
Document Number: 252046-044

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Documentation Changes

September 2014

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVID-
ED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY
OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal
injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU
SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFI-
CERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE AT-
TORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH
ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked “reserved” or “undefined”. Intel reserves these for future defi-
nition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The infor-
mation here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family,
not across different processor families, go to: Learn About Intel® Processor Numbers.

Intel® Advanced Vector Extensions (Intel® AVX)1 are designed to achieve higher throughput to certain integer and floating point
operations. Due to varying processor power characteristics, utilizing AVX instructions may cause a) some parts to operate at less
than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo
frequencies. Performance varies depending on hardware, software, and system configuration and you should consult your system
manufacturer for more information.
1 Intel® Advanced Vector Extensions refers to Intel® AVX, Intel® AVX2 or Intel® AVX-512. For more information on Intel® Turbo
Boost Technology 2.0, visit http://www.intel.com/go/turbo.

Intel® Data Protection Technology (includes the following features: Secure Key and Advanced Encryption Standard New
Instructions {Intel® AES-NI}): No computer system can provide absolute security. Requires an enabled Intel® processor and
software optimized for use of the technology. Consult your system manufacturer and/or software vendor for more information.

Enhanced Intel SpeedStep® Technology: See the Processor Spec Finder at http://ark.intel.com/ or contact your Intel
representative for more information.

Intel® Hyper-Threading Technology (Intel® HT Technology): Available on select Intel® processors. Requires an Intel® HT
Technology-enabled system. Consult your system manufacturer. Performance will vary depending on the specific hardware and
software used. For more information including details on which processors support HT Technology, visit http://www.intel.com/
info/hyperthreading.

Intel® 64 architecture: Requires a system with a 64-bit enabled processor, chipset, BIOS and software. Performance will vary
depending on the specific hardware and software you use. Consult your PC manufacturer for more information. For more
information, visit http://www.intel.com/info/em64t.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, and virtual machine
monitor (VMM). Functionality, performance or other benefits will vary depending on hardware and software configurations.
Software applications may not be compatible with all operating systems. Consult your PC manufacturer. For more information,
visit http://www.intel.com/go/virtualization.

Intel® Platform/Device Protection Technology (includes the following features: Bios guard; Boot Guard; Platform Trust Technology
{PTT}; OS Guard; Anti-Theft Technology {AT}; Trusted Execution Technology {TXT}; and Execute Disable Bit): No computer sys-
tem can provide absolute security. Requires an enabled Intel® processor, enabled chipset, firmware, software and may require a
subscription with a capable service provider (may not be available in all countries). Intel assumes no liability for lost or stolen data
and/or systems or any other damages resulting thereof. Consult your system or service provider for availability and functionality.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation
in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Copyright © 1997-2014 Intel Corporation. All rights reserved.

http://www.intel.com/products/processor_number
http://www.intel.com/products/processor_number
http://www.intel.com/go/turbo
http://ark.intel.com/
http://www.intel.com/info/hyperthreading
http://www.intel.com/info/hyperthreading
http://www.intel.com/info/em64t
http://www.intel.com/info/em64t
http://www.intel.com/info/em64t
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/go/virtualization
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents

Revision History . 4

Preface . 7

Summary Tables of Changes . 8

Documentation Changes. 9

Revision History

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Revision Description Date

-001 • Initial release November 2002

-002
• Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual
December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion

February 2003

-004 • Removed Documentation changes 1-17.
• Added Documentation changes 1-24. June 2003

-005 • Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007 • Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008 • Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012 • Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the

document.
July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015 • Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017 • Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019 • Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Added Documentation Changes 20-27. May 2007

-021 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1-6

November 2007

-022 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-6

August 2008

-023 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-21

March 2009

Revision History

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

§

-024 • Removed Documentation Changes 1-21
• Added Documentation Changes 1-16

June 2009

-025 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

September 2009

-026 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-15

December 2009

-027 • Removed Documentation Changes 1-15
• Added Documentation Changes 1-24

March 2010

-028 • Removed Documentation Changes 1-24
• Added Documentation Changes 1-29

June 2010

-029 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

September 2010

-030 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

January 2011

-031 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

April 2011

-032 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-14

May 2011

-033 • Removed Documentation Changes 1-14
• Added Documentation Changes 1-38

October 2011

-034 • Removed Documentation Changes 1-38
• Added Documentation Changes 1-16

December 2011

-035 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

March 2012

-036 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-17

May 2012

-037 • Removed Documentation Changes 1-17
• Added Documentation Changes 1-28

August 2012

-038 • Removed Documentation Changes 1-28
• Add Documentation Changes 1-22

January 2013

-039 • Removed Documentation Changes 1-22
• Add Documentation Changes 1-17

June 2013

-040 • Removed Documentation Changes 1-17
• Add Documentation Changes 1-24

September 2013

-041 • Removed Documentation Changes 1-24
• Add Documentation Changes 1-20

February 2014

-042 • Removed Documentation Changes 1-20
• Add Documentation Changes 1-8

February 2014

-043 • Removed Documentation Changes 1-8
• Add Documentation Changes 1-43

June 2014

-044 • Removed Documentation Changes 1-43
• Add Documentation Changes 1-12

September 2014

Revision Description Date

Revision History

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Preface

This document is an update to the specifications contained in the Affected Documents table below. This
document is a compilation of device and documentation errata, specification clarifications and changes. It is
intended for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents

Nomenclature
Documentation Changes include typos, errors, or omissions from the current published specifications. These
will be incorporated in any new release of the specification.

Document Title Document Number/
Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture 253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A: Instruction Set
Reference, A-M 253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B: Instruction Set
Reference, N-Z 253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C: Instruction Set
Reference 326018

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System
Programming Guide, Part 1 253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System
Programming Guide, Part 2 253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C: System
Programming Guide, Part 3 326019

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 8

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and IA-32 architectures. This
table uses the following notations:

Codes Used in Summary Tables
Change bar to left of table row indicates this erratum is either new or modified from the previous version of the
document.

Documentation Changes
No. DOCUMENTATION CHANGES

1 Updates to Chapter 1, Volume 1

2 Updates to Chapter 5, Volume 1

3 Updates to Chapter 12, Volume 1

4 Updates to Chapter 1, Volume 2A

5 Updates to Chapter 3, Volume 2A

6 Updates to Chapter 4, Volume 2B

7 Updates to Chapter 1, Volume 3A

8 Updates to Chapter 16, Volume 3B

9 Updates to Chapter 17, Volume 3B

10 Updates to Chapter 19, Volume 3B

11 Updates to Chapter 35, Volume 3C

12 Updates to Appendix A, Volume 3C

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

Documentation Changes

1. Updates to Chapter 1, Volume 1
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Core™ i7 processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 10

• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• The Intel® Core™ M processor family
• Intel® Core™ i7-59xx Processor Extreme Edition
• Intel® Core™ i7-49xx Processor Extreme Edition
• Intel® Xeon® processor E3-1200 v3 product family
• Intel® Xeon® processor E5-2600/1600 v3 product families

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processor QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced
Intel® Core™ microarchitecture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture and supports Intel 64 archi-
tecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel®
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32nm version of
Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and
various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These
processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® CoreTM i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name
Sandy Bridge and support Intel 64 architecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2
product family and the 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code
name Ivy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Intel® microarchitecture
code name Ivy Bridge-E and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

The Intel® Core™ M processor family is based on the Intel® microarchitecture code name Broadwell and supports
Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Intel® microarchitecture code name Haswell-E and support Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors,
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel®
64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is the
superset of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 1: BASIC ARCHITECTURE
A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related Intel
manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — Intel® 64 and IA-32 Architectures. Introduces the Intel 64 and IA-32 architectures along with
the families of Intel processors that are based on these architectures. It also gives an overview of the common
features found in these processors and brief history of the Intel 64 and IA-32 architectures.

Chapter 3 — Basic Execution Environment. Introduces the models of memory organization and describes the
register set used by applications.

Chapter 4 — Data Types. Describes the data types and addressing modes recognized by the processor;
provides an overview of real numbers and floating-point formats and of floating-point exceptions.

Chapter 5 — Instruction Set Summary. Lists all Intel 64 and IA-32 instructions, divided into technology
groups.

Chapter 6 — Procedure Calls, Interrupts, and Exceptions. Describes the procedure stack and mechanisms
provided for making procedure calls and for servicing interrupts and exceptions.

Chapter 7 — Programming with General-Purpose Instructions. Describes basic load and store, program
control, arithmetic, and string instructions that operate on basic data types, general-purpose and segment regis-
ters; also describes system instructions that are executed in protected mode.

Chapter 8 — Programming with the x87 FPU. Describes the x87 floating-point unit (FPU), including floating-
point registers and data types; gives an overview of the floating-point instruction set and describes the
processor's floating-point exception conditions.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 12

Chapter 9 — Programming with Intel® MMX™ Technology. Describes Intel MMX technology, including MMX
registers and data types; also provides an overview of the MMX instruction set.

Chapter 10 — Programming with Streaming SIMD Extensions (SSE). Describes SSE extensions, including
XMM registers, the MXCSR register, and packed single-precision floating-point data types; provides an overview
of the SSE instruction set and gives guidelines for writing code that accesses the SSE extensions.

Chapter 11 — Programming with Streaming SIMD Extensions 2 (SSE2). Describes SSE2 extensions,
including XMM registers and packed double-precision floating-point data types; provides an overview of the SSE2
instruction set and gives guidelines for writing code that accesses SSE2 extensions. This chapter also describes
SIMD floating-point exceptions that can be generated with SSE and SSE2 instructions. It also provides general
guidelines for incorporating support for SSE and SSE2 extensions into operating system and applications code.

Chapter 12 — Programming with SSE3, SSSE3, SSE4 and AESNI. Provides an overview of the SSE3 instruc-
tion set, Supplemental SSE3, SSE4, AESNI instructions, and guidelines for writing code that accesses these
extensions.

Chapter 13 — Managing State Using the XSAVE Feature Set. Describes the XSAVE feature set instructions
and explains how software can enable the XSAVE feature set and XSAVE-enabled features.

Chapter 14 — Programming with AVX, FMA and AVX2. Provides an overview of the Intel® AVX instruction
set, FMA and Intel AVX2 extensions and gives guidelines for writing code that accesses these extensions.

Chapter 15 — Programming with Intel Transactional Synchronization Extensions. Describes the instruc-
tion extensions that support lock elision techniques to improve the performance of multi-threaded software with
contended locks.

Chapter 16 — Input/Output. Describes the processor’s I/O mechanism, including I/O port addressing, I/O
instructions, and I/O protection mechanisms.

Chapter 17 — Processor Identification and Feature Determination. Describes how to determine the CPU
type and features available in the processor.

Appendix A — EFLAGS Cross-Reference. Summarizes how the IA-32 instructions affect the flags in the
EFLAGS register.

Appendix B — EFLAGS Condition Codes. Summarizes how conditional jump, move, and ‘byte set on condition
code’ instructions use condition code flags (OF, CF, ZF, SF, and PF) in the EFLAGS register.

Appendix C — Floating-Point Exceptions Summary. Summarizes exceptions raised by the x87 FPU floating-
point and SSE/SSE2/SSE3 floating-point instructions.

Appendix D — Guidelines for Writing x87 FPU Exception Handlers. Describes how to design and write MS-
DOS* compatible exception handling facilities for FPU exceptions (includes software and hardware requirements
and assembly-language code examples). This appendix also describes general techniques for writing robust FPU
exception handlers.

Appendix E — Guidelines for Writing SIMD Floating-Point Exception Handlers. Gives guidelines for
writing exception handlers for exceptions generated by SSE/SSE2/SSE3 floating-point instructions.

...

2. Updates to Chapter 5, Volume 1
Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

5.1.6 Bit and Byte Instructions
Bit instructions test and modify individual bits in word and doubleword operands. Byte instructions set the value
of a byte operand to indicate the status of flags in the EFLAGS register.
BT Bit test
BTS Bit test and set
BTR Bit test and reset
BTC Bit test and complement
BSF Bit scan forward
BSR Bit scan reverse
SETE/SETZ Set byte if equal/Set byte if zero
SETNE/SETNZ Set byte if not equal/Set byte if not zero
SETA/SETNBE Set byte if above/Set byte if not below or equal
SETAE/SETNB/SETNC Set byte if above or equal/Set byte if not below/Set byte if not carry
SETB/SETNAE/SETCSet byte if below/Set byte if not above or equal/Set byte if carry
SETBE/SETNA Set byte if below or equal/Set byte if not above
SETG/SETNLE Set byte if greater/Set byte if not less or equal
SETGE/SETNL Set byte if greater or equal/Set byte if not less
SETL/SETNGE Set byte if less/Set byte if not greater or equal
SETLE/SETNG Set byte if less or equal/Set byte if not greater
SETS Set byte if sign (negative)
SETNS Set byte if not sign (non-negative)
SETO Set byte if overflow
SETNO Set byte if not overflow
SETPE/SETP Set byte if parity even/Set byte if parity
SETPO/SETNP Set byte if parity odd/Set byte if not parity
TEST Logical compare
CRC321 Provides hardware acceleration to calculate cyclic redundancy checks for fast and efficient

implementation of data integrity protocols.
POPCNT2 This instruction calculates of number of bits set to 1 in the second operand (source) and

returns the count in the first operand (a destination register)

...

5.1.13 Miscellaneous Instructions
The miscellaneous instructions provide such functions as loading an effective address, executing a “no-operation,”
and retrieving processor identification information.
LEA Load effective address
NOP No operation
UD2 Undefined instruction
XLAT/XLATB Table lookup translation

1. Processor support of CRC32 is enumerated by CPUID.01:ECX[SSE4.2] = 1

2. Processor support of POPCNT is enumerated by CPUID.01:ECX[POPCNT] = 1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 14

CPUID Processor identification
MOVBE1 Move data after swapping data bytes
PREFETCHW Prefetch data into cache in anticipation of write
PREFETCHWT1 Prefetch hint T1 with intent to write

...

5.1.15.1 Detection of VEX-encoded GPR Instructions, LZCNT and TZCNT, PREFETCHW
VEX-encoded general-purpose instructions do not operate on any vector registers.
There are separate feature flags for the following subsets of instructions that operate on general purpose regis-
ters, and the detection requirements for hardware support are:
CPUID.(EAX=07H, ECX=0H):EBX.BMI1[bit 3]: if 1 indicates the processor supports the first group of advanced bit
manipulation extensions (ANDN, BEXTR, BLSI, BLSMK, BLSR, TZCNT);
CPUID.(EAX=07H, ECX=0H):EBX.BMI2[bit 8]: if 1 indicates the processor supports the second group of advanced
bit manipulation extensions (BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX);
CPUID.EAX=80000001H:ECX.LZCNT[bit 5]: if 1 indicates the processor supports the LZCNT instruction.
CPUID.EAX=80000001H:ECX.PREFTEHCHW[bit 8]: if 1 indicates the processor supports the PREFTEHCHW
instruction. CPUID.(EAX=07H, ECX=0H):ECX.PREFTEHCHWT1[bit 0]: if 1 indicates the processor supports the
PREFTEHCHWT1 instruction.

...

5.9 SSE4 INSTRUCTIONS
Intel® Streaming SIMD Extensions 4 (SSE4) introduces 54 new instructions. 47 of the SSE4 instructions are
referred to as SSE4.1 in this document, 7 new SSE4 instructions are referred to as SSE4.2.

SSE4.1 is targeted to improve the performance of media, imaging, and 3D workloads. SSE4.1 adds instructions
that improve compiler vectorization and significantly increase support for packed dword computation. The tech-
nology also provides a hint that can improve memory throughput when reading from uncacheable WC memory
type.

The 47 SSE4.1 instructions include:
• Two instructions perform packed dword multiplies.
• Two instructions perform floating-point dot products with input/output selects.
• One instruction performs a load with a streaming hint.
• Six instructions simplify packed blending.
• Eight instructions expand support for packed integer MIN/MAX.
• Four instructions support floating-point round with selectable rounding mode and precision exception

override.
• Seven instructions improve data insertion and extractions from XMM registers
• Twelve instructions improve packed integer format conversions (sign and zero extensions).
• One instruction improves SAD (sum absolute difference) generation for small block sizes.
• One instruction aids horizontal searching operations.

1. Processor support of MOVBE is enumerated by CPUID.01:ECX.MOVBE[bit 22] = 1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 15

• One instruction improves masked comparisons.
• One instruction adds qword packed equality comparisons.
• One instruction adds dword packing with unsigned saturation.

The SSE4.2 instructions operating on XMM registers include:
• String and text processing that can take advantage of single-instruction multiple-data programming

techniques.
• A SIMD integer instruction that enhances the capability of the 128-bit integer SIMD capability in SSE4.1.

...

5.11 SSE4.2 INSTRUCTION SET
Five of the SSE4.2 instructions operate on XMM register as a source or destination. These include four text/string
processing instructions and one packed quadword compare SIMD instruction. Programming these five SSE4.2
instructions is similar to programming 128-bit Integer SIMD in SSE2/SSSE3. SSE4.2 does not provide any 64-bit
integer SIMD instructions.
CRC32 operates on general-purpose registers and is summarized in Section . The sections that follow summarize
each subgroup.

...

5.11.2 Packed Comparison SIMD integer Instruction
PCMPGTQ Performs logical compare of greater-than on packed integer quadwords.

...

5.12 AESNI AND PCLMULQDQ
Six AESNI instructions operate on XMM registers to provide accelerated primitives for block encryption/decryption
using Advanced Encryption Standard (FIPS-197). PCLMULQDQ instruction perform carry-less multiplication for
two binary numbers up to 64-bit wide.
AESDEC Perform an AES decryption round using an 128-bit state and a round key
AESDECLAST Perform the last AES decryption round using an 128-bit state and a round key
AESENC Perform an AES encryption round using an 128-bit state and a round key
AESENCLAST Perform the last AES encryption round using an 128-bit state and a round key
AESIMC Perform an inverse mix column transformation primitive
AESKEYGENASSIST Assist the creation of round keys with a key expansion schedule
PCLMULQDQ Perform carryless multiplication of two 64-bit numbers

...

3. Updates to Chapter 12, Volume 1
Change bars show changes to Chapter 12 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 16

CHAPTER 12
PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI

This chapter describes SSE3, SSSE3, SSE4 and provides information to assist in writing application programs that
use these extensions.

AESNI and PCLMLQDQ are instruction extensions targeted to accelerate high-speed block encryption and crypto-
graphic processing. Section 12.13 covers these instructions and their relationship to the Advanced Encryption
Standard (AES).

...

12.1 PROGRAMMING ENVIRONMENT AND DATA TYPES
The programming environment for using SSE3, SSSE3, and SSE4 is unchanged from those shown in Figure 3-1
and Figure 3-2. SSE3, SSSE3, and SSE4 do not introduce new data types. XMM registers are used to operate on
packed integer data, single-precision floating-point data, or double-precision floating-point data.

One SSE3 instruction uses the x87 FPU for x87-style programming. There are two SSE3 instructions that use the
general registers for thread synchronization. The MXCSR register governs SIMD floating-point operations. Note,
however, that the x87FPU control word does not affect the SSE3 instruction that is executed by the x87 FPU
(FISTTP), other than by unmasking an invalid operand or inexact result exception.

SSE4 instructions do not use MMX registers. The majority of SSE4.21 instructions and SSE4.1 instructions operate
on XMM registers.

...

12.9 SSE4 OVERVIEW
SSE4 comprises of two sets of extensions: SSE4.1 and SSE4.2. SSE4.1 is targeted to improve the performance of
media, imaging, and 3D workloads. SSE4.1 adds instructions that improve compiler vectorization and signifi-
cantly increase support for packed dword computation. The technology also provides a hint that can improve
memory throughput when reading from uncacheable WC memory type.

The 47 SSE4.1 instructions include:
• Two instructions perform packed dword multiplies.
• Two instructions perform floating-point dot products with input/output selects.
• One instruction performs a load with a streaming hint.
• Six instructions simplify packed blending.
• Eight instructions expand support for packed integer MIN/MAX.
• Four instructions support floating-point round with selectable rounding mode and precision exception

override.
• Seven instructions improve data insertion and extractions from XMM registers
• Twelve instructions improve packed integer format conversions (sign and zero extensions).

1. Although the presence of CRC32 support is enumerated by CPUID.01:ECX[SSE4.2] = 1, CRC32 operates on general purpose regis-
ters.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

• One instruction improves SAD (sum absolute difference) generation for small block sizes.
• One instruction aids horizontal searching operations.
• One instruction improves masked comparisons.
• One instruction adds qword packed equality comparisons.
• One instruction adds dword packing with unsigned saturation.

The SSE4.2 instructions operating on XMM registers improve performance in the following areas:
• String and text processing that can take advantage of single-instruction multiple-data programming

techniques.
• A SIMD integer instruction that enhances the capability of the 128-bit integer SIMD capability in SSE4.1.

...

12.11 SSE4.2 INSTRUCTION SET
Five of the seven SSE4.2 instructions can use an XMM register as a source or destination. These include four text/
string processing instructions and one packed quadword compare SIMD instruction. Programming these five
SSE4.2 instructions is similar to programming 128-bit Integer SIMD in SSE2/SSSE3. SSE4.2 does not provide any
64-bit integer SIMD instructions.

12.11.1 String and Text Processing Instructions
String and text processing instructions in SSE4.2 allocates 4 opcodes to provide a rich set of string and text
processing capabilities that traditionally required many more opcodes. These 4 instructions use XMM registers to
process string or text elements of up to 128-bits (16 bytes or 8 words). Each instruction uses an immediate byte
to support a rich set of programmable controls. A string-processing SSE4.2 instruction returns the result of
processing each pair of string elements using either an index or a mask.

The capabilities of the string/text processing instructions include:
• Handling string/text fragments consisting of bytes or words, either signed or unsigned
• Support for partial string or fragments less than 16 bytes in length, using either explicit length or implicit null-

termination
• Four types of string compare operations on word/byte elements
• Up to 256 compare operations performed in a single instruction on all string/text element pairs
• Built-in aggregation of intermediate results from comparisons
• Programmable control of processing on intermediate results
• Programmable control of output formats in terms of an index or mask
• Bi-directional support for the index format
• Support for two mask formats: bit or natural element width
• Not requiring 16-byte alignment for memory operand

The four SSE4.2 instructions that process text/string fragments are:
• PCMPESTRI — Packed compare explicit-length strings, return index in ECX/RCX
• PCMPESTRM — Packed compare explicit-length strings, return mask in XMM0
• PCMPISTRI — Packed compare implicit-length strings, return index in ECX/RCX
• PCMPISTRM — Packed compare implicit-length strings, return mask in XMM0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 18

All four require the use of an immediate byte to control operation. The two source operands can be XMM registers
or a combination of XMM register and memory address. The immediate byte provides programmable control with
the following attributes:
• Input data format
• Compare operation mode
• Intermediate result processing
• Output selection

Depending on the output format associated with the instruction, the text/string processing instructions implicitly
uses either a general-purpose register (ECX/RCX) or an XMM register (XMM0) to return the final result.

Two of the four text-string processing instructions specify string length explicitly. They use two general-purpose
registers (EDX, EAX) to specify the number of valid data elements (either word or byte) in the source operands.
The other two instructions specify valid string elements using null termination. A data element is considered valid
only if it has a lower index than the least significant null data element.

12.11.2 Packed Comparison SIMD Integer Instruction
SSE4.2 also provides a 128-bit integer SIMD instruction PCMPGTQ that performs logical compare of greater-than
on packed integer quadwords.

...

4. Updates to Chapter 1, Volume 2A
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-M.

--
...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• The Intel® Core™ M processor family
• Intel® Core™ i7-59xx Processor Extreme Edition
• Intel® Core™ i7-49xx Processor Extreme Edition
• Intel® Xeon® processor E3-1200 v3 product family
• Intel® Xeon® processor E5-2600/1600 v3 product families

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 20

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on
Enhanced Intel® Core™ microarchitecture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture and supports Intel 64 archi-
tecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel®
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32nm version of
Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and
various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These
processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, Intel®
CoreTM i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2
product family and 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code name
Ivy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Intel® microarchitecture
code name Ivy Bridge-E and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

The Intel® Core™ M processor family is based on the Intel® microarchitecture code name Broadwell and supports
Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Intel® microarchitecture code name Haswell-E and support Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® AtomTM
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors, Pentium® Dual-
Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is the
superset of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 21

5. Updates to Chapter 3, Volume 2A
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-M.

--
...

NOTE
Software must confirm that a processor feature is present using feature flags returned by CPUID
prior to using the feature. Software should not depend on future offerings retaining all features.

...

Figure 3-6 Feature Information Returned in the ECX Register

OM16524b

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EIST — Enhanced Intel SpeedStep® Technology

DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT

PCLMULQDQ — Carryless Multiplication

Reserved

CMPXCHG16B

SMX — Safer Mode Extensions

xTPR Update Control

SSSE3 — SSSE3 Extensions

PDCM — Perf/Debug Capability MSR

VMX — Virtual Machine Extensions

SSE4_1 — SSE4.1

OSXSAVE

SSE4_2 — SSE4.2

DCA — Direct Cache Access

x2APIC

POPCNT

XSAVE

AVX

AES

FMA — Fused Multiply Add

SSE3 — SSE3 Extensions

PCID — Process-context Identifiers

0

DTES64 — 64-bit DS Area

MOVBE

TSC-Deadline

F16C
RDRAND

SDBG

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 22

Table 3-22 Encoding of CPUID Leaf 2 Descriptors
 Value Type Description

00H General Null descriptor, this byte contains no information

01H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H TLB Instruction TLB: 4 MByte pages, fully associative, 2 entries

03H TLB Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H TLB Data TLB: 4 MByte pages, 4-way set associative, 8 entries

05H TLB Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H Cache 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H Cache 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

09H Cache 1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size

0AH Cache 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH TLB Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

0CH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

0DH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size

0EH Cache 1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size

1DH Cache 2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size

21H Cache 2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size

22H Cache 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector

23H Cache 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

24H Cache 2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size

25H Cache 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

29H Cache 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

2CH Cache 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H Cache 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size

40H Cache No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache

41H Cache 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H Cache 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H Cache 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H Cache 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H Cache 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H Cache 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H Cache 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

48H Cache 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size

49H Cache 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model
06H);

2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH Cache 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH Cache 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH Cache 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 23

4DH Cache 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

4EH Cache 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

4FH TLB Instruction TLB: 4 KByte pages, 32 entries

50H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

55H TLB Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries

56H TLB Data TLB0: 4 MByte pages, 4-way set associative, 16 entries

57H TLB Data TLB0: 4 KByte pages, 4-way associative, 16 entries

59H TLB Data TLB0: 4 KByte pages, fully associative, 16 entries

5AH TLB Data TLB0: 2-MByte or 4 MByte pages, 4-way set associative, 32 entries

5BH TLB Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH TLB Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH TLB Data TLB: 4 KByte and 4 MByte pages,256 entries

60H Cache 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

61H TLB Instruction TLB: 4 KByte pages, fully associative, 48 entries

63H TLB Data TLB: 1 GByte pages, 4-way set associative, 4 entries

66H Cache 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H Cache 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H Cache 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Cache Trace cache: 12 K-μop, 8-way set associative

71H Cache Trace cache: 16 K-μop, 8-way set associative

72H Cache Trace cache: 32 K-μop, 8-way set associative

76H TLB Instruction TLB: 2M/4M pages, fully associative, 8 entries

78H Cache 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H Cache 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7AH Cache 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7BH Cache 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7CH Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector

7DH Cache 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH Cache 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

80H Cache 2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size

82H Cache 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H Cache 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H Cache 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H Cache 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H Cache 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

Table 3-22 Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 24

...

A0H DTLB DTLB: 4k pages, fully associative, 32 entries

B0H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B1H TLB Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B2H TLB Instruction TLB: 4KByte pages, 4-way set associative, 64 entries

B3H TLB Data TLB: 4 KByte pages, 4-way set associative, 128 entries

B4H TLB Data TLB1: 4 KByte pages, 4-way associative, 256 entries

B5H TLB Instruction TLB: 4KByte pages, 8-way set associative, 64 entries

B6H TLB Instruction TLB: 4KByte pages, 8-way set associative, 128 entries

BAH TLB Data TLB1: 4 KByte pages, 4-way associative, 64 entries

C0H TLB Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries

C1H STLB Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries

C2H DTLB DTLB: 4 KByte/2 MByte pages, 4-way associative, 16 entries

C3H STLB Shared 2nd-Level TLB: 4 KByte /2 MByte pages, 6-way associative, 1536 entries. Also 1GBbyte pages, 4-way,
16 entries.

CAH STLB Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries

D0H Cache 3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size

D1H Cache 3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size

D2H Cache 3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size

D6H Cache 3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size

D7H Cache 3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size

D8H Cache 3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size

DCH Cache 3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size

DDH Cache 3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size

DEH Cache 3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size

E2H Cache 3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size

E3H Cache 3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size

E4H Cache 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size

EAH Cache 3rd-level cache: 12MByte, 24-way set associative, 64 byte line size

EBH Cache 3rd-level cache: 18MByte, 24-way set associative, 64 byte line size

ECH Cache 3rd-level cache: 24MByte, 24-way set associative, 64 byte line size

F0H Prefetch 64-Byte prefetching

F1H Prefetch 128-Byte prefetching

FFH General CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters

Table 3-22 Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 25

IDIV—Signed Divide

Instruction Operand Encoding

Description

Divides the (signed) value in the AX, DX:AX, or EDX:EAX (dividend) by the source operand (divisor) and stores
the result in the AX (AH:AL), DX:AX, or EDX:EAX registers. The source operand can be a general-purpose register
or a memory location. The action of this instruction depends on the operand size (dividend/divisor).

Non-integral results are truncated (chopped) towards 0. The remainder is always less than the divisor in magni-
tude. Overflow is indicated with the #DE (divide error) exception rather than with the CF flag.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. In 64-bit mode when REX.W is
applied, the instruction divides the signed value in RDX:RAX by the source operand. RAX contains a 64-bit
quotient; RDX contains a 64-bit remainder.

See the summary chart at the beginning of this section for encoding data and limits. See Table 3-60.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F6 /7 IDIV r/m8 M Valid Valid Signed divide AX by r/m8, with result stored in:
AL ← Quotient, AH ← Remainder.

REX + F6 /7 IDIV r/m8* M Valid N.E. Signed divide AX by r/m8, with result stored in
AL ← Quotient, AH ← Remainder.

F7 /7 IDIV r/m16 M Valid Valid Signed divide DX:AX by r/m16, with result
stored in AX ← Quotient, DX ← Remainder.

F7 /7 IDIV r/m32 M Valid Valid Signed divide EDX:EAX by r/m32, with result
stored in EAX ← Quotient, EDX ← Remainder.

REX.W + F7 /7 IDIV r/m64 M Valid N.E. Signed divide RDX:RAX by r/m64, with result
stored in RAX ← Quotient, RDX ← Remainder.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

Table 3-60 IDIV Results

Operand Size Dividend Divisor Quotient Remainder Quotient Range

Word/byte AX r/m8 AL AH −128 to +127

Doubleword/word DX:AX r/m16 AX DX −32,768 to +32,767

Quadword/doubleword EDX:EAX r/m32 EAX EDX −231 to 231 − 1

Doublequadword/ quadword RDX:RAX r/m64 RAX RDX −263 to 263 − 1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 26

Operation

IF SRC = 0
THEN #DE; (* Divide error *)

FI;

IF OperandSize = 8 (* Word/byte operation *)
THEN

temp ← AX / SRC; (* Signed division *)
IF (temp > 7FH) or (temp < 80H)
(* If a positive result is greater than 7FH or a negative result is less than 80H *)

THEN #DE; (* Divide error *)
ELSE

AL ← temp;
AH ← AX SignedModulus SRC;

FI;
ELSE IF OperandSize = 16 (* Doubleword/word operation *)

THEN
temp ← DX:AX / SRC; (* Signed division *)
IF (temp > 7FFFH) or (temp < 8000H)
(* If a positive result is greater than 7FFFH
or a negative result is less than 8000H *)

THEN
#DE; (* Divide error *)

ELSE
AX ← temp;
DX ← DX:AX SignedModulus SRC;

FI;
FI;

ELSE IF OperandSize = 32 (* Quadword/doubleword operation *)
temp ← EDX:EAX / SRC; (* Signed division *)
IF (temp > 7FFFFFFFH) or (temp < 80000000H)
(* If a positive result is greater than 7FFFFFFFH
or a negative result is less than 80000000H *)

THEN
#DE; (* Divide error *)

ELSE
EAX ← temp;
EDX ← EDXE:AX SignedModulus SRC;

FI;
FI;

ELSE IF OperandSize = 64 (* Doublequadword/quadword operation *)
temp ← RDX:RAX / SRC; (* Signed division *)
IF (temp > 7FFFFFFFFFFFFFFFH) or (temp < 8000000000000000H)
(* If a positive result is greater than 7FFFFFFFFFFFFFFFH
or a negative result is less than 8000000000000000H *)

THEN
#DE; (* Divide error *)

ELSE
RAX ← temp;
RDX ← RDE:RAX SignedModulus SRC;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

FI;
FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 28

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.
...

IMUL—Signed Multiply

Instruction Operand Encoding

Description

Performs a signed multiplication of two operands. This instruction has three forms, depending on the number of
operands.
• One-operand form — This form is identical to that used by the MUL instruction. Here, the source operand (in

a general-purpose register or memory location) is multiplied by the value in the AL, AX, EAX, or RAX register

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F6 /5 IMUL r/m8* M Valid Valid AX← AL ∗ r/m byte.

F7 /5 IMUL r/m16 M Valid Valid DX:AX ← AX ∗ r/m word.

F7 /5 IMUL r/m32 M Valid Valid EDX:EAX ← EAX ∗ r/m32.

REX.W + F7 /5 IMUL r/m64 M Valid N.E. RDX:RAX ← RAX ∗ r/m64.

0F AF /r IMUL r16, r/m16 RM Valid Valid word register ← word register ∗ r/m16.

0F AF /r IMUL r32, r/m32 RM Valid Valid doubleword register ← doubleword register ∗
r/m32.

REX.W + 0F AF /r IMUL r64, r/m64 RM Valid N.E. Quadword register ← Quadword register ∗ r/
m64.

6B /r ib IMUL r16, r/m16, imm8 RMI Valid Valid word register ← r/m16 ∗ sign-extended
immediate byte.

6B /r ib IMUL r32, r/m32, imm8 RMI Valid Valid doubleword register ← r/m32 ∗ sign-
extended immediate byte.

REX.W + 6B /r ib IMUL r64, r/m64, imm8 RMI Valid N.E. Quadword register ← r/m64 ∗ sign-extended
immediate byte.

69 /r iw IMUL r16, r/m16, imm16 RMI Valid Valid word register ← r/m16 ∗ immediate word.

69 /r id IMUL r32, r/m32, imm32 RMI Valid Valid doubleword register ← r/m32 ∗ immediate
doubleword.

REX.W + 69 /r id IMUL r64, r/m64, imm32 RMI Valid N.E. Quadword register ← r/m64 ∗ immediate
doubleword.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8/16/32 NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

(depending on the operand size) and the product (twice the size of the input operand) is stored in the AX,
DX:AX, EDX:EAX, or RDX:RAX registers, respectively.

• Two-operand form — With this form the destination operand (the first operand) is multiplied by the source
operand (second operand). The destination operand is a general-purpose register and the source operand is
an immediate value, a general-purpose register, or a memory location. The intermediate product (twice the
size of the input operand) is truncated and stored in the destination operand location.

• Three-operand form — This form requires a destination operand (the first operand) and two source
operands (the second and the third operands). Here, the first source operand (which can be a general-
purpose register or a memory location) is multiplied by the second source operand (an immediate value). The
intermediate product (twice the size of the first source operand) is truncated and stored in the destination
operand (a general-purpose register).

When an immediate value is used as an operand, it is sign-extended to the length of the destination operand
format.

The CF and OF flags are set when the signed integer value of the intermediate product differs from the sign
extended operand-size-truncated product, otherwise the CF and OF flags are cleared.

The three forms of the IMUL instruction are similar in that the length of the product is calculated to twice the
length of the operands. With the one-operand form, the product is stored exactly in the destination. With the two-
and three- operand forms, however, the result is truncated to the length of the destination before it is stored in
the destination register. Because of this truncation, the CF or OF flag should be tested to ensure that no significant
bits are lost.

The two- and three-operand forms may also be used with unsigned operands because the lower half of the
product is the same regardless if the operands are signed or unsigned. The CF and OF flags, however, cannot be
used to determine if the upper half of the result is non-zero.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. Use of REX.W modifies the three
forms of the instruction as follows.
• One-operand form —The source operand (in a 64-bit general-purpose register or memory location) is

multiplied by the value in the RAX register and the product is stored in the RDX:RAX registers.
• Two-operand form — The source operand is promoted to 64 bits if it is a register or a memory location. The

destination operand is promoted to 64 bits.
• Three-operand form — The first source operand (either a register or a memory location) and destination

operand are promoted to 64 bits. If the source operand is an immediate, it is sign extended to 64 bits.

Operation

IF (NumberOfOperands = 1)
THEN IF (OperandSize = 8)

THEN
TMP_XP ← AL ∗ SRC (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC *) ;
AX ← TMP_XP[15:0];
SF ← TMP_XP[7];
IF SignExtend(TMP_XP[7:0]) = TMP_XP

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

ELSE IF OperandSize = 16
THEN

TMP_XP ← AX ∗ SRC (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC *)
DX:AX ← TMP_XP[31:0];
SF ← TMP_XP[15];

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 30

IF SignExtend(TMP_XP[15:0]) = TMP_XP
THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

ELSE IF OperandSize = 32
THEN

TMP_XP ← EAX ∗ SRC (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC*)
EDX:EAX ← TMP_XP[63:0];
SF ← TMP_XP[32];
IF SignExtend(TMP_XP[31:0]) = TMP_XP

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

ELSE (* OperandSize = 64 *)
TMP_XP ← RAX ∗ SRC (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC *)
EDX:EAX ← TMP_XP[127:0];
SF ← TMP_XP[63];
IF SignExtend(TMP_XP[63:0]) = TMP_XP

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

FI;
FI;

ELSE IF (NumberOfOperands = 2)
THEN

TMP_XP ← DEST ∗ SRC (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC *)
DEST ← TruncateToOperandSize(TMP_XP);
SF ← MSB(DEST);
IF SignExtend(DEST) ≠ TMP_XP

THEN CF ← 1; OF ← 1;
ELSE CF ← 0; OF ← 0; FI;

ELSE (* NumberOfOperands = 3 *)
TMP_XP ← SRC1 ∗ SRC2 (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC1 *)
DEST ← TruncateToOperandSize(TMP_XP);
SF ← MSB(DEST);
IF SignExtend(DEST) ≠ TMP_XP

THEN CF ← 1; OF ← 1;
ELSE CF ← 0; OF ← 0; FI;

FI;
FI;

Flags Affected

SF is updated according to the most significant bit of the operand-size-truncated result in the destination. For the
one operand form of the instruction, the CF and OF flags are set when significant bits are carried into the upper
half of the result and cleared when the result fits exactly in the lower half of the result. For the two- and three-
operand forms of the instruction, the CF and OF flags are set when the result must be truncated to fit in the desti-
nation operand size and cleared when the result fits exactly in the destination operand size. The ZF, AF, and PF
flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL NULL
segment selector.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 31

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
...

6. Updates to Chapter 4, Volume 2B
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B: Instruction Set Reference, N-Z.

--
...

PCLMULQDQ - Carry-Less Multiplication Quadword
Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 44 /r ib
PCLMULQDQ xmm1, xmm2/m128, imm8

RMI V/V PCLMUL-
QDQ

Carry-less multiplication of one quadword of
xmm1 by one quadword of xmm2/m128,
stores the 128-bit result in xmm1. The imme-
diate is used to determine which quadwords
of xmm1 and xmm2/m128 should be used.

VEX.NDS.128.66.0F3A.WIG 44 /r ib
VPCLMULQDQ xmm1, xmm2, xmm3/m128, imm8

RVMI V/V Both PCL-
MULQDQ
and AVX
flags

Carry-less multiplication of one quadword of
xmm2 by one quadword of xmm3/m128,
stores the 128-bit result in xmm1. The imme-
diate is used to determine which quadwords
of xmm2 and xmm3/m128 should be used.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 32

Instruction Operand Encoding

Description

Performs a carry-less multiplication of two quadwords, selected from the first source and second source operand
according to the value of the immediate byte. Bits 4 and 0 are used to select which 64-bit half of each operand to
use according to Table 4-10, other bits of the immediate byte are ignored.

 The first source operand and the destination operand are the same and must be an XMM register. The second
source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding
YMM destination register remain unchanged.

Compilers and assemblers may implement the following pseudo-op syntax to simply programming and emit the
required encoding for Imm8.

Operation

PCLMULQDQ
IF (Imm8[0] = 0)

THEN
TEMP1  SRC1 [63:0];

ELSE
TEMP1  SRC1 [127:64];

FI
IF (Imm8[4] = 0)

THEN
TEMP2  SRC2 [63:0];

Op/En Operand 1 Operand2 Operand3 Operand4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

Table 4-10 PCLMULQDQ Quadword Selection of Immediate Byte

Imm[4] Imm[0] PCLMULQDQ Operation

0 0 CL_MUL(SRC21[63:0], SRC1[63:0])

0 1 CL_MUL(SRC2[63:0], SRC1[127:64])

1 0 CL_MUL(SRC2[127:64], SRC1[63:0])

1 1 CL_MUL(SRC2[127:64], SRC1[127:64])
NOTES:

1. SRC2 denotes the second source operand, which can be a register or memory; SRC1 denotes the first source and destination oper-
and.

Table 4-11 Pseudo-Op and PCLMULQDQ Implementation

Pseudo-Op Imm8 Encoding

PCLMULLQLQDQ xmm1, xmm2 0000_0000B

PCLMULHQLQDQ xmm1, xmm2 0000_0001B

PCLMULLQHDQ xmm1, xmm2 0001_0000B

PCLMULHQHDQ xmm1, xmm2 0001_0001B

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 33

ELSE
TEMP2  SRC2 [127:64];

FI
For i = 0 to 63 {

TmpB [i]  (TEMP1[0] and TEMP2[i]);
For j = 1 to i {

TmpB [i]  TmpB [i] xor (TEMP1[j] and TEMP2[i - j])
}
DEST[i]  TmpB[i];

}
For i = 64 to 126 {

TmpB [i]  0;
For j = i - 63 to 63 {

TmpB [i]  TmpB [i] xor (TEMP1[j] and TEMP2[i - j])
}
DEST[i]  TmpB[i];

}
DEST[127]  0;
DEST[VLMAX-1:128] (Unmodified)

VPCLMULQDQ
IF (Imm8[0] = 0)

THEN
TEMP1  SRC1 [63:0];

ELSE
TEMP1  SRC1 [127:64];

FI
IF (Imm8[4] = 0)

THEN
TEMP2  SRC2 [63:0];

ELSE
TEMP2  SRC2 [127:64];

FI
For i = 0 to 63 {

TmpB [i]  (TEMP1[0] and TEMP2[i]);
For j = 1 to i {

TmpB [i]  TmpB [i] xor (TEMP1[j] and TEMP2[i - j])
}
DEST[i]  TmpB[i];

}
For i = 64 to 126 {

TmpB [i]  0;
For j = i - 63 to 63 {

TmpB [i]  TmpB [i] xor (TEMP1[j] and TEMP2[i - j])
}
DEST[i]  TmpB[i];

}
DEST[VLMAX-1:127]  0;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 34

Intel C/C++ Compiler Intrinsic Equivalent

(V)PCLMULQDQ: __m128i _mm_clmulepi64_si128 (__m128i, __m128i, const int)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
...

XABORT — Transactional Abort

Instruction Operand Encoding

Description

XABORT forces an RTM abort. Following an RTM abort, the logical processor resumes execution at the fallback
address computed through the outermost XBEGIN instruction. The EAX register is updated to reflect an XABORT
instruction caused the abort, and the imm8 argument will be provided in bits 31:24 of EAX.

Operation
XABORT
IF RTM_ACTIVE = 0

THEN
Treat as NOP;

ELSE
GOTO RTM_ABORT_PROCESSING;

FI;

(* For any RTM abort condition encountered during RTM execution *)
RTM_ABORT_PROCESSING:

Restore architectural register state;
Discard memory updates performed in transaction;
Update EAX with status and XABORT argument;
RTM_NEST_COUNT ← 0;
RTM_ACTIVE ← 0;
IF 64-bit Mode

THEN
RIP ← fallbackRIP;

ELSE

Opcode/Instruction Op/
En

64/32bit
Mode
Support

CPUID
Feature
Flag

Description

C6 F8 ib A V/V RTM Causes an RTM abort if in RTM execution
XABORT imm8

Op/En Operand 1 Operand2 Operand3 Operand4

A imm8 NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 35

EIP ← fallbackEIP;
FI;

END

Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent

XABORT: void _xabort(unsigned int);

SIMD Floating-Point Exceptions

None

Other Exceptions
#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11] = 0.

If LOCK prefix is used.
...

XBEGIN — Transactional Begin

Instruction Operand Encoding

Description

The XBEGIN instruction specifies the start of an RTM code region. If the logical processor was not already in trans-
actional execution, then the XBEGIN instruction causes the logical processor to transition into transactional
execution. The XBEGIN instruction that transitions the logical processor into transactional execution is referred to
as the outermost XBEGIN instruction. The instruction also specifies a relative offset to compute the address of the
fallback code path following a transactional abort.
On an RTM abort, the logical processor discards all architectural register and memory updates performed during
the RTM execution and restores architectural state to that corresponding to the outermost XBEGIN instruction.
The fallback address following an abort is computed from the outermost XBEGIN instruction.

Opcode/Instruction Op/
En

64/32bit
Mode
Support

CPUID
Feature
Flag

Description

C7 F8 A V/V RTM Specifies the start of an RTM region. Provides a 16-bit relative
offset to compute the address of the fallback instruction address at
which execution resumes following an RTM abort.

XBEGIN rel16

C7 F8 A V/V RTM Specifies the start of an RTM region. Provides a 32-bit relative
offset to compute the address of the fallback instruction address at
which execution resumes following an RTM abort.

XBEGIN rel32

Op/En Operand 1 Operand2 Operand3 Operand4

A Offset NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 36

Operation
XBEGIN
IF RTM_NEST_COUNT < MAX_RTM_NEST_COUNT

THEN
RTM_NEST_COUNT++
IF RTM_NEST_COUNT = 1 THEN

IF 64-bit Mode
THEN

fallbackRIP ← RIP + SignExtend64(IMM)
(* RIP is instruction following XBEGIN instruction *)

ELSE
fallbackEIP ← EIP + SignExtend32(IMM)

(* EIP is instruction following XBEGIN instruction *)
FI;

IF (64-bit mode)
THEN IF (fallbackRIP is not canonical)

THEN #GP(0)
FI;
ELSE IF (fallbackEIP outside code segment limit)

THEN #GP(0)
FI;

FI;

RTM_ACTIVE ← 1
Enter RTM Execution (* record register state, start tracking memory state*)

FI; (* RTM_NEST_COUNT = 1 *)
ELSE (* RTM_NEST_COUNT = MAX_RTM_NEST_COUNT *)

GOTO RTM_ABORT_PROCESSING
FI;

(* For any RTM abort condition encountered during RTM execution *)
RTM_ABORT_PROCESSING:

Restore architectural register state
Discard memory updates performed in transaction
Update EAX with status
RTM_NEST_COUNT ← 0
RTM_ACTIVE ← 0
IF 64-bit mode

THEN
RIP ← fallbackRIP

ELSE
EIP ← fallbackEIP

FI;
END

Flags Affected
None

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 37

Intel C/C++ Compiler Intrinsic Equivalent

XBEGIN: unsigned int _xbegin(void);

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions
#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11]=0.

If LOCK prefix is used.
#GP(0) If the fallback address is outside the CS segment.

Real-Address Mode Exceptions
#GP(0) If the fallback address is outside the address space 0000H and FFFFH.
#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11]=0.

If LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the fallback address is outside the address space 0000H and FFFFH.
#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11]=0.

If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-bit Mode Exceptions
#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11] = 0.

If LOCK prefix is used.
#GP(0) If the fallback address is non-canonical.
...

XEND — Transactional End

Instruction Operand Encoding

Opcode/Instruction Op/
En

64/32bit
Mode
Support

CPUID
Feature
Flag

Description

0F 01 D5 A V/V RTM Specifies the end of an RTM code region.
XEND

Op/En Operand 1 Operand2 Operand3 Operand4

A NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 38

Description

The instruction marks the end of an RTM code region. If this corresponds to the outermost scope (that is,
including this XEND instruction, the number of XBEGIN instructions is the same as number of XEND instructions),
the logical processor will attempt to commit the logical processor state atomically. If the commit fails, the logical
processor will rollback all architectural register and memory updates performed during the RTM execution. The
logical processor will resume execution at the fallback address computed from the outermost XBEGIN instruction.
The EAX register is updated to reflect RTM abort information.
XEND executed outside a transactional region will cause a #GP (General Protection Fault).

Operation
XEND
IF (RTM_ACTIVE = 0) THEN

SIGNAL #GP
ELSE

RTM_NEST_COUNT--
IF (RTM_NEST_COUNT = 0) THEN

Try to commit transaction
IF fail to commit transactional execution

THEN
GOTO RTM_ABORT_PROCESSING;

ELSE (* commit success *)
RTM_ACTIVE ← 0

FI;
FI;

FI;

(* For any RTM abort condition encountered during RTM execution *)
RTM_ABORT_PROCESSING:

Restore architectural register state
Discard memory updates performed in transaction
Update EAX with status
RTM_NEST_COUNT ← 0
RTM_ACTIVE ← 0
IF 64-bit Mode

THEN
RIP ← fallbackRIP

ELSE
EIP ← fallbackEIP

FI;
END

Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent

XEND: void _xend(void);

SIMD Floating-Point Exceptions

None

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 39

Other Exceptions
#UD CPUID.(EAX=7, ECX=0):EBX.RTM[bit 11] = 0.

If LOCK or 66H or F2H or F3H prefix is used.
#GP(0) If RTM_ACTIVE = 0.
...

7. Updates to Chapter 1, Volume 3A
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Core™2 Extreme QX9000 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 40

• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• The Intel® Core™ M processor family
• Intel® Core™ i7-59xx Processor Extreme Edition
• Intel® Core™ i7-49xx Processor Extreme Edition
• Intel® Xeon® processor E3-1200 v3 product family
• Intel® Xeon® processor E5-2600/1600 v3 product families

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on
Enhanced Intel® Core™ microarchitecture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture and supports Intel 64 archi-
tecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel®
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32nm version of
Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and
various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These
processors support Intel 64 architecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 41

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2
product family and 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code name
Ivy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Intel® microarchitecture
code name Ivy Bridge-E and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

The Intel® Core™ M processor family is based on the Intel® microarchitecture code name Broadwell and supports
Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Intel® microarchitecture code name Haswell-E and support Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors,
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel®
64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is a
superset of and compatible with IA-32 architecture.

...

8. Updates to Chapter 16, Volume 3B
Change bars show changes to Chapter 16 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

16.4 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH
CPUID DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_2DH, MACHINE
ERROR CODES FOR MACHINE CHECK

Table 16-13 through Table 16-15 provide information for interpreting additional model-specific fields for memory
controller errors relating to the processor family with CPUID DisplayFamily_DisplaySignature 06_2DH, which
supports Intel QuickPath Interconnect links. Incremental MC error codes related to the Intel QPI links are
reported in the register banks IA32_MC6 and IA32_MC7, incremental error codes for internal machine check error
from PCU controller is reported in the register bank IA32_MC4, and incremental error codes for the memory
controller unit is reported in the register banks IA32_MC8-IA32_MC11.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 42

16.4.1 Internal Machine Check Errors

Table 16-13 Machine Check Error Codes for IA32_MC4_STATUS

...

Type Bit No. Bit Function Bit Description

MCA error
codes1

0-15 MCACOD

Model specific
errors

19:16 Reserved except for
the following

0000b - No Error

0001b - Non_IMem_Sel

0010b - I_Parity_Error

0011b - Bad_OpCode

0100b - I_Stack_Underflow

0101b - I_Stack_Overflow

0110b - D_Stack_Underflow

0111b - D_Stack_Overflow

1000b - Non-DMem_Sel

1001b - D_Parity_Error

23-20 Reserved Reserved

31-24 Reserved except for
the following

00h - No Error

0Dh - MC_IMC_FORCE_SR_S3_TIMEOUT

0Eh - MC_CPD_UNCPD_ST_TIMEOUT

0Fh - MC_PKGS_SAFE_WP_TIMEOUT

43h - MC_PECI_MAILBOX_QUIESCE_TIMEOUT

5Ch - MC_MORE_THAN_ONE_LT_AGENT

60h - MC_INVALID_PKGS_REQ_PCH

61h - MC_INVALID_PKGS_REQ_QPI

62h - MC_INVALID_PKGS_RES_QPI

63h - MC_INVALID_PKGC_RES_PCH

64h - MC_INVALID_PKG_STATE_CONFIG

70h - MC_WATCHDG_TIMEOUT_PKGC_SLAVE

71h - MC_WATCHDG_TIMEOUT_PKGC_MASTER

72h - MC_WATCHDG_TIMEOUT_PKGS_MASTER

7ah - MC_HA_FAILSTS_CHANGE_DETECTED

81h - MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

56-32 Reserved Reserved

Status register
validity
indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 43

16.5 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH
CPUID DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_3EH, MACHINE
ERROR CODES FOR MACHINE CHECK

Intel Xeon processor E5 v2 family and Intel Xeon processor E7 v2 family are based on the Ivy Bridge-EP microar-
chitecture and can be identified with CPUID DisplayFamily_DisplaySignature 06_3EH. Incremental error codes for
internal machine check error from PCU controller is reported in the register bank IA32_MC4, Table 16-17 lists
model-specific fields to interpret error codes applicable to IA32_MC4_STATUS. Incremental MC error codes
related to the Intel QPI links are reported in the register banks IA32_MC5. Information listed in Table 16-14 for
QPI MC error code apply to IA32_MC5_STATUS. Incremental error codes for the memory controller unit is
reported in the register banks IA32_MC9-IA32_MC16. Table 16-18 lists model-specific error codes apply to
IA32_MCi_STATUS, i = 9-16.

...

16.5.1 Internal Machine Check Errors

Table 16-17 Machine Check Error Codes for IA32_MC4_STATUS

Type Bit No. Bit Function Bit Description

MCA error codes1 0-15 MCACOD

Model specific errors 19:16 Reserved except for
the following

0000b - No Error

0001b - Non_IMem_Sel

0010b - I_Parity_Error

0011b - Bad_OpCode

0100b - I_Stack_Underflow

0101b - I_Stack_Overflow

0110b - D_Stack_Underflow

0111b - D_Stack_Overflow

1000b - Non-DMem_Sel

1001b - D_Parity_Error

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 44

...

16.5.2 Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC9_STATUS-
IA32_MC16_STATUS. The supported error codes are follows the architectural MCACOD definition type
1MMMCCCC (see Chapter 15, “Machine-Check Architecture,”).

MSR_ERROR_CONTROL.[bit 1] can enable additional information logging of the IMC. The additional error infor-
mation logged by the IMC is stored in IA32_MCi_STATUS and IA32_MCi_MISC; (i = 9-16).

23-20 Reserved Reserved

31-24 Reserved except for
the following

00h - No Error

0Dh - MC_IMC_FORCE_SR_S3_TIMEOUT

0Eh - MC_CPD_UNCPD_ST_TIMEOUT

0Fh - MC_PKGS_SAFE_WP_TIMEOUT

43h - MC_PECI_MAILBOX_QUIESCE_TIMEOUT

44h - MC_CRITICAL_VR_FAILED

45h - MC_ICC_MAX-NOTSUPPORTED

5Ch - MC_MORE_THAN_ONE_LT_AGENT

60h - MC_INVALID_PKGS_REQ_PCH

61h - MC_INVALID_PKGS_REQ_QPI

62h - MC_INVALID_PKGS_RES_QPI

63h - MC_INVALID_PKGC_RES_PCH

64h - MC_INVALID_PKG_STATE_CONFIG

70h - MC_WATCHDG_TIMEOUT_PKGC_SLAVE

71h - MC_WATCHDG_TIMEOUT_PKGC_MASTER

72h - MC_WATCHDG_TIMEOUT_PKGS_MASTER

7Ah - MC_HA_FAILSTS_CHANGE_DETECTED

7Bh - MC_PCIE_R2PCIE-RW_BLOCK_ACK_TIMEOUT

81h - MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

56-32 Reserved Reserved

Status register
validity indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Type Bit No. Bit Function Bit Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 45

Table 16-18 Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 9-16)

Table 16-19 Intel IMC MC Error Codes for IA32_MCi_MISC (i= 9-16)

Type Bit No. Bit Function Bit Description

MCA error codes1 0-15 MCACOD Memory Controller error format: 000F 0000 1MMM CCCC

Model specific
errors

31:16 Reserved except for
the following

001H - Address parity error

002H - HA Wrt buffer Data parity error

004H - HA Wrt byte enable parity error

008H - Corrected patrol scrub error

010H - Uncorrected patrol scrub error

020H - Corrected spare error

040H - Uncorrected spare error

080H - Corrected memory read error. (Only applicable with iMC’s “Additional
Error logging” Mode-1 enabled.)

100H - iMC, WDB, parity errors

36-32 Other info When MSR_ERROR_CONTROL.[1] is set, logs an encoded value from the first error
device.

37 Reserved Reserved

56-38 See Chapter 15, “Machine-Check Architecture,”

Status register
validity indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Type Bit No. Bit Function Bit Description

MCA addr info1 0-8 See Chapter 15, “Machine-Check Architecture,”

Model specific
errors

13:9 If the error logged is MCWrDataPar error or MCWrBEPar error, this field is the WDB
ID that has the parity error. OR if the second error logged is a correctable read
error, MC logs the second error device in this field.

Model specific
errors

29-14 ErrMask_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error bit
mask.

Model specific
errors

45-30 ErrMask_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error
bit mask.

50:46 FailRank_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error
failing rank.

55:51 FailRank_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error
failing rank.

61:56 Reserved

62 Valid_1stErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data
from a correctable error from memory read associated with first error device.

63 Valid_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data due
to a second correctable error in a memory device. Use this information only after
there is valid first error info indicated by bit 62.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 46

16.6 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH
CPUID DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_3FH, MACHINE
ERROR CODES FOR MACHINE CHECK

Intel Xeon processor E5 v3 family is based on the Haswell-E microarchitecture and can be identified with CPUID
DisplayFamily_DisplaySignature 06_3FH. Incremental error codes for internal machine check error from PCU
controller is reported in the register bank IA32_MC4, Table 16-20 lists model-specific fields to interpret error
codes applicable to IA32_MC4_STATUS. Incremental MC error codes related to the Intel QPI links are reported in
the register banks IA32_MC5. Information listed in Table 16-14 for QPI MC error code apply to
IA32_MC5_STATUS. Incremental error codes for the memory controller unit is reported in the register banks
IA32_MC9-IA32_MC16. Table 16-18 lists model-specific error codes apply to IA32_MCi_STATUS, i = 9-16.

16.6.1 Internal Machine Check Errors

Table 16-20 Machine Check Error Codes for IA32_MC4_STATUS

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Type Bit No. Bit Function Bit Description

MCA error codes1 15:0 MCACOD

MCACOD2 15:0 internal Errors 0402h - PCU internal Errors

0403h - PCU internal Errors

0406h - Intel TXT Errors

0407h - Other UBOX internal Errors.

On an IERR caused by a core 3-strike the IA32_MC3_STATUS (MLC) is copied
to the IA32_MC4_STATUS (After a 3-strike, the core MCA banks will be
unavailable).

Model specific errors 19:16 Reserved except for
the following

0000b - No Error

00xxb - PCU internal error

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 47

23-20 Reserved Reserved

31-24 Reserved except for
the following

00h - No Error

09h - MC_MESSAGE_CHANNEL_TIMEOUT

0Dh - MC_IMC_FORCE_SR_S3_TIMEOUT

0Eh - MC_CPD_UNCPD_ST_TIMEOUT

13h - MC_DMI_TRAINING_TIMEOUT

15h - MC_DMI_CPU_RESET_ACK_TIMEOUT

1Eh - MC_VR_ICC_MAX_LT_FUSED_ICC_MAX

25h - MC_SVID_COMMAND_TIMEOUT

29h - MC_VR_VOUT_MAC_LT_FUSED_SVID

2Bh - MC_PKGC_WATCHDOG_HANG_CBZ_DOWN

2Ch - MC_PKGC_WATCHDOG_HANG_CBZ_UP

39h - MC_PKGC_WATCHDOG_HANG_C3_UP_SF

44h - MC_CRITICAL_VR_FAILED

45h - MC_ICC_MAX_NOTSUPPORTED

46h - MC_VID_RAMP_DOWN_FAILED

47h - MC_EXCL_MODE_NO_PMREQ_CMP

48h - MC_SVID_READ_REG_ICC_MAX_FAILED

49h - MC_SVID_WRITE_REG_VOUT_MAX_FAILED

Type Bit No. Bit Function Bit Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 48

16.6.2 Intel QPI Machine Check Errors
MC error codes associated with the Intel QPI agents are reported in the MSRs IA32_MC5_STATUS,
IA32_MC20_STATUS, and IA32_MC21_STATUS. The supported error codes follow the architectural MCACOD defi-
nition type 1PPTRRRRIILL (see Chapter 15, “Machine-Check Architecture,”).

Table 16-21 lists model-specific fields to interpret error codes applicable to IA32_MC5_STATUS,
IA32_MC20_STATUS, and IA32_MC21_STATUS.

4Bh - MC_BOOT_VID_TIMEOUT. Timeout setting boot VID for DRAM 0.

4Ch - MC_BOOT_VID_TIMEOUT. Timeout setting boot VID for DRAM 1.

4Dh - MC_BOOT_VID_TIMEOUT. Timeout setting boot VID for DRAM 2.

4Eh - MC_BOOT_VID_TIMEOUT. Timeout setting boot VID for DRAM 3.

4Fh - MC_SVID_COMMAND_ERROR.

52h - MC_FIVR_CATAS_OVERVOL_FAULT.

53h - MC_FIVR_CATAS_OVERCUR_FAULT.

57h - MC_SVID_PKGC_REQUEST_FAILED

58h - MC_SVID_IMON_REQUEST_FAILED

59h - MC_SVID_ALERT_REQUEST_FAILED

60h - MC_INVALID_PKGS_REQ_PCH

61h - MC_INVALID_PKGS_REQ_QPI

62h - MC_INVALID_PKGS_RSP_QPI

63h - MC_INVALID_PKGC_RSP_PCH

64h - MC_INVALID_PKG_STATE_CONFIG

67h - MC_HA_IMC_RW_BLOCK_ACK_TIMEOUT

68h - MC_IMC_RW_SMBUS_TIMEOUT

69h - MC_HA_FAILSTS_CHANGE_DETECTED

6Ah - MC_MSGCH_PMREQ_CMP_TIMEOUT

70h - MC_WATCHDG_TIMEOUT_PKGC_SLAVE

71h - MC_WATCHDG_TIMEOUT_PKGC_MASTER

72h - MC_WATCHDG_TIMEOUT_PKGS_MASTER

7Ch - MC_BIOS_RST_CPL_INVALID_SEQ

7Dh - MC_MORE_THAN_ONE_TXT_AGENT

81h - MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

56-32 Reserved Reserved

Status register
validity indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.
2. The internal error codes may be model-specific.

Type Bit No. Bit Function Bit Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 49

Table 16-21 Intel QPI MC Error Codes for IA32_MCi_STATUS (i = 5, 20, 21)

16.6.3 Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC9_STATUS-
IA32_MC16_STATUS. The supported error codes follow the architectural MCACOD definition type 1MMMCCCC
(see Chapter 15, “Machine-Check Architecture,”).

MSR_ERROR_CONTROL.[bit 1] can enable additional information logging of the IMC. The additional error infor-
mation logged by the IMC is stored in IA32_MCi_STATUS and IA32_MCi_MISC; (i = 9-16).

Type Bit No. Bit Function Bit Description

MCA error
codes1

0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific
errors

31-16 MSCOD 02h - Intel QPI physical layer detected drift buffer alarm.

03h - Intel QPI physical layer detected latency buffer rollover.

10h - Intel QPI link layer detected control error from R3QPI.

11h - Rx entered LLR abort state on CRC error.

12h - Unsupported or undefined packet.

13h - Intel QPI link layer control error.

15h - RBT used un-initialized value.

20h - Intel QPI physical layer detected a QPI in-band reset but aborted initialization

21h - Link failover data self-healing

22h - Phy detected in-band reset (no width change).

23h - Link failover clock failover

30h -Rx detected CRC error - successful LLR after Phy re-init.

31h -Rx detected CRC error - successful LLR without Phy re-init.

All other values are reserved.

37-32 Reserved Reserved

52-38 Corrected Error Cnt

56-53 Reserved Reserved

Status register
validity
indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 50

Table 16-22 Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 9-16)

Table 16-23 Intel IMC MC Error Codes for IA32_MCi_MISC (i= 9-16)

Type Bit No. Bit Function Bit Description

MCA error codes1 0-15 MCACOD Memory Controller error format: 0000 0000 1MMM CCCC

Model specific
errors

31:16 Reserved except for
the following

0001H - DDR3 address parity error

0002H - Uncorrected HA write data error

0004H - Uncorrected HA data byte enable error

0008H - Corrected patrol scrub error

0010H - Uncorrected patrol scrub error

0020H - Corrected spare error

0040H - Uncorrected spare error

0080H - Corrected memory read error. (Only applicable with iMC’s “Additional
Error logging” Mode-1 enabled.)

0100H - iMC, write data buffer parity errors

0200H - DDR4 command address parity error

36-32 Other info When MSR_ERROR_CONTROL.[1] is set, logs an encoded value from the first error
device.

37 Reserved Reserved

56-38 See Chapter 15, “Machine-Check Architecture,”

Status register
validity indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Type Bit No. Bit Function Bit Description

MCA addr info1 0-8 See Chapter 15, “Machine-Check Architecture,”

Model specific
errors

13:9 If the error logged is MCWrDataPar error or MCWrBEPar error, this field is the WDB
ID that has the parity error. OR if the second error logged is a correctable read
error, MC logs the second error device in this field.

Model specific
errors

29-14 ErrMask_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error bit
mask.

Model specific
errors

45-30 ErrMask_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error
bit mask.

50:46 FailRank_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error
failing rank.

55:51 FailRank_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error
failing rank.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 51

...

9. Updates to Chapter 17, Volume 3B
Change bars show changes to Chapter 17 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--
CHAPTER 17

DEBUG, BRANCH PROFILE, TSC, AND RESOURCE MONITORING
FEATURES

Intel 64 and IA-32 architectures provide debug facilities for use in debugging code and monitoring performance.
These facilities are valuable for debugging application software, system software, and multitasking operating
systems. Debug support is accessed using debug registers (DR0 through DR7) and model-specific registers
(MSRs):
• Debug registers hold the addresses of memory and I/O locations called breakpoints. Breakpoints are user-

selected locations in a program, a data-storage area in memory, or specific I/O ports. They are set where a
programmer or system designer wishes to halt execution of a program and examine the state of the processor
by invoking debugger software. A debug exception (#DB) is generated when a memory or I/O access is made
to a breakpoint address.

• MSRs monitor branches, interrupts, and exceptions; they record addresses of the last branch, interrupt or
exception taken and the last branch taken before an interrupt or exception.

• Time stamp counter is described in Section 17.13, “Time-Stamp Counter”.
• Features which allow monitoring of shared platform resources such as the L3 cache are described in Section

17.14, “Platform Shared Resource Monitoring: Cache Monitoring Technology”.
• Features which enable control over shared platform resources are described in Section 17.15, “Platform

Shared Resource Control: Cache Allocation Technology”.

...

17.14 PLATFORM SHARED RESOURCE MONITORING: CACHE MONITORING
TECHNOLOGY

The Intel® Xeon® processor E5 v3 family introduced resource monitoring capability in each logical processor to
measure specific platform shared resource metrics, for example, L3 cache occupancy. The programming interface

61:56 Reserved

62 Valid_1stErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data
from a correctable error from memory read associated with first error device.

63 Valid_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data due
to a second correctable error in a memory device. Use this information only after
there is valid first error info indicated by bit 62.

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Type Bit No. Bit Function Bit Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 52

for these monitoring features is described in this section. Two features within the monitoring feature set provided
are described - Cache Monitoring Technology (CMT) and Memory Bandwidth Monitoring.

Cache Monitoring Technology (CMT) allows an Operating System, Hypervisor or similar system management
agent to determine the usage of cache by applications running on the platform. The initial implementation is
directed at L3 cache monitoring (currently the last level cache in most server platforms).

Memory Bandwidth Monitoring (MBM) builds on the CMT infrastructure to allow monitoring of bandwidth from one
level of the cache hierarchy to the next - in this case focusing on the L3 cache, which is typically backed directly
by system memory. As a result of this implementation, memory bandwidth can be monitored.

The monitoring mechanisms described provide the following key shared infrastructure features:
• A mechanism to enumerate the presence of the monitoring capabilities within the platform (via a CPUID

feature bit).
• A framework to enumerate the details of each sub-feature (including CMT and MBM, as discussed later, via

CPUID leaves and sub-leaves).
• A mechanism for the OS or Hypervisor to indicate a software-defined ID for each of the software threads

(applications, virtual machines, etc.) that are scheduled to run on a logical processor. These identifiers are
known as Resource Monitoring IDs (RMIDs).

• Mechanisms in hardware to monitor cache occupancy and bandwidth statistics as applicable to a given
product generation on a per software-id basis.

• Mechanisms for the OS or Hypervisor to read back the collected metrics such as L3 occupancy or Memory
Bandwidth for a given software ID at any point during runtime.

17.14.1 Overview of Cache Monitoring Technology and Memory Bandwidth Monitoring
The shared resource monitoring features described in this chapter provide a layer of abstraction between applica-
tions and logical processors through the use of Resource Monitoring IDs (RMIDs). Each logical processor in the
system can be assigned an RMID independently, or multiple logical processors can be assigned to the same RMID
value (e.g., to track an application with multiple threads). For each logical processor, only one RMID value is
active at a time. This is enforced by the IA32_PQR_ASSOC MSR, which specifies the active RMID of a logical
processor. Writing to this MSR by software changes the active RMID of the logical processor from an old value to
a new value.

The underlying platform shared resource monitoring hardware tracks cache metrics such as cache utilization and
misses as a result of memory accesses according to the RMIDs and reports monitored data via a counter register
(IA32_QM_CTR). The specific event types supported vary by generation and can be enumerated via CPUID. Before
reading back monitored data software must configure an event selection MSR (IA32_QM_EVTSEL) to specify
which metric is to be reported, and the specific RMID for which the data should be returned.

Processor support of the monitoring framework and sub-features such as CMT is reported via the CPUID instruc-
tion. The resource type available to the monitoring framework is enumerated via a new leaf function in CPUID.
Reading and writing to the monitoring MSRs requires the RDMSR and WRMSR instructions.

The Cache Monitoring Technology feature set provides the following unique mechanisms:
• A mechanism to enumerate the presence and details of the CMT feature as applicable to a given level of the

cache hierarchy, independent of other monitoring features.
• CMT-specific event codes to read occupancy for a given level of the cache hierarchy.

The Memory Bandwidth Monitoring feature provides the following unique mechanisms:
• A mechanism to enumerate the presence and details of the MBM feature as applicable to a given level of the

cache hierarchy, independent of other monitoring features.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 53

• MBM-specific event codes to read bandwidth out to the next level of the hierarchy and various sub-event
codes to read more specific metrics as discussed later (e.g., total bandwidth vs. bandwidth only from local
memory controllers on the same package).

17.14.2 Enabling Monitoring: Usage Flow
Figure 17-19 illustrates the key steps for OS/VMM to detect support of shared resource monitoring features such
as CMT and enable resource monitoring for available resource types and monitoring events.

17.14.3 Enumeration and Detecting Support of Cache Monitoring Technology and Memory
Bandwidth Monitoring

Software can query processor support of shared resource monitoring features capabilities by executing CPUID
instruction with EAX = 07H, ECX = 0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] reports 1, the
processor provides the following programming interfaces for shared resource monitoring, including Cache Moni-
toring Technology:
• CPUID leaf function 0FH (Shared Resource Monitoring Enumeration leaf) provides information on available

resource types (see Section 17.14.4), and monitoring capabilities for each resource type (see Section
17.14.5). Note CMT and MBM capabilities are enumerated as separate event vectors using shared
enumeration infrastructure under a given resource type.

• IA32_PQR_ASSOC.RMID: The per-logical-processor MSR, IA32_PQR_ASSOC, that OS/VMM can use to assign
an RMID to each logical processor, see Section 17.14.6.

• IA32_QM_EVTSEL: This MSR specifies an Event ID (EvtID) and an RMID which the platform uses to look up
and provide monitoring data in the monitoring counter, IA32_QM_CTR, see Section 17.14.7.

• IA32_QM_CTR: This MSR reports monitored resource data when available along with bits to allow software to
check for error conditions and verify data validity.

Software must follow the following sequence of enumeration to discover Cache Monitoring Technology capabili-
ties:

1. Execute CPUID with EAX=0 to discover the “cpuid_maxLeaf” supported in the processor;

2. If cpuid_maxLeaf >= 7, then execute CPUID with EAX=7, ECX= 0 to verify CPUID.(EAX=07H,
ECX=0):EBX.PQM[bit 12] is set;

3. If CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1, then execute CPUID with EAX=0FH, ECX= 0 to query
available resource types that support monitoring;

Figure 17-19 Platform Shared Resource Monitoring Usage Flow

CPUID.(7,0):EBX.12

On OS/VMM Initialization

CPUID.(0FH,0):EDX[31:1]

PQM Capability

Enumeration

IA32_PQR_ASSOC.RMID

On Context Switch

Set RMID to monitor

the scheduled app

Periodical Resource

IA32_QM_EVTSEL

Configure event type

Read monitored data

CPUID.(0FH,1):ECX[31:0]
CPUID.(0FH,1):EDX[31:0]
CPUID.(0FH,1):EBX[31:0]

CPUID[WRMSR RDMSR/WRMSR

Selection/Reporting

IA32_QM_CTR

CPUID.(0FH,0):EBX[31:0]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 54

4. If CPUID.(EAX=0FH, ECX=0):EDX.L3[bit 1] = 1, then execute CPUID with EAX=0FH, ECX= 1 to query the
specific capabilities of L3 Cache Monitoring Technology (CMT) and Memory Bandwidth Monitoring.

5. If CPUID.(EAX=0FH, ECX=0):EDX reports additional resource types supporting monitoring, then execute
CPUID with EAX=0FH, ECX set to a corresponding resource type ID (ResID) as enumerated by the bit position
of CPUID.(EAX=0FH, ECX=0):EDX.

17.14.4 Monitoring Resource Type and Capability Enumeration
CPUID leaf function 0FH (Shared Resource Monitoring Enumeration leaf) provides one sub-leaf (sub-function 0)
that reports shared enumeration infrastructure, and one or more sub-functions that report feature-specific
enumeration data:
• Monitoring leaf sub-function 0 enumerates available resources that support monitoring, i.e. executing CPUID

with EAX=0FH and ECX=0H. In the initial implementation, L3 cache is the only resource type available. Each
supported resource type is represented by a bit in CPUID.(EAX=0FH, ECX=0):EDX[31:1]. The bit position
corresponds to the sub-leaf index (ResID) that software must use to query details of the monitoring capability
of that resource type (see Figure 17-21 and Figure 17-22). Reserved bits of CPUID.(EAX=0FH,
ECX=0):EDX[31:2] correspond to unsupported sub-leaves of the CPUID.0FH leaf. Additionally,
CPUID.(EAX=0FH, ECX=0H):EBX reports the highest RMID value of any resource type that supports
monitoring in the processor.

17.14.5 Feature-Specific Enumeration
Each additional sub-leaf of CPUID.(EAX=0FH, ECX=ResID) enumerates the specific details for software to
program Monitoring MSRs using the resource type associated with the given ResID.

Note that in future Monitoring implementations the meanings of the returned registers may vary in other sub-
leaves that are not yet defined. The registers will be specified and defined on a per-ResID basis.

Figure 17-20 CPUID.(EAX=0FH, ECX=0H) Monitoring Resource Type Enumeration

0231

CPUID.(EAX=0FH, ECX=0H) Output: (EAX: Reserved; ECX: Reserved)

EDX L

EBX
031

Highest RMID Value of Any Resource Type (Zero-Based)

3

1

Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 55

For each supported Cache Monitoring resource type, hardware supports only a finite number of RMIDs.
CPUID.(EAX=0FH, ECX=1H).ECX enumerates the highest RMID value that can be monitored with this resource
type, see Figure 17-21.

CPUID.(EAX=0FH, ECX=1H).EDX specifies a bit vector that is used to look up the EventID (See Figure 17-22 and
Table 17-14) that software must program with IA32_QM_EVTSEL in order to retrieve event data. After software
configures IA32_QMEVTSEL with the desired RMID and EventID, it can read the resulting data from
IA32_QM_CTR. The raw numerical value reported from IA32_QM_CTR can be converted to the final value (occu-
pancy in bytes or bandwidth in bytes per sampled time period) by multiplying the counter value by the value from
CPUID.(EAX=0FH, ECX=1H).EBX, see Figure 17-21.

17.14.5.1 Cache Monitoring Technology
On processors for which Cache Monitoring Technology supports the L3 cache occupancy event, CPUID.(EAX=0FH,
ECX=1H).EDX would return with only bit 0 set. The corresponding event ID can be looked up from Table 17-14.
The L3 occupancy data accumulated in IA32_QM_CTR can be converted to total occupancy (in bytes) by multi-
plying with CPUID.(EAX=0FH, ECX=1H).EBX.

Event codes for Cache Monitoring Technology are discussed in the next section.

17.14.5.2 Memory Bandwidth Monitoring
On processors that monitoring supports Memory Bandwidth Monitoring using ResID=1 (L3), two additional bits
will be set in the vector at CPUID.(EAX=0FH, ECX=1H).EDX:
• CPUID.(EAX=0FH, ECX=1H).EDX[bit 1]: indicates the L3 total external bandwidth monitoring event is

supported if set. This event monitors the L3 total external bandwidth to the next level of the cache hierarchy,
including all demand and prefetch misses from the L3 to the next hierarchy of the memory system. In most
platforms, this represents memory bandwidth.

Figure 17-21 L3 Cache Monitoring Capability Enumeration Data (CPUID.(EAX=0FH, ECX=1H))

Figure 17-22 L3 Cache Monitoring Capability Enumeration Event Type Bit Vector (CPUID.(EAX=0FH, ECX=1H))

CPUID.(EAX=0FH, ECX=1H) Output: (EAX: Reserved)

ECX
031

Highest RMID Value of This Resource Type (Zero-Based)

EBX
031

Upscaling Factor to Total Occupancy (Bytes) Upscaling Factor

MaxRMID

0231

EDX
1

Reserved

EventTypeBitMask
3

L3 Occupancy
L3 Total BW
L3 Local BW

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 56

• CPUID.(EAX=0FH, ECX=1H).EDX[bit 2]: indicates L3 local memory bandwidth monitoring event is supported
if set. This event monitors the L3 external bandwidth satisfied by the local memory. In most platforms that
support this event, L3 requests are likely serviced by a memory system with non-uniform memory archi-
tecture. This allows bandwidth to off-package memory resources to be tracked by subtracting total from local
bandwidth (for instance, bandwidth over QPI to a memory controller on another physical processor could be
tracked by subtraction).

The corresponding Event ID can be looked up from Table 17-14. The L3 bandwidth data accumulated in
IA32_QM_CTR can be converted to total bandwidth (in bytes) using CPUID.(EAX=0FH, ECX=1H).EBX.

Table 17-14 Monitoring Supported Event IDs

17.14.6 Monitoring Resource RMID Association
After Monitoring and sub-features has been enumerated, software can begin using the monitoring features. The
first step is to associate a given software thread (or multiple threads as part of an application, VM, group of appli-
cations or other abstraction) with an RMID.

Note that the process of associating an RMID with a given software thread is the same for all shared resource
monitoring features (CMT, MBM), and a given RMID number has the same meaning from the viewpoint of any
logical processors in a package. Stated another way, a thread may be associated in a 1:1 mapping with an RMID,
and that RMID may allow cache occupancy, memory bandwidth information or other monitoring data to be read
back later with monitoring event codes (retrieving data is discussed in a previous section).

The association of an application thread with an RMID requires an OS to program the per-logical-processor MSR
IA32_PQR_ASSOC at context swap time (updates may also be made at any other arbitrary points during program
execution such as application phase changes). The IA32_PQR_ASSOC MSR specifies the active RMID that moni-
toring hardware will use to tag internal operations, such as L3 cache requests. The layout of the MSR is shown in
Figure 17-23. Software specifies the active RMID to monitor in the IA32_PQR_ASSOC.RMID field. The width of the
RMID field can vary from one implementation to another, and is derived from Ceil (LOG2 (1 + CPUID.(EAX=0FH,
ECX=0):EBX[31:0])). The value of IA32_PQR_ASSOC after power-on is 0.

In the initial implementation, the width of the RMID field is up to 10 bits wide, zero-referenced and fully encoded.
However, software must use CPUID to query the maximum RMID supported by the processor. If a value larger
than the maximum RMID is written to IA32_PQR_ASSOC.RMID, a #GP(0) fault will be generated.

Event Type Event ID Context

L3 Cache Occupancy 01H Cache Monitoring Technology

L3 Total External Bandwidth 02H MBM

L3 Local External Bandwidth 03H MBM

Reserved All other event codes N/A

Figure 17-23 IA32_PQR_ASSOC MSR

01063

Width of IA32_PQR_ASSOC.RMID field: Log2 (CPUID.(EAX=0FH, ECX=0H).EBX[31:0] +1)

RMID

9

Reserved IA32_PQR_ASSOCReserved for CLOS*

32 31

*See Section 17.15

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 57

RMIDs have a global scope within the physical package- if an RMID is assigned to one logical processor then the
same RMID can be used to read multiple thread attributes later (for example, L3 cache occupancy or external
bandwidth from the L3 to the next level of the cache hierarchy). In a multiple LLC platform the RMIDs are to be
reassigned by the OS or VMM scheduler when an application is migrated across LLCs.

Note that in a situation where Monitoring supports multiple resource types, some upper range of RMIDs (e.g.
RMID 31) may only be supported by one resource type but not by another resource type.

17.14.7 Monitoring Resource Selection and Reporting Infrastructure
The reporting mechanism for Cache Monitoring Technology and other related features is architecturally exposed
as an MSR pair that can be programmed and read to measure various metrics such as the L3 cache occupancy
(CMT) and bandwidths (MBM) depending on the level of Monitoring support provided by the platform. Data is
reported back on a per-RMID basis. These events do not trigger based on event counts or trigger APIC interrupts
(e.g. no Performance Monitoring Interrupt occurs based on counts). Rather, they are used to sample counts
explicitly.

The MSR pair for the shared resource monitoring features (CMT, MBM) is separate from and not shared with archi-
tectural Perfmon counters, meaning software can use these monitoring features simultaneously with the Perfmon
counters.

Access to the aggregated monitoring information is accomplished through the following programmable moni-
toring MSRs:
• IA32_QM_EVTSEL: This MSR provides a role similar to the event select MSRs for programmable performance

monitoring described in Chapter 18. The simplified layout of the MSR is shown in Figure 17-23. Bits
IA32_QM_EVTSEL.EvtID (bits 7:0) specify an event code of a supported resource type for hardware to report
monitored data associated with IA32_QM_EVTSEL.RMID (bits 41:32). Software can configure
IA32_QM_EVTSEL.RMID with any RMID that is active within the physical processor. The width of
IA32_QM_EVTSEL.RMID matches that of IA32_PQR_ASSOC.RMID. Supported event codes for the
IA32_QM_EVTSEL register are shown in Table 17-14. Note that valid event codes may not necessarily map
directly to the bit position used to enumerate support for the resource via CPUID.
Software can program an RMID / Event ID pair into the IA32_QM_EVTSEL MSR bit field to select an RMID to
read a particular counter for a given resource. The currently supported list of Monitoring Event IDs is
discussed in Section 17.14.5, which covers feature-specific details.
Thread access to the IA32_QM_EVTSEL and IA32_QM_CTR MSR pair should be serialized to avoid situations
where one thread changes the RMID/EvtID just before another thread reads monitoring data from
IA32_QM_CTR.

• IA32_QM_CTR: This MSR reports monitored data when available. It contains three bit fields. If software
configures an unsupported RMID or event type in IA32_QM_EVTSEL, then IA32_QM_CTR.Error (bit 63) will be
set, indicating there is no valid data to report. If IA32_QM_CTR.Unavailable (bit 62) is set, it indicates
monitored data for the RMID is not available, and IA32_QM_CTR.data (bits 61:0) should be ignored.
Therefore, IA32_QM_CTR.data (bits 61:0) is valid only if bit 63 and 62 are both clear. For Cache Monitoring
Technology, software can convert IA32_QM_CTR.data into cache occupancy or bandwidth metrics expressed
in bytes by multiplying with the conversion factor from CPUID.(EAX=0FH, ECX=1H).EBX.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 58

17.14.8 Monitoring Programming Considerations

17.14.8.1 Monitoring Dynamic Configuration
Both the IA32_QM_EVTSEL and IA32_PQR_ASSOC registers are accessible and modifiable at any time during
execution using RDMSR/WRMSR unless otherwise noted. When writing to these MSRs a #GP(0) will be generated
if any of the following conditions occur:
• A reserved bit is modified,
• An RMID exceeding the maxRMID is used.

17.14.8.2 Monitoring Operation With Power Saving Features
Note that some advanced power management features such as deep package C-states may shrink the L3 cache
and cause CMT occupancy count to be reduced. MBM bandwidth counts may increase due to flushing cached data
out of L3.

17.14.8.3 Monitoring Operation with Other Operating Modes
The states in IA32_PQR_ASSOC and monitoring counter are unmodified across an SMI delivery. Thus, the execu-
tion of SMM handler code and SMM handler’s data can manifest as spurious contribution in the monitored data.

It is possible for an SMM handler to minimize the impact on of spurious contribution in the QOS monitoring coun-
ters by reserving a dedicated RMID for monitoring the SMM handler. Such an SMM handler can save the previously
configured QOS Monitoring state immediately upon entering SMM, and restoring the QOS monitoring state back
to the prev-SMM RMID upon exit.

17.14.8.4 Monitoring Operation with RAS Features
In general the Reliability, Availability and Serviceability (RAS) features present in Intel Platforms are not expected
to significantly affect shared resource monitoring counts. In cases where software RAS features cause memory
copies or cache accesses these may be tracked and may influence the shared resource monitoring counter values.

Figure 17-24 IA32_QM_EVTSEL and IA32_QM_CTR MSRs

063

IA32_QM_CTRU

61

E Resource Monitoring Data

03163

RMID

7

Reserved IA32_QM_EVTSELReserved

41 3242 8

EvtID

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 59

17.15 PLATFORM SHARED RESOURCE CONTROL: CACHE ALLOCATION
TECHNOLOGY

Future generations of the Intel Xeon processor offer capabilities to configure and make use of the Cache Allocation
Technology (CAT) mechanisms. The programming interface for Cache Allocation Technology and for the more
general allocation capabilities are described in the rest of this chapter.

Cache Allocation Technology enables an Operating System (OS), Hypervisor /Virtual Machine Manager (VMM) or
similar system service management agent to specify the amount of cache space into which an application can fill
(as a hint to hardware - certain features such as power management may override CAT settings). User-level
implementations with minimal OS support are also possible, though not recommended (see Section 3.5 for exam-
ples and discussion). The initial implementation focuses on L3 cache allocation, but the technology is designed to
scale across multiple cache levels and technology generations.

The CAT mechanisms defined in this document provide the following key features:
• A mechanism to enumerate platform Cache Allocation Technology capabilities and available resource types

that provides CAT control capabilities. For implementations that support Cache Allocation Technology, CPUID
provides enumeration support to query more specific CAT capabilities, such as the max allocation bitmask
size,

• A mechanism for the OS or Hypervisor to configure the amount of a resource available to a particular Class of
Service via a list of allocation bitmasks,

• Mechanisms for the OS or Hypervisor to signal the Class of Service to which an application belongs, and
• Hardware mechanisms to guide the LLC fill policy when an application has been designated to belong to a

specific Class of Service.

Note that an OS or Hypervisor should not expose Cache Allocation Technology mechanisms to Ring3 software or
virtualized guests.

The Cache Allocation Technology feature enables more cache resources (i.e. cache space) to be made available
for high priority applications based on guidance from the execution environment as shown in Figure 17-25. The
architecture also allows dynamic resource reassignment during runtime to further optimize the performance of
the high priority application with minimal degradation to the low priority app. Additionally, resources can be rebal-
anced for system throughput benefit. This section describes the hardware and software support required in the
platform including what is required of the execution environment (i.e. OS/VMM) to support such resource control.
Note that in Figure 17-25 the L3 Cache is shown as an example resource.

Figure 17-25 Enabling Class-based Cache Allocation Technology

Without QoS

Core 0

Shared LLC, Low priority got more resource

Lo Pri AppHi Pri App

Core 1 Core 0

Shared LLC, High priority got more resource

Lo Pri AppHi Pri App

Core 1

With QoS

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 60

17.15.1 Cache Allocation Technology: Architecture Introduction
The fundamental goal of Cache Allocation Technology is to enable resource allocation based on application priority
or Class of Service (COS or CLOS). The processor exposes a set of Classes of Service into which applications (or
individual threads) can be assigned. Cache allocation for the respective applications or threads is then restricted
based on the class with which they are associated. Each Class of Service can be configured using bitmasks which
represent capacity and indicate the degree of overlap and isolation between classes. For each logical processor
there is a register exposed (referred to here as the IA32_PQR_ASSOC MSR or PQR) to allow the OS/VMM to
specify a COS when an application, thread or VM is scheduled. Cache allocation for the indicated application/
thread/VM is then controlled automatically by the hardware based on the class and the bitmask associated with
that class. Bitmasks are configured via the IA32_resourceType_MASK_n MSRs, where resourceType indicates a
resource type (e.g. “L3” for the L3 cache) and n indicates a COS number.

The basic ingredients of Cache Allocation Technology are as follows:
• An architecturally exposed mechanism using CPUID to indicate whether CAT is supported, and what resource

types are available which can be controlled,
• For each available resourceType, CPUID also enumerates the total number of Classes of Services and the

length of the capacity bitmasks that can be used to enforce cache allocation to applications on the platform,
• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to configure the

behavior of different classes of service using the bitmasks available,
• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to assign a COS to an

executing software thread (i.e. associating the active CR3 of a logical processor with the COS in
IA32_PQR_ASSOC),

• Implementation-dependent mechanisms to indicate which COS is associated with a memory access and to
enforce the cache allocation on a per COS basis.

A capacity bitmask (CBM) provides a hint to the hardware indicating the cache space an application should be
limited to as well as providing an indication of overlap and isolation in the CAT-capable cache from other applica-
tions contending for the cache. The bitlength of the capacity mask available generally depends on the configura-
tion of the cache and is specified in the enumeration process for CAT in CPUID (this may vary between models in
a processor family as well).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 61

Sample cache capacity bitmasks for a bitlength of 8 are shown in Figure 17-26. Please note that all (and only)
contiguous '1' combinations are allowed (e.g. FFFFH, 0FF0H, 003CH, etc.). It is generally expected that in way-
based implementations, one capacity mask bit corresponds to some number of ways in cache, but the specific
mapping is implementation-dependent. In all cases, a mask bit set to '1' specifies that a particular Class of
Service can allocate into the cache subset represented by that bit. A value of '0' in a mask bit specifies that a Class
of Service cannot allocate into the given cache subset. In general, allocating more cache to a given application is
usually beneficial to its performance.

Figure 17-26 also shows three examples of sets of Cache Capacity Bitmasks. For simplicity these are represented
as 8-bit vectors, though this may vary depending on the implementation and how the mask is mapped to the
available cache capacity. The first example shows the default case where all 4 Classes of Service (the total
number of COS are implementation-dependent) have full access to the cache. The second case shows an over-
lapped case, which would allow some lower-priority threads share cache space with the highest priority threads.
The third case shows various non-overlapped partitioning schemes. As a matter of software policy for extensibility
COS0 should typically be considered and configured as the highest priority COS, followed by COS1, and so on,
though there is no hardware restriction enforcing this mapping. When the system boots all threads are initialized
to COS0, which has full access to the cache by default.

Though the representation of the CBMs looks similar to a way-based mapping they are independent of any specific
enforcement implementation (e.g. way partitioning.) Rather, this is a convenient manner to represent capacity,
overlap and isolation of cache space. For example, executing a POPCNT instruction (population count of set bits)
on the capacity bitmask can provide the fraction of cache space that a class of service can allocate into. In addition

Figure 17-26 Examples of Cache Capacity Bitmasks

M7 M6 M5 M4 M3 M2 M1 M0

A A A A A A A A

A A A A A A A A

A A A A A A A A

A A A A A A A A

COS0

COS1

COS2

COS3

Default Bitmask

M7 M6 M5 M4 M3 M2 M1 M0

A A A A

A A

A

A

COS0

COS1

COS2

COS3

Isolated Bitmask

M7 M6 M5 M4 M3 M2 M1 M0

A A A A A A A A

A A A A

A A

A

COS0

COS1

COS2

COS3

Overlapped Bitmask

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 62

to the fraction, the exact location of the bits also shows whether the class of service overlaps with other classes
of service or is entirely isolated in terms of cache space used.

Figure 17-27 shows how the Cache Capacity Bitmasks and the per-logical-processor Class of Service are logically
used to enable Cache Allocation Technology. All (and only) contiguous 1's in the CBM are permitted. The length of
CBM may vary from resource to resource or between processor generations and can be enumerated using CPUID.
From the available mask set and based on the goals of the OS/VMM (shared or isolated cache, etc.) bitmasks are
selected and associated with different classes of service. For the available Classes of Service the associated CBMs
can be programmed via the global set of CAT configuration registers (in the case of L3 CAT, via the
IA32_L3_MASK_n MSRs, where “n” is the Class of Service, starting from zero). In all architectural implementa-
tions supporting CPUID it is possible to change the CBMs dynamically, during program execution, unless stated
otherwise by Intel.

The currently running application's Class of Service is communicated to the hardware through the per-logical-
processor PQR MSR (IA32_PQR_ASSOC MSR). When the OS schedules an application thread on a logical
processor, the application thread is associated with a specific COS (i.e. the corresponding COS in the PQR) and all
requests to the CAT-capable resource from that logical processor are tagged with that COS (in other words, the
application thread is configured to belong to a specific COS). The cache subsystem uses this tagged request infor-
mation to enforce QoS. The capacity bitmask may be mapped into a way bitmask (or a similar enforcement entity
based on the implementation) at the cache before it is applied to the allocation policy. For example, the capacity
bitmask can be an 8-bit mask and the enforcement may be accomplished using a 16-way bitmask for a cache
enforcement implementation based on way partitioning.

Figure 17-27 Examples of Cache Capacity Bitmasks

Set 1

Set 2

....

Cache Subsystem

Config

Tag with Cache

Enforcement

Set n

way 1

......

way 16

Enforce Mask

Capacity bitmask 3COS 3

Capacity bitmask 3COS 2

Capacity bitmask 3COS 1

Capacity bitmask 3COS 0

Cache Allocation

TransactionCOS

COS = 2 Mem Request

Class of Service

Application

Memory Request

Set Class of Service

Association

in IA32_PQR

OS Context

Switch

Configure CBM for

Enum/Confg

each Class of Service

Enumerate

Enforcement

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 63

17.15.2 Enabling Cache Allocation Technology Usage Flow
Figure 17-28 illustrates the key steps for OS/VMM to detect support of Cache Allocation Technology and enable
priority-based resource allocation for a CAT-capable resource.

17.15.2.1 Enumeration and Detection Support of Cache Allocation Technology
Availability of Cache Allocation Technology can be detected by calling CPUID leaf 7 and sub leaf 0 (Set EAX=07H,
Set ECX=00H, call CPUID). This function is used to enumerate the extended feature flags supported by the
processor. It loads feature flags in EAX, ECX, EBX and EDX registers. Bit position 15 in the EBX (EBX[15]) register
indicates support for shared resource allocation control in general on the platform. If the value of this bit is set to
1 then it implies that the processor supports control over shared platform resources.

Software can query processor support of CAT capabilities by executing CPUID instruction with EAX = 07H, ECX =
0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQE[bit 15] reports 1, the processor supports Cache Allocation.
Software must use CPUID leaf 10H to enumerate additional details of available resource types, classes of services
and capability bitmasks. The programming interfaces provided by Cache Allocation Technology include:
• CPUID leaf function 10H (Cache Allocation Technology Enumeration leaf) and its sub-functions provide

information on available resource types, and CAT capability for each resource type (see Section 17.15.2.2).
• IA32_L3_MASK_n: A range of MSRs is provided for each resource type, each MSR within that range specifying

a software-configured capacity bitmask for each class of service. For L3 with Cache Allocation support, the
CBM is specified using one of the IA32_L3_QOS_MASK_n MSR, where 'n' corresponds to a number within the
supported range of COS, i.e. the range between 0 and CPUID.(EAX=10FH, ECX=ResID):EDX[15:0], inclusive.
See Section 17.15.2.3 for details.

• IA32_PQR_ASSOC.CLOS: The IA32_PQR_ASSOC MSR provides a COS field that OS/VMM can use to assign a
logical processor to an available COS. See Section 17.15.2.4 for details.

17.15.2.2 Cache Allocation Technology: Resource Type and Capability Enumeration
CPUID leaf function 10H (Cache Allocation Technology Enumeration leaf) provides two or more sub-functions:
• CAT Enumeration leaf sub-function 0 enumerates available resource types that support allocation control, i.e.

by executing CPUID with EAX=10H and ECX=0H. In the initial implementation, L3 CAT is the only resource
type available. Each supported resource type is represented by a bit field in CPUID.(EAX=10H,
ECX=0):EBX[31:1]. The bit position of each set bit corresponds to a Resource ID (ResID). The ResID is also
the sub-leaf index that software must use to query details of the CAT capability of that resource type (see
Figure 17-29).

Figure 17-28 Cache Allocation Technology Usage Flow

CPUID.(7,0):EBX.15

On OS/VMM Initialization

CPUID.(10H,0):EAX[31:1]

CQE Capability

Enumeration

IA32_L3_QOS_MASK_0

Cache Allocation Configuration

...

Configure CBM

per COS

On Context Switch

IA32_PQR_ASSOC

Set COS for scheduled

thread context

A32_L3_QOS_MASK_n

CPUID.(10H,1):EAX[4:0]
CPUID.(10H,1):EDX[15:0]
CPUID.(10H,1):EBX[

CPUID[WRMSR WRMSR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 64

• Sub-functions of CPUID.EAX=10H with a non-zero ECX input matching a supported ResID enumerate the
specific enforcement details of the corresponding ResID. The capabilities enumerated include the length of the
capacity bitmasks and the number of Classes of Service for a given ResID. Software must query the capability
of each available ResID that supports CAT from a sub-leaf of leaf 10H using the sub-leaf index reported by the
corresponding non-zero bit in CPUID.(EAX=10H, ECX=0):EBX[31:1]. CAT capability for L3 is enumerated by
CPUID.(EAX=10H, ECX=1H), see Figure 17-30. The specific CAT capabilities reported by CPUID.(EAX=10H,
ECX=1) are:

— CPUID.(EAX=10H, ECX=ResID=1):EAX[4:0] reports the length of the capacity bitmask length using
minus-one notation, i.e. a value of 15 corresponds to the capability bitmask having length of 16 bits. Bits
31:5 of EAX are reserved.

— CPUID.(EAX=10H, ECX=1):EBX[31:0] reports a bit mask. Each set bit within the length of the CBM
indicates the corresponding unit of the L3 allocation may be used by other entities in the platform (e.g. an
integrated graphics engine or hardware units outside the processor core and have direct access to L3).
Each cleared bit within the length of the CBM indicates the corresponding allocation unit can be configured
to implement a priority-based allocation scheme chosen by an OS/VMM without interference with other
hardware agents in the system. Bits outside the length of the CBM are reserved.

— CPUID.(EAX=10H, ECX=1):ECX: Reserved.

Figure 17-29 CPUID.(EAX=10H, ECX=0H) Available Resource Type Identification

Figure 17-30 L3 Cache Allocation Technology Enumeration (CPUID.(EAX=10H, ECX=1H))

0231

CPUID.(EAX=10H, ECX=0H) Output: (EAX: Reserved; ECX: Reserved; EDX: Reserved)

EBX L
3

1

Reserved

01631

CPUID.(EAX=10H, ECX=ResID=1) Output:

EDX

ECX
031

Reserved

15

EBX
031

Bitmask of Shareable Resource with Other executing entities

Reserved COS_Max

0531

EAX
4

Reserved CBM_LEN

1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 65

— CPUID.(EAX=10H, ECX=1):EDX[15:0] reports the maximum COS supported for the resource (COS are
zero-referenced, meaning a reported value of '15' would indicate 16 total supported COS). Bits 31:16 are
reserved.

A note on migration of Classes of Service (COS): Software should minimize migrations of COS across logical
processors (across threads or cores), as a reduction in the performance of the Cache Allocation Technology
feature may result if COS are migrated frequently. This is aligned with the industry-standard practice of mini-
mizing unnecessary thread migrations across processor cores in order to avoid excessive time spent warming up
processor caches after a migration. In general, for best performance, minimize thread migration and COS migra-
tion across processor logical threads and processor cores.

17.15.2.3 Cache Mask Configuration
After determining the length of the capacity bitmasks (CBM) and number of COS supported using CPUID (see
Section 17.15.2.2), each COS needs to be programmed with a CBM to dictate its available cache via a write to the
corresponding IA32_resourceType_MASK_n register, where 'n' corresponds to a number within the supported
range of COS, i.e. the range between 0 and CPUID.(EAX=10FH, ECX=ResID):EDX[15:0], inclusive, and
'resourceType' corresponds to a specific resource as enumerated by the set bits of CPUID.(EAX=10H,
ECX=0):EAX[31:1].

A range of MSRs is reserved for Cache Allocation Technology registers of the form IA32_resourceType_MASK_n,
from 0C90H through 0D8FH (inclusive), providing support for up to 256 Classes of Service or multiple resource
types. In the first implementation the only supported resourceType is 'L3', corresponding to the L3 cache in a plat-
form. All CAT configuration registers can be accessed using the standard RDMSR / WRMSR instructions.

17.15.2.4 Cache Mask Association
After configuring the available classes of service with the preferred set of capacity bitmasks, the OS/VMM can set
the IA32_PQR_ASSOC.COS of a logical processor to the class of service with the desired CBM when a thread
context switch occurs. This allows the OS/VMM to indicate which class of service an executing thread/VM belongs
to. Each logical processor contains an instance of the IA32_PQR_ASSOC register at MSR location 0C8FH, and
Figure 17-31 shows the bit field layout for this register. Bits[63:32] contain the COS field for each logical
processor.

Specifying a COS value in IA32_PQR_ASSOC.COS greater than the value reported by CPUID.(EAX=10FH,
ECX=ResID):EDX[15:0] will cause a #GP(0). The value of IA32_PQR_ASSOC.COS after power-on is 0.

Figure 17-31 IA32_PQR_ASSOC, IA32_L3_MASK_n MSRs

01063

RMID

9

Reserved
IA32_PQR_ASSOC

IA32_L3_MASK_n

03163

Reserved IA32_L3_MASK_0

32

Bit_Mask

31

COS

....
03163

Reserved

32

Bit_Mask

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 66

Note that if the IA32_PQR_ASSOC.COS is never written then the CAT capability defaults to using COS 0, which in
turn is set to the default mask in IA32_L3_MASK_0 - which is all “1”s (on reset). This essentially disables the
enforcement feature by default or for legacy operating systems and software.

17.15.3 Cache Allocation Technology Programming Considerations

17.15.3.1 Cache Allocation Technology Dynamic Configuration
Both the CQE masks and PQR registers are accessible and modifiable at any time during execution using RDMSR/
WRMSR unless otherwise noted. When writing to these MSRs a #GP(0) will be generated if any of the following
conditions occur:
• A reserved bit is modified,
• Accessing a QOS mask register outside the supported COS (the max COS number is specified in

CPUID.(EAX=10FH, ECX=ResID):EDX[15:0]), or
• Writing a COS greater than the supported maximum (specified as the maximum value of CPUID.(EAX=10FH,

ECX=ResID):EDX[15:0] for all valid ResID values) is written to the IA32_PQR_ASSOC.CLOS field.

When reading the IA32_PQR_ASSOC register the currently programmed COS on the core will be returned.

When reading an IA32_resourceType_MASK_n register the current capacity bit mask for COS 'n' will be returned.

As noted previously, software should minimize migrations of COS across logical processors (across threads or
cores), as a reduction in the accuracy of the Cache Allocation feature may result if COS are migrated frequently.
This is aligned with the industry standard practice of minimizing unnecessary thread migrations across processor
cores in order to avoid excessive time spent warming up processor caches after a migration. In general, for best
performance, minimize thread migration and COS migration across processor logical threads and processor cores.

17.15.3.2 Cache Allocation Technology Operation With Power Saving Features
Note that the Cache Allocation Technology feature cannot be used to enforce cache coherency, and that some
advanced power management features such as C-states which may shrink or power off various caches within the
system may interfere with CAT hints - in such cases the CAT bitmasks are ignored and the other features take
precedence. If the highest possible level of CAT differentiation or determinism is required, disable any power-
saving features which shrink the caches or power off caches. The details of the power management interfaces are
typically implementation-specific, but can be found at Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3C.

If software requires differentiation between threads but not absolute determinism then in many cases it is
possible to leave power-saving cache shrink features enabled, which can provide substantial power savings and
increase battery life in mobile platforms. In such cases when the caches are powered off (e.g., package C-states)
the entire cache of a portion thereof may be powered off. Upon resuming an active state any new incoming data
to the cache will be filled subject to the cache capacity bitmasks. Any data in the cache prior to the cache shrink
or power off may have been flushed to memory during the process of entering the idle state, however, and is not
guaranteed to remain in the cache. If differentiation between threads is the goal of system software then this
model allows substantial power savings while continuing to deliver performance differentiation. If system soft-
ware needs optimal determinism then power saving modes which flush portions of the caches and power them off
should be disabled.

NOTE
IA32_PQR_ASSOC is saved and restored across C6 entry/exit. Similarly, the mask register
contents are saved across package C-state entry/exit and are not lost.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 67

17.15.3.3 Cache Allocation Technology Operation with Other Operating Modes
The states in IA32_PQR_ASSOC and mask registers are unmodified across an SMI delivery. Thus, the execution
of SMM handler code can interact with the Cache Allocation Technology resource and manifest some degree of
non-determinism to the non-SMM software stack. An SMM handler may also perform certain system-level or
power management practices that affect CAT operation.

It is possible for an SMM handler to minimize the impact on data determinism in the cache by reserving a COS
with a dedicated partition in the cache. Such an SMM handler can switch to the dedicated COS immediately upon
entering SMM, and switching back to the previously running COS upon exit.

...

10. Updates to Chapter 19, Volume 3B
Change bars show changes to Chapter 19 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--
CHAPTER 19

PERFORMANCE-MONITORING EVENTS

This chapter lists the performance-monitoring events that can be monitored with the Intel 64 or IA-32 processors.
The ability to monitor performance events and the events that can be monitored in these processors are mostly
model-specific, except for architectural performance events, described in Section 19.1.

Non-architectural performance events (i.e. model-specific events) are listed for each generation of microarchitec-
ture:
• Section 19.2 - Processors based on Broadwell microarchitecture
• Section 19.3 - Processors based on Haswell microarchitecture
• Section - Processors based on Haswell-E microarchitecture
• Section 19.4 - Processors based on Ivy Bridge microarchitecture
• Section - Processors based on Ivy Bridge-E microarchitecture
• Section 19.5 - Processors based on Sandy Bridge microarchitecture
• Section 19.6 - Processors based on Intel® microarchitecture code name Nehalem
• Section 19.7 - Processors based on Intel® microarchitecture code name Westmere
• Section 19.8 - Processors based on Enhanced Intel® Core™ microarchitecture
• Section 19.9 - Processors based on Intel® Core™ microarchitecture
• Section 19.10 - Processors based on the Silvermont microarchitecture
• Section 19.11 - Processors based on Intel® Atom™ microarchitecture
• Section 19.12 - Intel® Core™ Solo and Intel® Core™ Duo processors
• Section 19.13 - Processors based on Intel NetBurst® microarchitecture
• Section 19.14 - Pentium® M family processors
• Section 19.15 - P6 family processors
• Section 19.16 - Pentium® processors

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 68

NOTE
These performance-monitoring events are intended to be used as guides for performance tuning.
The counter values reported by the performance-monitoring events are approximate and believed
to be useful as relative guides for tuning software. Known discrepancies are documented where
applicable.
All performance event encodings not documented in the appropriate tables for the given
processor are considered reserved, and their use will result in undefined counter updates with
associated overflow actions.
The event tables list this chapter provide information for tool developers to support architectural
and non-architectural performance monitoring events. Details of performance event implemen-
tation for end-user (including additional details beyond event code/umask) can found at the
“perfmon” repository provided by The Intel Open Source Technology Center (https://
download.01.org/perfmon/).

...

19.3.1 Performance Monitoring Events in the Processor Core of Intel Xeon Processor E5 v3
Family

Non-architectural performance monitoring events in the processor core that are applicable only to Intel Xeon
processor E5 v3 family based on the Haswell-E microarchitecture, with CPUID signature of
DisplayFamily_DisplayModel 06_3FH, are listed in Table 19-8.

...

19.4.1 Performance Monitoring Events in the Processor Core of Intel Xeon Processor E5 v2
Family and Intel Xeon Processor E7 v2 Family

Non-architectural performance monitoring events in the processor core that are applicable only to Intel Xeon
processor E5 v2 family and Intel Xeon processor E7 v2 family based on the Ivy Bridge-E microarchitecture, with
CPUID signature of DisplayFamily_DisplayModel 06_3EH, are listed in Table 19-8.

Table 19-6 Non-Architectural Performance Events Applicable only to the Processor Core of
Intel® Xeon® Processor E5 v3 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

D3H 04H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.REMOTE_DRAM

Retired load uops whose data sources was remote
DRAM (snoop not needed, Snoop Miss).

Supports PEBS

D3H 10H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.REMOTE_HITM

Retired load uops whose data sources was remote
cache HITM.

Supports PEBS

D3H 20H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.REMOTE_FWD

Retired load uops whose data sources was forwards
from a remote cache.

Supports PEBS

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 69

...

11. Updates to Chapter 35, Volume 3C
Change bars show changes to Chapter 35 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...
This chapter list MSRs across Intel processor families. All MSRs listed can be read with the RDMSR and written
with the WRMSR instructions.

Register addresses are given in both hexadecimal and decimal. The register name is the mnemonic register name
and the bit description describes individual bits in registers.

Model specific registers and its bit-fields may be supported for a finite range of processor families/models. To
distinguish between different processor family and/or models, software must use CPUID.01H leaf function to
query the combination of DisplayFamily and DisplayModel to determine model-specific availability of MSRs (see
CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A). Table 35-1 lists the signature values of DisplayFamily and DisplayModel for
various processor families or processor number series.

Table 19-8 Non-Architectural Performance Events Applicable only to the Processor Core of
Intel® Xeon® Processor E5 v2 Family and Intel® Xeon® Processor E7 v2 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

D3H 03H MEM_LOAD_UOPS_LLC_MISS_R
ETIRED.LOCAL_DRAM

Retired load uops whose data sources was local DRAM
(snoop not needed, Snoop Miss, or Snoop Hit data not
forwarded).

Supports PEBS

D3H 0CH MEM_LOAD_UOPS_LLC_MISS_R
ETIRED.REMOTE_DRAM

Retired load uops whose data source was remote
DRAM (snoop not needed, Snoop Miss, or Snoop Hit
data not forwarded).

Supports PEBS

D3H 10H MEM_LOAD_UOPS_LLC_MISS_R
ETIRED.REMOTE_HITM

Retired load uops whose data sources was remote
HITM.

Supports PEBS

D3H 20H MEM_LOAD_UOPS_LLC_MISS_R
ETIRED.REMOTE_FWD

Retired load uops whose data sources was forwards
from a remote cache.

Supports PEBS

Table 35-1 CPUID Signature Values of DisplayFamily_DisplayModel
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_4EH Future Generation Intel Core Processor

06_56H Future Generation Intel Xeon Processor

06_3DH Intel Core M-5xxx Processor based on Broadwell microarchitecture

06_3FH Intel Xeon processor E5-2600/1600 v3 product families based on Haswell-E microarchitecture, Intel
Core i7-59xx Processor Extreme Edition

06_3CH, 06_45H, 06_46H 4th Generation Intel Core processor and Intel Xeon processor E3-1200 v3 product family based on
Haswell microarchitecture

06_3EH Intel Xeon processor E7-8800/4800/2800 v2 product families based on Ivy Bridge-E
microarchitecture

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 70

06_3EH Intel Xeon processor E5-2600/1600 v2 product families and Intel Xeon processor E5-2400 v2
product family based on Ivy Bridge-E microarchitecture, Intel Core i7-49xx Processor Extreme Edition

06_3AH 3rd Generation Intel Core Processor and Intel Xeon processor E3-1200 v2 product family based on Ivy
Bridge microarchitecture

06_2DH Intel Xeon processor E5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core
i7-39xx Processor Extreme Edition

06_2FH Intel Xeon Processor E7 Family

06_2AH Intel Xeon processor E3-1200 product family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx
Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series

06_1DH Intel Xeon processor MP 7400 series

06_17H Intel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000
series

06_0FH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series,
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel
Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_4AH, 06_5AH, 06_5DH Future Intel Atom Processor Based on Silvermont Microarchitecture

06_37H Intel Atom Processor E3000 series, Z3000 series

06_4DH Intel Atom Processor C2000 series

06_36H Intel Atom Processor S1000 Series

06_1CH, 06_26H, 06_27H,
06_35H, 06_36H

Intel Atom Processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D
processors

0F_03H, 0F_04H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor

06_01H Intel Pentium Pro Processor

05_01H, 05_02H, 05_04H Intel Pentium Processor, Intel Pentium Processor with MMX Technology

Table 35-1 CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 71

35.1 ARCHITECTURAL MSRS
Many MSRs have carried over from one generation of IA-32 processors to the next and to Intel 64 processors. A
subset of MSRs and associated bit fields, which do not change on future processor generations, are now consid-
ered architectural MSRs. For historical reasons (beginning with the Pentium 4 processor), these “architectural
MSRs” were given the prefix “IA32_”. Table 35-2 lists the architectural MSRs, their addresses, their current
names, their names in previous IA-32 processors, and bit fields that are considered architectural. MSR addresses
outside Table 35-2 and certain bit fields in an MSR address that may overlap with architectural MSR addresses are
model-specific. Code that accesses a machine specified MSR and that is executed on a processor that does not
support that MSR will generate an exception.

Architectural MSR or individual bit fields in an architectural MSR may be introduced or transitioned at the granu-
larity of certain processor family/model or the presence of certain CPUID feature flags. The right-most column of
Table 35-2 provides information on the introduction of each architectural MSR or its individual fields. This informa-
tion is expressed either as signature values of “DF_DM” (see Table 35-1) or via CPUID flags.

Certain bit field position may be related to the maximum physical address width, the value of which is expressed
as “MAXPHYWID” in Table 35-2. “MAXPHYWID” is reported by CPUID.8000_0008H leaf.

MSR address range between 40000000H - 400000FFH is marked as a specially reserved range. All existing and
future processors will not implement any features using any MSR in this range.

Table 35-2 IA-32 Architectural MSRs

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

0H 0 IA32_P5_MC_ADDR (P5_MC_ADDR) See Section 35.19, “MSRs in Pentium
Processors.”

Pentium Processor
(05_01H)

1H 1 IA32_P5_MC_TYPE (P5_MC_TYPE) See Section 35.19, “MSRs in Pentium
Processors.”

DF_DM = 05_01H

6H 6 IA32_MONITOR_FILTER_SIZE See Section 8.10.5, “Monitor/Mwait
Address Range Determination.”

0F_03H

10H 16 IA32_TIME_STAMP_
COUNTER (TSC)

See Section 17.13, “Time-Stamp Counter.” 05_01H

17H 23 IA32_PLATFORM_ID
(MSR_PLATFORM_ID)

Platform ID (RO)
The operating system can use this MSR to
determine “slot” information for the
processor and the proper microcode update
to load.

06_01H

49:0 Reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 72

52:50 Platform Id (RO)

Contains information concerning the
intended platform for the processor.

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

1BH 27 IA32_APIC_BASE (APIC_BASE) 06_01H

7:0 Reserved

8 BSP flag (R/W)

9 Reserved

10 Enable x2APIC mode 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYWID - 1):12 APIC Base (R/W)

63: MAXPHYWID Reserved

3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64 Processor
(R/W)

If CPUID.01H: ECX[bit 5 or
bit 6] = 1

0 Lock bit (R/WO): (1 = locked). When set,
locks this MSR from being written, writes
to this bit will result in GP(0).

Note: Once the Lock bit is set, the contents
of this register cannot be modified.
Therefore the lock bit must be set after
configuring support

If CPUID.01H:ECX[bit 5 or
bit 6] = 1

for Intel Virtualization Technology and prior
to transferring control to an option ROM or
the OS. Hence, once the Lock bit is set, the
entire IA32_FEATURE_CONTROL contents
are preserved across RESET when
PWRGOOD is not deasserted.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 73

1 Enable VMX inside SMX operation (R/WL):
This bit enables a system executive to use
VMX in conjunction with SMX to support
Intel® Trusted Execution Technology.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag and
SMX feature flag set (ECX bits 5 and 6
respectively).

If CPUID.01H:ECX[bit 5 and
bit 6] are set to 1

2 Enable VMX outside SMX operation (R/WL):
This bit enables VMX for system executive
that do not require SMX.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag set
(ECX bit 5).

If CPUID.01H:ECX[bit 5 or
bit 6] = 1

7:3 Reserved

14:8 SENTER Local Function Enables (R/WL):
When set, each bit in the field represents
an enable control for a corresponding
SENTER function. This bit is supported only
if CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[bit 6] = 1

15 SENTER Global Enable (R/WL): This bit must
be set to enable SENTER leaf functions.
This bit is supported only if
CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[bit 6] = 1

19:16 Reserved

20 LMCE On (R/WL): When set, system
software can program the MSRs associated
with LMCE to configure delivery of some
machine check exceptions to a single logical
processor.

63:21 Reserved

3BH 59 IA32_TSC_ADJUST Per Logical Processor TSC Adjust (R/Write
to clear)

If CPUID.(EAX=07H,
ECX=0H): EBX[1] = 1

63:0 THREAD_ADJUST:

Local offset value of the IA32_TSC for a
logical processor. Reset value is Zero. A
write to IA32_TSC will modify the local
offset in IA32_TSC_ADJUST and the
content of IA32_TSC, but does not affect
the internal invariant TSC hardware.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 74

79H 121 IA32_BIOS_UPDT_TRIG
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR instruction to this MSR
causes a microcode update to be loaded
into the processor. See Section 9.11.6,
“Microcode Update Loader.”

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

8BH 139 IA32_BIOS_SIGN_ID (BIOS_SIGN/
BBL_CR_D3)

BIOS Update Signature (RO)

Returns the microcode update signature
following the execution of CPUID.01H.

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

31:0 Reserved

63:32 It is recommended that this field be pre-
loaded with 0 prior to executing CPUID.

If the field remains 0 following the
execution of CPUID; this indicates that no
microcode update is loaded. Any non-zero
value is the microcode update signature.

9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration (R/W) If CPUID.01H: ECX[bit 5 or
bit 6] = 1

0 Valid (R/W)

1 Reserved

2 Controls SMI unblocking by VMXOFF (see
Section 34.14.4)

If IA32_VMX_MISC[bit 28])

11:3 Reserved

31:12 MSEG Base (R/W)

63:32 Reserved

9EH 158 IA32_SMBASE Base address of the logical processor’s
SMRAM image (RO, SMM only)

If IA32_VMX_MISC[bit 15])

C1H 193 IA32_PMC0 (PERFCTR0) General Performance Counter 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

C2H 194 IA32_PMC1 (PERFCTR1) General Performance Counter 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

C3H 195 IA32_PMC2 General Performance Counter 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

C4H 196 IA32_PMC3 General Performance Counter 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 75

C5H 197 IA32_PMC4 General Performance Counter 4 (R/W) If CPUID.0AH: EAX[15:8] >
4

C6H 198 IA32_PMC5 General Performance Counter 5 (R/W) If CPUID.0AH: EAX[15:8] >
5

C7H 199 IA32_PMC6 General Performance Counter 6 (R/W) If CPUID.0AH: EAX[15:8] >
6

C8H 200 IA32_PMC7 General Performance Counter 7 (R/W) If CPUID.0AH: EAX[15:8] >
7

E7H 231 IA32_MPERF TSC Frequency Clock Counter (R/Write to
clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_MCNT: C0 TSC Frequency Clock Count

Increments at fixed interval (relative to TSC
freq.) when the logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_APERF.

E8H 232 IA32_APERF Actual Performance Clock Counter (R/Write
to clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_ACNT: C0 Actual Frequency Clock
Count

Accumulates core clock counts at the
coordinated clock frequency, when the
logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_MPERF.

FEH 254 IA32_MTRRCAP (MTRRcap) MTRR Capability (RO) Section 11.11.2.1,
“IA32_MTRR_DEF_TYPE MSR.”

06_01H

7:0 VCNT: The number of variable memory
type ranges in the processor.

8 Fixed range MTRRs are supported when
set.

9 Reserved.

10 WC Supported when set.

11 SMRR Supported when set.

63:12 Reserved.

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector

63:16 Reserved.

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 76

179H 377 IA32_MCG_CAP (MCG_CAP) Global Machine Check Capability (RO) 06_01H

7:0 Count: Number of reporting banks.

8 MCG_CTL_P: IA32_MCG_CTL is present if
this bit is set

9 MCG_EXT_P: Extended machine check
state registers are present if this bit is set

10 MCP_CMCI_P: Support for corrected MC
error event is present.

06_01H

11 MCG_TES_P: Threshold-based error status
register are present if this bit is set.

15:12 Reserved

23:16 MCG_EXT_CNT: Number of extended
machine check state registers present.

24 MCG_SER_P: The processor supports
software error recovery if this bit is set.

25 Reserved.

26 MCG_ELOG_P: Indicates that the processor
allows platform firmware to be invoked
when an error is detected so that it may
provide additional platform specific
information in an ACPI format “Generic
Error Data Entry” that augments the data
included in machine check bank registers.

06_3EH

27 MCG_LMCE_P: Indicates that the processor
support extended state in
IA32_MCG_STATUS and associated
MSR necessary to configure Local
Machine Check Exception (LMCE).

06_3EH

63:28 Reserved.

17AH 378 IA32_MCG_STATUS (MCG_STATUS) Global Machine Check Status (R/W0) 06_01H

0 RIPV. Restart IP valid 06_01H

1 EIPV. Error IP valid 06_01H

2 MCIP. Machine check in progress 06_01H

3 LMCE_S. If IA32_MCG_CAP.LMCE_P
=1

63:4 Reserved.

17BH 379 IA32_MCG_CTL (MCG_CTL) Global Machine Check Control (R/W) 06_01H

180H-
185H

384-
389

Reserved 06_0EH1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 77

186H 390 IA32_PERFEVTSEL0 (PERFEVTSEL0) Performance Event Select Register 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

7:0 Event Select: Selects a performance event
logic unit.

15:8 UMask: Qualifies the microarchitectural
condition to detect on the selected event
logic.

16 USR: Counts while in privilege level is not
ring 0.

17 OS: Counts while in privilege level is ring 0.

18 Edge: Enables edge detection if set.

19 PC: enables pin control.

20 INT: enables interrupt on counter overflow.

21 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

22 EN: enables the corresponding performance
counter to commence counting when this
bit is set.

23 INV: invert the CMASK.

31:24 CMASK: When CMASK is not zero, the
corresponding performance counter
increments each cycle if the event count is
greater than or equal to the CMASK.

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 (PERFEVTSEL1) Performance Event Select Register 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

188H 392 IA32_PERFEVTSEL2 Performance Event Select Register 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

189H 393 IA32_PERFEVTSEL3 Performance Event Select Register 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

18AH-
197H

394-
407

Reserved 06_0EH2

198H 408 IA32_PERF_STATUS (RO) 0F_03H

15:0 Current performance State Value

63:16 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 78

199H 409 IA32_PERF_CTL (R/W) 0F_03H

15:0 Target performance State Value

31:16 Reserved.

32 IDA Engage. (R/W)

When set to 1: disengages IDA

06_0FH (Mobile only)

63:33 Reserved.

19AH 410 IA32_CLOCK_MODULATION Clock Modulation Control (R/W)

See Section 14.7.3, “Software Controlled
Clock Modulation.”

0F_0H

0 Extended On-Demand Clock Modulation
Duty Cycle:

If CPUID.06H:EAX[5] = 1

3:1 On-Demand Clock Modulation Duty Cycle:
Specific encoded values for target duty
cycle modulation.

4 On-Demand Clock Modulation Enable: Set 1
to enable modulation.

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the processor’s thermal
sensors and thermal monitor.

See Section 14.7.2, “Thermal Monitor.”

0F_0H

0 High-Temperature Interrupt Enable

1 Low-Temperature Interrupt Enable

2 PROCHOT# Interrupt Enable

3 FORCEPR# Interrupt Enable

4 Critical Temperature Interrupt Enable

7:5 Reserved.

14:8 Threshold #1 Value

15 Threshold #1 Interrupt Enable

22:16 Threshold #2 Value

23 Threshold #2 Interrupt Enable

24 Power Limit Notification Enable If CPUID.06H:EAX[4] = 1

63:25 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 79

19CH 412 IA32_THERM_STATUS Thermal Status Information (RO)

Contains status information about the
processor’s thermal sensor and automatic
thermal monitoring facilities.

See Section 14.7.2, “Thermal Monitor”

0F_0H

0 Thermal Status (RO):

1 Thermal Status Log (R/W):

2 PROCHOT # or FORCEPR# event (RO)

3 PROCHOT # or FORCEPR# log (R/WC0)

4 Critical Temperature Status (RO)

5 Critical Temperature Status log (R/WC0)

6 Thermal Threshold #1 Status (RO) If CPUID.01H:ECX[8] = 1

7 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1

8 Thermal Threshold #2 Status (RO) If CPUID.01H:ECX[8] = 1

9 Thermal Threshold #2 log (R/WC0) If CPUID.01H:ECX[8] = 1

10 Power Limitation Status (RO) If CPUID.06H:EAX[4] = 1

11 Power Limitation log (R/WC0) If CPUID.06H:EAX[4] = 1

12 Current Limit Status (RO) If CPUID.06H:EAX[7] = 1

13 Current Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

14 Cross Domain Limit Status (RO) If CPUID.06H:EAX[7] = 1

15 Cross Domain Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

22:16 Digital Readout (RO) If CPUID.06H:EAX[0] = 1

26:23 Reserved.

30:27 Resolution in Degrees Celsius (RO) If CPUID.06H:EAX[0] = 1

31 Reading Valid (RO) If CPUID.06H:EAX[0] = 1

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to
be enabled and disabled.

0 Fast-Strings Enable

When set, the fast-strings feature (for REP
MOVS and REP STORS) is enabled (default);
when clear, fast-strings are disabled.

0F_0H

2:1 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 80

3 Automatic Thermal Control Circuit Enable
(R/W)

1 = Setting this bit enables the thermal
control circuit (TCC) portion of the
Intel Thermal Monitor feature. This
allows the processor to automatically
reduce power consumption in
response to TCC activation.

0 = Disabled (default).
Note: In some products clearing this bit
might be ignored in critical thermal
conditions, and TM1, TM2 and adaptive
thermal throttling will still be activated.

0F_0H

6:4 Reserved

7 Performance Monitoring Available (R)

1 = Performance monitoring enabled
0 = Performance monitoring disabled

0F_0H

10:8 Reserved.

11 Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch
trace storage (BTS)

0 = BTS is supported

0F_0H

12 Precise Event Based Sampling (PEBS)
Unavailable (RO)

1 = PEBS is not supported;
0 = PEBS is supported.

06_0FH

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology
Enable (R/W)

0= Enhanced Intel SpeedStep
Technology disabled

1 = Enhanced Intel SpeedStep
Technology enabled

If CPUID.01H: ECX[7] =1

17 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 81

18 ENABLE MONITOR FSM (R/W)

When this bit is set to 0, the MONITOR
feature flag is not set (CPUID.01H:ECX[bit
3] = 0). This indicates that MONITOR/
MWAIT are not supported.

Software attempts to execute MONITOR/
MWAIT will cause #UD when this bit is 0.

When this bit is set to 1 (default),
MONITOR/MWAIT are supported
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag ECX[0] is not set
(CPUID.01H:ECX[bit 0] = 0), the OS must
not attempt to alter this bit. BIOS must
leave it in the default state. Writing this bit
when the SSE3 feature flag is set to 0 may
generate a #GP exception.

0F_03H

21:19 Reserved.

22 Limit CPUID Maxval (R/W)

When this bit is set to 1, CPUID.00H returns
a maximum value in EAX[7:0] of 3.

BIOS should contain a setup question that
allows users to specify when the installed
OS does not support CPUID functions
greater than 3.

Before setting this bit, BIOS must execute
the CPUID.0H and examine the maximum
value returned in EAX[7:0]. If the maximum
value is greater than 3, the bit is supported.

Otherwise, the bit is not supported. Writing
to this bit when the maximum value is
greater than 3 may generate a #GP
exception.

Setting this bit may cause unexpected
behavior in software that depends on the
availability of CPUID leaves greater than 3.

0F_03H

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are
disabled. xTPR messages are optional
messages that allow the processor to
inform the chipset of its priority.

if CPUID.01H:ECX[14] = 1

33:24 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 82

34 XD Bit Disable (R/W)

When set to 1, the Execute Disable Bit
feature (XD Bit) is disabled and the XD Bit
extended feature flag will be clear
(CPUID.80000001H: EDX[20]=0).

When set to a 0 (default), the Execute
Disable Bit feature (if available) allows the
OS to enable PAE paging and take
advantage of data only pages.

BIOS must not alter the contents of this bit
location, if XD bit is not supported. Writing
this bit to 1 when the XD Bit extended
feature flag is set to 0 may generate a #GP
exception.

if
CPUID.80000001H:EDX[2
0] = 1

63:35 Reserved.

1B0H 432 IA32_ENERGY_PERF_BIAS Performance Energy Bias Hint (R/W) if CPUID.6H:ECX[3] = 1

3:0 Power Policy Preference:

0 indicates preference to highest
performance.

15 indicates preference to maximize
energy saving.

63:4 Reserved.

1B1H 433 IA32_PACKAGE_THERM_STATUS Package Thermal Status Information (RO)

Contains status information about the
package’s thermal sensor.

See Section 14.8, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg Thermal Status (RO):

1 Pkg Thermal Status Log (R/W):

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature Status (RO)

5 Pkg Critical Temperature Status log (R/
WC0)

6 Pkg Thermal Threshold #1 Status (RO)

7 Pkg Thermal Threshold #1 log (R/WC0)

8 Pkg Thermal Threshold #2 Status (RO)

9 Pkg Thermal Threshold #1 log (R/WC0)

10 Pkg Power Limitation Status (RO)

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 83

11 Pkg Power Limitation log (R/WC0)

15:12 Reserved.

22:16 Pkg Digital Readout (RO)

63:23 Reserved.

1B2H 434 IA32_PACKAGE_THERM_INTERRUPT Pkg Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the package’s thermal
sensor.

See Section 14.8, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg High-Temperature Interrupt Enable

1 Pkg Low-Temperature Interrupt Enable

2 Pkg PROCHOT# Interrupt Enable

3 Reserved.

4 Pkg Overheat Interrupt Enable

7:5 Reserved.

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt Enable

22:16 Pkg Threshold #2 Value

23 Pkg Threshold #2 Interrupt Enable

24 Pkg Power Limit Notification Enable

63:25 Reserved.

1D9H 473 IA32_DEBUGCTL (MSR_DEBUGCTLA,
MSR_DEBUGCTLB)

Trace/Profile Resource Control (R/W) 06_0EH

0 LBR: Setting this bit to 1 enables the
processor to record a running trace of the
most recent branches taken by the
processor in the LBR stack.

06_01H

1 BTF: Setting this bit to 1 enables the
processor to treat EFLAGS.TF as single-step
on branches instead of single-step on
instructions.

06_01H

5:2 Reserved.

6 TR: Setting this bit to 1 enables branch
trace messages to be sent.

06_0EH

7 BTS: Setting this bit enables branch trace
messages (BTMs) to be logged in a BTS
buffer.

06_0EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 84

8 BTINT: When clear, BTMs are logged in a
BTS buffer in circular fashion. When this bit
is set, an interrupt is generated by the BTS
facility when the BTS buffer is full.

06_0EH

9 1: BTS_OFF_OS: When set, BTS or BTM is
skipped if CPL = 0.

06_0FH

10 BTS_OFF_USR: When set, BTS or BTM is
skipped if CPL > 0.

06_0FH

11 FREEZE_LBRS_ON_PMI: When set, the LBR
stack is frozen on a PMI request.

If CPUID.01H: ECX[15] = 1
and CPUID.0AH: EAX[7:0] >
1

12 FREEZE_PERFMON_ON_PMI: When set,
each ENABLE bit of the global counter
control MSR are frozen (address 3BFH) on a
PMI request

If CPUID.01H: ECX[15] = 1
and CPUID.0AH: EAX[7:0] >
1

13 ENABLE_UNCORE_PMI: When set, enables
the logical processor to receive and
generate PMI on behalf of the uncore.

06_1AH

14 FREEZE_WHILE_SMM: When set, freezes
perfmon and trace messages while in SMM.

if
IA32_PERF_CAPABILITIES[
12] = '1

15 RTM_DEBUG: When set, enables DR7 debug
bit on XBEGIN

If (CPUID.(EAX=07H,
ECX=0):EBX[bit 11] = 1)

63:16 Reserved.

1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address (Writeable only in
SMM)

Base address of SMM memory range.

If IA32_MTRR_CAP[SMRR]
= 1

7:0 Type. Specifies memory type of the range.

11:8 Reserved.

31:12 PhysBase.

SMRR physical Base Address.

63:32 Reserved.

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask. (Writeable only in
SMM)

Range Mask of SMM memory range.

If IA32_MTRR_CAP[SMRR]
= 1

10:0 Reserved.

11 Valid

Enable range mask.

31:12 PhysMask

SMRR address range mask.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 85

63:32 Reserved.

1F8H 504 IA32_PLATFORM_DCA_CAP DCA Capability (R) 06_0FH

1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-Hint type.

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and Control register. 06_2EH

0 DCA_ACTIVE: Set by HW when DCA is fuse-
enabled and no defeatures are set.

2:1 TRANSACTION

6:3 DCA_TYPE

10:7 DCA_QUEUE_SIZE

12:11 Reserved.

16:13 DCA_DELAY: Writes will update the register
but have no HW side-effect.

23:17 Reserved.

24 SW_BLOCK: SW can request DCA block by
setting this bit.

25 Reserved.

26 HW_BLOCK: Set when DCA is blocked by
HW (e.g. CR0.CD = 1).

31:27 Reserved.

200H 512 IA32_MTRR_PHYSBASE0
(MTRRphysBase0)

See Section 11.11.2.3, “Variable Range
MTRRs.”

06_01H

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 06_01H

202H 514 IA32_MTRR_PHYSBASE1 MTRRphysBase1 06_01H

203H 515 IA32_MTRR_PHYSMASK1 MTRRphysMask1 06_01H

204H 516 IA32_MTRR_PHYSBASE2 MTRRphysBase2 06_01H

205H 517 IA32_MTRR_PHYSMASK2 MTRRphysMask2 06_01H

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 06_01H

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 06_01H

208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 06_01H

209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 06_01H

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 06_01H

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 06_01H

20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 06_01H

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 06_01H

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 06_01H

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 86

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 06_01H

210H 528 IA32_MTRR_PHYSBASE8 MTRRphysBase8 if IA32_MTRR_CAP[7:0] >
8

211H 529 IA32_MTRR_PHYSMASK8 MTRRphysMask8 if IA32_MTRR_CAP[7:0] >
8

212H 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 if IA32_MTRR_CAP[7:0] >
9

213H 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 if IA32_MTRR_CAP[7:0] >
9

250H 592 IA32_MTRR_FIX64K_00000 MTRRfix64K_00000 06_01H

258H 600 IA32_MTRR_FIX16K_80000 MTRRfix16K_80000 06_01H

259H 601 IA32_MTRR_FIX16K_A0000 MTRRfix16K_A0000 06_01H

268H 616 IA32_MTRR_FIX4K_C0000
(MTRRfix4K_C0000)

See Section 11.11.2.2, “Fixed Range
MTRRs.”

06_01H

269H 617 IA32_MTRR_FIX4K_C8000 MTRRfix4K_C8000 06_01H

26AH 618 IA32_MTRR_FIX4K_D0000 MTRRfix4K_D0000 06_01H

26BH 619 IA32_MTRR_FIX4K_D8000 MTRRfix4K_D8000 06_01H

26CH 620 IA32_MTRR_FIX4K_E0000 MTRRfix4K_E0000 06_01H

26DH 621 IA32_MTRR_FIX4K_E8000 MTRRfix4K_E8000 06_01H

26EH 622 IA32_MTRR_FIX4K_F0000 MTRRfix4K_F0000 06_01H

26FH 623 IA32_MTRR_FIX4K_F8000 MTRRfix4K_F8000 06_01H

277H 631 IA32_PAT IA32_PAT (R/W) 06_05H

2:0 PA0

7:3 Reserved.

10:8 PA1

15:11 Reserved.

18:16 PA2

23:19 Reserved.

26:24 PA3

31:27 Reserved.

34:32 PA4

39:35 Reserved.

42:40 PA5

47:43 Reserved.

50:48 PA6

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 87

55:51 Reserved.

58:56 PA7

63:59 Reserved.

280H 640 IA32_MC0_CTL2 (R/W) 06_1AH

14:0 Corrected error count threshold.

29:15 Reserved.

30 CMCI_EN

63:31 Reserved.

281H 641 IA32_MC1_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

282H 642 IA32_MC2_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

283H 643 IA32_MC3_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

284H 644 IA32_MC4_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

285H 645 IA32_MC5_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

286H 646 IA32_MC6_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

287H 647 IA32_MC7_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

288H 648 IA32_MC8_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

289H 649 IA32_MC9_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28AH 650 IA32_MC10_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28BH 651 IA32_MC11_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28CH 652 IA32_MC12_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28DH 653 IA32_MC13_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28EH 654 IA32_MC14_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28FH 655 IA32_MC15_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

290H 656 IA32_MC16_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

291H 657 IA32_MC17_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

292H 658 IA32_MC18_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

293H 659 IA32_MC19_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

294H 660 IA32_MC20_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

295H 661 IA32_MC21_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

296H 662 IA32_MC22_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

297H 663 IA32_MC23_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

298H 664 IA32_MC24_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

299H 665 IA32_MC25_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29AH 666 IA32_MC26_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 88

29BH 667 IA32_MC27_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29CH 668 IA32_MC28_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29DH 669 IA32_MC29_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29EH 670 IA32_MC30_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29FH 671 IA32_MC31_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType (R/W) 06_01H

2:0 Default Memory Type

9:3 Reserved.

10 Fixed Range MTRR Enable

11 MTRR Enable

63:12 Reserved.

309H 777 IA32_FIXED_CTR0
(MSR_PERF_FIXED_CTR0)

Fixed-Function Performance Counter 0 (R/
W): Counts Instr_Retired.Any.

If CPUID.0AH: EDX[4:0] > 0

30AH 778 IA32_FIXED_CTR1
(MSR_PERF_FIXED_CTR1)

Fixed-Function Performance Counter 1 0
(R/W): Counts CPU_CLK_Unhalted.Core

If CPUID.0AH: EDX[4:0] > 1

30BH 779 IA32_FIXED_CTR2
(MSR_PERF_FIXED_CTR2)

Fixed-Function Performance Counter 0 0
(R/W): Counts CPU_CLK_Unhalted.Ref

If CPUID.0AH: EDX[4:0] > 2

345H 837 IA32_PERF_CAPABILITIES RO If CPUID.01H: ECX[15] = 1

5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is supported.

13 1: Full width of counter writable via
IA32_A_PMCx.

63:14 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL
(MSR_PERF_FIXED_CTR_CTRL)

Fixed-Function Performance Counter
Control (R/W)

Counter increments while the results of
ANDing respective enable bit in
IA32_PERF_GLOBAL_CTRL with the
corresponding OS or USR bits in this MSR is
true.

If CPUID.0AH: EAX[7:0] > 1

0 EN0_OS: Enable Fixed Counter 0 to count
while CPL = 0.

1 EN0_Usr: Enable Fixed Counter 0 to count
while CPL > 0.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 89

2 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

3 EN0_PMI: Enable PMI when fixed counter 0
overflows.

4 EN1_OS: Enable Fixed Counter 1to count
while CPL = 0.

5 EN1_Usr: Enable Fixed Counter 1to count
while CPL > 0.

6 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

7 EN1_PMI: Enable PMI when fixed counter 1
overflows.

8 EN2_OS: Enable Fixed Counter 2 to count
while CPL = 0.

9 EN2_Usr: Enable Fixed Counter 2 to count
while CPL > 0.

10 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

11 EN2_PMI: Enable PMI when fixed counter 2
overflows.

63:12 Reserved.

38EH 910 IA32_PERF_GLOBAL_STATUS
(MSR_PERF_GLOBAL_STATUS)

Global Performance Counter Status (RO) If CPUID.0AH: EAX[7:0] > 0

0 Ovf_PMC0: Overflow status of IA32_PMC0. If CPUID.0AH: EAX[15:8] >
0

1 Ovf_PMC1: Overflow status of IA32_PMC1. If CPUID.0AH: EAX[15:8] >
1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 90

2 Ovf_PMC2: Overflow status of IA32_PMC2. 06_2EH

3 Ovf_PMC3: Overflow status of IA32_PMC3. 06_2EH

31:4 Reserved.

32 Ovf_FixedCtr0: Overflow status of
IA32_FIXED_CTR0.

If CPUID.0AH: EAX[7:0] > 1

33 Ovf_FixedCtr1: Overflow status of
IA32_FIXED_CTR1.

If CPUID.0AH: EAX[7:0] > 1

34 Ovf_FixedCtr2: Overflow status of
IA32_FIXED_CTR2.

If CPUID.0AH: EAX[7:0] > 1

54:35 Reserved.

55 Trace_ToPA_PMI: A PMI occurred due to a
ToPA entry memory buffer was completely
filled.

If IA32_RTIT_CTL.ToPA = 1

60:56 Reserved.

61 Ovf_Uncore: Uncore counter overflow
status.

If CPUID.0AH: EAX[7:0] > 2

62 OvfBuf: DS SAVE area Buffer overflow
status.

If CPUID.0AH: EAX[7:0] > 0

63 CondChgd: status bits of this register has
changed.

If CPUID.0AH: EAX[7:0] > 0

38FH 911 IA32_PERF_GLOBAL_CTRL
(MSR_PERF_GLOBAL_CTRL)

Global Performance Counter Control (R/W)

Counter increments while the result of
ANDing respective enable bit in this MSR
with the corresponding OS or USR bits in
the general-purpose or fixed counter
control MSR is true.

If CPUID.0AH: EAX[7:0] > 0

0 EN_PMC0 If CPUID.0AH: EAX[7:0] > 0

1 EN_PMC1 If CPUID.0AH: EAX[7:0] > 0

31:2 Reserved.

32 EN_FIXED_CTR0 If CPUID.0AH: EAX[7:0] > 1

33 EN_FIXED_CTR1 If CPUID.0AH: EAX[7:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH: EAX[7:0] > 1

63:35 Reserved.

390H 912 IA32_PERF_GLOBAL_OVF_CTRL
(MSR_PERF_GLOBAL_OVF_CTRL)

Global Performance Counter Overflow
Control (R/W)

If CPUID.0AH: EAX[7:0] > 0

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[7:0] > 0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[7:0] > 0

31:2 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 91

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EAX[7:0] > 1

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EAX[7:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EAX[7:0] > 1

60:35 Reserved.

61 Set 1 to Clear Ovf_Uncore: bit. 06_2EH

62 Set 1 to Clear OvfBuf: bit. If CPUID.0AH: EAX[7:0] > 0

63 Set to 1to clear CondChgd: bit. If CPUID.0AH: EAX[7:0] > 0

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0. 06_0FH

1-3 Reserved or Model specific.

31:4 Reserved.

35-32 Reserved or Model specific.

63:36 Reserved.

400H 1024 IA32_MC0_CTL MC0_CTL 06_01H

401H 1025 IA32_MC0_STATUS MC0_STATUS 06_01H

402H 1026 IA32_MC0_ADDR1 MC0_ADDR 06_01H

403H 1027 IA32_MC0_MISC MC0_MISC 06_01H

404H 1028 IA32_MC1_CTL MC1_CTL 06_01H

405H 1029 IA32_MC1_STATUS MC1_STATUS 06_01H

406H 1030 IA32_MC1_ADDR2 MC1_ADDR 06_01H

407H 1031 IA32_MC1_MISC MC1_MISC 06_01H

408H 1032 IA32_MC2_CTL MC2_CTL 06_01H

409H 1033 IA32_MC2_STATUS MC2_STATUS 06_01H

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR 06_01H

40BH 1035 IA32_MC2_MISC MC2_MISC 06_01H

40CH 1036 IA32_MC3_CTL MC3_CTL 06_01H

40DH 1037 IA32_MC3_STATUS MC3_STATUS 06_01H

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR 06_01H

40FH 1039 IA32_MC3_MISC MC3_MISC 06_01H

410H 1040 IA32_MC4_CTL MC4_CTL 06_01H

411H 1041 IA32_MC4_STATUS MC4_STATUS 06_01H

412H 1042 IA32_MC4_ADDR1 MC4_ADDR 06_01H

413H 1043 IA32_MC4_MISC MC4_MISC 06_01H

414H 1044 IA32_MC5_CTL MC5_CTL 06_0FH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 92

415H 1045 IA32_MC5_STATUS MC5_STATUS 06_0FH

416H 1046 IA32_MC5_ADDR1 MC5_ADDR 06_0FH

417H 1047 IA32_MC5_MISC MC5_MISC 06_0FH

418H 1048 IA32_MC6_CTL MC6_CTL 06_1DH

419H 1049 IA32_MC6_STATUS MC6_STATUS 06_1DH

41AH 1050 IA32_MC6_ADDR1 MC6_ADDR 06_1DH

41BH 1051 IA32_MC6_MISC MC6_MISC 06_1DH

41CH 1052 IA32_MC7_CTL MC7_CTL 06_1AH

41DH 1053 IA32_MC7_STATUS MC7_STATUS 06_1AH

41EH 1054 IA32_MC7_ADDR1 MC7_ADDR 06_1AH

41FH 1055 IA32_MC7_MISC MC7_MISC 06_1AH

420H 1056 IA32_MC8_CTL MC8_CTL 06_1AH

421H 1057 IA32_MC8_STATUS MC8_STATUS 06_1AH

422H 1058 IA32_MC8_ADDR1 MC8_ADDR 06_1AH

423H 1059 IA32_MC8_MISC MC8_MISC 06_1AH

424H 1060 IA32_MC9_CTL MC9_CTL 06_2EH

425H 1061 IA32_MC9_STATUS MC9_STATUS 06_2EH

426H 1062 IA32_MC9_ADDR1 MC9_ADDR 06_2EH

427H 1063 IA32_MC9_MISC MC9_MISC 06_2EH

428H 1064 IA32_MC10_CTL MC10_CTL 06_2EH

429H 1065 IA32_MC10_STATUS MC10_STATUS 06_2EH

42AH 1066 IA32_MC10_ADDR1 MC10_ADDR 06_2EH

42BH 1067 IA32_MC10_MISC MC10_MISC 06_2EH

42CH 1068 IA32_MC11_CTL MC11_CTL 06_2EH

42DH 1069 IA32_MC11_STATUS MC11_STATUS 06_2EH

42EH 1070 IA32_MC11_ADDR1 MC11_ADDR 06_2EH

42FH 1071 IA32_MC11_MISC MC11_MISC 06_2EH

430H 1072 IA32_MC12_CTL MC12_CTL 06_2EH

431H 1073 IA32_MC12_STATUS MC12_STATUS 06_2EH

432H 1074 IA32_MC12_ADDR1 MC12_ADDR 06_2EH

433H 1075 IA32_MC12_MISC MC12_MISC 06_2EH

434H 1076 IA32_MC13_CTL MC13_CTL 06_2EH

435H 1077 IA32_MC13_STATUS MC13_STATUS 06_2EH

436H 1078 IA32_MC13_ADDR1 MC13_ADDR 06_2EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 93

437H 1079 IA32_MC13_MISC MC13_MISC 06_2EH

438H 1080 IA32_MC14_CTL MC14_CTL 06_2EH

439H 1081 IA32_MC14_STATUS MC14_STATUS 06_2EH

43AH 1082 IA32_MC14_ADDR1 MC14_ADDR 06_2EH

43BH 1083 IA32_MC14_MISC MC14_MISC 06_2EH

43CH 1084 IA32_MC15_CTL MC15_CTL 06_2EH

43DH 1085 IA32_MC15_STATUS MC15_STATUS 06_2EH

43EH 1086 IA32_MC15_ADDR1 MC15_ADDR 06_2EH

43FH 1087 IA32_MC15_MISC MC15_MISC 06_2EH

440H 1088 IA32_MC16_CTL MC16_CTL 06_2EH

441H 1089 IA32_MC16_STATUS MC16_STATUS 06_2EH

442H 1090 IA32_MC16_ADDR1 MC16_ADDR 06_2EH

443H 1091 IA32_MC16_MISC MC16_MISC 06_2EH

444H 1092 IA32_MC17_CTL MC17_CTL 06_2EH

445H 1093 IA32_MC17_STATUS MC17_STATUS 06_2EH

446H 1094 IA32_MC17_ADDR1 MC17_ADDR 06_2EH

447H 1095 IA32_MC17_MISC MC17_MISC 06_2EH

448H 1096 IA32_MC18_CTL MC18_CTL 06_2EH

449H 1097 IA32_MC18_STATUS MC18_STATUS 06_2EH

44AH 1098 IA32_MC18_ADDR1 MC18_ADDR 06_2EH

44BH 1099 IA32_MC18_MISC MC18_MISC 06_2EH

44CH 1100 IA32_MC19_CTL MC19_CTL 06_2EH

44DH 1101 IA32_MC19_STATUS MC19_STATUS 06_2EH

44EH 1102 IA32_MC19_ADDR1 MC19_ADDR 06_2EH

44FH 1103 IA32_MC19_MISC MC19_MISC 06_2EH

450H 1104 IA32_MC20_CTL MC20_CTL 06_2EH

451H 1105 IA32_MC20_STATUS MC20_STATUS 06_2EH

452H 1106 IA32_MC20_ADDR1 MC20_ADDR 06_2EH

453H 1107 IA32_MC20_MISC MC20_MISC 06_2EH

454H 1108 IA32_MC21_CTL MC21_CTL 06_2EH

455H 1109 IA32_MC21_STATUS MC21_STATUS 06_2EH

456H 1110 IA32_MC21_ADDR1 MC21_ADDR 06_2EH

457H 1111 IA32_MC21_MISC MC21_MISC 06_2EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 94

480H 1152 IA32_VMX_BASIC Reporting Register of Basic VMX
Capabilities (R/O)

See Appendix A.1, “Basic VMX Information.”

If CPUID.01H:ECX.[bit 5] =
1

481H 1153 IA32_VMX_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If CPUID.01H:ECX.[bit 5] =
1

482H 1154 IA32_VMX_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-based VM-execution Controls
(R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If CPUID.01H:ECX.[bit 5] =
1

483H 1155 IA32_VMX_EXIT_CTLS Capability Reporting Register of VM-exit
Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If CPUID.01H:ECX.[bit 5] =
1

484H 1156 IA32_VMX_ENTRY_CTLS Capability Reporting Register of VM-
entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If CPUID.01H:ECX.[bit 5] =
1

485H 1157 IA32_VMX_MISC Reporting Register of Miscellaneous
VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data.”

If CPUID.01H:ECX.[bit 5] =
1

486H 1158 IA32_VMX_CRO_FIXED0 Capability Reporting Register of CR0 Bits
Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[bit 5] =
1

487H 1159 IA32_VMX_CRO_FIXED1 Capability Reporting Register of CR0 Bits
Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[bit 5] =
1

488H 1160 IA32_VMX_CR4_FIXED0 Capability Reporting Register of CR4 Bits
Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[bit 5] =
1

489H 1161 IA32_VMX_CR4_FIXED1 Capability Reporting Register of CR4 Bits
Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[bit 5] =
1

48AH 1162 IA32_VMX_VMCS_ENUM Capability Reporting Register of VMCS
Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration.”

If CPUID.01H:ECX.[bit 5] =
1

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Capability Reporting Register of
Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3.3, “Secondary Processor-
Based VM-Execution Controls.”

If (CPUID.01H:ECX.[bit 5]
and
IA32_VMX_PROCBASED_C
TLS[bit 63])

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 95

48CH 1164 IA32_VMX_EPT_VPID_CAP Capability Reporting Register of EPT and
VPID (R/O)

See Appendix A.10, “VPID and EPT
Capabilities.”

If (CPUID.01H:ECX.[bit 5],
IA32_VMX_PROCBASED_C
TLS[bit 63], and either
IA32_VMX_PROCBASED_C
TLS2[bit 33] or
IA32_VMX_PROCBASED_C
TLS2[bit 37])

48DH 1165 IA32_VMX_TRUE_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Flex Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If (CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-based VM-execution Flex
Controls (R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Capability Reporting Register of VM-exit
Flex Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Capability Reporting Register of VM-
entry Flex Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

491H 1169 IA32_VMX_VMFUNC Capability Reporting Register of VM-
function Controls (R/O)

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

4C1H 1217 IA32_A_PMC0 Full Width Writable IA32_PMC0 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
0) &

IA32_PERF_CAPABILITIES[
13] = 1

4C2H 1218 IA32_A_PMC1 Full Width Writable IA32_PMC1 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
1) &

IA32_PERF_CAPABILITIES[
13] = 1

4C3H 1219 IA32_A_PMC2 Full Width Writable IA32_PMC2 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
2) &

IA32_PERF_CAPABILITIES[
13] = 1

4C4H 1220 IA32_A_PMC3 Full Width Writable IA32_PMC3 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
3) &

IA32_PERF_CAPABILITIES[
13] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 96

4C5H 1221 IA32_A_PMC4 Full Width Writable IA32_PMC4 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
4) &

IA32_PERF_CAPABILITIES[
13] = 1

4C6H 1222 IA32_A_PMC5 Full Width Writable IA32_PMC5 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
5) &

IA32_PERF_CAPABILITIES[
13] = 1

4C7H 1223 IA32_A_PMC6 Full Width Writable IA32_PMC6 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
6) &

IA32_PERF_CAPABILITIES[
13] = 1

4C8H 1224 IA32_A_PMC7 Full Width Writable IA32_PMC7 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
7) &

IA32_PERF_CAPABILITIES[
13] = 1

4D0H 1232 IA32_MCG_EXT_CTL (R/W) If IA32_MCG_CAP.LMCE_P
=1

0 LMCE_EN.

63:1 Reserved.

560H 1376 IA32_RTIT_OUTPUT_BASE Trace Output Base Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)

6:0 Reserved

MAXPHYADDR3-1:7 Base physical address of the current ToPA
table.

63:MAXPHYADDR Reserved.

561H 1377 IA32_RTIT_OUTPUT_MASK_PTRS Trace Output Mask Pointers Register (R/
W)

If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)

6:0 Reserved

31:7 MaskOrTableOffset

63:32 Output Offset.

570H 1392 IA32_RTIT_CTL Trace Packet Control Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)

0 TraceEn

1 Reserved,

2 OS

3 User

6:4 Reserved,

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 97

7 CR3 filter

8 ToPA

9 Reserved,

10 TSCEn

11 DisRETC

12 Reserved,

13 BranchEn

63:14 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Tracing Status Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)

0 Reserved,

1 ContexEn, (writes ignored)

2 TriggerEn, (writes ignored)

3 Reserved

4 Error

5 Stopped

63:6 Reserved.

572H 1394 IA32_RTIT_CR3_MATCH Trace Filter CR3 Match Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)

4:0 Reserved

63:5 CR3[63:5] value to match

600H 1536 IA32_DS_AREA DS Save Area (R/W)

Points to the linear address of the first
byte of the DS buffer management area,
which is used to manage the BTS and PEBS
buffers.

See Section 18.13.4, “Debug Store (DS)
Mechanism.”

0F_0H

63:0 The linear address of the first byte of the
DS buffer management area, if IA-32e
mode is active.

31:0 The linear address of the first byte of the
DS buffer management area, if not in IA-
32e mode.

63:32 Reserved if not in IA-32e mode.

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s TSC Deadline
Mode (R/W)

If(CPUID.01H:ECX.[bit 25]
= 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 98

770H 1904 IA32_PM_ENABLE Enable/disable HWP (R/W) If(CPUID.06H:EAX.[bit 7] =
1

0 HWP_ENABLE (R/W1-Once).

See Section 14.4.2, “Enabling HWP”

If(CPUID.06H:EAX.[bit 7] =
1

63:1 Reserved.

771H 1905 IA32_HWP_CAPABILITIES HWP Performance Range Enumeration
(RO)

If(CPUID.06H:EAX.[bit 7] =
1

7:0 Highest_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If(CPUID.06H:EAX.[bit 7] =
1

15:8 Guaranteed_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If(CPUID.06H:EAX.[bit 7] =
1

23:16 Most_Efficient_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If(CPUID.06H:EAX.[bit 7] =
1

31:24 Lowest_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If(CPUID.06H:EAX.[bit 7] =
1

63:32 Reserved.

772H 1906 IA32_HWP_REQUEST_PKG Power Management Control Hints for All
Logical Processors in a Package (R/W)

If(CPUID.06H:EAX.[bit 11]
= 1

7:0 Minimum_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1

15:8 Maximum_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1

23:16 Desired_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1

31:24 Energy_Performance_Preference

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1 and

CPUID.06HEAX.[bit 10] = 1

41:32 Activity_Window

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1 and

CPUID.06HEAX.[bit 9] = 1

63:42 Reserved.

773H 1907 IA32_HWP_INTERRUPT Control HWP Native Interrupts (R/W) If(CPUID.06H:EAX.[bit 8] =
1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 99

0 EN_Guaranteed_Performance_Change.

See Section 14.4.6, “HWP Notifications”

If(CPUID.06H:EAX.[bit 8] =
1

1 EN_Excursion_Minimum.

See Section 14.4.6, “HWP Notifications”

If(CPUID.06H:EAX.[bit 8] =
1

63:2 Reserved.

774H 1908 IA32_HWP_REQUEST Power Management Control Hints to a
Logical Processor (R/W)

If(CPUID.06H:EAX.[bit 7] =
1

7:0 Minimum_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 7] =
1

15:8 Maximum_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 7] =
1

23:16 Desired_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 7] =
1

31:24 Energy_Performance_Preference

See Section 14.4.4, “Managing HWP”

If CPUID.06HEAX.[bit 7] =
1 and (CPUID.06H:EAX.[bit
10] = 1

41:32 Activity_Window

See Section 14.4.4, “Managing HWP”

If CPUID.06HEAX.[bit 7] =
1 and (CPUID.06H:EAX.[bit
9] = 1

42 Package_Control

See Section 14.4.4, “Managing HWP”

IfCPUID.06HEAX.[bit 7] = 1
and (CPUID.06H:EAX.[bit
11] = 1

63:43 Reserved.

777H 1911 IA32_HWP_STATUS Log bits indicating changes to
Guaranteed & excursions to Minimum (R/
W)

If(CPUID.06H:EAX.[bit 7] =
1

0 Guaranteed_Performance_Change (R/
WC0).

See Section 14.4.5, “HWP Feedback”

If(CPUID.06H:EAX.[bit 7] =
1

1 Reserved.

2 Excursion_To_Minimum (R/WC0).

See Section 14.4.5, “HWP Feedback”

If(CPUID.06H:EAX.[bit 7] =
1

63:3 Reserved.

802H 2050 IA32_X2APIC_APICID x2APIC ID Register (R/O)

See x2APIC Specification

If (CPUID.01H:ECX.[bit 21]
= 1)

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register (R/O) If (CPUID.01H:ECX.[bit 21]
= 1)

808H 2056 IA32_X2APIC_TPR x2APIC Task Priority Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 100

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority Register (R/O) If (CPUID.01H:ECX.[bit 21]
= 1)

80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register (W/O) If (CPUID.01H:ECX.[bit 21]
= 1)

80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination Register (R/
O)

If (CPUID.01H:ECX.[bit 21]
= 1)

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt Vector
Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register Bits 31:0 (R/
O)

If (CPUID.01H:ECX.[bit 21]
= 1)

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register Bits 63:32
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register Bits 95:64
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register Bits 127:96
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register Bits 159:128
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register Bits 191:160
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register Bits 223:192
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register Bits 255:224
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode Register Bits 31:0
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode Register Bits 63:32
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode Register Bits 95:64
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode Register Bits
127:96 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode Register Bits
159:128 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode Register Bits
191:160 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode Register Bits
223:192 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode Register Bits
255:224 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 101

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request Register Bits
31:0 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request Register Bits
63:32 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request Register Bits
95:64 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request Register Bits
127:96 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request Register Bits
159:128 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request Register Bits
191:160 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request Register Bits
223:192 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request Register Bits
255:224 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

828H 2088 IA32_X2APIC_ESR x2APIC Error Status Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected Machine Check
Interrupt Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command Register (R/
W)

If (CPUID.01H:ECX.[bit 21]
= 1)

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer Interrupt Register (R/
W)

If (CPUID.01H:ECX.[bit 21]
= 1)

833H 2099 IA32_X2APIC_LVT_THERMAL x2APIC LVT Thermal Sensor Interrupt
Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance Monitor
Interrupt Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0 Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1 Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

837H 2103 IA32_X2APIC_LVT_ERROR x2APIC LVT Error Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

838H 2104 IA32_X2APIC_INIT_COUNT x2APIC Initial Count Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

839H 2105 IA32_X2APIC_CUR_COUNT x2APIC Current Count Register (R/O) If (CPUID.01H:ECX.[bit 21]
= 1)

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide Configuration Register (R/
W)

If (CPUID.01H:ECX.[bit 21]
= 1)

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 102

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register (W/O) If (CPUID.01H:ECX.[bit 21]
= 1)

C80H 3200 IA32_DEBUG_INTERFACE Silicon Debug Feature Control (R/W) If(CPUID.01H:ECX.[bit 11]
= 1

0 Enable (R/W).

BIOS set 1 to enable Silicon debug features.
Default is 0

If(CPUID.01H:ECX.[bit 11]
= 1

29:1 Reserved.

30 Lock (R/W): If 1, locks any further change
to the MSR. The lock bit is set automatically
on the first SMI assertion even if not
explicitly set by BIOS. Default is 0.

If(CPUID.01H:ECX.[bit 11]
= 1

31 Debug Occurred (R/O): This “sticky bit” is
set by hardware to indicate the status of
bit 0. Default is 0.

If(CPUID.01H:ECX.[bit 11]
= 1

63:32 Reserved.

C8DH 3213 IA32_QM_EVTSEL Monitoring Event Select Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 12] = 1)

7:0 Event ID: ID of a supported monitoring
event to report via IA32_QM_CTR.

31: 8 Reserved.

N+31:32 Resource Monitoring ID: ID for monitoring
hardware to report monitored data via
IA32_QM_CTR.

N = Ceil (Log2 (
CPUID.(EAX= 0FH,
ECX=0H).EBX[31:0] +1))

63:N+32 Reserved.

C8EH 3214 IA32_QM_CTR Monitoring Counter Register (R/O) If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 12] = 1)

61:0 Resource Monitored Data

62 Unavailable: If 1, indicates data for this
RMID is not available or not monitored for
this resource or RMID.

63 Error: If 1, indicates and unsupported RMID
or event type was written to
IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC Resource Association Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 12] = 1)

N-1:0 Resource Monitoring ID (R/W): ID for
monitoring hardware to track internal
operation, e.g. memory access.

N = Ceil (Log2 (
CPUID.(EAX= 0FH,
ECX=0H).EBX[31:0] +1))

31:N Reserved

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 103

63:32 COS (R/W). The class of service
(COS) to enforce (on writes);
returns the current COS when
read.

If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 15] = 1)

0C90H
-
0D8FH

Reserved MSR Address Space for
Platform Enforcement Mask Registers

See Section 17.15.2.1, “Enumeration and
Detection Support of Cache Allocation
Technology”

C90H 3216 IA32_L3_MASK_0 L3 CQE Mask for COS0 (R/W) If (CPUID.(10H, 0):EBX[bit
1] != 0)

31:0 Capacity Bit Mask (R/W).

63:32 Reserved.

C90H+
n

3216+n IA32_L3_MASK_n L3 CQE Mask for COSn (R/W) n = CPUID.(10H,
1):EDX[15:0]

31:0 Capacity Bit Mask (R/W).

63:32 Reserved.

DA0H 3488 IA32_XSS Extended Supervisor State Mask (R/W) If(CPUID.(0DH, 1):EAX.[bit
3] = 1

7:0 Reserved

8 Trace Packet Configuration State (R/W).

63:9 Reserved.

DB0H 3504 IA32_PKG_HDC_CTL Package Level Enable/disable HDC (R/W) If(CPUID.06H:EAX.[bit 13]
= 1

0 HDC_Pkg_Enable (R/W).

Force HDC idling or wake up HDC-idled
logical processors in the package. See
Section 14.5.2, “Package level Enabling
HDC”

If(CPUID.06H:EAX.[bit 13]
= 1

63:1 Reserved.

DB1H 3505 IA32_PM_CTL1 Enable/disable HWP (R/W) If(CPUID.06H:EAX.[bit 13]
= 1

0 HDC_Allow_Block (R/W)

Allow/Block this logical processor for
package level HDC control. See Section
14.5.3

If(CPUID.06H:EAX.[bit 13]
= 1

63:1 Reserved.

DB2H 3506 IA32_THREAD_STALL Per-Logical_Processor HDC Idle
Residency (R/0)

If(CPUID.06H:EAX.[bit 13]
= 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 104

63:0 Stall_Cycle_Cnt (R/W)

Stalled cycles due to HDC forced idle on this
logical processor. See Section 14.5.4.1

If(CPUID.06H:EAX.[bit 13]
= 1

4000_
0000H
-
4000_
00FFH

Reserved MSR Address Space All existing and future processors will
not implement MSR in this range.

C000_
0080H

IA32_EFER Extended Feature Enables If (
CPUID.80000001.EDX.[bit
20] or
CPUID.80000001.EDX.[bit
29])

0 SYSCALL Enable: IA32_EFER.SCE (R/W)

Enables SYSCALL/SYSRET instructions in
64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable: IA32_EFER.LME (R/
W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active: IA32_EFER.LMA (R)

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable:
IA32_EFER.NXE (R/W)

63:12 Reserved.

C000_
0081H

IA32_STAR System Call Target Address (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0082H

IA32_LSTAR IA-32e Mode System Call Target Address
(R/W)

If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0084H

IA32_FMASK System Call Flag Mask (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0100H

IA32_FS_BASE Map of BASE Address of FS (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0101H

IA32_GS_BASE Map of BASE Address of GS (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 105

...

35.9.1 MSRs In Intel® Xeon® Processor E5 v2 Product Family (Based on Ivy Bridge-E
Microarchitecture)

Table 35-19 lists model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5 v2 Product
Family (based on Ivy Bridge-E microarchitecture). These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_3EH, see Table 35-1. These processors supports the MSR interfaces listed in
Table 35-15, and Table 35-19.

C000_
0102H

IA32_KERNEL_GS_BASE Swap Target of BASE Address of GS (R/
W)

If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0103H

IA32_TSC_AUX Auxiliary TSC (RW) If CPUID.80000001H:
EDX[27] = 1

31:0 AUX: Auxiliary signature of TSC

63:32 Reserved.
NOTES:

1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are supported, software must treat them as
model-specific. Starting with Intel Core Duo processors, MSR addresses 180H-185H, 188H-197H are reserved.

2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. See Section 15.3.2.3 and Section
15.3.2.4 for more information.

3. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Table 35-19 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control (R/W)

0 LockOut (R/WO)

Set 1to prevent further writes to MSR_PPIN_CTL. Writing 1 to

MSR_PPINCTL[bit 0] is permitted only if MSR_PPIN_CTL[bit 1] is

clear, Default is 0.

BIOS should provide an opt-in menu to enable the user to turn on

MSR_PPIN_CTL[bit 1] for privileged inventory initialization agent to

access MSR_PPIN. After reading MSR_PPIN, the privileged

inventory initialization agent should write ‘01b’ to MSR_PPIN_CTL

to disable further access to MSR_PPIN and prevent unauthorized

modification to MSR_PPIN_CTL.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 106

1 Enable_PPIN (R/W)

If 1, enables MSR_PPIN to be accessible using RDMSR. Once set,

attempt to write 1 to MSR_PPIN_CTL[bit 0] will cause #GP.

If 0, an attempt to read MSR_PPIN will cause #GP. Default is 0.

63:2 Reserved.

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

63:0 Protected Processor Inventory Number (R/O)

A unique value within a given CPUID family/model/stepping

signature that a privileged inventory initialization agent can access

to identify each physical processor, when access to MSR_PPIN is

enabled. Access to MSR_PPIN is permitted only if

MSR_PPIN_CTL[bits 1:0] = ‘10b’

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

22:16 Reserved.

23 Package PPIN_CAP (R/O)

When set to 1, indicates that Protected Processor Inventory

Number (PPIN) capability can be enabled for privileged system

inventory agent to read PPIN from MSR_PPIN.

When set to 0, PPIN capability is not supported. An attempt to

access MSR_PPIN_CTL or MSR_PPIN will cause #GP.

27:24 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

Table 35-19 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 107

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

Table 35-19 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 108

25 Reserved.

26 MCG_ELOG_P

63:27 Reserved.

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W)

When set, enables IMC status bank to log additional info in bits
36:32.

63:2 Reserved.

1AEH 430 MSR_TURBO_RATIO_LIMIT
1

Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active.

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10core active.

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

63:32 Reserved

285H 645 IA32_MC5_CTL2 Package See Table 35-2.

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

288H 648 IA32_MC8_CTL2 Package See Table 35-2.

289H 649 IA32_MC9_CTL2 Package See Table 35-2.

28AH 650 IA32_MC10_CTL2 Package See Table 35-2.

28BH 651 IA32_MC11_CTL2 Package See Table 35-2.

28CH 652 IA32_MC12_CTL2 Package See Table 35-2.

28DH 653 IA32_MC13_CTL2 Package See Table 35-2.

28EH 654 IA32_MC14_CTL2 Package See Table 35-2.

28FH 655 IA32_MC15_CTL2 Package See Table 35-2.

290H 656 IA32_MC16_CTL2 Package See Table 35-2.

291H 657 IA32_MC17_CTL2 Package See Table 35-2.

Table 35-19 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 109

292H 658 IA32_MC18_CTL2 Package See Table 35-2.

293H 659 IA32_MC19_CTL2 Package See Table 35-2.

294H 660 IA32_MC20_CTL2 Package See Table 35-2.

295H 661 IA32_MC21_CTL2 Package See Table 35-2.

296H 662 IA32_MC22_CTL2 Package See Table 35-2.

297H 663 IA32_MC23_CTL2 Package See Table 35-2.

298H 664 IA32_MC24_CTL2 Package See Table 35-2.

299H 665 IA32_MC25_CTL2 Package See Table 35-2.

29AH 666 IA32_MC26_CTL2 Package See Table 35-2.

29BH 667 IA32_MC27_CTL2 Package See Table 35-2.

29CH 668 IA32_MC28_CTL2 Package See Table 35-2.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC error from the Intel QPI module.
415H 1045 MSR_MC5_STATUS Package

416H 1046 MSR_MC5_ADDR Package

417H 1047 MSR_MC5_MISC Package

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC error from the integrated I/O module.
419H 1049 MSR_MC6_STATUS Package

41AH 1050 MSR_MC6_ADDR Package

41BH 1051 MSR_MC6_MISC Package

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC7 and MC 8 report MC error from the two home agents.
41DH 1053 MSR_MC7_STATUS Package

41EH 1054 MSR_MC7_ADDR Package

41FH 1055 MSR_MC7_MISC Package

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC7 and MC 8 report MC error from the two home agents.
421H 1057 MSR_MC8_STATUS Package

422H 1058 MSR_MC8_ADDR Package

423H 1059 MSR_MC8_MISC Package

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

425H 1061 MSR_MC9_STATUS Package

426H 1062 MSR_MC9_ADDR Package

427H 1063 MSR_MC9_MISC Package

Table 35-19 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 110

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

429H 1065 MSR_MC10_STATUS Package

42AH 1066 MSR_MC10_ADDR Package

42BH 1067 MSR_MC10_MISC Package

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_STATUS Package Bank MC11 reports MC error from a specific channel of the
integrated memory controller.42EH 1070 MSR_MC11_ADDR Package

42FH 1071 MSR_MC11_MISC Package

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

431H 1073 MSR_MC12_STATUS Package

432H 1074 MSR_MC12_ADDR Package

433H 1075 MSR_MC12_MISC Package

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

435H 1077 MSR_MC13_STATUS Package

436H 1078 MSR_MC13_ADDR Package

437H 1079 MSR_MC13_MISC Package

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

439H 1081 MSR_MC14_STATUS Package

43AH 1082 MSR_MC14_ADDR Package

43BH 1083 MSR_MC14_MISC Package

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

43DH 1085 MSR_MC15_STATUS Package

43EH 1086 MSR_MC15_ADDR Package

43FH 1087 MSR_MC15_MISC Package

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

441H 1089 MSR_MC16_STATUS Package

442H 1090 MSR_MC16_ADDR Package

443H 1091 MSR_MC16_MISC Package

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

445H 1093 MSR_MC17_STATUS Package

446H 1094 MSR_MC17_ADDR Package

447H 1095 MSR_MC17_MISC Package

Table 35-19 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 111

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

449H 1097 MSR_MC18_STATUS Package

44AH 1098 MSR_MC18_ADDR Package

44BH 1099 MSR_MC18_MISC Package

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

44DH 1101 MSR_MC19_STATUS Package

44EH 1102 MSR_MC19_ADDR Package

44FH 1103 MSR_MC19_MISC Package

450H 1104 MSR_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

451H 1105 MSR_MC20_STATUS Package Bank MC20 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.452H 1106 MSR_MC20_ADDR Package

453H 1107 MSR_MC20_MISC Package

454H 1108 MSR_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC21 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

455H 1109 MSR_MC21_STATUS Package

456H 1110 MSR_MC21_ADDR Package

457H 1111 MSR_MC21_MISC Package

458H 1112 MSR_MC22_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC22 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

459H 1113 MSR_MC22_STATUS Package

45AH 1114 MSR_MC22_ADDR Package

45BH 1115 MSR_MC22_MISC Package

45CH 1116 MSR_MC23_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC23 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

45DH 1117 MSR_MC23_STATUS Package

45EH 1118 MSR_MC23_ADDR Package

45FH 1119 MSR_MC23_MISC Package

460H 1120 MSR_MC24_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC24 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

461H 1121 MSR_MC24_STATUS Package

462H 1122 MSR_MC24_ADDR Package

463H 1123 MSR_MC24_MISC Package

464H 1124 MSR_MC25_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC25 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

465H 1125 MSR_MC25_STATUS Package

466H 1126 MSR_MC25_ADDR Package

467H 1127 MSR_MC25_MISC Package

Table 35-19 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 112

35.9.2 Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family
Intel® Xeon® processor E7 v2 family (based on Ivy Bridge-E microarchitecture) with CPUID
DisplayFamily_DisplayModel signature 06_3EH supports the MSR interfaces listed in Table 35-15, Table 35-19,
and Table 35-20.

468H 1128 MSR_MC26_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC26 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

469H 1129 MSR_MC26_STATUS Package

46AH 1130 MSR_MC26_ADDR Package

46BH 1131 MSR_MC26_MISC Package

46CH 1132 MSR_MC27_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC27 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

46DH 1133 MSR_MC27_STATUS Package

46EH 1134 MSR_MC27_ADDR Package

46FH 1135 MSR_MC27_MISC Package

470H 1136 MSR_MC28_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC28 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

471H 1137 MSR_MC28_STATUS Package

472H 1138 MSR_MC28_ADDR Package

473H 1139 MSR_MC28_MISC Package

613H 1555 MSR_PKG_PERF_STATUS Package Package RAPL Perf Status (R/O)

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

Table 35-19 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-20 Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with
DisplayFamily_DisplayModel Signature 06_3EH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 35-2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 113

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

20 LMCE_ON (R/WL)

63:21 Reserved.

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 Reserved.

26 MCG_ELOG_P

27 MCG_LMCE_P

63:28 Reserved.

17AH 378 IA32_MCG_STATUS Thread (R/W0)

0 RIPV

1 EIPV

2 MCIP

3 LMCE signaled

63:4 Reserved.

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active.

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10core active.

Table 35-20 Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with
DisplayFamily_DisplayModel Signature 06_3EH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 114

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

39:32 Package Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

47:40 Package Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

55:48 Package Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

63:56 Reserved

29DH 669 IA32_MC29_CTL2 Package See Table 35-2.

29EH 670 IA32_MC30_CTL2 Package See Table 35-2.

29FH 671 IA32_MC31_CTL2 Package See Table 35-2.

41BH 1051 IA32_MC6_MISC Package Misc MAC information of Integrated I/O. (R/O) see Section 15.3.2.4

5:0 Recoverable Address LSB

8:6 Address Mode

15:9 Reserved

31:16 PCI Express Requestor ID

39:32 PCI Express Segment Number

63:32 Reserved

474H 1140 MSR_MC29_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC29 reports MC error from a specific CBo (core broadcast) and
its corresponding slice of L3.

475H 1141 MSR_MC29_STATUS Package

476H 1142 MSR_MC29_ADDR Package

477H 1143 MSR_MC29_MISC Package

478H 1144 MSR_MC30_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC30 reports MC error from a specific CBo (core broadcast) and
its corresponding slice of L3.

479H 1145 MSR_MC30_STATUS Package

47AH 1146 MSR_MC30_ADDR Package

47BH 1147 MSR_MC30_MISC Package

47CH 1148 MSR_MC31_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC31 reports MC error from a specific CBo (core broadcast) and
its corresponding slice of L3.

47DH 1149 MSR_MC31_STATUS Package

47EH 1150 MSR_MC31_ADDR Package

47FH 1147 MSR_MC31_MISC Package

Table 35-20 Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with
DisplayFamily_DisplayModel Signature 06_3EH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 115

35.10 MSRS IN THE 4TH GENERATION INTEL® CORE™ PROCESSORS (BASED ON
HASWELL MICROARCHITECTURE)

The 4th generation Intel® Core™ processor family and Intel® Xeon® processor E3-1200v3 product family (based
on Haswell microarchitecture), with CPUID DisplayFamily_DisplayModel signature 06_3CH/06_45H/06_46H,
support the MSR interfaces listed in Table 35-15, Table 35-16, Table 35-18, and Table 35-21.

The MSRs listed in Table 35-21 also apply to processors based on Haswell-E microarchitecture (see Section).

Table 35-21 Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3BH 59 IA32_TSC_ADJUST THREAD Per-Logical-Processor TSC ADJUST (R/W)

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package See Table 35-18

186H 390 IA32_PERFEVTSEL0 THREAD Performance Event Select for Counter 0 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

187H 391 IA32_PERFEVTSEL1 THREAD Performance Event Select for Counter 1 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

188H 392 IA32_PERFEVTSEL2 THREAD Performance Event Select for Counter 2 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

33 IN_TXCP: see Section 18.11.5.1

When IN_TXCP=1 & IN_TX=1 and in sampling, spurious PMI may
occur and transactions may continuously abort near overflow
conditions. Software should favor using IN_TXCP for counting over
sampling. If sampling, software should use large “sample-after”
value after clearing the counter configured to use IN_TXCP and
also always reset the counter even when no overflow condition
was reported.

189H 393 IA32_PERFEVTSEL3 THREAD Performance Event Select for Counter 3 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 116

35.10.1 MSRs in 4th Generation Intel® Core™ Processor Family (based on Haswell
Microarchitecture)

Table 35-22 lists model-specific registers (MSRs) that are specific to 4th generation Intel® Core™ processor
family and Intel® Xeon® processor E3-1200 v3 product family (based on Haswell microarchitecture). These
processors have a CPUID signature with DisplayFamily_DisplayModel of 06_3CH/06_45H/06_46H, see Table 35-
1.

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 35-2.

0 LBR: Last Branch Record

1 BTF

5:2 Reserved.

6 TR: Branch Trace

7 BTS: Log Branch Trace Message to BTS buffer

8 BTINT

9 BTS_OFF_OS

10 BTS_OFF_USER

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

15 RTM_DEBUG

63:15 Reserved.

491H 1169 IA32_VMX_FMFUNC THREAD Capability Reporting Register of VM-function Controls (R/O)

See Table 35-2

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Base TDP Ratio (R/O)

See Table 35-18

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O). See Table 35-18

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O). See Table 35-18

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

See Table 35-18

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

See Table 35-18

C80H 32 IA32_DEBUG_FEATURE Package Silicon Debug Feature Control (R/W)

See Table 35-2.

Table 35-21 Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 117

Table 35-22 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is
supported and the MSR_SMM_FEATURE_CONTROL is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and the MSR_SMM_DELAYED is supported.

63:60 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

392H 914 MSR_UNC_PERF_GLOBAL_
STATUS

Package Uncore PMU main status

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 118

0 Fixed counter overflowed

1 An ARB counter overflowed

2 Reserved

3 A CBox counter overflowed (on any slice)

63:4 Reserved.

394H 916 MSR_UNC_PERF_FIXED_
CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow propagation

21 Reserved

22 Enable counting

63:23 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box configuration information (R/O)

3:0 Encoded number of C-Box, derive value by “-1“

63:4 Reserved.

3B0H 946 MSR_UNC_ARB_PER_CTR0 Package Uncore Arb unit, performance counter 0

3B1H 947 MSR_UNC_ARB_PER_CTR1 Package Uncore Arb unit, performance counter 1

3B2H 944 MSR_UNC_ARB_
PERFEVTSEL0

Package Uncore Arb unit, counter 0 event select MSR

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

Table 35-22 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 119

63:32 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

4E0H 1248 MSR_SMM_FEATURE_CONT
ROL

Package Enhanced SMM Feature Control (SMM-RW)

Reports SMM capability Enhancement. Accessible only while in
SMM.

0 Lock (SMM-RWO)

When set to ‘1’ locks this register from further changes

1 Reserved

2 SMM_Code_Chk_En (SMM-RW)

This control bit is available only if MSR_SMM_MCA_CAP[58] == 1.
When set to ‘0’ (default) none of the logical processors are
prevented from executing SMM code outside the ranges defined by
the SMRR.

When set to ‘1’ any logical processor in the package that attempts
to execute SMM code not within the ranges defined by the SMRR
will assert an unrecoverable MCE.

63:3 Reserved

4E2H 1250 MSR_SMM_DELAYED Package SMM Delayed (SMM-RO)

Reports the interruptible state of all logical processors in the
package. Available only while in SMM and
MSR_SMM_MCA_CAP[LONG_FLOW_INDICATION] == 1.

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its state in a long flow of
internal operation which delays servicing an interrupt. The
corresponding bit will be set at the start of long events such as:
Microcode Update Load, C6, WBINVD, Ratio Change, Throttle.

The bit is automatically cleared at the end of each long event. The
reset value of this field is 0.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

4E3H 1251 MSR_SMM_BLOCKED Package SMM Blocked (SMM-RO)

Reports the blocked state of all logical processors in the package.
Available only while in SMM.

Table 35-22 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 120

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its blocked state to
service an SMI. The corresponding bit will be set if the logical
processor is in one of the following states: Wait For SIPI or SENTER
Sleep.

The reset value of this field is 0FFFH.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

640H 1600 MSR_PP1_POWER_LIMIT Package PP1 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATU
S

Package PP1 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating
system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system
request due to Processor Graphics driver override.

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system
request because the processor has detected that utilization is low.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

Table 35-22 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 121

9 Core Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

12 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating system
request due to multi-core turbo limits.

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating system
request due to Turbo transition attenuation. This prevents
performance degradation due to frequent operating ratio changes.

15:14 Reserved

16 PROCHOT Log

When set, indicates that the corresponding PROCHOT Status bit is
set. Software can write 0 to this bit to clear PROCHOT Status.

17 Thermal Log

When set, indicates that the corresponding Thermal status bit was
set since it was last cleared by software. Software can write 0 to
this bit to clear Thermal Status.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the corresponding Graphics Driver status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear Graphics Driver Status.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the corresponding Autonomous
Utilization-Based Frequency Control status bit was set since it was
last cleared by software. Software can write 0 to this bit to clear
Autonomous Utilization-Based Frequency Control Status.

22 VR Therm Alert Log

When set, indicates that the corresponding VR Therm Alert Status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear VR Therm Alert Status.

23 Reserved.

Table 35-22 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 122

24 Electrical Design Point Log

When set, indicates that the corresponding EDP Status bit was set
since it was last cleared by software. Software can write 0 to this
bit to clear EDP Status.

25 Core Power Limiting Log

When set, indicates that the corresponding Core Power Limiting
Status bit was set since it was last cleared by software. Software
can write 0 to this bit to clear Core Power Limiting Status.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL1 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL1 Status.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL2 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL2 Status.

28 Max Turbo Limit Log

When set, indicates that the corresponding Max Turbo Limit Status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear Max Turbo Limit Status.

29 Turbo Transition Attenuation Log

When set, indicates that the corresponding Turbo Transition
Attenuation Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Turbo Transition
Attenuation Status.

63:30 Reserved.

6B0H 1712 MSR_GRAPHICS_PERF_LIMI
T_REASONS

Package Indicator of Frequency Clipping in the Processor Graphics (R/W)

(frequency refers to processor graphics frequency)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system
request due to Processor Graphics driver override.

5 Reserved.

Table 35-22 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 123

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Graphics Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

15:12 Reserved

16 PROCHOT Log

When set, indicates that the corresponding PROCHOT Status bit is
set. Software can write 0 to this bit to clear PROCHOT Status.

17 Thermal Log

When set, indicates that the corresponding Thermal status bit was
set since it was last cleared by software. Software can write 0 to
this bit to clear Thermal Status.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the corresponding Graphics Driver status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear Graphics Driver Status.

21 Reserved.

22 VR Therm Alert Log

When set, indicates that the corresponding VR Therm Alert Status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear VR Therm Alert Status.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the corresponding EDP Status bit was set
since it was last cleared by software. Software can write 0 to this
bit to clear EDP Status.

Table 35-22 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 124

25 Graphics Power Limiting Log

When set, indicates that the corresponding Graphics Power Limiting
Status bit was set since it was last cleared by software. Software
can write 0 to this bit to clear Graphics Power Limiting Status.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL1 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL1 Status.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL2 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL2 Status.

63:28 Reserved.

6B1H 1713 MSR_RING_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in the Ring Interconnect (R/W)

(frequency refers to ring interconnect in the uncore)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

5:2 Reserved.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Reserved.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

15:12 Reserved

Table 35-22 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 125

16 PROCHOT Log

When set, indicates that the corresponding PROCHOT Status bit is
set. Software can write 0 to this bit to clear PROCHOT Status.

17 Thermal Log

When set, indicates that the corresponding Thermal status bit was
set since it was last cleared by software. Software can write 0 to
this bit to clear Thermal Status.

21:18 Reserved.

22 VR Therm Alert Log

When set, indicates that the corresponding VR Therm Alert Status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear VR Therm Alert Status.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the corresponding EDP Status bit was set
since it was last cleared by software. Software can write 0 to this
bit to clear EDP Status.

25 Reserved.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL1 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL1 Status.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL2 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL2 Status.

63:28 Reserved.

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

706H 1798 MSR_UNC_CBO_0_PER_
CTR0

Package Uncore C-Box 0, performance counter 0

707H 1799 MSR_UNC_CBO_0_PER_
CTR1

Package Uncore C-Box 0, performance counter 1

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

Table 35-22 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 126

35.10.2 Additional Residency MSRs Supported in 4th Generation Intel® Core™ Processors
The 4th generation Intel® Core™ processor family (based on Haswell microarchitecture) with CPUID
DisplayFamily_DisplayModel signature 06_45H supports the MSR interfaces listed in Table 35-15, Table 35-16,
Table 35-18, Table 35-21, Table 35-22, and Table 35-23.

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

716H 1814 MSR_UNC_CBO_1_PER_
CTR0

Package Uncore C-Box 1, performance counter 0

717H 1815 MSR_UNC_CBO_1_PER_
CTR1

Package Uncore C-Box 1, performance counter 1

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

721H 1824 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

726H 1830 MSR_UNC_CBO_2_PER_
CTR0

Package Uncore C-Box 2, performance counter 0

727H 1831 MSR_UNC_CBO_2_PER_
CTR1

Package Uncore C-Box 2, performance counter 1

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR.

736H 1846 MSR_UNC_CBO_3_PER_
CTR0

Package Uncore C-Box 3, performance counter 0.

737H 1847 MSR_UNC_CBO_3_PER_
CTR1

Package Uncore C-Box 3, performance counter 1.

Table 35-22 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-23 Additional Residency MSRs Supported by 4th Generation Intel® Core™ Processors with
DisplayFamily_DisplayModel Signature 06_45H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

630H 1584 MSR_PKG_C8_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

59:0 Package C8 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C8
states. Count at the same frequency as the TSC.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 127

35.11 MSRS IN INTEL® XEON® PROCESSOR E5 26XX V3 PRODUCT FAMILY
Intel® Xeon® processor E5 v3 family and Intel® Xeon® processor E7 v3 family are based on Haswell-E microar-
chitecture (CPUID DisplayFamily_DisplayModel = 06_3F). These processors supports the MSR interfaces listed in
Table 35-15, Table 35-19, Table 35-21, and Table 35-24.

63:60 Reserved

631H 1585 MSR_PKG_C9_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

59:0 Package C9 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C9
states. Count at the same frequency as the TSC.

63:60 Reserved

632H 1586 MSR_PKG_C10_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

59:0 Package C10 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C10
states. Count at the same frequency as the TSC.

63:60 Reserved

Table 35-23 Additional Residency MSRs Supported by 4th Generation Intel® Core™ Processors with
DisplayFamily_DisplayModel Signature 06_45H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-24 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is
supported and a host-space interface available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and a host-space interface available to SMM handler.

63:60 Reserved

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 128

1 MemError Log Enable (R/W)

When set, enables IMC status bank to log additional info in bits
36:32.

63:2 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active.

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10 core active.

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

39:32 Package Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

Table 35-24 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 129

47:40 Package Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

55:48 Package Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

63:56 Package Maximum Ratio Limit for16C

Maximum turbo ratio limit of 16 core active.

1AFH 431 MSR_TURBO_RATIO_LIMIT2 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 17C

Maximum turbo ratio limit of 17 core active.

15:8 Package Maximum Ratio Limit for 18C

Maximum turbo ratio limit of 18 core active.

63:16 Package Reserved

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC error from the Intel QPI 0 module.
415H 1045 MSR_MC5_STATUS Package

416H 1046 MSR_MC5_ADDR Package

417H 1047 MSR_MC5_MISC Package

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC error from the integrated I/O module.
419H 1049 MSR_MC6_STATUS Package

41AH 1050 MSR_MC6_ADDR Package

41BH 1051 MSR_MC6_MISC Package

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC error from the home agent HA 0.
41DH 1053 MSR_MC7_STATUS Package

41EH 1054 MSR_MC7_ADDR Package

41FH 1055 MSR_MC7_MISC Package

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC8 reports MC error from the home agent HA 1.
421H 1057 MSR_MC8_STATUS Package

422H 1058 MSR_MC8_ADDR Package

423H 1059 MSR_MC8_MISC Package

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

425H 1061 MSR_MC9_STATUS Package

426H 1062 MSR_MC9_ADDR Package

427H 1063 MSR_MC9_MISC Package

Table 35-24 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 130

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

429H 1065 MSR_MC10_STATUS Package

42AH 1066 MSR_MC10_ADDR Package

42BH 1067 MSR_MC10_MISC Package

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

42DH 1069 MSR_MC11_STATUS Package

42EH 1070 MSR_MC11_ADDR Package

42FH 1071 MSR_MC11_MISC Package

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

431H 1073 MSR_MC12_STATUS Package

432H 1074 MSR_MC12_ADDR Package

433H 1075 MSR_MC12_MISC Package

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

435H 1077 MSR_MC13_STATUS Package

436H 1078 MSR_MC13_ADDR Package

437H 1079 MSR_MC13_MISC Package

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

439H 1081 MSR_MC14_STATUS Package

43AH 1082 MSR_MC14_ADDR Package

43BH 1083 MSR_MC14_MISC Package

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

43DH 1085 MSR_MC15_STATUS Package

43EH 1086 MSR_MC15_ADDR Package

43FH 1087 MSR_MC15_MISC Package

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

441H 1089 MSR_MC16_STATUS Package

442H 1090 MSR_MC16_ADDR Package

443H 1091 MSR_MC16_MISC Package

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, CBo12,
CBo15.

445H 1093 MSR_MC17_STATUS Package

446H 1094 MSR_MC17_ADDR Package

447H 1095 MSR_MC17_MISC Package

Table 35-24 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 131

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo1, CBo4, CBo7, CBo10, CBo13,
CBo16.

449H 1097 MSR_MC18_STATUS Package

44AH 1098 MSR_MC18_ADDR Package

44BH 1099 MSR_MC18_MISC Package

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo2, CBo5, CBo8, CBo11, CBo14,
CBo17.

44DH 1101 MSR_MC19_STATUS Package

44EH 1102 MSR_MC19_ADDR Package

44FH 1103 MSR_MC19_MISC Package

450H 1104 MSR_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC20 reports MC error from the Intel QPI 1 module.
451H 1105 MSR_MC20_STATUS Package

452H 1106 MSR_MC20_ADDR Package

453H 1107 MSR_MC20_MISC Package

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.9.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the multiplier, 1/
2^ESU; where ESU is an unsigned integer represented by bits 12:8.
Default value is 0EH (or 61 micro-joules)

15:13 Package Reserved

19:16 Package Time Units

See Section 14.9.1, “RAPL Interfaces.”

63:20 Reserved

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating
system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

5:2 Reserved.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

Table 35-24 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 132

35.12 MSRS IN INTEL® CORE™ M PROCESSORS
The Intel® Core™ M-5xxx processors are based on the Broadwell microarchitecture, with CPUID
DisplayFamily_DisplayModel signature 06_3DH, supports the MSR interfaces listed in Table 35-15, Table 35-16,
Table 35-18, Table 35-21, and Table 35-25.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

63:9 Reserved.

C8DH 3113 IA32_QM_EVTSEL THREAD Monitoring Event Select Register (R/W).

if CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1

7:0 EventID (RW)

31:8 Reserved.

41:32 RMID (RW)

63:42 Reserved.

C8EH 3114 IA32_QM_CTR THREAD Monitoring Counter Register (R/O).

if CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1

61:0 Resource Monitored Data

62 Unavailable: If 1, indicates data for this RMID is not available or not
monitored for this resource or RMID.

63 Error: If 1, indicates and unsupported RMID or event type was
written to IA32_PQR_QM_EVTSEL.

C8FH 3115 IA32_PQR_ASSOC THREAD Resource Association Register (R/W).

9:0 RMID

63: 10 Reserved

Table 35-24 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-25 Additional MSRs Supported by Intel® Core™ M Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 133

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6core active.

63:48 Reserved.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Ovf_PMC0

1 Ovf_PMC1

2 Ovf_PMC2

3 Ovf_PMC3

31:4 Reserved.

32 Ovf_FixedCtr0

33 Ovf_FixedCtr1

34 Ovf_FixedCtr2

54:35 Reserved.

55 Trace_ToPA_PMI. See Section 36.2.4.1, “Table of Physical
Addresses (ToPA).”

60:56 Reserved.

61 Ovf_Uncore

62 Ovf_BufDSSAVE

63 CondChgd

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Set 1 to clear Ovf_PMC0

1 Set 1 to clear Ovf_PMC1

2 Set 1 to clear Ovf_PMC2

3 Set 1 to clear Ovf_PMC3

Table 35-25 Additional MSRs Supported by Intel® Core™ M Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 134

31:4 Reserved.

32 Set 1 to clear Ovf_FixedCtr0

33 Set 1 to clear Ovf_FixedCtr1

34 Set 1 to clear Ovf_FixedCtr2

54:35 Reserved.

55 Set 1 to clear Trace_ToPA_PMI. See Section 36.2.4.1, “Table of
Physical Addresses (ToPA).”

60:56 Reserved.

61 Set 1 to clear Ovf_Uncore

62 Set 1 to clear Ovf_BufDSSAVE

63 Set 1 to clear CondChgd

560H 1376 IA32_RTIT_OUTPUT_BASE THREAD Trace Output Base Register (R/W)

6:0 Reserved.

MAXPHYADDR1-1:7 Base physical address of 1st ToPA table.

63:MAXPHYADDR Reserved.

561H 1377 IA32_RTIT_OUTPUT_MASK
_PTRS

THREAD Trace Output Mask Pointers Register (R/W)

6:0 Reserved.

31:7 MaskOrTableOffset

63:32 Output Offset.

570H 1392 IA32_RTIT_CTL Thread Trace Packet Control Register (R/W)

0 TraceEn

1 Reserved, MBZ.

2 OS

3 User

6:4 Reserved, MBZ

7 CR3 filter

8 ToPA; writing 0 will #GP if also setting TraceEn

9 Reserved, MBZ

10 TSCEn

11 DisRETC

12 Reserved, MBZ

13 Reserved; writing 0 will #GP if also setting TraceEn

63:14 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Thread Tracing Status Register (R/W)

Table 35-25 Additional MSRs Supported by Intel® Core™ M Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 135

...

12. Updates to Appendix A, Volume 3C
Change bars show changes to Appendix A of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

A.10 VPID AND EPT CAPABILITIES
The IA32_VMX_EPT_VPID_CAP MSR (index 48CH) reports information about the capabilities of the logical
processor with regard to virtual-processor identifiers (VPIDs, Section 28.1) and extended page tables (EPT,
Section 28.2):
• If bit 0 is read as 1, the logical processor allows software to configure EPT paging-structure entries in which

bits 2:0 have value 100b (indicating an execute-only translation).
• Bit 6 indicates support for a page-walk length of 4.
• If bit 8 is read as 1, the logical processor allows software to configure the EPT paging-structure memory type

to be uncacheable (UC); see Section 24.6.11.
• If bit 14 is read as 1, the logical processor allows software to configure the EPT paging-structure memory type

to be write-back (WB).
• If bit 16 is read as 1, the logical processor allows software to configure a EPT PDE to map a 2-Mbyte page (by

setting bit 7 in the EPT PDE).
• If bit 17 is read as 1, the logical processor allows software to configure a EPT PDPTE to map a 1-Gbyte page

(by setting bit 7 in the EPT PDPTE).
• Support for the INVEPT instruction (see Chapter 30 and Section 28.3.3.1).

0 Reserved, writes ignored.

1 ContexEn, writes ignored.

2 TriggerEn, writes ignored.

3 Reserved

4 Error (R/W)

5 Stopped

63:6 Reserved, MBZ.

572H 1394 IA32_RTIT_CR3_MATCH THREAD Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match
NOTES:

1. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

Table 35-25 Additional MSRs Supported by Intel® Core™ M Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 136

— If bit 20 is read as 1, the INVEPT instruction is supported.

— If bit 25 is read as 1, the single-context INVEPT type is supported.

— If bit 26 is read as 1, the all-context INVEPT type is supported.
• If bit 21 is read as 1, accessed and dirty flags for EPT are supported (see Section 28.2.4).
• Support for the INVVPID instruction (see Chapter 30 and Section 28.3.3.1).

— If bit 32 is read as 1, the INVVPID instruction is supported.

— If bit 40 is read as 1, the individual-address INVVPID type is supported.

— If bit 41 is read as 1, the single-context INVVPID type is supported.

— If bit 42 is read as 1, the all-context INVVPID type is supported.

— If bit 43 is read as 1, the single-context-retaining-globals INVVPID type is supported.
• Bits 5:1, bit 7, bits 13:9, bit 15, bits 19:18, bits 24:22, bits 31:27, bits 39:33, and bits 63:44 are reserved

and are read as 0.

The IA32_VMX_EPT_VPID_CAP MSR exists only on processors that support the 1-setting of the “activate
secondary controls” VM-execution control (only if bit 63 of the IA32_VMX_PROCBASED_CTLS MSR is 1) and that
support either the 1-setting of the “enable EPT” VM-execution control (only if bit 33 of the
IA32_VMX_PROCBASED_CTLS2 MSR is 1) or the 1-setting of the “enable VPID” VM-execution control (only if
bit 37 of the IA32_VMX_PROCBASED_CTLS2 MSR is 1).

...

	Revision History
	Preface
	Summary Tables of Changes
	Documentation Changes
	1. Updates to Chapter 1, Volume 1
	2. Updates to Chapter 5, Volume 1
	3. Updates to Chapter 12, Volume 1
	Chapter 12 Programming with SSE3, SSSE3, SSE4 and AESNI
	4. Updates to Chapter 1, Volume 2A
	5. Updates to Chapter 3, Volume 2A
	6. Updates to Chapter 4, Volume 2B
	7. Updates to Chapter 1, Volume 3A
	8. Updates to Chapter 16, Volume 3B
	9. Updates to Chapter 17, Volume 3B
	Chapter 17 Debug, Branch Profile, TSC, and Resource Monitoring Features
	10. Updates to Chapter 19, Volume 3B
	Chapter 19 Performance-Monitoring Events
	11. Updates to Chapter 35, Volume 3C
	12. Updates to Appendix A, Volume 3C

