,
IA32_RTIT_STATUS.Error is set, which will cause IA32_RTIT_STATUS.TriggerEn to be 0. This will disable genera-
tion of all packets. Some causes of operational errors may lead to packet bytes being dropped.
It should be noted that the timing of error detection may not be predictable. Errors are signaled when the
processor encounters the problematic configuration. This could be as soon as packet generation is enabled but
could also be later when the problematic entry or field needs to be used.
Once an error is signaled, software should disable packet generation by clearing TraceEn, diagnose and fix the
error condition, and clear IA32_RTIT_STATUS.Error. At this point, packet generation can be re-enabled.

36.4 TRACE PACKETS AND DATA TYPES
This section details the data packets generated by Intel Processor Trace. It is useful for developers writing the
interpretation code that will decode the data packets and apply it to the traced source code.

36.4.1 Packet Relationships and Ordering
This section introduces the concept of packet “binding”, which involves determining the IP in a binary disassembly
at which the change indicated by a given packet applies. Some packets have the associated IP as the payload
(FUP, TIP), while for others the decoder need only search for the next instance of a particular instruction (or
instructions) to bind the packet (TNT). However, in many cases, the decoder will need to consider the relationship
between packets, and to use this packet context to determine how to bind the packet.
Section 36.4.2 below provides detailed descriptions of the packets, including how packets bind to IPs in the disas-
sembly, to other packets, or to nothing at all. Many packets listed are simple to bind, because they are generated
in only a few scenarios. Those that require more consideration are typically part of “compound packet events”,
such as interrupts, exceptions, and some instructions, where multiple packets are generated by a single operation
(instruction or event). These compound packet events frequently begin with a FUP to indicate the source address
(if it is not clear from the disassembly), and are concluded by a TIP or TIP.PGD packet that indicates the destina-
tion address (if one is provided). In this scenario, the FUP is said to be “coupled” with the TIP packet.
Other packets could be in between the coupled FUP and TIP packet. When the workload being traced changes CR3
or the processor’s mode of execution, ia state update packet (i.e., PIP or MODE) is generated. A summary of
compound packet events is provided in Table 36-11; see Section 36.4.2 for more per-packet details and Section
36.4.3 for more detailed packet generation examples.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 521

36.4.2 Packet Definitions
The following description of packet definitions are in tabular format. Figure 36-3 explains how to interpret them.

36.4.2.1 Taken/Not-taken (TNT) Packet

Table 36-11 Compound Packet Event Summary

Event Type Beginning Middle End Comment

Control-flow
transfer

FUP or none Any combination
of PIP, MODE.Exec,
or none

TIP or TIP.PGD FUP only for asynchronous events. Order of middle packets
may vary. PIP /MODE only if the operation modifies the state
tracked by these respective packets

TSX Update MODE.TSX, and
(FUP or none)

None TIP, TIP.PGD, or
none

FUP

TIP/TIP.PGD only for TSX abort cases

Overflow OVF None FUP or TIP.PGE FUP if overflow resolves while ContextEn=1, else TIP.PGE.

Figure 36-3 Interpreting Tabular Definition of Packet Format

Name Packet name

Packet Format

Description of fields

Dependencies Depends on packet generation con-
figuration enable controls or other
bits (Section 36.2.3).

Generation Scenario Which instructions, events, or other
scenarios can cause this packet to be
generated.

Description Description of the packet, including the purpose it serves, meaning of the information or payload, etc

Application How a decoder should apply this packet. It may bind to a specific instruction from the binary, or to
another packet in the stream, or have other implications on decode

7 6 5 4 3 2 1 0

0 0 1 0 1 0 1 0 1

1 1 1 0 0 0 1 1 0

2 0 1 0 0 0 1 1 0

Byte Number Payload in White
Header bits
in GreenBit Number

36-12 TNT Packet Definition

Name Taken/Not-taken (TNT) Packet

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 522

Packet Format

B1…BN represent the last N conditional branch or compressed RET (Section 36.4.2.2) results, such that B1 is oldest
and BN is youngest. The short TNT packet can contain from 1 to 6 TNT bits. The long TNT packet can contain up
from 1 to 47 TNT bits.

Irrespective of how many TNT bits is in a packet, the last valid TNT bit is followed by a trailing 1, or Stop bit, as
shown above. If the TNT packet is not full (fewer than 6 TNT bits for the Short TNT, or fewer than 47 TNT bits for
the Long TNT), the Stop bit moves up, and the trailing bits of the packet are filled with 0s. Examples of these
“partial TNTs” are shown below.

Dependencies PacketEn Generation
Scenario

On a conditional branch or compressed RET, if it fills the TNT.
Also, partial TNTs may be generated at any time, as a result of
other packets being generated,
or certain micro-architectural conditions occurring, before the
TNT is full.

36-12 TNT Packet Definition

7 6 5 4 3 2 1 0

0 1 B1 B2 B3 B4 B5 B6 0 Short TNT

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 Long TNT

1 1 0 1 0 0 0 1 1

2 B40 B41 B42 B43 B44 B45 B46 B47

3 B32 B33 B34 B35 B36 B37 B38 B39

4 B24 B25 B26 B27 B28 B29 B30 B31

5 B16 B17 B18 B19 B20 B21 B22 B23

6 B8 B9 B10 B11 B12 B13 B14 B15

7 1 B1 B2 B3 B4 B5 B6 B7

7 6 5 4 3 2 1 0

0 0 0 1 B1 B2 B3 B4 0 Short TNT

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 Long TNT

1 1 0 1 0 0 0 1 1

2 B24 B25 B26 B27 B28 B29 B30 B31

3 B16 B17 B18 B19 B20 B21 B22 B23

4 B8 B9 B10 B11 B12 B13 B14 B15

5 1 B1 B2 B3 B4 B5 B6 B7

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 523

36.4.2.2 Target IP (TIP) Packet

IP Compression

The IP payload in a TIP. FUP, TIP.PGE, or TIP.PGD packet can vary in size, based on the mode of execution, and the
use of IP compression. IP compression is an optional compression technique the processor may choose to employ
to reduce bandwidth. With IP compression, the IP to be represented in the payload is compared with the last IP
sent out, via any of FUP, TIP, TIP.PGE, or TIP.PGD. If that previous IP had the same upper (most significant)
address bytes, those matching bytes may be suppressed in the current packet. The processor maintains an
internal state of the “Last IP” that was encoded in trace packets, thus the decoder will need to keep track of the
“Last IP” state in software, to match fidelity with packets generated by hardware.

Description Provides the taken/not-taken results for the last 1–N conditional branches (Jcc, J*CXZ, or LOOP) or compressed RETs
(Section 36.4.2.2). The TNT payload bits should be interpreted as follows:
• 1 indicates a taken conditional branch, or a compressed RET
• 0 indicates a not-taken conditional branch
Note that a full TNT packet that causes a buffer overflow may be delayed instead of being dropped and could be
sent out before the buffer overflow packet is sent out

Application Each valid payload bit (that is, bits between the header bits and the trailing Stop bit) applies to an upcoming condi-
tional branch or RET instruction. Once a decoder consumes a TNT packet with N valid payload bits, these bits should
be applied to (and hence provide the destination for) the next N conditional branches or RETs

36-12 TNT Packet Definition

Table 36-13 IP Packet Definition

Name Target IP (TIP) Packet

Packet Format

Dependencies PacketEn Generation
Scenario

Indirect branch (including uncompressed RET), far
branch, interrupt, exception, INIT, SIPI, TSX abort.

Description Provides the target for some control flow transfers

Application Anytime a TIP is encountered, it indicates that control was transferred to the IP provided in the payload.

The source of this control flow change, and hence the IP or instruction to which it binds, depends on the packets
that precede the TIP. If a TIP is encountered and all preceding packets have already been bound, then the TIP will
apply to the upcoming indirect branch, far branch, or RSM. However, if there was a preceding FUP that remains
unbound, it will bind to the TIP. Here, the TIP provides the target of an asynchronous event or TSX abort that
occurred at the IP given in the FUP payload. Note that there may be other packets, in addition to the FUP, which will
bind to the TIP packet. See the packet application descriptions for other packets for details.

7 6 5 4 3 2 1 0

0 IPBytes 0 1 1 0 1

1 TargetIP[7:0]

2 TargetIP[15:8]

3 TargetIP[23:16]

4 TargetIP[31:24]

5 TargetIP[39:32]

6 TargetIP[47:40]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 524

The “IPBytes” field of the IP packets (FUP, TIP, TIP.PGE, TIP.PGD) serves to indicate how many bytes of payload
are provided, and how the decoder should fill in any suppressed bytes. The algorithm for reconstructing the IP for
a TIP/FUP packet is shown in the table below.

Note that the processor-internal Last IP state may be cleared at any time, but is guaranteed to be cleared when a
PSB is sent out. When the internal Last IP is cleared, this means that the next FUP/TIP/TIP.PGE/TIP.PGD will have
no IP compression.
At times, “IPbytes” will have a value of 0. As shown above, this does not mean that the IP payload matches the
full address of the last IP, but rather that the IP for this packet was suppressed. This is used for cases where the
IP that applies to the packet is out of context. An example is the TIP.PGD sent on a SYSCALL, when tracing only
USR code. In that case, no TargetIP will be included in the packet, since that would expose an instruction point at
CPL = 0. When the IP payload is suppressed in this manner, Last IP is not cleared, and instead refers to the last
IP packet with a non-zero IPBytes field.

Indirect Transfer Compression for Returns (RET)

In addition to IP compression, TIP packets for near return (RET) instructions can also be compressed. If the RET
target matches the next IP of the corresponding CALL, then the TIP packet is unneeded, since the decoder can
deduce the target IP by maintaining a CALL/RET stack of its own.
A CALL/RET stack can be maintained by the decoder by doing the following:

1. Allocate space to store 64 RET targets.

2. For near CALLs, push the Next IP onto the stack. Once the stack is full, new CALLs will force the oldest entry
off the end of the stack, such that only the youngest 64 entries are stored. Note that this excludes zero-length
CALLs, which are direct near CALLs with displacement zero (to the next IP). These CALLs typically don’t have
matching RETs.

3. For near RETs, pop the top (youngest) entry off the stack. This will be the target of the RET.
In cases where the RET is compressed, the target is guaranteed to match the value produced in 2) above. If the
target is not compressed, a TIP packet will be generated with the RET target, which may differ from 2).
The hardware ensure that packets read by the decoder will always have seen the CALL that corresponds to any
compressed RET. The processor will never compress a RET across a PSB, a buffer overflow, or scenario where
PacketEn=0. This means that a RET whose corresponding CALL executed while PacketEn=0, or before the last
PSB, etc., will not be compressed.
If the CALL/RET stack is manipulated or corrupted by software, and thereby causes a RET to transfer control to a
target that is inconsistent with the CALL/RET stack, then the RET will not be compressed, and will produce a TIP

Table 36-14 FUP/TIP IP Reconstruction

IPBytes Uncompressed IP Value

63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

000b None, IP is out of context

001b Last IP[63:16] IP Payload[15:0]

010b Last IP[63:32] IP Payload[31:0]

011b IP Payload[47] extended IP Payload[47:0]

100b Reserved

101b Reserved

110b Reserved

111b Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 525

packet. This can happen, for example, if software executes a PUSH instruction to push a target onto the stack,
and a later RET uses this target.
When a RET is compressed, a Taken indication is added to the TNT buffer. Because it sends no TIP packet, it also
does not update the internal Last IP value, and thus the decoder should treat it the same way. If the RET is not
compressed, it will generate a TIP packet (just like when RET compression is disabled, via
IA32_RTIT_CTL.DisRETC). For processors that employ deferred TIPs (Section 36.4.2.3), an uncompressed RET
will not be deferred, and hence will force out any accumulated TNTs or TIPs. This serves to avoid ambiguity, and
make clear to the decoder whether the near RET was compressed, and hence a bit in the in-progress TNT should
be consumed, or uncompressed, in which case there will be no in-progress TNT and thus a TIP should be
consumed.
Note that in the unlikely case that a RET executes in a different execution mode than the associated CALL, the
decoder will need to model the same behavior with its CALL stack. For instance, if a CALL executes in 64-bit mode,
a 64-bit IP value will be pushed onto the software stack. If the corresponding RET executes in 32-bit mode, then
only the lower 32 target bits will be popped off of the stack, which may mean that the RET does not go to the
CALL’s Next IP. This is architecturally correct behavior, and this RET could be compressed, thus the decoder should
match this behavior

36.4.2.3 Deferred TIPs
The processor may opt to defer sending out the TNT when TIPs are generated. Thus, rather than sending a partial
TNT followed by a TIP, both packets will be deferred while the TNT accumulates more Jcc/RET results. Any number
of TIP packets may be accumulated this way, such that only once the TNT is filled, or once another packet (e.g.,
FUP) is generated, the TNT will be sent, followed by all the deferred TIP packets, and finally terminated by the
other packet(s) that forced out the TNT and TIP packets. Generation of many other packets (see list below) will
force out the TNT and any accumulated TIP packets. This is an optional optimization in hardware to reduce the
bandwidth consumption, and hence the performance impact, incurred by tracing.

Generation of the following packets may cause a partial TNT (and any accumulated TIPs) to be sent:

Table 36-15 TNT Examples with Deferred TIPs

Code Flow Packets, Non-Deferred TIPS Packets, Deferred TIPS

0x1000 cmp %rcx, 0

0x1004 jnz Foo // not-taken

0x1008 jmp %rdx
TNT(0b0), TIP(0x1308)

0x1308 cmp %rcx, 1

0x130c jnz Bar // not-taken

0x1310 cmp %rcx, 2

0x1314 jnz Baz // taken

0x1500 cmp %eax, 7

0x1504 jg Exit // not-taken

0x1508 jmp %r15

TNT(0b010), TIP(0x1100)

0x1100 cmp %rbx, 1

0x1104 jg Start // not-taken

0x1108 add %rcx, %eax

0x110c … // an asynchronous Interrupt arrives

INThandler:

0xcc00 pop %rdx

TNT(0b0), FUP(0x110c),
TIP(0xcc00)

TNT(0b00100), TIP(0x1308),
TIP(0x1100), FUP(0x110c),
TIP(0xcc00)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 526

• Flow Update Packet (FUP)
• TIP due to uncompressed RET
• TIP.PGE and TIP.PGD
• Paging Information Packet (PIP)
• MODE
• Packet Stream Boundary (PSB)
• Core Bus Ratio (CBR)
As stated above, the processor may opt to send partial TNTs when TIPs are generated as well.

36.4.2.4 Packet Generation Enable (TIP.PGE)

Table 36-16 TIP.PGE Packet Definition

Name Target IP - Packet Generation Enable (TIP.PGE)

Packet Format

Dependencies PacketEn transitions to 1 Generation
Scenario

Any branch instruction, control flow transfer, or MOV
CR3 that sets PacketEn, a WRMSR that enables
packet generation and sets PacketEn

Description Indicates that PacketEn has transitioned to 1. It provides the IP at which the tracing begins.
This can occur due to any of the enables that comprise PacketEn transitioning from 0 to 1, as long as all the others
are asserted. Examples
• TriggerEn: This is set on software write to set IA32_RTIT_CTL.TraceEn as long as the Stopped and Error bits in

IA32_RTIT_STATUS are clear. The IP payload will be the Next IP of the WRMSR.
• ContextEn: This is set on a CPL change, a CR3 write. The IP payload will be the Next IP of the instruction that

changes context, if it is not a branch, otherwise it will be the target of the branch

Application TIP.PGE packets bind to the instruction at the IP given in the payload.

7 6 5 4 3 2 1 0

0 IPBytes 1 0 0 0 1

1 TargetIP[7:0]

2 TargetIP[15:8]

3 TargetIP[23:16]

4 TargetIP[31:24]

5 TargetIP[39:32]

6 TargetIP[47:40]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 527

36.4.2.5 Packet Generation Disable (TIP.PGD)

Table 36-17 TIP.PGD Packet Definition

Name Target IP - Packet Generation Disable (TIP.PGD)

Packet Format

Dependencies PacketEn transitions to
0

Generation
Scenario

Any branch instruction, control flow transfer, or MOV CR3 that clears
PacketEn, a WRMSR that disables packet generation and clears Packe-
tEn

Description Indicates that PacketEn has transitioned to 0. It will include the IP at which the tracing ends, unless ContextEn= 0
or TraceEn=0 at the conclusion of the instruction or event that cleared PacketEn.
PacketEn can be cleared due to any of the enables that comprise PacketEn transitioning from 1 to 0. Examples:
• TriggerEn: This is cleared on software write to clear IA32_RTIT_CTL.TraceEn, or on ToPA STOP, or on operational

error. The IP payload will be suppressed in this case, and the “IPBytes” field will have the value 0.
• ContextEn: This can happen on a CPL change, or a CR3 write. See Section 36.2.3.3 for details. In this case, when

ContextEn is cleared, there will be no IP payload. The “IPBytes” field will have value 0
Note that, in cases where a branch that would normally produce a TIP packet (i.e., far transfer, indirect branch,
interrupt, etc) or TNT update (conditional branch or compressed RT) causes PacketEn to transition from 1 to 0, the
TIP or TNI bit will be replaced with TIP.PGD.

Application TIP.PGD can be produced by any branch instructions, as well as some non-branch instructions, that clear PacketEn.
When produced by a branch, it replaces any TIP or TNT update that the branch would normally produce.
In cases where there is an unbound FUP preceding the TIP.PGD, then the TIP.PGD is part of compound operation
(i.e., asynchronous event or TSX abort) which cleared PacketEn. For most such cases, the TIP.PGD is simply replac-
ing a TIP, and should be treated the same way.
If there is not an associated FUP, the binding will depend on whether there is an IP payload. If there is an IP payload,
then the TIP.PGD should be applied to either the next direct branch whose target matches the TIP.PGD payload, or
the next branch that would normally generate a TIP or TNT packet. If there is no IP payload, then the TIP.PGD
should apply to the next branch or MOV CR3 instruction

7 6 5 4 3 2 1 0

0 IPBytes 0 0 0 0 1

1 TargetIP[7:0]

2 TargetIP[15:8]

3 TargetIP[23:16]

4 TargetIP[31:24]

5 TargetIP[39:32]

6 TargetIP[47:40]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 528

36.4.2.6 Flow Update (FUP) Packet

FUP IP Payload

Flow Update Packet gives the source address of an instruction when it is needed. In general, branch instructions
do not need a FUP, because the source address is clear from the disassembly. For asynchronous events, however,
the source address cannot be inferred from the source, and hence a FUP will be sent. Table 36-19 illustrates cases
where FUPs are sent, and which IP can be expected in those cases.

Table 36-18 FUP Packet Definition

Name Float Update (FUP) Packet

Packet Format

Dependencies PacketEn Generation
Scenario

Asynchronous Events (interrupts, exceptions, INIT, SIPI, SMI, #MC), XBEGIN, XEND,
XABORT, XACQUIRE, XRELEASE, a WRMSR that disables packet generation, PSB+

Description Provides the source address for asynchronous events, and some other instructions. Is never sent alone, always
sent with an associated TIP or MODE packet, and potentially others

Application FUP packets provide the IP to which they bind. However, they are never standalone, but are coupled with other
packets.
In TSX cases, the FUP is immediately preceded by a MODE.TSX, which binds to the same IP. A TIP will follow only in
the case of TSX aborts, see Section 36.4.2.8 for details.
Otherwise, FUPs are part of compound packet events (see Section 36.4.1). In these compound cases, the FUP pro-
vides the source IP for an instruction or event, while a following TIP (or TIP.PGD) uop will provide any destination IP.
Other packets may be included in the compound event between the FUP and TIP.

7 6 5 4 3 2 1 0

0 IPBytes 1 1 1 0 1

1 IP[7:0]

2 IP[15:8]

3 IP[23:16]

4 IP[31:24]

5 IP[39:32]

6 IP[47:40]

Table 36-19 FUP Cases and IP Payload

Event Flow Update IP Comment

External Interrupt, NMI/SMI, Traps,
Machine Check (trap-like), Software
Interrupt, INIT/SIPI

Address of next instruction (Next IP) that
would have been executed

Functionally, this matches the LBR FROM field
value.

Exceptions/Faults, Machine check
(fault-like)

Address of the instruction which took the

exception/fault (Current IP)

This matches the similar functionality of LBR
FROM field value.

XACQUIRE Address of the X* instruction

XRELEASE, XBEGIN, XEND,
XABORT, other transactional abort

Current IP

#SMI IP that is saved into SMRAM

WRMSR that clears TraceEn Current IP

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 529

On a canonical fault due to sequentially fetching an instruction in non-canonical space (as opposed to jumping to
non-canonical space), the IP of the fault (and thus the payload of the FUP) will be a non-canonical address. This
is consistent with what is pushed on the stack for such faulting cases.

36.4.2.7 Paging Information (PIP) Packet

36.4.2.8 MODE Packets
MODE packets keep the decoder informed of various processor modes about which it needs to know in order to
properly manage the packet output, or to properly disassemble the associated binaries. MODE packets include a
header and a mode byte, as shown below.

Table 36-20 PIP Packet Definition

Name Paging Information (PIP) Packet

Packet Format

The CR3 payload shown includes only the address portion of the CR3 value. For PAE paging, CR3[11:5] are thus
included. For other page modes (32-bit and IA-32e paging), these bits are 0.

Dependencies TriggerEn && ContextEn &&
IA32_RTIT_CTL.OS

Generation
Scenario

MOV CR3, Task switch, INIT, SIPI, PSB+

Description This packet holds the CR3 address value. It will be generated on operations that modify CR3:
• MOV CR3 operation
• Task Switch
• INIT and SIPI
PIPs are not generated, despite changes to CR3, on SMI and RSM. This is due to the special behavior on these opera-
tions, see Section 36.2.6.2 for details. Note that, for some cases of task switch where CR3 is not modified, no PIP
will be produced.
The purpose of the PIP is to indicate to the decoder which application is running, so that it can apply the proper bina-
ries to the linear addresses that are being traced.
The PIP packet contains the new CR3 value when CR3 is written

Application The purpose of the PIP packet is to help the decoder uniquely identify what software is running at any given time.
When a PIP is encountered, a decoder should do the following:
1) If there was a prior unbound FUP (that is, a FUP not preceded by MODE.TSX, and hence pairs with a TIP that has
not yet been seen), then this PIP is part of a compound packet event (Section 36.4.1). Find the ending TIP and apply
the new CR3 values to the TIP payload IP.
2) Look for the next MOV CR3 or far branch in the disassembly, and apply the new CR3 to the next (or target) IP.
For examples of the packets generated by these flows, see Section 36.4.3

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 1 1

2 CR3[11:5] or 0 RSVD

3 CR3[19:12]

4 CR3[27:20]

5 CR3[35:28]

6 CR3[43:36]

7 CR3[51:44]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 530

The MODE Leaf ID indicates which set of mode bits are held in the lower bits.

MODE.Exec Packet

Table 36-21 General Form of MODE Packets

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1

1 Leaf ID Mode

Table 36-22 MODE.Exec Packet Definition

Name MODE.Exec Packet

Packet Format

Dependencies PacketEn Generation
Scenario

Far branch, interrupt, exception, PSB+, and any sce-
nario that can generate a TIP.PGE

Description Indicates whether software is in 16, 32, or 64-bit mode, by providing the CS.D and (CS.L & IA32_EFER.LMA) values.
Essential for the decoder to properly disassemble the associated binary.

For cases where the mode changes while TraceEn=1 but PacketEn=0 (i.e., when packet generation is enabled but
software is out of context), and the mode change persists once tracing resumes (once PacketEn=1), the processor
will send a MODE.Exec packet preceding the subsequent TIP.PGE. Further, any time packet generation is disabled, if it
is re-enabled the first TIP.PGE will be preceded by a MODE.Exec packet. This serves to cover cases where the mode
changes while packet generation is disabled.

Application MODE.Exec always immediately precedes a TIP or TIP.PGE. The mode change applies to the IP address in the payload
of the next TIP or TIP.PGE.

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1

1 0 0 0 0 0 0 CS.D (CS.L & LMA)

CS.D (CS.L & IA32_EFER.LMA) Addressing Mode

1 1 N/A

0 1 64-bit mode

1 0 32-bit mode

0 0 16-bit mode

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 531

MODE.TSX Packet

36.4.2.9 Core:Bus Ratio (CBR) Packet

Table 36-23 MODE.TSX Packet Definition

Name MODE.TSX Packet

Packet Format

Dependencies TriggerEn and ContextEn Generation
Scenario

XBEGIN, XEND, XABORT, XACQUIRE, XRELEASE,
Asynchronous TSX Abort

Description Indicates when a TSX transaction (either HLE or RTM) begins, commits, or aborts. Instructions executed transaction-
ally will be “rolled back” if the transaction is aborted.

Application MODE.TSX always immediately precedes a FUP. If the TXAbort bit is zero, then the mode change applies to the IP
address in the payload of the FUP. If TXAbort=1, then the FUP will be followed by a TIP, and the mode change will
apply to the IP address in the payload of the TIP.

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1

1 0 0 1 0 0 0 TXAbort InTX

TXAbort InTX Implication

1 1 N/A

0 1 Transaction begins, or executing transactionally

1 0 Transaction aborted

0 0 Transaction committed, or not executing transactionally

Table 36-24 CBR Packet Definition

Name Core:Bus Ratio (CBR) Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

Any change to core:bus ratio (frequency change, sleep state
wake), PSB+, and after modifying configuration MSR enable

Description Indicates the core:bus ratio of the processor core. Byte 2 represents the number of core clock cycles per bus clock
cycle. Useful for correlating wall-clock time and cycle time

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 1 1

2 Core:Bus Ratio

3 0 0 0 0 0 0 0 0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 532

36.4.2.10 Timestamp Counter (TSC) Packet

36.4.2.11 Overflow (OVF) Packet

Application When TSC packets are enabled, a TSC packet will precede the CBR. If there was a core:bus ratio (frequency) change,
the TSC payload provides the time at which it occurred.
All packets following the CBR represent instructions that executed with the new core:bus ratio, while all preceding
packets (aside from the associated TSC) represent instructions that executed with the prior ratio. There is not a
precise IP to which to bind the CBR packet.

Table 36-24 CBR Packet Definition

Table 36-25 TSC Packet Definition

Name Timestamp Counter (TSC) Packet

Packet Format

Dependencies IA32_RTIT_CTL.TSCEn &&
TriggerEn

Generation Sce-
nario

Any change to core:bus ratio (with CBR packet), sleep state wake,
STPCLK, PSB+, and on transition of TraceEn from 0 to 1.

Description When enabled by software, TSC provides the lower 7 bytes of the current TSC value, as returned by the RDTSC
instruction. This may be useful for tracking wall-clock time, and synchronizing the packets in the log with other time-
stamped logs

Application TSC packet provides a wall-clock proxy of the event which generated it (packet generation enable, sleep state wake,
etc). In all cases, TSC is sent preceding a CBR. TSC does not precisely indicate the time of any control flow packets;
however, all preceding packets represent instructions that executed before the indicated TSC time, and all subse-
quent packets represent instructions that executed after it. There is not a precise IP to which to bind the TSC packet

7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 1

1 SW TSC[7:0]

2 SW TSC[15:8]

3 SW TSC[23:16]

4 SW TSC[31:24]

5 SW TSC[39:32]

6 SW TSC[47:40]

7 SW TSC[55:48]

Table 36-26 OVF Packet Definition

Name Overflow (OVF) Packet

Packet Format

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 1 1 0 0 1 1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 533

36.4.2.12 Packet Stream Boundary (PSB) Packet

Dependencies TriggerEn Generation
Scenario

On resolution of internal buffer overflow

Description OVF simply indicates to the decoder that an internal buffer overflow occurred, and packets were likely lost. OVF is
followed by a FUP or TIP.PGE which will indicate the point at which packet generation resumes. See Section 36.3.6

Application When an OVF packet is encountered, the decoder should skip to the IP given in the following FUP or TIP.PGE.
Software should reset its call stack depth on overflow, since no RET compression is allowed across an overflow. Sim-
ilarly, any IP compression that follows the OVF is guaranteed to use as a reference LastIP the IP payload of an IP
packet that was not dropped

Table 36-26 OVF Packet Definition

Table 36-27 PSB Packet Definition

Name Packet Stream Boundary (PSB) Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

The frequency of PSB packet generation is implementation
specific.

Description PSB is a unique pattern in the packet output log, and hence serves as a sync point for the decoder. It is a pattern
that the decoder can search for in order to get aligned on packet boundaries.
PSB also serves as the leading packet for a set of “status-only” packets collectively known as PSB+ (Section 36.3.5).

Application When a PSB is seen, the decoder should interpret all following packets as “status only”, until either a PSBEND or
OVF packet is encountered. “Status only” implies that the binding and ordering rules to which these packets nor-
mally adhere are ignored, and the state they carry can instead be applied to the IP payload in the FUP packet that is
included.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 1 0

2 0 0 0 0 0 0 1 0

3 1 0 0 0 0 0 1 0

4 0 0 0 0 0 0 1 0

5 1 0 0 0 0 0 1 0

6 0 0 0 0 0 0 1 0

7 1 0 0 0 0 0 1 0

8 0 0 0 0 0 0 1 0

9 1 0 0 0 0 0 1 0

10 0 0 0 0 0 0 1 0

11 1 0 0 0 0 0 1 0

12 0 0 0 0 0 0 1 0

13 1 0 0 0 0 0 1 0

14 0 0 0 0 0 0 1 0

15 1 0 0 0 0 0 1 0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 534

36.4.2.13 PSBEND Packet

36.4.2.14 PAD Packet

36.4.3 Packet Generation Scenarios
Table 36-30 illustrates the packets generated in various scenarios. Note that this assumes that TraceEn=1 in
IA32_RTIT_CTL, while TriggerEn=1 and Error=0 in IA32_RTIT_STATUS, unless otherwise specified. Entries that
do not matter in packet generation are marked “D.C.”

Table 36-28 PSBEND Packet Definition

Name PSBEND Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

Always follows PSB packet, separated by PSB+ packets

Description PSBEND is simply a terminator for the series of “status only” (PSB+) packets that follow PSB (Section 36.3.5).

Application When a PSBEND packet is seen, the decoder should cease to treat packets as “status only”.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 0 1 0 0 0 1 1

Table 36-29 PAD Packet Definition

Name PAD Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

Implementation specific

Description PAD is simply a NOP packet. Processor implementations may choose to add pad packets to improve packet align-
ment or for implementation-specific reasons.

Application Ignore PAD packets

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0

Table 36-30 Packet Generation under Different Enable Conditions

Case Operation PacketEn
Before

PacketEn
After

Other
Dependencies

Packets Output

1a Normal non-jump operation 0 0 None

1b Normal non-jump operation 1 1 None

2b WRMSR/RSM that changes TraceEn 0 -> 1 0 0 TSC if TSCEn=1 PSB, TSC?, CBR, PSBEND

2c WRMSR/RSM that changes TraceEn 0 -> 1 0 0 NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 535

2e WRMSR/RSM that changes TraceEn 0 -> 1 0 1 TSC if TSCEn=1 PSB, TSC?, PIP(CR3), CBR,
MODE.Exec, MODE.TSX, FUP(CLIP),
PSBEND, MODE.Exec, TIP.PGE(NLIP)

2h WRMSR/RSM that changes TraceEn 0 -> 1 1 D.C. NA

3a WRMSR that changes TraceEn 1 -> 0 0 0 None

3c WRMSR that changes TraceEn 1 -> 0 0 1 NA

3b WRMSR that changes TraceEn 1 -> 0 1 0 FUP(CLIP), TIP.PGD()

3d WRMSR that changes TraceEn 1 -> 0 1 1 NA

4a WRMSR that keeps TraceEn=1 (must be
same value)

0 0 None

4c WRMSR that keeps TraceEn=1 (must be
same value)

0 1 NA

4d WRMSR that keeps TraceEn=1 (must be
same value)

1 0 NA

4b WRMSR that keeps TraceEn=1 (must be
same value)

1 1 None

5a MOV to CR3 0 0 None

5b MOV to CR3 0 1 MODE.Exec if the
value is different,
or if TraceEn
cleared, since last
TIP.PGD

PIP(NewCR3), MODE.Exec?,
TIP.PGE(NLIP)

5c MOV to CR3 1 0 TIP.PGD()

5d MOV to CR3 1 1 PIP(NewCR3)

6a Unconditional direct near jump 0 0 None

6c Unconditional direct near jump 0 1 NA

6f Unconditional direct near jump 1 0 NA

6d Unconditional direct near jump 1 1 None

7a Conditional taken jump or compressed RET
that does not fill up the internal TNT buf-
fer

0 0 None

7b Conditional taken jump or compressed RET 0 1 NA

7e Conditional taken jump or compressed RET 1 0 NA

7c Conditional taken jump or compressed RET
that does not fill up the internal TNT buf-
fer

1 1 None

7d Conditional taken jump or compressed RET
that fills up the internal TNT buffer

1 1 TNT

8a Conditional non-taken jump 0 0 None

8b Conditional non-taken jump 0 1 NA

Table 36-30 Packet Generation under Different Enable Conditions

Case Operation PacketEn
Before

PacketEn
After

Other
Dependencies

Packets Output

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 536

8c Conditional non-taken jump 1 0 NA

8d Conditional not-taken jump that fills up the
internal TNT buffer

1 1 TNT

9a Near indirect jump (JMP, CALL, or uncom-
pressed RET)

0 0 None

9b Near indirect jump (JMP, CALL, or uncom-
pressed RET)

0 1 NA

9c Near indirect jump (JMP, CALL, or uncom-
pressed RET)

1 0 NA

9d Near indirect jump (JMP, CALL, or uncom-
pressed RET)

1 1 TIP(BLIP)

10a Far Branch (CALL/JMP/RET) 0 0 None

10b Far Branch (CALL/JMP/RET) 0 1 MODE.Exec if the
value is different,
or if TraceEn
cleared, since last
TIP.PGD

MODE.Exec?, TIP.PGE(BLIP)

10c Far Branch (CALL/JMP/RET) 1 0 TIP.PGD()

10e Far Branch (CALL/JMP/RET) 1 1 *PIP if CR3 is
updated (i.e., task
switch), and OS=1
* MODE.Exec if the
operation changes
CS.L/D or
IA32_EFER.LMA

PIP(NewCR3), MODE.Exec?,
TIP(BLIP)

11a HW Interrupt 0 0 None

11b HW Interrupt 0 1 * MODE.Exec if the
value is different,
or if TraceEn
cleared, since last
TIP.PGD

MODE.Exec?, TIP.PGE(BLIP)

11c HW Interrupt 1 0 FUP(NLIP), TIP.PGD()

11e HW Interrupt 1 1 * PIP if CR3 is
updated (i.e., task
switch), and OS=1
* MODE.Exec if the
operation changes
CS.L/D or
IA32_EFER.LMA

PIP(NewCR3,)?, FUP(NLIP),
MODE.Exec?, TIP(BLIP)

12a SW Interrupt 0 0 None

Table 36-30 Packet Generation under Different Enable Conditions

Case Operation PacketEn
Before

PacketEn
After

Other
Dependencies

Packets Output

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 537

12b SW Interrupt 0 1 MODE.Exec if the
value is different,
or if TraceEn
cleared, since last
TIP.PGD

MODE.Exec?, TIP.PGE(BLIP)

12c SW Interrupt 1 0 FUP(NLIP), TIP.PGD()

12e SW Interrupt 1 1 * PIP if CR3 is
updated (i.e., task
switch), and OS=1
* MODE.Exec if the
operation changes
CS.L/D or
IA32_EFER.LMA

PIP(NewCR3)?, FUP(NLIP),
MODE.Exec?, TIP(BLIP

13a Exception/Fault 0 0 None

13b Exception/Fault 0 1 MODE.Exec if the
value is different,
or if TraceEn
cleared, since last
TIP.PGD

MODE.Exec?, TIP.PGE(BLIP)

13c Exception/Fault 1 0 FUP(CLIP), TIP.PGD()

13e Exception/Fault 1 1 * PIP if CR3 is
updated (i.e., task
switch), and OS=1
* MODE.Exec if the
operation changes
CS.L/D or
IA32_EFER.LMA

PIP(NewCR3)?, FUP(CLIP),
MODE.Exec?, TIP(BLIP)

14a SMI (TraceEn cleared) 0 0 None

14e SMI (TraceEn cleared) 0 1 NA

14b SMI (TraceEn cleared) 1 0 FUP(SMRAM,LIP), TIP.PGD()

14c SMI (TraceEn cleared) 1 1 NA

15a RSM, TraceEn restored to 0 0 0 None

15b RSM, TraceEn restored to 1 0 0 See WRMSR cases for packets on
enable

15c RSM, TraceEn restored to 1 0 1 See WRMSR cases for packets on
enable. FUP/TIP.PGE IP is
SMRAM.LIP

15d RSM 1 D.C. Undefined

16i Vmext 0 0 None

16a Vmext 0 1 NA

16f Vmext 1 0 NA

17a Vmentry 0 0 None

Table 36-30 Packet Generation under Different Enable Conditions

Case Operation PacketEn
Before

PacketEn
After

Other
Dependencies

Packets Output

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 538

17d Vmentry 0 1 NA

17g Vmentry 1 0 NA

26a XBEGIN/XACQUIRE 0 0 None

26b XBEGIN/XACQUIRE 0 1 NA

26c XBEGIN/XACQUIRE 1 0 NA

26d XBEGIN/XACQUIRE that does not set InTX 1 1 None

26e XBEGIN/XACQUIRE that sets InTX 1 1 MODE(InTX=1, TXAbort=0),
FUP(CLIP)

27a XEND/XRELEASE 0 0 None

27b XEND/XRELEASE 0 1 NA

27c XEND/XRELEASE 1 0 NA

27d XEND/XRELEASE that does not clear InTX 1 1 None

27e XEND/XRELEASE that clears InTX 1 1 MODE(InTX=0, TXAbort=0),
FUP(CLIP)

28a XABORT(Async XAbort, or other) 0 0 None

28b XABORT(Async XAbort, or other) 0 1 NA

28f XABORT(Async XAbort, or other) 1 0 NA

28d XABORT(Async XAbort, or other) 1 1 MODE(InTX=0, TXAbort=1),
FUP(CLIP), TIP(BLIP)

29a PSB threshold reached 0 0 TSC if TSCEn=1 PSB, TSC?, CBR, PSBEND

29c PSB threshold reached 0 1 NA

29d PSB threshold reached 1 0 NA

29e PSB threshold reached 0 0 *TSC if TSCEn=1
* PIP if OS=1

PSB, TSC?, CBR, PIP(CR3)?,
MODE.Exec, MODE.TSX, FUP(CLIP),
PSBEND

30a INIT (BSP) 0 0 None

30c INIT (BSP) 0 1 * MODE.Exec if the
value is different,
since last TIP.PGD

MODE.Exec?, TIP.PGE(ResetLIP)

30d INIT (BSP) 1 0 FUP(NLIP), TIP.PGD()

30f INIT (BSP) 1 1 * MODE.Exec if the
value is different
since last TIP.PGD
* PIP if OS=1

FUP(NLIP), PIP(0)?, MODE.Exec?,
TIP(ResetLIP)

31a INIT (AP, goes to wait-for-SIPI) 0 D.C. None

31b INIT (AP, goes to wait-for-SIPI) 1 D.C. FUP(NLIP)

32a SIPI 0 0 None

32b SIPI 0 0 * PIP if OS=1 PIP(0)?

Table 36-30 Packet Generation under Different Enable Conditions

Case Operation PacketEn
Before

PacketEn
After

Other
Dependencies

Packets Output

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 539

36.5 SOFTWARE CONSIDERATIONS

36.5.1 Tracing SMM Code
Nothing prevents an SMM handler from configuring and enabling packet generation for its own use. As described
in Section 36.2.6.2, SMI will always clear TraceEn, so the SMM handler would have to set TraceEn in order to
enable tracing. There are some unique aspects and guidelines involved with tracing SMM code, which follows:

1. SMM should save away the existing values of any configuration MSRs that SMM intends to modify for tracing.
This will allow the non-SMM tracing context to be restored before RSM.

2. It is recommended that SMM wait until it sets CSbase to 0 before enabling packet generation, to avoid
possible LIP vs RIP confusion (see Section 36.3.1.1).

3. Packet output cannot be directed to SMRR memory, even while tracing in SMM.

4. Before performing RSM, SMM should take care to restore modified configuration MSRs to the values they had
immediately after #SMI. This involves first disabling packet generation by clearing TraceEn, then restoring
any other configuration MSRs that were modified.

36.5.2 Cooperative Transition of Multiple Trace Collection Agents
A third-party trace-collection tool should take into consideration the fact that it may be deployed on a processor
that supports Intel PT but may run under any operating system.
In such a deployment scenario, Intel recommends that tool agents follow similar principles of cooperative transi-
tion of single-use hardware resources, similar to how performance monitoring tools handle performance moni-
toring hardware:
• Respect the “in-use” ownership of an agent who already configured the trace configuration MSRs, see archi-

tectural MSRs with the prefix “IA32_RTIT_” in Chapter 35, “Model-Specific Registers (MSRs)”, where “in-use”
can be determined by reading the “enable bits” in the configuration MSRs.

• Relinquish ownership of the trace configuration MSRs by clearing the “enabled bits” of those configuration
MSRs.

32c SIPI 0 1 * MODE.Exec if the
value is different
since last TIP.PGD
* PIP if OS=1

PIP(0)?, MODE.Exec?, TIP(SipiLIP)

32d SIPI 1 0 TIP.PGD

32f SIPI 1 1 * MODE.Exec if the
value is different
since last TIP.PGD
* PIP if OS=1

PIP(0)?, MODE.Exec?, TIP(SipiLIP)

33a MWAIT (to C0) D.C. D.C. None

33b MWAIT (to higher C-State) 0 D.C. TSC if TSCEn=1 TSC?, CBR

33c MWAIT (to higher C-State) 1 D.C. TSC if TSCEn=1 TSC?, CBR

Table 36-30 Packet Generation under Different Enable Conditions

Case Operation PacketEn
Before

PacketEn
After

Other
Dependencies

Packets Output

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 540

42. Updates to Appendix A, Volume 3C
Change bars show changes to Appendix A of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

A.2 RESERVED CONTROLS AND DEFAULT SETTINGS
As noted in Chapter 26, “VM Entries”, certain VMX controls are reserved and must be set to a specific value (0 or
1) determined by the processor. The specific value to which a reserved control must be set is its default setting.
Software can discover the default setting of a reserved control by consulting the appropriate VMX capability MSR
(see Appendix A.3 through Appendix A.5).

Future processors may define new functionality for one or more reserved controls. Such processors would allow
each newly defined control to be set either to 0 or to 1. Software that does not desire a control’s new functionality
should set the control to its default setting. For that reason, it is useful for software to know the default settings
of the reserved controls.

Default settings partition the various controls into the following classes:
• Always-flexible. These have never been reserved.
• Default0. These are (or have been) reserved with a default setting of 0.
• Default1. They are (or have been) reserved with a default setting of 1.

As noted in Appendix A.1, a logical processor uses bit 55 of the IA32_VMX_BASIC MSR to indicate whether any of
the default1 controls may be 0:
• If bit 55 of the IA32_VMX_BASIC MSR is read as 0, all the default1 controls are reserved and must be 1.

VM entry will fail if any of these controls are 0 (see Section 26.2.1).
• If bit 55 of the IA32_VMX_BASIC MSR is read as 1, not all the default1 controls are reserved, and some (but

not necessarily all) may be 0. The CPU supports four (4) new VMX capability MSRs:
IA32_VMX_TRUE_PINBASED_CTLS, IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS,
and IA32_VMX_TRUE_ENTRY_CTLS. See Appendix A.3 through Appendix A.5 for details. (These MSRs are not
supported if bit 55 of the IA32_VMX_BASIC MSR is read as 0.)

See Section 31.5.1 for recommended software algorithms for proper capability detection of the default1 controls.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 541

43. Updates to Appendix C, Volume 3C
Change bars show changes to Appendix C of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...
Table C-1 lists values for basic exit reasons and explains their meaning. Entries apply to VM exits, unless other-
wise noted.

Table C-1 Basic Exit Reasons
Basic Exit
Reason Description

0 Exception or non-maskable interrupt (NMI). Either:

1: Guest software caused an exception and the bit in the exception bitmap associated with exception’s vector was 1.
2: An NMI was delivered to the logical processor and the “NMI exiting” VM-execution control was 1. This case includes

executions of BOUND that cause #BR, executions of INT3 (they cause #BP), executions of INTO that cause #OF,
and executions of UD2 (they cause #UD).

1 External interrupt. An external interrupt arrived and the “external-interrupt exiting” VM-execution control was 1.

2 Triple fault. The logical processor encountered an exception while attempting to call the double-fault handler and
that exception did not itself cause a VM exit due to the exception bitmap.

3 INIT signal. An INIT signal arrived

4 Start-up IPI (SIPI). A SIPI arrived while the logical processor was in the “wait-for-SIPI” state.

5 I/O system-management interrupt (SMI). An SMI arrived immediately after retirement of an I/O instruction and
caused an SMM VM exit (see Section 34.15.2).

6 Other SMI. An SMI arrived and caused an SMM VM exit (see Section 34.15.2) but not immediately after retirement of
an I/O instruction.

7 Interrupt window. At the beginning of an instruction, RFLAGS.IF was 1; events were not blocked by STI or by MOV
SS; and the “interrupt-window exiting” VM-execution control was 1.

8 NMI window. At the beginning of an instruction, there was no virtual-NMI blocking; events were not blocked by MOV
SS; and the “NMI-window exiting” VM-execution control was 1.

9 Task switch. Guest software attempted a task switch.

10 CPUID. Guest software attempted to execute CPUID.

11 GETSEC. Guest software attempted to execute GETSEC.

12 HLT. Guest software attempted to execute HLT and the “HLT exiting” VM-execution control was 1.

13 INVD. Guest software attempted to execute INVD.

14 INVLPG. Guest software attempted to execute INVLPG and the “INVLPG exiting” VM-execution control was 1.

15 RDPMC. Guest software attempted to execute RDPMC and the “RDPMC exiting” VM-execution control was 1.

16 RDTSC. Guest software attempted to execute RDTSC and the “RDTSC exiting” VM-execution control was 1.

17 RSM. Guest software attempted to execute RSM in SMM.

18 VMCALL. VMCALL was executed either by guest software (causing an ordinary VM exit) or by the executive monitor
(causing an SMM VM exit; see Section 34.15.2).

19 VMCLEAR. Guest software attempted to execute VMCLEAR.

20 VMLAUNCH. Guest software attempted to execute VMLAUNCH.

21 VMPTRLD. Guest software attempted to execute VMPTRLD.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 542

22 VMPTRST. Guest software attempted to execute VMPTRST.

23 VMREAD. Guest software attempted to execute VMREAD.

24 VMRESUME. Guest software attempted to execute VMRESUME.

25 VMWRITE. Guest software attempted to execute VMWRITE.

26 VMXOFF. Guest software attempted to execute VMXOFF.

27 VMXON. Guest software attempted to execute VMXON.

28 Control-register accesses. Guest software attempted to access CR0, CR3, CR4, or CR8 using CLTS, LMSW, or
MOV CR and the VM-execution control fields indicate that a VM exit should occur (see Section 25.1 for details). This
basic exit reason is not used for trap-like VM exits following executions of the MOV to CR8 instruction when the “use
TPR shadow” VM-execution control is 1.

29 MOV DR. Guest software attempted a MOV to or from a debug register and the “MOV-DR exiting” VM-execution
control was 1.

30 I/O instruction. Guest software attempted to execute an I/O instruction and either:

1: The “use I/O bitmaps” VM-execution control was 0 and the “unconditional I/O exiting” VM-execution control was 1.
2: The “use I/O bitmaps” VM-execution control was 1 and a bit in the I/O bitmap associated with one of the ports

accessed by the I/O instruction was 1.

31 RDMSR. Guest software attempted to execute RDMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in read bitmap for low MSRs is 1,

where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in read bitmap for high MSRs is 1, where

n is the value of RCX & 00001FFFH.

32 WRMSR. Guest software attempted to execute WRMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in write bitmap for low MSRs is 1,

where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in write bitmap for high MSRs is 1,

where n is the value of RCX & 00001FFFH.

33 VM-entry failure due to invalid guest state. A VM entry failed one of the checks identified in Section 26.3.1.

34 VM-entry failure due to MSR loading. A VM entry failed in an attempt to load MSRs. See Section 26.4.

36 MWAIT. Guest software attempted to execute MWAIT and the “MWAIT exiting” VM-execution control was 1.

37 Monitor trap flag. A VM entry occurred due to the 1-setting of the “monitor trap flag” VM-execution control and
injection of an MTF VM exit as part of VM entry. See Section 25.5.2.

39 MONITOR. Guest software attempted to execute MONITOR and the “MONITOR exiting” VM-execution control was 1.

40 PAUSE. Either guest software attempted to execute PAUSE and the “PAUSE exiting” VM-execution control was 1 or
the “PAUSE-loop exiting” VM-execution control was 1 and guest software executed a PAUSE loop with execution
time exceeding PLE_Window (see Section 25.1.3).

41 VM-entry failure due to machine-check event. A machine-check event occurred during VM entry (see Section
26.8).

Table C-1 Basic Exit Reasons (Contd.)
Basic Exit
Reason Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 543

...

43 TPR below threshold. The logical processor determined that the value of bits 7:4 of the byte at offset 080H on the
virtual-APIC page was below that of the TPR threshold VM-execution control field while the “use TPR shadow” VM-
execution control was 1 either as part of TPR virtualization (Section 29.1.2) or VM entry (Section 26.6.7).

44 APIC access. Guest software attempted to access memory at a physical address on the APIC-access page and the
“virtualize APIC accesses” VM-execution control was 1 (see Section 29.4).

45 Virtualized EOI. EOI virtualization was performed for a virtual interrupt whose vector indexed a bit set in the EOI-
exit bitmap.

46 Access to GDTR or IDTR. Guest software attempted to execute LGDT, LIDT, SGDT, or SIDT and the “descriptor-table
exiting” VM-execution control was 1.

47 Access to LDTR or TR. Guest software attempted to execute LLDT, LTR, SLDT, or STR and the “descriptor-table
exiting” VM-execution control was 1.

48 EPT violation. An attempt to access memory with a guest-physical address was disallowed by the configuration of
the EPT paging structures.

49 EPT misconfiguration. An attempt to access memory with a guest-physical address encountered a misconfigured
EPT paging-structure entry.

50 INVEPT. Guest software attempted to execute INVEPT.

51 RDTSCP. Guest software attempted to execute RDTSCP and the “enable RDTSCP” and “RDTSC exiting” VM-execution
controls were both 1.

52 VMX-preemption timer expired. The preemption timer counted down to zero.

53 INVVPID. Guest software attempted to execute INVVPID.

54 WBINVD. Guest software attempted to execute WBINVD and the “WBINVD exiting” VM-execution control was 1.

55 XSETBV. Guest software attempted to execute XSETBV.

56 APIC write. Guest software completed a write to the virtual-APIC page that must be virtualized by VMM software
(see Section 29.4.3.3).

57 RDRAND. Guest software attempted to execute RDRAND and the “RDRAND exiting” VM-execution control was 1.

58 INVPCID. Guest software attempted to execute INVPCID and the “enable INVPCID” and “INVLPG exiting”
VM-execution controls were both 1.

59 VMFUNC. Guest software invoked a VM function with the VMFUNC instruction and the VM function either was not
enabled or generated a function-specific condition causing a VM exit.

61 RDSEED. Guest software attempted to execute RDSEED and the “RDSEED exiting” VM-execution control was 1.

63 XSAVES. Guest software attempted to execute XSAVES, the “enable XSAVES/XRSTORS” was 1, and a bit was set in
the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-exiting bitmap.

64 XRSTORS. Guest software attempted to execute XRSTORS, the “enable XSAVES/XRSTORS” was 1, and a bit was set
in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-exiting bitmap.

Table C-1 Basic Exit Reasons (Contd.)
Basic Exit
Reason Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 544

	Revision History
	Preface
	Summary Tables of Changes
	Documentation Changes
	1. Updates to Chapter 1, Volume 1
	2. Updates to Chapter 2, Volume 1
	3. Updates to Chapter 3, Volume 1
	4. Updates to Chapter 5, Volume 1
	5. Updates to Chapter 6, Volume 1
	6. Updates to Chapter 7, Volume 1
	7. Updates to Chapter 8, Volume 1
	8. Updates to Chapter 12, Volume 1
	9. Updates to Chapter 14, Volume 1
	10. Updates to Chapter 15, Volume 1
	11. Updates to Appendix D, Volume 1
	12. Updates to Appendix E, Volume 1
	13. Updates to Chapter 1, Volume 2A
	14. Updates to Chapter 2, Volume 2A
	15. Updates to Chapter 3, Volume 2A
	16. Updates to Chapter 4, Volume 2B
	17. Updates to Chapter 5, Volume 2B
	18. Updates to Appendix B, Volume 2B
	19. Updates to Chapter 1, Volume 3A
	20. Updates to Chapter 2, Volume 3A
	21. Updates to Chapter 4, Volume 3A
	22. Updates to Chapter 5, Volume 3A
	23. Updates to Chapter 6, Volume 3A
	24. Updates to Chapter 8, Volume 3A
	25. Updates to Chapter 9, Volume 3A
	26. Updates to Chapter 14, Volume 3B
	27. Updates to Chapter 15, Volume 3B
	28. Updates to Chapter 16, Volume 3B
	29. Updates to Chapter 17, Volume 3B
	30. Updates to Chapter 18, Volume 3B
	31. Updates to Chapter 19, Volume 3B
	32. Updates to Chapter 22, Volume 3B
	33. Updates to Chapter 23, Volume 3B
	34. Updates to Chapter 24, Volume 3B
	35. Updates to Chapter 25, Volume 3C
	36. Updates to Chapter 26, Volume 3C
	37. Updates to Chapter 27, Volume 3C
	38. Updates to Chapter 30, Volume 3C
	39. Updates to Chapter 34, Volume 3C
	40. Updates to Chapter 35, Volume 3C
	41. New Chapter 36, Volume 3C
	Chapter 36 Intel® Processor Trace
	42. Updates to Appendix A, Volume 3C
	43. Updates to Appendix C, Volume 3C

