

Intel[®] 64 and IA-32 Architectures Software Developer's Manual

Documentation Changes

September 2014

Notice: The Intel[®] 64 and IA-32 architectures may contain design defects or errors known as errata that may cause the product to deviate from published specifications. Current characterized errata are documented in the specification updates.

Document Number: 252046-044

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVID-ED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFI-CERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE AT-TORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families, go to: Learn About Intel® Processor Numbers.

Intel[®] Advanced Vector Extensions (Intel[®] AVX)¹ are designed to achieve higher throughput to certain integer and floating point operations. Due to varying processor power characteristics, utilizing AVX instructions may cause a) some parts to operate at less than the rated frequency and b) some parts with Intel[®] Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies depending on hardware, software, and system configuration and you should consult your system manufacturer for more information.

¹ Intel[®] Advanced Vector Extensions refers to Intel[®] AVX, Intel[®] AVX2 or Intel[®] AVX-512. For more information on Intel[®] Turbo Boost Technology 2.0, visit <u>http://www.intel.com/go/turbo</u>.

Intel[®] Data Protection Technology (includes the following features: Secure Key and Advanced Encryption Standard New Instructions {Intel[®] AES-NI}): No computer system can provide absolute security. Requires an enabled Intel[®] processor and software optimized for use of the technology. Consult your system manufacturer and/or software vendor for more information.

Enhanced Intel SpeedStep[®] Technology: See the Processor Spec Finder at <u>http://ark.intel.com/</u> or contact your Intel representative for more information.

Intel[®] Hyper-Threading Technology (Intel[®] HT Technology): Available on select Intel[®] processors. Requires an Intel[®] HT Technology-enabled system. Consult your system manufacturer. Performance will vary depending on the specific hardware and software used. For more information including details on which processors support HT Technology, visit <u>http://www.intel.com/info/hyperthreading</u>.

Intel[®] 64 architecture: Requires a system with a 64-bit enabled processor, chipset, BIOS and software. Performance will vary depending on the specific hardware and software you use. Consult your PC manufacturer for more information. For more information, visit <u>http://www.intel.com/info/em64t</u>.

Intel[®] Virtualization Technology requires a computer system with an enabled Intel[®] processor, BIOS, and virtual machine monitor (VMM). Functionality, performance or other benefits will vary depending on hardware and software configurations. Software applications may not be compatible with all operating systems. Consult your PC manufacturer. For more information, visit http://www.intel.com/go/virtualization.

Intel[®] Platform/Device Protection Technology (includes the following features: Bios guard; Boot Guard; Platform Trust Technology {PTT}; OS Guard; Anti-Theft Technology {AT}; Trusted Execution Technology {TXT}; and Execute Disable Bit): No computer system can provide absolute security. Requires an enabled Intel[®] processor, enabled chipset, firmware, software and may require a subscription with a capable service provider (may not be available in all countries). Intel assumes no liability for lost or stolen data and/or systems or any other damages resulting thereof. Consult your system or service provider for availability and functionality.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: <u>http://www.intel.com/design/literature.htm</u>

Copyright © 1997-2014 Intel Corporation. All rights reserved.

Contents

Revision History	 		 • •		 	•							•	. 4	1
Preface	 		 		 	•							•	. 7	7
Summary Tables of Changes			 		 	•				•			•	. 8	3
Documentation Changes	 		 		 	•							•	. 9)

Revision	Description	Date
-001	Initial release	November 2002
-002	 Added 1-10 Documentation Changes. Removed old Documentation Changes items that already have been incorporated in the published Software Developer's manual 	December 2002
-003	 Added 9 -17 Documentation Changes. Removed Documentation Change #6 - References to bits Gen and Len Deleted. Removed Documentation Change #4 - VIF Information Added to CLI Discussion 	February 2003
-004	Removed Documentation changes 1-17.Added Documentation changes 1-24.	June 2003
-005	Removed Documentation Changes 1-24.Added Documentation Changes 1-15.	September 2003
-006	Added Documentation Changes 16- 34.	November 2003
-007	Updated Documentation changes 14, 16, 17, and 28.Added Documentation Changes 35-45.	January 2004
-008	Removed Documentation Changes 1-45.Added Documentation Changes 1-5.	March 2004
-009	Added Documentation Changes 7-27.	May 2004
-010	Removed Documentation Changes 1-27.Added Documentation Changes 1.	August 2004
-011	Added Documentation Changes 2-28.	November 2004
-012	Removed Documentation Changes 1-28.Added Documentation Changes 1-16.	March 2005
-013	 Updated title. There are no Documentation Changes for this revision of the document. 	July 2005
-014	Added Documentation Changes 1-21.	September 2005
-015	Removed Documentation Changes 1-21.Added Documentation Changes 1-20.	March 9, 2006
-016	Added Documentation changes 21-23.	March 27, 2006
-017	Removed Documentation Changes 1-23.Added Documentation Changes 1-36.	September 2006
-018	Added Documentation Changes 37-42.	October 2006
-019	Removed Documentation Changes 1-42.Added Documentation Changes 1-19.	March 2007
-020	Added Documentation Changes 20-27.	May 2007
-021	Removed Documentation Changes 1-27.Added Documentation Changes 1-6	November 2007
-022	 Removed Documentation Changes 1-6 Added Documentation Changes 1-6 	August 2008
-023	Removed Documentation Changes 1-6Added Documentation Changes 1-21	March 2009

Revision	Description	Date
-024	Removed Documentation Changes 1-21Added Documentation Changes 1-16	June 2009
-025	Removed Documentation Changes 1-16Added Documentation Changes 1-18	September 2009
-026	Removed Documentation Changes 1-18Added Documentation Changes 1-15	December 2009
-027	Removed Documentation Changes 1-15Added Documentation Changes 1-24	March 2010
-028	Removed Documentation Changes 1-24Added Documentation Changes 1-29	June 2010
-029	Removed Documentation Changes 1-29Added Documentation Changes 1-29	September 2010
-030	Removed Documentation Changes 1-29Added Documentation Changes 1-29	January 2011
-031	Removed Documentation Changes 1-29Added Documentation Changes 1-29	April 2011
-032	Removed Documentation Changes 1-29Added Documentation Changes 1-14	May 2011
-033	Removed Documentation Changes 1-14Added Documentation Changes 1-38	October 2011
-034	Removed Documentation Changes 1-38Added Documentation Changes 1-16	December 2011
-035	Removed Documentation Changes 1-16Added Documentation Changes 1-18	March 2012
-036	Removed Documentation Changes 1-18Added Documentation Changes 1-17	May 2012
-037	Removed Documentation Changes 1-17Added Documentation Changes 1-28	August 2012
-038	Removed Documentation Changes 1-28Add Documentation Changes 1-22	January 2013
-039	Removed Documentation Changes 1-22Add Documentation Changes 1-17	June 2013
-040	Removed Documentation Changes 1-17Add Documentation Changes 1-24	September 2013
-041	Removed Documentation Changes 1-24Add Documentation Changes 1-20	February 2014
-042	Removed Documentation Changes 1-20Add Documentation Changes 1-8	February 2014
-043	Removed Documentation Changes 1-8Add Documentation Changes 1-43	June 2014
-044	Removed Documentation Changes 1-43Add Documentation Changes 1-12	September 2014

§

Revision History

Preface

This document is an update to the specifications contained in the Affected Documents table below. This document is a compilation of device and documentation errata, specification clarifications and changes. It is intended for hardware system manufacturers and software developers of applications, operating systems, or tools.

Affected Documents

Document Title	Document Number/ Location
Intel [®] 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture	253665
Intel [®] 64 and IA-32 Architectures Software Developer's Manual, Volume 2A: Instruction Set Reference, A-M	253666
Intel [®] 64 and IA-32 Architectures Software Developer's Manual, Volume 2B: Instruction Set Reference, N-Z	253667
Intel [®] 64 and IA-32 Architectures Software Developer's Manual, Volume 2C: Instruction Set Reference	326018
Intel [®] 64 and IA-32 Architectures Software Developer's Manual, Volume 3A: System Programming Guide, Part 1	253668
Intel [®] 64 and IA-32 Architectures Software Developer's Manual, Volume 3B: System Programming Guide, Part 2	253669
Intel [®] 64 and IA-32 Architectures Software Developer's Manual, Volume 3C: System Programming Guide, Part 3	326019

Nomenclature

Documentation Changes include typos, errors, or omissions from the current published specifications. These will be incorporated in any new release of the specification.

Summary Tables of Changes

The following table indicates documentation changes which apply to the $Intel^{(B)}$ 64 and IA-32 architectures. This table uses the following notations:

Codes Used in Summary Tables

Change bar to left of table row indicates this erratum is either new or modified from the previous version of the document.

Documentation Changes

No.	DOCUMENTATION CHANGES
1	Updates to Chapter 1, Volume 1
2	Updates to Chapter 5, Volume 1
3	Updates to Chapter 12, Volume 1
4	Updates to Chapter 1, Volume 2A
5	Updates to Chapter 3, Volume 2A
6	Updates to Chapter 4, Volume 2B
7	Updates to Chapter 1, Volume 3A
8	Updates to Chapter 16, Volume 3B
9	Updates to Chapter 17, Volume 3B
10	Updates to Chapter 19, Volume 3B
11	Updates to Chapter 35, Volume 3C
12	Updates to Appendix A, Volume 3C

Documentation Changes

1. Updates to Chapter 1, Volume 1

Change bars show changes to Chapter 1 of the Intel[®] 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture.

• • •

1.1 INTEL[®] 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which include:

- Pentium[®] processors
- P6 family processors
- Pentium[®] 4 processors
- Pentium[®] M processors
- Intel[®] Xeon[®] processors
- Pentium[®] D processors
- Pentium[®] processor Extreme Editions
- 64-bit Intel[®] Xeon[®] processors
- Intel[®] Core[™] Duo processor
- Intel[®] Core[™] Solo processor
- Dual-Core Intel[®] Xeon[®] processor LV
- Intel[®] Core[™]2 Duo processor
- Intel[®] Core[™]2 Quad processor Q6000 series
- Intel[®] Xeon[®] processor 3000, 3200 series
- Intel[®] Xeon[®] processor 5000 series
- Intel[®] Xeon[®] processor 5100, 5300 series
- Intel[®] Core[™]2 Extreme processor X7000 and X6800 series
- Intel[®] Core[™]2 Extreme processor QX6000 series
- Intel[®] Xeon[®] processor 7100 series
- Intel[®] Pentium[®] Dual-Core processor
- Intel[®] Xeon[®] processor 7200, 7300 series
- Intel[®] Xeon[®] processor 5200, 5400, 7400 series
- Intel[®] Core[™]2 Extreme processor QX9000 and X9000 series
- Intel[®] Core[™]2 Quad processor Q9000 series
- Intel[®] Core[™]2 Duo processor E8000, T9000 series
- Intel[®] Atom[™] processor family
- Intel[®] Core[™] i7 processor

- Intel[®] Core[™] i5 processor
- Intel[®] Xeon[®] processor E7-8800/4800/2800 product families
- Intel[®] Core[™] i7-3930K processor
- 2nd generation Intel[®] Core[™] i7-2xxx, Intel[®] Core[™] i5-2xxx, Intel[®] Core[™] i3-2xxx processor series
- Intel[®] Xeon[®] processor E3-1200 product family
- Intel[®] Xeon[®] processor E5-2400/1400 product family
- Intel[®] Xeon[®] processor E5-4600/2600/1600 product family
- 3rd generation Intel[®] Core[™] processors
- Intel[®] Xeon[®] processor E3-1200 v2 product family
- Intel[®] Xeon[®] processor E5-2400/1400 v2 product families
- Intel[®] Xeon[®] processor E5-4600/2600/1600 v2 product families
- Intel[®] Xeon[®] processor E7-8800/4800/2800 v2 product families
- 4th generation Intel[®] Core[™] processors
- The Intel[®] Core[™] M processor family
- Intel[®] Core[™] i7-59xx Processor Extreme Edition
- Intel[®] Core[™] i7-49xx Processor Extreme Edition
- Intel[®] Xeon[®] processor E3-1200 v3 product family
- Intel[®] Xeon[®] processor E5-2600/1600 v3 product families

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium[®] Pro, Pentium[®] II, Pentium[®] III, and Pentium[®] III Xeon[®] processors.

The Pentium[®] 4, Pentium[®] D, and Pentium[®] processor Extreme Editions are based on the Intel NetBurst[®] microarchitecture. Most early Intel[®] Xeon[®] processors are based on the Intel NetBurst[®] microarchitecture. Intel Xeon processor 5000, 7100 series are based on the Intel NetBurst[®] microarchitecture.

The Intel[®] Core[™] Duo, Intel[®] Core[™] Solo and dual-core Intel[®] Xeon[®] processor LV are based on an improved Pentium[®] M processor microarchitecture.

The Intel[®] Xeon[®] processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel[®] Pentium[®] dual-core, Intel[®] Core[™]2 Duo, Intel[®] Core[™]2 Quad, and Intel[®] Core[™]2 Extreme processors are based on Intel[®] Core[™] microar-chitecture.

The Intel[®] Xeon[®] processor 5200, 5400, 7400 series, Intel[®] Core[™]2 Quad processor Q9000 series, and Intel[®] Core[™]2 Extreme processor QX9000, X9000 series, Intel[®] Core[™]2 processor E8000 series are based on Enhanced Intel[®] Core[™] microarchitecture.

The Intel[®] Atom[™] processor family is based on the Intel[®] Atom[™] microarchitecture and supports Intel 64 architecture.

The Intel[®] Core[™] i7 processor and Intel[®] Xeon[®] processor 3400, 5500, 7500 series are based on 45 nm Intel[®] microarchitecture code name Nehalem. Intel[®] microarchitecture code name Westmere is a 32nm version of Intel[®] microarchitecture code name Nehalem. Intel[®] Xeon[®] processor 5600 series, Intel Xeon processor E7 and various Intel Core i7, i5, i3 processors are based on Intel[®] microarchitecture code name Westmere. These processors support Intel 64 architecture.

The Intel[®] Xeon[®] processor E5 family, Intel[®] Xeon[®] processor E3-1200 family, Intel[®] Xeon[®] processor E7-8800/ 4800/2800 product families, Intel[®] Core[™] i7-3930K processor, and 2nd generation Intel[®] Core[™] i7-2xxx, Intel[®] Core[™] i5-2xxx, Intel[®] Core[™] i3-2xxx processor series are based on the Intel[®] microarchitecture code name Sandy Bridge and support Intel 64 architecture. The Intel[®] Xeon[®] processor E7-8800/4800/2800 v2 product families, Intel[®] Xeon[®] processor E3-1200 v2 product family and the 3rd generation Intel[®] Core[™] processors are based on the Intel[®] microarchitecture code name Ivy Bridge and support Intel 64 architecture.

The Intel[®] Xeon[®] processor E5-4600/2600/1600 v2 product families, Intel[®] Xeon[®] processor E5-2400/1400 v2 product families and Intel[®] Core^m i7-49xx Processor Extreme Edition are based on the Intel[®] microarchitecture code name Ivy Bridge-E and support Intel 64 architecture.

The Intel[®] Xeon[®] processor E3-1200 v3 product family and 4th Generation Intel[®] Core[™] processors are based on the Intel[®] microarchitecture code name Haswell and support Intel 64 architecture.

The Intel[®] Core[™] M processor family is based on the Intel[®] microarchitecture code name Broadwell and supports Intel 64 architecture.

The Intel[®] Xeon[®] processor E5-2600/1600 v3 product families and the Intel[®] Core[™] i7-59xx Processor Extreme Edition are based on the Intel[®] microarchitecture code name Haswell-E and support Intel 64 architecture.

P6 family, Pentium[®] M, Intel[®] Core[™] Solo, Intel[®] Core[™] Duo processors, dual-core Intel[®] Xeon[®] processor LV, and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel[®] Atom[™] processor Z5xx series support IA-32 architecture.

The Intel[®] Xeon[®] processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel[®] Core[™]2 Duo, Intel[®] Core[™]2 Extreme processors, Intel Core 2 Quad processors, Pentium[®] D processors, Pentium[®] Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel[®] 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microprocessors. Intel[®] 64 architecture is the instruction set architecture and programming environment which is the superset of Intel's 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 1: BASIC ARCHITECTURE

A description of this manual's content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the *Intel® 64 and IA-32 Architectures Software Developer's Manual.* It also describes the notational conventions in these manuals and lists related Intel manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — Intel[®] **64 and IA-32 Architectures.** Introduces the Intel 64 and IA-32 architectures along with the families of Intel processors that are based on these architectures. It also gives an overview of the common features found in these processors and brief history of the Intel 64 and IA-32 architectures.

Chapter 3 — Basic Execution Environment. Introduces the models of memory organization and describes the register set used by applications.

Chapter 4 — **Data Types.** Describes the data types and addressing modes recognized by the processor; provides an overview of real numbers and floating-point formats and of floating-point exceptions.

Chapter 5 — Instruction Set Summary. Lists all Intel 64 and IA-32 instructions, divided into technology groups.

Chapter 6 — **Procedure Calls, Interrupts, and Exceptions.** Describes the procedure stack and mechanisms provided for making procedure calls and for servicing interrupts and exceptions.

Chapter 7 — **Programming with General-Purpose Instructions.** Describes basic load and store, program control, arithmetic, and string instructions that operate on basic data types, general-purpose and segment registers; also describes system instructions that are executed in protected mode.

Chapter 8 — **Programming with the x87 FPU.** Describes the x87 floating-point unit (FPU), including floating-point registers and data types; gives an overview of the floating-point instruction set and describes the processor's floating-point exception conditions.

Chapter 9 — Programming with Intel[®] MMX[™] Technology. Describes Intel MMX technology, including MMX registers and data types; also provides an overview of the MMX instruction set.

Chapter 10 — Programming with Streaming SIMD Extensions (SSE). Describes SSE extensions, including XMM registers, the MXCSR register, and packed single-precision floating-point data types; provides an overview of the SSE instruction set and gives guidelines for writing code that accesses the SSE extensions.

Chapter 11 — Programming with Streaming SIMD Extensions 2 (SSE2). Describes SSE2 extensions, including XMM registers and packed double-precision floating-point data types; provides an overview of the SSE2 instruction set and gives guidelines for writing code that accesses SSE2 extensions. This chapter also describes SIMD floating-point exceptions that can be generated with SSE and SSE2 instructions. It also provides general guidelines for incorporating support for SSE and SSE2 extensions into operating system and applications code.

Chapter 12 — Programming with SSE3, SSE3, SSE4 and AESNI. Provides an overview of the SSE3 instruction set, Supplemental SSE3, SSE4, AESNI instructions, and guidelines for writing code that accesses these extensions.

Chapter 13 — Managing State Using the XSAVE Feature Set. Describes the XSAVE feature set instructions and explains how software can enable the XSAVE feature set and XSAVE-enabled features.

Chapter 14 — Programming with AVX, FMA and AVX2. Provides an overview of the Intel[®] AVX instruction set, FMA and Intel AVX2 extensions and gives guidelines for writing code that accesses these extensions.

Chapter 15 — Programming with Intel Transactional Synchronization Extensions. Describes the instruction extensions that support lock elision techniques to improve the performance of multi-threaded software with contended locks.

Chapter 16 — Input/Output. Describes the processor's I/O mechanism, including I/O port addressing, I/O instructions, and I/O protection mechanisms.

Chapter 17 — **Processor Identification and Feature Determination.** Describes how to determine the CPU type and features available in the processor.

Appendix A — **EFLAGS Cross-Reference**. Summarizes how the IA-32 instructions affect the flags in the EFLAGS register.

Appendix B — **EFLAGS Condition Codes.** Summarizes how conditional jump, move, and 'byte set on condition code' instructions use condition code flags (OF, CF, ZF, SF, and PF) in the EFLAGS register.

Appendix C — **Floating-Point Exceptions Summary.** Summarizes exceptions raised by the x87 FPU floating-point and SSE/SSE2/SSE3 floating-point instructions.

Appendix D — Guidelines for Writing x87 FPU Exception Handlers. Describes how to design and write MS-DOS* compatible exception handling facilities for FPU exceptions (includes software and hardware requirements and assembly-language code examples). This appendix also describes general techniques for writing robust FPU exception handlers.

Appendix E — Guidelines for Writing SIMD Floating-Point Exception Handlers. Gives guidelines for writing exception handlers for exceptions generated by SSE/SSE2/SSE3 floating-point instructions.

• • •

2. Updates to Chapter 5, Volume 1

Change bars show changes to Chapter 5 of the Intel[®] 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture.

• • •

5.1.6 Bit and Byte Instructions

Bit instructions test and modify individual bits in word and doubleword operands. Byte instructions set the value of a byte operand to indicate the status of flags in the EFLAGS register.

BT	Bit test
BTS	Bit test and set
BTR	Bit test and reset
BTC	Bit test and complement
BSF	Bit scan forward
BSR	Bit scan reverse
SETE/SETZ	Set byte if equal/Set byte if zero
SETNE/SETNZ	Set byte if not equal/Set byte if not zero
SETA/SETNBE	Set byte if above/Set byte if not below or equal
SETAE/SETNB/SET	VC Set byte if above or equal/Set byte if not below/Set byte if not carry
	CSet byte if below/Set byte if not above or equal/Set byte if carry
SETBE/SETNA	Set byte if below or equal/Set byte if not above
SETG/SETNLE	Set byte if greater/Set byte if not less or equal
SETGE/SETNL	Set byte if greater or equal/Set byte if not less
SETL/SETNGE	Set byte if less/Set byte if not greater or equal
SETLE/SETNG	Set byte if less or equal/Set byte if not greater
SETS	Set byte if sign (negative)
SETNS	Set byte if not sign (non-negative)
SETO	Set byte if overflow
SETNO	Set byte if not overflow
SETPE/SETP	Set byte if parity even/Set byte if parity
SETPO/SETNP	Set byte if parity odd/Set byte if not parity
TEST	Logical compare
CRC32 ¹	Provides hardware acceleration to calculate cyclic redundancy checks for fast and efficient implementation of data integrity protocols.
POPCNT ²	This instruction calculates of number of bits set to 1 in the second operand (source) and returns the count in the first operand (a destination register)

• • •

5.1.13 Miscellaneous Instructions

The miscellaneous instructions provide such functions as loading an effective address, executing a "no-operation," and retrieving processor identification information.

LEALoad effective addressNOPNo operationUD2Undefined instructionXLAT/XLATBTable lookup translation

2. Processor support of POPCNT is enumerated by CPUID.01:ECX[POPCNT] = 1

^{1.} Processor support of CRC32 is enumerated by CPUID.01:ECX[SSE4.2] = 1

CPUID	Processor identification
MOVBE ¹	Move data after swapping data bytes
PREFETCHW	Prefetch data into cache in anticipation of write
PREFETCHWT1	Prefetch hint T1 with intent to write

. . .

5.1.15.1 Detection of VEX-encoded GPR Instructions, LZCNT and TZCNT, PREFETCHW

VEX-encoded general-purpose instructions do not operate on any vector registers.

There are separate feature flags for the following subsets of instructions that operate on general purpose registers, and the detection requirements for hardware support are:

CPUID.(EAX=07H, ECX=0H): EBX.BMI1[bit 3]: if 1 indicates the processor supports the first group of advanced bit manipulation extensions (ANDN, BEXTR, BLSI, BLSMK, BLSR, TZCNT);

CPUID. (EAX=07H, ECX=0H): EBX.BMI2[bit 8]: if 1 indicates the processor supports the second group of advanced bit manipulation extensions (BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX);

CPUID.EAX=80000001H:ECX.LZCNT[bit 5]: if 1 indicates the processor supports the LZCNT instruction.

CPUID.EAX=80000001H:ECX.PREFTEHCHW[bit 8]: if 1 indicates the processor supports the PREFTEHCHW instruction. CPUID.(EAX=07H, ECX=0H):ECX.PREFTEHCHWT1[bit 0]: if 1 indicates the processor supports the PREFTEHCHWT1 instruction.

• • •

5.9 SSE4 INSTRUCTIONS

Intel® Streaming SIMD Extensions 4 (SSE4) introduces 54 new instructions. 47 of the SSE4 instructions are referred to as SSE4.1 in this document, 7 new SSE4 instructions are referred to as SSE4.2.

SSE4.1 is targeted to improve the performance of media, imaging, and 3D workloads. SSE4.1 adds instructions that improve compiler vectorization and significantly increase support for packed dword computation. The technology also provides a hint that can improve memory throughput when reading from uncacheable WC memory type.

The 47 SSE4.1 instructions include:

- Two instructions perform packed dword multiplies.
- Two instructions perform floating-point dot products with input/output selects.
- One instruction performs a load with a streaming hint.
- Six instructions simplify packed blending.
- Eight instructions expand support for packed integer MIN/MAX.
- Four instructions support floating-point round with selectable rounding mode and precision exception override.
- · Seven instructions improve data insertion and extractions from XMM registers
- Twelve instructions improve packed integer format conversions (sign and zero extensions).
- One instruction improves SAD (sum absolute difference) generation for small block sizes.
- One instruction aids horizontal searching operations.

^{1.} Processor support of MOVBE is enumerated by CPUID.01:ECX.MOVBE[bit 22] = 1

- One instruction improves masked comparisons.
- One instruction adds qword packed equality comparisons.
- One instruction adds dword packing with unsigned saturation.

The SSE4.2 instructions operating on XMM registers include:

- String and text processing that can take advantage of single-instruction multiple-data programming techniques.
- A SIMD integer instruction that enhances the capability of the 128-bit integer SIMD capability in SSE4.1.

• • •

5.11 SSE4.2 INSTRUCTION SET

Five of the SSE4.2 instructions operate on XMM register as a source or destination. These include four text/string processing instructions and one packed quadword compare SIMD instruction. Programming these five SSE4.2 instructions is similar to programming 128-bit Integer SIMD in SSE2/SSSE3. SSE4.2 does not provide any 64-bit integer SIMD instructions.

CRC32 operates on general-purpose registers and is summarized in Section . The sections that follow summarize each subgroup.

• • •

5.11.2 Packed Comparison SIMD integer Instruction

PCMPGTQ Performs logical compare of greater-than on packed integer quadwords.

...

5.12 AESNI AND PCLMULQDQ

Six AESNI instructions operate on XMM registers to provide accelerated primitives for block encryption/decryption using Advanced Encryption Standard (FIPS-197). PCLMULQDQ instruction perform carry-less multiplication for two binary numbers up to 64-bit wide.

AESDEC	Perform an AES decryption round using an 128-bit state and a round key
AESDECLAST	Perform the last AES decryption round using an 128-bit state and a round key
AESENC	Perform an AES encryption round using an 128-bit state and a round key
AESENCLAST	Perform the last AES encryption round using an 128-bit state and a round key
AESIMC	Perform an inverse mix column transformation primitive
AESKEYGENASSIS	T Assist the creation of round keys with a key expansion schedule
PCLMULQDQ	Perform carryless multiplication of two 64-bit numbers

. . .

3. Updates to Chapter 12, Volume 1

Change bars show changes to Chapter 12 of the Intel[®] 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture.

This chapter describes SSE3, SSSE3, SSE4 and provides information to assist in writing application programs that use these extensions.

AESNI and PCLMLQDQ are instruction extensions targeted to accelerate high-speed block encryption and cryptographic processing. Section 12.13 covers these instructions and their relationship to the Advanced Encryption Standard (AES).

• • •

12.1 PROGRAMMING ENVIRONMENT AND DATA TYPES

The programming environment for using SSE3, SSSE3, and SSE4 is unchanged from those shown in Figure 3-1 and Figure 3-2. SSE3, SSSE3, and SSE4 do not introduce new data types. XMM registers are used to operate on packed integer data, single-precision floating-point data, or double-precision floating-point data.

One SSE3 instruction uses the x87 FPU for x87-style programming. There are two SSE3 instructions that use the general registers for thread synchronization. The MXCSR register governs SIMD floating-point operations. Note, however, that the x87FPU control word does not affect the SSE3 instruction that is executed by the x87 FPU (FISTTP), other than by unmasking an invalid operand or inexact result exception.

SSE4 instructions do not use MMX registers. The majority of SSE4.2¹ instructions and SSE4.1 instructions operate on XMM registers.

...

12.9 SSE4 OVERVIEW

SSE4 comprises of two sets of extensions: SSE4.1 and SSE4.2. SSE4.1 is targeted to improve the performance of media, imaging, and 3D workloads. SSE4.1 adds instructions that improve compiler vectorization and significantly increase support for packed dword computation. The technology also provides a hint that can improve memory throughput when reading from uncacheable WC memory type.

The 47 SSE4.1 instructions include:

- Two instructions perform packed dword multiplies.
- Two instructions perform floating-point dot products with input/output selects.
- One instruction performs a load with a streaming hint.
- · Six instructions simplify packed blending.
- Eight instructions expand support for packed integer MIN/MAX.
- Four instructions support floating-point round with selectable rounding mode and precision exception override.
- · Seven instructions improve data insertion and extractions from XMM registers
- Twelve instructions improve packed integer format conversions (sign and zero extensions).

^{1.} Although the presence of CRC32 support is enumerated by CPUID.01:ECX[SSE4.2] = 1, CRC32 operates on general purpose registers.

- One instruction improves SAD (sum absolute difference) generation for small block sizes.
- One instruction aids horizontal searching operations.
- One instruction improves masked comparisons.
- One instruction adds qword packed equality comparisons.
- One instruction adds dword packing with unsigned saturation.

The SSE4.2 instructions operating on XMM registers improve performance in the following areas:

- String and text processing that can take advantage of single-instruction multiple-data programming techniques.
- A SIMD integer instruction that enhances the capability of the 128-bit integer SIMD capability in SSE4.1.

• • •

12.11 SSE4.2 INSTRUCTION SET

Five of the seven SSE4.2 instructions can use an XMM register as a source or destination. These include four text/ string processing instructions and one packed quadword compare SIMD instruction. Programming these five SSE4.2 instructions is similar to programming 128-bit Integer SIMD in SSE2/SSSE3. SSE4.2 does not provide any 64-bit integer SIMD instructions.

12.11.1 String and Text Processing Instructions

String and text processing instructions in SSE4.2 allocates 4 opcodes to provide a rich set of string and text processing capabilities that traditionally required many more opcodes. These 4 instructions use XMM registers to process string or text elements of up to 128-bits (16 bytes or 8 words). Each instruction uses an immediate byte to support a rich set of programmable controls. A string-processing SSE4.2 instruction returns the result of processing each pair of string elements using either an index or a mask.

The capabilities of the string/text processing instructions include:

- · Handling string/text fragments consisting of bytes or words, either signed or unsigned
- Support for partial string or fragments less than 16 bytes in length, using either explicit length or implicit null-termination
- · Four types of string compare operations on word/byte elements
- Up to 256 compare operations performed in a single instruction on all string/text element pairs
- · Built-in aggregation of intermediate results from comparisons
- · Programmable control of processing on intermediate results
- Programmable control of output formats in terms of an index or mask
- Bi-directional support for the index format
- Support for two mask formats: bit or natural element width
- Not requiring 16-byte alignment for memory operand

The four SSE4.2 instructions that process text/string fragments are:

- PCMPESTRI Packed compare explicit-length strings, return index in ECX/RCX
- PCMPESTRM Packed compare explicit-length strings, return mask in XMMO
- PCMPISTRI Packed compare implicit-length strings, return index in ECX/RCX
- PCMPISTRM Packed compare implicit-length strings, return mask in XMMO

All four require the use of an immediate byte to control operation. The two source operands can be XMM registers or a combination of XMM register and memory address. The immediate byte provides programmable control with the following attributes:

- Input data format
- Compare operation mode
- Intermediate result processing
- Output selection

Depending on the output format associated with the instruction, the text/string processing instructions implicitly uses either a general-purpose register (ECX/RCX) or an XMM register (XMMO) to return the final result.

Two of the four text-string processing instructions specify string length explicitly. They use two general-purpose registers (EDX, EAX) to specify the number of valid data elements (either word or byte) in the source operands. The other two instructions specify valid string elements using null termination. A data element is considered valid only if it has a lower index than the least significant null data element.

12.11.2 Packed Comparison SIMD Integer Instruction

SSE4.2 also provides a 128-bit integer SIMD instruction PCMPGTQ that performs logical compare of greater-than on packed integer quadwords.

...

4. Updates to Chapter 1, Volume 2A

Change bars show changes to Chapter 1 of the Intel[®] 64 and IA-32 Architectures Software Developer's Manual, Volume 2A: Instruction Set Reference, A-M.

• • •

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which include:

- Pentium[®] processors
- P6 family processors
- Pentium[®] 4 processors
- Pentium[®] M processors
- Intel[®] Xeon[®] processors
- Pentium[®] D processors
- Pentium[®] processor Extreme Editions
- 64-bit Intel[®] Xeon[®] processors
- Intel[®] Core[™] Duo processor
- Intel[®] Core[™] Solo processor
- Dual-Core Intel[®] Xeon[®] processor LV
- Intel[®] Core[™]2 Duo processor

- Intel[®] Core[™]2 Quad processor Q6000 series
- Intel[®] Xeon[®] processor 3000, 3200 series
- Intel[®] Xeon[®] processor 5000 series
- Intel[®] Xeon[®] processor 5100, 5300 series
- Intel[®] Core[™]2 Extreme processor X7000 and X6800 series
- Intel[®] Core[™]2 Extreme processor QX6000 series
- Intel[®] Xeon[®] processor 7100 series
- Intel[®] Pentium[®] Dual-Core processor
- Intel[®] Xeon[®] processor 7200, 7300 series
- Intel[®] Xeon[®] processor 5200, 5400, 7400 series
- Intel[®] Core[™]2 Extreme processor QX9000 and X9000 series
- Intel[®] Core[™]2 Quad processor Q9000 series
- Intel[®] Core[™]2 Duo processor E8000, T9000 series
- Intel[®] Atom[™] processor family
- Intel[®] Core[™] i7 processor
- Intel[®] Core[™] i5 processor
- Intel[®] Xeon[®] processor E7-8800/4800/2800 product families
- Intel[®] Core[™] i7-3930K processor
- 2nd generation Intel[®] Core[™] i7-2xxx, Intel[®] Core[™] i5-2xxx, Intel[®] Core[™] i3-2xxx processor series
- Intel[®] Xeon[®] processor E3-1200 product family
- Intel[®] Xeon[®] processor E5-2400/1400 product family
- Intel[®] Xeon[®] processor E5-4600/2600/1600 product family
- 3rd generation Intel[®] Core[™] processors
- Intel[®] Xeon[®] processor E3-1200 v2 product family
- Intel[®] Xeon[®] processor E5-2400/1400 v2 product families
- Intel[®] Xeon[®] processor E5-4600/2600/1600 v2 product families
- Intel[®] Xeon[®] processor E7-8800/4800/2800 v2 product families
- 4th generation Intel[®] Core[™] processors
- The Intel[®] Core[™] M processor family
- Intel[®] Core[™] i7-59xx Processor Extreme Edition
- Intel[®] Core[™] i7-49xx Processor Extreme Edition
- Intel[®] Xeon[®] processor E3-1200 v3 product family
- Intel[®] Xeon[®] processor E5-2600/1600 v3 product families

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium[®] Pro, Pentium[®] II, Pentium[®] III, and Pentium[®] III Xeon[®] processors.

The Pentium[®] 4, Pentium[®] D, and Pentium[®] processor Extreme Editions are based on the Intel NetBurst[®] microarchitecture. Most early Intel[®] Xeon[®] processors are based on the Intel NetBurst[®] microarchitecture. Intel Xeon processor 5000, 7100 series are based on the Intel NetBurst[®] microarchitecture.

The Intel[®] Core[™] Duo, Intel[®] Core[™] Solo and dual-core Intel[®] Xeon[®] processor LV are based on an improved Pentium[®] M processor microarchitecture.

The Intel[®] Xeon[®] processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel[®] Pentium[®] dual-core, Intel[®] Core[™]2 Duo, Intel[®] Core[™]2 Quad, and Intel[®] Core[™]2 Extreme processors are based on Intel[®] Core[™] microar-chitecture.

The Intel[®] Xeon[®] processor 5200, 5400, 7400 series, Intel[®] Core[™]2 Quad processor Q9000 series, and Intel[®] Core[™]2 Extreme processors QX9000, X9000 series, Intel[®] Core[™]2 processor E8000 series are based on Enhanced Intel[®] Core[™] microarchitecture.

The Intel[®] Atom[™] processor family is based on the Intel[®] Atom[™] microarchitecture and supports Intel 64 architecture.

The Intel[®] Core[™] i7 processor and Intel[®] Xeon[®] processor 3400, 5500, 7500 series are based on 45 nm Intel[®] microarchitecture code name Nehalem. Intel[®] microarchitecture code name Westmere is a 32nm version of Intel[®] microarchitecture code name Nehalem. Intel[®] Xeon[®] processor 5600 series, Intel Xeon processor E7 and various Intel Core i7, i5, i3 processors are based on Intel[®] microarchitecture code name Westmere. These processors support Intel 64 architecture.

The Intel[®] Xeon[®] processor E5 family, Intel[®] Xeon[®] processor E3-1200 family, Intel[®] Xeon[®] processor E7-8800/ 4800/2800 product families, Intel[®] Core[™] i7-3930K processor, and 2nd generation Intel[®] Core[™] i7-2xxx, Intel[®] Core[™] i5-2xxx, Intel[®] Core[™] i3-2xxx processor series are based on the Intel[®] microarchitecture code name Sandy Bridge and support Intel 64 architecture.

The Intel[®] Xeon[®] processor E7-8800/4800/2800 v2 product families, Intel[®] Xeon[®] processor E3-1200 v2 product family and 3rd generation Intel[®] Core[™] processors are based on the Intel[®] microarchitecture code name Ivy Bridge and support Intel 64 architecture.

The Intel[®] Xeon[®] processor E5-4600/2600/1600 v2 product families, Intel[®] Xeon[®] processor E5-2400/1400 v2 product families and Intel[®] Core[™] i7-49xx Processor Extreme Edition are based on the Intel[®] microarchitecture code name Ivy Bridge-E and support Intel 64 architecture.

The Intel[®] Xeon[®] processor E3-1200 v3 product family and 4th Generation Intel[®] Core[™] processors are based on the Intel[®] microarchitecture code name Haswell and support Intel 64 architecture.

The Intel[®] Core[™] M processor family is based on the Intel[®] microarchitecture code name Broadwell and supports Intel 64 architecture.

The Intel[®] Xeon[®] processor E5-2600/1600 v3 product families and the Intel[®] Core[™] i7-59xx Processor Extreme Edition are based on the Intel[®] microarchitecture code name Haswell-E and support Intel 64 architecture.

P6 family, Pentium[®] M, Intel[®] Core[™] Solo, Intel[®] Core[™] Duo processors, dual-core Intel[®] Xeon[®] processor LV, and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel[®] Atom[™] processor Z5xx series support IA-32 architecture.

The Intel[®] Xeon[®] processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel[®] Core[™]2 Duo, Intel[®] Core[™]2 Extreme, Intel[®] Core[™]2 Quad processors, Pentium[®] D processors, Pentium[®] Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel[®] 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microprocessors. Intel[®] 64 architecture is the instruction set architecture and programming environment which is the superset of Intel's 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

. . .

5. Updates to Chapter 3, Volume 2A

. . .

. . .

Change bars show changes to Chapter 3 of the Intel[®] 64 and IA-32 Architectures Software Developer's Manual, Volume 2A: Instruction Set Reference, A-M.

NOTE

Software must confirm that a processor feature is present using feature flags returned by CPUID prior to using the feature. Software should not depend on future offerings retaining all features.

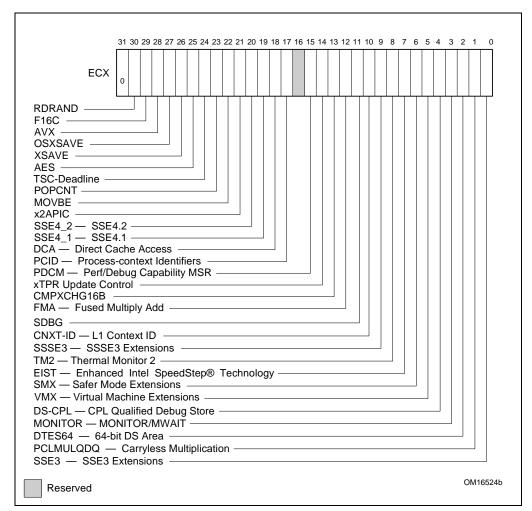


Figure 3-6 Feature Information Returned in the ECX Register

Value	Туре	Description
00H	General	Null descriptor, this byte contains no information
01H	TLB	Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries
02H	TLB	Instruction TLB: 4 MByte pages, fully associative, 2 entries
03H	TLB	Data TLB: 4 KByte pages, 4-way set associative, 64 entries
04H	TLB	Data TLB: 4 MByte pages, 4-way set associative, 8 entries
05H	TLB	Data TLB1: 4 MByte pages, 4-way set associative, 32 entries
06H	Cache	1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size
08H	Cache	1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size
09H	Cache	1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size
0AH	Cache	1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size
OBH	TLB	Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries
0CH	Cache	1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size
ODH	Cache	1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size
0EH	Cache	1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size
1DH	Cache	2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size
21H	Cache	2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size
22H	Cache	3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector
23H	Cache	3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector
24H	Cache	2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size
25H	Cache	3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector
29H	Cache	3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector
2CH	Cache	1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size
30H	Cache	1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size
40H	Cache	No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache
41H	Cache	2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size
42H	Cache	2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size
43H	Cache	2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size
44H	Cache	2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size
45H	Cache	2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size
46H	Cache	3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size
47H	Cache	3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size
48H	Cache	2nd-level cache: 3MByte, 12-way set associative, 64 byte line size
49H	Cache	3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model 06H);
		2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size
4AH	Cache	3rd-level cache: 6MByte, 12-way set associative, 64 byte line size
4BH	Cache	3rd-level cache: 8MByte, 16-way set associative, 64 byte line size
4CH	Cache	3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

Table 3-22 Encoding of CPUID Leaf 2 Descriptors

Value	Туре	Description
4DH	Cache	3rd-level cache: 16MByte, 16-way set associative, 64 byte line size
4EH	Cache	2nd-level cache: 6MByte, 24-way set associative, 64 byte line size
4FH	TLB	Instruction TLB: 4 KByte pages, 32 entries
50H	TLB	Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries
51H	TLB	Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries
52H	TLB	Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries
55H	TLB	Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries
56H	TLB	Data TLBO: 4 MByte pages, 4-way set associative, 16 entries
57H	TLB	Data TLB0: 4 KByte pages, 4-way associative, 16 entries
59H	TLB	Data TLB0: 4 KByte pages, fully associative, 16 entries
5AH	TLB	Data TLB0: 2-MByte or 4 MByte pages, 4-way set associative, 32 entries
5BH	TLB	Data TLB: 4 KByte and 4 MByte pages, 64 entries
5CH	TLB	Data TLB: 4 KByte and 4 MByte pages,128 entries
5DH	TLB	Data TLB: 4 KByte and 4 MByte pages,256 entries
60H	Cache	1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size
61H	TLB	Instruction TLB: 4 KByte pages, fully associative, 48 entries
63H	TLB	Data TLB: 1 GByte pages, 4-way set associative, 4 entries
66H	Cache	1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size
67H	Cache	1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size
68H	Cache	1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size
70H	Cache	Trace cache: 12 K-μop, 8-way set associative
71H	Cache	Trace cache: 16 K-μop, 8-way set associative
72H	Cache	Trace cache: 32 K-μop, 8-way set associative
76H	TLB	Instruction TLB: 2M/4M pages, fully associative, 8 entries
78H	Cache	2nd-level cache: 1 MByte, 4-way set associative, 64byte line size
79H	Cache	2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector
7AH	Cache	2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector
7BH	Cache	2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector
7CH	Cache	2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector
7DH	Cache	2nd-level cache: 2 MByte, 8-way set associative, 64byte line size
7FH	Cache	2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size
80H	Cache	2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size
82H	Cache	2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size
83H	Cache	2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size
84H	Cache	2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size
85H	Cache	2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size
86H	Cache	2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size
87H	Cache	2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

Table 3-22 Encoding of CPUID Leaf 2 Descriptors (Contd.)

Value	Туре	Description
AOH	DTLB	DTLB: 4k pages, fully associative, 32 entries
BOH	TLB	Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries
B1H	TLB	Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries
B2H	TLB	Instruction TLB: 4KByte pages, 4-way set associative, 64 entries
B3H	TLB	Data TLB: 4 KByte pages, 4-way set associative, 128 entries
B4H	TLB	Data TLB1: 4 KByte pages, 4-way associative, 256 entries
B5H	TLB	Instruction TLB: 4KByte pages, 8-way set associative, 64 entries
B6H	TLB	Instruction TLB: 4KByte pages, 8-way set associative, 128 entries
BAH	TLB	Data TLB1: 4 KByte pages, 4-way associative, 64 entries
COH	TLB	Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries
C1H	STLB	Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries
C2H	DTLB	DTLB: 4 KByte/2 MByte pages, 4-way associative, 16 entries
СЗН	STLB	Shared 2nd-Level TLB: 4 KByte /2 MByte pages, 6-way associative, 1536 entries. Also 1GBbyte pages, 4-way, 16 entries.
CAH	STLB	Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries
DOH	Cache	3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size
D1H	Cache	3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size
D2H	Cache	3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size
D6H	Cache	3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size
D7H	Cache	3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size
D8H	Cache	3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size
DCH	Cache	3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size
DDH	Cache	3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size
DEH	Cache	3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size
E2H	Cache	3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size
E3H	Cache	3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size
E4H	Cache	3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size
EAH	Cache	3rd-level cache: 12MByte, 24-way set associative, 64 byte line size
EBH	Cache	3rd-level cache: 18MByte, 24-way set associative, 64 byte line size
ECH	Cache	3rd-level cache: 24MByte, 24-way set associative, 64 byte line size
FOH	Prefetch	64-Byte prefetching
F1H	Prefetch	128-Byte prefetching
FFH	General	CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters

Table 3-22 Encoding of CPUID Leaf 2 Descriptors (Contd.)

 $\mathsf{Intel}^{\circledast}$ 64 and IA-32 Architectures Software Developer's Manual Documentation Changes

...

IDIV—Signed Divide

Opcode	Instruction	Op/ En	64-Bit Mode	Compat/ Leg Mode	Description
F6 /7	IDIV r/m8	М	Valid	Valid	Signed divide AX by r/m 8, with result stored in: AL \leftarrow Quotient, AH \leftarrow Remainder.
REX + F6 /7	IDIV r/m8*	М	Valid	N.E.	Signed divide AX by r/m 8, with result stored in AL \leftarrow Quotient, AH \leftarrow Remainder.
F7 /7	IDIV r/m16	М	Valid	Valid	Signed divide DX:AX by $r/m16$, with result stored in AX \leftarrow Quotient, DX \leftarrow Remainder.
F7 /7	IDIV r/m32	М	Valid	Valid	Signed divide EDX:EAX by $r/m32$, with result stored in EAX \leftarrow Quotient, EDX \leftarrow Remainder.
REX.W + F7 /7	IDIV r/m64	М	Valid	N.E.	Signed divide RDX:RAX by $r/m64$, with result stored in RAX \leftarrow Quotient, RDX \leftarrow Remainder.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Instruction Operand Encoding

Op/En	Operand 1	Operand 2	Operand 3	Operand 4
М	ModRM:r/m (r)	NA	NA	NA

Description

Divides the (signed) value in the AX, DX:AX, or EDX:EAX (dividend) by the source operand (divisor) and stores the result in the AX (AH:AL), DX:AX, or EDX:EAX registers. The source operand can be a general-purpose register or a memory location. The action of this instruction depends on the operand size (dividend/divisor).

Non-integral results are truncated (chopped) towards 0. The remainder is always less than the divisor in magnitude. Overflow is indicated with the #DE (divide error) exception rather than with the CF flag.

In 64-bit mode, the instruction's default operation size is 32 bits. Use of the REX.R prefix permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. In 64-bit mode when REX.W is applied, the instruction divides the signed value in RDX: RAX by the source operand. RAX contains a 64-bit quotient; RDX contains a 64-bit remainder.

See the summary chart at the beginning of this section for encoding data and limits. See Table 3-60.

Operand Size	Dividend	Divisor	Quotient	Remainder	Quotient Range
Word/byte	AX	r/m8	AL	AH	-128 to +127
Doubleword/word	DX:AX	r/m16	AX	DX	-32,768 to +32,767
Quadword/doubleword	EDX:EAX	r/m32	EAX	EDX	-2 ³¹ to 2 ³¹ - 1
Doublequadword/ quadword	RDX:RAX	r/m64	RAX	RDX	-2^{63} to $2^{63} - 1$

Table 3-60 IDIV Results

Operation

```
IF SRC = 0
   THEN #DE; (* Divide error *)
FI:
IF OperandSize = 8 (* Word/byte operation *)
   THEN
        temp \leftarrow AX / SRC; (* Signed division *)
        IF (temp > 7FH) or (temp < 80H)
        (* If a positive result is greater than 7FH or a negative result is less than 80H *)
             THEN #DE; (* Divide error *)
            ELSE
                 AL \leftarrow temp;
                 AH ← AX SignedModulus SRC;
        FI;
   ELSE IF OperandSize = 16 (* Doubleword/word operation *)
        THEN
             temp \leftarrow DX:AX / SRC; (* Signed division *)
            IF (temp > 7FFFH) or (temp < 8000H)
            (* If a positive result is greater than 7FFFH
            or a negative result is less than 8000H *)
                 THEN
                      #DE; (* Divide error *)
                 ELSE
                      AX \leftarrow temp;
                      DX ← DX:AX SignedModulus SRC;
            FI;
        FI;
   ELSE IF OperandSize = 32 (* Quadword/doubleword operation *)
             temp \leftarrow EDX:EAX / SRC; (* Signed division *)
            IF (temp > 7FFFFFFH) or (temp < 8000000H)
            (* If a positive result is greater than 7FFFFFFH
            or a negative result is less than 8000000H *)
                 THEN
                      #DE; (* Divide error *)
                 ELSE
                      EAX \leftarrow temp;
                      EDX ← EDXE:AX SignedModulus SRC;
            FI;
        FI;
   ELSE IF OperandSize = 64 (* Doublequadword/quadword operation *)
            temp \leftarrow RDX:RAX / SRC; (* Signed division *)
            IF (temp > 7FFFFFFFFFFFFFH) or (temp < 80000000000000000)
            (* If a positive result is greater than 7FFFFFFFFFFFFFFFFFF
            or a negative result is less than 800000000000000 *)
                 THEN
                      #DE; (* Divide error *)
                 ELSE
                      RAX \leftarrow temp;
                      RDX ← RDE:RAX SignedModulus SRC;
```

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#DE	If the source operand (divisor) is 0.
	The signed result (quotient) is too large for the destination.
#GP(0)	If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
	If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment selector.
#SS(0)	If a memory operand effective address is outside the SS segment limit.
#PF(fault-code)	If a page fault occurs.
#AC(0)	If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3.
#UD	If the LOCK prefix is used.

Real-Address Mode Exceptions

#DE	If the source operand (divisor) is 0.
	The signed result (quotient) is too large for the destination.
#GP	If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS	If a memory operand effective address is outside the SS segment limit.
#UD	If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#DE	If the source operand (divisor) is 0.				
	The signed result (quotient) is too large for the destination.				
#GP(0)	If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.				
#SS(0)	If a memory operand effective address is outside the SS segment limit.				
#PF(fault-code)	If a page fault occurs.				
#AC(0)	If alignment checking is enabled and an unaligned memory reference is made.				
#UD	If the LOCK prefix is used.				

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0)	If a memory address referencing the SS segment is in a non-canonical form.
#GP(0)	If the memory address is in a non-canonical form.
#DE	If the source operand (divisor) is 0
	If the quotient is too large for the designated register.

 #PF(fault-code)
 If a page fault occurs.

 #AC(0)
 If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3.

 #UD
 If the LOCK prefix is used.

 ...
 ...

IMUL—Signed Multiply

Opcode	Instruction	Op/ En	64-Bit Mode	Compat/ Leg Mode	Description	
F6 /5	IMUL r/m8*	М	Valid	Valid	AX← AL * <i>r/m</i> byte.	
F7 /5	IMUL r/m16	М	Valid	Valid	$DX:AX \leftarrow AX * \mathit{r/m} \text{ word.}$	
F7 /5	IMUL r/m32	М	Valid	Valid	EDX:EAX \leftarrow EAX $* r/m$ 32.	
REX.W + F7 /5	IMUL r/m64	М	Valid	N.E.	RDX:RAX ← RAX ∗ <i>r/m</i> 64.	
OF AF /r	IMUL r16, r/m16	RM	Valid	Valid	word register \leftarrow word register $* r/m$ 16.	
OF AF /r	IMUL <i>r32, r/m32</i>	RM	Valid	Valid	doubleword register \leftarrow doubleword register * r/m32.	
REX.W + OF AF / <i>r</i>	IMUL <i>r64, r/m64</i>	RM	Valid	N.E.	Quadword register \leftarrow Quadword register $* r/m64$.	
6B /r ib	IMUL r16, r/m16, imm8	RMI	Valid	Valid	word register $\leftarrow r/m16 * \text{sign-extended}$ immediate byte.	
6B /r ib	IMUL r32, r/m32, imm8	RMI	Valid	Valid	doubleword register $\leftarrow r/m32 * \text{sign-}$ extended immediate byte.	
REX.W + 6B / <i>r ib</i>	IMUL r64, r/m64, imm8	RMI	Valid	N.E.	Quadword register $\leftarrow r/m64 * \text{sign-extended}$ immediate byte.	
69 /r iw	IMUL r16, r/m16, imm16	RMI	Valid	Valid	word register $\leftarrow r/m16 * \text{ immediate word.}$	
69 / r id	IMUL r32, r/m32, imm32	RMI	Valid	Valid	doubleword register $\leftarrow r/m32 * \text{ immediate}$ doubleword.	
REX.W + 69 /r id	IMUL r64, r/m64, imm32	RMI	Valid	N.E.	Quadword register $\leftarrow r/m64 * \text{ immediate}$ doubleword.	
NOTES:						
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.						

Instruction Operand Encoding						
Op/En	Operand 1	Operand 2	Operand 3	Operand 4		
М	ModRM:r/m (r, w)	NA	NA	NA		
RM	ModRM:reg (r, w)	ModRM:r/m (r)	NA	NA		
RMI	ModRM:reg (r, w)	ModRM:r/m (r)	imm8/16/32	NA		

Description

Performs a signed multiplication of two operands. This instruction has three forms, depending on the number of operands.

• **One-operand form** — This form is identical to that used by the MUL instruction. Here, the source operand (in a general-purpose register or memory location) is multiplied by the value in the AL, AX, EAX, or RAX register

(depending on the operand size) and the product (twice the size of the input operand) is stored in the AX, DX:AX, EDX:EAX, or RDX:RAX registers, respectively.

- **Two-operand form** With this form the destination operand (the first operand) is multiplied by the source operand (second operand). The destination operand is a general-purpose register and the source operand is an immediate value, a general-purpose register, or a memory location. The intermediate product (twice the size of the input operand) is truncated and stored in the destination operand location.
- **Three-operand form** This form requires a destination operand (the first operand) and two source operands (the second and the third operands). Here, the first source operand (which can be a general-purpose register or a memory location) is multiplied by the second source operand (an immediate value). The intermediate product (twice the size of the first source operand) is truncated and stored in the destination operand (a general-purpose register).

When an immediate value is used as an operand, it is sign-extended to the length of the destination operand format.

The CF and OF flags are set when the signed integer value of the intermediate product differs from the sign extended operand-size-truncated product, otherwise the CF and OF flags are cleared.

The three forms of the IMUL instruction are similar in that the length of the product is calculated to twice the length of the operands. With the one-operand form, the product is stored exactly in the destination. With the twoand three- operand forms, however, the result is truncated to the length of the destination before it is stored in the destination register. Because of this truncation, the CF or OF flag should be tested to ensure that no significant bits are lost.

The two- and three-operand forms may also be used with unsigned operands because the lower half of the product is the same regardless if the operands are signed or unsigned. The CF and OF flags, however, cannot be used to determine if the upper half of the result is non-zero.

In 64-bit mode, the instruction's default operation size is 32 bits. Use of the REX.R prefix permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. Use of REX.W modifies the three forms of the instruction as follows.

- **One-operand form** —The source operand (in a 64-bit general-purpose register or memory location) is multiplied by the value in the RAX register and the product is stored in the RDX:RAX registers.
- **Two-operand form** The source operand is promoted to 64 bits if it is a register or a memory location. The destination operand is promoted to 64 bits.
- **Three-operand form** The first source operand (either a register or a memory location) and destination operand are promoted to 64 bits. If the source operand is an immediate, it is sign extended to 64 bits.

Operation

```
IF (NumberOfOperands = 1)

THEN IF (OperandSize = 8)

THEN

TMP_XP \leftarrow AL * SRC (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC *);

AX \leftarrow TMP_XP[15:0];

SF \leftarrow TMP_XP[7];

IF SignExtend(TMP_XP[7:0]) = TMP_XP

THEN CF \leftarrow 0; OF \leftarrow 0;

ELSE CF \leftarrow 1; OF \leftarrow 1; FI;

ELSE IF OperandSize = 16

THEN

TMP_XP \leftarrow AX * SRC (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC *)

DX:AX \leftarrow TMP_XP[31:0];

SF \leftarrow TMP_XP[15];
```

```
IF SignExtend(TMP_XP[15:0]) = TMP_XP
                      THEN CF \leftarrow 0; OF \leftarrow 0;
                      ELSE CF \leftarrow 1; OF \leftarrow 1; FI;
           ELSE IF OperandSize = 32
                THEN
                      TMP_XP \leftarrow EAX * SRC (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC*)
                      EDX:EAX \leftarrow TMP_XP[63:0];
                      SF \leftarrow TMP_XP[32];
                      IF SignExtend(TMP_XP[31:0]) = TMP_XP
                           THEN CF \leftarrow 0; OF \leftarrow 0;
                           ELSE CF \leftarrow 1; OF \leftarrow 1; FI;
                ELSE (* OperandSize = 64 *)
                      TMP_XP \leftarrow RAX * SRC (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC *)
                      EDX:EAX \leftarrow TMP XP[127:0];
                      SF \leftarrow TMP_XP[63];
                      IF SignExtend(TMP_XP[63:0]) = TMP_XP
                           THEN CF \leftarrow 0; OF \leftarrow 0;
                           ELSE CF \leftarrow 1; OF \leftarrow 1; FI;
                FI;
     FI;
ELSE IF (NumberOfOperands = 2)
     THEN
           TMP XP \leftarrow DEST * SRC (* Signed multiplication; TMP XP is a signed integer at twice the width of the SRC *)
           DEST \leftarrow TruncateToOperandSize(TMP XP);
           SF \leftarrow MSB(DEST);
           IF SignExtend(DEST) \neq TMP_XP
                THEN CF \leftarrow 1; OF \leftarrow 1;
                ELSE CF \leftarrow 0; OF \leftarrow 0; FI;
     ELSE (* NumberOfOperands = 3 *)
           TMP XP \leftarrow SRC1 * SRC2 (* Signed multiplication; TMP XP is a signed integer at twice the width of the SRC1 *)
           DEST \leftarrow TruncateToOperandSize(TMP_XP);
           SF \leftarrow MSB(DEST);
           IF SignExtend(DEST) \neq TMP_XP
                THEN CF \leftarrow 1; OF \leftarrow 1;
                ELSE CF \leftarrow 0; OF \leftarrow 0; FI;
FI;
```

```
Fl;
```

Flags Affected

SF is updated according to the most significant bit of the operand-size-truncated result in the destination. For the one operand form of the instruction, the CF and OF flags are set when significant bits are carried into the upper half of the result and cleared when the result fits exactly in the lower half of the result. For the two- and three-operand forms of the instruction, the CF and OF flags are set when the result must be truncated to fit in the destination operand size and cleared when the result fits exactly in the destination operand size. The ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

```
#GP(0)
```

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If the DS, ES, FS, or GS register is used to access memory and it contains a NULL NULL segment selector.

#SS(0)	If a memory operand effective address is outside the SS segment limit.
#PF(fault-code)	If a page fault occurs.
#AC(0)	If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3.
#UD	If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP	If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS	If a memory operand effective address is outside the SS segment limit.
#UD	If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)	If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0)	If a memory operand effective address is outside the SS segment limit.
#PF(fault-code)	If a page fault occurs.
#AC(0)	If alignment checking is enabled and an unaligned memory reference is made.
#UD	If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

...

. . .

6. Updates to Chapter 4, Volume 2B

Change bars show changes to Chapter 4 of the Intel[®] 64 and IA-32 Architectures Software Developer's Manual, Volume 2B: Instruction Set Reference, N-Z.

PCLMULQDQ - Carry-Less Multiplication Quadword

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
66 OF 3A 44 /r ib PCLMULQDQ <i>xmm1, xmm2/m128, imm8</i>	RMI	V/V	PCLMUL- QDQ	Carry-less multiplication of one quadword of xmm1 by one quadword of xmm2/m128, stores the 128-bit result in xmm1. The immediate is used to determine which quadwords of xmm1 and xmm2/m128 should be used.
VEX.NDS.128.66.0F3A.WIG 44 /r ib VPCLMULQDQ <i>xmm1, xmm2, xmm3/m128, imm8</i>	RVMI	V/V	Both PCL- MULQDQ and AVX flags	Carry-less multiplication of one quadword of <i>xmm2</i> by one quadword of <i>xmm3/m128</i> , stores the 128-bit result in <i>xmm1</i> . The immediate is used to determine which quadwords of <i>xmm2</i> and <i>xmm3/m128</i> should be used.

Instruction Operand Encoding						
Op/En	Operand 1	Operand2	Operand3	Operand4		
RMI	ModRM:reg (r, w)	ModRM:r/m (r)	imm8	NA		
RVMI	ModRM:reg (w)	VEX.vvvv (r)	ModRM:r/m (r)	imm8		

Description

Performs a carry-less multiplication of two quadwords, selected from the first source and second source operand according to the value of the immediate byte. Bits 4 and 0 are used to select which 64-bit half of each operand to use according to Table 4-10, other bits of the immediate byte are ignored.

Table 4-10 PCLMULQDQ Quadword Selection of Immediate Byte

Imm[4]	lmm[0]	PCLMULQDQ Operation			
0	0	CL_MUL(SRC2 ¹ [63:0], SRC1[63:0])			
0	1	CL_MUL(SRC2[63:0], SRC1[127:64])			
1	0	CL_MUL(SRC2[127:64], SRC1[63:0])			
1	1	CL_MUL(SRC2[127:64], SRC1[127:64])			

NOTES:

 SRC2 denotes the second source operand, which can be a register or memory; SRC1 denotes the first source and destination operand.

The first source operand and the destination operand are the same and must be an XMM register. The second source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged.

Compilers and assemblers may implement the following pseudo-op syntax to simply programming and emit the required encoding for Imm8.

Table 4-11 Pseudo-Op and PCLMULQDQ Implementation

Pseudo-Op	Imm8 Encoding
PCLMULLQLQDQ xmm1, xmm2	0000_0000B
PCLMULHQLQDQ xmm1, xmm2	0000_0001B
PCLMULLQHDQ xmm1, xmm2	0001_0000B
PCLMULHQHDQ xmm1, xmm2	0001_0001B

Operation

```
PCLMULQDQ

IF (Imm8[0] = 0 )

THEN

TEMP1 ← SRC1 [63:0];

ELSE

TEMP1 ← SRC1 [127:64];

FI

IF (Imm8[4] = 0 )

THEN

TEMP2 ← SRC2 [63:0];
```

```
ELSE
         TEMP2 ← SRC2 [127:64];
FI
For i = 0 to 63 {
    TmpB [ i ] \leftarrow (TEMP1[ 0 ] and TEMP2[ i ]);
    For j = 1 to i {
         TmpB [ i ] \leftarrow TmpB [ i ] xor (TEMP1[ j ] and TEMP2[ i - j ])
    }
    DEST[ i ] \leftarrow TmpB[ i ];
}
For i=64 to 126 {
    TmpB[i] \leftarrow 0;
    For j = i - 63 to 63 {
         TmpB [ i ] \leftarrow TmpB [ i ] xor (TEMP1[ j ] and TEMP2[ i - j ])
    }
    DEST[i] \leftarrow TmpB[i];
}
DEST[127] \leftarrow 0;
DEST[VLMAX-1:128] (Unmodified)
VPCLMULQDQ
IF (Imm8[0] = 0)
    THEN
         TEMP1 ← SRC1 [63:0];
    ELSE
         TEMP1 ← SRC1 [127:64];
FI
IF (Imm8[4] = 0)
    THEN
         TEMP2 ← SRC2 [63:0];
    ELSE
         TEMP2 ← SRC2 [127:64];
FI
For i = 0 to 63 {
    \mathsf{TmpB}\left[ \text{ i } \right] \leftarrow (\mathsf{TEMP1[ 0 ] and TEMP2[ i ]});
    For j = 1 to i {
         TmpB [i] \leftarrow TmpB [i] xor (TEMP1[j] and TEMP2[i-j])
    }
    DEST[i] \leftarrow TmpB[i];
}
For i = 64 to 126 {
    TmpB[i] \leftarrow 0;
    For j = i - 63 to 63 {
         TmpB [i] \leftarrow TmpB [i] xor (TEMP1[j] and TEMP2[i-j])
    }
    DEST[i] \leftarrow TmpB[i];
}
DEST[VLMAX-1:127] \leftarrow 0;
```

Intel C/C++ Compiler Intrinsic Equivalent

(V)PCLMULQDQ: __m128i _mm_clmulepi64_si128 (__m128i, __m128i, const int)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.

. . .

XABORT — Transactional Abort

Opcode/Instruction	Op/ En	64/32bit Mode Support	CPUID Feature Flag	Description
C6 F8 ib	А	V/V	RTM	Causes an RTM abort if in RTM execution
XABORT imm8				

Instruction Operand Encoding

Op/En	Operand 1	Operand2	Operand3	Operand4
А	imm8	NA	NA	NA

Description

XABORT forces an RTM abort. Following an RTM abort, the logical processor resumes execution at the fallback address computed through the outermost XBEGIN instruction. The EAX register is updated to reflect an XABORT instruction caused the abort, and the imm8 argument will be provided in bits 31:24 of EAX.

Operation

```
XABORT
IF RTM ACTIVE = 0
  THEN
       Treat as NOP;
  ELSE
       GOTO RTM_ABORT_PROCESSING;
```

FI;

(* For any RTM abort condition encountered during RTM execution *) RTM_ABORT_PROCESSING: Restore architectural register state;

```
Discard memory updates performed in transaction;
Update EAX with status and XABORT argument;
RTM_NEST_COUNT \leftarrow 0;
RTM_ACTIVE \leftarrow 0;
IF 64-bit Mode
    THEN
         RIP \leftarrow fallbackRIP;
    ELSE
```

 $EIP \leftarrow fallbackEIP;$

FI; END

Flags Affected None

Intel C/C++ Compiler Intrinsic Equivalent

XABORT: void _xabort(unsigned int);

SIMD Floating-Point Exceptions

None

Other Exceptions

#UD

CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11] = 0. If LOCK prefix is used.

• • •

XBEGIN — Transactional Begin

Opcode/Instruction	Op/ En	64/32bit Mode Support	CPUID Feature Flag	Description
C7 F8 XBEGIN rel16	A	V/V	RTM	Specifies the start of an RTM region. Provides a 16-bit relative offset to compute the address of the fallback instruction address at which execution resumes following an RTM abort.
C7 F8 XBEGIN rel32	A	V/V	RTM	Specifies the start of an RTM region. Provides a 32-bit relative offset to compute the address of the fallback instruction address at which execution resumes following an RTM abort.

Instruction Operand Encoding

Op/En	Operand 1	Operand2	Operand3	Operand4
А	Offset	NA	NA	NA

Description

The XBEGIN instruction specifies the start of an RTM code region. If the logical processor was not already in transactional execution, then the XBEGIN instruction causes the logical processor to transition into transactional execution. The XBEGIN instruction that transitions the logical processor into transactional execution is referred to as the outermost XBEGIN instruction. The instruction also specifies a relative offset to compute the address of the fallback code path following a transactional abort.

On an RTM abort, the logical processor discards all architectural register and memory updates performed during the RTM execution and restores architectural state to that corresponding to the outermost XBEGIN instruction. The fallback address following an abort is computed from the outermost XBEGIN instruction.

```
Operation
XBEGIN
IF RTM_NEST_COUNT < MAX_RTM_NEST_COUNT
   THEN
        RTM_NEST_COUNT++
        IF RTM_NEST_COUNT = 1 THEN
             IF 64-bit Mode
                  THEN
                           fallbackRIP \leftarrow RIP + SignExtend64(IMM)
                                          (* RIP is instruction following XBEGIN instruction *)
                      ELSE
                           fallbackEIP \leftarrow EIP + SignExtend32(IMM)
                                         (* EIP is instruction following XBEGIN instruction *)
             FI;
             IF (64-bit mode)
                  THEN IF (fallbackRIP is not canonical)
                      THEN #GP(0)
                  FI;
                  ELSE IF (fallbackEIP outside code segment limit)
                       THEN #GP(0)
                  FI:
             FI;
             \mathsf{RTM}\_\mathsf{ACTIVE} \gets 1
             Enter RTM Execution (* record register state, start tracking memory state*)
        FI; (* RTM_NEST_COUNT = 1 *)
   ELSE (* RTM_NEST_COUNT = MAX_RTM_NEST_COUNT *)
        GOTO RTM_ABORT_PROCESSING
FI;
(* For any RTM abort condition encountered during RTM execution *)
RTM_ABORT_PROCESSING:
   Restore architectural register state
   Discard memory updates performed in transaction
   Update EAX with status
   \mathsf{RTM}\_\mathsf{NEST}\_\mathsf{COUNT} \gets \mathsf{O}
   RTM_ACTIVE \leftarrow 0
   IF 64-bit mode
        THEN
             RIP \leftarrow fallbackRIP
        ELSE
```

```
FI;
```

```
end
```

```
Flags Affected
```

 $EIP \leftarrow fallbackEIP$

None

Intel C/C++ Compiler Intrinsic Equivalent

XBEGIN: unsigned int _xbegin(void);

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions

#UD	CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11]=0.
	If LOCK prefix is used.
#GP(0)	If the fallback address is outside the CS segment.

Real-Address Mode Exceptions

#GP(0)	If the fallback address is outside the address space 0000H and FFFFH.
#UD	CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11]=0.
	If LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)	If the fallback address is outside the address space 0000H and FFFFH.
#UD	CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11]=0.
	If LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-bit Mode Exceptions

#UD	CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11] = 0.		
	If LOCK prefix is used.		
#GP(0)	If the fallback address is non-canonical.		

•••

XEND — Transactional End

Opcode/Instruction	Op/ En	64/32bit Mode Support	CPUID Feature Flag	Description
0F 01 D5	А	V/V	RTM	Specifies the end of an RTM code region.
XEND				

Instruction Operand Encoding

Op/En	Operand 1	Operand2	Operand3	Operand4
A	NA	NA	NA	NA

Description

The instruction marks the end of an RTM code region. If this corresponds to the outermost scope (that is, including this XEND instruction, the number of XBEGIN instructions is the same as number of XEND instructions), the logical processor will attempt to commit the logical processor state atomically. If the commit fails, the logical processor will rollback all architectural register and memory updates performed during the RTM execution. The logical processor will resume execution at the fallback address computed from the outermost XBEGIN instruction. The EAX register is updated to reflect RTM abort information.

XEND executed outside a transactional region will cause a #GP (General Protection Fault).

```
Operation
XEND
IF (RTM_ACTIVE = 0) THEN
   SIGNAL #GP
ELSE
   RTM_NEST_COUNT--
   IF (RTM_NEST_COUNT = 0) THEN
       Try to commit transaction
       IF fail to commit transactional execution
            THEN
                GOTO RTM ABORT PROCESSING:
           ELSE (* commit success *)
                RTM_ACTIVE \leftarrow 0
       FI;
   FI;
FI:
```

```
(* For any RTM abort condition encountered during RTM execution *)

RTM_ABORT_PROCESSING:

Restore architectural register state

Discard memory updates performed in transaction

Update EAX with status

RTM_NEST_COUNT \leftarrow 0

RTM_ACTIVE \leftarrow 0

IF 64-bit Mode

THEN

RIP \leftarrow fallbackRIP

ELSE

EIP \leftarrow fallbackEIP

FI;

END
```

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

XEND: void _xend(void);

SIMD Floating-Point Exceptions

None

Other Exceptions

#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11] = 0. If LOCK or 66H or F2H or F3H prefix is used. #GP(0) If RTM_ACTIVE = 0. ...

7. Updates to Chapter 1, Volume 3A

Change bars show changes to Chapter 1 of the Intel[®] 64 and IA-32 Architectures Software Developer's Manual, Volume 3A: System Programming Guide, Part 1.

• • •

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which include:

- Pentium[®] processors
- P6 family processors
- Pentium[®] 4 processors
- Pentium[®] M processors
- Intel[®] Xeon[®] processors
- Pentium[®] D processors
- Pentium[®] processor Extreme Editions
- 64-bit Intel[®] Xeon[®] processors
- Intel[®] Core[™] Duo processor
- Intel[®] Core[™] Solo processor
- Dual-Core Intel[®] Xeon[®] processor LV
- Intel[®] Core[™]2 Duo processor
- Intel[®] Core[™]2 Quad processor Q6000 series
- Intel[®] Xeon[®] processor 3000, 3200 series
- Intel[®] Xeon[®] processor 5000 series
- Intel[®] Xeon[®] processor 5100, 5300 series
- Intel[®] Core[™]2 Extreme processor X7000 and X6800 series
- Intel[®] Core[™]2 Extreme QX6000 series
- Intel[®] Xeon[®] processor 7100 series
- Intel[®] Pentium[®] Dual-Core processor
- Intel[®] Xeon[®] processor 7200, 7300 series
- Intel[®] Core[™]2 Extreme QX9000 series
- Intel[®] Xeon[®] processor 5200, 5400, 7400 series
- Intel[®] Core[™]2 Extreme processor QX9000 and X9000 series

- Intel[®] Core[™]2 Quad processor Q9000 series
- Intel[®] Core[™]2 Duo processor E8000, T9000 series
- Intel[®] Atom[™] processor family
- Intel[®] Core[™] i7 processor
- Intel[®] Core[™] i5 processor
- Intel[®] Xeon[®] processor E7-8800/4800/2800 product families
- Intel[®] Core[™] i7-3930K processor
- 2nd generation Intel[®] Core[™] i7-2xxx, Intel[®] Core[™] i5-2xxx, Intel[®] Core[™] i3-2xxx processor series
- Intel[®] Xeon[®] processor E3-1200 product family
- Intel[®] Xeon[®] processor E5-2400/1400 product family
- Intel[®] Xeon[®] processor E5-4600/2600/1600 product family
- 3rd generation Intel[®] Core[™] processors
- Intel[®] Xeon[®] processor E3-1200 v2 product family
- Intel[®] Xeon[®] processor E5-2400/1400 v2 product families
- Intel[®] Xeon[®] processor E5-4600/2600/1600 v2 product families
- Intel[®] Xeon[®] processor E7-8800/4800/2800 v2 product families
- 4th generation Intel[®] Core[™] processors
- The Intel[®] Core[™] M processor family
- Intel[®] Core[™] i7-59xx Processor Extreme Edition
- Intel[®] Core[™] i7-49xx Processor Extreme Edition
- Intel[®] Xeon[®] processor E3-1200 v3 product family
- Intel[®] Xeon[®] processor E5-2600/1600 v3 product families

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium[®] Pro, Pentium[®] II, Pentium[®] III, and Pentium[®] III Xeon[®] processors.

The Pentium[®] 4, Pentium[®] D, and Pentium[®] processor Extreme Editions are based on the Intel NetBurst[®] microarchitecture. Most early Intel[®] Xeon[®] processors are based on the Intel NetBurst[®] microarchitecture. Intel Xeon processor 5000, 7100 series are based on the Intel NetBurst[®] microarchitecture.

The Intel[®] Core[™] Duo, Intel[®] Core[™] Solo and dual-core Intel[®] Xeon[®] processor LV are based on an improved Pentium[®] M processor microarchitecture.

The Intel[®] Xeon[®] processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel[®] Pentium[®] dual-core, Intel[®] Core[™]2 Duo, Intel[®] Core[™]2 Quad and Intel[®] Core[™]2 Extreme processors are based on Intel[®] Core[™] microar-chitecture.

The Intel[®] Xeon[®] processor 5200, 5400, 7400 series, Intel[®] Core[™]2 Quad processor Q9000 series, and Intel[®] Core[™]2 Extreme processors QX9000, X9000 series, Intel[®] Core[™]2 processor E8000 series are based on Enhanced Intel[®] Core[™] microarchitecture.

The Intel[®] Atom[™] processor family is based on the Intel[®] Atom[™] microarchitecture and supports Intel 64 architecture.

The Intel[®] Core[™] i7 processor and Intel[®] Xeon[®] processor 3400, 5500, 7500 series are based on 45 nm Intel[®] microarchitecture code name Nehalem. Intel[®] microarchitecture code name Westmere is a 32nm version of Intel[®] microarchitecture code name Nehalem. Intel[®] Xeon[®] processor 5600 series, Intel Xeon processor E7 and various Intel Core i7, i5, i3 processors are based on Intel[®] microarchitecture code name Westmere. These processors support Intel 64 architecture.

The Intel[®] Xeon[®] processor E5 family, Intel[®] Xeon[®] processor E3-1200 family, Intel[®] Xeon[®] processor E7-8800/ 4800/2800 product families, Intel[®] Core[™] i7-3930K processor, and 2nd generation Intel[®] Core[™] i7-2xxx, Intel[®] Core[™] i5-2xxx, Intel[®] Core[™] i3-2xxx processor series are based on the Intel[®] microarchitecture code name Sandy Bridge and support Intel 64 architecture.

The Intel[®] Xeon[®] processor E7-8800/4800/2800 v2 product families, Intel[®] Xeon[®] processor E3-1200 v2 product family and 3rd generation Intel[®] Core[™] processors are based on the Intel[®] microarchitecture code name Ivy Bridge and support Intel 64 architecture.

The Intel[®] Xeon[®] processor E5-4600/2600/1600 v2 product families, Intel[®] Xeon[®] processor E5-2400/1400 v2 product families and Intel[®] Core[™] i7-49xx Processor Extreme Edition are based on the Intel[®] microarchitecture code name Ivy Bridge-E and support Intel 64 architecture.

The Intel[®] Xeon[®] processor E3-1200 v3 product family and 4th Generation Intel[®] Core[™] processors are based on the Intel[®] microarchitecture code name Haswell and support Intel 64 architecture.

The Intel[®] Core[™] M processor family is based on the Intel[®] microarchitecture code name Broadwell and supports Intel 64 architecture.

The Intel[®] Xeon[®] processor E5-2600/1600 v3 product families and the Intel[®] Core[™] i7-59xx Processor Extreme Edition are based on the Intel[®] microarchitecture code name Haswell-E and support Intel 64 architecture.

P6 family, Pentium[®] M, Intel[®] Core[™] Solo, Intel[®] Core[™] Duo processors, dual-core Intel[®] Xeon[®] processor LV, and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel[®] Atom[™] processor Z5xx series support IA-32 architecture.

The Intel[®] Xeon[®] processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel[®] Core[™]2 Duo, Intel[®] Core[™]2 Extreme processors, Intel Core 2 Quad processors, Pentium[®] D processors, Pentium[®] Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel[®] 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microprocessors. Intel[®] 64 architecture is the instruction set architecture and programming environment which is a superset of and compatible with IA-32 architecture.

...

8. Updates to Chapter 16, Volume 3B

Change bars show changes to Chapter 16 of the Intel[®] 64 and IA-32 Architectures Software Developer's Manual, Volume 3B: System Programming Guide, Part 2.

...

16.4 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_2DH, MACHINE ERROR CODES FOR MACHINE CHECK

Table 16-13 through Table 16-15 provide information for interpreting additional model-specific fields for memory controller errors relating to the processor family with CPUID DisplayFamily_DisplaySignature 06_2DH, which supports Intel QuickPath Interconnect links. Incremental MC error codes related to the Intel QPI links are reported in the register banks IA32_MC6 and IA32_MC7, incremental error codes for internal machine check error from PCU controller is reported in the register banks IA32_MC6. And IA32_MC4, and incremental error codes for the memory controller unit is reported in the register banks IA32_MC8-IA32_MC1.

16.4.1 Internal Machine Check Errors

Туре	Bit No.	Bit Function	Bit Description
MCA error codes ¹	0-15	MCACOD	
Model specific errors	19:16	Reserved except for the following	0000b - No Error 0001b - Non_IMem_Sel 0010b - I_Parity_Error
			0011b - Bad_OpCode 0100b - I_Stack_Underflow
			0101b - I_Stack_Overflow
			0110b - D_Stack_Underflow 0111b - D_Stack_Overflow
			1000b - Non-DMem_Sel 1001b - D_Parity_Error
	23-20	Reserved	Reserved
	31-24	Reserved except for the following	00h - No Error 0Dh - MC_IMC_FORCE_SR_S3_TIMEOUT 0Eh - MC_CPD_UNCPD_ST_TIMEOUT 0Fh - MC_PKGS_SAFE_WP_TIMEOUT 43h - MC_PECI_MAILBOX_QUIESCE_TIMEOUT 5Ch - MC_MORE_THAN_ONE_LT_AGENT 60h - MC_INVALID_PKGS_REQ_PCH 61h - MC_INVALID_PKGS_REQ_QPI 62h - MC_INVALID_PKGS_RES_QPI 63h - MC_INVALID_PKGC_RES_PCH 64h - MC_INVALID_PKGC_RES_PCH 64h - MC_INVALID_PKG_STATE_CONFIG 70h - MC_WATCHDG_TIMEOUT_PKGC_SLAVE 71h - MC_WATCHDG_TIMEOUT_PKGS_MASTER 72h - MC_WATCHDG_TIMEOUT_PKGS_MASTER 7ah - MC_HA_FAILSTS_CHANGE_DETECTED 81h - MC_RECOVERABLE_DIE_THERMAL_TOO_HOT
	56-32	Reserved	Reserved
Status register validity indicators ¹	57-63		

Table 16-13 Machine Check Error Codes for IA32_MC4_STATUS

NOTES:

...

1. These fields are architecturally defined. Refer to Chapter 15, "Machine-Check Architecture," for more information.

16.5 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_3EH, MACHINE ERROR CODES FOR MACHINE CHECK

Intel Xeon processor E5 v2 family and Intel Xeon processor E7 v2 family are based on the Ivy Bridge-EP microarchitecture and can be identified with CPUID DisplayFamily_DisplaySignature 06_3EH. Incremental error codes for internal machine check error from PCU controller is reported in the register bank IA32_MC4, Table 16-17 lists model-specific fields to interpret error codes applicable to IA32_MC4_STATUS. Incremental MC error codes related to the Intel QPI links are reported in the register banks IA32_MC5. Information listed in Table 16-14 for QPI MC error code apply to IA32_MC5_STATUS. Incremental error codes for the memory controller unit is reported in the register banks IA32_MC9-IA32_MC16. Table 16-18 lists model-specific error codes apply to IA32_MCi_STATUS, i = 9-16.

. . .

16.5.1 Internal Machine Check Errors

Туре	Bit No.	Bit Function	Bit Description
MCA error codes ¹	0-15	MCACOD	
Model specific errors	19:16	Reserved except for	0000b - No Error
		the following	0001b - Non_IMem_Sel
			0010b - I_Parity_Error
			0011b - Bad_OpCode
			0100b - I_Stack_Underflow
			0101b - I_Stack_Overflow
			0110b - D_Stack_Underflow
			0111b - D_Stack_Overflow
			1000b - Non-DMem_Sel
			1001b - D_Parity_Error

Table 16-17 Machine Check Error Codes for IA32_MC4_STATUS

Туре	Bit No.	Bit Function	Bit Description
	23-20	Reserved	Reserved
	31-24	Reserved except for	00h - No Error
		the following	0Dh - MC_IMC_FORCE_SR_S3_TIMEOUT
			0Eh - MC_CPD_UNCPD_ST_TIMEOUT
			0Fh - MC_PKGS_SAFE_WP_TIMEOUT
			43h - MC_PECI_MAILBOX_QUIESCE_TIMEOUT
			44h - MC_CRITICAL_VR_FAILED
			45h - MC_ICC_MAX-NOTSUPPORTED
			5Ch - MC_MORE_THAN_ONE_LT_AGENT
			60h - MC_INVALID_PKGS_REQ_PCH
			61h - MC_INVALID_PKGS_REQ_QPI
			62h - MC_INVALID_PKGS_RES_QPI
			63h - MC_INVALID_PKGC_RES_PCH
			64h - MC_INVALID_PKG_STATE_CONFIG
			70h - MC_WATCHDG_TIMEOUT_PKGC_SLAVE
			71h - MC_WATCHDG_TIMEOUT_PKGC_MASTER
			72h - MC_WATCHDG_TIMEOUT_PKGS_MASTER
			7Ah - MC_HA_FAILSTS_CHANGE_DETECTED
			7Bh - MC_PCIE_R2PCIE-RW_BLOCK_ACK_TIMEOUT
			81h - MC_RECOVERABLE_DIE_THERMAL_TOO_HOT
	56-32	Reserved	Reserved
Status register validity indicators ¹	57-63		

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, "Machine-Check Architecture," for more information.

...

16.5.2 Integrated Memory Controller Machine Check Errors

MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC9_STATUS-IA32_MC16_STATUS. The supported error codes are follows the architectural MCACOD definition type 1MMMCCCC (see Chapter 15, "Machine-Check Architecture,").

 $MSR_ERROR_CONTROL.[bit 1]$ can enable additional information logging of the IMC. The additional error information logged by the IMC is stored in IA32_MCi_STATUS and IA32_MCi_MISC; (i = 9-16).

Table 16-18 Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 9-16)

Туре	Bit No.	Bit Function	Bit Description
MCA error codes ¹	0-15	MCACOD	Memory Controller error format: 000F 0000 1MMM CCCC
Model specific	31:16	Reserved except for	001H - Address parity error
errors		the following	002H - HA Wrt buffer Data parity error
			004H - HA Wrt byte enable parity error
			008H - Corrected patrol scrub error
			010H - Uncorrected patrol scrub error
			020H - Corrected spare error
			040H - Uncorrected spare error
			080H - Corrected memory read error. (Only applicable with iMC's "Additional Error logging" Mode-1 enabled.)
			100H - iMC, WDB, parity errors
	36-32	Other info	When MSR_ERROR_CONTROL.[1] is set, logs an encoded value from the first error device.
	37	Reserved	Reserved
	56-38		See Chapter 15, "Machine-Check Architecture,"
Status register validity indicators ¹	57-63		

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, "Machine-Check Architecture," for more information.

Table 16-19 Intel IMC MC Error Codes for IA32_MCi_MISC (i= 9-16)

Туре	Bit No.	Bit Function	Bit Description
MCA addr info ¹	0-8		See Chapter 15, "Machine-Check Architecture,"
Model specific errors	13:9		If the error logged is MCWrDataPar error or MCWrBEPar error, this field is the WDB ID that has the parity error. OR if the second error logged is a correctable read error, MC logs the second error device in this field.
Model specific errors	29-14	ErrMask_1stErrDev	When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error bit mask.
Model specific errors	45-30	ErrMask_2ndErrDev	When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error bit mask.
	50:46	FailRank_1stErrDev	When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error failing rank.
	55:51	FailRank_2ndErrDev	When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error failing rank.
	61:56		Reserved
	62	Valid_1stErrDev	When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data from a correctable error from memory read associated with first error device.
	63	Valid_2ndErrDev	When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data due to a second correctable error in a memory device. Use this information only after there is valid first error info indicated by bit 62.

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, "Machine-Check Architecture," for more information.

16.6 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_3FH, MACHINE ERROR CODES FOR MACHINE CHECK

Intel Xeon processor E5 v3 family is based on the Haswell-E microarchitecture and can be identified with CPUID DisplayFamily_DisplaySignature 06_3FH. Incremental error codes for internal machine check error from PCU controller is reported in the register bank IA32_MC4, Table 16-20 lists model-specific fields to interpret error codes applicable to IA32_MC4_STATUS. Incremental MC error codes related to the Intel QPI links are reported in the register banks IA32_MC5_Information listed in Table 16-14 for QPI MC error code apply to IA32_MC5_STATUS. Incremental error codes for the memory controller unit is reported in the register banks IA32_MC6. Table 16-18 lists model-specific error codes apply to IA32_MC16. Table 16-18 lists model-specific error codes apply to IA32_MC16.

16.6.1 Internal Machine Check Errors

Туре	Bit No.	Bit Function	Bit Description
MCA error codes ¹	15:0	MCACOD	
MCACOD ²	15:0	internal Errors	0402h - PCU internal Errors
			0403h - PCU internal Errors
			0406h - Intel TXT Errors
			0407h - Other UBOX internal Errors.
			On an IERR caused by a core 3-strike the IA32_MC3_STATUS (MLC) is copied to the IA32_MC4_STATUS (After a 3-strike, the core MCA banks will be unavailable).
Model specific errors 19:16		0000b - No Error	
		the following	00xxb - PCU internal error

Table 16-20 Machine Check Error Codes for IA32 MC4 STATUS

Туре	Bit No.	Bit Function	Bit Description
	23-20	Reserved	Reserved
	31-24	Reserved except for	00h - No Error
		the following	09h - MC_MESSAGE_CHANNEL_TIMEOUT
			0Dh - MC_IMC_FORCE_SR_S3_TIMEOUT
			0Eh - MC_CPD_UNCPD_ST_TIMEOUT
			13h - MC_DMI_TRAINING_TIMEOUT
			15h - MC_DMI_CPU_RESET_ACK_TIMEOUT
			1Eh - MC_VR_ICC_MAX_LT_FUSED_ICC_MAX
			25h - MC_SVID_COMMAND_TIMEOUT
			29h - MC_VR_VOUT_MAC_LT_FUSED_SVID
			2Bh - MC_PKGC_WATCHDOG_HANG_CBZ_DOWN
			2Ch - MC_PKGC_WATCHDOG_HANG_CBZ_UP
			39h - MC_PKGC_WATCHDOG_HANG_C3_UP_SF
			44h - MC_CRITICAL_VR_FAILED
			45h - MC_ICC_MAX_NOTSUPPORTED
			46h - MC_VID_RAMP_DOWN_FAILED
			47h - MC_EXCL_MODE_NO_PMREQ_CMP
			48h - MC_SVID_READ_REG_ICC_MAX_FAILED
			49h - MC_SVID_WRITE_REG_VOUT_MAX_FAILED

Туре	Bit No.	Bit Function	Bit Description
			4Bh - MC_BOOT_VID_TIMEOUT. Timeout setting boot VID for DRAM 0.
			4Ch - MC_BOOT_VID_TIMEOUT. Timeout setting boot VID for DRAM 1.
			4Dh - MC_BOOT_VID_TIMEOUT. Timeout setting boot VID for DRAM 2.
			4Eh - MC_BOOT_VID_TIMEOUT. Timeout setting boot VID for DRAM 3.
			4Fh - MC_SVID_COMMAND_ERROR.
			52h - MC_FIVR_CATAS_OVERVOL_FAULT.
			53h - MC_FIVR_CATAS_OVERCUR_FAULT.
			57h - MC_SVID_PKGC_REQUEST_FAILED
			58h - MC_SVID_IMON_REQUEST_FAILED
			59h - MC_SVID_ALERT_REQUEST_FAILED
			60h - MC_INVALID_PKGS_REQ_PCH
			61h - MC_INVALID_PKGS_REQ_QPI
			62h - MC_INVALID_PKGS_RSP_QPI
			63h - MC_INVALID_PKGC_RSP_PCH
			64h - MC_INVALID_PKG_STATE_CONFIG
			67h - MC_HA_IMC_RW_BLOCK_ACK_TIMEOUT
			68h - MC_IMC_RW_SMBUS_TIMEOUT
			69h - MC_HA_FAILSTS_CHANGE_DETECTED
			6Ah - MC_MSGCH_PMREQ_CMP_TIMEOUT
			70h - MC_WATCHDG_TIMEOUT_PKGC_SLAVE
			71h - MC_WATCHDG_TIMEOUT_PKGC_MASTER
			72h - MC_WATCHDG_TIMEOUT_PKGS_MASTER
			7Ch - MC_BIOS_RST_CPL_INVALID_SEQ
			7Dh - MC_MORE_THAN_ONE_TXT_AGENT
			81h - MC_RECOVERABLE_DIE_THERMAL_TOO_HOT
	56-32	Reserved	Reserved
Status register validity indicators	s ¹ 57-63		

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, "Machine-Check Architecture," for more information.

2. The internal error codes may be model-specific.

16.6.2 Intel QPI Machine Check Errors

MC error codes associated with the Intel QPI agents are reported in the MSRs IA32_MC5_STATUS, IA32_MC20_STATUS, and IA32_MC21_STATUS. The supported error codes follow the architectural MCACOD definition type 1PPTRRRIILL (see Chapter 15, "Machine-Check Architecture,").

Table 16-21 lists model-specific fields to interpret error codes applicable to IA32_MC5_STATUS, IA32_MC20_STATUS, and IA32_MC21_STATUS.

Table 16-21 Intel QPI MC Error Codes for IA32_MCi_STATUS (i = 5, 20, 21)

Туре	Bit No.	Bit Function	Bit Description
MCA error codes ¹	0-15	MCACOD	Bus error format: 1PPTRRRRIILL
Model specific	31-16	MSCOD	02h - Intel QPI physical layer detected drift buffer alarm.
errors			03h - Intel QPI physical layer detected latency buffer rollover.
			10h - Intel QPI link layer detected control error from R3QPI.
			11h - Rx entered LLR abort state on CRC error.
			12h - Unsupported or undefined packet.
			13h - Intel QPI link layer control error.
			15h - RBT used un-initialized value.
			20h - Intel QPI physical layer detected a QPI in-band reset but aborted initialization
			21h - Link failover data self-healing
			22h - Phy detected in-band reset (no width change).
			23h - Link failover clock failover
			30h -Rx detected CRC error - successful LLR after Phy re-init.
			31h -Rx detected CRC error - successful LLR without Phy re-init.
			All other values are reserved.
	37-32	Reserved	Reserved
	52-38	Corrected Error Cnt	
	56-53	Reserved	Reserved
Status register validity indicators ¹	57-63		

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, "Machine-Check Architecture," for more information.

16.6.3 Integrated Memory Controller Machine Check Errors

MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC9_STATUS-IA32_MC16_STATUS. The supported error codes follow the architectural MCACOD definition type 1MMMCCCC (see Chapter 15, "Machine-Check Architecture,").

 $MSR_ERROR_CONTROL.$ [bit 1] can enable additional information logging of the IMC. The additional error information logged by the IMC is stored in IA32_MCi_STATUS and IA32_MCi_MISC; (i = 9-16).

Table 16-22 Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 9-16)

Туре	Bit No.	Bit Function	Bit Description
MCA error codes ¹	0-15	MCACOD	Memory Controller error format: 0000 0000 1MMM CCCC
Model specific	31:16	Reserved except for	0001H - DDR3 address parity error
errors		the following	0002H - Uncorrected HA write data error
			0004H - Uncorrected HA data byte enable error
			0008H - Corrected patrol scrub error
			0010H - Uncorrected patrol scrub error
			0020H - Corrected spare error
			0040H - Uncorrected spare error
			0080H - Corrected memory read error. (Only applicable with iMC's "Additional Error logging" Mode-1 enabled.)
			0100H - iMC, write data buffer parity errors
			0200H - DDR4 command address parity error
	36-32	Other info	When MSR_ERROR_CONTROL.[1] is set, logs an encoded value from the first error device.
	37	Reserved	Reserved
	56-38		See Chapter 15, "Machine-Check Architecture,"
Status register validity indicators ¹	57-63		

NOTES: 1. These fields are architecturally defined. Refer to Chapter 15, "Machine-Check Architecture," for more information.

Table 16-23 Intel IMC MC Error Codes for IA32_MCi_MISC (i= 9-16)

Туре	Bit No.	Bit Function	Bit Description
MCA addr info ¹	0-8		See Chapter 15, "Machine-Check Architecture,"
Model specific errors	13:9		If the error logged is MCWrDataPar error or MCWrBEPar error, this field is the WDB ID that has the parity error. OR if the second error logged is a correctable read error, MC logs the second error device in this field.
Model specific errors	29-14	ErrMask_1stErrDev	When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error bit mask.
Model specific errors	45-30	ErrMask_2ndErrDev	When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error bit mask.
	50:46	FailRank_1stErrDev	When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error failing rank.
	55:51	FailRank_2ndErrDev	When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error failing rank.

Туре	Bit No.	Bit Function	Bit Description
	61:56		Reserved
	62	Valid_1stErrDev	When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data from a correctable error from memory read associated with first error device.
	63	Valid_2ndErrDev	When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data due to a second correctable error in a memory device. Use this information only after there is valid first error info indicated by bit 62.

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, "Machine-Check Architecture," for more information.

...

9. Updates to Chapter 17, Volume 3B

Change bars show changes to Chapter 17 of the Intel[®] 64 and IA-32 Architectures Software Developer's Manual, Volume 3B: System Programming Guide, Part 2.

CHAPTER 17 DEBUG, BRANCH PROFILE, TSC, AND RESOURCE MONITORING FEATURES

Intel 64 and IA-32 architectures provide debug facilities for use in debugging code and monitoring performance. These facilities are valuable for debugging application software, system software, and multitasking operating systems. Debug support is accessed using debug registers (DR0 through DR7) and model-specific registers (MSRs):

- Debug registers hold the addresses of memory and I/O locations called breakpoints. Breakpoints are userselected locations in a program, a data-storage area in memory, or specific I/O ports. They are set where a programmer or system designer wishes to halt execution of a program and examine the state of the processor by invoking debugger software. A debug exception (#DB) is generated when a memory or I/O access is made to a breakpoint address.
- MSRs monitor branches, interrupts, and exceptions; they record addresses of the last branch, interrupt or exception taken and the last branch taken before an interrupt or exception.
- Time stamp counter is described in Section 17.13, "Time-Stamp Counter".
- Features which allow monitoring of shared platform resources such as the L3 cache are described in Section 17.14, "Platform Shared Resource Monitoring: Cache Monitoring Technology".
- Features which enable control over shared platform resources are described in Section 17.15, "Platform Shared Resource Control: Cache Allocation Technology".

. . .

17.14 PLATFORM SHARED RESOURCE MONITORING: CACHE MONITORING TECHNOLOGY

The Intel[®] Xeon[®] processor E5 v3 family introduced resource monitoring capability in each logical processor to measure specific platform shared resource metrics, for example, L3 cache occupancy. The programming interface

for these monitoring features is described in this section. Two features within the monitoring feature set provided are described - Cache Monitoring Technology (CMT) and Memory Bandwidth Monitoring.

Cache Monitoring Technology (CMT) allows an Operating System, Hypervisor or similar system management agent to determine the usage of cache by applications running on the platform. The initial implementation is directed at L3 cache monitoring (currently the last level cache in most server platforms).

Memory Bandwidth Monitoring (MBM) builds on the CMT infrastructure to allow monitoring of bandwidth from one level of the cache hierarchy to the next - in this case focusing on the L3 cache, which is typically backed directly by system memory. As a result of this implementation, memory bandwidth can be monitored.

The monitoring mechanisms described provide the following key shared infrastructure features:

- A mechanism to enumerate the presence of the monitoring capabilities within the platform (via a CPUID feature bit).
- A framework to enumerate the details of each sub-feature (including CMT and MBM, as discussed later, via CPUID leaves and sub-leaves).
- A mechanism for the OS or Hypervisor to indicate a software-defined ID for each of the software threads (applications, virtual machines, etc.) that are scheduled to run on a logical processor. These identifiers are known as Resource Monitoring IDs (RMIDs).
- Mechanisms in hardware to monitor cache occupancy and bandwidth statistics as applicable to a given product generation on a per software-id basis.
- Mechanisms for the OS or Hypervisor to read back the collected metrics such as L3 occupancy or Memory Bandwidth for a given software ID at any point during runtime.

17.14.1 Overview of Cache Monitoring Technology and Memory Bandwidth Monitoring

The shared resource monitoring features described in this chapter provide a layer of abstraction between applications and logical processors through the use of **Resource Monitoring ID**s (RMIDs). Each logical processor in the system can be assigned an RMID independently, or multiple logical processors can be assigned to the same RMID value (e.g., to track an application with multiple threads). For each logical processor, only one RMID value is active at a time. This is enforced by the IA32_PQR_ASSOC MSR, which specifies the active RMID of a logical processor. Writing to this MSR by software changes the active RMID of the logical processor from an old value to a new value.

The underlying platform shared resource monitoring hardware tracks cache metrics such as cache utilization and misses as a result of memory accesses according to the RMIDs and reports monitored data via a counter register (IA32_QM_CTR). The specific event types supported vary by generation and can be enumerated via CPUID. Before reading back monitored data software must configure an event selection MSR (IA32_QM_EVTSEL) to specify which metric is to be reported, and the specific RMID for which the data should be returned.

Processor support of the monitoring framework and sub-features such as CMT is reported via the CPUID instruction. The resource type available to the monitoring framework is enumerated via a new leaf function in CPUID. Reading and writing to the monitoring MSRs requires the RDMSR and WRMSR instructions.

The Cache Monitoring Technology feature set provides the following unique mechanisms:

- A mechanism to enumerate the presence and details of the CMT feature as applicable to a given level of the cache hierarchy, independent of other monitoring features.
- CMT-specific event codes to read occupancy for a given level of the cache hierarchy.

The Memory Bandwidth Monitoring feature provides the following unique mechanisms:

• A mechanism to enumerate the presence and details of the MBM feature as applicable to a given level of the cache hierarchy, independent of other monitoring features.

 MBM-specific event codes to read bandwidth out to the next level of the hierarchy and various sub-event codes to read more specific metrics as discussed later (e.g., total bandwidth vs. bandwidth only from local memory controllers on the same package).

17.14.2 Enabling Monitoring: Usage Flow

Figure 17-19 illustrates the key steps for OS/VMM to detect support of shared resource monitoring features such as CMT and enable resource monitoring for available resource types and monitoring events.

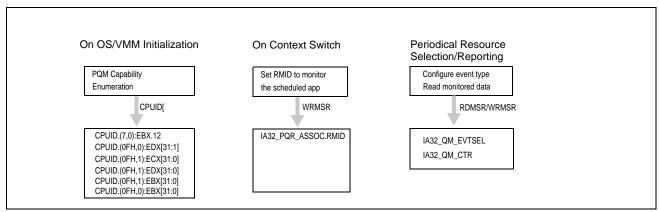


Figure 17-19 Platform Shared Resource Monitoring Usage Flow

17.14.3 Enumeration and Detecting Support of Cache Monitoring Technology and Memory Bandwidth Monitoring

Software can query processor support of shared resource monitoring features capabilities by executing CPUID instruction with EAX = 07H, ECX = 0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] reports 1, the processor provides the following programming interfaces for shared resource monitoring, including Cache Monitoring Technology:

- CPUID leaf function OFH (Shared Resource Monitoring Enumeration leaf) provides information on available resource types (see Section 17.14.4), and monitoring capabilities for each resource type (see Section 17.14.5). Note CMT and MBM capabilities are enumerated as separate event vectors using shared enumeration infrastructure under a given resource type.
- IA32_PQR_ASSOC.RMID: The per-logical-processor MSR, IA32_PQR_ASSOC, that OS/VMM can use to assign an RMID to each logical processor, see Section 17.14.6.
- IA32_QM_EVTSEL: This MSR specifies an Event ID (EvtID) and an RMID which the platform uses to look up and provide monitoring data in the monitoring counter, IA32_QM_CTR, see Section 17.14.7.
- IA32_QM_CTR: This MSR reports monitored resource data when available along with bits to allow software to check for error conditions and verify data validity.

Software must follow the following sequence of enumeration to discover Cache Monitoring Technology capabilities:

- 1. Execute CPUID with EAX=0 to discover the "cpuid_maxLeaf" supported in the processor;
- If cpuid_maxLeaf >= 7, then execute CPUID with EAX=7, ECX= 0 to verify CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] is set;
- 3. If CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1, then execute CPUID with EAX=0FH, ECX= 0 to query available resource types that support monitoring;

- 4. If CPUID.(EAX=0FH, ECX=0):EDX.L3[bit 1] = 1, then execute CPUID with EAX=0FH, ECX= 1 to query the specific capabilities of L3 Cache Monitoring Technology (CMT) and Memory Bandwidth Monitoring.
- If CPUID.(EAX=0FH, ECX=0): EDX reports additional resource types supporting monitoring, then execute CPUID with EAX=0FH, ECX set to a corresponding resource type ID (ResID) as enumerated by the bit position of CPUID.(EAX=0FH, ECX=0): EDX.

17.14.4 Monitoring Resource Type and Capability Enumeration

CPUID leaf function OFH (Shared Resource Monitoring Enumeration leaf) provides one sub-leaf (sub-function 0) that reports shared enumeration infrastructure, and one or more sub-functions that report feature-specific enumeration data:

Monitoring leaf sub-function 0 enumerates available resources that support monitoring, i.e. executing CPUID with EAX=0FH and ECX=0H. In the initial implementation, L3 cache is the only resource type available. Each supported resource type is represented by a bit in CPUID. (EAX=0FH, ECX=0):EDX[31:1]. The bit position corresponds to the sub-leaf index (ResID) that software must use to query details of the monitoring capability of that resource type (see Figure 17-21 and Figure 17-22). Reserved bits of CPUID. (EAX=0FH, ECX=0):EDX[31:2] correspond to unsupported sub-leaves of the CPUID.0FH leaf. Additionally, CPUID.(EAX=0FH, ECX=0H):EBX reports the highest RMID value of any resource type that supports monitoring in the processor.

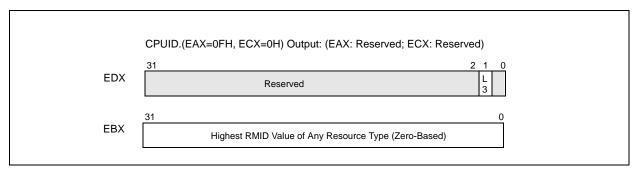


Figure 17-20 CPUID.(EAX=0FH, ECX=0H) Monitoring Resource Type Enumeration

17.14.5 Feature-Specific Enumeration

Each additional sub-leaf of CPUID. (EAX=0FH, ECX=ResID) enumerates the specific details for software to program Monitoring MSRs using the resource type associated with the given ResID.

Note that in future Monitoring implementations the meanings of the returned registers may vary in other subleaves that are not yet defined. The registers will be specified and defined on a per-ResID basis.



Figure 17-21 L3 Cache Monitoring Capability Enumeration Data (CPUID.(EAX=0FH, ECX=1H))

For each supported Cache Monitoring resource type, hardware supports only a finite number of RMIDs. CPUID.(EAX=0FH, ECX=1H).ECX enumerates the highest RMID value that can be monitored with this resource type, see Figure 17-21.

CPUID. (EAX=0FH, ECX=1H).EDX specifies a bit vector that is used to look up the EventID (See Figure 17-22 and Table 17-14) that software must program with IA32_QM_EVTSEL in order to retrieve event data. After software configures IA32_QMEVTSEL with the desired RMID and EventID, it can read the resulting data from IA32_QM_CTR. The raw numerical value reported from IA32_QM_CTR can be converted to the final value (occupancy in bytes or bandwidth in bytes per sampled time period) by multiplying the counter value by the value from CPUID. (EAX=0FH, ECX=1H).EBX, see Figure 17-21.

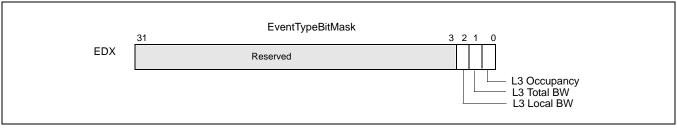


Figure 17-22 L3 Cache Monitoring Capability Enumeration Event Type Bit Vector (CPUID.(EAX=0FH, ECX=1H))

17.14.5.1 Cache Monitoring Technology

On processors for which Cache Monitoring Technology supports the L3 cache occupancy event, CPUID. (EAX=0FH, ECX=1H).EDX would return with only bit 0 set. The corresponding event ID can be looked up from Table 17-14. The L3 occupancy data accumulated in IA32_QM_CTR can be converted to total occupancy (in bytes) by multiplying with CPUID.(EAX=0FH, ECX=1H).EBX.

Event codes for Cache Monitoring Technology are discussed in the next section.

17.14.5.2 Memory Bandwidth Monitoring

On processors that monitoring supports Memory Bandwidth Monitoring using ResID=1 (L3), two additional bits will be set in the vector at CPUID.(EAX=0FH, ECX=1H).EDX:

 CPUID. (EAX=0FH, ECX=1H).EDX[bit 1]: indicates the L3 total external bandwidth monitoring event is supported if set. This event monitors the L3 total external bandwidth to the next level of the cache hierarchy, including all demand and prefetch misses from the L3 to the next hierarchy of the memory system. In most platforms, this represents memory bandwidth. CPUID. (EAX=0FH, ECX=1H). EDX[bit 2]: indicates L3 local memory bandwidth monitoring event is supported
if set. This event monitors the L3 external bandwidth satisfied by the local memory. In most platforms that
support this event, L3 requests are likely serviced by a memory system with non-uniform memory architecture. This allows bandwidth to off-package memory resources to be tracked by subtracting total from local
bandwidth (for instance, bandwidth over QPI to a memory controller on another physical processor could be
tracked by subtraction).

The corresponding Event ID can be looked up from Table 17-14. The L3 bandwidth data accumulated in IA32_QM_CTR can be converted to total bandwidth (in bytes) using CPUID.(EAX=0FH, ECX=1H).EBX.

Event Type	Event ID	Context
L3 Cache Occupancy	01H	Cache Monitoring Technology
L3 Total External Bandwidth	02H	МВМ
L3 Local External Bandwidth	03H	МВМ
Reserved	All other event codes	N/A

Table 17-14 Monitoring Supported Event IDs

17.14.6 Monitoring Resource RMID Association

After Monitoring and sub-features has been enumerated, software can begin using the monitoring features. The first step is to associate a given software thread (or multiple threads as part of an application, VM, group of applications or other abstraction) with an RMID.

Note that the process of associating an RMID with a given software thread is the same for all shared resource monitoring features (CMT, MBM), and a given RMID number has the same meaning from the viewpoint of any logical processors in a package. Stated another way, a thread may be associated in a 1:1 mapping with an RMID, and that RMID may allow cache occupancy, memory bandwidth information or other monitoring data to be read back later with monitoring event codes (retrieving data is discussed in a previous section).

The association of an application thread with an RMID requires an OS to program the per-logical-processor MSR IA32_PQR_ASSOC at context swap time (updates may also be made at any other arbitrary points during program execution such as application phase changes). The IA32_PQR_ASSOC MSR specifies the active RMID that monitoring hardware will use to tag internal operations, such as L3 cache requests. The layout of the MSR is shown in Figure 17-23. Software specifies the active RMID to monitor in the IA32_PQR_ASSOC.RMID field. The width of the RMID field can vary from one implementation to another, and is derived from Ceil (LOG₂ (1 + CPUID.(EAX=0FH, ECX=0):EBX[31:0])). The value of IA32_PQR_ASSOC after power-on is 0.

Width	of IA32_PQR_ASSOC.RMII	D field: Log ₂ (CPUID.(EAX	(=0FH, ECX=0H).E	BX[31:0] +1)
-	63 32	31 10	9	0
	Reserved for CLOS*	Reserved	RMID	IA32_PQR_ASSOC
	*See Section 17.15			_

Figure 17-23 IA32_PQR_ASSOC MSR

In the initial implementation, the width of the RMID field is up to 10 bits wide, zero-referenced and fully encoded. However, software must use CPUID to query the maximum RMID supported by the processor. If a value larger than the maximum RMID is written to IA32_PQR_ASSOC.RMID, a #GP(0) fault will be generated.

RMIDs have a global scope within the physical package- if an RMID is assigned to one logical processor then the same RMID can be used to read multiple thread attributes later (for example, L3 cache occupancy or external bandwidth from the L3 to the next level of the cache hierarchy). In a multiple LLC platform the RMIDs are to be reassigned by the OS or VMM scheduler when an application is migrated across LLCs.

Note that in a situation where Monitoring supports multiple resource types, some upper range of RMIDs (e.g. RMID 31) may only be supported by one resource type but not by another resource type.

17.14.7 Monitoring Resource Selection and Reporting Infrastructure

The reporting mechanism for Cache Monitoring Technology and other related features is architecturally exposed as an MSR pair that can be programmed and read to measure various metrics such as the L3 cache occupancy (CMT) and bandwidths (MBM) depending on the level of Monitoring support provided by the platform. Data is reported back on a per-RMID basis. These events do not trigger based on event counts or trigger APIC interrupts (e.g. no Performance Monitoring Interrupt occurs based on counts). Rather, they are used to sample counts explicitly.

The MSR pair for the shared resource monitoring features (CMT, MBM) is separate from and not shared with architectural Perfmon counters, meaning software can use these monitoring features simultaneously with the Perfmon counters.

Access to the aggregated monitoring information is accomplished through the following programmable monitoring MSRs:

IA32_QM_EVTSEL: This MSR provides a role similar to the event select MSRs for programmable performance monitoring described in Chapter 18. The simplified layout of the MSR is shown in Figure 17-23. Bits IA32_QM_EVTSEL.EvtID (bits 7:0) specify an event code of a supported resource type for hardware to report monitored data associated with IA32_QM_EVTSEL.RMID (bits 41:32). Software can configure IA32_QM_EVTSEL.RMID with any RMID that is active within the physical processor. The width of IA32_QM_EVTSEL.RMID matches that of IA32_PQR_ASSOC.RMID. Supported event codes for the IA32_QM_EVTSEL register are shown in Table 17-14. Note that valid event codes may not necessarily map directly to the bit position used to enumerate support for the resource via CPUID.

Software can program an RMID / Event ID pair into the IA32_QM_EVTSEL MSR bit field to select an RMID to read a particular counter for a given resource. The currently supported list of Monitoring Event IDs is discussed in Section 17.14.5, which covers feature-specific details.

Thread access to the IA32_QM_EVTSEL and IA32_QM_CTR MSR pair should be serialized to avoid situations where one thread changes the RMID/EvtID just before another thread reads monitoring data from IA32_QM_CTR.

• IA32_QM_CTR: This MSR reports monitored data when available. It contains three bit fields. If software configures an unsupported RMID or event type in IA32_QM_EVTSEL, then IA32_QM_CTR.Error (bit 63) will be set, indicating there is no valid data to report. If IA32_QM_CTR.Unavailable (bit 62) is set, it indicates monitored data for the RMID is not available, and IA32_QM_CTR.data (bits 61:0) should be ignored. Therefore, IA32_QM_CTR.data (bits 61:0) is valid only if bit 63 and 62 are both clear. For Cache Monitoring Technology, software can convert IA32_QM_CTR.data into cache occupancy or bandwidth metrics expressed in bytes by multiplying with the conversion factor from CPUID.(EAX=0FH, ECX=1H).EBX.

63	4241	32 :	31	8 7	0	
Reserv	ed	RMID	Reserved	EvtID		IA32_QM_EVTSEL
00 61					_	
63 61 E U			Irce Monitoring Data		0	IA32_QM_CTR

Figure 17-24 IA32_QM_EVTSEL and IA32_QM_CTR MSRs

17.14.8 Monitoring Programming Considerations

17.14.8.1 Monitoring Dynamic Configuration

Both the IA32_QM_EVTSEL and IA32_PQR_ASSOC registers are accessible and modifiable at any time during execution using RDMSR/WRMSR unless otherwise noted. When writing to these MSRs a #GP(0) will be generated if any of the following conditions occur:

- A reserved bit is modified,
- An RMID exceeding the maxRMID is used.

17.14.8.2 Monitoring Operation With Power Saving Features

Note that some advanced power management features such as deep package C-states may shrink the L3 cache and cause CMT occupancy count to be reduced. MBM bandwidth counts may increase due to flushing cached data out of L3.

17.14.8.3 Monitoring Operation with Other Operating Modes

The states in IA32_PQR_ASSOC and monitoring counter are unmodified across an SMI delivery. Thus, the execution of SMM handler code and SMM handler's data can manifest as spurious contribution in the monitored data.

It is possible for an SMM handler to minimize the impact on of spurious contribution in the QOS monitoring counters by reserving a dedicated RMID for monitoring the SMM handler. Such an SMM handler can save the previously configured QOS Monitoring state immediately upon entering SMM, and restoring the QOS monitoring state back to the prev-SMM RMID upon exit.

17.14.8.4 Monitoring Operation with RAS Features

In general the Reliability, Availability and Serviceability (RAS) features present in Intel Platforms are not expected to significantly affect shared resource monitoring counts. In cases where software RAS features cause memory copies or cache accesses these may be tracked and may influence the shared resource monitoring counter values.

17.15 PLATFORM SHARED RESOURCE CONTROL: CACHE ALLOCATION TECHNOLOGY

Future generations of the Intel Xeon processor offer capabilities to configure and make use of the Cache Allocation Technology (CAT) mechanisms. The programming interface for Cache Allocation Technology and for the more general allocation capabilities are described in the rest of this chapter.

Cache Allocation Technology enables an Operating System (OS), Hypervisor /Virtual Machine Manager (VMM) or similar system service management agent to specify the amount of cache space into which an application can fill (as a hint to hardware - certain features such as power management may override CAT settings). User-level implementations with minimal OS support are also possible, though not recommended (see Section 3.5 for examples and discussion). The initial implementation focuses on L3 cache allocation, but the technology is designed to scale across multiple cache levels and technology generations.

The CAT mechanisms defined in this document provide the following key features:

- A mechanism to enumerate platform Cache Allocation Technology capabilities and available resource types that provides CAT control capabilities. For implementations that support Cache Allocation Technology, CPUID provides enumeration support to query more specific CAT capabilities, such as the max allocation bitmask size,
- A mechanism for the OS or Hypervisor to configure the amount of a resource available to a particular Class of Service via a list of allocation bitmasks,
- Mechanisms for the OS or Hypervisor to signal the Class of Service to which an application belongs, and
- Hardware mechanisms to guide the LLC fill policy when an application has been designated to belong to a specific Class of Service.

Note that an OS or Hypervisor should not expose Cache Allocation Technology mechanisms to Ring3 software or virtualized guests.

The Cache Allocation Technology feature enables more cache resources (i.e. cache space) to be made available for high priority applications based on guidance from the execution environment as shown in Figure 17-25. The architecture also allows dynamic resource reassignment during runtime to further optimize the performance of the high priority application with minimal degradation to the low priority app. Additionally, resources can be rebalanced for system throughput benefit. This section describes the hardware and software support required in the platform including what is required of the execution environment (i.e. OS/VMM) to support such resource control. Note that in Figure 17-25 the L3 Cache is shown as an example resource.

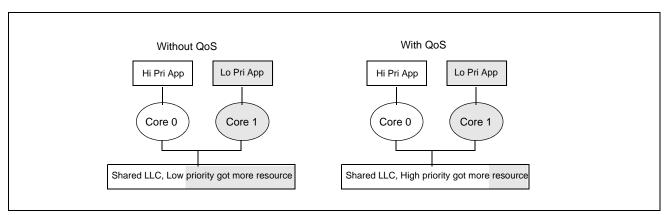


Figure 17-25 Enabling Class-based Cache Allocation Technology

17.15.1 Cache Allocation Technology: Architecture Introduction

The fundamental goal of Cache Allocation Technology is to enable resource allocation based on application priority or Class of Service (COS or CLOS). The processor exposes a set of Classes of Service into which applications (or individual threads) can be assigned. Cache allocation for the respective applications or threads is then restricted based on the class with which they are associated. Each Class of Service can be configured using bitmasks which represent capacity and indicate the degree of overlap and isolation between classes. For each logical processor there is a register exposed (referred to here as the IA32_PQR_ASSOC MSR or PQR) to allow the OS/VMM to specify a COS when an application, thread or VM is scheduled. Cache allocation for the indicated application/ thread/VM is then controlled automatically by the hardware based on the class and the bitmask associated with that class. Bitmasks are configured via the IA32_resourceType_MASK_n MSRs, where resourceType indicates a resource type (e.g. "L3" for the L3 cache) and n indicates a COS number.

The basic ingredients of Cache Allocation Technology are as follows:

- An architecturally exposed mechanism using CPUID to indicate whether CAT is supported, and what resource types are available which can be controlled,
- For each available resourceType, CPUID also enumerates the total number of Classes of Services and the length of the capacity bitmasks that can be used to enforce cache allocation to applications on the platform,
- An architecturally exposed mechanism to allow the execution environment (OS/VMM) to configure the behavior of different classes of service using the bitmasks available,
- An architecturally exposed mechanism to allow the execution environment (OS/VMM) to assign a COS to an
 executing software thread (i.e. associating the active CR3 of a logical processor with the COS in
 IA32_POR_ASSOC),
- Implementation-dependent mechanisms to indicate which COS is associated with a memory access and to enforce the cache allocation on a per COS basis.

A capacity bitmask (CBM) provides a hint to the hardware indicating the cache space an application should be limited to as well as providing an indication of overlap and isolation in the CAT-capable cache from other applications contending for the cache. The bitlength of the capacity mask available generally depends on the configuration of the cache and is specified in the enumeration process for CAT in CPUID (this may vary between models in a processor family as well).

	M7	M6	M5	M4	M3	M2	M1	MO	
COS0	Α	А	А	Α	Α	А	Α	А	Default Bitmask
COS1	Α	A	A	A	A	A	A	A	
COS2	А	А	Α	Α	А	А	Α	А	
COS3	А	A	Α	Α	Α	Α	Α	А	
COSO	А	Α	A	A	A	А	А	A	Overlapped Bitmasl
	M7	M6	M5	M4	M3	M2	M1	MO	
COSO	А	А	A	Α	A	A	A	A	Overlapped Bitmas
COS1					A	A	A	A	
COS2							A	A	
COS3								A	
	M7	M6	M5	M4	M3	M2	M1	MO	
COSO	A	A	A	Α					Isolated Bitmask
					A	A			
COS1			1	1	1	1	Α		
COS1 COS2							~		

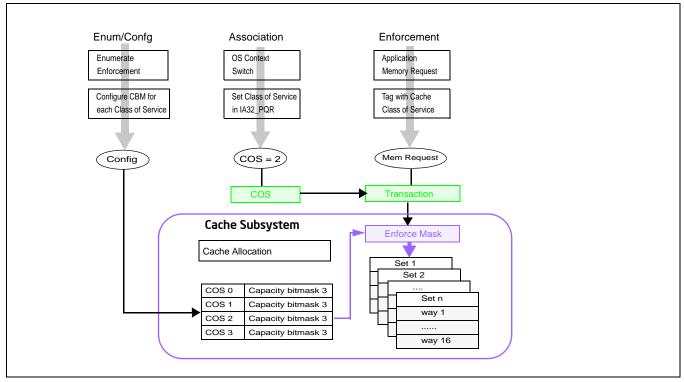
Figure 17-26 Examples of Cache Capacity Bitmasks

Sample cache capacity bitmasks for a bitlength of 8 are shown in Figure 17-26. Please note that all (and only) contiguous '1' combinations are allowed (e.g. FFFFH, OFFOH, 003CH, etc.). It is generally expected that in waybased implementations, one capacity mask bit corresponds to some number of ways in cache, but the specific mapping is implementation-dependent. In all cases, a mask bit set to '1' specifies that a particular Class of Service can allocate into the cache subset represented by that bit. A value of '0' in a mask bit specifies that a Class of Service cannot allocate into the given cache subset. In general, allocating more cache to a given application is usually beneficial to its performance.

Figure 17-26 also shows three examples of sets of Cache Capacity Bitmasks. For simplicity these are represented as 8-bit vectors, though this may vary depending on the implementation and how the mask is mapped to the available cache capacity. The first example shows the default case where all 4 Classes of Service (the total number of COS are implementation-dependent) have full access to the cache. The second case shows an overlapped case, which would allow some lower-priority threads share cache space with the highest priority threads. The third case shows various non-overlapped partitioning schemes. As a matter of software policy for extensibility COS0 should typically be considered and configured as the highest priority COS, followed by COS1, and so on, though there is no hardware restriction enforcing this mapping. When the system boots all threads are initialized to COS0, which has full access to the cache by default.

Though the representation of the CBMs looks similar to a way-based mapping they are independent of any specific enforcement implementation (e.g. way partitioning.) Rather, this is a convenient manner to represent capacity, overlap and isolation of cache space. For example, executing a POPCNT instruction (population count of set bits) on the capacity bitmask can provide the fraction of cache space that a class of service can allocate into. In addition

to the fraction, the exact location of the bits also shows whether the class of service overlaps with other classes of service or is entirely isolated in terms of cache space used.



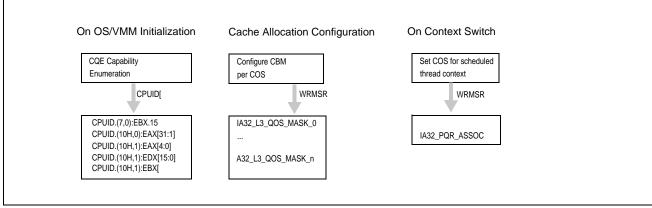

Figure 17-27 Examples of Cache Capacity Bitmasks

Figure 17-27 shows how the Cache Capacity Bitmasks and the per-logical-processor Class of Service are logically used to enable Cache Allocation Technology. All (and only) contiguous 1's in the CBM are permitted. The length of CBM may vary from resource to resource or between processor generations and can be enumerated using CPUID. From the available mask set and based on the goals of the OS/VMM (shared or isolated cache, etc.) bitmasks are selected and associated with different classes of service. For the available Classes of Service the associated CBMs can be programmed via the global set of CAT configuration registers (in the case of L3 CAT, via the IA32_L3_MASK_n MSRs, where "n" is the Class of Service, starting from zero). In all architectural implementations supporting CPUID it is possible to change the CBMs dynamically, during program execution, unless stated otherwise by Intel.

The currently running application's Class of Service is communicated to the hardware through the per-logicalprocessor PQR MSR (IA32_PQR_ASSOC MSR). When the OS schedules an application thread on a logical processor, the application thread is associated with a specific COS (i.e. the corresponding COS in the PQR) and all requests to the CAT-capable resource from that logical processor are tagged with that COS (in other words, the application thread is configured to belong to a specific COS). The cache subsystem uses this tagged request information to enforce QoS. The capacity bitmask may be mapped into a way bitmask (or a similar enforcement entity based on the implementation) at the cache before it is applied to the allocation policy. For example, the capacity bitmask can be an 8-bit mask and the enforcement may be accomplished using a 16-way bitmask for a cache enforcement implementation based on way partitioning.

17.15.2 Enabling Cache Allocation Technology Usage Flow

Figure 17-28 illustrates the key steps for OS/VMM to detect support of Cache Allocation Technology and enable priority-based resource allocation for a CAT-capable resource.

17.15.2.1 Enumeration and Detection Support of Cache Allocation Technology

Availability of Cache Allocation Technology can be detected by calling CPUID leaf 7 and sub leaf 0 (Set EAX=07H, Set ECX=00H, call CPUID). This function is used to enumerate the extended feature flags supported by the processor. It loads feature flags in EAX, ECX, EBX and EDX registers. Bit position 15 in the EBX (EBX[15]) register indicates support for shared resource allocation control in general on the platform. If the value of this bit is set to 1 then it implies that the processor supports control over shared platform resources.

Software can query processor support of CAT capabilities by executing CPUID instruction with EAX = 07H, ECX = 0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQE[bit 15] reports 1, the processor supports Cache Allocation. Software must use CPUID leaf 10H to enumerate additional details of available resource types, classes of services and capability bitmasks. The programming interfaces provided by Cache Allocation Technology include:

- CPUID leaf function 10H (Cache Allocation Technology Enumeration leaf) and its sub-functions provide information on available resource types, and CAT capability for each resource type (see Section 17.15.2.2).
- IA32_L3_MASK_n: A range of MSRs is provided for each resource type, each MSR within that range specifying a software-configured capacity bitmask for each class of service. For L3 with Cache Allocation support, the CBM is specified using one of the IA32_L3_QOS_MASK_n MSR, where 'n' corresponds to a number within the supported range of COS, i.e. the range between 0 and CPUID.(EAX=10FH, ECX=ResID):EDX[15:0], inclusive. See Section 17.15.2.3 for details.
- IA32_PQR_ASSOC.CLOS: The IA32_PQR_ASSOC MSR provides a COS field that OS/VMM can use to assign a logical processor to an available COS. See Section 17.15.2.4 for details.

17.15.2.2 Cache Allocation Technology: Resource Type and Capability Enumeration

CPUID leaf function 10H (Cache Allocation Technology Enumeration leaf) provides two or more sub-functions:

CAT Enumeration leaf sub-function 0 enumerates available resource types that support allocation control, i.e. by executing CPUID with EAX=10H and ECX=0H. In the initial implementation, L3 CAT is the only resource type available. Each supported resource type is represented by a bit field in CPUID. (EAX=10H, ECX=0):EBX[31:1]. The bit position of each set bit corresponds to a Resource ID (ResID). The ResID is also the sub-leaf index that software must use to query details of the CAT capability of that resource type (see Figure 17-29).

Figure 17-29 CPUID.(EAX=10H, ECX=0H) Available Resource Type Identification

Sub-functions of CPUID.EAX=10H with a non-zero ECX input matching a supported ResID enumerate the specific enforcement details of the corresponding ResID. The capabilities enumerated include the length of the capacity bitmasks and the number of Classes of Service for a given ResID. Software must query the capability of each available ResID that supports CAT from a sub-leaf of leaf 10H using the sub-leaf index reported by the corresponding non-zero bit in CPUID. (EAX=10H, ECX=0): EBX[31:1]. CAT capability for L3 is enumerated by CPUID. (EAX=10H, ECX=1), see Figure 17-30. The specific CAT capabilities reported by CPUID. (EAX=10H, ECX=1) are:

CPUID.(EAX=10H	I, ECX=ResID=1) Output:	
EAX	eserved 5	
31	eservea	CBM_LEN
FBX	nareable Resource with Other execut	
ECX Reserved		1 (
31	1615	
EDX Reserved	COS_Max	

Figure 17-30 L3 Cache Allocation Technology Enumeration (CPUID.(EAX=10H, ECX=1H))

- CPUID.(EAX=10H, ECX=ResID=1):EAX[4:0] reports the length of the capacity bitmask length using minus-one notation, i.e. a value of 15 corresponds to the capability bitmask having length of 16 bits. Bits 31:5 of EAX are reserved.
- CPUID.(EAX=10H, ECX=1):EBX[31:0] reports a bit mask. Each set bit within the length of the CBM indicates the corresponding unit of the L3 allocation may be used by other entities in the platform (e.g. an integrated graphics engine or hardware units outside the processor core and have direct access to L3). Each cleared bit within the length of the CBM indicates the corresponding allocation unit can be configured to implement a priority-based allocation scheme chosen by an OS/VMM without interference with other hardware agents in the system. Bits outside the length of the CBM are reserved.
- CPUID.(EAX=10H, ECX=1):ECX: Reserved.

 CPUID.(EAX=10H, ECX=1):EDX[15:0] reports the maximum COS supported for the resource (COS are zero-referenced, meaning a reported value of '15' would indicate 16 total supported COS). Bits 31:16 are reserved.

A note on migration of Classes of Service (COS): Software should minimize migrations of COS across logical processors (across threads or cores), as a reduction in the performance of the Cache Allocation Technology feature may result if COS are migrated frequently. This is aligned with the industry-standard practice of minimizing unnecessary thread migrations across processor cores in order to avoid excessive time spent warming up processor caches after a migration. In general, for best performance, minimize thread migration and COS migration across processor cores.

17.15.2.3 Cache Mask Configuration

After determining the length of the capacity bitmasks (CBM) and number of COS supported using CPUID (see Section 17.15.2.2), each COS needs to be programmed with a CBM to dictate its available cache via a write to the corresponding IA32_resourceType_MASK_n register, where 'n' corresponds to a number within the supported range of COS, i.e. the range between 0 and CPUID.(EAX=10FH, ECX=ResID):EDX[15:0], inclusive, and 'resourceType' corresponds to a specific resource as enumerated by the set bits of CPUID.(EAX=10H, ECX=0):EAX[31:1].

A range of MSRs is reserved for Cache Allocation Technology registers of the form IA32_resourceType_MASK_n, from 0C90H through 0D8FH (inclusive), providing support for up to 256 Classes of Service or multiple resource types. In the first implementation the only supported resourceType is 'L3', corresponding to the L3 cache in a platform. All CAT configuration registers can be accessed using the standard RDMSR / WRMSR instructions.

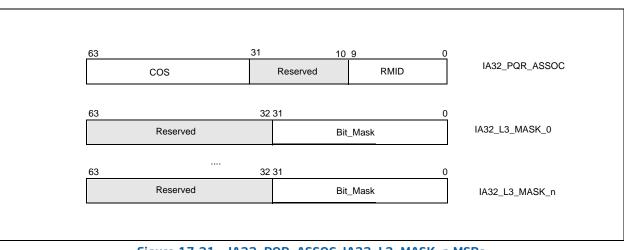


Figure 17-31 IA32_PQR_ASSOC, IA32_L3_MASK_n MSRs

17.15.2.4 Cache Mask Association

After configuring the available classes of service with the preferred set of capacity bitmasks, the OS/VMM can set the IA32_PQR_ASSOC.COS of a logical processor to the class of service with the desired CBM when a thread context switch occurs. This allows the OS/VMM to indicate which class of service an executing thread/VM belongs to. Each logical processor contains an instance of the IA32_PQR_ASSOC register at MSR location 0C8FH, and Figure 17-31 shows the bit field layout for this register. Bits[63:32] contain the COS field for each logical processor.

Specifying a COS value in IA32_PQR_ASSOC.COS greater than the value reported by CPUID.(EAX=10FH, ECX=ResID):EDX[15:0] will cause a #GP(0). The value of IA32_PQR_ASSOC.COS after power-on is 0.

Note that if the IA32_PQR_ASSOC.COS is never written then the CAT capability defaults to using COS 0, which in turn is set to the default mask in IA32_L3_MASK_0 - which is all "1"s (on reset). This essentially disables the enforcement feature by default or for legacy operating systems and software.

17.15.3 Cache Allocation Technology Programming Considerations

17.15.3.1 Cache Allocation Technology Dynamic Configuration

Both the CQE masks and PQR registers are accessible and modifiable at any time during execution using RDMSR/ WRMSR unless otherwise noted. When writing to these MSRs a #GP(0) will be generated if any of the following conditions occur:

- A reserved bit is modified,
- Accessing a QOS mask register outside the supported COS (the max COS number is specified in CPUID.(EAX=10FH, ECX=ResID):EDX[15:0]), or
- Writing a COS greater than the supported maximum (specified as the maximum value of CPUID.(EAX=10FH, ECX=ResID):EDX[15:0] for all valid ResID values) is written to the IA32_PQR_ASSOC.CLOS field.

When reading the IA32_PQR_ASSOC register the currently programmed COS on the core will be returned.

When reading an IA32_resourceType_MASK_n register the current capacity bit mask for COS 'n' will be returned.

As noted previously, software should minimize migrations of COS across logical processors (across threads or cores), as a reduction in the accuracy of the Cache Allocation feature may result if COS are migrated frequently. This is aligned with the industry standard practice of minimizing unnecessary thread migrations across processor cores in order to avoid excessive time spent warming up processor caches after a migration. In general, for best performance, minimize thread migration and COS migration across processor logical threads and processor cores.

17.15.3.2 Cache Allocation Technology Operation With Power Saving Features

Note that the Cache Allocation Technology feature cannot be used to enforce cache coherency, and that some advanced power management features such as C-states which may shrink or power off various caches within the system may interfere with CAT hints - in such cases the CAT bitmasks are ignored and the other features take precedence. If the highest possible level of CAT differentiation or determinism is required, disable any power-saving features which shrink the caches or power off caches. The details of the power management interfaces are typically implementation-specific, but can be found at *Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3C*.

If software requires differentiation between threads but not absolute determinism then in many cases it is possible to leave power-saving cache shrink features enabled, which can provide substantial power savings and increase battery life in mobile platforms. In such cases when the caches are powered off (e.g., package C-states) the entire cache of a portion thereof may be powered off. Upon resuming an active state any new incoming data to the cache will be filled subject to the cache capacity bitmasks. Any data in the cache prior to the cache shrink or power off may have been flushed to memory during the process of entering the idle state, however, and is not guaranteed to remain in the cache. If differentiation between threads is the goal of system software then this model allows substantial power savings while continuing to deliver performance differentiation. If system software needs optimal determinism then power saving modes which flush portions of the caches and power them off should be disabled.

NOTE

IA32_PQR_ASSOC is saved and restored across C6 entry/exit. Similarly, the mask register contents are saved across package C-state entry/exit and are not lost.

17.15.3.3 Cache Allocation Technology Operation with Other Operating Modes

The states in IA32_PQR_ASSOC and mask registers are unmodified across an SMI delivery. Thus, the execution of SMM handler code can interact with the Cache Allocation Technology resource and manifest some degree of non-determinism to the non-SMM software stack. An SMM handler may also perform certain system-level or power management practices that affect CAT operation.

It is possible for an SMM handler to minimize the impact on data determinism in the cache by reserving a COS with a dedicated partition in the cache. Such an SMM handler can switch to the dedicated COS immediately upon entering SMM, and switching back to the previously running COS upon exit.

...

10. Updates to Chapter 19, Volume 3B

Change bars show changes to Chapter 19 of the *Intel[®] 64 and IA-32 Architectures Software Developer's Manual*, *Volume 3B:* System Programming Guide, Part 2.

CHAPTER 19 PERFORMANCE-MONITORING EVENTS

This chapter lists the performance-monitoring events that can be monitored with the Intel 64 or IA-32 processors. The ability to monitor performance events and the events that can be monitored in these processors are mostly model-specific, except for architectural performance events, described in Section 19.1.

Non-architectural performance events (i.e. model-specific events) are listed for each generation of microarchitecture:

• Section 19.2 - Processors based on Broadwell microarchitecture

- Section 19.3 Processors based on Haswell microarchitecture
- · Section Processors based on Haswell-E microarchitecture
- Section 19.4 Processors based on Ivy Bridge microarchitecture
- Section Processors based on Ivy Bridge-E microarchitecture
- Section 19.5 Processors based on Sandy Bridge microarchitecture
- Section 19.6 Processors based on Intel[®] microarchitecture code name Nehalem
- Section 19.7 Processors based on Intel[®] microarchitecture code name Westmere
- Section 19.8 Processors based on Enhanced Intel[®] Core[™] microarchitecture
- Section 19.9 Processors based on Intel[®] Core[™] microarchitecture
- Section 19.10 Processors based on the Silvermont microarchitecture
- Section 19.11 Processors based on Intel[®] Atom[™] microarchitecture
- Section 19.12 Intel[®] Core[™] Solo and Intel[®] Core[™] Duo processors
- Section 19.13 Processors based on Intel NetBurst[®] microarchitecture
- Section 19.14 Pentium[®] M family processors
- Section 19.15 P6 family processors
- Section 19.16 Pentium[®] processors

NOTE

These performance-monitoring events are intended to be used as guides for performance tuning. The counter values reported by the performance-monitoring events are approximate and believed to be useful as relative guides for tuning software. Known discrepancies are documented where applicable.

All performance event encodings not documented in the appropriate tables for the given processor are considered reserved, and their use will result in undefined counter updates with associated overflow actions.

The event tables list this chapter provide information for tool developers to support architectural and non-architectural performance monitoring events. Details of performance event implementation for end-user (including additional details beyond event code/umask) can found at the "perfmon" repository provided by The Intel Open Source Technology Center (https://download.01.org/perfmon/).

...

19.3.1 Performance Monitoring Events in the Processor Core of Intel Xeon Processor E5 v3 Family

Non-architectural performance monitoring events in the processor core that are applicable only to Intel Xeon processor E5 v3 family based on the Haswell-E microarchitecture, with CPUID signature of DisplayFamily_DisplayModel 06_3FH, are listed in Table 19-8.

Table 19-6 Non-Architectural Performance Events Applicable only to the Processor Core of Intel[®] Xeon[®] Processor E5 v3 Family

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
D3H	04H	MEM_LOAD_UOPS_L3_MISS_RE TIRED.REMOTE_DRAM	Retired load uops whose data sources was remote DRAM (snoop not needed, Snoop Miss).	Supports PEBS
D3H	10H	MEM_LOAD_UOPS_L3_MISS_RE TIRED.REMOTE_HITM	Retired load uops whose data sources was remote cache HITM.	Supports PEBS
D3H	20H	MEM_LOAD_UOPS_L3_MISS_RE TIRED.REMOTE_FWD	Retired load uops whose data sources was forwards from a remote cache.	Supports PEBS

...

19.4.1 Performance Monitoring Events in the Processor Core of Intel Xeon Processor E5 v2 Family and Intel Xeon Processor E7 v2 Family

Non-architectural performance monitoring events in the processor core that are applicable only to Intel Xeon processor E5 v2 family and Intel Xeon processor E7 v2 family based on the Ivy Bridge-E microarchitecture, with CPUID signature of DisplayFamily_DisplayModel 06_3EH, are listed in Table 19-8.

Table 19-8Non-Architectural Performance Events Applicable only to the Processor Core of
Intel® Xeon® Processor E5 v2 Family and Intel® Xeon® Processor E7 v2 Family

Event Num.	Umask Value	Event Mask Mnemonic	Description	Comment
D3H	03H	Mem_load_uops_llc_miss_r etired.local_dram	Retired load uops whose data sources was local DRAM (snoop not needed, Snoop Miss, or Snoop Hit data not forwarded).	Supports PEBS
D3H	OCH	Mem_load_uops_llc_miss_r etired.remote_dram	Retired load uops whose data source was remote DRAM (snoop not needed, Snoop Miss, or Snoop Hit data not forwarded).	Supports PEBS
DЗH	10H	Mem_load_uops_llc_miss_r etired.remote_hitm	Retired load uops whose data sources was remote HITM.	Supports PEBS
DЗH	20H	Mem_load_uops_llc_miss_r etired.remote_fwd	Retired load uops whose data sources was forwards from a remote cache.	Supports PEBS

...

11. Updates to Chapter 35, Volume 3C

Change bars show changes to Chapter 35 of the Intel[®] 64 and IA-32 Architectures Software Developer's Manual, Volume 3C: System Programming Guide, Part 3.

• • •

This chapter list MSRs across Intel processor families. All MSRs listed can be read with the RDMSR and written with the WRMSR instructions.

Register addresses are given in both hexadecimal and decimal. The register name is the mnemonic register name and the bit description describes individual bits in registers.

Model specific registers and its bit-fields may be supported for a finite range of processor families/models. To distinguish between different processor family and/or models, software must use CPUID.01H leaf function to query the combination of DisplayFamily and DisplayModel to determine model-specific availability of MSRs (see CPUID instruction in Chapter 3, "Instruction Set Reference, A-M" in the *Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 2A*). Table 35-1 lists the signature values of DisplayFamily and DisplayModel for various processor families or processor number series.

DisplayFamily_DisplayModel	Processor Families/Processor Number Series
06_4EH	Future Generation Intel Core Processor
06_56H Future Generation Intel Xeon Processor	
06_3DH	Intel Core M-5xxx Processor based on Broadwell microarchitecture
06_3FH	Intel Xeon processor E5-2600/1600 v3 product families based on Haswell-E microarchitecture, Intel Core i7-59xx Processor Extreme Edition
06_3CH, 06_45H, 06_46H	4th Generation Intel Core processor and Intel Xeon processor E3-1200 v3 product family based on Haswell microarchitecture
06_3EH	Intel Xeon processor E7-8800/4800/2800 v2 product families based on Ivy Bridge-E microarchitecture

Table 35-1 CPUID Signature Values of DisplayFamily_DisplayModel

06_3EH Intel Xeon processor E5-2600/1600 v2 product families and Intel Xeon processor E5-2400 v2 06_3AH 3rd Generation Intel Core Processor and Intel Xeon processor E3-1200 v2 product family based on lvy 06_2AH 3rd Generation Intel Core Processor and Intel Xeon processor E3-1200 v2 product family based on lvy 06_2DH Intel Xeon processor E5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core i7-39xx Processor E5 Family 06_2FH Intel Xeon processor E5 Family 06_2AH Intel Xeon processor F300, 6500 series 06_2EH Intel Xeon processor 5500, 6500 series 06_2EH Intel Xeon processor 5500, 6500 series 06_2EH Intel Xeon processor 5500, 6500 series 06_1FH Intel Core i7 and I5 Processors 06_1FH Intel Core i7 and I5 Processors 06_1AH Intel Xeon processor 7000, 3200, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000 series 06_1FH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series 06_0FH Intel Xeon processor 6200 series, Intel Core 2 Quad processor 6000 series 06_0FH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series 06_0FH Intel Xeon processor C2000 series 06_0FH Intel Atom Processor	Table 35-1	CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)
product family based on lvy Bridge-E microarchitecture, Intel Core i7-49xx Processor Extreme Edition 06_3AH 3rd Generation Intel Core Processor and Intel Xeon processor E3-1200 v2 product family based on lvy Bridge microarchitecture 06_2DH Intel Xeon processor E5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core 17-39xx Processor E3-1200 product family; 2nd Generation Intel Core i7, 15, 13 Processors 2xxx Series 06_2FH Intel Xeon processor E3-1200 product family; 2nd Generation Intel Core i7, 15, 13 Processors 2xxx Series 06_2EH, 06_2CH Intel Xeon processors 300, 5600 series 06_2FH Intel Xeon processors 7500, 6500 series 06_1EH, 06_1FH Intel Core i7 and 15 Processors 06_1AH Intel Xeon processors 7100, 500, 5400 series, Intel Core 2 Quad processors 8000, 9000 series 06_17H Intel Xeon processor 7100, 300, 5200, 5400 series, Intel Core 2 Quad processor 6000 series intel Core 2 Extreme 5000 series, Intel Core 2 Quad processor 6000 series intel Core 2 Extreme 5000 series, Intel Core 2 Duo 4000, 5000, 7000 series processors, Intel Pentium dual-core processors 06_00H Intel Atom Processor 2000 series, 2000, 5100, 5300, 7300 series, Intel Core 2 Quad processors, Intel Pentium dual-core processors 06_00DH Intel Atom Processor 06_00DH Intel Atom Processor 06_00DH Intel Atom Processor 12000 series, 23000 series 06_36	DisplayFamily_DisplayModel	
Bridge microarchitecture 06_2DH Intel Xeon processor ES Family based on Intel microarchitecture code name Sandy Bridge, Intel Core 17:39xx Processor EX Family 06_2FH Intel Xeon processor E7 Family 06_2AH Intel Xeon processor E3-1200 product family; 2nd Generation Intel Core i7, 15, 13 Processors 2xxx Series 06_2EH Intel Xeon processor 7500, 6500 series 06_2EH Intel Xeon processor 7500, 6500 series 06_1EH, 06_1FH Intel Core i7 and 15 Processors 06_1AH Intel Xeon processor INT P400 series 06_1DH Intel Xeon processor MP 7400 series 06_17H Intel Xeon processor 3000, 3200, 5400 series, Intel Core 2 Quad processors 6000, 9000 series 06_0FH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel Pentium dual-core processors 06_0FH Intel Pentium M processor 06_0FH Intel Atom Processor E3000 series, Z3000 series 06_0FH Intel Atom Processor C3000 series <th>06_3EH</th> <th>product family based on Ivy Bridge-E microarchitecture, Intel Core i7-49xx Processor Extreme Edition</th>	06_3EH	product family based on Ivy Bridge-E microarchitecture, Intel Core i7-49xx Processor Extreme Edition
i7-39xx Processor Extreme Edition06_2FHIntel Xeon Processor E7 Family06_2AHIntel Xeon processor E3-1200 product family: 2nd Generation Intel Core i7, 15, 13 Processors 2xxx06_2EHIntel Xeon processor 7500, 6500 series06_2EHIntel Xeon processors 3600, 5600 series, Intel Core i7, 15 and 13 Processors06_1EH, 06_1FHIntel Core i7 and 15 Processors06_1DHIntel Core i7 Processors 7400 series06_1DHIntel Xeon processor MP 7400 series06_1DHIntel Xeon processor MP 7400 series06_0E1PHIntel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processor 8000, 9000 series06_0E1HIntel Xeon processor 3100, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel Pentium dual-core processors06_0EHIntel Core Duo, Intel Core Solo processors06_0DHIntel Atom Processor Based on Silvermont Microarchitecture06_37HIntel Atom Processor 1300 series, Intel Core 2000, N2000, E2000, Z2000, C1000 series06_36HIntel Atom Processor 1300 series06_36HIntel Atom Processor 1400 series06_35H, 06_36HIntel Atom Processor 1700, S000 Series06_36H, 06_27H,Intel Atom Processor 1700, S000 Series06_36H, 06_627H,Intel Atom Processor 1700, S000 Series, Intel Xeon Processor MP, Intel Pentium A, Pentium D processors06_09HIntel Atom Processor 7100, S000 Series, Intel Xeon Processor MP, Intel Pentium A, Pentium D processors06_36H, 06_06H,Intel Xeon Processor, Intel Xeon Processor	06_3AH	Bridge microarchitecture
06_2AH Intel Xeon processor E3-1200 product family; 2nd Generation Intel Core 17, 15, 13 Processors 2xxx 06_2EH Intel Xeon processor 7500, 6500 series 06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core 17, 15 and 13 Processors 06_1FH Intel Core 17 and 15 Processors 06_1AH Intel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series 06_1DH Intel Xeon processor MP 7400 series 06_01DH Intel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000 series 06_0FH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series 06_0FH Intel Core 100, Intel Core Solo processors 06_0EH Intel Core Duo, Intel Core Solo processors 06_0DH Intel Core Duo, Intel Core Solo processors 06_0DH Intel Atom Processor Based on Silvermont Microarchitecture 06_37H Intel Atom Processor S1000 series, 23000 series 06_40H Intel Atom Processor S1000 series 06_16H, 06_26H, 06_27H, Intel Atom Processor 7100, 5000 Series, Intel Xeon Processors 06_35H, 06_36H Intel Xeon processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors 06_09H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors <th>06_2DH</th> <th></th>	06_2DH	
Series06_2EHIntel Xeon processor 7500, 6500 series06_25H, 06_2CHIntel Xeon processors 3600, 5600 series, Intel Core 17, 15 and 13 Processors06_1EH, 06_1FHIntel Core i7 and 15 Processors06_1AHIntel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series06_1DHIntel Xeon processor MP 7400 series06_10HIntel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processor 6000 series06_1FHIntel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series06_0FHIntel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series06_0FHIntel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series06_0FHIntel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series06_0FHIntel Xeon processor 3000, 3200, 5100, 5300, 6000, 7000 series processors, Intel06_0FHIntel Core Duo, Intel Core Solo processors06_0FHIntel Atom Processor06_0FHIntel Atom Processor Coloo series, Z3000 series06_37HIntel Atom Processor 1000 series06_36HIntel Atom Processor 51000 series06_36HIntel Atom Processor 51000 series06_35H, 06_26H, 06_27H,Intel Atom Processor 7100, 5000 series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors0F_06HIntel Xeon processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors0F_06HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors0F_07H, 06_08H,	06_2FH	Intel Xeon Processor E7 Family
06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors 06_1EH, 06_1FH Intel Core i7 and i5 Processors 06_1AH Intel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series 06_1DH Intel Xeon processor MP 7400 series 06_17H Intel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000 series 06_0FH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series 06_0FH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series 06_0FH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processors 6000 series 06_0FH Intel Xeon processors 06_0FH Intel Core Duo, Intel Core Solo processors 06_0DH Intel Pentium M processor 06_40H Intel Atom Processor Eased on Silvermont Microarchitecture 06_37H Intel Atom Processor 53000 series, Z3000 series 06_40H Intel Atom Processor 51000 Series 06_64H Intel Atom Processor 51000 Series 06_64DH Intel Atom Processor 51000 series 06_36H Intel Atom Processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium A, Pentium D processors <	06_2AH	
06_1EH, 06_1FH Intel Core i7 and i5 Processors 06_1AH Intel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series 06_1DH Intel Xeon processor MP 7400 series 06_17H Intel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000 series series Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series 06_0FH Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 7000 series processors, Intel Pentium dual-core processors 06_0EH Intel Core Duo, Intel Core Solo processors 06_0DH Intel Atom Processor 06_4AH, 06_5AH, 06_5DH Future Intel Atom Processor Based on Silvermont Microarchitecture 06_37H Intel Atom Processor C2000 series 06_36H Intel Atom Processor Silver Silv	06_2EH	Intel Xeon processor 7500, 6500 series
06_1AH Intel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series 06_1DH Intel Xeon processor MP 7400 series 06_1TH Intel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000 series series Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series 06_0FH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series 06_0EH Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel Pentium dual-core processors 06_0DH Intel Pentium M processor 06_0DH Intel Atom Processor Based on Silvermont Microarchitecture 06_37H Intel Atom Processor E3000 series, 23000 series 06_36H Intel Atom Processor 1000 Series 06_01CH, 06_26H, 06_27H, Intel Atom Processor 100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors 06_03H, 0F_04H Intel Xeon processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors 0F_02B, 06_03H, Intel Pentium M processor <tr< th=""><th>06_25H, 06_2CH</th><th>Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors</th></tr<>	06_25H, 06_2CH	Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors
06_1DHIntel Xeon processor MP 7400 series06_17HIntel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000 series06_0FHIntel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel Pentium dual-core processors06_0EHIntel Core Duo, Intel Core Solo processors06_0DHIntel Pentium M processor06_37HIntel Atom Processor E3000 series, Z3000 series06_37HIntel Atom Processor C2000 series06_36HIntel Atom Processor S1000 Series06_36HIntel Atom Processor 51000 Series06_35H, 06_36HIntel Atom Processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series06_37HIntel Atom Processor 7100, S000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors06_36HIntel Xeon processor 7100, S000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors06_09HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors06_09HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors06_07H, 06_08H, 06_0AH, 06_08HIntel Pentium II Xeon Processor, Intel Xeon Processor06_10HIntel Pentium III Xeon Processor, Intel Pentium II Processor	06_1EH, 06_1FH	Intel Core i7 and i5 Processors
06_17HIntel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000 series06_0FHIntel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series, Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel Pentium dual-core processors06_0EHIntel Core Duo, Intel Core Solo processors06_0DHIntel Pentium M processor06_37HIntel Atom Processor 6300 series, Z3000 series06_36HIntel Atom Processor C2000 series06_36HIntel Atom Processor S1000 Series06_36HIntel Atom Processor S1000 Series06_36HIntel Atom Processor S1000 Series06_35H, 06_26H, 06_27H, 06_35H, 06_36HIntel Atom Processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series06_09HIntel Xeon processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors06_09HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors06_70H, 06_01HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors06_05HIntel Neon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors06_05H, 06_05HIntel Rentium M processor06_05HIntel Pentium III Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Processor06_01HIntel Pentium III Xeon Processor, Intel Pentium III Processor	06_1AH	Intel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series
series06_0FHIntel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series, Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel Pentium dual-core processors06_0EHIntel Core Duo, Intel Core Solo processors06_0DHIntel Pentium M processor06_4AH, 06_5AH, 06_5DHFuture Intel Atom Processor Based on Silvermont Microarchitecture06_37HIntel Atom Processor E3000 series, Z3000 series06_36HIntel Atom Processor C2000 series06_36HIntel Atom Processor S1000 Series06_36H, 06_26H, 06_27H, of S4H, 06_36HIntel Atom Processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors0F_06HIntel Xeon processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors0F_03H, 0F_04HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors0F_02HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors0F_04HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors0F_04HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors0F_04HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors0F_04H, 0F_01HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors0F_04H, 0F_05HIntel Pentium III Xeon Processor, Intel Pentium III Processor06_08H, 06_05H,Intel Pentium III Xeon Processor, Intel Pentium III Processor06_01HIntel Pentium II Xeon Processor, Intel Pentium II Processor	06_1DH	Intel Xeon processor MP 7400 series
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel Pentium dual-core processors06_0EHIntel Core Duo, Intel Core Solo processors06_0DHIntel Pentium M processor06_4AH, 06_5AH, 06_5DHFuture Intel Atom Processor Based on Silvermont Microarchitecture06_37HIntel Atom Processor E3000 series, Z3000 series06_4DHIntel Atom Processor C2000 series06_36HIntel Atom Processor S1000 Series06_35H, 06_27H, 06_36HIntel Atom Processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series06_051CH, 06_26H, 06_27H, 06_36HIntel Atom Processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors0F_06HIntel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors0F_03H, 0F_04HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors0F_02HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors0F_04, 0F_01HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors0F_04, 0F_01HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors0F_04, 0F_05_01HIntel Pentium III Xeon Processor, Intel Pentium III Processor06_03H, 06_05HIntel Pentium III Xeon Processor, Intel Pentium III Processor06_01HIntel Pentium II Xeon Processor, Intel Pentium III Processor	06_17H	
OG_ODHIntel Pentium M processorOG_4AH, O6_5AH, O6_5DHFuture Intel Atom Processor Based on Silvermont MicroarchitectureO6_37HIntel Atom Processor E3000 series, Z3000 seriesO6_4DHIntel Atom Processor C2000 seriesO6_36HIntel Atom Processor S1000 SeriesO6_35H, O6_26H, O6_27H, O6_35H, O6_36HIntel Atom Processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 seriesOF_06HIntel Xeon processor family, Intel Atom Processor MP, Intel Pentium 4, Pentium D processorsOF_03H, OF_04HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processorsOF_02HIntel Pentium M processorOF_02HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processorsOF_04H, O6_08H, O6_0AH, O6_08HIntel Pentium III Xeon Processor MP, Intel Pentium 4 processorsO6_03H, O6_05HIntel Pentium III Xeon Processor, Intel Pentium III ProcessorO6_01HIntel Pentium II Xeon Processor, Intel Pentium II Processor	06_0FH	Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series, Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel Pentium dual-core processors
06_4AH, 06_5AH, 06_5DHFuture Intel Atom Processor Based on Silvermont Microarchitecture06_37HIntel Atom Processor €3000 series, Z3000 series06_4DHIntel Atom Processor C2000 series06_36HIntel Atom Processor S1000 Series06_1CH, 06_26H, 06_27H, 06_35H, 06_36HIntel Atom Processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series0F_06HIntel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors0F_03H, 0F_04HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors0F_02HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors0F_04H, 0F_01HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors0F_04H, 0F_01HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors06_7H, 06_08H, 06_0AH, 06_08HIntel Pentium III Xeon Processor, Intel Pentium III Processor06_03H, 06_05HIntel Pentium II Xeon Processor, Intel Pentium II Processor06_01HIntel Pentium II Xeon Processor, Intel Pentium II Processor	06_0EH	Intel Core Duo, Intel Core Solo processors
06_37HIntel Atom Processor E3000 series, Z3000 series06_4DHIntel Atom Processor C2000 series06_36HIntel Atom Processor S1000 Series06_1CH, 06_26H, 06_27H, 06_35H, 06_36HIntel Atom Processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series0F_06HIntel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors0F_03H, 0F_04HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors06_09HIntel Pentium M processor0F_02HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors06_7H, 06_08H, 06_0AH, 06_0BHIntel Pentium III Xeon Processor, Intel Pentium III Processor06_03H, 06_05HIntel Pentium II Xeon Processor, Intel Pentium II Processor06_01HIntel Pentium II Xeon Processor, Intel Pentium II Processor	06_0DH	Intel Pentium M processor
06_4DHIntel Atom Processor C2000 series06_36HIntel Atom Processor S1000 Series06_1CH, 06_26H, 06_27H, 06_35H, 06_36HIntel Atom Processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series0F_06HIntel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors0F_03H, 0F_04HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors06_09HIntel Pentium M processor0F_02HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors0F_04H, 0F_01HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors06_7H, 06_08H, 06_0AH, 06_0BHIntel Pentium III Xeon Processor, Intel Pentium III Processor06_01HIntel Pentium Pro Processor	06_4AH, 06_5AH, 06_5DH	Future Intel Atom Processor Based on Silvermont Microarchitecture
06_36HIntel Atom Processor S1000 Series06_1CH, 06_26H, 06_27H, 06_35H, 06_36HIntel Atom Processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series0F_06HIntel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors0F_03H, 0F_04HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors06_09HIntel Pentium M processor0F_02HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors0F_01HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors06_7H, 06_08H, 06_0AH, 06_0BHIntel Pentium III Xeon Processor, Intel Pentium III Processor06_01HIntel Pentium II Xeon Processor	06_37H	Intel Atom Processor E3000 series, Z3000 series
O6_1CH, 06_26H, 06_27H, 06_35H, 06_36HIntel Atom Processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 seriesOF_06HIntel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processorsOF_03H, 0F_04HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processorsO6_09HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processorsOF_02HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processorsOF_0H, 0F_01HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processorsO6_7H, 06_08H, 06_0AH, 06_0BHIntel Pentium II Xeon Processor, Intel Pentium III ProcessorO6_01HIntel Pentium Pro Processor	06_4DH	Intel Atom Processor C2000 series
06_35H, 06_36HIntel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors0F_03H, 0F_04HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors06_09HIntel Pentium M processor0F_02HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors0F_0H, 0F_01HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors06_7H, 06_08H, 06_0AH, 06_0BHIntel Pentium III Xeon Processor, Intel Pentium III Processor06_03H, 06_05HIntel Pentium II Xeon Processor, Intel Pentium II Processor06_01HIntel Pentium Pro Processor	06_36H	Intel Atom Processor S1000 Series
processorsOF_03H, OF_04HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processorsO6_09HIntel Pentium M processorOF_02HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processorsOF_0H, OF_01HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processorsO6_7H, 06_08H, 06_0AH, 06_0BHIntel Pentium III Xeon Processor, Intel Pentium III ProcessorO6_03H, 06_05HIntel Pentium II Xeon Processor, Intel Pentium II ProcessorO6_01HIntel Pentium Pro Processor	06_1CH, 06_26H, 06_27H, 06_35H, 06_36H	Intel Atom Processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series
06_09HIntel Pentium M processor0F_02HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors0F_0H, 0F_01HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors06_7H, 06_08H, 06_0AH, 06_0BHIntel Pentium III Xeon Processor, Intel Pentium III Processor06_03H, 06_05HIntel Pentium II Xeon Processor, Intel Pentium II Processor06_01HIntel Pentium Pro Processor	0F_06H	
OF_02HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processorsOF_0H, OF_01HIntel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processorsO6_7H, 06_08H, 06_0AH, 06_0BHIntel Pentium III Xeon Processor, Intel Pentium III ProcessorO6_03H, 06_05HIntel Pentium II Xeon Processor, Intel Pentium II ProcessorO6_01HIntel Pentium Pro Processor	0F_03H, 0F_04H	Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors
OF_OH, OF_O1H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors O6_7H, 06_08H, 06_0AH, 06_0BH Intel Pentium III Xeon Processor, Intel Pentium III Processor O6_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor O6_01H Intel Pentium Pro Processor	06_09H	Intel Pentium M processor
06_7H, 06_08H, 06_0AH, 06_0BHIntel Pentium III Xeon Processor, Intel Pentium III Processor06_03H, 06_05HIntel Pentium II Xeon Processor, Intel Pentium II Processor06_01HIntel Pentium Pro Processor	0F_02H	Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors
06_0BH 06_03H, 06_05H 06_01H Intel Pentium II Xeon Processor, Intel Pentium II Processor	OF_OH, OF_01H	Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors
06_01H Intel Pentium Pro Processor	06_7H, 06_08H, 06_0AH, 06_0BH	Intel Pentium III Xeon Processor, Intel Pentium III Processor
	06_03H, 06_05H	Intel Pentium II Xeon Processor, Intel Pentium II Processor
05_01H, 05_02H, 05_04H Intel Pentium Processor, Intel Pentium Processor with MMX Technology	06_01H	Intel Pentium Pro Processor
	05_01H, 05_02H, 05_04H	Intel Pentium Processor, Intel Pentium Processor with MMX Technology

Table 35-1 CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)

35.1 ARCHITECTURAL MSRS

Many MSRs have carried over from one generation of IA-32 processors to the next and to Intel 64 processors. A subset of MSRs and associated bit fields, which do not change on future processor generations, are now considered architectural MSRs. For historical reasons (beginning with the Pentium 4 processor), these "architectural MSRs" were given the prefix "IA32_". Table 35-2 lists the architectural MSRs, their addresses, their current names, their names in previous IA-32 processors, and bit fields that are considered architectural MSR addresses outside Table 35-2 and certain bit fields in an MSR address that may overlap with architectural MSR addresses are model-specific. Code that accesses a machine specified MSR and that is executed on a processor that does not support that MSR will generate an exception.

Architectural MSR or individual bit fields in an architectural MSR may be introduced or transitioned at the granularity of certain processor family/model or the presence of certain CPUID feature flags. The right-most column of Table 35-2 provides information on the introduction of each architectural MSR or its individual fields. This information is expressed either as signature values of "DF_DM" (see Table 35-1) or via CPUID flags.

Certain bit field position may be related to the maximum physical address width, the value of which is expressed as "MAXPHYWID" in Table 35-2. "MAXPHYWID" is reported by CPUID.8000_0008H leaf.

MSR address range between 40000000H - 400000FFH is marked as a specially reserved range. All existing and future processors will not implement any features using any MSR in this range.

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
OH	0	IA32_P5_MC_ADDR (P5_MC_ADDR)	See Section 35.19, "MSRs in Pentium Processors."	Pentium Processor (05_01H)
1H	1	IA32_P5_MC_TYPE (P5_MC_TYPE)	See Section 35.19, "MSRs in Pentium Processors."	DF_DM = 05_01H
6H	6	IA32_MONITOR_FILTER_SIZE	See Section 8.10.5, "Monitor/Mwait Address Range Determination."	0F_03H
10H	16	IA32_TIME_STAMP_ COUNTER (TSC)	See Section 17.13, "Time-Stamp Counter."	05_01H
17H	23	IA32_PLATFORM_ID (MSR_PLATFORM_ID)	Platform ID (RO) The operating system can use this MSR to determine "slot" information for the processor and the proper microcode update to load.	06_01H
		49:0	Reserved.	

Table 35-2IA-32 Architectural MSRs

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		52:50	Platform Id (RO)Contains information concerning the intended platform for the processor.525150000Processor Flag 0001Processor Flag 1010Processor Flag 2011Processor Flag 3100Processor Flag 4101Processor Flag 5110Processor Flag 5111Processor Flag 6111Processor Flag 7	
		63:53	Reserved.	
1BH	27	IA32_APIC_BASE (APIC_BASE)		06_01H
		7:0	Reserved	
		8	BSP flag (R/W)	
		9	Reserved	
		10	Enable x2APIC mode	06_1AH
		11	APIC Global Enable (R/W)	
		(MAXPHYWID - 1):12	APIC Base (R/W)	
		63: MAXPHYWID	Reserved	
ЗАН	58	IA32_FEATURE_CONTROL	Control Features in Intel 64 Processor (R/W)	If CPUID.01H: ECX[bit 5 or bit 6] = 1
		0	Lock bit (R/WO): (1 = locked). When set, locks this MSR from being written, writes to this bit will result in GP(0). Note: Once the Lock bit is set, the contents of this register cannot be modified. Therefore the lock bit must be set after configuring support	If CPUID.01H:ECX[bit 5 or bit 6] = 1
			for Intel Virtualization Technology and prior to transferring control to an option ROM or the OS. Hence, once the Lock bit is set, the entire IA32_FEATURE_CONTROL contents are preserved across RESET when PWRGOOD is not deasserted.	

Table 35-2 IA-32 Architectural MSRs (Contd.)

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		1	Enable VMX inside SMX operation (R/WL): This bit enables a system executive to use VMX in conjunction with SMX to support Intel [®] Trusted Execution Technology.	If CPUID.01H:ECX[bit 5 and bit 6] are set to 1
			BIOS must set this bit only when the CPUID function 1 returns VMX feature flag and SMX feature flag set (ECX bits 5 and 6 respectively).	
		2	Enable VMX outside SMX operation (R/WL): This bit enables VMX for system executive that do not require SMX.	If CPUID.01H:ECX[bit 5 or bit 6] = 1
			BIOS must set this bit only when the CPUID function 1 returns VMX feature flag set (ECX bit 5).	
		7:3	Reserved	
		14:8	SENTER Local Function Enables (R/WL): When set, each bit in the field represents an enable control for a corresponding SENTER function. This bit is supported only if CPUID.1:ECX.[bit 6] is set	If CPUID.01H:ECX[bit 6] = 1
		15	SENTER Global Enable (R/WL): This bit must be set to enable SENTER leaf functions. This bit is supported only if CPUID.1:ECX.[bit 6] is set	If CPUID.01H:ECX[bit 6] = 1
		19:16	Reserved	
		20	LMCE On (R/WL): When set, system software can program the MSRs associated with LMCE to configure delivery of some machine check exceptions to a single logical processor.	
		63:21	Reserved	
ЗBH	59	IA32_TSC_ADJUST	Per Logical Processor TSC Adjust (R/Write to clear)	If CPUID.(EAX=07H, ECX=0H): EBX[1] = 1
		63:0	THREAD_ADJUST:	
			Local offset value of the IA32_TSC for a logical processor. Reset value is Zero. A write to IA32_TSC will modify the local offset in IA32_TSC_ADJUST and the content of IA32_TSC, but does not affect the internal invariant TSC hardware.	

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
79H	121	IA32_BIOS_UPDT_TRIG (BIOS_UPDT_TRIG)	BIOS Update Trigger (W) Executing a WRMSR instruction to this MSR causes a microcode update to be loaded into the processor. See Section 9.11.6, "Microcode Update Loader."	06_01H
			A processor may prevent writing to this MSR when loading guest states on VM entries or saving guest states on VM exits.	
8BH	139	IA32_BIOS_SIGN_ID (BIOS_SIGN/	BIOS Update Signature (RO)	06_01H
		BBL_CR_D3)	Returns the microcode update signature following the execution of CPUID.01H.	
			A processor may prevent writing to this MSR when loading guest states on VM entries or saving guest states on VM exits.	ure I. his M exits. re- D. t no zero
		31:0	Reserved	
		63:32	It is recommended that this field be pre- loaded with 0 prior to executing CPUID.	
			If the field remains 0 following the execution of CPUID; this indicates that no microcode update is loaded. Any non-zero value is the microcode update signature.	
9BH	155	IA32_SMM_MONITOR_CTL	SMM Monitor Configuration (R/W)	
		0	Valid (R/W)	
		1	Reserved	
		2	Controls SMI unblocking by VMXOFF (see Section 34.14.4)	If IA32_VMX_MISC[bit 28])
		11:3	Reserved	
		31:12	MSEG Base (R/W)	
		63:32	Reserved	
9EH	158	IA32_SMBASE	Base address of the logical processor's SMRAM image (RO, SMM only)	If IA32_VMX_MISC[bit 15])
C1H	193	IA32_PMCO (PERFCTRO)	General Performance Counter 0 (R/W)	If CPUID.OAH: EAX[15:8] > 0
C2H	194	IA32_PMC1 (PERFCTR1)	General Performance Counter 1 (R/W)	If CPUID.0AH: EAX[15:8] > 1
СЗН	195	IA32_PMC2	General Performance Counter 2 (R/W)	If CPUID.0AH: EAX[15:8] > 2
C4H	196	IA32_PMC3	General Performance Counter 3 (R/W)	If CPUID.OAH: EAX[15:8] > 3

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
C5H	197	IA32_PMC4	General Performance Counter 4 (R/W)	If CPUID.0AH: EAX[15:8] > 4
C6H	198	IA32_PMC5	General Performance Counter 5 (R/W)	If CPUID.0AH: EAX[15:8] > 5
C7H	199	IA32_PMC6	General Performance Counter 6 (R/W)	If CPUID.0AH: EAX[15:8] > 6
C8H	200	IA32_PMC7	General Performance Counter 7 (R/W)	If CPUID.0AH: EAX[15:8] > 7
E7H	231	IA32_MPERF	TSC Frequency Clock Counter (R/Write to clear)	If CPUID.06H: ECX[0] = 1
		63:0	CO_MCNT: CO TSC Frequency Clock Count	
			Increments at fixed interval (relative to TSC freq.) when the logical processor is in CO.	
			Cleared upon overflow / wrap-around of IA32_APERF.	
E8H	232	IA32_APERF	Actual Performance Clock Counter (R/Write to clear)	If CPUID.06H: ECX[0] = 1
		63:0	CO_ACNT: CO Actual Frequency Clock Count	
			Accumulates core clock counts at the coordinated clock frequency, when the logical processor is in CO.	
			Cleared upon overflow / wrap-around of IA32_MPERF.	
FEH	254	IA32_MTRRCAP (MTRRcap)	MTRR Capability (RO) Section 11.11.2.1, "IA32_MTRR_DEF_TYPE MSR."	06_01H
		7:0	VCNT: The number of variable memory type ranges in the processor.	
		8	Fixed range MTRRs are supported when set.	
		9	Reserved.	
		10	WC Supported when set.	
		11	SMRR Supported when set.	
		63:12	Reserved.	
174H	372	IA32_SYSENTER_CS	SYSENTER_CS_MSR (R/W)	06_01H
		15:0	CS Selector	
		63:16	Reserved.	
175H	373	IA32_SYSENTER_ESP	SYSENTER_ESP_MSR (R/W)	06_01H
176H	374	IA32_SYSENTER_EIP	SYSENTER_EIP_MSR (R/W)	06_01H

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
179H	377	IA32_MCG_CAP (MCG_CAP)	Global Machine Check Capability (RO)	06_01H
		7:0	Count: Number of reporting banks.	
		8	MCG_CTL_P: IA32_MCG_CTL is present if this bit is set	
		9	MCG_EXT_P: Extended machine check state registers are present if this bit is set	
		10	MCP_CMCI_P: Support for corrected MC error event is present.	06_01H
		11	MCG_TES_P: Threshold-based error status register are present if this bit is set.	
		15:12	Reserved	
		23:16	MCG_EXT_CNT: Number of extended machine check state registers present.	
		24	MCG_SER_P: The processor supports software error recovery if this bit is set.	
		25	Reserved.	
		26	MCG_ELOG_P: Indicates that the processor allows platform firmware to be invoked when an error is detected so that it may provide additional platform specific information in an ACPI format "Generic Error Data Entry" that augments the data included in machine check bank registers.	06_3EH
		27	MCG_LMCE_P: Indicates that the processor support extended state in IA32_MCG_STATUS and associated MSR necessary to configure Local Machine Check Exception (LMCE).	06_3EH
		63:28	Reserved.	
I7AH	378	IA32_MCG_STATUS (MCG_STATUS)	Global Machine Check Status (R/W0)	06_01H
		0	RIPV. Restart IP valid	06_01H
		1	EIPV. Error IP valid	06_01H
		2	MCIP. Machine check in progress	06_01H
		3	LMCE_S.	If IA32_MCG_CAP.LMCE_F =1
		63:4	Reserved.	
17BH	379	IA32_MCG_CTL (MCG_CTL)	Global Machine Check Control (R/W)	06_01H
180H- 185H	384- 389	Reserved		06_0EH ¹

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
186H 390	IA32_PERFEVTSEL0 (PERFEVTSEL0)	Performance Event Select Register 0 (R/W)	If CPUID.0AH: EAX[15:8] > 0	
		7:0	Event Select: Selects a performance event logic unit.	
		15:8	UMask: Qualifies the microarchitectural condition to detect on the selected event logic.	
		16	USR: Counts while in privilege level is not ring 0.	
		17	OS: Counts while in privilege level is ring 0.	
		18	Edge: Enables edge detection if set.	
		19	PC: enables pin control.	
		20	INT: enables interrupt on counter overflow.	
		21	AnyThread: When set to 1, it enables counting the associated event conditions occurring across all logical processors sharing a processor core. When set to 0, the counter only increments the associated event conditions occurring in the logical processor which programmed the MSR.	
		22	EN: enables the corresponding performance counter to commence counting when this bit is set.	
		23	INV: invert the CMASK.	
		31:24	CMASK: When CMASK is not zero, the corresponding performance counter increments each cycle if the event count is greater than or equal to the CMASK.	
		63:32	Reserved.	
187H	391	IA32_PERFEVTSEL1 (PERFEVTSEL1)	Performance Event Select Register 1 (R/W)	If CPUID.0AH: EAX[15:8] > 1
188H	392	IA32_PERFEVTSEL2	Performance Event Select Register 2 (R/W)	If CPUID.0AH: EAX[15:8] > 2
189H	393	IA32_PERFEVTSEL3	Performance Event Select Register 3 (R/W)	If CPUID.0AH: EAX[15:8] > 3
18AH- 197H	394- 407	Reserved		06_0EH ²
198H	408	IA32_PERF_STATUS	(RO)	0F_03H
		15:0	Current performance State Value	
		63:16	Reserved.	

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
199H 409	409	IA32_PERF_CTL	(R/W)	0F_03H
		15:0	Target performance State Value	
		31:16	Reserved.	
		32	IDA Engage. (R/W)	06_0FH (Mobile only)
			When set to 1: disengages IDA	
		63:33	Reserved.	
19AH	410	IA32_CLOCK_MODULATION	Clock Modulation Control (R/W)	OF_OH
			See Section 14.7.3, "Software Controlled Clock Modulation."	
		0	Extended On-Demand Clock Modulation Duty Cycle:	If CPUID.06H:EAX[5] = 1
		3:1	On-Demand Clock Modulation Duty Cycle: Specific encoded values for target duty cycle modulation.	
		4	On-Demand Clock Modulation Enable: Set 1 to enable modulation.	
		63:5	Reserved.	
19BH	411	IA32_THERM_INTERRUPT	Thermal Interrupt Control (R/W)	OF_OH
			Enables and disables the generation of an interrupt on temperature transitions detected with the processor's thermal sensors and thermal monitor.	
			See Section 14.7.2, "Thermal Monitor."	
		0	High-Temperature Interrupt Enable	
		1	Low-Temperature Interrupt Enable	
		2	PROCHOT# Interrupt Enable	
		З	FORCEPR# Interrupt Enable	
		4	Critical Temperature Interrupt Enable	
		7:5	Reserved.	
		14:8	Threshold #1 Value	
		15	Threshold #1 Interrupt Enable	
		22:16	Threshold #2 Value	
		23	Threshold #2 Interrupt Enable	
		24	Power Limit Notification Enable	If CPUID.06H:EAX[4] = 1
		63:25	Reserved.	

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
19CH	412	IA32_THERM_STATUS	Thermal Status Information (RO) Contains status information about the processor's thermal sensor and automatic thermal monitoring facilities. See Section 14.7.2, "Thermal Monitor"	OF_OH
		0	Thermal Status (RO):	
		1	Thermal Status Log (R/W):	
		2	PROCHOT # or FORCEPR# event (RO)	
		3	PROCHOT # or FORCEPR# log (R/WCO)	
		4	Critical Temperature Status (RO)	
		5	Critical Temperature Status log (R/WCO)	
		6	Thermal Threshold #1 Status (RO)	If CPUID.01H:ECX[8] = 1
		7	Thermal Threshold #1 log (R/WC0)	If CPUID.01H:ECX[8] = 1
		8	Thermal Threshold #2 Status (RO)	If CPUID.01H:ECX[8] = 1
		9	Thermal Threshold #2 log (R/WCO)	If CPUID.01H:ECX[8] = 1
		10	Power Limitation Status (RO)	If CPUID.06H:EAX[4] = 1
		11	Power Limitation log (R/WCO)	If CPUID.06H:EAX[4] = 1
		12	Current Limit Status (RO)	If CPUID.06H:EAX[7] = 1
		13	Current Limit log (R/WCO)	If CPUID.06H:EAX[7] = 1
		14	Cross Domain Limit Status (RO)	If CPUID.06H:EAX[7] = 1
		15	Cross Domain Limit log (R/WCO)	If CPUID.06H:EAX[7] = 1
		22:16	Digital Readout (RO)	If CPUID.06H:EAX[0] = 1
		26:23	Reserved.	
		30:27	Resolution in Degrees Celsius (RO)	If CPUID.06H:EAX[0] = 1
		31	Reading Valid (RO)	If CPUID.06H:EAX[0] = 1
		63:32	Reserved.	
1A0H	416	IA32_MISC_ENABLE	Enable Misc. Processor Features (R/W)	
			Allows a variety of processor functions to be enabled and disabled.	
		0	Fast-Strings Enable	OF_OH
			When set, the fast-strings feature (for REP MOVS and REP STORS) is enabled (default); when clear, fast-strings are disabled.	
		2:1	Reserved.	

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		3	Automatic Thermal Control Circuit Enable (R/W)	OF_OH
			1 = Setting this bit enables the thermal control circuit (TCC) portion of the Intel Thermal Monitor feature. This allows the processor to automatically reduce power consumption in response to TCC activation.	
			0 = Disabled (default). Note: In some products clearing this bit might be ignored in critical thermal conditions, and TM1, TM2 and adaptive	
		6:4	thermal throttling will still be activated. Reserved	
		7	Performance Monitoring Available (R)1 = Performance monitoring enabled0 = Performance monitoring disabled	OF_OH
		10:8	Reserved.	
		11	Branch Trace Storage Unavailable (RO)	OF_OH
			 1 = Processor doesn't support branch trace storage (BTS) 0 = BTS is supported 	
		12	Precise Event Based Sampling (PEBS) Unavailable (RO)	06_0FH
			1 = PEBS is not supported;0 = PEBS is supported.	
		15:13	Reserved.	
		16	Enhanced Intel SpeedStep Technology Enable (R/W)	If CPUID.01H: ECX[7] =1
			0= Enhanced Intel SpeedStep Technology disabled 1 = Enhanced Intel SpeedStep Technology enabled	
		17	Reserved.	

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		18	ENABLE MONITOR FSM (R/W)	0F_03H
			When this bit is set to 0, the MONITOR feature flag is not set (CPUID.01H:ECX[bit 3] = 0). This indicates that MONITOR/ MWAIT are not supported.	
			Software attempts to execute MONITOR/ MWAIT will cause #UD when this bit is 0.	
			When this bit is set to 1 (default), MONITOR/MWAIT are supported (CPUID.01H:ECX[bit 3] = 1).	
			If the SSE3 feature flag ECX[0] is not set (CPUID.01H:ECX[bit 0] = 0), the OS must not attempt to alter this bit. BIOS must leave it in the default state. Writing this bit when the SSE3 feature flag is set to 0 may generate a #GP exception.	
		21:19	Reserved.	
		22	Limit CPUID Maxval (R/W)	0F_03H
			When this bit is set to 1, CPUID.00H returns a maximum value in EAX[7:0] of 3.	
			BIOS should contain a setup question that allows users to specify when the installed OS does not support CPUID functions greater than 3.	
			Before setting this bit, BIOS must execute the CPUID.0H and examine the maximum value returned in EAX[7:0]. If the maximum value is greater than 3, the bit is supported.	
			Otherwise, the bit is not supported. Writing to this bit when the maximum value is greater than 3 may generate a #GP exception.	
			Setting this bit may cause unexpected behavior in software that depends on the availability of CPUID leaves greater than 3.	
		23	xTPR Message Disable (R/W)	if CPUID.01H: $ECX[14] = 7$
			When set to 1, xTPR messages are disabled. xTPR messages are optional messages that allow the processor to inform the chipset of its priority.	
		33:24	Reserved.	

Register Address		Architectural MSR Name and bit fields	fields	Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		34	XD Bit Disable (R/W) When set to 1, the Execute Disable Bit feature (XD Bit) is disabled and the XD Bit extended feature flag will be clear (CPUID.80000001H: EDX[20]=0).	if CPUID.80000001H:EDX[2 0] = 1
			When set to a 0 (default), the Execute Disable Bit feature (if available) allows the OS to enable PAE paging and take advantage of data only pages.	
			BIOS must not alter the contents of this bit location, if XD bit is not supported. Writing this bit to 1 when the XD Bit extended feature flag is set to 0 may generate a #GP exception.	
		63:35	Reserved.	
1B0H	432	IA32_ENERGY_PERF_BIAS	Performance Energy Bias Hint (R/W)	if CPUID.6H:ECX[3] = 1
		3:0	Power Policy Preference: O indicates preference to highest performance. 15 indicates preference to maximize	
			energy saving.	
10111	422		Reserved.	
1B1H	433	IA32_PACKAGE_THERM_STATUS	Package Thermal Status Information (RO) Contains status information about the package's thermal sensor.	If CPUID.06H: EAX[6] = 1
			See Section 14.8, "Package Level Thermal Management."	
		0	Pkg Thermal Status (RO):	
		1	Pkg Thermal Status Log (R/W):	
		2	Pkg PROCHOT # event (RO)	
		З	Pkg PROCHOT # log (R/WCO)	
		4	Pkg Critical Temperature Status (RO)	
		5	Pkg Critical Temperature Status log (R/ WCO)	
		6	Pkg Thermal Threshold #1 Status (RO)	
		7	Pkg Thermal Threshold #1 log (R/WC0)	
		8	Pkg Thermal Threshold #2 Status (RO)	
		9	Pkg Thermal Threshold #1 log (R/WCO)	
		10	Pkg Power Limitation Status (RO)	

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		11	Pkg Power Limitation log (R/WCO)	
		15:12	Reserved.	
		22:16	Pkg Digital Readout (RO)	
		63:23	Reserved.	
1B2H	434	IA32_PACKAGE_THERM_INTERRUPT	Pkg Thermal Interrupt Control (R/W)	If CPUID.06H: EAX[6] = 1
			Enables and disables the generation of an interrupt on temperature transitions detected with the package's thermal sensor.	
			See Section 14.8, "Package Level Thermal Management."	
		0	Pkg High-Temperature Interrupt Enable	
		1	Pkg Low-Temperature Interrupt Enable	
		2	Pkg PROCHOT# Interrupt Enable	
		3	Reserved.	
		4	Pkg Overheat Interrupt Enable	
		7:5	Reserved.	
		14:8	Pkg Threshold #1 Value	
		15	Pkg Threshold #1 Interrupt Enable	
		22:16	Pkg Threshold #2 Value	
		23	Pkg Threshold #2 Interrupt Enable	
		24	Pkg Power Limit Notification Enable	
		63:25	Reserved.	
1D9H	473	IA32_DEBUGCTL (MSR_DEBUGCTLA, MSR_DEBUGCTLB)	Trace/Profile Resource Control (R/W)	06_0EH
		0	LBR: Setting this bit to 1 enables the processor to record a running trace of the most recent branches taken by the processor in the LBR stack.	06_01H
		1	BTF: Setting this bit to 1 enables the processor to treat EFLAGS.TF as single-step on branches instead of single-step on instructions.	06_01H
		5:2	Reserved.	
		6	TR: Setting this bit to 1 enables branch trace messages to be sent.	06_0EH
		7	BTS: Setting this bit enables branch trace messages (BTMs) to be logged in a BTS buffer.	06_0EH

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		8	BTINT: When clear, BTMs are logged in a BTS buffer in circular fashion. When this bit is set, an interrupt is generated by the BTS facility when the BTS buffer is full.	06_0EH
		9	1: BTS_OFF_OS: When set, BTS or BTM is skipped if CPL = 0.	06_0FH
		10	BTS_OFF_USR: When set, BTS or BTM is skipped if CPL > 0.	06_0FH
		11	FREEZE_LBRS_ON_PMI: When set, the LBR stack is frozen on a PMI request.	If CPUID.01H: ECX[15] = 1 and CPUID.0AH: EAX[7:0] > 1
		12	FREEZE_PERFMON_ON_PMI: When set, each ENABLE bit of the global counter control MSR are frozen (address 3BFH) on a PMI request	If CPUID.01H: ECX[15] = 1 and CPUID.0AH: EAX[7:0] > 1
		13	ENABLE_UNCORE_PMI: When set, enables the logical processor to receive and generate PMI on behalf of the uncore.	06_1AH
		14	FREEZE_WHILE_SMM: When set, freezes perfmon and trace messages while in SMM.	if IA32_PERF_CAPABILITIES[12] = '1
		15	RTM_DEBUG: When set, enables DR7 debug bit on XBEGIN	If (CPUID.(EAX=07H, ECX=0):EBX[bit 11] = 1)
		63:16	Reserved.	
1F2H	498	IA32_SMRR_PHYSBASE	SMRR Base Address (Writeable only in SMM)	If IA32_MTRR_CAP[SMRR] = 1
			Base address of SMM memory range.	
		7:0	Type. Specifies memory type of the range.	
		11:8	Reserved.	
		31:12	PhysBase. SMRR physical Base Address.	
		63:32	Reserved.	
1F3H	499	IA32_SMRR_PHYSMASK	SMRR Range Mask. (Writeable only in SMM)	If IA32_MTRR_CAP[SMRR] = 1
			Range Mask of SMM memory range.	
		10:0	Reserved.	
		11	Valid Enable range mask.	
		31:12	PhysMask SMRR address range mask.	

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		63:32	Reserved.	
1F8H	504	IA32_PLATFORM_DCA_CAP	DCA Capability (R)	06_0FH
1F9H	505	IA32_CPU_DCA_CAP	If set, CPU supports Prefetch-Hint type.	
1FAH	506	IA32_DCA_0_CAP	DCA type 0 Status and Control register.	06_2EH
		0	DCA_ACTIVE: Set by HW when DCA is fuse- enabled and no defeatures are set.	
		2:1	TRANSACTION	
		6:3	DCA_TYPE	
		10:7	DCA_QUEUE_SIZE	
		12:11	Reserved.	
		16:13	DCA_DELAY: Writes will update the register but have no HW side-effect.	
		23:17	Reserved.	
		24	SW_BLOCK: SW can request DCA block by setting this bit.	
		25	Reserved.	
		26	HW_BLOCK: Set when DCA is blocked by HW (e.g. CR0.CD = 1).	
		31:27	Reserved.	
200H	512	IA32_MTRR_PHYSBASE0 (MTRRphysBase0)	See Section 11.11.2.3, "Variable Range MTRRs."	06_01H
201H	513	IA32_MTRR_PHYSMASK0	MTRRphysMask0	06_01H
202H	514	IA32_MTRR_PHYSBASE1	MTRRphysBase1	06_01H
203H	515	IA32_MTRR_PHYSMASK1	MTRRphysMask1	06_01H
204H	516	IA32_MTRR_PHYSBASE2	MTRRphysBase2	06_01H
205H	517	IA32_MTRR_PHYSMASK2	MTRRphysMask2	06_01H
206H	518	IA32_MTRR_PHYSBASE3	MTRRphysBase3	06_01H
207H	519	IA32_MTRR_PHYSMASK3	MTRRphysMask3	06_01H
208H	520	IA32_MTRR_PHYSBASE4	MTRRphysBase4	06_01H
209H	521	IA32_MTRR_PHYSMASK4	MTRRphysMask4	06_01H
20AH	522	IA32_MTRR_PHYSBASE5	MTRRphysBase5	06_01H
20BH	523	IA32_MTRR_PHYSMASK5	MTRRphysMask5	06_01H
20CH	524	IA32_MTRR_PHYSBASE6	MTRRphysBase6	06_01H
20DH	525	IA32_MTRR_PHYSMASK6	MTRRphysMask6	06_01H
20EH	526	IA32_MTRR_PHYSBASE7	MTRRphysBase7	06_01H

	gister Idress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
20FH	527	IA32_MTRR_PHYSMASK7	MTRRphysMask7	06_01H
210H	528	IA32_MTRR_PHYSBASE8	MTRRphysBase8	if IA32_MTRR_CAP[7:0] > 8
211H	529	IA32_MTRR_PHYSMASK8	MTRRphysMask8	if IA32_MTRR_CAP[7:0] > 8
212H	530	IA32_MTRR_PHYSBASE9	MTRRphysBase9	if IA32_MTRR_CAP[7:0] > 9
213H	531	IA32_MTRR_PHYSMASK9	MTRRphysMask9	if IA32_MTRR_CAP[7:0] > 9
250H	592	IA32_MTRR_FIX64K_00000	MTRRfix64K_00000	06_01H
258H	600	IA32_MTRR_FIX16K_80000	MTRRfix16K_80000	06_01H
259H	601	IA32_MTRR_FIX16K_A0000	MTRRfix16K_A0000	06_01H
268H	616	IA32_MTRR_FIX4K_C0000 (MTRRfix4K_C0000)	See Section 11.11.2.2, "Fixed Range MTRRs."	06_01H
269H	617	IA32_MTRR_FIX4K_C8000	MTRRfix4K_C8000	06_01H
26AH	618	IA32_MTRR_FIX4K_D0000	MTRRfix4K_D0000	06_01H
26BH	619	IA32_MTRR_FIX4K_D8000	MTRRfix4K_D8000	06_01H
26CH	620	IA32_MTRR_FIX4K_E0000	MTRRfix4K_E0000	06_01H
26DH	621	IA32_MTRR_FIX4K_E8000	MTRRfix4K_E8000	06_01H
26EH	622	IA32_MTRR_FIX4K_F0000	MTRRfix4K_F0000	06_01H
26FH	623	IA32_MTRR_FIX4K_F8000	MTRRfix4K_F8000	06_01H
277H	631	IA32_PAT	IA32_PAT (R/W)	06_05H
		2:0	PAO	
		7:3	Reserved.	
		10:8	PA1	
		15:11	Reserved.	
		18:16	PA2	
		23:19	Reserved.	
		26:24	РАЗ	
		31:27	Reserved.	
		34:32	PA4	
		39:35	Reserved.	
		42:40	PA5	
		47:43	Reserved.	
		50:48	PA6	

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		55:51	Reserved.	
		58:56	PA7	
		63:59	Reserved.	
280H	640	IA32_MC0_CTL2	(R/W)	06_1AH
		14:0	Corrected error count threshold.	
		29:15	Reserved.	
		30	CMCI_EN	
		63:31	Reserved.	
281H	641	IA32_MC1_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_1AH
282H	642	IA32_MC2_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_1AH
283H	643	IA32_MC3_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_1AH
284H	644	IA32_MC4_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_1AH
285H	645	IA32_MC5_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_1AH
286H	646	IA32_MC6_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_1AH
287H	647	IA32_MC7_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_1AH
288H	648	IA32_MC8_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_1AH
289H	649	IA32_MC9_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_2EH
28AH	650	IA32_MC10_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_2EH
28BH	651	IA32_MC11_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_2EH
28CH	652	IA32_MC12_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_2EH
28DH	653	IA32_MC13_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_2EH
28EH	654	IA32_MC14_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_2EH
28FH	655	IA32_MC15_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_2EH
290H	656	IA32_MC16_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_2EH
291H	657	IA32_MC17_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_2EH
292H	658	IA32_MC18_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_2EH
293H	659	IA32_MC19_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_2EH
294H	660	IA32_MC20_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_2EH
295H	661	IA32_MC21_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_2EH
296H	662	IA32_MC22_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_3EH
297H	663	IA32_MC23_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_3EH
298H	664	IA32_MC24_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_3EH
299H	665	IA32_MC25_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_3EH
29AH	666	IA32_MC26_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_3EH

 $\mathsf{Intel}^{\circledast}$ 64 and IA-32 Architectures Software Developer's Manual Documentation Changes

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
29BH	667	IA32_MC27_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_3EH
29CH	668	IA32_MC28_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_3EH
29DH	669	IA32_MC29_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_3EH
29EH	670	IA32_MC30_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_3EH
29FH	671	IA32_MC31_CTL2	(R/W) same fields as IA32_MC0_CTL2.	06_3EH
2FFH	767	IA32_MTRR_DEF_TYPE	MTRRdefType (R/W)	06_01H
		2:0	Default Memory Type	
		9:3	Reserved.	
		10	Fixed Range MTRR Enable	
		11	MTRR Enable	
		63:12	Reserved.	
309H	777	IA32_FIXED_CTR0 (MSR_PERF_FIXED_CTR0)	Fixed-Function Performance Counter 0 (R/ W): Counts Instr_Retired.Any.	If CPUID.OAH: EDX[4:0] > 0
30AH	778	IA32_FIXED_CTR1 (MSR_PERF_FIXED_CTR1)	Fixed-Function Performance Counter 1 0 (R/W): Counts CPU_CLK_Unhalted.Core	If CPUID.OAH: EDX[4:0] > 1
30BH	779	IA32_FIXED_CTR2 (MSR_PERF_FIXED_CTR2)	Fixed-Function Performance Counter 0 0 (R/W): Counts CPU_CLK_Unhalted.Ref	If CPUID.OAH: EDX[4:0] > 2
345H	837	IA32_PERF_CAPABILITIES	RO	If CPUID.01H: ECX[15] = 1
		5:0	LBR format	
		6	PEBS Trap	
		7	PEBSSaveArchRegs	
		11:8	PEBS Record Format	
		12	1: Freeze while SMM is supported.	
		13	1: Full width of counter writable via IA32_A_PMCx.	
		63:14	Reserved.	
38DH	909	IA32_FIXED_CTR_CTRL (MSR_PERF_FIXED_CTR_CTRL)	Fixed-Function Performance Counter Control (R/W)	If CPUID.OAH: EAX[7:0] > 1
			Counter increments while the results of ANDing respective enable bit in IA32_PERF_GLOBAL_CTRL with the corresponding OS or USR bits in this MSR is true.	
		0	EN0_OS: Enable Fixed Counter 0 to count while CPL = 0.	
		1	ENO_Usr: Enable Fixed Counter 0 to count while CPL > 0.	

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		2	AnyThread: When set to 1, it enables counting the associated event conditions occurring across all logical processors sharing a processor core. When set to 0, the counter only increments the associated event conditions occurring in the logical processor which programmed the MSR.	If CPUID.OAH: EAX[7:0] > 2
		3	EN0_PMI: Enable PMI when fixed counter 0 overflows.	
		4	EN1_OS: Enable Fixed Counter 1 to count while CPL = 0.	
		5	EN1_Usr: Enable Fixed Counter 1 to count while CPL > 0.	
		6	AnyThread: When set to 1, it enables counting the associated event conditions occurring across all logical processors sharing a processor core. When set to 0, the counter only increments the associated event conditions occurring in the logical processor which programmed the MSR.	If CPUID.OAH: EAX[7:0] > 2
		7	EN1_PMI: Enable PMI when fixed counter 1 overflows.	
		8	EN2_OS: Enable Fixed Counter 2 to count while CPL = 0.	
		9	EN2_Usr: Enable Fixed Counter 2 to count while CPL > 0.	
		10	AnyThread: When set to 1, it enables counting the associated event conditions occurring across all logical processors sharing a processor core. When set to 0, the counter only increments the associated event conditions occurring in the logical processor which programmed the MSR.	If CPUID.OAH: EAX[7:0] > 2
		11	EN2_PMI: Enable PMI when fixed counter 2 overflows.	
		63:12	Reserved.	
38EH	910	IA32_PERF_GLOBAL_STATUS (MSR_PERF_GLOBAL_STATUS)	Global Performance Counter Status (RO)	If CPUID.OAH: EAX[7:0] > 0
		0	Ovf_PMC0: Overflow status of IA32_PMC0.	If CPUID.0AH: EAX[15:8] > 0
		1	Ovf_PMC1: Overflow status of IA32_PMC1.	If Cpuid.0ah: Eax[15:8] > 1

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		2	Ovf_PMC2: Overflow status of IA32_PMC2.	06_2EH
		3	Ovf_PMC3: Overflow status of IA32_PMC3.	06_2EH
		31:4	Reserved.	
		32	Ovf_FixedCtr0: Overflow status of IA32_FIXED_CTR0.	If CPUID.OAH: EAX[7:0] > 1
		33	Ovf_FixedCtr1: Overflow status of IA32_FIXED_CTR1.	If CPUID.OAH: EAX[7:0] > 1
		34	Ovf_FixedCtr2: Overflow status of IA32_FIXED_CTR2.	If CPUID.OAH: EAX[7:0] > 1
		54:35	Reserved.	
		55	Trace_ToPA_PMI: A PMI occurred due to a ToPA entry memory buffer was completely filled.	If IA32_RTIT_CTL.ToPA = 1
		60:56	Reserved.	
		61	Ovf_Uncore: Uncore counter overflow status.	If CPUID.OAH: EAX[7:0] > 2
		62	OvfBuf: DS SAVE area Buffer overflow status.	If CPUID.OAH: EAX[7:0] > 0
		63	CondChgd: status bits of this register has changed.	If CPUID.OAH: EAX[7:0] > 0
38FH	911	IA32_PERF_GLOBAL_CTRL (MSR_PERF_GLOBAL_CTRL)	Global Performance Counter Control (R/W) Counter increments while the result of ANDing respective enable bit in this MSR with the corresponding OS or USR bits in the general-purpose or fixed counter control MSR is true.	If CPUID.OAH: EAX[7:0] > 0
		0	EN_PMC0	If CPUID.OAH: EAX[7:0] > 0
		1	EN_PMC1	If CPUID.OAH: EAX[7:0] > 0
		31:2	Reserved.	
		32	EN_FIXED_CTR0	If CPUID.OAH: EAX[7:0] > 1
		33	EN_FIXED_CTR1	If CPUID.OAH: EAX[7:0] > 1
		34	EN_FIXED_CTR2	If CPUID.OAH: EAX[7:0] > 1
		63:35	Reserved.	
390H	912	IA32_PERF_GLOBAL_OVF_CTRL (MSR_PERF_GLOBAL_OVF_CTRL)	Global Performance Counter Overflow Control (R/W)	If CPUID.OAH: EAX[7:0] > 0
		0	Set 1 to Clear Ovf_PMC0 bit.	If CPUID.OAH: EAX[7:0] > 0
		1	Set 1 to Clear Ovf_PMC1 bit.	If CPUID.OAH: EAX[7:0] > 0
		31:2	Reserved.	

	gister Idress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		32	Set 1 to Clear Ovf_FIXED_CTR0 bit.	If CPUID.OAH: EAX[7:0] > 1
		33	Set 1 to Clear Ovf_FIXED_CTR1 bit.	If CPUID.OAH: EAX[7:0] > 1
		34	Set 1 to Clear Ovf_FIXED_CTR2 bit.	If CPUID.OAH: EAX[7:0] > 1
		60:35	Reserved.	
		61	Set 1 to Clear Ovf_Uncore: bit.	06_2EH
		62	Set 1 to Clear OvfBuf: bit.	If CPUID.OAH: EAX[7:0] > 0
		63	Set to 1 to clear CondChgd: bit.	If CPUID.OAH: EAX[7:0] > 0
3F1H	1009	IA32_PEBS_ENABLE	PEBS Control (R/W)	
		0	Enable PEBS on IA32_PMC0.	06_0FH
		1-3	Reserved or Model specific.	
		31:4	Reserved.	
		35-32	Reserved or Model specific.	
		63:36	Reserved.	
400H	1024	IA32_MCO_CTL	MC0_CTL	06_01H
401H	1025	IA32_MC0_STATUS	MC0_STATUS	06_01H
402H	1026	IA32_MC0_ADDR ¹	MC0_ADDR	06_01H
403H	1027	IA32_MC0_MISC	MCO_MISC	06_01H
404H	1028	IA32_MC1_CTL	MC1_CTL	06_01H
405H	1029	IA32_MC1_STATUS	MC1_STATUS	06_01H
406H	1030	IA32_MC1_ADDR ²	MC1_ADDR	06_01H
407H	1031	IA32_MC1_MISC	MC1_MISC	06_01H
408H	1032	IA32_MC2_CTL	MC2_CTL	06_01H
409H	1033	IA32_MC2_STATUS	MC2_STATUS	06_01H
40AH	1034	IA32_MC2_ADDR ¹	MC2_ADDR	06_01H
40BH	1035	IA32_MC2_MISC	MC2_MISC	06_01H
40CH	1036	IA32_MC3_CTL	MC3_CTL	06_01H
40DH	1037	IA32_MC3_STATUS	MC3_STATUS	06_01H
40EH	1038	IA32_MC3_ADDR ¹	MC3_ADDR	06_01H
40FH	1039	IA32_MC3_MISC	MC3_MISC	06_01H
410H	1040	IA32_MC4_CTL	MC4_CTL	06_01H
411H	1041	IA32_MC4_STATUS	MC4_STATUS	06_01H
412H	1042	IA32_MC4_ADDR ¹	MC4_ADDR	06_01H
413H	1043	IA32_MC4_MISC	MC4_MISC	06_01H
414H	1044	IA32_MC5_CTL	MC5_CTL	06_0FH

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
415H	1045	IA32_MC5_STATUS	MC5_STATUS	06_0FH
416H	1046	IA32_MC5_ADDR ¹	MC5_ADDR	06_0FH
417H	1047	IA32_MC5_MISC	MC5_MISC	06_0FH
418H	1048	IA32_MC6_CTL	MC6_CTL	06_1DH
419H	1049	IA32_MC6_STATUS	MC6_STATUS	06_1DH
41AH	1050	IA32_MC6_ADDR ¹	MC6_ADDR	06_1DH
41BH	1051	IA32_MC6_MISC	MC6_MISC	06_1DH
41CH	1052	IA32_MC7_CTL	MC7_CTL	06_1AH
41DH	1053	IA32_MC7_STATUS	MC7_STATUS	06_1AH
41EH	1054	IA32_MC7_ADDR ¹	MC7_ADDR	06_1AH
41FH	1055	IA32_MC7_MISC	MC7_MISC	06_1AH
420H	1056	IA32_MC8_CTL	MC8_CTL	06_1AH
421H	1057	IA32_MC8_STATUS	MC8_STATUS	06_1AH
422H	1058	IA32_MC8_ADDR ¹	MC8_ADDR	06_1AH
423H	1059	IA32_MC8_MISC	MC8_MISC	06_1AH
424H	1060	IA32_MC9_CTL	MC9_CTL	06_2EH
425H	1061	IA32_MC9_STATUS	MC9_STATUS	06_2EH
426H	1062	IA32_MC9_ADDR ¹	MC9_ADDR	06_2EH
427H	1063	IA32_MC9_MISC	MC9_MISC	06_2EH
428H	1064	IA32_MC10_CTL	MC10_CTL	06_2EH
429H	1065	IA32_MC10_STATUS	MC10_STATUS	06_2EH
42AH	1066	IA32_MC10_ADDR ¹	MC10_ADDR	06_2EH
42BH	1067	IA32_MC10_MISC	MC10_MISC	06_2EH
42CH	1068	IA32_MC11_CTL	MC11_CTL	06_2EH
42DH	1069	IA32_MC11_STATUS	MC11_STATUS	06_2EH
42EH	1070	IA32_MC11_ADDR ¹	MC11_ADDR	06_2EH
42FH	1071	IA32_MC11_MISC	MC11_MISC	06_2EH
430H	1072	IA32_MC12_CTL	MC12_CTL	06_2EH
431H	1073	IA32_MC12_STATUS	MC12_STATUS	06_2EH
432H	1074	IA32_MC12_ADDR ¹	MC12_ADDR	06_2EH
433H	1075	IA32_MC12_MISC	MC12_MISC	06_2EH
434H	1076	IA32_MC13_CTL	MC13_CTL	06_2EH
435H	1077	IA32_MC13_STATUS	MC13_STATUS	06_2EH
436H	1078	IA32_MC13_ADDR ¹	MC13_ADDR	06_2EH

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
437H	1079	IA32_MC13_MISC	MC13_MISC	06_2EH
438H	1080	IA32_MC14_CTL	MC14_CTL	06_2EH
439H	1081	IA32_MC14_STATUS	MC14_STATUS	06_2EH
43AH	1082	IA32_MC14_ADDR ¹	MC14_ADDR	06_2EH
43BH	1083	IA32_MC14_MISC	MC14_MISC	06_2EH
43CH	1084	IA32_MC15_CTL	MC15_CTL	06_2EH
43DH	1085	IA32_MC15_STATUS	MC15_STATUS	06_2EH
43EH	1086	IA32_MC15_ADDR ¹	MC15_ADDR	06_2EH
43FH	1087	IA32_MC15_MISC	MC15_MISC	06_2EH
440H	1088	IA32_MC16_CTL	MC16_CTL	06_2EH
441H	1089	IA32_MC16_STATUS	MC16_STATUS	06_2EH
442H	1090	IA32_MC16_ADDR ¹	MC16_ADDR	06_2EH
443H	1091	IA32_MC16_MISC	MC16_MISC	06_2EH
444H	1092	IA32_MC17_CTL	MC17_CTL	06_2EH
445H	1093	IA32_MC17_STATUS	MC17_STATUS	06_2EH
446H	1094	IA32_MC17_ADDR ¹	MC17_ADDR	06_2EH
447H	1095	IA32_MC17_MISC	MC17_MISC	06_2EH
448H	1096	IA32_MC18_CTL	MC18_CTL	06_2EH
449H	1097	IA32_MC18_STATUS	MC18_STATUS	06_2EH
44AH	1098	IA32_MC18_ADDR ¹	MC18_ADDR	06_2EH
44BH	1099	IA32_MC18_MISC	MC18_MISC	06_2EH
44CH	1100	IA32_MC19_CTL	MC19_CTL	06_2EH
44DH	1101	IA32_MC19_STATUS	MC19_STATUS	06_2EH
44EH	1102	IA32_MC19_ADDR ¹	MC19_ADDR	06_2EH
44FH	1103	IA32_MC19_MISC	MC19_MISC	06_2EH
450H	1104	IA32_MC20_CTL	MC20_CTL	06_2EH
451H	1105	IA32_MC20_STATUS	MC20_STATUS	06_2EH
452H	1106	IA32_MC20_ADDR ¹	MC20_ADDR	06_2EH
453H	1107	IA32_MC20_MISC	MC20_MISC	06_2EH
454H	1108	IA32_MC21_CTL	MC21_CTL	06_2EH
455H	1109	IA32_MC21_STATUS	MC21_STATUS	06_2EH
456H	1110	IA32_MC21_ADDR ¹	MC21_ADDR	06_2EH
457H	1111	IA32_MC21_MISC	MC21_MISC	06_2EH

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
480H	1152	IA32_VMX_BASIC	Reporting Register of Basic VMX Capabilities (R/O)	If CPUID.01H:ECX.[bit 5] = 1
			See Appendix A.1, "Basic VMX Information."	
481H	1153	IA32_VMX_PINBASED_CTLS	Capability Reporting Register of Pin- based VM-execution Controls (R/O)	If CPUID.01H:ECX.[bit 5] = 1
			See Appendix A.3.1, "Pin-Based VM- Execution Controls."	
482H	1154	IA32_VMX_PROCBASED_CTLS	Capability Reporting Register of Primary Processor-based VM-execution Controls (R/O)	If CPUID.01H:ECX.[bit 5] = 1
			See Appendix A.3.2, "Primary Processor- Based VM-Execution Controls."	
483H	1155	IA32_VMX_EXIT_CTLS	Capability Reporting Register of VM-exit Controls (R/O)	If CPUID.01H:ECX.[bit 5] = 1
			See Appendix A.4, "VM-Exit Controls."	
484H	1156	IA32_VMX_ENTRY_CTLS	Capability Reporting Register of VM- entry Controls (R/O)	If CPUID.01H:ECX.[bit 5] = 1
			See Appendix A.5, "VM-Entry Controls."	
485H	1157	IA32_VMX_MISC	Reporting Register of Miscellaneous VMX Capabilities (R/O)	If CPUID.01H:ECX.[bit 5] = 1
			See Appendix A.6, "Miscellaneous Data."	
486H	1158	IA32_VMX_CRO_FIXED0	Capability Reporting Register of CRO Bits Fixed to 0 (R/O)	If CPUID.01H:ECX.[bit 5] = 1
			See Appendix A.7, "VMX-Fixed Bits in CRO."	
487H	1159	IA32_VMX_CRO_FIXED1	Capability Reporting Register of CRO Bits Fixed to 1 (R/O)	If CPUID.01H:ECX.[bit 5] = 1
			See Appendix A.7, "VMX-Fixed Bits in CRO."	
488H	1160	IA32_VMX_CR4_FIXED0	Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)	If CPUID.01H:ECX.[bit 5] = 1
			See Appendix A.8, "VMX-Fixed Bits in CR4."	
489H	1161	IA32_VMX_CR4_FIXED1	Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)	If CPUID.01H:ECX.[bit 5] = 1
			See Appendix A.8, "VMX-Fixed Bits in CR4."	
48AH	1162	IA32_VMX_VMCS_ENUM	Capability Reporting Register of VMCS Field Enumeration (R/O)	If CPUID.01H:ECX.[bit 5] = 1
			See Appendix A.9, "VMCS Enumeration."	
48BH	1163	IA32_VMX_PROCBASED_CTLS2	Capability Reporting Register of Secondary Processor-based VM-execution Controls (R/O)	If (CPUID.01H:ECX.[bit 5] and IA32_VMX_PROCBASED_C
			See Appendix A.3.3, "Secondary Processor- Based VM-Execution Controls."	TLS[bit 63])

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
48CH	1164	IA32_VMX_EPT_VPID_CAP	Capability Reporting Register of EPT and VPID (R/O) See Appendix A.10, "VPID and EPT Capabilities."	If (CPUID.01H:ECX.[bit 5], IA32_VMX_PROCBASED_C TLS[bit 63], and either IA32_VMX_PROCBASED_C TLS2[bit 33] or IA32_VMX_PROCBASED_C TLS2[bit 37])
48DH	1165	IA32_VMX_TRUE_PINBASED_CTLS	Capability Reporting Register of Pin- based VM-execution Flex Controls (R/O) See Appendix A.3.1, "Pin-Based VM- Execution Controls."	If (CPUID.01H:ECX.[bit 5] = 1 and IA32_VMX_BASIC[bit 55])
48EH	1166	IA32_VMX_TRUE_PROCBASED_CTLS	Capability Reporting Register of Primary Processor-based VM-execution Flex Controls (R/O) See Appendix A.3.2, "Primary Processor- Based VM-Execution Controls."	If(CPUID.01H:ECX.[bit 5] = 1 and IA32_VMX_BASIC[bit 55])
48FH	1167	IA32_VMX_TRUE_EXIT_CTLS	Capability Reporting Register of VM-exit Flex Controls (R/O) See Appendix A.4, "VM-Exit Controls."	If(CPUID.01H:ECX.[bit 5] = 1 and IA32_VMX_BASIC[bit 55])
490H	1168	IA32_VMX_TRUE_ENTRY_CTLS	Capability Reporting Register of VM- entry Flex Controls (R/O) See Appendix A.5, "VM-Entry Controls."	If(CPUID.01H:ECX.[bit 5] = 1 and IA32_VMX_BASIC[bit 55])
491H	1169	IA32_VMX_VMFUNC	Capability Reporting Register of VM- function Controls (R/O)	If(CPUID.01H:ECX.[bit 5] = 1 and IA32_VMX_BASIC[bit 55])
4C1H	1217	IA32_A_PMCO	Full Width Writable IA32_PMC0 Alias (R/W)	(If CPUID.OAH: EAX[15:8] > 0) & IA32_PERF_CAPABILITIES[13] = 1
4C2H	1218	IA32_A_PMC1	Full Width Writable IA32_PMC1 Alias (R/W)	(If CPUID.OAH: EAX[15:8] > 1) & IA32_PERF_CAPABILITIES[13] = 1
4C3H	1219	IA32_A_PMC2	Full Width Writable IA32_PMC2 Alias (R/W)	(If CPUID.OAH: EAX[15:8] > 2) & IA32_PERF_CAPABILITIES[13] = 1
4C4H	1220	IA32_A_PMC3	Full Width Writable IA32_PMC3 Alias (R/W)	(If CPUID.0AH: EAX[15:8] > 3) & IA32_PERF_CAPABILITIES[13] = 1

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
4C5H	1221	IA32_A_PMC4	Full Width Writable IA32_PMC4 Alias (R/W)	(If CPUID.OAH: EAX[15:8] > 4) &
				IA32_PERF_CAPABILITIES[13] = 1
4C6H	1222	IA32_A_PMC5	Full Width Writable IA32_PMC5 Alias (R/W)	(If CPUID.OAH: EAX[15:8] > 5) &
				IA32_PERF_CAPABILITIES[13] = 1
4C7H	1223	IA32_A_PMC6	Full Width Writable IA32_PMC6 Alias (R/W)	(If CPUID.0AH: EAX[15:8] > 6) &
				IA32_PERF_CAPABILITIES[13] = 1
4C8H	1224	IA32_A_PMC7	Full Width Writable IA32_PMC7 Alias (R/W)	(If CPUID.OAH: EAX[15:8] > 7) &
				IA32_PERF_CAPABILITIES[13] = 1
4D0H	1232	IA32_MCG_EXT_CTL	(R/W)	If IA32_MCG_CAP.LMCE_P =1
		0	LMCE_EN.	
		63:1	Reserved.	
560H	1376	IA32_RTIT_OUTPUT_BASE	Trace Output Base Register (R/W)	If (CPUID.(EAX=07H, ECX=0):EBX[bit 25] = 1)
		6:0	Reserved	
		Maxphyaddr ³ -1:7	Base physical address of the current ToPA table.	
		63:MAXPHYADDR	Reserved.	
561H	1377	IA32_RTIT_OUTPUT_MASK_PTRS	Trace Output Mask Pointers Register (R/ W)	If (CPUID.(EAX=07H, ECX=0):EBX[bit 25] = 1)
		6:0	Reserved	
		31:7	MaskOrTableOffset	
		63:32	Output Offset.	
570H	1392	IA32_RTIT_CTL	Trace Packet Control Register (R/W)	If (CPUID.(EAX=07H, ECX=0):EBX[bit 25] = 1)
		0	TraceEn	
		1	Reserved,	
		2	05	
		3	User	
		6:4	Reserved,	

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		7	CR3 filter	
		8	ТоРА	
		9	Reserved,	
		10	TSCEn	
		11	DisRETC	
		12	Reserved,	
		13	BranchEn	
		63:14	Reserved, MBZ.	
571H	1393	IA32_RTIT_STATUS	Tracing Status Register (R/W)	If (CPUID.(EAX=07H, ECX=0):EBX[bit 25] = 1)
		0	Reserved,	
		1	ContexEn, (writes ignored)	
		2	TriggerEn, (writes ignored)	
		3	Reserved	
		4	Error	
		5	Stopped	
		63:6	Reserved.	
572H	1394	IA32_RTIT_CR3_MATCH	Trace Filter CR3 Match Register (R/W)	If (CPUID.(EAX=07H, ECX=0):EBX[bit 25] = 1)
		4:0	Reserved	
		63:5	CR3[63:5] value to match	
600H	1536	IA32_DS_AREA	DS Save Area (R/W)	0F_0H
			Points to the linear address of the first byte of the DS buffer management area, which is used to manage the BTS and PEBS buffers.	
			See Section 18.13.4, "Debug Store (DS) Mechanism."	
		63:0	The linear address of the first byte of the DS buffer management area, if IA-32e mode is active.	
		31:0	The linear address of the first byte of the DS buffer management area, if not in IA- 32e mode.	
		63:32	Reserved if not in IA-32e mode.	
6E0H	1760	IA32_TSC_DEADLINE	TSC Target of Local APIC's TSC Deadline Mode (R/W)	If(CPUID.01H:ECX.[bit 25] = 1

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
770H	770H 1904	IA32_PM_ENABLE	Enable/disable HWP (R/W)	If(CPUID.06H:EAX.[bit 7] = 1
		0	HWP_ENABLE (R/W1-Once).	If(CPUID.06H:EAX.[bit 7] =
			See Section 14.4.2, "Enabling HWP"	1
		63:1	Reserved.	
771H	1905	IA32_HWP_CAPABILITIES	HWP Performance Range Enumeration (RO)	If(CPUID.06H:EAX.[bit 7] = 1
		7:0	Highest_Performance See Section 14.4.3, "HWP Performance Range and Dynamic Capabilities"	If(CPUID.06H:EAX.[bit 7] = 1
		15:8	Guaranteed_Performance See Section 14.4.3, "HWP Performance Range and Dynamic Capabilities"	If(CPUID.06H:EAX.[bit 7] = 1
		23:16	Most_Efficient_Performance See Section 14.4.3, "HWP Performance Range and Dynamic Capabilities"	If(CPUID.06H:EAX.[bit 7] = 1
		31:24	Lowest_Performance See Section 14.4.3, "HWP Performance Range and Dynamic Capabilities"	If(CPUID.06H:EAX.[bit 7] = 1
		63:32	Reserved.	
772H	1906	IA32_HWP_REQUEST_PKG	Power Management Control Hints for All Logical Processors in a Package (R/W)	If(CPUID.06H:EAX.[bit 11] = 1
		7:0	Minimum_Performance See Section 14.4.4, "Managing HWP"	If(CPUID.06H:EAX.[bit 11] = 1
		15:8	Maximum_Performance See Section 14.4.4, "Managing HWP"	If(CPUID.06H:EAX.[bit 11] = 1
		23:16	Desired_Performance See Section 14.4.4, "Managing HWP"	If(CPUID.06H:EAX.[bit 11] = 1
		31:24	Energy_Performance_Preference See Section 14.4.4, "Managing HWP"	If(CPUID.06H:EAX.[bit 11] = 1 and CPUID.06HEAX.[bit 10] = 1
		41:32	Activity_Window See Section 14.4.4, "Managing HWP"	If(CPUID.06H:EAX.[bit 11] = 1 and CPUID.06HEAX.[bit 9] = 1
		63:42	Reserved.	
773H	1907	IA32_HWP_INTERRUPT	Control HWP Native Interrupts (R/W)	If(CPUID.06H:EAX.[bit 8] = 1

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		0	EN_Guaranteed_Performance_Change . See Section 14.4.6, "HWP Notifications"	If(CPUID.06H:EAX.[bit 8] = 1
		1	EN_Excursion_Minimum . See Section 14.4.6, "HWP Notifications"	If(CPUID.06H:EAX.[bit 8] = 1
		63:2	Reserved.	
774H	1908	IA32_HWP_REQUEST	Power Management Control Hints to a Logical Processor (R/W)	If(CPUID.06H:EAX.[bit 7] = 1
		7:0	Minimum_Performance See Section 14.4.4, "Managing HWP"	If(CPUID.06H:EAX.[bit 7] = 1
		15:8	Maximum_Performance See Section 14.4.4, "Managing HWP"	If(CPUID.06H:EAX.[bit 7] = 1
		23:16	Desired_Performance See Section 14.4.4, "Managing HWP"	If(CPUID.06H:EAX.[bit 7] = 1
		31:24	Energy_Performance_Preference See Section 14.4.4, "Managing HWP"	If CPUID.06HEAX.[bit 7] = 1 and (CPUID.06H:EAX.[bit 10] = 1
		41:32	Activity_Window See Section 14.4.4, "Managing HWP"	If CPUID.06HEAX.[bit 7] = 1 and (CPUID.06H:EAX.[bit 9] = 1
		42	Package_Control See Section 14.4.4, "Managing HWP"	IfCPUID.06HEAX.[bit 7] = 1 and (CPUID.06H:EAX.[bit 11] = 1
		63:43	Reserved.	
777H	1911	IA32_HWP_STATUS	Log bits indicating changes to Guaranteed & excursions to Minimum (R/ W)	If(CPUID.06H:EAX.[bit 7] = 1
		0	Guaranteed_Performance_Change (R/ WCO).	If(CPUID.06H:EAX.[bit 7] = 1
		1	See Section 14.4.5, "HWP Feedback"	
		2	Reserved.	
		2	Excursion_To_Minimum (R/WCO). See Section 14.4.5, "HWP Feedback"	If(CPUID.06H:EAX.[bit 7] = 1
		63:3	Reserved.	
802H	2050	IA32_X2APIC_APICID	x2APIC ID Register (R/O) See x2APIC Specification	If (CPUID.01H:ECX.[bit 21] = 1)
803H	2051	IA32_X2APIC_VERSION	x2APIC Version Register (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
808H	2056	IA32_X2APIC_TPR	x2APIC Task Priority Register (R/W)	If (CPUID.01H:ECX.[bit 21] = 1)

	gister Idress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
80AH	2058	IA32_X2APIC_PPR	x2APIC Processor Priority Register (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
80BH	2059	IA32_X2APIC_EOI	x2APIC EOI Register (W/O)	If (CPUID.01H:ECX.[bit 21] = 1)
80DH	2061	IA32_X2APIC_LDR	x2APIC Logical Destination Register (R/ O)	If (CPUID.01H:ECX.[bit 21] = 1)
80FH	2063	IA32_X2APIC_SIVR	x2APIC Spurious Interrupt Vector Register (R/W)	If (CPUID.01H:ECX.[bit 21] = 1)
810H	2064	IA32_X2APIC_ISR0	x2APIC In-Service Register Bits 31:0 (R/ 0)	If (CPUID.01H:ECX.[bit 21] = 1)
811H	2065	IA32_X2APIC_ISR1	x2APIC In-Service Register Bits 63:32 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
812H	2066	IA32_X2APIC_ISR2	x2APIC In-Service Register Bits 95:64 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
813H	2067	IA32_X2APIC_ISR3	x2APIC In-Service Register Bits 127:96 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
814H	2068	IA32_X2APIC_ISR4	x2APIC In-Service Register Bits 159:128 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
815H	2069	IA32_X2APIC_ISR5	x2APIC In-Service Register Bits 191:160 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
816H	2070	IA32_X2APIC_ISR6	x2APIC In-Service Register Bits 223:192 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
817H	2071	IA32_X2APIC_ISR7	x2APIC In-Service Register Bits 255:224 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
818H	2072	IA32_X2APIC_TMR0	x2APIC Trigger Mode Register Bits 31:0 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
819H	2073	IA32_X2APIC_TMR1	x2APIC Trigger Mode Register Bits 63:32 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
81AH	2074	IA32_X2APIC_TMR2	x2APIC Trigger Mode Register Bits 95:64 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
81BH	2075	IA32_X2APIC_TMR3	x2APIC Trigger Mode Register Bits 127:96 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
81CH	2076	IA32_X2APIC_TMR4	x2APIC Trigger Mode Register Bits 159:128 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
81DH	2077	IA32_X2APIC_TMR5	x2APIC Trigger Mode Register Bits 191:160 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
81EH	2078	IA32_X2APIC_TMR6	x2APIC Trigger Mode Register Bits 223:192 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
81FH	2079	IA32_X2APIC_TMR7	x2APIC Trigger Mode Register Bits 255:224 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)

	gister Idress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
820H	2080	IA32_X2APIC_IRR0	x2APIC Interrupt Request Register Bits 31:0 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
821H	2081	IA32_X2APIC_IRR1	x2APIC Interrupt Request Register Bits 63:32 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
822H	2082	IA32_X2APIC_IRR2	x2APIC Interrupt Request Register Bits 95:64 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
823H	2083	IA32_X2APIC_IRR3	x2APIC Interrupt Request Register Bits 127:96 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
824H	2084	IA32_X2APIC_IRR4	x2APIC Interrupt Request Register Bits 159:128 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
825H	2085	IA32_X2APIC_IRR5	x2APIC Interrupt Request Register Bits 191:160 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
826H	2086	IA32_X2APIC_IRR6	x2APIC Interrupt Request Register Bits 223:192 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
827H	2087	IA32_X2APIC_IRR7	x2APIC Interrupt Request Register Bits 255:224 (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
828H	2088	IA32_X2APIC_ESR	x2APIC Error Status Register (R/W)	If (CPUID.01H:ECX.[bit 21] = 1)
82FH	2095	IA32_X2APIC_LVT_CMCI	x2APIC LVT Corrected Machine Check Interrupt Register (R/W)	If (CPUID.01H:ECX.[bit 21] = 1)
830H	2096	IA32_X2APIC_ICR	x2APIC Interrupt Command Register (R/ W)	If (CPUID.01H:ECX.[bit 21] = 1)
832H	2098	IA32_X2APIC_LVT_TIMER	x2APIC LVT Timer Interrupt Register (R/ W)	If (CPUID.01H:ECX.[bit 21] = 1)
833H	2099	IA32_X2APIC_LVT_THERMAL	x2APIC LVT Thermal Sensor Interrupt Register (R/W)	If (CPUID.01H:ECX.[bit 21] = 1)
834H	2100	IA32_X2APIC_LVT_PMI	x2APIC LVT Performance Monitor Interrupt Register (R/W)	If (CPUID.01H:ECX.[bit 21] = 1)
835H	2101	IA32_X2APIC_LVT_LINT0	x2APIC LVT LINTO Register (R/W)	If (CPUID.01H:ECX.[bit 21] = 1)
836H	2102	IA32_X2APIC_LVT_LINT1	x2APIC LVT LINT1 Register (R/W)	If (CPUID.01H:ECX.[bit 21] = 1)
837H	2103	IA32_X2APIC_LVT_ERROR	x2APIC LVT Error Register (R/W)	If (CPUID.01H:ECX.[bit 21] = 1)
838H	2104	IA32_X2APIC_INIT_COUNT	x2APIC Initial Count Register (R/W)	If (CPUID.01H:ECX.[bit 21] = 1)
839H	2105	IA32_X2APIC_CUR_COUNT	x2APIC Current Count Register (R/O)	If (CPUID.01H:ECX.[bit 21] = 1)
83EH	2110	IA32_X2APIC_DIV_CONF	x2APIC Divide Configuration Register (R/ W)	If (CPUID.01H:ECX.[bit 21] = 1)

	gister dress	Architectural MSR Name and bit fields		Comment	
Hex	Decimal	(Former MSR Name)	MSR/Bit Description		
83FH	2111	IA32_X2APIC_SELF_IPI	x2APIC Self IPI Register (W/O)	If (CPUID.01H:ECX.[bit 21 = 1)	
C80H	3200	IA32_DEBUG_INTERFACE	Silicon Debug Feature Control (R/W)	If(CPUID.01H:ECX.[bit 11 = 1	
		0	Enable (R/W). BIOS set 1 to enable Silicon debug features. Default is 0	If(CPUID.01H:ECX.[bit 11 = 1	
		29:1	Reserved.		
		30	Lock (R/W) : If 1, locks any further change to the MSR. The lock bit is set automatically on the first SMI assertion even if not explicitly set by BIOS. Default is 0.	If(CPUID.01H:ECX.[bit 11 = 1	
		31	Debug Occurred (R/O) : This "sticky bit" is set by hardware to indicate the status of bit 0. Default is 0.	If(CPUID.01H:ECX.[bit 11 = 1	
		63:32	Reserved.		
C8DH	3213	IA32_QM_EVTSEL	Monitoring Event Select Register (R/W)	If (CPUID.(EAX=07H, ECX=0):EBX.[bit 12] = 1)	
		7:0	Event ID: ID of a supported monitoring event to report via IA32_QM_CTR.		
		31:8	Reserved.		
		N+31:32	Resource Monitoring ID: ID for monitoring hardware to report monitored data via IA32_QM_CTR.	N = Ceil (Log ₂ (CPUID.(EAX= 0FH, ECX=0H).EBX[31:0] +1))	
		63:N+32	Reserved.		
C8EH	3214	IA32_QM_CTR	Monitoring Counter Register (R/O)	If (CPUID.(EAX=07H, ECX=0):EBX.[bit 12] = 1)	
		61:0	Resource Monitored Data		
		62	Unavailable : If 1, indicates data for this RMID is not available or not monitored for this resource or RMID.		
		63	Error: If 1, indicates and unsupported RMID or event type was written to IA32_PQR_QM_EVTSEL.		
C8FH	3215	IA32_PQR_ASSOC	Resource Association Register (R/W)	If (CPUID.(EAX=07H, ECX=0):EBX.[bit 12] = 1)	
		N-1:0	Resource Monitoring ID (R/W): ID for monitoring hardware to track internal operation, e.g. memory access.	N = Ceil (Log ₂ (CPUID.(EAX= 0FH, ECX=0H).EBX[31:0] +1))	
		31:N	Reserved		

	jister Iress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		63:32	COS (R/W). The class of service (COS) to enforce (on writes); returns the current COS when read.	If (CPUID.(EAX=07H, ECX=0):EBX.[bit 15] = 1)
0C90H - 0D8FH		Reserved MSR Address Space for Platform Enforcement Mask Registers	See Section 17.15.2.1, "Enumeration and Detection Support of Cache Allocation Technology"	
C90H	3216	IA32_L3_MASK_0	L3 CQE Mask for COSO (R/W)	If (CPUID.(10H, 0):EBX[bi 1] != 0)
		31:0	Capacity Bit Mask (R/W).	
		63:32	Reserved.	
C90H+ n	3216+n	IA32_L3_MASK_n	L3 CQE Mask for COSn (R/W)	n = CPUID.(10H, 1):EDX[15:0]
		31:0	Capacity Bit Mask (R/W).	
		63:32	Reserved.	
DAOH	3488	IA32_XSS	Extended Supervisor State Mask (R/W)	If(CPUID.(ODH, 1):EAX.[b 3] = 1
		7:0	Reserved	
		8	Trace Packet Configuration State (R/W).	
		63:9	Reserved.	
DBOH	3504	IA32_PKG_HDC_CTL	Package Level Enable/disable HDC (R/W)	If(CPUID.06H:EAX.[bit 1 = 1
		0	HDC_Pkg_Enable (R/W). Force HDC idling or wake up HDC-idled logical processors in the package. See Section 14.5.2, "Package level Enabling HDC"	If(CPUID.06H:EAX.[bit 1] = 1
		63:1	Reserved.	
DB1H	3505	IA32_PM_CTL1	Enable/disable HWP (R/W)	If(CPUID.06H:EAX.[bit 1 = 1
		0	HDC_Allow_Block (R/W) Allow/Block this logical processor for package level HDC control. See Section 14.5.3	If(CPUID.06H:EAX.[bit 1 = 1
		63:1	Reserved.	
DB2H	3506	IA32_THREAD_STALL	Per-Logical_Processor HDC Idle Residency (R/0)	If(CPUID.06H:EAX.[bit 1] = 1

	gister dress	Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
		63:0	Stall_Cycle_Cnt (R/W) Stalled cycles due to HDC forced idle on this logical processor. See Section 14.5.4.1	If(CPUID.06H:EAX.[bit 13] = 1
4000_ 0000H -		Reserved MSR Address Space	All existing and future processors will not implement MSR in this range.	
4000_ 00FFH				
C000_ 0080H		IA32_EFER	Extended Feature Enables	If (CPUID.80000001.EDX.[bit 20] or CPUID.80000001.EDX.[bit 29])
		0	SYSCALL Enable: IA32_EFER.SCE (R/W)	
			Enables SYSCALL/SYSRET instructions in 64-bit mode.	
		7:1	Reserved.	
		8	IA-32e Mode Enable: IA32_EFER.LME (R/ W)	
			Enables IA-32e mode operation.	
		9	Reserved.	
		10	IA-32e Mode Active: IA32_EFER.LMA (R) Indicates IA-32e mode is active when set.	
		11	Execute Disable Bit Enable: IA32_EFER.NXE (R/W)	
		63:12	Reserved.	
C000_ 0081H		IA32_STAR	System Call Target Address (R/W)	lf CPUID.80000001.EDX.[bit 29] = 1
C000_ 0082H		IA32_LSTAR	IA-32e Mode System Call Target Address (R/W)	lf CPUID.80000001.EDX.[bit 29] = 1
C000_ 0084H		IA32_FMASK	System Call Flag Mask (R/W)	lf CPUID.80000001.EDX.[bit 29] = 1
C000_ 0100H		IA32_FS_BASE	Map of BASE Address of FS (R/W)	lf CPUID.80000001.EDX.[bit 29] = 1
C000_ 0101H		IA32_GS_BASE	Map of BASE Address of GS (R/W)	lf CPUID.80000001.EDX.[bit 29] = 1

Register Address		Architectural MSR Name and bit fields		Comment
Hex	Decimal	(Former MSR Name)	MSR/Bit Description	
C000_ 0102H		IA32_KERNEL_GS_BASE	Swap Target of BASE Address of GS (R/ W)	lf CPUID.80000001.EDX.[bit 29] = 1
C000_ 0103H		IA32_TSC_AUX	Auxiliary TSC (RW)	If CPUID.80000001H: EDX[27] = 1
		31:0	AUX: Auxiliary signature of TSC	
		63:32	Reserved.	

NOTES:

1. In processors based on Intel NetBurst[®] microarchitecture, MSR addresses 180H-197H are supported, software must treat them as model-specific. Starting with Intel Core Duo processors, MSR addresses 180H-185H, 188H-197H are reserved.

2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MC*i*_STATUS. See Section 15.3.2.3 and Section 15.3.2.4 for more information.

3. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

...

35.9.1 MSRs In Intel[®] Xeon[®] Processor E5 v2 Product Family (Based on Ivy Bridge-E Microarchitecture)

Table 35-19 lists model-specific registers (MSRs) that are specific to the Intel[®] Xeon[®] Processor E5 v2 Product Family (based on Ivy Bridge-E microarchitecture). These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_3EH, see Table 35-1. These processors supports the MSR interfaces listed in Table 35-15, and Table 35-19.

Register Address		Register Name	Scope	Bit Description
Hex	Dec			
4EH	78	MSR_PPIN_CTL	Package	Protected Processor Inventory Number Enable Control (R/W)
		0		LockOut (R/WO)
				Set 1 to prevent further writes to MSR_PPIN_CTL. Writing 1 to
				MSR_PPINCTL[bit 0] is permitted only if MSR_PPIN_CTL[bit 1] is
				clear, Default is 0.
				BIOS should provide an opt-in menu to enable the user to turn on
				MSR_PPIN_CTL[bit 1] for privileged inventory initialization agent to
				access MSR_PPIN. After reading MSR_PPIN, the privileged
				inventory initialization agent should write '01b' to MSR_PPIN_CTL
				to disable further access to MSR_PPIN and prevent unauthorized
				modification to MSR_PPIN_CTL.

Table 35-19 MSRs Supported by Intel[®] Xeon[®] Processors E5 v2 Product Family (based on Ivy Bridge-E microarchitecture)

Table 35-19MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

	ister Iress	Register Name	Scope	Bit Description
Hex	Dec			
		1		Enable_PPIN (R/W) If 1, enables MSR_PPIN to be accessible using RDMSR. Once set, attempt to write 1 to MSR_PPIN_CTL[bit 0] will cause #GP. If 0, an attempt to read MSR_PPIN will cause #GP. Default is 0.
		63:2		Reserved.
4FH	79	MSR_PPIN	Package	Protected Processor Inventory Number (R/O)
		63:0		Protected Processor Inventory Number (R/O) A unique value within a given CPUID family/model/stepping signature that a privileged inventory initialization agent can access to identify each physical processor, when access to MSR_PPIN is enabled. Access to MSR_PPIN is permitted only if MSR_PPIN_CTL[bits 1:0] = '10b'
CEH	206	MSR_PLATFORM_INFO	Package	See http://biosbits.org.
		7:0		Reserved.
		15:8	Package	Maximum Non-Turbo Ratio (R/O)
				The is the ratio of the frequency that invariant TSC runs at. Frequency = ratio * 100 MHz.
		22:16		Reserved.
		23	Package	PPIN_CAP (R/O) When set to 1, indicates that Protected Processor Inventory Number (PPIN) capability can be enabled for privileged system inventory agent to read PPIN from MSR_PPIN. When set to 0, PPIN capability is not supported. An attempt to access MSR_PPIN_CTL or MSR_PPIN will cause #GP.
		27:24		Reserved.
		28	Package	Programmable Ratio Limit for Turbo Mode (R/O) When set to 1, indicates that Programmable Ratio Limits for Turbo mode is enabled, and when set to 0, indicates Programmable Ratio Limits for Turbo mode is disabled.
		29	Package	Programmable TDP Limit for Turbo Mode (R/O)
				When set to 1, indicates that TDP Limits for Turbo mode are programmable, and when set to 0, indicates TDP Limit for Turbo mode is not programmable.
		39:30		Reserved.
		47:40	Package	Maximum Efficiency Ratio (R/O)
				The is the minimum ratio (maximum efficiency) that the processor can operates, in units of 100MHz.

Register Address		Register Name	Scope	Bit Description
Hex	Dec			
		63:48		Reserved.
E2H	226	MSR_PKG_CST_CONFIG_	Соге	C-State Configuration Control (R/W)
		CONTROL		Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C- States.
				See http://biosbits.org.
		2:0		Package C-State Limit (R/W)
				Specifies the lowest processor-specific C-state code name (consuming the least power). for the package. The default is set as factory-configured package C-state limit.
				The following C-state code name encodings are supported:
				000b: C0/C1 (no package C-sate support)
				001b: C2
				010b: C6 no retention
				011b: C6 retention
				100b: C7
				101b: C7s 111: No package C-state limit.
				Note: This field cannot be used to limit package C-state to C3.
		9:3		Reserved.
		10		I/O MWAIT Redirection Enable (R/W)
				When set, will map IO_read instructions sent to IO register specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions
		14:11		Reserved.
		15		CFG Lock (R/WO)
				When set, lock bits 15:0 of this register until next reset.
		63:16		Reserved.
179H	377	IA32_MCG_CAP	Thread	Global Machine Check Capability (R/O)
		7:0		Count
		8		MCG_CTL_P
		9		MCG_EXT_P
		10		MCP_CMCI_P
		11		MCG_TES_P
		15:12		Reserved.
		23:16		MCG_EXT_CNT
		24		

Table 35-19 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E microarchitecture) (Contd.) Desister Control

Table 35-19	MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
	microarchitecture) (Contd.)

Register Address		Register Name	Scope	Bit Description
Hex	Dec	-		
		25		Reserved.
		26		MCG_ELOG_P
		63:27		Reserved.
17FH	383	MSR_ERROR_CONTROL	Package	MC Bank Error Configuration (R/W)
		0		Reserved
		1		MemError Log Enable (R/W) When set, enables IMC status bank to log additional info in bits 36:32.
		63:2		Reserved.
1AEH	430	MSR_TURBO_RATIO_LIMIT 1	Package	Maximum Ratio Limit of Turbo Mode RO if MSR_PLATFORM_INFO.[28] = 0, RW if MSR_PLATFORM_INFO.[28] = 1
		7:0	Package	Maximum Ratio Limit for 9C Maximum turbo ratio limit of 9 core active.
		15:8	Package	Maximum Ratio Limit for 10C Maximum turbo ratio limit of 10core active.
		23:16	Package	Maximum Ratio Limit for 11C Maximum turbo ratio limit of 11 core active.
		31:24	Package	Maximum Ratio Limit for 12CMaximum turbo ratio limit of 12 core active.
		63:32		Reserved
285H	645	IA32_MC5_CTL2	Package	See Table 35-2.
286H	646	IA32_MC6_CTL2	Package	See Table 35-2.
287H	647	IA32_MC7_CTL2	Package	See Table 35-2.
288H	648	IA32_MC8_CTL2	Package	See Table 35-2.
289H	649	IA32_MC9_CTL2	Package	See Table 35-2.
28AH	650	IA32_MC10_CTL2	Package	See Table 35-2.
28BH	651	IA32_MC11_CTL2	Package	See Table 35-2.
28CH	652	IA32_MC12_CTL2	Package	See Table 35-2.
28DH	653	IA32_MC13_CTL2	Package	See Table 35-2.
28EH	654	IA32_MC14_CTL2	Package	See Table 35-2.
28FH	655	IA32_MC15_CTL2	Package	See Table 35-2.
290H	656	IA32_MC16_CTL2	Package	See Table 35-2.
291H	657	IA32_MC17_CTL2	Package	See Table 35-2.

Register Address		Register Name	Scope	Bit Description
Hex	Dec			
292H	658	IA32_MC18_CTL2	Package	See Table 35-2.
293H	659	IA32_MC19_CTL2	Package	See Table 35-2.
294H	660	IA32_MC20_CTL2	Package	See Table 35-2.
295H	661	IA32_MC21_CTL2	Package	See Table 35-2.
296H	662	IA32_MC22_CTL2	Package	See Table 35-2.
297H	663	IA32_MC23_CTL2	Package	See Table 35-2.
298H	664	IA32_MC24_CTL2	Package	See Table 35-2.
299H	665	IA32_MC25_CTL2	Package	See Table 35-2.
29AH	666	IA32_MC26_CTL2	Package	See Table 35-2.
29BH	667	IA32_MC27_CTL2	Package	See Table 35-2.
29CH	668	IA32_MC28_CTL2	Package	See Table 35-2.
414H	1044	MSR_MC5_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
415H	1045	MSR_MC5_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
416H	1046	MSR_MC5_ADDR	Package	Bank MC5 reports MC error from the Intel QPI module.
417H	1047	MSR_MC5_MISC	Package	
418H	1048	MSR_MC6_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
419H	1049	MSR_MC6_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
41AH	1050	MSR_MC6_ADDR	Package	Bank MC6 reports MC error from the integrated I/O module.
41BH	1051	MSR_MC6_MISC	Package	
41CH	1052	MSR_MC7_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
41DH	1053	MSR_MC7_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
41EH	1054	MSR_MC7_ADDR	Package	Banks MC7 and MC 8 report MC error from the two home agents.
41FH	1055	MSR_MC7_MISC	Package	
420H	1056	MSR_MC8_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
421H	1057	MSR_MC8_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
422H	1058	MSR_MC8_ADDR	Package	Banks MC7 and MC 8 report MC error from the two home agents.
423H	1059	MSR_MC8_MISC	Package	
424H	1060	MSR_MC9_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
425H	1061	MSR_MC9_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
426H	1062	MSR_MC9_ADDR	Package	Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
427H	1063	MSR_MC9_MISC	Package	

Regi Add		Register Name	Scope	Bit Description
Hex	Dec			
428H	1064	MSR_MC10_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
429H	1065	MSR_MC10_STATUS	Package	 15.3.2.4, "IA32_MCi_MISC MSRs.". Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
42AH	1066	MSR_MC10_ADDR	Package	
42BH	1067	MSR_MC10_MISC	Package	
42CH	1068	MSR_MC11_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
42DH	1069	MSR_MC11_STATUS	Package	Bank MC11 reports MC error from a specific channel of the
42EH	1070	MSR_MC11_ADDR	Package	integrated memory controller.
42FH	1071	MSR_MC11_MISC	Package	
430H	1072	MSR_MC12_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
431H	1073	MSR_MC12_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
432H	1074	MSR_MC12_ADDR	Package	Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
433H	1075	MSR_MC12_MISC	Package	
434H	1076	MSR_MC13_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
435H	1077	MSR_MC13_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
436H	1078	MSR_MC13_ADDR	Package	Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
437H	1079	MSR_MC13_MISC	Package	
438H	1080	MSR_MC14_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
439H	1081	MSR_MC14_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
43AH	1082	MSR_MC14_ADDR	Package	Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
43BH	1083	MSR_MC14_MISC	Package	
43CH	1084	MSR_MC15_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
43DH	1085	MSR_MC15_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
43EH	1086	MSR_MC15_ADDR	Package	Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
43FH	1087	MSR_MC15_MISC	Package	
440H	1088	MSR_MC16_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
441H	1089	MSR_MC16_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
442H	1090	MSR_MC16_ADDR	Package	Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
443H	1091	MSR_MC16_MISC	Package	
444H	1092	MSR_MC17_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
445H	1093	MSR_MC17_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
446H	1094	MSR_MC17_ADDR	Package	Bank MC17 reports MC error from a specific CBo (core broadcast) and its corresponding slice of L3.
447H	1095	MSR_MC17_MISC	Package	

Regi Add		Register Name	Scope	Bit Description
Hex	Dec			
448H	1096	MSR_MC18_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
449H	1097	MSR_MC18_STATUS	Package	 15.3.2.4, "IA32_MCi_MISC MSRs.". Bank MC18 reports MC error from a specific CBo (core broadcast) and its corresponding slice of L3.
44AH	1098	MSR_MC18_ADDR	Package	
44BH	1099	MSR_MC18_MISC	Package	
44CH	1100	MSR_MC19_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
44DH	1101	MSR_MC19_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
44EH	1102	MSR_MC19_ADDR	Package	 Bank MC19 reports MC error from a specific CBo (core broadcast) and its corresponding slice of L3.
44FH	1103	MSR_MC19_MISC	Package	
450H	1104	MSR_MC20_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs."
451H	1105	MSR_MC20_STATUS	Package	Bank MC20 reports MC error from a specific CBo (core broadcast)
452H	1106	MSR_MC20_ADDR	Package	and its corresponding slice of L3.
453H	1107	MSR_MC20_MISC	Package	
454H	1108	MSR_MC21_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
455H	1109	MSR_MC21_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
456H	1110	MSR_MC21_ADDR	Package	 Bank MC21 reports MC error from a specific CBo (core broadcast) and its corresponding slice of L3.
457H	1111	MSR_MC21_MISC	Package	
458H	1112	MSR_MC22_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
459H	1113	MSR_MC22_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
45AH	1114	MSR_MC22_ADDR	Package	 Bank MC22 reports MC error from a specific CBo (core broadcast) and its corresponding slice of L3.
45BH	1115	MSR_MC22_MISC	Package	
45CH	1116	MSR_MC23_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
45DH	1117	MSR_MC23_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
45EH	1118	MSR_MC23_ADDR	Package	 Bank MC23 reports MC error from a specific CBo (core broadcast) and its corresponding slice of L3.
45FH	1119	MSR_MC23_MISC	Package	
460H	1120	MSR_MC24_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
461H	1121	MSR_MC24_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
462H	1122	MSR_MC24_ADDR	Package	 Bank MC24 reports MC error from a specific CBo (core broadcast) and its corresponding slice of L3.
463H	1123	MSR_MC24_MISC	Package	
464H	1124	MSR_MC25_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
465H	1125	MSR_MC25_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
466H	1126	MSR_MC25_ADDR	Package	 Bank MC25 reports MC error from a specific CBo (core broadcast) and its corresponding slice of L3.
467H	1127	MSR_MC25_MISC	Package	

Regi Add		Register Name	Scope	Bit Description
Hex	Dec			
468H	1128	MSR_MC26_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
469H	1129	MSR_MC26_STATUS	Package	T 15.3.2.4, "IA32_MCi_MISC MSRs.".
46AH	1130	MSR_MC26_ADDR	Package	 Bank MC26 reports MC error from a specific CBo (core broadcast) and its corresponding slice of L3.
46BH	1131	MSR_MC26_MISC	Package	
46CH	1132	MSR_MC27_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
46DH	1133	MSR_MC27_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
46EH	1134	MSR_MC27_ADDR	Package	 Bank MC27 reports MC error from a specific CBo (core broadcast) and its corresponding slice of L3.
46FH	1135	MSR_MC27_MISC	Package	
470H	1136	MSR_MC28_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
471H	1137	MSR_MC28_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
472H	1138	MSR_MC28_ADDR	Package	 Bank MC28 reports MC error from a specific CBo (core broadcast) and its corresponding slice of L3.
473H	1139	MSR_MC28_MISC	Package	
613H	1555	MSR_PKG_PERF_STATUS	Package	Package RAPL Perf Status (R/O)
618H	1560	MSR_DRAM_POWER_LIMIT	Package	DRAM RAPL Power Limit Control (R/W)
				See Section 14.9.5, "DRAM RAPL Domain."
619H	1561	MSR_DRAM_ENERGY_	Package	DRAM Energy Status (R/O)
		STATUS		See Section 14.9.5, "DRAM RAPL Domain."
61BH	1563	MSR_DRAM_PERF_STATUS	Package	DRAM Performance Throttling Status (R/O) See Section 14.9.5, "DRAM RAPL Domain."
61CH	1564	MSR_DRAM_POWER_INFO	Package	DRAM RAPL Parameters (R/W)
				See Section 14.9.5, "DRAM RAPL Domain."

35.9.2 Additional MSRs Supported by Intel[®] Xeon[®] Processor E7 v2 Family

Intel[®] Xeon[®] processor E7 v2 family (based on Ivy Bridge-E microarchitecture) with CPUID DisplayFamily_DisplayModel signature 06_3EH supports the MSR interfaces listed in Table 35-15, Table 35-19, and Table 35-20.

Table 35-20 Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with DisplayFamily_DisplayModel Signature 06_3EH

Regi Add		Register Name	Scope	Bit Description
Hex	Dec			
ЗАН	58	IA32_FEATURE_CONTROL	Thread	Control Features in Intel 64 Processor (R/W)
				See Table 35-2.

Intel[®] 64 and IA-32 Architectures Software Developer's Manual Documentation Changes

Regi Add		Register Name	Scope	Bit Description
Hex	Dec			
		0		Lock (R/WL)
		1		Enable VMX inside SMX operation (R/WL)
		2		Enable VMX outside SMX operation (R/WL)
		14:8		SENTER local functions enables (R/WL)
		15		SENTER global functions enable (R/WL)
		20		LMCE_ON (R/WL)
		63:21		Reserved.
179H	377	IA32_MCG_CAP	Thread	Global Machine Check Capability (R/O)
		7:0		Count
		8		MCG_CTL_P
		9		MCG_EXT_P
		10		MCP_CMCI_P
		11		MCG_TES_P
		15:12		Reserved.
		23:16		MCG_EXT_CNT
		24		MCG_SER_P
		25		Reserved.
		26		MCG_ELOG_P
		27		MCG_LMCE_P
		63:28		Reserved.
17AH	378	IA32_MCG_STATUS	Thread	(R/W0)
		0		RIPV
		1		EIPV
		2		MCIP
		3		LMCE signaled
		63:4		Reserved.
1AEH	430	MSR_TURBO_RATIO_LIMIT1	Package	Maximum Ratio Limit of Turbo Mode
				RO if MSR_PLATFORM_INFO.[28] = 0,
				RW if MSR_PLATFORM_INFO.[28] = 1
		7:0	Package	Maximum Ratio Limit for 9C
		15.0	Dealesta	Maximum turbo ratio limit of 9 core active.
		15:8	Package	Maximum Ratio Limit for 10C Maximum turbo ratio limit of 10core active.

Table 35-20Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with
DisplayFamily_DisplayModel Signature 06_3EH

Regi Add		Register Name	Scope	Bit Description
Hex	Dec	-		
		23:16	Package	Maximum Ratio Limit for 11C Maximum turbo ratio limit of 11 core active.
		31:24	Package	Maximum Ratio Limit for 12C Maximum turbo ratio limit of 12 core active.
		39:32	Package	Maximum Ratio Limit for 13C Maximum turbo ratio limit of 13 core active.
		47:40	Package	Maximum Ratio Limit for 14C Maximum turbo ratio limit of 14 core active.
		55:48	Package	Maximum Ratio Limit for 15C Maximum turbo ratio limit of 15 core active.
		63:56		Reserved
29DH	669	IA32_MC29_CTL2	Package	See Table 35-2.
29EH	670	IA32_MC30_CTL2	Package	See Table 35-2.
29FH	671	IA32_MC31_CTL2	Package	See Table 35-2.
41BH	1051	IA32_MC6_MISC	Package	Misc MAC information of Integrated I/O. (R/O) see Section 15.3.2.4
		5:0		Recoverable Address LSB
	8:6		Address Mode	
		15:9		Reserved
		31:16		PCI Express Requestor ID
		39:32		PCI Express Segment Number
		63:32		Reserved
474H	1140	MSR_MC29_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
475H	1141	MSR_MC29_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
476H	1142	MSR_MC29_ADDR	Package	Bank MC29 reports MC error from a specific CBo (core broadcast) and its corresponding slice of L3.
477H	1143	MSR_MC29_MISC	Package	
478H	1144	MSR_MC30_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
479H	1145	MSR_MC30_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
47AH	1146	MSR_MC30_ADDR	Package	Bank MC30 reports MC error from a specific CBo (core broadcast) and its corresponding slice of L3.
47BH	1147	MSR_MC30_MISC	Package	
47CH	1148	MSR_MC31_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
47DH	1149	MSR_MC31_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
47EH	1150	MSR_MC31_ADDR	Package	Bank MC31 reports MC error from a specific CBo (core broadcast) and its corresponding slice of L3.
47FH	1147	MSR_MC31_MISC	Package	

Table 35-20Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with
DisplayFamily_DisplayModel Signature 06_3EH

35.10 MSRS IN THE 4TH GENERATION INTEL[®] CORE[™] PROCESSORS (BASED ON HASWELL MICROARCHITECTURE)

The 4th generation Intel[®] Core[™] processor family and Intel[®] Xeon[®] processor E3-1200v3 product family (based on Haswell microarchitecture), with CPUID DisplayFamily_DisplayModel signature 06_3CH/06_45H/06_46H, support the MSR interfaces listed in Table 35-15, Table 35-16, Table 35-18, and Table 35-21.

The MSRs listed in Table 35-21 also apply to processors based on Haswell-E microarchitecture (see Section).

Regi Add		Register Name	Scope	Bit Description
Hex	Dec			
ЗBH	59	IA32_TSC_ADJUST	THREAD	Per-Logical-Processor TSC ADJUST (R/W)
				See Table 35-2.
CEH	206	MSR_PLATFORM_INFO	Package	See Table 35-18
186H	390	IA32_PERFEVTSEL0	THREAD	Performance Event Select for Counter 0 (R/W)
				Supports all fields described in Table 35-2 and the fields below.
		32		IN_TX: see Section 18.11.5.1
				When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to prevent incorrect results
187H	391	IA32_PERFEVTSEL1	THREAD	Performance Event Select for Counter 1 (R/W)
				Supports all fields described in Table 35-2 and the fields below.
		32		IN_TX: see Section 18.11.5.1
				When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to prevent incorrect results
188H	392	IA32_PERFEVTSEL2	THREAD	Performance Event Select for Counter 2 (R/W)
				Supports all fields described inTable 35-2 and the fields below.
		32		IN_TX: see Section 18.11.5.1
				When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to prevent incorrect results
		33		IN_TXCP: see Section 18.11.5.1
				When IN_TXCP=1 & IN_TX=1 and in sampling, spurious PMI may occur and transactions may continuously abort near overflow conditions. Software should favor using IN_TXCP for counting over sampling. If sampling, software should use large "sample-after" value after clearing the counter configured to use IN_TXCP and also always reset the counter even when no overflow condition was reported.
189H	393	IA32_PERFEVTSEL3	THREAD	Performance Event Select for Counter 3 (R/W)
				Supports all fields described in Table 35-2 and the fields below.
		32		IN_TX: see Section 18.11.5.1
				When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to prevent incorrect results

Table 35-21 Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Regi Add		Register Name	Scope	Bit Description
Hex	Dec			
1D9H	473	IA32_DEBUGCTL	Thread	Debug Control (R/W) See Table 35-2.
		0		LBR: Last Branch Record
		1		BTF
		5:2		Reserved.
		6		TR: Branch Trace
		7		BTS: Log Branch Trace Message to BTS buffer
		8		BTINT
		9		BTS_OFF_OS
		10		BTS_OFF_USER
		11		FREEZE_LBR_ON_PMI
		12		FREEZE_PERFMON_ON_PMI
		13		ENABLE_UNCORE_PMI
		14		FREEZE_WHILE_SMM
		15		RTM_DEBUG
		63:15		Reserved.
491H	1169	IA32_VMX_FMFUNC	THREAD	Capability Reporting Register of VM-function Controls (R/O) See Table 35-2
648H	1608	MSR_CONFIG_TDP_ Nominal	Package	Base TDP Ratio (R/O) See Table 35-18
649H	1609	MSR_CONFIG_TDP_LEVEL1	Package	ConfigTDP Level 1 ratio and power level (R/O). See Table 35-18
64AH	1610	MSR_CONFIG_TDP_LEVEL2	Package	ConfigTDP Level 2 ratio and power level (R/O). See Table 35-18
64BH	1611	MSR_CONFIG_TDP_ CONTROL	Package	ConfigTDP Control (R/W) See Table 35-18
64CH	1612	MSR_TURBO_ACTIVATION_ RATIO	Package	ConfigTDP Control (R/W) See Table 35-18
C80H	32	IA32_DEBUG_FEATURE	Package	Silicon Debug Feature Control (R/W) See Table 35-2.

Table 35-21 Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

35.10.1 MSRs in 4th Generation Intel[®] Core[™] Processor Family (based on Haswell Microarchitecture)

Table 35-22 lists model-specific registers (MSRs) that are specific to 4th generation Intel[®] Core[™] processor family and Intel[®] Xeon[®] processor E3-1200 v3 product family (based on Haswell microarchitecture). These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_3CH/06_45H/06_46H, see Table 35-1.

	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
17DH	390	MSR_SMM_MCA_CAP	THREAD	Enhanced SMM Capabilities (SMM-RO) Reports SMM capability Enhancement. Accessible only while in SMM.
		57:0		Reserved
		58		SMM_Code_Access_Chk (SMM-RO) If set to 1 indicates that the SMM code access restriction is supported and the MSR_SMM_FEATURE_CONTROL is supported.
		59		Long_Flow_Indication (SMM-RO) If set to 1 indicates that the SMM long flow indicator is supported and the MSR_SMM_DELAYED is supported.
		63:60		Reserved
1ADH	429	MSR_TURBO_RATIO_LIMIT	Package	Maximum Ratio Limit of Turbo Mode R0 if MSR_PLATFORM_INFO.[28] = 0, RW if MSR_PLATFORM_INFO.[28] = 1
		7:0	Package	Maximum Ratio Limit for 1C Maximum turbo ratio limit of 1 core active.
		15:8	Package	Maximum Ratio Limit for 2C Maximum turbo ratio limit of 2 core active.
		23:16	Package	Maximum Ratio Limit for 3C Maximum turbo ratio limit of 3 core active.
		31:24	Package	Maximum Ratio Limit for 4C Maximum turbo ratio limit of 4 core active.
		63:32		Reserved.
391H	913	MSR_UNC_PERF_GLOBAL_ CTRL	Package	Uncore PMU global control
		0		Core O select
		1		Core 1 select
		2		Core 2 select
		3		Core 3 select
		18:4		Reserved.
		29		Enable all uncore counters
		30		Enable wake on PMI
		31		Enable Freezing counter when overflow
		63:32		Reserved.
392H	914	MSR_UNC_PERF_GLOBAL_ STATUS	Package	Uncore PMU main status

	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
		0		Fixed counter overflowed
		1		An ARB counter overflowed
		2		Reserved
		3		A CBox counter overflowed (on any slice)
		63:4		Reserved.
394H	916	MSR_UNC_PERF_FIXED_ CTRL	Package	Uncore fixed counter control (R/W)
		19:0		Reserved
		20		Enable overflow propagation
		21		Reserved
		22		Enable counting
		63:23		Reserved.
395H	917	MSR_UNC_PERF_FIXED_ CTR	Package	Uncore fixed counter
		47:0		Current count
		63:48		Reserved.
396H	918	MSR_UNC_CBO_CONFIG	Package	Uncore C-Box configuration information (R/O)
		3:0		Encoded number of C-Box, derive value by "-1"
		63:4		Reserved.
3B0H	946	MSR_UNC_ARB_PER_CTR0	Package	Uncore Arb unit, performance counter 0
3B1H	947	MSR_UNC_ARB_PER_CTR1	Package	Uncore Arb unit, performance counter 1
3B2H	944	MSR_UNC_ARB_ PERFEVTSEL0	Package	Uncore Arb unit, counter 0 event select MSR
3B3H	945	MSR_UNC_ARB_ PERFEVTSEL1	Package	Uncore Arb unit, counter 1 event select MSR
391H	913	MSR_UNC_PERF_GLOBAL_ CTRL	Package	Uncore PMU global control
		0		Core 0 select
		1		Core 1 select
		2		Core 2 select
		3		Core 3 select
		18:4		Reserved.
		29		Enable all uncore counters
		30		Enable wake on PMI
		31		Enable Freezing counter when overflow

Register Address		Register Name	Scope	Bit Description
Hex	Dec			
		63:32		Reserved.
395H 917	MSR_UNC_PERF_FIXED_ CTR	Package	Uncore fixed counter	
		47:0		Current count
		63:48		Reserved.
3B3H	945	MSR_UNC_ARB_ PERFEVTSEL1	Package	Uncore Arb unit, counter 1 event select MSR
4E0H	1248	MSR_SMM_FEATURE_CONT	Package	Enhanced SMM Feature Control (SMM-RW)
		ROL		Reports SMM capability Enhancement. Accessible only while in SMM.
		0		Lock (SMM-RWO)
				When set to '1' locks this register from further changes
		1		Reserved
		2		SMM_Code_Chk_En (SMM-RW)
				This control bit is available only if MSR_SMM_MCA_CAP[58] == 1. When set to '0' (default) none of the logical processors are prevented from executing SMM code outside the ranges defined by the SMRR.
				When set to '1' any logical processor in the package that attempts to execute SMM code not within the ranges defined by the SMRR will assert an unrecoverable MCE.
		63:3		Reserved
4E2H	1250	MSR_SMM_DELAYED	Package	SMM Delayed (SMM-RO)
				Reports the interruptible state of all logical processors in the package. Available only while in SMM and MSR_SMM_MCA_CAP[LONG_FLOW_INDICATION] == 1.
		N-1:0		LOG_PROC_STATE (SMM-RO)
				Each bit represents a logical processor of its state in a long flow of internal operation which delays servicing an interrupt. The corresponding bit will be set at the start of long events such as: Microcode Update Load, C6, WBINVD, Ratio Change, Throttle.
				The bit is automatically cleared at the end of each long event. The reset value of this field is 0.
				Only bit positions below N = CPUID.(EAX=0BH, ECX=PKG_LVL):EBX[15:0] can be updated.
		63:N		Reserved
4E3H	1251	MSR_SMM_BLOCKED	Package	SMM Blocked (SMM-RO)
				Reports the blocked state of all logical processors in the package. Available only while in SMM.

	jister Iress	Register Name	Scope	Bit Description
Hex	Dec			
		N-1:0		LOG_PROC_STATE (SMM-RO) Each bit represents a logical processor of its blocked state to service an SMI. The corresponding bit will be set if the logical processor is in one of the following states: Wait For SIPI or SENTER
				Sleep. The reset value of this field is OFFFH. Only bit positions below N = CPUID.(EAX=0BH, ECX=PKG_LVL):EBX[15:0] can be updated.
		63:N		Reserved
640H	1600	MSR_PP1_POWER_LIMIT	Package	PP1 RAPL Power Limit Control (R/W) See Section 14.9.4, "PP0/PP1 RAPL Domains."
641H	1601	MSR_PP1_ENERGY_STATU S	Package	PP1 Energy Status (R/O) See Section 14.9.4, "PP0/PP1 RAPL Domains."
642H	1602	MSR_PP1_POLICY	Package	PP1 Balance Policy (R/W) See Section 14.9.4, "PP0/PP1 RAPL Domains."
690H	1680	MSR_CORE_PERF_LIMIT_RE ASONS	Package	Indicator of Frequency Clipping in Processor Cores (R/W) (frequency refers to processor core frequency)
		0		PROCHOT Status (R0) When set, processor core frequency is reduced below the operating system request due to assertion of external PROCHOT.
		1		Thermal Status (RO) When set, frequency is reduced below the operating system request due to a thermal event.
		3:2		Reserved.
		4		Graphics Driver Status (R0) When set, frequency is reduced below the operating system request due to Processor Graphics driver override.
		5		Autonomous Utilization-Based Frequency Control Status (RO) When set, frequency is reduced below the operating system request because the processor has detected that utilization is low.
		6		VR Therm Alert Status (R0) When set, frequency is reduced below the operating system request due to a thermal alert from the Voltage Regulator.
		7		Reserved.
		8		Electrical Design Point Status (R0)
				When set, frequency is reduced below the operating system request due to electrical design point constraints (e.g. maximum electrical current consumption).

Regi: Addr		Register Name	Scope	Bit Description
Hex	Dec			
		9		Core Power Limiting Status (R0)
				When set, frequency is reduced below the operating system request due to domain-level power limiting.
		10		Package-Level Power Limiting PL1 Status (R0)
				When set, frequency is reduced below the operating system request due to package-level power limiting PL1.
		11		Package-Level PL2 Power Limiting Status (R0)
				When set, frequency is reduced below the operating system request due to package-level power limiting PL2.
		12		Max Turbo Limit Status (RO)
				When set, frequency is reduced below the operating system request due to multi-core turbo limits.
		13		Turbo Transition Attenuation Status (R0)
				When set, frequency is reduced below the operating system request due to Turbo transition attenuation. This prevents performance degradation due to frequent operating ratio changes.
		15:14		Reserved
		16		PROCHOT Log
				When set, indicates that the corresponding PROCHOT Status bit is set. Software can write 0 to this bit to clear PROCHOT Status.
		17		Thermal Log
				When set, indicates that the corresponding Thermal status bit was set since it was last cleared by software. Software can write 0 to this bit to clear Thermal Status.
		19:18		Reserved.
		20		Graphics Driver Log
				When set, indicates that the corresponding Graphics Driver status bit was set since it was last cleared by software. Software can write 0 to this bit to clear Graphics Driver Status.
		21		Autonomous Utilization-Based Frequency Control Log
				When set, indicates that the corresponding Autonomous Utilization-Based Frequency Control status bit was set since it was last cleared by software. Software can write 0 to this bit to clear Autonomous Utilization-Based Frequency Control Status.
		22		VR Therm Alert Log
				When set, indicates that the corresponding VR Therm Alert Status bit was set since it was last cleared by software. Software can write 0 to this bit to clear VR Therm Alert Status.
		23		Reserved.

-	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
		24		Electrical Design Point Log
				When set, indicates that the corresponding EDP Status bit was set since it was last cleared by software. Software can write 0 to this bit to clear EDP Status.
		25		Core Power Limiting Log
				When set, indicates that the corresponding Core Power Limiting Status bit was set since it was last cleared by software. Software can write 0 to this bit to clear Core Power Limiting Status.
		26		Package-Level PL1 Power Limiting Log
				When set, indicates that the corresponding Package-level Power Limiting PL1 Status bit was set since it was last cleared by software. Software can write 0 to this bit to clear Package-level Power Limiting PL1 Status.
		27		Package-Level PL2 Power Limiting Log
				When set, indicates that the corresponding Package-level Power Limiting PL2 Status bit was set since it was last cleared by software. Software can write 0 to this bit to clear Package-level Power Limiting PL2 Status.
		28		Max Turbo Limit Log
				When set, indicates that the corresponding Max Turbo Limit Status bit was set since it was last cleared by software. Software can write 0 to this bit to clear Max Turbo Limit Status.
		29		Turbo Transition Attenuation Log
				When set, indicates that the corresponding Turbo Transition Attenuation Status bit was set since it was last cleared by software. Software can write 0 to this bit to clear Turbo Transition Attenuation Status.
		63:30		Reserved.
6B0H	1712	MSR_GRAPHICS_PERF_LIMI	Package	Indicator of Frequency Clipping in the Processor Graphics (R/W)
		T_REASONS		(frequency refers to processor graphics frequency)
		0		PROCHOT Status (R0)
				When set, frequency is reduced below the operating system request due to assertion of external PROCHOT.
		1		Thermal Status (RO)
				When set, frequency is reduced below the operating system request due to a thermal event.
		3:2		Reserved.
		4		Graphics Driver Status (RO)
				When set, frequency is reduced below the operating system request due to Processor Graphics driver override.
		5		Reserved.

Regi Addı		Register Name	Scope	Bit Description
Hex	Dec			
		6		VR Therm Alert Status (RO) When set, frequency is reduced below the operating system request due to a thermal alert from the Voltage Regulator.
		7		Reserved.
		8		Electrical Design Point Status (R0) When set, frequency is reduced below the operating system request due to electrical design point constraints (e.g. maximum electrical current consumption).
		9		Graphics Power Limiting Status (R0) When set, frequency is reduced below the operating system request due to domain-level power limiting.
		10		Package-Level Power Limiting PL1 Status (R0) When set, frequency is reduced below the operating system request due to package-level power limiting PL1.
		11		Package-Level PL2 Power Limiting Status (R0) When set, frequency is reduced below the operating system request due to package-level power limiting PL2.
		15:12		Reserved
		16		PROCHOT Log When set, indicates that the corresponding PROCHOT Status bit is set. Software can write 0 to this bit to clear PROCHOT Status.
		17		Thermal Log When set, indicates that the corresponding Thermal status bit was set since it was last cleared by software. Software can write 0 to this bit to clear Thermal Status.
		19:18		Reserved.
		20		Graphics Driver Log When set, indicates that the corresponding Graphics Driver status bit was set since it was last cleared by software. Software can write 0 to this bit to clear Graphics Driver Status.
		21		Reserved.
		22		VR Therm Alert Log When set, indicates that the corresponding VR Therm Alert Status bit was set since it was last cleared by software. Software can write 0 to this bit to clear VR Therm Alert Status.
		23		Reserved.
		24		Electrical Design Point Log
				When set, indicates that the corresponding EDP Status bit was set since it was last cleared by software. Software can write 0 to this bit to clear EDP Status.

-	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
		25		Graphics Power Limiting Log
				When set, indicates that the corresponding Graphics Power Limiting Status bit was set since it was last cleared by software. Software can write 0 to this bit to clear Graphics Power Limiting Status.
		26		Package-Level PL1 Power Limiting Log
				When set, indicates that the corresponding Package-level Power Limiting PL1 Status bit was set since it was last cleared by software. Software can write 0 to this bit to clear Package-level Power Limiting PL1 Status.
		27		Package-Level PL2 Power Limiting Log
				When set, indicates that the corresponding Package-level Power Limiting PL2 Status bit was set since it was last cleared by software. Software can write 0 to this bit to clear Package-level Power Limiting PL2 Status.
		63:28		Reserved.
6B1H	1713	MSR_RING_PERF_LIMIT_RE	Package	Indicator of Frequency Clipping in the Ring Interconnect (R/W)
		ASONS		(frequency refers to ring interconnect in the uncore)
		0		PROCHOT Status (R0)
				When set, frequency is reduced below the operating system request due to assertion of external PROCHOT.
		1		Thermal Status (R0)
				When set, frequency is reduced below the operating system request due to a thermal event.
		5:2		Reserved.
		6		VR Therm Alert Status (R0)
				When set, frequency is reduced below the operating system request due to a thermal alert from the Voltage Regulator.
		7		Reserved.
		8		Electrical Design Point Status (R0)
				When set, frequency is reduced below the operating system request due to electrical design point constraints (e.g. maximum electrical current consumption).
		9		Reserved.
		10		Package-Level Power Limiting PL1 Status (R0)
				When set, frequency is reduced below the operating system request due to package-level power limiting PL1.
		11		Package-Level PL2 Power Limiting Status (R0)
				When set, frequency is reduced below the operating system request due to package-level power limiting PL2.
		15:12		Reserved

	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
		16		PROCHOT Log When set, indicates that the corresponding PROCHOT Status bit is set. Software can write 0 to this bit to clear PROCHOT Status.
		17		Thermal Log When set, indicates that the corresponding Thermal status bit was set since it was last cleared by software. Software can write 0 to this bit to clear Thermal Status.
		21:18		Reserved.
		22		VR Therm Alert Log
				When set, indicates that the corresponding VR Therm Alert Status bit was set since it was last cleared by software. Software can write 0 to this bit to clear VR Therm Alert Status.
		23		Reserved.
		24		Electrical Design Point Log
				When set, indicates that the corresponding EDP Status bit was set since it was last cleared by software. Software can write 0 to this bit to clear EDP Status.
		25		Reserved.
		26		Package-Level PL1 Power Limiting Log
				When set, indicates that the corresponding Package-level Power Limiting PL1 Status bit was set since it was last cleared by software. Software can write 0 to this bit to clear Package-level Power Limiting PL1 Status.
		27		Package-Level PL2 Power Limiting Log
				When set, indicates that the corresponding Package-level Power Limiting PL2 Status bit was set since it was last cleared by software. Software can write 0 to this bit to clear Package-level Power Limiting PL2 Status.
		63:28		Reserved.
700H	1792	MSR_UNC_CBO_O_ PERFEVTSELO	Package	Uncore C-Box 0, counter 0 event select MSR
701H	1793	MSR_UNC_CBO_O_ PERFEVTSEL1	Package	Uncore C-Box 0, counter 1 event select MSR
706H	1798	MSR_UNC_CBO_O_PER_ CTRO	Package	Uncore C-Box 0, performance counter 0
707H	1799	MSR_UNC_CBO_0_PER_ CTR1	Package	Uncore C-Box 0, performance counter 1
710H	1808	MSR_UNC_CBO_1_ PERFEVTSEL0	Package	Uncore C-Box 1, counter 0 event select MSR

Regi Add	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
711H	1809	MSR_UNC_CBO_1_ PERFEVTSEL1	Package	Uncore C-Box 1, counter 1 event select MSR
716H	1814	MSR_UNC_CBO_1_PER_ CTR0	Package	Uncore C-Box 1, performance counter 0
717H	1815	MSR_UNC_CBO_1_PER_ CTR1	Package	Uncore C-Box 1, performance counter 1
720H	1824	MSR_UNC_CBO_2_ PERFEVTSEL0	Package	Uncore C-Box 2, counter 0 event select MSR
721H	1824	MSR_UNC_CBO_2_ PERFEVTSEL1	Package	Uncore C-Box 2, counter 1 event select MSR
726H	1830	MSR_UNC_CBO_2_PER_ CTR0	Package	Uncore C-Box 2, performance counter 0
727H	1831	MSR_UNC_CBO_2_PER_ CTR1	Package	Uncore C-Box 2, performance counter 1
730H	1840	MSR_UNC_CBO_3_ PERFEVTSEL0	Package	Uncore C-Box 3, counter 0 event select MSR
731H	1841	MSR_UNC_CBO_3_ PERFEVTSEL1	Package	Uncore C-Box 3, counter 1 event select MSR.
736H	1846	MSR_UNC_CBO_3_PER_ CTR0	Package	Uncore C-Box 3, performance counter 0.
737H	1847	MSR_UNC_CBO_3_PER_ CTR1	Package	Uncore C-Box 3, performance counter 1.

Table 35-22 MSRs Supported by 4th Generation Intel[®] Core[™] Processors (Haswell microarchitecture) (Contd.)

35.10.2 Additional Residency MSRs Supported in 4th Generation Intel® Core™ Processors

The 4th generation Intel[®] Core[™] processor family (based on Haswell microarchitecture) with CPUID DisplayFamily_DisplayModel signature 06_45H supports the MSR interfaces listed in Table 35-15, Table 35-16, Table 35-18, Table 35-21, Table 35-22, and Table 35-23.

Table 35-23Additional Residency MSRs Supported by 4th Generation Intel® Core™ Processors with
DisplayFamily_DisplayModel Signature 06_45H

Regi Add		Register Name	Scope	Bit Description
Hex	Dec			
630H	1584	MSR_PKG_C8_RESIDENCY	Package	Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States.
		59:0		Package C8 Residency Counter. (R/O)
				Value since last reset that this package is in processor-specific C8 states. Count at the same frequency as the TSC.

Table 35-23	Additional Residency MSRs Supported by 4th Generation Intel [®] Core [™] Processors with
	DisplayFamily_DisplayModel Signature 06_45H

Register Address		Register Name	Scope	Bit Description
Hex	Dec			
		63:60		Reserved
631H	1585	MSR_PKG_C9_RESIDENCY	Package	Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States.
		59:0		Package C9 Residency Counter. (R/O)
				Value since last reset that this package is in processor-specific C9 states. Count at the same frequency as the TSC.
		63:60		Reserved
632H	1586	MSR_PKG_C10_RESIDENCY	Package	Note: C-state values are processor specific C-state code names, unrelated to MWAIT extension C-state parameters or ACPI C-States.
		59:0		Package C10 Residency Counter. (R/O)
				Value since last reset that this package is in processor-specific C10 states. Count at the same frequency as the TSC.
		63:60		Reserved

35.11 MSRS IN INTEL® XEON® PROCESSOR E5 26XX V3 PRODUCT FAMILY

Intel[®] Xeon[®] processor E5 v3 family and Intel[®] Xeon[®] processor E7 v3 family are based on Haswell-E microarchitecture (CPUID DisplayFamily_DisplayModel = 06_3F). These processors supports the MSR interfaces listed in Table 35-15, Table 35-19, Table 35-21, and Table 35-24.

Table 35-24	Additional MSRs Supported by Intel [®] Xeon [®] Processor E5 v3 Family
	Additional horizon ported by inter Acon Processor es to raining

Regi Add		Register Name	Scope	Bit Description
Hex	Dec			
17DH	390	MSR_SMM_MCA_CAP	THREAD	Enhanced SMM Capabilities (SMM-RO)
				Reports SMM capability Enhancement. Accessible only while in SMM.
		57:0		Reserved
		58		SMM_Code_Access_Chk (SMM-RO)
				If set to 1 indicates that the SMM code access restriction is supported and a host-space interface available to SMM handler.
		59		Long_Flow_Indication (SMM-RO)
				If set to 1 indicates that the SMM long flow indicator is supported and a host-space interface available to SMM handler.
		63:60		Reserved
17FH	383	MSR_ERROR_CONTROL	Package	MC Bank Error Configuration (R/W)
		0		Reserved

Register Address		Register Name	Scope	Bit Description
Hex	Dec			
		1		MemError Log Enable (R/W)
				When set, enables IMC status bank to log additional info in bits 36:32.
		63:2		Reserved.
1ADH	429	MSR_TURBO_RATIO_LIMIT	Package	Maximum Ratio Limit of Turbo Mode
				R0 if MSR_PLATFORM_INFO.[28] = 0,
				RW if MSR_PLATFORM_INFO.[28] = 1
		7:0	Package	Maximum Ratio Limit for 1C
				Maximum turbo ratio limit of 1 core active.
		15:8	Package	Maximum Ratio Limit for 2C
				Maximum turbo ratio limit of 2 core active.
		23:16	Package	Maximum Ratio Limit for 3C
				Maximum turbo ratio limit of 3 core active.
		31:24	Package	Maximum Ratio Limit for 4C
				Maximum turbo ratio limit of 4 core active.
		39:32	Package	Maximum Ratio Limit for 5C
				Maximum turbo ratio limit of 5 core active.
		47:40	Package	Maximum Ratio Limit for 6C
				Maximum turbo ratio limit of 6 core active.
		55:48	Package	Maximum Ratio Limit for 7C
				Maximum turbo ratio limit of 7 core active.
		63:56	Package	Maximum Ratio Limit for 8C
				Maximum turbo ratio limit of 8 core active.
1AEH	430	MSR_TURBO_RATIO_LIMIT1	Package	Maximum Ratio Limit of Turbo Mode
				R0 if MSR_PLATFORM_INFO.[28] = 0,
				RW if MSR_PLATFORM_INFO.[28] = 1
		7:0	Package	Maximum Ratio Limit for 9C
				Maximum turbo ratio limit of 9 core active.
		15:8	Package	Maximum Ratio Limit for 10C
				Maximum turbo ratio limit of 10 core active.
		23:16	Package	Maximum Ratio Limit for 11C
				Maximum turbo ratio limit of 11 core active.
		31:24	Package	Maximum Ratio Limit for 12C
				Maximum turbo ratio limit of 12 core active.
		39:32	Package	Maximum Ratio Limit for 13C
				Maximum turbo ratio limit of 13 core active.

Table 35-24 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register Address		Register Name	Scope	Bit Description
Hex	Dec			
		47:40	Package	Maximum Ratio Limit for 14C
				Maximum turbo ratio limit of 14 core active.
		55:48	Package	Maximum Ratio Limit for 15C
				Maximum turbo ratio limit of 15 core active.
		63:56	Package	Maximum Ratio Limit for 16C
				Maximum turbo ratio limit of 16 core active.
1AFH	431	MSR_TURBO_RATIO_LIMIT2	Package	Maximum Ratio Limit of Turbo Mode
				R0 if MSR_PLATFORM_INFO.[28] = 0,
				RW if MSR_PLATFORM_INFO.[28] = 1
		7:0	Package	Maximum Ratio Limit for 17C
				Maximum turbo ratio limit of 17 core active.
		15:8	Package	Maximum Ratio Limit for 18C
				Maximum turbo ratio limit of 18 core active.
		63:16	Package	Reserved
414H	1044	MSR_MC5_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section 15.3.2.4, "IA32_MCi_MISC MSRs.".
415H	1045	MSR_MC5_STATUS	Package	Bank MC5 reports MC error from the Intel QPI 0 module.
416H	1046	MSR_MC5_ADDR	Package	
417H	1047	MSR_MC5_MISC	Package	
418H	1048	MSR_MC6_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
419H	1049	MSR_MC6_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
41AH	1050	MSR_MC6_ADDR	Package	Bank MC6 reports MC error from the integrated I/O module.
41BH	1051	MSR_MC6_MISC	Package	
41CH	1052	MSR_MC7_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
41DH	1053	MSR_MC7_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
41EH	1054	MSR_MC7_ADDR	Package	Bank MC7 reports MC error from the home agent HA 0.
41FH	1055	MSR_MC7_MISC	Package	
420H	1056	MSR_MC8_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
421H	1057	MSR_MC8_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
422H	1058	MSR_MC8_ADDR	Package	Bank MC8 reports MC error from the home agent HA 1.
423H	1059	MSR_MC8_MISC	Package	1
424H	1060	MSR_MC9_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
425H	1061	MSR_MC9_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
426H	1062	MSR_MC9_ADDR	Package	 Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
427H	1063	 MSR_MC9_MISC	Package	

Table 35-24 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Regi Add	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
428H	1064	MSR_MC10_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
429H	1065	MSR_MC10_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
42AH	1066	MSR_MC10_ADDR	Package	 Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
42BH	1067	MSR_MC10_MISC	Package	
42CH	1068	MSR_MC11_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
42DH	1069	MSR_MC11_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
42EH	1070	MSR_MC11_ADDR	Package	 Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
42FH	1071	MSR_MC11_MISC	Package	
430H	1072	MSR_MC12_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
431H	1073	MSR_MC12_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
432H	1074	MSR_MC12_ADDR	Package	 Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
433H	1075	MSR_MC12_MISC	Package	
434H	1076	MSR_MC13_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
435H	1077	MSR_MC13_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
436H	1078	MSR_MC13_ADDR	Package	 Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
437H	1079	MSR_MC13_MISC	Package	
438H	1080	MSR_MC14_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
439H	1081	MSR_MC14_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
43AH	1082	MSR_MC14_ADDR	Package	 Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
43BH	1083	MSR_MC14_MISC	Package	
43CH	1084	MSR_MC15_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
43DH	1085	MSR_MC15_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
43EH	1086	MSR_MC15_ADDR	Package	 Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
43FH	1087	MSR_MC15_MISC	Package	
440H	1088	MSR_MC16_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
441H	1089	MSR_MC16_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
442H	1090	MSR_MC16_ADDR	Package	 Banks MC9 through MC 16 report MC error from each channel of the integrated memory controllers.
443H	1091	MSR_MC16_MISC	Package	
444H	1092	MSR_MC17_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
445H	1093	MSR_MC17_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
446H	1094	MSR_MC17_ADDR	Package	 Bank MC17 reports MC error from the following pair of CBo/L3 Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, CBo12,
447H	1095	MSR_MC17_MISC	Package	CBo15.

Table 35-24 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register Address		Register Name	Scope	Bit Description
Hex	Dec			
448H	1096	MSR_MC18_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
449H	1097	MSR_MC18_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
44AH	1098	MSR_MC18_ADDR	Package	Bank MC18 reports MC error from the following pair of CBo/L3 Slices (if the pair is present): CBo1, CBo4, CBo7, CBo10, CBo13,
44BH	1099	MSR_MC18_MISC	Package	CBo16.
44CH	1100	MSR_MC19_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
44DH	1101	MSR_MC19_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
44EH	1102	MSR_MC19_ADDR	Package	Bank MC19 reports MC error from the following pair of CBo/L3 Slices (if the pair is present): CBo2, CBo5, CBo8, CBo11, CBo14,
44FH	1103	MSR_MC19_MISC	Package	CBo17.
450H	1104	MSR_MC20_CTL	Package	See Section 15.3.2.1, "IA32_MCi_CTL MSRs." through Section
451H	1105	MSR_MC20_STATUS	Package	15.3.2.4, "IA32_MCi_MISC MSRs.".
452H	1106	MSR_MC20_ADDR	Package	Bank MC20 reports MC error from the Intel QPI 1 module.
453H	1107	MSR_MC20_MISC	Package	
606H	1542	MSR_RAPL_POWER_UNIT	Package	Unit Multipliers used in RAPL Interfaces (R/O)
		3:0	Package	Power Units
				See Section 14.9.1, "RAPL Interfaces."
		7:4	Package	Reserved
		12:8	Package	Energy Status Units
				Energy related information (in Joules) is based on the multiplier, 1/ 2^ESU; where ESU is an unsigned integer represented by bits 12:8. Default value is 0EH (or 61 micro-joules)
		15:13	Package	Reserved
		19:16	Package	Time Units
				See Section 14.9.1, "RAPL Interfaces."
		63:20		Reserved
690H	1680	MSR_CORE_PERF_LIMIT_RE ASONS	Package	Indicator of Frequency Clipping in Processor Cores (R/W) (frequency refers to processor core frequency)
		0		PROCHOT Status (R0)
				When set, processor core frequency is reduced below the operating system request due to assertion of external PROCHOT.
		1		Thermal Status (RO)
				When set, frequency is reduced below the operating system request due to a thermal event.
		5:2		Reserved.
		6		VR Therm Alert Status (R0)
				When set, frequency is reduced below the operating system request due to a thermal alert from the Voltage Regulator.

Table 35-24 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register Address		Register Name	Scope	Bit Description
Hex	Dec			
		7		Reserved.
		8		Electrical Design Point Status (R0)
				When set, frequency is reduced below the operating system request due to electrical design point constraints (e.g. maximum electrical current consumption).
		63:9		Reserved.
C8DH	3113	IA32_QM_EVTSEL	THREAD	Monitoring Event Select Register (R/W).
				if CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1
		7:0		EventID (RW)
		31:8		Reserved.
		41:32		RMID (RW)
		63:42		Reserved.
C8EH	3114	IA32_QM_CTR	THREAD	Monitoring Counter Register (R/O).
				if CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1
		61:0		Resource Monitored Data
		62		Unavailable : If 1, indicates data for this RMID is not available or no monitored for this resource or RMID.
		63		Error: If 1, indicates and unsupported RMID or event type was written to IA32_PQR_QM_EVTSEL.
C8FH	3115	IA32_PQR_ASSOC	THREAD	Resource Association Register (R/W).
		9:0		RMID
		63: 10		Reserved

Table 35-24 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

35.12 MSRS IN INTEL[®] CORE[™] M PROCESSORS

The Intel[®] Core™ M-5xxx processors are based on the Broadwell microarchitecture, with CPUID DisplayFamily_DisplayModel signature 06_3DH, supports the MSR interfaces listed in Table 35-15, Table 35-16, Table 35-18, Table 35-21, and Table 35-25.

Register Address		Register Name	Scope	Bit Description
Hex	Dec			
1ADH	429	MSR_TURBO_RATIO_LIMIT	Package	Maximum Ratio Limit of Turbo Mode
				RO if MSR_PLATFORM_INFO.[28] = 0,
				RW if MSR_PLATFORM_INFO.[28] = 1

Table 35-25 Additional MSRs Supported by Intel[®] Core[™] M Processors

Regi Add	ister ress	Register Name	Scope	Bit Description
Hex	Dec			
		7:0	Package	Maximum Ratio Limit for 1C Maximum turbo ratio limit of 1 core active.
		15:8	Package	Maximum Ratio Limit for 2C Maximum turbo ratio limit of 2 core active.
		23:16	Package	Maximum Ratio Limit for 3C Maximum turbo ratio limit of 3 core active.
		31:24	Package	Maximum Ratio Limit for 4C Maximum turbo ratio limit of 4 core active.
		39:32	Package	Maximum Ratio Limit for 5C Maximum turbo ratio limit of 5core active.
		47:40	Package	Maximum Ratio Limit for 6C Maximum turbo ratio limit of 6core active.
		63:48		Reserved.
38EH	910	IA32_PERF_GLOBAL_ STAUS	Thread	See Table 35-2. See Section 18.4.2, "Global Counter Control Facilities."
		0		Ovf_PMC0
		1		Ovf_PMC1
		2		Ovf_PMC2
		3		Ovf_PMC3
		31:4		Reserved.
		32		Ovf_FixedCtr0
		33		Ovf_FixedCtr1
		34		Ovf_FixedCtr2
		54:35		Reserved.
		55		Trace_ToPA_PMI. See Section 36.2.4.1, "Table of Physical Addresses (ToPA)."
		60:56		Reserved.
		61		Ovf_Uncore
		62		Ovf_BufDSSAVE
		63		CondChgd
390H	912	IA32_PERF_GLOBAL_OVF_ CTRL	Thread	See Table 35-2. See Section 18.4.2, "Global Counter Control Facilities."
		0		Set 1 to clear Ovf_PMC0
		1		Set 1 to clear Ovf_PMC1
		2		Set 1 to clear Ovf_PMC2
		3		Set 1 to clear Ovf_PMC3

Table 35-25 Additional MSRs Supported by Intel® Core™ M Processors

Register Address		Register Name	Scope	Bit Description
Hex	Dec			
		31:4		Reserved.
		32		Set 1 to clear Ovf_FixedCtr0
		33		Set 1 to clear Ovf_FixedCtr1
		34		Set 1 to clear Ovf_FixedCtr2
		54:35		Reserved.
		55		Set 1 to clear Trace_ToPA_PMI. See Section 36.2.4.1, "Table of Physical Addresses (ToPA)."
		60:56		Reserved.
		61		Set 1 to clear Ovf_Uncore
		62		Set 1 to clear Ovf_BufDSSAVE
		63		Set 1 to clear CondChgd
560H	1376	IA32_RTIT_OUTPUT_BASE	THREAD	Trace Output Base Register (R/W)
		6:0		Reserved.
		Maxphyaddr ¹ -1:7		Base physical address of 1st ToPA table.
		63:MAXPHYADDR		Reserved.
561H	1377	IA32_RTIT_OUTPUT_MASK _PTRS	THREAD	Trace Output Mask Pointers Register (R/W)
		6:0		Reserved.
		31:7		MaskOrTableOffset
		63:32		Output Offset.
570H	1392	IA32_RTIT_CTL	Thread	Trace Packet Control Register (R/W)
		0		TraceEn
		1		Reserved, MBZ.
		2		0S
		3		User
		6:4		Reserved, MBZ
		7		CR3 filter
		8		ToPA; writing 0 will #GP if also setting TraceEn
		9		Reserved, MBZ
		10		TSCEn
		11		DisRETC
		12		Reserved, MBZ
		13		Reserved; writing 0 will #GP if also setting TraceEn
		63:14		Reserved, MBZ.
571H	1393	IA32_RTIT_STATUS	Thread	Tracing Status Register (R/W)

Table 35-25 Additional MSRs Supported by Intel® Core™ M Processors

Regi Add	ister ress	Register Name	Scope	Bit Description
Hex	Dec]		
		0		Reserved, writes ignored.
		1		ContexEn, writes ignored.
		2		TriggerEn, writes ignored.
		3		Reserved
		4		Error (R/W)
		5		Stopped
		63:6		Reserved, MBZ.
572H	1394	IA32_RTIT_CR3_MATCH	THREAD	Trace Filter CR3 Match Register (R/W)
		4:0		Reserved
		63:5		CR3[63:5] value to match

Table 35-25 Additional MSRs Supported by Intel® Core™ M Processors

NOTES:

1. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

...

12. Updates to Appendix A, Volume 3C

Change bars show changes to Appendix A of the Intel[®] 64 and IA-32 Architectures Software Developer's Manual, Volume 3C: System Programming Guide, Part 3.

...

A.10 VPID AND EPT CAPABILITIES

The IA32_VMX_EPT_VPID_CAP MSR (index 48CH) reports information about the capabilities of the logical processor with regard to virtual-processor identifiers (VPIDs, Section 28.1) and extended page tables (EPT, Section 28.2):

- If bit 0 is read as 1, the logical processor allows software to configure EPT paging-structure entries in which bits 2:0 have value 100b (indicating an execute-only translation).
- Bit 6 indicates support for a page-walk length of 4.
- If bit 8 is read as 1, the logical processor allows software to configure the EPT paging-structure memory type to be uncacheable (UC); see Section 24.6.11.
- If bit 14 is read as 1, the logical processor allows software to configure the EPT paging-structure memory type to be write-back (WB).
- If bit 16 is read as 1, the logical processor allows software to configure a EPT PDE to map a 2-Mbyte page (by setting bit 7 in the EPT PDE).
- If bit 17 is read as 1, the logical processor allows software to configure a EPT PDPTE to map a 1-Gbyte page (by setting bit 7 in the EPT PDPTE).
- Support for the INVEPT instruction (see Chapter 30 and Section 28.3.3.1).

- If bit 20 is read as 1, the INVEPT instruction is supported.
- If bit 25 is read as 1, the single-context INVEPT type is supported.
- If bit 26 is read as 1, the all-context INVEPT type is supported.
- If bit 21 is read as 1, accessed and dirty flags for EPT are supported (see Section 28.2.4).
 - Support for the INVVPID instruction (see Chapter 30 and Section 28.3.3.1).
 - If bit 32 is read as 1, the INVVPID instruction is supported.
 - If bit 40 is read as 1, the individual-address INVVPID type is supported.
 - If bit 41 is read as 1, the single-context INVVPID type is supported.
 - If bit 42 is read as 1, the all-context INVVPID type is supported.
 - If bit 43 is read as 1, the single-context-retaining-globals INVVPID type is supported.
- Bits 5:1, bit 7, bits 13:9, bit 15, bits 19:18, bits 24:22, bits 31:27, bits 39:33, and bits 63:44 are reserved and are read as 0.

The IA32_VMX_EPT_VPID_CAP MSR exists only on processors that support the 1-setting of the "activate secondary controls" VM-execution control (only if bit 63 of the IA32_VMX_PROCBASED_CTLS MSR is 1) and that support either the 1-setting of the "enable EPT" VM-execution control (only if bit 33 of the IA32_VMX_PROCBASED_CTLS2 MSR is 1) or the 1-setting of the "enable VPID" VM-execution control (only if bit 37 of the IA32_VMX_PROCBASED_CTLS2 MSR is 1).

• • •

•