
Document Number: 252046-045

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Documentation Changes

January 2015

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages
resulting from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from pub-
lished specifications. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is sub-
ject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or by visiting http://www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation
in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 1997-2015, Intel Corporation. All Rights Reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents

Revision History . 4

Preface . 7

Summary Tables of Changes . 8

Documentation Changes. 9

Revision History

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Revision Description Date

-001 • Initial release November 2002

-002
• Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual
December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion

February 2003

-004 • Removed Documentation changes 1-17.
• Added Documentation changes 1-24. June 2003

-005 • Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007 • Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008 • Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012 • Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the

document.
July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015 • Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017 • Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019 • Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Added Documentation Changes 20-27. May 2007

-021 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1-6

November 2007

-022 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-6

August 2008

-023 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-21

March 2009

Revision History

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

§

-024 • Removed Documentation Changes 1-21
• Added Documentation Changes 1-16

June 2009

-025 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

September 2009

-026 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-15

December 2009

-027 • Removed Documentation Changes 1-15
• Added Documentation Changes 1-24

March 2010

-028 • Removed Documentation Changes 1-24
• Added Documentation Changes 1-29

June 2010

-029 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

September 2010

-030 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

January 2011

-031 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

April 2011

-032 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-14

May 2011

-033 • Removed Documentation Changes 1-14
• Added Documentation Changes 1-38

October 2011

-034 • Removed Documentation Changes 1-38
• Added Documentation Changes 1-16

December 2011

-035 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

March 2012

-036 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-17

May 2012

-037 • Removed Documentation Changes 1-17
• Added Documentation Changes 1-28

August 2012

-038 • Removed Documentation Changes 1-28
• Add Documentation Changes 1-22

January 2013

-039 • Removed Documentation Changes 1-22
• Add Documentation Changes 1-17

June 2013

-040 • Removed Documentation Changes 1-17
• Add Documentation Changes 1-24

September 2013

-041 • Removed Documentation Changes 1-24
• Add Documentation Changes 1-20

February 2014

-042 • Removed Documentation Changes 1-20
• Add Documentation Changes 1-8

February 2014

-043 • Removed Documentation Changes 1-8
• Add Documentation Changes 1-43

June 2014

-044 • Removed Documentation Changes 1-43
• Add Documentation Changes 1-12

September 2014

-045 • Removed Documentation Changes 1-12
• Add Documentation Changes 1-22

January 2015

Revision Description Date

Revision History

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Preface

This document is an update to the specifications contained in the Affected Documents table below. This
document is a compilation of device and documentation errata, specification clarifications and changes. It is
intended for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents

Nomenclature
Documentation Changes include typos, errors, or omissions from the current published specifications. These
will be incorporated in any new release of the specification.

Document Title Document Number/
Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture 253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A: Instruction Set
Reference, A-M 253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B: Instruction Set
Reference, N-Z 253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C: Instruction Set
Reference 326018

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System
Programming Guide, Part 1 253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System
Programming Guide, Part 2 253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C: System
Programming Guide, Part 3 326019

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 8

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and IA-32 architectures. This
table uses the following notations:

Codes Used in Summary Tables
Change bar to left of table row indicates this erratum is either new or modified from the previous version of the
document.

Documentation Changes
No. DOCUMENTATION CHANGES

1 Updates to Chapter 1, Volume 1

2 Updates to Chapter 4, Volume 1

3 Updates to Chapter 5, Volume 1

4 Updates to Chapter 8, Volume 1

5 Updates to Chapter 11, Volume 1

6 Updates to Chapter 13, Volume 1

7 Updates to Appendix E, Volume 1

8 Updates to Chapter 1, Volume 2A

9 Updates to Chapter 3, Volume 2A

10 Updates to Chapter 4, Volume 2B

11 Updates to Chapter 1, Volume 3A

12 Updates to Chapter 2, Volume 3A

13 Updates to Chapter 4, Volume 3A

14 Updates to Chapter 6, Volume 3A

15 Updates to Chapter 8, Volume 3A

16 Updates to Chapter 11, Volume 3A

17 Updates to Chapter 17, Volume 3B

18 Updates to Chapter 19, Volume 3B

19 Updates to Chapter 22, Volume 3B

20 Updates to Chapter 29, Volume 3B

21 Updates to Chapter 33, Volume 3C

22 Updates to Chapter 35, Volume 3C

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

Documentation Changes

1. Updates to Chapter 1, Volume 1
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Core™ i7 processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 10

• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• The Intel® Core™ M processor family
• Intel® Core™ i7-59xx Processor Extreme Edition
• Intel® Core™ i7-49xx Processor Extreme Edition
• Intel® Xeon® processor E3-1200 v3 product family
• Intel® Xeon® processor E5-2600/1600 v3 product families
• 5th generation Intel® Core™ processors
• Intel® Atom™ processor Z8000 series
• Intel® Atom™ processor Z3400 series
• Intel® Atom™ processor Z3500 series

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processor QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced
Intel® Core™ microarchitecture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture and supports Intel 64 archi-
tecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel®
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32nm version of
Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and
various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These
processors support Intel 64 architecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® CoreTM i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2
product family and the 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code
name Ivy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Intel® microarchitecture
code name Ivy Bridge-E and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

The Intel® Core™ M processor family and 5th generation Intel® Core™ processors are based on the Intel® micro-
architecture code name Broadwell and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Intel® microarchitecture code name Haswell-E and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Intel microarchitecture code name Airmont.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Intel
microarchitecture code name Silvermont.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors,
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel®
64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is the
superset of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

...

2. Updates to Chapter 4, Volume 1
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

4.8.3.2 Normalized and Denormalized Finite Numbers
Non-zero, finite numbers are divided into two classes: normalized and denormalized. The normalized finite
numbers comprise all the non-zero finite values that can be encoded in a normalized real number format between
zero and ∞. In the single-precision floating-point format shown in Figure 4-12, this group of numbers includes all
the numbers with biased exponents ranging from 1 to 25410 (unbiased, the exponent range is from −12610 to
+12710).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 12

When floating-point numbers become very close to zero, the normalized-number format can no longer be used to
represent the numbers. This is because the range of the exponent is not large enough to compensate for shifting
the binary point to the right to eliminate leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by making the integer bit (and
perhaps other leading bits) of the significand zero. The numbers in this range are called denormalized numbers.
The use of leading zeros with denormalized numbers allows smaller numbers to be represented. However, this
denormalization may cause a loss of precision (the number of significant bits is reduced by the leading zeros).

When performing normalized floating-point computations, an IA-32 processor normally operates on normalized
numbers and produces normalized numbers as results. Denormalized numbers represent an underflow condi-
tion. The exact conditions are specified in Section , “4.9.1.5 Numeric Underflow Exception (#U).”

A denormalized number is computed through a technique called gradual underflow. Table 4-6 gives an example of
gradual underflow in the denormalization process. Here the single-precision format is being used, so the
minimum exponent (unbiased) is −12610. The true result in this example requires an exponent of −12910 in order
to have a normalized number. Since −12910 is beyond the allowable exponent range, the result is denormalized
by inserting leading zeros until the minimum exponent of −12610 is reached.

In the extreme case, all the significant bits are shifted out to the right by leading zeros, creating a zero result.

The Intel 64 and IA-32 architectures deal with denormal values in the following ways:
• It avoids creating denormals by normalizing numbers whenever possible.
• It provides the floating-point underflow exception to permit programmers to detect cases when denormals are

created.
• It provides the floating-point denormal-operand exception to permit procedures or programs to detect when

denormals are being used as source operands for computations.

...

4.9.1.5 Numeric Underflow Exception (#U)
The processor detects a potential floating-point numeric underflow condition whenever the result of rounding with
unbounded exponent (taking into account precision control for x87) is non-zero and tiny; that is, non-zero and
less than the smallest possible normalized, finite value that will fit into the destination operand. Table 4-11 shows
the threshold range for numeric underflow for each of the floating-point formats (assuming normalized results);
underflow occurs when a rounded result falls strictly within the threshold range. The ability to detect and handle
underflow is provided to prevent a very small result from propagating through a computation and causing another
exception (such as overflow during division) to be generated at a later time. Results which trigger underflow are
also potentially less accurate.

Table 4-6 Denormalization Process

Operation Sign Exponent* Significand

True Result 0 −129 1.01011100000...00

Denormalize 0 −128 0.10101110000...00

Denormalize 0 −127 0.01010111000...00

Denormalize 0 −126 0.00101011100...00

Denormal Result 0 −126 0.00101011100...00

* Expressed as an unbiased, decimal number.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

How the processor handles an underflow condition, depends on two related conditions:
• creation of a tiny, non-zero result
• creation of an inexact result; that is, a result that cannot be represented exactly in the destination format

Which of these events causes an underflow exception to be reported and how the processor responds to the
exception condition depends on whether the underflow exception is masked:
• Underflow exception masked — The underflow exception is reported (the UE flag is set) only when the

result is both tiny and inexact. The processor returns a correctly signed result whose magnitude is less than
or equal to the smallest positive normal floating-point number to the destination operand, regardless of
inexactness.

• Underflow exception not masked — The underflow exception is reported when the result is non-zero tiny,
regardless of inexactness. The processor leaves the source and destination operands unaltered or stores a
biased result in the destination operand (depending whether the underflow exception was generated during
an SSE/SSE2/SSE3 floating-point operation or an x87 FPU operation) and invokes a software exception
handler.

See the following sections for information regarding the numeric underflow exception when detected while
executing x87 FPU instructions or while executing SSE/SSE2/SSE3 instructions:
• x87 FPU; Section 8.5.5, “Numeric Underflow Exception (#U)”
• SIMD floating-point exceptions; Section 11.5.2.5, “Numeric Underflow Exception (#U)”

...

3. Updates to Chapter 5, Volume 1
Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--
This chapter provides an abridged overview of Intel 64 and IA-32 instructions. Instructions are divided into the
following groups:
• General purpose
• x87 FPU
• x87 FPU and SIMD state management
• Intel® MMX technology
• SSE extensions
• SSE2 extensions
• SSE3 extensions
• SSSE3 extensions
• SSE4 extensions

Table 4-11 Numeric Underflow (Normalized) Thresholds

Floating-Point Format Underflow Thresholds*

Single Precision | x | < 1.0 ∗ 2−126

Double Precision | x | < 1.0 ∗ 2−1022

Double Extended Precision | x | < 1.0 ∗ 2−16382

* Where ‘x’ is the result rounded to destination precision with an unbounded exponent range.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 14

• AESNI and PCLMULQDQ
• Intel® AVX extensions
• F16C, RDRAND, RDSEED, FS/GS base access
• FMA extensions
• Intel® AVX2 extensions
• Intel® Transactional Synchronization extensions
• System instructions
• IA-32e mode: 64-bit mode instructions
• VMX instructions
• SMX instructions
• ADCX and ADOX

Table 5-1 lists the groups and IA-32 processors that support each group. More recent instruction set extensions
are listed in Table 5-2. Within these groups, most instructions are collected into functional subgroups.

Table 5-1 Instruction Groups in Intel 64 and IA-32 Processors

Instruction Set
Architecture Intel 64 and IA-32 Processor Support

General Purpose All Intel 64 and IA-32 processors

 x87 FPU Intel486, Pentium, Pentium with MMX Technology, Celeron, Pentium Pro, Pentium II, Pentium II Xeon,
Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Atom processors

x87 FPU and SIMD State
Management

Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M,
Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom processors

MMX Technology Pentium with MMX Technology, Celeron, Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, Pentium
4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom
processors

SSE Extensions Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Atom processors

SSE2 Extensions Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors,
Intel Atom processors

SSE3 Extensions Pentium 4 supporting HT Technology (built on 90nm process technology), Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Xeon processor 3xxxx, 5xxx, 7xxx Series, Intel Atom processors

SSSE3 Extensions Intel Xeon processor 3xxx, 5100, 5200, 5300, 5400, 5500, 5600, 7300, 7400, 7500 series, Intel Core 2
Extreme processors QX6000 series, Intel Core 2 Duo, Intel Core 2 Quad processors, Intel Pentium Dual-Core
processors, Intel Atom processors

IA-32e mode: 64-bit
mode instructions

Intel 64 processors

System Instructions Intel 64 and IA-32 processors

VMX Instructions Intel 64 and IA-32 processors supporting Intel Virtualization Technology

SMX Instructions Intel Core 2 Duo processor E6x50, E8xxx; Intel Core 2 Quad processor Q9xxx

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 15

The following sections list instructions in each major group and subgroup. Given for each instruction is its
mnemonic and descriptive names. When two or more mnemonics are given (for example, CMOVA/CMOVNBE),
they represent different mnemonics for the same instruction opcode. Assemblers support redundant mnemonics
for some instructions to make it easier to read code listings. For instance, CMOVA (Conditional move if above) and
CMOVNBE (Conditional move if not below or equal) represent the same condition. For detailed information about
specific instructions, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A & 3B.

...

5.1.15 BMI1, BMI2
ANDN Bitwise AND of first source with inverted 2nd source operands.
BEXTR Contiguous bitwise extract

BLSI Extract lowest set bit
BLSMSK Set all lower bits below first set bit to 1

BLSR Reset lowest set bit
BZHI Zero high bits starting from specified bit position
LZCNT Count the number leading zero bits
MULX Unsigned multiply without affecting arithmetic flags
PDEP Parallel deposit of bits using a mask
PEXT Parallel extraction of bits using a mask
RORX Rotate right without affecting arithmetic flags
SARX Shift arithmetic right
SHLX Shift logic left
SHRX Shift logic right
TZCNT Count the number trailing zero bits

Table 5-2 Recent Instruction Set Extensions Introduction in Intel 64 and IA-32 Processors

Instruction Set
Architecture Processor Generation Introduction

SSE4.1 Extensions Intel Xeon processor 3100, 3300, 5200, 5400, 7400, 7500 series, Intel Core 2 Extreme processors
QX9000 series, Intel Core 2 Quad processor Q9000 series, Intel Core 2 Duo processors 8000 series, T9000
series.

SSE4.2 Extensions,
CRC32, POPCNT

Intel Core i7 965 processor, Intel Xeon processors X3400, X3500, X5500, X6500, X7500 series.

AESNI, PCLMULQDQ InteL Xeon processor E7 series, Intel Xeon processors X3600, X5600, Intel Core i7 980X processor; Use
CPUID to verify presence of AESNI and PCLMULQDQ across Intel Core processor families.

Intel AVX Intel Xeon processor E3 and E5 families; 2nd Generation Intel Core i7, i5, i3 processor 2xxx families.

F16C, RDRAND, FS/GS
base access

3rd Generation Intel Core processors, Intel Xeon processor E3-1200 v2 product family, Next Generation
Intel Xeon processors, Intel Xeon processor E5 v2 and E7 v2 families.

FMA, AVX2, BMI1, BMI2,
TSX, INVPCID

Intel Xeon processor E3-1200 v3 product family; 4th Generation Intel Core processor family.

ADX, RDSEED, CLAC,
STAC

Intel Core M processor family; 5th Generation Intel Core processor family.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 16

5.1.15.1 Detection of VEX-encoded GPR Instructions, LZCNT and TZCNT, PREFETCHW
VEX-encoded general-purpose instructions do not operate on any vector registers.
There are separate feature flags for the following subsets of instructions that operate on general purpose regis-
ters, and the detection requirements for hardware support are:
CPUID.(EAX=07H, ECX=0H):EBX.BMI1[bit 3]: if 1 indicates the processor supports the first group of advanced bit
manipulation extensions (ANDN, BEXTR, BLSI, BLSMSK, BLSR, TZCNT);
CPUID.(EAX=07H, ECX=0H):EBX.BMI2[bit 8]: if 1 indicates the processor supports the second group of advanced
bit manipulation extensions (BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX);
CPUID.EAX=80000001H:ECX.LZCNT[bit 5]: if 1 indicates the processor supports the LZCNT instruction.
CPUID.EAX=80000001H:ECX.PREFTEHCHW[bit 8]: if 1 indicates the processor supports the PREFTEHCHW
instruction. CPUID.(EAX=07H, ECX=0H):ECX.PREFTEHCHWT1[bit 0]: if 1 indicates the processor supports the
PREFTEHCHWT1 instruction.

...

4. Updates to Chapter 8, Volume 1
Change bars show changes to Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

8.3.7 Trigonometric Instructions
The following instructions perform four common trigonometric functions:

FSIN Sine
FCOS Cosine
FSINCOS Sine and cosine
FPTAN Tangent
FPATAN Arctangent

These instructions operate on the top one or two registers of the x87 FPU register stack and they return their
results to the stack. The source operands for the FSIN, FCOS, FSINCOS, and FPTAN instructions must be given in
radians; the source operand for the FPATAN instruction is given in rectangular coordinate units.

The FSINCOS instruction returns both the sine and the cosine of a source operand value. It operates faster than
executing the FSIN and FCOS instructions in succession.

The FPATAN instruction computes the arctangent of ST(1) divided by ST(0), returning a result in radians. It is
useful for converting rectangular coordinates to polar coordinates.

See Section 8.3.8, “Approximation of Pi” and Section 8.3.10, “Transcendental Instruction Accuracy” for informa-
tion regarding the accuracy of these instructions.

8.3.8 Approximation of Pi
When the argument (source operand) of a trigonometric function is within the domain of the function, the argu-
ment is automatically reduced by the appropriate multiple of 2π through the same reduction mechanism used by
the FPREM and FPREM1 instructions. The internal value of π (3.1415926…) that the x87 FPU uses for argument

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

reduction and other computations, denoted as Pi in the expression below. The numerical value of Pi can be written
as:

Pi = 0.f ∗ 22

where the fraction f is expressed in binary form as:
f = C90FDAA2 2168C234 C

(The spaces in the fraction above indicate 32-bit boundaries.)

The internal approximation Pi of the value π has a 66 significant bits. Since the exact value of π represented in
binary has the next 3 bits equal to 0, it means that Pi is the value of π rounded to nearest-even to 68 bits, and also
the value of π rounded toward zero (truncated) to 69 bits.

However, accuracy problems may arise because this relatively short finite approximation Pi of the number π is
used for calculating the reduced argument of the trigonometric function approximations in the implementations
of FSIN, FCOS, FSINCOS, and FPTAN. Alternately, this means that FSIN (x), FCOS (x), and FPTAN (x) are really
approximating the mathematical functions sin (x * π /Pi), cos (x * π / Pi), and tan (x * π / Pi), and not exactly sin
(x), cos (x), and tan (x). (Note that FSINCOS is the equivalent of FSIN and FCOS combined together). The period
of sin (x * π /Pi) for example is 2* Pi, and not 2π.

See also Section 8.3.10, “Transcendental Instruction Accuracy” for more information on the accuracy of these
functions.

...

8.3.10 Transcendental Instruction Accuracy
New transcendental instruction algorithms were incorporated into the IA-32 architecture beginning with the
Pentium processors. These new algorithms (used in transcendental instructions FSIN, FCOS, FSINCOS, FPTAN,
FPATAN, F2XM1, FYL2X, and FYL2XP1) allow a higher level of accuracy than was possible in earlier IA-32 proces-
sors and x87 math coprocessors. The accuracy of these instructions is measured in terms of units in the last
place (ulp). For a given argument x, let f(x) and F(x) be the correct and computed (approximate) function
values, respectively. The error in ulps is defined to be:

where k is an integer such that:

With the Pentium processor and later IA-32 processors, the worst case error on transcendental functions is
less than 1 ulp when rounding to the nearest (even) and less than 1.5 ulps when rounding in other modes. The
functions are guaranteed to be monotonic, with respect to the input operands, throughout the domain supported
by the instruction.

However, for FSIN, FCOS, FSINCOS, and FPTAN which approximate periodic trigonometric functions, the previous
statement about maximum ulp errors is true only when these instructions are applied to reduced argument (see
Section 8.3.8, “Approximation of Pi”). This is due to the fact that only 66 significant bits are retained in the finite
approximation Pi of the number π (3.1415926…), used internally for calculating the reduced argument in FSIN,
FCOS, FSINCOS, and FPTAN. This approximation of π is not always sufficiently accurate for good argument reduc-
tion.

For single precision, the argument of FSIN, FCOS, FSINCOS, and FPTAN must exceed 200,000 radians in order for
the error of the result to exceed 1 ulp when rounding to the nearest (even), or 1.5 ulps when rounding in other
(directed) rounding modes.

error f x() F x()–
2k 63–

-------------------=

1 2 k– f x() 2.<≤

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 18

For double and double-extended precision, the ulp errors will grow above these thresholds for arguments much
smaller in magnitude. The ulp errors increase significantly when the argument approaches the value of π (or Pi)
for FSIN, and when it approaches π/2(or Pi/2) for FCOS, FSINCOS, and FPTAN.

For all three IEEE precisions supported (32-bit single precision, 64-bit double precision, and 80-bit double-
extended precision), applying FSIN, FCOS, FSINCOS, or FPTAN to arguments larger than a certain value can lead
to reduced arguments (calculated internally) that are inaccurate or even very inaccurate in some cases. This leads
to equally inaccurate approximations of the corresponding mathematical functions. In particular, arguments that
are close to certain values will lose significance when reduced, leading to increased relative (and ulp) errors in the
results of FSIN, FCOS, FSINCOS, and FPTAN. These values are:
• any non-zero multiple of π for FSIN,
• any multiple of π, plus π/2 for FCOS, and
• any non-zero multiple of π/2 for FSINCOS and FPTAN.

If the arguments passed to FSIN, FCOS, FSINCOS, and FPTAN are not close to these values then even the finite
approximation Pi of π used internally for argument reduction will allow for results that have good accuracy.

Therefore, in order to avoid such errors it is recommended to perform accurate argument reduction in software,
and to apply FSIN, FCOS, FSINCOS, and FPTAN to reduced arguments only. Regardless of the target precision
(single, double, or double-extended), it is safe to reduce the argument to a value smaller in absolute value than
about 3π/4 for FSIN, and smaller than about 3π/8 for FCOS, FSINCOS, and FPTAN.

The thresholds shown above are not exact. For example, accuracy measurements show that the double-extended
precision result of FSIN will not have errors larger than 0.72 ulp for |x| < 2.82 (so |x| < 3π/4 will ensure good
accuracy, as 3π/4 < 2.82). On the same interval, double precision results from FSIN will have errors at most
slightly larger than 0.5 ulp, and single precision results will be correctly rounded in the vast majority of cases.

Likewise, the double-extended precision result of FCOS will not have errors larger than 0.82 ulp for |x| < 1.31 (so
|x| < 3π/8 will ensure good accuracy, as 3π/8 < 1.31). On the same interval, double precision results from FCOS
will have errors at most slightly larger than 0.5 ulp, and single precision results will be correctly rounded in the
vast majority of cases.

FSINCOS behaves similarly to FSIN and FCOS, combined as a pair.

Finally, the double-extended precision result of FPTAN will not have errors larger than 0.78 ulp for |x| < 1.25 (so
|x| < 3π/8 will ensure good accuracy, as 3π/8 < 1.25). On the same interval, double precision results from FPTAN
will have errors at most slightly larger than 0.5 ulp, and single precision results will be correctly rounded in the
vast majority of cases.

A recommended alternative in order to avoid the accuracy issues that might be caused by FSIN, FCOS, FSINCOS,
and FPTAN, is to use good quality mathematical library implementations of the sin, cos, sincos, and tan functions,
for example those from the Intel® Math Library available in the Intel® Compiler.

The instructions FYL2X and FYL2XP1 are two operand instructions and are guaranteed to be within 1 ulp only
when y equals 1. When y is not equal to 1, the maximum ulp error is always within 1.35 ulps in round to nearest
mode. (For the two operand functions, monotonicity was proved by holding one of the operands constant.)

...

8.5.5 Numeric Underflow Exception (#U)
The x87 FPU detects a potential floating-point numeric underflow condition whenever the result of an arithmetic
instruction is non-zero and tiny; that is, the magnitude of the rounded result with unbounded exponent is non-
zero and less than the smallest possible normalized, finite value that will fit into the floating-point format of the
destination operand. (See Section 4.9.1.5, “Numeric Underflow Exception (#U),” for additional information about
the numeric underflow exception.)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

Like numeric overflow, numeric underflow can occur on arithmetic operations where the result is stored in an x87
FPU data register. It can also occur on store floating-point operations (with the FST and FSTP instructions), where
a within-range value in a data register is stored in memory in the smaller single-precision or double-precision
floating-point formats. A numeric underflow exception cannot occur when storing values in an integer or BCD
integer format, because a value with magnitude less than 1 is always rounded to an integral value of 0 or 1,
depending on the rounding mode in effect.

The flag (UE) for the numeric-underflow exception is bit 4 of the x87 FPU status word, and the mask bit (UM) is
bit 4 of the x87 FPU control word.

When a numeric-underflow condition occurs and the exception is masked, the x87 FPU performs the operation
described in Section 4.9.1.5, “Numeric Underflow Exception (#U).”

When the exception is not masked, the action of the x87 FPU depends on whether the instruction is supposed to
store the result in a memory location or on the x87 FPU resister stack.
• Destination is a memory location — (Can occur only with a store instruction.) The UE flag is set and a

software exception handler is invoked (see Section 8.7, “Handling x87 FPU Exceptions in Software”). The top-
of-stack pointer (TOP) and source and destination operands remain unchanged, and no result is stored in
memory.
Because the data in the stack is in double extended-precision format, the exception handler has the option
either of re-exchanges the store instruction after proper adjustment of the operand or of rounding the
significand on the stack to the destination's precision as the standard requires. The exception handler should
ultimately store a value into the destination location in memory if the program is to continue.

• Destination is the register stack — The significand of the result is rounded according to current settings of
the precision and rounding control bits in the x87 FPU control word and the exponent of the result is adjusted
by multiplying it by 224576. (For instructions not affected by the precision field, the significand is rounded to
double extended precision.) The resulting value is stored in the destination operand. Condition code bit C1 in
the x87 FPU status register (acting here as a “round-up bit”) is set if the significand was rounded upward and
cleared if the result was rounded toward 0. After the result is stored, the UE flag is set and a software
exception handler is invoked. The scaling bias value 24,576 is the same as is used for the overflow exception
and has the same effect, which is to translate the result as nearly as possible to the middle of the double
extended-precision floating-point exponent range.
When using the FSCALE instruction, massive underflow can occur, where the magnitude of the result is too
small to be represented, even with a bias-adjusted exponent. Here, if underflow occurs again after the result
has been biased, a properly signed 0 is stored in the destination operand.

...

5. Updates to Chapter 11, Volume 1
Change bars show changes to Chapter 11 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

11.5.2.5 Numeric Underflow Exception (#U)
The processor reports a numeric underflow exception whenever the magnitude of the rounded result of an arith-
metic instruction, with unbounded exponent, is less than the smallest possible normalized, finite value that will fit
in the destination operand and the numeric-underflow exception is not masked. If the numeric underflow excep-
tion is masked, both underflow and the inexact-result condition must be detected before numeric underflow is
reported. This exception can be generated with the ADDPS, ADDSS, ADDPD, ADDSD, SUBPS, SUBSS, SUBPD,
SUBSD, MULPS, MULSS, MULPD, MULSD, DIVPS, DIVSS, DIVPD, DIVSD, CVTPD2PS, CVTSD2SS, ADDSUBPD,

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 20

ADDSUBPS, HADDPD, HADDPS, HSUBPD, and HSUBPS instructions. The flag (UE) and mask (UM) bits for the
numeric underflow exception are bits 4 and 11, respectively, in the MXCSR register.

The flush-to-zero flag (bit 15) of the MXCSR register provides an additional option for handling numeric underflow
exceptions. When this flag is set and the numeric underflow exception is masked, tiny results are returned as a
zero with the sign of the true result (see Section 10.2.3.3, “Flush-To-Zero”).

Underflow will occur when a tiny non-zero result is detected (the result has to be also inexact if underflow excep-
tions are masked), as described in the IEEE Standard 754-2008. While DAZ does not affect the rules for signaling
IEEE exceptions, operations on denormal inputs might have different results when DAZ=1. As a consequence,
DAZ can have an effect on the floating-point exceptions - including the underflow exception - when observed for
a given operation involving denormal inputs.

See Section 4.9.1.5, “Numeric Underflow Exception (#U),” for more information about the numeric underflow
exception. See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on
handling unmasked exceptions.

...

6. Updates to Chapter 13, Volume 1
Change bars show changes to Chapter 13 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--
The XSAVE feature set extends the functionality of the FXSAVE and FXRSTOR instructions (see Section 10.5,
“FXSAVE and FXRSTOR Instructions”) by supporting the saving and restoring of processor state in addition to the
x87 execution environment (x87 state) and the registers used by the streaming SIMD extensions (SSE state).

The XSAVE feature set comprises eight instructions. XGETBV and XSETBV allow software to read and write the
extended control register XCR0, which controls the operation of the XSAVE feature set. XSAVE, XSAVEOPT,
XSAVEC, and XSAVES are four instructions that save processor state to memory; XRSTOR and XRSTORS are
corresponding instructions that load processor state from memory. XGETBV, XSAVE, XSAVEOPT, XSAVEC, and
XRSTOR can be executed at any privilege level; XSETBV, XSAVES, and XRSTORS can be executed only if CPL = 0.

The XSAVE feature set organizes the state that manages into state components. Operation of the instructions
is based on state-component bitmaps that have the same format as XCR0: each bit corresponds to a state
component. Section 13.1 discusses these state components and bitmaps in more detail.

Section 13.2 describes how the processor enumerates support for the XSAVE feature set and for XSAVE-enabled
features (those features that require use of the XSAVE feature set for their enabling). Section 13.3 explains how
software can enable the XSAVE feature set and XSAVE-enabled features.

The XSAVE feature set allows saving and loading processor state from a region of memory called an XSAVE area.
Section 13.4 presents details of the XSAVE area and its organization. Each XSAVE-managed state component is
associated with a section of the XSAVE area. Section 13.5 describes in detail each of the XSAVE-managed state
components.

Section 13.6 through Section 13.11 describe the operation of XSAVE, XRSTOR, XSAVEOPT, XSAVEC, XSAVES, and
XRSTORS, respectively.

13.1 XSAVE-SUPPORTED FEATURES AND STATE-COMPONENT BITMAPS
The XSAVE feature set supports the saving and restoring of state components, each of which is a discrete set of
processor registers (or parts of registers). In general, each such state component corresponds to a particular CPU
feature. Such a feature is XSAVE-supported. Some XSAVE-supported features use registers in multiple XSAVE-
managed state components.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 21

The XSAVE feature set organizes the state components of the XSAVE-supported features using state-compo-
nent bitmaps. A state-component bitmap comprises 64 bits; each bit in such a bitmap corresponds to a single
state component. The following bits are defined in state-component bitmaps:
• Bit 0 corresponds to the state component used for the x87 FPU execution environment (x87 state). See

Section 13.5.1.
• Bit 1 corresponds to the state component used for registers used by the streaming SIMD extensions (SSE

state). See Section 13.5.2.
• Bit 2 corresponds to the state component used for the additional register state used by the Intel® Advanced

Vector Extensions (AVX state). See Section 13.5.3.

Other bits in the range 62:3 are not currently defined in state-component bitmaps and are reserved for future
expansion. As individual state component is defined within bits 62:3, additional sub-sections are updated within
Section 13.5 over time. Bit 63 is used for special functionality in some bitmaps and does not correspond to any
state component.

The state component corresponding to bit i of state-component bitmaps is called state component i. Thus, x87
state is state component 0; SSE state is state component 1; and AVX state is state component 2.

The XSAVE feature set uses state-component bitmaps in multiple ways. Most of the instructions use an implicit
operand (in EDX:EAX), called the instruction mask, which is the state-component bitmap that specifies the
state components on which the instruction operates.

Extended control register XCR0 contains a state-component bitmap that specifies the state components that soft-
ware has enabled the full XSAVE feature set to manage. If the bit corresponding to a state component is clear in
XCR0, the following instructions in the XSAVE feature set will not operate on that state component, regardless of
the value of the instruction mask: XSAVE, XRSTOR, XSAVEOPT, and XSAVEC. Details of the operation of these
instructions are given in Section 13.6 through Section 13.9.

The IA32_XSS MSR (index DA0H) contains a state-component bitmap that specifies the state components that
software has enabled XSAVES and XRSTORS to manage. If the bit corresponding to a state component is clear in
the logical-OR of XCR0 and IA32_XSS (XCR0 | IA32_XSS), XSAVES and XRSTORS will not operate on that state
component, regardless of the value of the instruction mask. Details of the operation of these instructions are
given in Section 13.10 and Section 13.11.

Some XSAVE-supported features can be used only if XCR0 has been configured so that the features’ state compo-
nents can be managed by the XSAVE feature set. Such state components and features are XSAVE-enabled. In
general, the processor will not modify (or allow modification of) the registers of a state component of an XSAVE-
enabled feature if the bit corresponding to that state component is clear in XCR0. (If software clears such a bit in
XCR0, the processor preserves the corresponding state component.) If an XSAVE-enabled feature has not been
fully enabled in XCR0, execution of any instruction defined for that feature causes an invalid-opcode exception
(#UD).

As will be explained in Section 13.3, the XSAVE feature set is enabled only if CR4.OSXSAVE[bit 18] = 1. If
CR4.OSXSAVE = 0, the processor treats XSAVE-enabled state features and their state components as if all bits in
XCR0 were clear; the state components cannot be modified and the features’ instructions cannot be executed.

The state components for x87 state and for SSE state are XSAVE-managed but the corresponding features are not
XSAVE-enabled. Processors allow modification of this state, as well as execution of x87 FPU instructions and SSE
instructions, regardless of the value of CR4.OSXSAVE and XCR0.

...

13.3 ENABLING THE XSAVE FEATURE SET AND XSAVE-ENABLED FEATURES
Software enables the XSAVE feature set by setting CR4.OSXSAVE[bit 18] to 1 (e.g., with the MOV to CR4 instruc-
tion). If this bit is 0, execution of any of XGETBV, XRSTOR, XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and
XSETBV causes an invalid-opcode exception (#UD).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 22

When CR4.OSXSAVE = 1 and CPL = 0, executing the XSETBV instruction with ECX = 0 writes the 64-bit value in
EDX:EAX to XCR0 (EAX is written to XCR0[31:0] and EDX to XCR0[63:32]). (Execution of the XSETBV instruction
causes a general-protection fault — #GP — if CPL > 0.) The following items provide details regarding individual
bits in XCR0:
• XCR0[0] is associated with x87 state. (See Section 13.5.1.) XCR0[0] is always 1. It has that value coming out

of RESET. Executing the XSETBV instruction causes a general-protection fault (#GP) if ECX = 0 and EAX[0] is
0.

• XCR0[1] is associated with SSE state. (See Section 13.5.2.) Software can use the XSAVE feature set to
manage SSE state only if XCR0[1] = 1. The value of XCR0[1] in no way determines whether software can
execute SSE instructions (these instructions can be executed even if XCR0[1] = 0).
XCR0[1] is 0 coming out of RESET. As noted in Section 13.2, every processor that supports the XSAVE feature
set allows software to set XCR0[1].

• XCR0[2] is associated with AVX state. (See Section 13.5.3.) Software can use the XSAVE feature set to
manage AVX state only if XCR0[2] = 1. In addition, software can execute AVX instructions only if
CR4.OSXSAVE = XCR0[1] = XCR0[2] = 1. Otherwise, any execution of an AVX instruction causes an invalid-
opcode exception (#UD).
XCR0[2] is 0 coming out of RESET. As noted in Section 13.2, a processor allows software to set XCR0[2] if and
only if CPUID.(EAX=0DH,ECX=0):EAX[2] = 1. In addition, executing the XSETBV instruction causes a
general-protection fault (#GP) if ECX = 0 and EAX[2:1] has the value 10b; that is, software cannot enable the
XSAVE feature set for AVX state but not for SSE state.

• XCR0[63:3] is reserved. Executing the XSETBV instruction causes a general-protection fault (#GP) if ECX = 0
and any bit in EDX or EAX[31:3] is not 0. Bits 63:3 of XCR0 are all 0 coming out of RESET.

Software operating with CPL > 0 may need to determine whether the XSAVE feature set and certain XSAVE-
enabled features have been enabled. If CPL > 0, execution of the MOV from CR4 instruction causes a general-
protection fault (#GP). The following alternative mechanisms allow software to discover the enabling of the
XSAVE feature set regardless of CPL:
• The value of CR4.OSXSAVE is returned in CPUID.1:ECX.OSXSAVE[bit 27]. If software determines that

CPUID.1:ECX.OSXSAVE = 1, the processor supports the XSAVE feature set and the feature set has been
enabled in CR4.

• Executing the XGETBV instruction with ECX = 0 returns the value of XCR0 in EDX:EAX. XGETBV can be
executed if CR4.OSXSAVE = 1 (if CPUID.1:ECX.OSXSAVE = 1), regardless of CPL.

Thus, software can use the following algorithm to determine the support and enabling for the XSAVE feature set:

1. Use CPUID to discover the value of CPUID.1:ECX.OSXSAVE.

— If the bit is 0, either the XSAVE feature set is not supported by the processor or has not been enabled by
software. Either way, the XSAVE feature set is not available, nor are XSAVE-enabled features such as AVX.

— If the bit is 1, the processor supports the XSAVE feature set — including the XGETBV instruction — and it
has been enabled by software. The XSAVE feature set can be used to manage x87 state (because XCR0[0]
is always 1). Software requiring more detailed information can go on to the next step.

2. Execute XGETBV with ECX = 0 to discover the value of XCR0. If XCR0[1] = 1, the XSAVE feature set can be
used to manage SSE state. If XCR0[2] = 1, the XSAVE feature set can be used to manage AVX state and
software can execute AVX instructions.

The IA32_XSS MSR is zero coming out of RESET. If CR4.OSXSAVE = 1, CPUID.(EAX=0DH,ECX=1):EAX[3] = 1,
and CPL = 0, executing the WRMSR instruction with ECX = DA0H writes the 64-bit value in EDX:EAX to the
IA32_XSS MSR (EAX is written to IA32_XSS[31:0] and EDX to IA32_XSS[63:32]). There is no mechanism by
which software operating with CPL > 0 can discover the value of the IA32_XSS MSR.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 23

13.4.3 Extended Region of an XSAVE Area
The extended region of an XSAVE area starts at byte offset 576 from the area’s base address. The size of the
extended region is determined by which state components the processor supports and which bits have been set
in XCR0 | IA32_XSS (see Section 13.3).

The XSAVE feature set uses the extended area for each state component i, where i ≥ 2. (Currently, the extended
region is used only for AVX state, which is state component 2.)

The extended region of the an XSAVE area may have one of two formats. The standard format is supported by
all processors that support the XSAVE feature set; the compacted format is supported by those processors that
support the compaction extensions to the XSAVE feature set (see Section 13.2). Bit 63 of the XCOMP_BV field in
the XSAVE header (see Section 13.4.2) indicates which format is used.

The following items describe the two possible formats of the extended region:
• Standard format. Each state component i (i ≥ 2) is located at the byte offset from the base address of the

XSAVE area enumerated in CPUID.(EAX=0DH,ECX=i):EBX. (CPUID.(EAX=0DH,ECX=i):EAX enumerates the
number of bytes required for state component i.

• Compacted format. Each state component i (i ≥ 2) is located at a byte offset from the base address of the
XSAVE area based on the XCOMP_BV field in the XSAVE header:

— If XCOMP_BV[i] = 0, state component i is not in the XSAVE area.

— If XCOMP_BV[i] = 1, the following items apply:

• If XCOMP_BV[j] = 0 for every j, 2 ≤ j < i, state component i is located at a byte offset 576 from the
base address of the XSAVE area. (This item applies if i is the first bit set in bits 62:2 of the XCOMP_BV;
it implies that state component i is located at the beginning of the extended region.)

• Otherwise, let j, 2 ≤ j < i, be the greatest value such that XCOMP_BV[j] = 1. Then state component i
is located at a byte offset X from the location of state component j, where X is the number of bytes
required for state component j as enumerated in CPUID.(EAX=0DH,ECX=j):EAX. (This item implies
that state component i immediately follows the preceding state component whose bit is set in
XCOMP_BV.)

...

13.5.1 x87 State
Instructions in the XSAVE feature set can manage the same state of the x87 FPU execution environment (x87
state) that can be managed using the FXSAVE and FXRSTOR instructions. They organize all x87 state in the
legacy region of the XSAVE area (see Section 13.4.1). This region is illustrated in Table 13-1; the x87 state is
listed below, along with details of its interactions with the XSAVE feature set:
• Bytes 1:0, 3:2, 7:6. These are used for the x87 FPU Control Word (FCW), the x87 FPU Status Word (FSW),

and the x87 FPU Opcode (FOP), respectively.
• Byte 4 is used for an abridged version of the x87 FPU Tag Word (FTW). The following items describe its usage:

— For each j, 0 ≤ j ≤ 7, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save a 0 into bit j of byte 4 if x87 FPU data
register STj has a empty tag; otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save a 1 into bit j of
byte 4.

— For each j, 0 ≤ j ≤ 7, XRSTOR and XRSTORS establish the tag value for x87 FPU data register STj as
follows. If bit j of byte 4 is 0, the tag for STj in the tag register for that data register is marked empty
(11B); otherwise, the x87 FPU sets the tag for STj based on the value being loaded into that register (see
below).

• Bytes 15:8 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 24

• Bytes 11:8 are used for bits 31:0 of the x87 FPU Instruction Pointer Offset (FIP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 13:12 are used for x87 FPU Instruction Pointer
Selector (FPU CS). Otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save these bytes as 0000H,
and XRSTOR and XRSTORS ignore them.

• Bytes 15:14 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 15:8 are used for the full 64 bits of FIP.
• Bytes 23:16 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 19:16 are used for bits 31:0 of the x87 FPU Data Pointer Offset (FDP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 21:20 are used for x87 FPU Data Pointer
Selector (FPU DS). Otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save these bytes as 0000H;
and XRSTOR and XRSTORS ignore them.

• Bytes 23:22 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 23:16 are used for the full 64 bits of FDP.
• Bytes 31:24 are used for SSE state (see Section 13.5.2).
• Bytes 159:32 are used for the registers ST0–ST7 (MM0–MM7). Each of the 8 register is allocated a 128-bit

region, with the low 80 bits used for the register and the upper 48 bits unused.

x87 state is XSAVE-managed but the x87 FPU feature is not XSAVE-enabled. The XSAVE feature set can operate
on x87 state only if the feature set is enabled (CR4.OSXSAVE = 1).1 Software can otherwise use x87 state even
if the XSAVE feature set is not enabled.

13.5.2 SSE State
Instructions in the XSAVE feature set can manage the registers used by the streaming SIMD extensions (SSE
state) just as the FXSAVE and FXRSTOR instructions do. They organize all SSE state in the legacy region of the
XSAVE area (see Section 13.4.1). This region is illustrated in Table 13-1; the SSE state is listed below, along with
details of its interactions with the XSAVE feature set:
• Bytes 23:0 are used for x87 state (see Section 13.5.1).
• Bytes 27:24 are used for the MXCSR register. XRSTOR and XRSTORS generate general-protection faults

(#GP) in response to attempts to set any of the reserved bits of the MXCSR register.2

• Bytes 31:28 are used for the MXCSR_MASK value. XRSTOR and XRSTORS ignore this field.
• Bytes 159:32 are used for x87 state.
• Bytes 287:160 are used for the registers XMM0–XMM7.
• Bytes 415:288 are used for the registers XMM8–XMM15. These fields are used only in 64-bit mode.

Executions of XSAVE, XSAVEOPT, XSAVEC, and XSAVES outside 64-bit mode do not write to these bytes;
executions of XRSTOR and XRSTORS outside 64-bit mode do not read these bytes and do not update XMM8–
XMM15.

SSE state is XSAVE-managed but the SSE feature is not XSAVE-enabled. The XSAVE feature set can operate on
SSE state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage SSE state
(XCR0[1] = 1). Software can otherwise use SSE state even if the XSAVE feature set is not enabled or has not been
configured to manage SSE state.

1. The processor ensures that XCR0[0] is always 1.

2. While MXCSR and MXCSR_MASK are part of SSE state, their treatment by the XSAVE feature set is not the same as that of the
XMM registers. See Section 13.6 through Section 13.10 for details.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 25

13.5.3 AVX State
The register state used by the Intel® Advanced Vector Extensions (AVX) comprises the MXCSR register and 16
256-bit vector registers called YMM0–YMM15. The low 128 bits of each register YMMi is identical to the SSE
register XMMi. Thus, the new state register state added by AVX comprises the upper 128 bits of the registers
YMM0–YMM15. These 16 128-bit values are denoted YMM0_H–YMM15_H and are collectively called AVX state.

As noted in Section 13.1, the XSAVE feature set manages AVX state as state component 2. Thus, AVX state is
located in the extended region of the XSAVE area (see Section 13.4.3).

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=2):EBX enumerates the offset (in bytes, from the base of the
XSAVE area) of the section of the extended region of the XSAVE area used for AVX state (when the standard
format of the extended region is used). CPUID returns this value as 576. CPUID.(EAX=0DH,ECX=2):EAX enumer-
ates the size (in bytes) required for AVX state. CPUID returns this value as 256.

The XSAVE feature set partitions YMM0_H–YMM15_H in a manner similar to that used for the XMM registers (see
Section 13.5.2). Bytes 127:0 of the AVX-state section are used for YMM0_H–YMM7_H. Bytes 255:128 are used
for YMM8_H–YMM15_H, but they are used only in 64-bit mode. (Executions of XSAVE, XSAVEOPT, XSAVEC, and
XSAVES outside 64-bit mode do not write to bytes 255:128; executions of XRSTOR and XRSTORS outside 64-bit
mode do not read these bytes and do not update YMM8_H–YMM15_H.)

AVX state is XSAVE-managed and the AVX feature is XSAVE-enabled. The XSAVE feature set can operate on AVX
state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage AVX state
(XCR0[1] = XCR0[2] = 1).1 AVX instructions cannot be used unless the XSAVE feature set is enabled and has
been configured to manage AVX state.

...

13.10 OPERATION OF XSAVES
The operation of XSAVES is similar to that of XSAVEC. The main differences are (1) XSAVES can be executed only
if CPL = 0; (2) XSAVES can operate on the state components whose bits are set in XCR0 | IA32_XSS; and
(3) XSAVES uses the modified optimization (see Section 13.5.4). See Section 13.2 for details of how to determine
whether XSAVES is supported.

The XSAVES instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. EDX:EAX & (XCR0 | IA32_XSS) (the logical AND the instruction mask with the logical OR of XCR0 and
IA32_XSS) is the requested-feature bitmap (RFBM) of the state components to be saved.

The following conditions cause execution of the XSAVES instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If CPL > 0 or if the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP)

occurs.2

If none of these conditions cause a fault, execution of XSAVES writes the XSTATE_BV field of the XSAVE header
(see Section 13.4.2), setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:
• If RFBM[i] = 0, XSTATE_BV[i] is written as 0.

1. The XSETBV instruction can set XCR0[2] to 1 only if it is also setting XCR0[1] to 1. XSETBV generates a general-protection excep-
tion (#GP) in response to attempts to set XCR0[2] while clearing XCR0[1].

2. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 26

• If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i] (see below for an exception made for
XSTATE_BV[1]). Section 13.5.4 defines XINUSE to describe the processor init optimization. The nature of that
optimization implies the following:

— If state component i is in its initial configuration, XSTATE_BV[i] may be written with either 0 or 1.

— If state component i is not in its initial configuration, XSTATE_BV[i] is written with 1.
Section 13.6 specifies the initial configuration of each state component. However, if RFBM[1] = 1 and MXCSR
does not have the value 1F80H, XSAVES writes XSTATE_BV[1] as 1 even if XINUSE[1] = 0.

The XSAVES instructions sets bit 63 of the XCOMP_BV field of the XSAVE header while writing RFBM[62:0] to
XCOMP_BV[62:0]. The XSAVEC instruction does not write any part of the XSAVE header other than the
XSTATE_BV and XCOMP_BV fields.

Execution of XSAVES saves into the XSAVE area those state components corresponding to bits that are set in
RFBM. State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each
state component i, 2 ≤ i ≤ 62, is located in the extended region; the XSAVES instruction always uses the
compacted format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and
operation determined by instruction prefixes.

Execution of XSAVES performs the init optimization to reduce the amount of data written to memory. If
XINUSE[i] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). However, if RFBM[1] = 1
and MXCSR does not have the value 1F80H, XSAVES writes saves all of state component 1 (SSE — including the
XMM registers) even if XINUSE[1] = 0.

Like XSAVEOPT, XSAVES may perform the modified optimization. Each execution of XRSTOR and XRSTORS estab-
lishes XRSTOR_INFO as a 4-tuple w,x,y,z (see Section 13.7.3 and Section 13.11). Execution of XSAVES uses the
modified optimization only if the following all hold:
• w = CPL;
• x = 1 if and only if the logical processor is in VMX non-root operation;
• y is the linear address of the XSAVE area being used by XSAVEOPT; and
• z[63] is 1 and z[62:0] = RFBM[62:0]. (This last item implies that XSAVES does not use the modified optimi-

zation if the last execution of XRSTOR used the standard form and followed the last execution of XRSTORS.)

If XSAVES uses the modified optimization and XMODIFIED[i] = 0 (see Section 13.5.4), state component i is not
saved to the XSAVE area.

...

7. Updates to Appendix E, Volume 1
Change bars show changes to Appendix E of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

E.4.3 Example SIMD Floating-Point Emulation Implementation
The sample code listed below may be considered as being part of a user-level floating-point exception filter for the
SSE/SSE2/SSE3 numeric instructions. It is assumed that the filter function is invoked by a low-level exception
handler (invoked for exception 19 when an unmasked floating-point exception occurs), and that it operates as
explained in Section E.4.1, “Floating-Point Emulation.” The sample code does the emulation only for the SSE
instructions for addition, subtraction, multiplication, and division. For this, it uses C code and x87 FPU operations.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

Operations corresponding to other SSE/SSE2/SSE3 numeric instructions can be emulated similarly. The example
assumes that the emulation function receives a pointer to a data structure specifying a number of input parame-
ters: the operation that caused the exception, a set of sub-operands (unpacked, of type float), the rounding mode
(the precision is always single), exception masks (having the same relative bit positions as in the MXCSR but
starting from bit 0 in an unsigned integer), and flush-to-zero and denormals-are-zeros indicators.

The output parameters are a floating-point result (of type float), the cause of the exception (identified by
constants not explicitly defined below), and the exception status flags. The corresponding C definition is:

typedef struct {
unsigned int operation; //SSE or SSE2 operation: ADDPS, ADDSS, ...

 unsigned int operand1_uint32; //first operand value
unsigned int operand2_uint32; //second operand value (if any)

 float result_fval; // result value (if any)
 unsigned int rounding_mode; //rounding mode
 unsigned int exc_masks; //exception masks, in the order P,U,O,Z,D,I
 unsigned int exception_cause; //exception cause
 unsigned int status_flag_inexact; //inexact status flag
 unsigned int status_flag_underflow; //underflow status flag
 unsigned int status_flag_overflow; //overflow status flag
 unsigned int status_flag_divide_by_zero;

//divide by zero status flag
 unsigned int status_flag_denormal_operand;

//denormal operand status flag
 unsigned int status_flag_invalid_operation;

//invalid operation status flag
 unsigned int ftz; // flush-to-zero flag
unsigned int daz; // denormals-are-zeros flag

} EXC_ENV;

The arithmetic operations exemplified are emulated as follows:

1. If the denormals-are-zeros mode is enabled (the DAZ bit in MXCSR is set to 1), replace all the denormal inputs
with zeroes of the same sign (the denormal flag is not affected by this change).

2. Perform the operation using x87 FPU instructions, with exceptions disabled, the original user rounding mode,
and single precision. This reveals invalid, denormal, or divide-by-zero exceptions (if there are any) and stores
the result in memory as a double precision value (whose exponent range is large enough to look like
“unbounded” to the result of the single precision computation).

3. If no unmasked exceptions were detected, determine if the magnitude of the result is less than the smallest
normal number that can be represented in single precision format, or greater than the largest normal number
that can be represented in single precision format (huge). If an unmasked overflow or underflow occurs,
calculate the scaled result that will be handed to the user exception handler, as specified by IEEE Standard
754.

4. If no exception was raised, calculate the result with a “bounded” exponent. If the result is tiny, it requires
denormalization (shifting the significand right while incrementing the exponent to bring it into the admissible
range of [-126,+127] for single precision floating-point numbers).

The result obtained in step 2 cannot be used because it might incur a double rounding error (it was rounded
to 24 bits in step 2, and might have to be rounded again in the denormalization process). To overcome this is,
calculate the result as a double precision value, and store it to memory in single precision format.

Rounding first to 53 bits in the significand, and then to 24 never causes a double rounding error (exact

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 28

properties exist that state when double-rounding error occurs, but for the elementary arithmetic operations,
the rule of thumb is that if an infinitely precise result is rounded to 2p+1 bits and then again to p bits, the
result is the same as when rounding directly to p bits, which means that no double-rounding error occurs).

5. If the result is inexact and the inexact exceptions are unmasked, the calculated result will be delivered to the
user floating-point exception handler.

6. The flush-to-zero case is dealt with if the result is tiny.

7. The emulation function returns RAISE_EXCEPTION to the filter function if an exception has to be raised (the
exception_cause field indicates the cause). Otherwise, the emulation function returns DO_NOT_
RAISE_EXCEPTION. In the first case, the result is provided by the user exception handler called by the filter
function. In the second case, it is provided by the emulation function. The filter function has to collect all the
partial results, and to assemble the scalar or packed result that is used if execution is to continue.

...

8. Updates to Chapter 1, Volume 2A
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-M.

--
...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• The Intel® Core™ M processor family
• Intel® Core™ i7-59xx Processor Extreme Edition
• Intel® Core™ i7-49xx Processor Extreme Edition
• Intel® Xeon® processor E3-1200 v3 product family
• Intel® Xeon® processor E5-2600/1600 v3 product families
• 5th generation Intel® Core™ processors
• Intel® Atom™ processor Z8000 series
• Intel® Atom™ processor Z3400 series
• Intel® Atom™ processor Z3500 series

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 30

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on
Enhanced Intel® Core™ microarchitecture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture and supports Intel 64 archi-
tecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel®
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32nm version of
Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and
various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These
processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, Intel®
CoreTM i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2
product family and 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code name
Ivy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Intel® microarchitecture
code name Ivy Bridge-E and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

The Intel® Core™ M processor family and 5th generation Intel® Core™ processors are based on the Intel® micro-
architecture code name Broadwell and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Intel® microarchitecture code name Haswell-E and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Intel microarchitecture code name Airmont.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Intel
microarchitecture code name Silvermont.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® AtomTM
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors, Pentium® Dual-
Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is the
superset of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 31

9. Updates to Chapter 3, Volume 2A
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-M.

--
...

AAA—ASCII Adjust After Addition

Instruction Operand Encoding

Description

Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The AL register is the implied
source and destination operand for this instruction. The AAA instruction is only useful when it follows an ADD
instruction that adds (binary addition) two unpacked BCD values and stores a byte result in the AL register. The
AAA instruction then adjusts the contents of the AL register to contain the correct 1-digit unpacked BCD result.

If the addition produces a decimal carry, the AH register increments by 1, and the CF and AF flags are set. If there
was no decimal carry, the CF and AF flags are cleared and the AH register is unchanged. In either case, bits 4
through 7 of the AL register are set to 0.

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

IF ((AL AND 0FH) > 9) or (AF = 1)
THEN

AX ← AX + 106H;
AF ← 1;
CF ← 1;

ELSE
AF ← 0;
CF ← 0;

FI;
AL ← AL AND 0FH;

FI;

Flags Affected

The AF and CF flags are set to 1 if the adjustment results in a decimal carry; otherwise they are set to 0. The OF,
SF, ZF, and PF flags are undefined.

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

37 AAA NP Invalid Valid ASCII adjust AL after addition.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 32

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
...

AESDEC—Perform One Round of an AES Decryption Flow

Instruction Operand Encoding

Description

This instruction performs a single round of the AES decryption flow using the Equivalent Inverse Cipher, with the
round key from the second source operand, operating on a 128-bit data (state) from the first source operand, and
store the result in the destination operand.
Use the AESDEC instruction for all but the last decryption round. For the last decryption round, use the AESDE-
CLAST instruction.
128-bit Legacy SSE version: The first source operand and the destination operand are the same and must be an
XMM register. The second source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-
1:128) of the corresponding YMM destination register remain unchanged.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 38 DE /r
AESDEC xmm1, xmm2/m128

RM V/V AES Perform one round of an AES decryption flow,
using the Equivalent Inverse Cipher, operating
on a 128-bit data (state) from xmm1 with a
128-bit round key from xmm2/m128.

VEX.NDS.128.66.0F38.WIG DE /r
VAESDEC xmm1, xmm2, xmm3/m128

RVM V/V Both AES
and
AVX flags

Perform one round of an AES decryption flow,
using the Equivalent Inverse Cipher, operating
on a 128-bit data (state) from xmm2 with a
128-bit round key from xmm3/m128; store
the result in xmm1.

Op/En Operand 1 Operand2 Operand3 Operand4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 33

VEX.128 encoded version: The first source operand and the destination operand are XMM registers. The second
source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM
register are zeroed.

Operation

AESDEC
STATE ← SRC1;
RoundKey ← SRC2;
STATE ← InvShiftRows(STATE);
STATE ← InvSubBytes(STATE);
STATE ← InvMixColumns(STATE);
DEST[127:0] ← STATE XOR RoundKey;
DEST[VLMAX-1:128] (Unmodified)

VAESDEC
STATE ← SRC1;
RoundKey ← SRC2;
STATE ← InvShiftRows(STATE);
STATE ← InvSubBytes(STATE);
STATE ← InvMixColumns(STATE);
DEST[127:0] ← STATE XOR RoundKey;
DEST[VLMAX-1:128] ← 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESDEC: __m128i _mm_aesdec (__m128i, __m128i)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4.
...

AESKEYGENASSIST—AES Round Key Generation Assist
Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 3A DF /r ib
AESKEYGENASSIST xmm1, xmm2/m128, imm8

RMI V/V AES Assist in AES round key generation using an 8
bits Round Constant (RCON) specified in the
immediate byte, operating on 128 bits of data
specified in xmm2/m128 and stores the
result in xmm1.

VEX.128.66.0F3A.WIG DF /r ib
VAESKEYGENASSIST xmm1, xmm2/m128, imm8

RMI V/V Both AES
and
AVX flags

Assist in AES round key generation using 8
bits Round Constant (RCON) specified in the
immediate byte, operating on 128 bits of data
specified in xmm2/m128 and stores the
result in xmm1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 34

Instruction Operand Encoding

Description

Assist in expanding the AES cipher key, by computing steps towards generating a round key for encryption, using
128-bit data specified in the source operand and an 8-bit round constant specified as an immediate, store the
result in the destination operand.
The destination operand is an XMM register. The source operand can be an XMM register or a 128-bit memory
location.

128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain
unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

AESKEYGENASSIST
X3[31:0] ← SRC [127: 96];
X2[31:0] ← SRC [95: 64];
X1[31:0] ← SRC [63: 32];
X0[31:0] ← SRC [31: 0];
RCON[31:0] ← ZeroExtend(Imm8[7:0]);
DEST[31:0] ← SubWord(X1);
DEST[63:32] ← RotWord(SubWord(X1)) XOR RCON;
DEST[95:64] ← SubWord(X3);
DEST[127:96] ← RotWord(SubWord(X3)) XOR RCON;
DEST[VLMAX-1:128] (Unmodified)

VAESKEYGENASSIST
X3[31:0] SRC [127: 96];
X2[31:0] SRC [95: 64];
X1[31:0] SRC [63: 32];
X0[31:0] SRC [31: 0];
RCON[31:0] ZeroExtend(Imm8[7:0]);
DEST[31:0] SubWord(X1);
DEST[63:32] RotWord(SubWord(X1)) XOR RCON;
DEST[95:64] SubWord(X3);
DEST[127:96] RotWord(SubWord(X3)) XOR RCON;
DEST[VLMAX-1:128] 0;

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESKEYGENASSIST: __m128i _mm_aeskeygenassist (__m128i, const int)

SIMD Floating-Point Exceptions

None

Op/En Operand 1 Operand2 Operand3 Operand4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 35

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv ≠ 1111B.
...

CPUID—CPU Identification

Instruction Operand Encoding

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can
set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction
operates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.1 The
instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well).
For example, the following pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value
and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Table 3-17 shows information returned, depending on the initial value loaded into the EAX register. Table 3-18
shows the maximum CPUID input value recognized for each family of IA-32 processors on which CPUID is imple-
mented.

Two types of information are returned: basic and extended function information. If a value entered for CPUID.EAX
is higher than the maximum input value for basic or extended function for that processor then the data for the
highest basic information leaf is returned. For example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *)
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *)
CPUID.EAX = 0BH (* Returns Extended Topology Enumeration leaf. *)
CPUID.EAX = 0CH (* INVALID: Returns the same information as CPUID.EAX = 0BH. *)
CPUID.EAX = 80000008H (* Returns linear/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0BH. *)

If a value entered for CPUID.EAX is less than or equal to the maximum input value and the leaf is not supported
on that processor then 0 is returned in all the registers. For example, using the Intel Core i7 processor, the
following is true:

CPUID.EAX = 07H (*Returns EAX=EBX=ECX=EDX=0. *)

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F A2 CPUID NP Valid Valid Returns processor identification and feature
information to the EAX, EBX, ECX, and EDX
registers, as determined by input entered in
EAX (in some cases, ECX as well).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 36

When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence
on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution
guarantees that any modifications to flags, registers, and memory for previous instructions are completed before
the next instruction is fetched and executed.

See also:

“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A.

“Caching Translation Information” in Chapter 4, “Paging,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

Table 3-17 Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 3-18)
“Genu”
“ntel”
“ineI”

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see Figure 3-5)

Bits 07-00: Brand Index
Bits 15-08: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors in this physical package*.
Bits 31-24: Initial APIC ID

Feature Information (see Figure 3-6 and Table 3-19)
Feature Information (see Figure 3-7 and Table 3-20)

NOTES:
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the number of unique initial APIC

IDs reserved for addressing different logical processors in a physical package. This field is only valid if
CPUID.1.EDX.HTT[bit 28]= 1.

02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 3-21)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX
EBX
ECX

EDX

Reserved.
Reserved.
Bits 00-31 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value
in this register is reserved.)
Bits 32-63 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value
in this register is reserved.)

NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models, use
the PSN flag (returned using CPUID) to check for PSN support before accessing the feature.

See AP-485, Intel Processor Identification and the CPUID Instruction (Order Number 241618) for more
information on PSN.

CPUID leaves > 3 < 80000000 are visible only when IA32_MISC_ENABLE.BOOT_NT4[bit 22] = 0 (default).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 37

Deterministic Cache Parameters Leaf

04H NOTES:
Leaf 04H output depends on the initial value in ECX.*
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters for each level on page 3-182.

EAX Bits 04-00: Cache Type Field
0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Bits 07-05: Cache Level (starts at 1)
Bit 08: Self Initializing cache level (does not need SW initialization)
Bit 09: Fully Associative cache

Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache**, ***
Bits 31-26: Maximum number of addressable IDs for processor cores in the physical
package**, ****, *****

EBX Bits 11-00: L = System Coherency Line Size**
Bits 21-12: P = Physical Line partitions**
Bits 31-22: W = Ways of associativity**

ECX Bits 31-00: S = Number of Sets**

EDX Bit 0: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads sharing this
cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads sharing
this cache.

Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 2: Complex Cache Indexing
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using all address bits.

Bits 31-03: Reserved = 0

NOTES:
* If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n+1 is invalid if sub-

leaf n returns EAX[4:0] as 0.
** Add one to the return value to get the result.
***The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique ini-

tial APIC IDs reserved for addressing different logical processors sharing this cache
**** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of unique

Core_IDs reserved for addressing different processor cores in a physical package. Core ID is a subset of
bits of the initial APIC ID.

***** The returned value is constant for valid initial values in ECX. Valid ECX values start from 0.

MONITOR/MWAIT Leaf

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 38

05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor granularity)
Bits 31-16: Reserved = 0

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor granularity)
Bits 31-16: Reserved = 0

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported

Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled

Bits 31 - 02: Reserved

EDX Bits 03 - 00: Number of C0* sub C-states supported using MWAIT
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 23 - 20: Number of C5* sub C-states supported using MWAIT
Bits 27 - 24: Number of C6* sub C-states supported using MWAIT
Bits 31 - 28: Number of C7* sub C-states supported using MWAIT
NOTE:
* The definition of C0 through C7 states for MWAIT extension are processor-specific C-states, not ACPI C-

states.

Thermal and Power Management Leaf

06H EAX

EBX

Bit 00: Digital temperature sensor is supported if set
Bit 01: Intel Turbo Boost Technology Available (see description of IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bit 07: HWP. HWP base registers (IA32_PM_ENALBE[bit 0], IA32_HWP_CAPABILITIES,
IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set.
Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set.
Bit 09: HWP_Activity_Window. IA32_HWP_REQUEST[bits 41:32] is supported if set.
Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUEST[bits 31:24] is supported if set.
Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set.
Bit 12: Reserved.
Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs are
supported if set.
Bits 31 - 15: Reserved
Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The
capability to provide a measure of delivered processor performance (since last reset of the counters), as
a percentage of the expected processor performance when running at the TSC frequency.
Bits 02 - 01: Reserved = 0
Bit 03: The processor supports performance-energy bias preference if CPUID.06H:ECX.SETBH[bit 3] is set
and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H).
Bits 31 - 04: Reserved = 0

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 39

EDX Reserved = 0

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)

07H Sub-leaf 0 (Input ECX = 0). *

EAX Bits 31-00: Reports the maximum input value for supported leaf 7 sub-leaves.

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01: IA32_TSC_ADJUST MSR is supported if 1.
Bit 02: Reserved
Bit 03: BMI1
Bit 04: HLE
Bit 05: AVX2
Bit 06: Reserved
Bit 07: SMEP. Supports Supervisor-Mode Execution Prevention if 1.
Bit 08: BMI2
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software that manages process-context
identifiers.
Bit 11: RTM
Bit 12: Supports Platform Quality of Service Monitoring (PQM) capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.
Bit 14: Reserved.
Bit 15: Supports Platform Quality of Service Enforcement (PQE) capability if 1.
Bits 17:16: Reserved
Bit 18: RDSEED
Bit 19: ADX
Bit 20: SMAP
Bits 24:21: Reserved
Bit 25: Intel Processor Trace
Bits 31:26: Reserved

ECX Bit 00: PREFETCHWT1
Bit 31-01: Reserved

EDX Reserved

NOTE:
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n

exceeds the value that sub-leaf 0 returns in EAX.

Direct Cache Access Information Leaf

09H EAX

EBX

ECX

EDX

Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H)

Reserved

Reserved

Reserved

Architectural Performance Monitoring Leaf

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 40

0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring counter
Bits 31 - 24: Length of EBX bit vector to enumerate architectural performance monitoring events

EBX Bit 00: Core cycle event not available if 1
Bit 01: Instruction retired event not available if 1
Bit 02: Reference cycles event not available if 1
Bit 03: Last-level cache reference event not available if 1
Bit 04: Last-level cache misses event not available if 1
Bit 05: Branch instruction retired event not available if 1
Bit 06: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

ECX Reserved = 0

EDX Bits 04 - 00: Number of fixed-function performance counters (if Version ID > 1)
Bits 12- 05: Bit width of fixed-function performance counters (if Version ID > 1)
Reserved = 0

Extended Topology Enumeration Leaf

0BH NOTES:
Most of Leaf 0BH output depends on the initial value in ECX.
The EDX output of leaf 0BH is always valid and does not vary with input value in ECX.
Output value in ECX[7:0] always equals input value in ECX[7:0].
For sub-leaves that return an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0.

 If an input value n in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with ECX >
n also return 0 in ECX[15:8].

EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type*.
All logical processors with the same next level ID share current level.
Bits 31-05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as shipped
by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input
Bits 15 - 08: Level type***.
Bits 31 - 16:: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 41

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in this
field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical processors
available to BIOS/OS/Applications may be different from the value of EBX[15:0], depending on software
and platform hardware configurations.

*** The value of the “level type” field is not related to level numbers in any way, higher “level type” val-
ues do not mean higher levels. Level type field has the following encoding:
0 : invalid
1 : SMT
2 : Core
3-255 : Reserved

Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0).

EAX Bits 31-00: Reports the valid bit fields of the lower 32 bits of XCR0. If a bit is 0, the corresponding bit
field in XCR0 is reserved.
Bit 00: legacy x87
Bit 01: 128-bit SSE
Bit 02: 256-bit AVX
Bits 31- 03: Reserved

EBX Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by
enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save area
are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the XSAVE/
XRSTOR save area required by all supported features in the processor, i.e all the valid bit fields in XCR0.

EDX Bit 31-00: Reports the valid bit fields of the upper 32 bits of XCR0. If a bit is 0, the corresponding bit field
in XCR0 is reserved.

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

0DH EAX Bits 31-04: Reserved

Bit 00: XSAVEOPT is available

Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set

Bit 02: Supports XGETBV with ECX = 1 if set

Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set

EBX Bits 31-00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.

ECX Bits 31-00: Reports the valid bit fields of the lower 32 bits of IA32_XSS. If a bit is 0, the corresponding bit
field in IA32_XSS is reserved.

Bits 07-00: Reserved

Bit 08: IA32_XSS[bit 8] is supported if 1

Bits 31-09: Reserved

EDX Bits 31-00: Reports the valid bit fields of the upper 32 bits of IA32_XSS. If a bit is 0, the corresponding
bit field in IA32_XSS is reserved.

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 42

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX.
Each valid sub-leaf index maps to a valid bit in either the XCR0 register or the IA32_XSS MSR starting
at bit position 2.
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf n (0 ≤ n ≤ 31) is invalid

if sub-leaf 0 returns 0 in EAX[n] and sub-leaf 1 returns 0 in ECX[n]. Sub-leaf n (32 ≤ n ≤ 63) is invalid if
sub-leaf 0 returns 0 in EDX[n-32] and sub-leaf 1 returns 0 in EDX[n-32].

EAX Bits 31-0: The size in bytes (from the offset specified in EBX) of the save area for an extended state fea-
ture associated with a valid sub-leaf index, n.

EBX Bits 31-0: The offset in bytes of this extended state component’s save area from the beginning of the
XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, does not map to a valid bit in the XCR0 register*.

ECX Bit 0 is set if the sub-leaf index, n, maps to a valid bit in the IA32_XSS MSR and bit 0 is clear if n maps to
a valid bit in XCR0. Bits 31-1 are reserved. This field reports 0 if the sub-leaf index, n, is invalid*.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Platform QoS Monitoring Enumeration Sub-leaf (EAX = 0FH, ECX = 0)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX.
Sub-leaf index 0 reports valid resource type starting at bit position 1 of EDX

EAX Reserved.

EBX Bits 31-0: Maximum range (zero-based) of RMID within this physical processor of all types.

ECX Reserved.

EDX Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS Monitoring if 1.
Bits 31:02: Reserved

L3 Cache QoS Monitoring Capability Enumeration Sub-leaf (EAX = 0FH, ECX = 1)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX.

EAX Reserved.

EBX Bits 31-0: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes).

ECX Maximum range (zero-based) of RMID of this resource type.

EDX Bit 00: Supports L3 occupancy monitoring if 1.
Bits 31:01: Reserved

Platform QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = 0)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.
Sub-leaf index 0 reports valid resource identification (ResID) starting at bit position 1 of EDX

EAX Reserved.

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 43

EBX Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS Enforcement if 1.
Bits 31:02: Reserved

ECX Reserved.

EDX Reserved.

L3 Cache QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = ResID =1)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.

EAX Bits 4:0: Length of the capacity bit mask for the corresponding ResID.
Bits 31:05: Reserved

EBX Bits 31-0: Bit-granular map of isolation/contention of allocation units.

ECX Bit 00: Reserved.
Bit 01: Updates of COS should be infrequent if 1.
Bits 31:02: Reserved

EDX Bits 15:0: Highest COS number supported for this ResID.
Bits 31:16: Reserved

Intel Processor Trace Enumeration Main Leaf (EAX = 14H, ECX = 0)

14H NOTES:
Leaf 14H main leaf (ECX = 0).

EAX Bits 31-0: Reports the maximum number sub-leaves that are supported in leaf 14H.

EBX Bit 00: If 1, Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that IA32_RTIT_CR3_MATCH
MSR can be accessed.
Bits 31- 01: Reserved

ECX Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output
scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
Bit 01: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the Mas-
kOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.
Bit 30:02: Reserved
Bit 31: If 1, Generated packets which contain IP payloads have LIP values, which include the CS base com-
ponent.

EDX Bits 31- 00: Reserved

Time Stamp Counter/Core Crystal Clock Information-leaf

15H NOTES:
If EBX[31:0] is 0, the TSC/”core crystal clock” ration is not enumerated.
EBX[31:0]/EAX[31:0] indicates the ratio of the TSC frequency and the core crystal clock frequency.
“TSC frequency” = “core crystal clock frequency” * EBX/EAX.
The core crystal clock may differ from the reference clock, bus clock, or core clock frequencies.

EAX Bits 31:0: An unsigned integer which is the denominator of the TSC/"core crystal clock" ratio.

EBX Bits 31-0: An unsigned integer which is the numerator of the TSC/"core crystal clock" ratio.

ECX Bits 31:0: Reserved = 0.

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 44

EDX Bits 31:0: Reserved = 0.

Unimplemented CPUID Leaf Functions

40000000H
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or feature information if the initial
EAX value is in the range 40000000H to 4FFFFFFFH.

Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information (see
Table 3-18).

EBX
ECX
EDX

Reserved
Reserved
Reserved

80000001H EAX

EBX

ECX

Extended Processor Signature and Feature Bits.

Reserved

Bit 00: LAHF/SAHF available in 64-bit mode
Bits 04-01 Reserved
Bit 05: LZCNT
Bits 07-06 Reserved
Bit 08: PREFETCHW
Bits 31-09 Reserved

EDX Bits 10-00: Reserved
Bit 11: SYSCALL/SYSRET available in 64-bit mode
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 25-21: Reserved = 0
Bit 26: 1-GByte pages are available if 1
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1
Bits 28: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 45

INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and the Vendor Identification
String

When CPUID executes with EAX set to 0, the processor returns the highest value the CPUID recognizes for
returning basic processor information. The value is returned in the EAX register (see Table 3-18) and is processor
specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the string is “Genui-
neIntel” and is expressed:

EBX ← 756e6547h (* "Genu", with G in the low eight bits of BL *)

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H EAX
EBX

Reserved = 0
Reserved = 0

ECX

EDX

Bits 07-00: Cache Line size in bytes
Bits 11-08: Reserved
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0

NOTES:
* L2 associativity field encodings:

00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Bits 07-00: Reserved = 0
Bit 08: Invariant TSC available if 1
Bits 31-09: Reserved = 0

80000008H EAX Linear/Physical Address size
Bits 07-00: #Physical Address Bits*
Bits 15-8: #Linear Address Bits
Bits 31-16: Reserved = 0

EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported should

come from this field.

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 46

EDX ← 49656e69h (* "ineI", with i in the low eight bits of DL *)
ECX ← 6c65746eh (* "ntel", with n in the low eight bits of CL *)

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Information

When CPUID executes with EAX set to 80000000H, the processor returns the highest value the processor recog-
nizes for returning extended processor information. The value is returned in the EAX register and is processor
specific.

IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is loaded with the
update signature whenever CPUID executes. The signature is returned in the upper DWORD. For details, see
Chapter 9 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

INPUT EAX = 1: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 1, version information is returned in EAX (see Figure 3-5). For example:
model, family, and processor type for the Intel Xeon processor 5100 series is as follows:
• Model — 1111B
• Family — 0101B
• Processor Type — 00B

See Table 3-18 for available processor type values. Stepping IDs are provided as needed.

Figure 3-5 Version Information Returned by CPUID in EAX

OM16525

Processor Type

034781112131415161920272831

EAX

Family (0FH for the Pentium 4 Processor Family)

Model

Extended
Family ID

Extended
Model ID

Family
ID

Model
Stepping

ID

Extended Family ID (0)

Extended Model ID (0)

Reserved

Table 3-18 Processor Type Field
Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 47

NOTE
See Chapter 17 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for information on identifying earlier IA-32 processors.

The Extended Family ID needs to be examined only when the Family ID is 0FH. Integrate the fields into a display
using the following rule:

IF Family_ID ≠ 0FH
THEN DisplayFamily = Family_ID;
ELSE DisplayFamily = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

FI;
(* Show DisplayFamily as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH. Integrate the field into a
display using the following rule:

IF (Family_ID = 06H or Family_ID = 0FH)
THEN DisplayModel = (Extended_Model_ID « 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE DisplayModel = Model_ID;

FI;
(* Show DisplayModel as HEX field. *)

INPUT EAX = 1: Returns Additional Information in EBX

When CPUID executes with EAX set to 1, additional information is returned to the EBX register:
• Brand index (low byte of EBX) — this number provides an entry into a brand string table that contains brand

strings for IA-32 processors. More information about this field is provided later in this section.
• CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the size of the cache line

flushed with CLFLUSH instruction in 8-byte increments. This field was introduced in the Pentium 4 processor.
• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the local APIC on the

processor during power up. This field was introduced in the Pentium 4 processor.

INPUT EAX = 1: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 1, feature information is returned in ECX and EDX.
• Figure 3-6 and Table 3-19 show encodings for ECX.
• Figure 3-7 and Table 3-20 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret feature flags.

NOTE
Software must confirm that a processor feature is present using feature flags returned by CPUID
prior to using the feature. Software should not depend on future offerings retaining all features.

Dual processor (not applicable to Intel486 processors) 10B

Intel reserved 11B

Table 3-18 Processor Type Field
Type Encoding

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 48

Table 3-19 Feature Information Returned in the ECX Register

Figure 3-6 Feature Information Returned in the ECX Register

OM16524b

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EIST — Enhanced Intel SpeedStep® Technology

DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT

PCLMULQDQ — Carryless Multiplication

Reserved

CMPXCHG16B

SMX — Safer Mode Extensions

xTPR Update Control

SSSE3 — SSSE3 Extensions

PDCM — Perf/Debug Capability MSR

VMX — Virtual Machine Extensions

SSE4_1 — SSE4.1

OSXSAVE

SSE4_2 — SSE4.2

DCA — Direct Cache Access

x2APIC

POPCNT

XSAVE

AVX

AES

FMA — Fused Multiply Add

SSE3 — SSE3 Extensions

PCID — Process-context Identifiers

0

DTES64 — 64-bit DS Area

MOVBE

TSC-Deadline

F16C
RDRAND

SDBG

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor supports this
technology.

1 PCLMULQDQ PCLMULQDQ. A value of 1 indicates the processor supports the PCLMULQDQ instruction.

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout.

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the
Debug Store feature to allow for branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology.

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See
Chapter 5, “Safer Mode Extensions Reference”.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 49

7 EIST Enhanced Intel SpeedStep® technology. A value of 1 indicates that the processor supports this
technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology.

9 SSSE3 A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A
value of 0 indicates the instruction extensions are not present in the processor.

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode
or shared mode. A value of 0 indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.

11 SDBG A value of 1 indicates the processor supports IA32_DEBUG_INTERFACE MSR for silicon debug.

12 FMA A value of 1 indicates the processor supports FMA extensions using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is available. See the
“CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes” section in this chapter for a
description.

14 xTPR Update
Control

xTPR Update Control. A value of 1 indicates that the processor supports changing
IA32_MISC_ENABLE[bit 23].

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the processor supports the performance
and debug feature indication MSR IA32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that
software may set CR4.PCIDE to 1.

18 DCA A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped
device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1.

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2.

21 x2APIC A value of 1 indicates that the processor supports x2APIC feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT instruction.

24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer supports one-shot operation using a
TSC deadline value.

25 AESNI A value of 1 indicates that the processor supports the AESNI instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the XSAVE/XRSTOR processor extended states
feature, the XSETBV/XGETBV instructions, and XCR0.

27 OSXSAVE A value of 1 indicates that the OS has set CR4.OSXSAVE[bit 18] to enable XSETBV/XGETBV
instructions to access XCR0 and to support processor extended state management using XSAVE/
XRSTOR.

28 AVX A value of 1 indicates the processor supports the AVX instruction extensions.

29 F16C A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.

30 RDRAND A value of 1 indicates that processor supports RDRAND instruction.

31 Not Used Always returns 0.

Bit # Mnemonic Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 50

Figure 3-7 Feature Information Returned in the EDX Register

OM16523

PBE–Pend. Brk. EN.

012345678910111213141516171819202122232425262728293031

EDX

TM–Therm. Monitor
HTT–Multi-threading
SS–Self Snoop
SSE2–SSE2 Extensions
SSE–SSE Extensions
FXSR–FXSAVE/FXRSTOR
MMX–MMX Technology
ACPI–Thermal Monitor and Clock Ctrl
DS–Debug Store
CLFSH–CLFLUSH instruction
PSN–Processor Serial Number
PSE-36 – Page Size Extension
PAT–Page Attribute Table
CMOV–Conditional Move/Compare Instruction
MCA–Machine Check Architecture
PGE–PTE Global Bit
MTRR–Memory Type Range Registers
SEP–SYSENTER and SYSEXIT
APIC–APIC on Chip
CX8–CMPXCHG8B Inst.
MCE–Machine Check Exception
PAE–Physical Address Extensions
MSR–RDMSR and WRMSR Support
TSC–Time Stamp Counter
PSE–Page Size Extensions
DE–Debugging Extensions
VME–Virtual-8086 Mode Enhancement
FPU–x87 FPU on Chip

Reserved

Table 3-20 More on Feature Information Returned in the EDX Register

Bit # Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling the
feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the TSS
with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for controlling the feature, and optional
trapping of accesses to DR4 and DR5.

3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the
feature, the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs, and
PTEs.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 51

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are
supported. Some of the MSRs are implementation dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table
entry formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead of
4 Mbyte pages if PAE bit is 1.

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling the
feature. This feature does not define the model-specific implementations of machine-check error logging,
reporting, and processor shutdowns. Machine Check exception handlers may have to depend on processor
version to do model specific processing of the exception, or test for the presence of the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly
locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding to
memory mapped commands in the physical address range FFFE0000H to FFFE0FFFH (by default - some
processors permit the APIC to be relocated).

10 Reserved Reserved

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported.

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that describe
what memory types are supported, how many variable MTRRs are supported, and whether fixed MTRRs are
supported.

13 PGE Page Global Bit. The global bit is supported in paging-structure entries that map a page, indicating TLB entries
that are common to different processes and need not be flushed. The CR4.PGE bit controls this feature.

14 MCA Machine Check Architecture. The Machine Check Architecture, which provides a compatible mechanism for
error reporting in P6 family, Pentium 4, Intel Xeon processors, and future processors, is supported. The
MCG_CAP MSR contains feature bits describing how many banks of error reporting MSRs are supported.

15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is supported. In addition, if x87 FPU is
present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range
Registers (MTRRs), allowing an operating system to specify attributes of memory accessed through a linear
address on a 4KB granularity.

17 PSE-36 36-Bit Page Size Extension. 4-MByte pages addressing physical memory beyond 4 GBytes are supported with
32-bit paging. This feature indicates that upper bits of the physical address of a 4-MByte page are encoded in
bits 20:13 of the page-directory entry. Such physical addresses are limited by MAXPHYADDR and may be up to
40 bits in size.

18 PSN Processor Serial Number. The processor supports the 96-bit processor identification number feature and the
feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved

21 DS Debug Store. The processor supports the ability to write debug information into a memory resident buffer.
This feature is used by the branch trace store (BTS) and precise event-based sampling (PEBS) facilities (see
Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C).

Table 3-20 More on Feature Information Returned in the EDX Register (Contd.)

Bit # Mnemonic Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 52

INPUT EAX = 2: TLB/Cache/Prefetch Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 2, the processor returns information about the processor’s internal TLBs,
cache and prefetch hardware in the EAX, EBX, ECX, and EDX registers. The information is reported in encoded
form and fall into the following categories:
• The least-significant byte in register EAX (register AL) will always return 01H. Software should ignore this

value and not interpret it as an informational descriptor.
• The most significant bit (bit 31) of each register indicates whether the register contains valid information (set

to 0) or is reserved (set to 1).
• If a register contains valid information, the information is contained in 1 byte descriptors. There are four types

of encoding values for the byte descriptor, the encoding type is noted in the second column of Table 3-21.
Table 3-21 lists the encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, ECX, and
EDX registers is not defined; that is, specific bytes are not designated to contain descriptors for specific cache,
prefetch, or TLB types. The descriptors may appear in any order. Note also a processor may report a general
descriptor type (FFH) and not report any byte descriptor of “cache type” via CPUID leaf 2.

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that
allow processor temperature to be monitored and processor performance to be modulated in predefined duty
cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save and
restore of the floating point context. Presence of this bit also indicates that CR4.OSFXSR is available for an
operating system to indicate that it supports the FXSAVE and FXRSTOR instructions.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting memory types by performing a snoop of its
own cache structure for transactions issued to the bus.

28 HTT Max APIC IDs reserved field is Valid. A value of 0 for HTT indicates there is only a single logical processor in
the package and software should assume only a single APIC ID is reserved. A value of 1 for HTT indicates the
value in CPUID.1.EBX[23:16] (the Maximum number of addressable IDs for logical processors in this package) is
valid for the package.

29 TM Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC).

30 Reserved Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in the
stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the
processor should return to normal operation to handle the interrupt. Bit 10 (PBE enable) in the
IA32_MISC_ENABLE MSR enables this capability.

Table 3-20 More on Feature Information Returned in the EDX Register (Contd.)

Bit # Mnemonic Description

Table 3-21 Encoding of CPUID Leaf 2 Descriptors
 Value Type Description

00H General Null descriptor, this byte contains no information

01H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H TLB Instruction TLB: 4 MByte pages, fully associative, 2 entries

03H TLB Data TLB: 4 KByte pages, 4-way set associative, 64 entries

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 53

04H TLB Data TLB: 4 MByte pages, 4-way set associative, 8 entries

05H TLB Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H Cache 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H Cache 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

09H Cache 1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size

0AH Cache 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH TLB Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

0CH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

0DH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size

0EH Cache 1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size

1DH Cache 2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size

21H Cache 2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size

22H Cache 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector

23H Cache 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

24H Cache 2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size

25H Cache 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

29H Cache 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

2CH Cache 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H Cache 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size

40H Cache No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache

41H Cache 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H Cache 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H Cache 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H Cache 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H Cache 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H Cache 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H Cache 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

48H Cache 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size

49H Cache 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model
06H);

2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH Cache 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH Cache 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH Cache 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

4DH Cache 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

4EH Cache 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

4FH TLB Instruction TLB: 4 KByte pages, 32 entries

50H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

Table 3-21 Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 54

51H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

55H TLB Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries

56H TLB Data TLB0: 4 MByte pages, 4-way set associative, 16 entries

57H TLB Data TLB0: 4 KByte pages, 4-way associative, 16 entries

59H TLB Data TLB0: 4 KByte pages, fully associative, 16 entries

5AH TLB Data TLB0: 2-MByte or 4 MByte pages, 4-way set associative, 32 entries

5BH TLB Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH TLB Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH TLB Data TLB: 4 KByte and 4 MByte pages,256 entries

60H Cache 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

61H TLB Instruction TLB: 4 KByte pages, fully associative, 48 entries

63H TLB Data TLB: 1 GByte pages, 4-way set associative, 4 entries

66H Cache 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H Cache 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H Cache 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Cache Trace cache: 12 K-μop, 8-way set associative

71H Cache Trace cache: 16 K-μop, 8-way set associative

72H Cache Trace cache: 32 K-μop, 8-way set associative

76H TLB Instruction TLB: 2M/4M pages, fully associative, 8 entries

78H Cache 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H Cache 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7AH Cache 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7BH Cache 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7CH Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector

7DH Cache 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH Cache 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

80H Cache 2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size

82H Cache 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H Cache 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H Cache 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H Cache 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H Cache 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

A0H DTLB DTLB: 4k pages, fully associative, 32 entries

B0H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B1H TLB Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B2H TLB Instruction TLB: 4KByte pages, 4-way set associative, 64 entries

Table 3-21 Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 55

Example 3-1 Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following information about caches and TLBs
when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

Which means:
• The least-significant byte (byte 0) of register EAX is set to 01H. This value should be ignored.

B3H TLB Data TLB: 4 KByte pages, 4-way set associative, 128 entries

B4H TLB Data TLB1: 4 KByte pages, 4-way associative, 256 entries

B5H TLB Instruction TLB: 4KByte pages, 8-way set associative, 64 entries

B6H TLB Instruction TLB: 4KByte pages, 8-way set associative, 128 entries

BAH TLB Data TLB1: 4 KByte pages, 4-way associative, 64 entries

C0H TLB Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries

C1H STLB Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries

C2H DTLB DTLB: 4 KByte/2 MByte pages, 4-way associative, 16 entries

C3H STLB Shared 2nd-Level TLB: 4 KByte /2 MByte pages, 6-way associative, 1536 entries. Also 1GBbyte pages, 4-way,
16 entries.

CAH STLB Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries

D0H Cache 3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size

D1H Cache 3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size

D2H Cache 3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size

D6H Cache 3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size

D7H Cache 3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size

D8H Cache 3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size

DCH Cache 3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size

DDH Cache 3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size

DEH Cache 3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size

E2H Cache 3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size

E3H Cache 3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size

E4H Cache 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size

EAH Cache 3rd-level cache: 12MByte, 24-way set associative, 64 byte line size

EBH Cache 3rd-level cache: 18MByte, 24-way set associative, 64 byte line size

ECH Cache 3rd-level cache: 24MByte, 24-way set associative, 64 byte line size

F0H Prefetch 64-Byte prefetching

F1H Prefetch 128-Byte prefetching

FFH General CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters

Table 3-21 Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 56

• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, indicating that each register
contains valid 1-byte descriptors.

• Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte pages.

— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache line size.
• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— 00H - NULL descriptor.

— 70H - Trace cache: 12 K-μop, 8-way set associative.

— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte cache line size.

— 00H - NULL descriptor.

INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 04H and ECX contains an index value, the processor returns encoded data
that describe a set of deterministic cache parameters (for the cache level associated with the input in ECX). Valid
index values start from 0.

Software can enumerate the deterministic cache parameters for each level of the cache hierarchy starting with an
index value of 0, until the parameters report the value associated with the cache type field is 0. The architecturally
defined fields reported by deterministic cache parameters are documented in Table 3-17.

This Cache Size in Bytes

= (Ways + 1) * (Partitions + 1) * (Line_Size + 1) * (Sets + 1)

= (EBX[31:22] + 1) * (EBX[21:12] + 1) * (EBX[11:0] + 1) * (ECX + 1)

The CPUID leaf 04H also reports data that can be used to derive the topology of processor cores in a physical
package. This information is constant for all valid index values. Software can query the raw data reported by
executing CPUID with EAX=04H and ECX=0 and use it as part of the topology enumeration algorithm described in
Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

INPUT EAX = 05H: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 05H, the processor returns information about features available to
MONITOR/MWAIT instructions. The MONITOR instruction is used for address-range monitoring in conjunction with
MWAIT instruction. The MWAIT instruction optionally provides additional extensions for advanced power manage-
ment. See Table 3-17.

INPUT EAX = 06H: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 06H, the processor returns information about thermal and power manage-
ment features. See Table 3-17.

INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 07H and ECX = 0, the processor returns information about the maximum
input value for sub-leaves that contain extended feature flags. See Table 3-17.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 57

When CPUID executes with EAX set to 07H and the input value of ECX is invalid (see leaf 07H entry in Table 3-
17), the processor returns 0 in EAX/EBX/ECX/EDX. In subleaf 0, EAX returns the maximum input value of the
highest leaf 7 sub-leaf, and EBX, ECX & EDX contain information of extended feature flags.

INPUT EAX = 09H: Returns Direct Cache Access Information

When CPUID executes with EAX set to 09H, the processor returns information about Direct Cache Access capabil-
ities. See Table 3-17.

INPUT EAX = 0AH: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 0AH, the processor returns information about support for architectural
performance monitoring capabilities. Architectural performance monitoring is supported if the version ID (see
Table 3-17) is greater than Pn 0. See Table 3-17.

For each version of architectural performance monitoring capability, software must enumerate this leaf to
discover the programming facilities and the architectural performance events available in the processor. The
details are described in Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3C.

INPUT EAX = 0BH: Returns Extended Topology Information

When CPUID executes with EAX set to 0BH, the processor returns information about extended topology enumer-
ation data. Software must detect the presence of CPUID leaf 0BH by verifying (a) the highest leaf index supported
by CPUID is >= 0BH, and (b) CPUID.0BH:EBX[15:0] reports a non-zero value. See Table 3-17.

INPUT EAX = 0DH: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 0DH and ECX = 0, the processor returns information about the bit-vector
representation of all processor state extensions that are supported in the processor and storage size require-
ments of the XSAVE/XRSTOR area. See Table 3-17.

When CPUID executes with EAX set to 0DH and ECX = n (n > 1, and is a valid sub-leaf index), the processor
returns information about the size and offset of each processor extended state save area within the XSAVE/
XRSTOR area. See Table 3-17. Software can use the forward-extendable technique depicted below to query the
valid sub-leaves and obtain size and offset information for each processor extended state save area:

For i = 2 to 62 // sub-leaf 1 is reserved
IF (CPUID.(EAX=0DH, ECX=0):VECTOR[i] = 1) // VECTOR is the 64-bit value of EDX:EAX

Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i;
FI;

INPUT EAX = 0FH: Returns Platform Quality of Service (PQoS) Monitoring Enumeration Information

When CPUID executes with EAX set to 0FH and ECX = 0, the processor returns information about the bit-vector
representation of QoS monitoring resource types that are supported in the processor and maximum range of
RMID values the processor can use to monitor of any supported resource types. Each bit, starting from bit 1,
corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or
ResID) that software must use to query QoS monitoring capability available for that type. See Table 3-17.

When CPUID executes with EAX set to 0FH and ECX = n (n >= 1, and is a valid ResID), the processor returns
information software can use to program IA32_PQR_ASSOC, IA32_QM_EVTSEL MSRs before reading QoS data
from the IA32_QM_CTR MSR.

INPUT EAX = 10H: Returns Platform Quality of Service (PQoS) Enforcement Enumeration Information

When CPUID executes with EAX set to 10H and ECX = 0, the processor returns information about the bit-vector
representation of QoS Enforcement resource types that are supported in the processor. Each bit, starting from bit

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 58

1, corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or
ResID) that software must use to query QoS enforcement capability available for that type. See Table 3-17.

When CPUID executes with EAX set to 10H and ECX = n (n >= 1, and is a valid ResID), the processor returns
information about available classes of service and range of QoS mask MSRs that software can use to configure
each class of services using capability bit masks in the QoS Mask registers, IA32_resourceType_Mask_n.

METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method.

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are available in early processors, see
Section: “Identification of Earlier IA-32 Processors” in Chapter 17 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

The Processor Brand String Method

Figure 3-8 describes the algorithm used for detection of the brand string. Processor brand identification software
should execute this algorithm on all Intel 64 and IA-32 processors.

This method (introduced with Pentium 4 processors) returns an ASCII brand identification string and the
Processor Base frequency of the processor to the EAX, EBX, ECX, and EDX registers.

Figure 3-8 Determination of Support for the Processor Brand String

OM15194

IF (EAX & 0x80000000)

CPUID

IF (EAX Return Value
≥ 0x80000004)

CPUID
Function

Supported

True ≥
Extended

EAX Return Value =
Max. Extended CPUID

Function Index

Input: EAX=
0x80000000

Processor Brand
String Not
Supported

False

Processor Brand
String Supported

True

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 59

How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through 80000004H. For each input
value, CPUID returns 16 ASCII characters using EAX, EBX, ECX, and EDX. The returned string will be NULL-termi-
nated.

Table 3-22 shows the brand string that is returned by the first processor in the Pentium 4 processor family.

Table 3-22 Processor Brand String Returned with Pentium 4 Processor

EAX Input Value Return Values ASCII Equivalent

80000002H EAX = 20202020H

EBX = 20202020H

ECX = 20202020H

EDX = 6E492020H

“ ”

“ ”

“ ”

“nI ”

80000003H EAX = 286C6574H

EBX = 50202952H

ECX = 69746E65H

EDX = 52286D75H

“(let”

“P)R”

“itne”

“R(mu”

80000004H EAX = 20342029H

EBX = 20555043H

ECX = 30303531H

EDX = 007A484DH

“ 4)”

“ UPC”

“0051”

“\0zHM”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 60

Extracting the Processor Frequency from Brand Strings

Figure 3-9 provides an algorithm which software can use to extract the Processor Base frequency from the
processor brand string.

The Processor Brand Index Method

The brand index method (introduced with Pentium® III Xeon® processors) provides an entry point into a brand
identification table that is maintained in memory by system software and is accessible from system- and user-
level code. In this table, each brand index is associate with an ASCII brand identification string that identifies the
official Intel family and model number of a processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the low byte in EBX. Software can
then use this index to locate the brand identification string for the processor in the brand identification table. The
first entry (brand index 0) in this table is reserved, allowing for backward compatibility with processors that do not
support the brand identification feature. Starting with processor signature family ID = 0FH, model = 03H, brand
index method is no longer supported. Use brand string method instead.

Table 3-23 shows brand indices that have identification strings associated with them.

Figure 3-9 Algorithm for Extracting Processor Frequency

OM15195

IF Substring Matched

"zHM", or
"zHG", or

"zHT"

Determine "Freq"
and "Multiplier"

True

Determine "Multiplier"

Scan "Brand String" in
Reverse Byte Order

Report Error
False

Scan Digits
Until Blank

Match
Substring

Determine "Freq"
Reverse Digits

To Decimal Value

Processor Base
Frequency =

"Freq" x "Multiplier" "Freq" = X.YZ if
Digits = "ZY.X"

In Reverse Order

If "zHM"

If "zHG"

If "zHT"
Multiplier = 1 x 1012

Multiplier = 1 x 109

Multiplier = 1 x 106

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 61

IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor earlier than the
Intel486 processor.

Operation

IA32_BIOS_SIGN_ID MSR ← Update with installed microcode revision number;

CASE (EAX) OF
EAX = 0:

EAX ← Highest basic function input value understood by CPUID;
EBX ← Vendor identification string;
EDX ← Vendor identification string;
ECX ← Vendor identification string;

Table 3-23 Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String

00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) III processor1

03H Intel(R) Pentium(R) III Xeon(R) processor; If processor signature = 000006B1h, then Intel(R) Celeron(R)
processor

04H Intel(R) Pentium(R) III processor

06H Mobile Intel(R) Pentium(R) III processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

0AH Intel(R) Celeron(R) processor1

0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor MP

0CH Intel(R) Xeon(R) processor MP

0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor

0FH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H – 0FFH RESERVED

NOTES:
1. Indicates versions of these processors that were introduced after the Pentium III

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 62

BREAK;
EAX = 1H:

EAX[3:0] ← Stepping ID;
EAX[7:4] ← Model;
EAX[11:8] ← Family;
EAX[13:12] ← Processor type;
EAX[15:14] ← Reserved;
EAX[19:16] ← Extended Model;
EAX[27:20] ← Extended Family;
EAX[31:28] ← Reserved;
EBX[7:0] ← Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] ← CLFLUSH Line Size;
EBX[16:23] ← Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] ← Initial APIC ID;
ECX ← Feature flags; (* See Figure 3-6. *)
EDX ← Feature flags; (* See Figure 3-7. *)

BREAK;
EAX = 2H:

EAX ← Cache and TLB information;
 EBX ← Cache and TLB information;
 ECX ← Cache and TLB information;

EDX ← Cache and TLB information;
BREAK;
EAX = 3H:

EAX ← Reserved;
 EBX ← Reserved;
 ECX ← ProcessorSerialNumber[31:0];

(* Pentium III processors only, otherwise reserved. *)
EDX ← ProcessorSerialNumber[63:32];
(* Pentium III processors only, otherwise reserved. *

BREAK
EAX = 4H:

EAX ← Deterministic Cache Parameters Leaf; (* See Table 3-17. *)
EBX ← Deterministic Cache Parameters Leaf;

 ECX ← Deterministic Cache Parameters Leaf;
EDX ← Deterministic Cache Parameters Leaf;

BREAK;
EAX = 5H:

EAX ← MONITOR/MWAIT Leaf; (* See Table 3-17. *)
 EBX ← MONITOR/MWAIT Leaf;
 ECX ← MONITOR/MWAIT Leaf;

EDX ← MONITOR/MWAIT Leaf;
BREAK;
EAX = 6H:

EAX ← Thermal and Power Management Leaf; (* See Table 3-17. *)
 EBX ← Thermal and Power Management Leaf;
 ECX ← Thermal and Power Management Leaf;

EDX ← Thermal and Power Management Leaf;
BREAK;
EAX = 7H:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 63

EAX ← Structured Extended Feature Flags Enumeration Leaf; (* See Table 3-17. *)
EBX ← Structured Extended Feature Flags Enumeration Leaf;

 ECX ← Structured Extended Feature Flags Enumeration Leaf;
EDX ← Structured Extended Feature Flags Enumeration Leaf;

BREAK;
EAX = 8H:

EAX ← Reserved = 0;
 EBX ← Reserved = 0;
 ECX ← Reserved = 0;

EDX ← Reserved = 0;
BREAK;
EAX = 9H:

EAX ← Direct Cache Access Information Leaf; (* See Table 3-17. *)
 EBX ← Direct Cache Access Information Leaf;
 ECX ← Direct Cache Access Information Leaf;

EDX ← Direct Cache Access Information Leaf;
BREAK;
EAX = AH:

EAX ← Architectural Performance Monitoring Leaf; (* See Table 3-17. *)
 EBX ← Architectural Performance Monitoring Leaf;
 ECX ← Architectural Performance Monitoring Leaf;

EDX ← Architectural Performance Monitoring Leaf;
BREAK

EAX = BH:
EAX ← Extended Topology Enumeration Leaf; (* See Table 3-17. *)
EBX ← Extended Topology Enumeration Leaf;

 ECX ← Extended Topology Enumeration Leaf;
EDX ← Extended Topology Enumeration Leaf;

BREAK;
EAX = CH:

EAX ← Reserved = 0;
 EBX ← Reserved = 0;
 ECX ← Reserved = 0;

EDX ← Reserved = 0;
BREAK;
EAX = DH:

EAX ← Processor Extended State Enumeration Leaf; (* See Table 3-17. *)
 EBX ← Processor Extended State Enumeration Leaf;
 ECX ← Processor Extended State Enumeration Leaf;

EDX ← Processor Extended State Enumeration Leaf;
BREAK;
EAX = EH:

EAX ← Reserved = 0;
 EBX ← Reserved = 0;
 ECX ← Reserved = 0;

EDX ← Reserved = 0;
BREAK;
EAX = FH:

EAX ← Platform Quality of Service Monitoring Enumeration Leaf; (* See Table 3-17. *)
EBX ← Platform Quality of Service Monitoring Enumeration Leaf;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 64

 ECX ← Platform Quality of Service Monitoring Enumeration Leaf;
EDX ← Platform Quality of Service Monitoring Enumeration Leaf;

BREAK;
EAX = 10H:

EAX ← Platform Quality of Service Enforcement Enumeration Leaf; (* See Table 3-17. *)
 EBX ← Platform Quality of Service Enforcement Enumeration Leaf;
 ECX ← Platform Quality of Service Enforcement Enumeration Leaf;

EDX ← Platform Quality of Service Enforcement Enumeration Leaf;
BREAK;
EAX = 15H:

EAX ← Time Stamp Counter/Core Crystal Clock Information Leaf; (* See Table 3-17. *)
 EBX ← Time Stamp Counter/Core Crystal Clock Information Leaf;
 ECX ← Time Stamp Counter/Core Crystal Clock Information Leaf;

EDX ← Time Stamp Counter/Core Crystal Clock Information Leaf;
BREAK;

BREAK;
EAX = 80000000H:

EAX ← Highest extended function input value understood by CPUID;
EBX ← Reserved;
ECX ← Reserved;
EDX ← Reserved;

BREAK;
EAX = 80000001H:

EAX ← Reserved;
EBX ← Reserved;
ECX ← Extended Feature Bits (* See Table 3-17.*);
EDX ← Extended Feature Bits (* See Table 3-17. *);

BREAK;
EAX = 80000002H:

EAX ← Processor Brand String;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000003H:

EAX ← Processor Brand String, continued;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000004H:

EAX ← Processor Brand String, continued;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000005H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Reserved = 0;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 65

EDX ← Reserved = 0;
BREAK;
EAX = 80000006H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Cache information;
EDX ← Reserved = 0;

BREAK;
EAX = 80000007H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Reserved = 0;
EDX ← Reserved = Misc Feature Flags;

BREAK;
EAX = 80000008H:

EAX ← Reserved = Physical Address Size Information;
EBX ← Reserved = Virtual Address Size Information;
ECX ← Reserved = 0;
EDX ← Reserved = 0;

BREAK;
EAX >= 40000000H and EAX <= 4FFFFFFFH:
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)

(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX ← Reserved; (* Information returned for highest basic information leaf. *)
EBX ← Reserved; (* Information returned for highest basic information leaf. *)
ECX ← Reserved; (* Information returned for highest basic information leaf. *)
EDX ← Reserved; (* Information returned for highest basic information leaf. *)

BREAK;
ESAC;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

In earlier IA-32 processors that do not support the CPUID instruction, execution of the
instruction results in an invalid opcode (#UD) exception being generated.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 66

CVTSD2SI—Convert Scalar Double-Precision FP Value to Integer

Instruction Operand Encoding

Description

Converts a double-precision floating-point value in the source operand (second operand) to a signed doubleword
integer in the destination operand (first operand). The source operand can be an XMM register or a 64-bit memory
location. The destination operand is a general-purpose register. When the source operand is an XMM register, the
double-precision floating-point value is contained in the low quadword of the register.

When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR
register.

If a converted result exceeds the range limits of signed doubleword integer (in non-64-bit modes or 64-bit mode
with REX.W/VEX.W=0), the floating-point invalid exception is raised, and if this exception is masked, the indefi-
nite integer value (80000000H) is returned.

If a converted result exceeds the range limits of signed quadword integer (in 64-bit mode and REX.W/VEX.W =
1), the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value
(80000000_00000000H) is returned.
Legacy SSE instructions: Use of the REX.W prefix promotes the instruction to 64-bit operation. See the summary
chart at the beginning of this section for encoding data and limits.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F 2D /r

CVTSD2SI r32, xmm/m64

RM V/V SSE2 Convert one double-precision floating-point
value from xmm/m64 to one signed
doubleword integer r32.

 F2 REX.W 0F 2D /r

CVTSD2SI r64, xmm/m64

RM V/N.E. SSE2 Convert one double-precision floating-point
value from xmm/m64 to one signed quadword
integer sign-extended into r64.

VEX.LIG.F2.0F.W0 2D /r

VCVTSD2SI r32, xmm1/m64

RM V/V AVX Convert one double precision floating-point
value from xmm1/m64 to one signed
doubleword integer r32.

VEX.LIG.F2.0F.W1 2D /r

VCVTSD2SI r64, xmm1/m64

RM V/N.E.1 AVX Convert one double precision floating-point
value from xmm1/m64 to one signed
quadword integer sign-extended into r64.

NOTES:
1. Encoding the VEX prefix with VEX.W=1 in non-64-bit mode is ignored.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 67

Operation

IF 64-Bit Mode and OperandSize = 64
THEN

DEST[63:0] ← Convert_Double_Precision_Floating_Point_To_Integer64(SRC[63:0]);
ELSE

DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_Integer32(SRC[63:0]);
FI;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_cvtsd_si32(__m128d a)

__int64 _mm_cvtsd_si64(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv ≠ 1111B.
...

CVTTSD2SI—Convert with Truncation Scalar Double-Precision FP Value to Signed Integer

Instruction Operand Encoding

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F 2C /r

CVTTSD2SI r32, xmm/m64

RM V/V SSE2 Convert one double-precision floating-point
value from xmm/m64 to one signed
doubleword integer in r32 using truncation.

F2 REX.W 0F 2C /r

CVTTSD2SI r64, xmm/m64

RM V/N.E. SSE2 Convert one double precision floating-point
value from xmm/m64 to one signedquadword
integer in r64 using truncation.

VEX.LIG.F2.0F.W0 2C /r

VCVTTSD2SI r32, xmm1/m64

RM V/V AVX Convert one double-precision floating-point
value from xmm1/m64 to one signed
doubleword integer in r32 using truncation.

VEX.LIG.F2.0F.W1 2C /r

VCVTTSD2SI r64, xmm1/m64

RM V/N.E.1 AVX Convert one double precision floating-point
value from xmm1/m64 to one signed
quadword integer in r64 using truncation.

NOTES:
1. Encoding the VEX prefix with VEX.W=1 in non-64-bit mode is ignored.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 68

Description

Converts a double-precision floating-point value in the source operand (second operand) to a signed doubleword
integer (or signed quadword integer if operand size is 64 bits) in the destination operand (first operand). The
source operand can be an XMM register or a 64-bit memory location. The destination operand is a general purpose
register. When the source operand is an XMM register, the double-precision floating-point value is contained in the
low quadword of the register.

When a conversion is inexact, a truncated (round toward zero) result is returned.

If a converted result exceeds the range limits of signed doubleword integer (in non-64-bit modes or 64-bit mode
with REX.W/VEX.W=0), the floating-point invalid exception is raised, and if this exception is masked, the indefi-
nite integer value (80000000H) is returned.

If a converted result exceeds the range limits of signed quadword integer (in 64-bit mode and REX.W/VEX.W =
1), the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value
(80000000_00000000H) is returned.
Legacy SSE instructions: In 64-bit mode, Use of the REX.W prefix promotes the instruction to 64-bit operation.
See the summary chart at the beginning of this section for encoding data and limits.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

IF 64-Bit Mode and OperandSize = 64
THEN

DEST[63:0] ← Convert_Double_Precision_Floating_Point_To_
Integer64_Truncate(SRC[63:0]);

ELSE
DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_

Integer32_Truncate(SRC[63:0]);
FI;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_cvttsd_si32(__m128d a)

__int64 _mm_cvttsd_si64(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions
See Exceptions Type 3; additionally
#UD If VEX.vvvv ≠ 1111B.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 69

FCOS— Cosine

Description

Computes the approximate cosine of the source operand in register ST(0) and stores the result in ST(0). The
source operand must be given in radians and must be within the range −263 to +263. The following table shows the
results obtained when taking the cosine of various classes of numbers.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, and the value in
register ST(0) remains unchanged. The instruction does not raise an exception when the source operand is out of
range. It is up to the program to check the C2 flag for out-of-range conditions. Source values outside the range −
263 to +263 can be reduced to the range of the instruction by subtracting an appropriate integer multiple of 2π.
However, even within the range -263 to +263, inaccurate results can occur because the finite approximation of π
used internally for argument reduction is not sufficient in all cases. Therefore, for accurate results it is safe to
apply FCOS only to arguments reduced accurately in software, to a value smaller in absolute value than 3π/8. See
the sections titled “Pi” and “Transcendental Instruction Accuracy” in Chapter 8 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in performing
such reductions.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF |ST(0)| < 263

THEN
C2 ← 0;
ST(0) ← FCOS(ST(0)); // approximation of cosine

ELSE (* Source operand is out-of-range *)
C2 ← 1;

FI;

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 FF FCOS Valid Valid Replace ST(0) with its approximate cosine.

Table 3-32 FCOS Results
ST(0) SRC ST(0) DEST

− ∞ *

− F −1 to +1

− 0 + 1

+ 0 + 1

+ F − 1 to + 1

+ ∞ *

NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 70

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
Undefined if C2 is 1.

C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0.
C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value, ∞, or unsupported format.
#D Source is a denormal value.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 71

FNOP—No Operation

Description

Performs no FPU operation. This instruction takes up space in the instruction stream but does not affect the FPU
or machine context, except the EIP register and the FPU Instruction Pointer.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 D0 FNOP Valid Valid No operation is performed.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 72

FPTAN—Partial Tangent

Description

Computes the approximate tangent of the source operand in register ST(0), stores the result in ST(0), and pushes
a 1.0 onto the FPU register stack. The source operand must be given in radians and must be less than ±263. The
following table shows the unmasked results obtained when computing the partial tangent of various classes of
numbers, assuming that underflow does not occur.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, and the value in
register ST(0) remains unchanged. The instruction does not raise an exception when the source operand is out of
range. It is up to the program to check the C2 flag for out-of-range conditions. Source values outside the range −
263 to +263 can be reduced to the range of the instruction by subtracting an appropriate integer multiple of 2π.
However, even within the range -263 to +263, inaccurate results can occur because the finite approximation of π
used internally for argument reduction is not sufficient in all cases. Therefore, for accurate results it is safe to
apply FPTAN only to arguments reduced accurately in software, to a value smaller in absolute value than 3π/8.
See the sections titled “Pi” and “Transcendental Instruction Accuracy” in Chapter 8 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in
performing such reductions.

The value 1.0 is pushed onto the register stack after the tangent has been computed to maintain compatibility
with the Intel 8087 and Intel287 math coprocessors. This operation also simplifies the calculation of other trigo-
nometric functions. For instance, the cotangent (which is the reciprocal of the tangent) can be computed by
executing a FDIVR instruction after the FPTAN instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 F2 FPTAN Valid Valid Replace ST(0) with its approximate tangent and push 1
onto the FPU stack.

Table 3-42 FPTAN Results
ST(0) SRC ST(0) DEST

− ∞ *

− F − F to + F

− 0 - 0

+ 0 + 0

+ F − F to + F

+ ∞ *

NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 73

Operation

IF ST(0) < 263

THEN
C2 ← 0;
ST(0) ← fptan(ST(0)); // approximation of tan
TOP ← TOP − 1;
ST(0) ← 1.0;

ELSE (* Source operand is out-of-range *)
C2 ← 1;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred.

Set if result was rounded up; cleared otherwise.
C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0.
C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow or overflow occurred.
#IA Source operand is an SNaN value, ∞, or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 74

FSIN—Sine

Description

Computes an approximation of the sine of the source operand in register ST(0) and stores the result in ST(0). The
source operand must be given in radians and must be within the range −263 to +263. The following table shows the
results obtained when taking the sine of various classes of numbers, assuming that underflow does not occur.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, and the value in
register ST(0) remains unchanged. The instruction does not raise an exception when the source operand is out of
range. It is up to the program to check the C2 flag for out-of-range conditions. Source values outside the range −
263 to +263 can be reduced to the range of the instruction by subtracting an appropriate integer multiple of 2π.
However, even within the range -263 to +263, inaccurate results can occur because the finite approximation of π
used internally for argument reduction is not sufficient in all cases. Therefore, for accurate results it is safe to
apply FSIN only to arguments reduced accurately in software, to a value smaller in absolute value than 3π/4. See
the sections titled “Pi” and “Transcendental Instruction Accuracy” in Chapter 8 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in performing
such reductions.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF -263 < ST(0) < 263

THEN
C2 ← 0;
ST(0) ← fsin(ST(0)); // approximation of the mathematical sin function

ELSE (* Source operand out of range *)
C2 ← 1;

FI;

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 FE FSIN Valid Valid Replace ST(0) with the approximate of its sine.

Table 3-44 FSIN Results
SRC (ST(0)) DEST (ST(0))

− ∞ *

− F − 1 to + 1

− 0 −0

+ 0 + 0

+ F − 1 to +1

+ ∞ *

NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 75

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Set if result was rounded up; cleared otherwise.
C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0.
C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.
#IA Source operand is an SNaN value, ∞, or unsupported format.
#D Source operand is a denormal value.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 76

FSINCOS—Sine and Cosine

Description

Computes both the approximate sine and the cosine of the source operand in register ST(0), stores the sine in
ST(0), and pushes the cosine onto the top of the FPU register stack. (This instruction is faster than executing the
FSIN and FCOS instructions in succession.)

The source operand must be given in radians and must be within the range −263 to +263. The following table shows
the results obtained when taking the sine and cosine of various classes of numbers, assuming that underflow does
not occur.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, and the value in
register ST(0) remains unchanged. The instruction does not raise an exception when the source operand is out of
range. It is up to the program to check the C2 flag for out-of-range conditions. Source values outside the range −
263 to +263 can be reduced to the range of the instruction by subtracting an appropriate integer multiple of 2π.
However, even within the range -263 to +263, inaccurate results can occur because the finite approximation of π
used internally for argument reduction is not sufficient in all cases. Therefore, for accurate results it is safe to
apply FSINCOS only to arguments reduced accurately in software, to a value smaller in absolute value than 3π/8.
See the sections titled “Pi” and “Transcendental Instruction Accuracy” in Chapter 8 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in
performing such reductions.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D9 FB FSINCOS Valid Valid Compute the sine and cosine of ST(0); replace ST(0) with the
approximate sine, and push the approximate cosine onto the
register stack.

Table 3-45 FSINCOS Results
SRC DEST

ST(0) ST(1) Cosine ST(0) Sine

− ∞ * *

− F − 1 to + 1 − 1 to + 1

− 0 + 1 − 0

+ 0 + 1 + 0

+ F − 1 to + 1 − 1 to + 1

+ ∞ * *

NaN NaN NaN

NOTES:
F Means finite floating-point value.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 77

Operation

IF ST(0) < 263

THEN
C2 ← 0;
TEMP ← fcos(ST(0)); // approximation of cosine
ST(0) ← fsin(ST(0)); // approximation of sine
TOP ← TOP − 1;
ST(0) ← TEMP;

ELSE (* Source operand out of range *)
C2 ← 1;

FI;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; set to 1 of stack overflow occurs.

Set if result was rounded up; cleared otherwise.
C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0.
C0, C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow or overflow occurred.
#IA Source operand is an SNaN value, ∞, or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 78

FXRSTOR—Restore x87 FPU, MMX, XMM, and MXCSR State

Instruction Operand Encoding

Description

Reloads the x87 FPU, MMX technology, XMM, and MXCSR registers from the 512-byte memory image specified in
the source operand. This data should have been written to memory previously using the FXSAVE instruction, and
in the same format as required by the operating modes. The first byte of the data should be located on a 16-byte
boundary. There are three distinct layouts of the FXSAVE state map: one for legacy and compatibility mode, a
second format for 64-bit mode FXSAVE/FXRSTOR with REX.W=0, and the third format is for 64-bit mode with
FXSAVE64/FXRSTOR64. Table 3-52 shows the layout of the legacy/compatibility mode state information in
memory and describes the fields in the memory image for the FXRSTOR and FXSAVE instructions. Table 3-55
shows the layout of the 64-bit mode state information when REX.W is set (FXSAVE64/FXRSTOR64). Table 3-56
shows the layout of the 64-bit mode state information when REX.W is clear (FXSAVE/FXRSTOR).

The state image referenced with an FXRSTOR instruction must have been saved using an FXSAVE instruction or
be in the same format as required by Table 3-52, Table 3-55, or Table 3-56. Referencing a state image saved with
an FSAVE, FNSAVE instruction or incompatible field layout will result in an incorrect state restoration.

The FXRSTOR instruction does not flush pending x87 FPU exceptions. To check and raise exceptions when loading
x87 FPU state information with the FXRSTOR instruction, use an FWAIT instruction after the FXRSTOR instruction.

If the OSFXSR bit in control register CR4 is not set, the FXRSTOR instruction may not restore the states of the
XMM and MXCSR registers. This behavior is implementation dependent.

If the MXCSR state contains an unmasked exception with a corresponding status flag also set, loading the register
with the FXRSTOR instruction will not result in a SIMD floating-point error condition being generated. Only the
next occurrence of this unmasked exception will result in the exception being generated.

Bits 16 through 32 of the MXCSR register are defined as reserved and should be set to 0. Attempting to write a 1
in any of these bits from the saved state image will result in a general protection exception (#GP) being gener-
ated.

Bytes 464:511 of an FXSAVE image are available for software use. FXRSTOR ignores the content of bytes 464:511
in an FXSAVE state image.

Operation
IF 64-Bit Mode
 THEN
 (x87 FPU, MMX, XMM15-XMM0, MXCSR) Load(SRC);
 ELSE

(x87 FPU, MMX, XMM7-XMM0, MXCSR) ← Load(SRC);
FI;

Opcode/
Instruction

Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /1

FXRSTOR m512byte

M Valid Valid Restore the x87 FPU, MMX, XMM, and MXCSR
register state from m512byte.

REX.W+ 0F AE /1

FXRSTOR64 m512byte

M Valid N.E. Restore the x87 FPU, MMX, XMM, and MXCSR
register state from m512byte.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 79

x87 FPU and SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of segment. (See
alignment check exception [#AC] below.)
For an attempt to set reserved bits in MXCSR.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1.

If CR0.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.

If instruction is preceded by a LOCK prefix.
#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory

operand is not aligned on a 16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
For an attempt to set reserved bits in MXCSR.

#NM If CR0.TS[bit 3] = 1.
If CR0.EM[bit 2] = 1.

#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.
#AC For unaligned memory reference.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 80

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.
For an attempt to set reserved bits in MXCSR.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1.

If CR0.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.

If instruction is preceded by a LOCK prefix.
#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory

operand is not aligned on a 16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

...

FXSAVE—Save x87 FPU, MMX Technology, and SSE State

Instruction Operand Encoding

Description

Saves the current state of the x87 FPU, MMX technology, XMM, and MXCSR registers to a 512-byte memory loca-
tion specified in the destination operand. The content layout of the 512 byte region depends on whether the
processor is operating in non-64-bit operating modes or 64-bit sub-mode of IA-32e mode.

Bytes 464:511 are available to software use. The processor does not write to bytes 464:511 of an FXSAVE area.

The operation of FXSAVE in non-64-bit modes is described first.

Opcode/
Instruction

Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /0

FXSAVE m512byte

M Valid Valid Save the x87 FPU, MMX, XMM, and MXCSR
register state to m512byte.

REX.W+ 0F AE /0

FXSAVE64 m512byte

M Valid N.E. Save the x87 FPU, MMX, XMM, and MXCSR
register state to m512byte.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 81

Non-64-Bit Mode Operation

Table 3-52 shows the layout of the state information in memory when the processor is operating in legacy modes.

Table 3-52 Non-64-bit-Mode Layout of FXSAVE and FXRSTOR
Memory Region

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsvd FPU CS FPU IP FOP Rsvd FTW FSW FCW 0

MXCSR_MASK MXCSR Rsrvd FPU DS FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

Reserved 288

Reserved 304

Reserved 320

Reserved 336

Reserved 352

Reserved 368

Reserved 384

Reserved 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 82

The destination operand contains the first byte of the memory image, and it must be aligned on a 16-byte
boundary. A misaligned destination operand will result in a general-protection (#GP) exception being generated
(or in some cases, an alignment check exception [#AC]).

The FXSAVE instruction is used when an operating system needs to perform a context switch or when an excep-
tion handler needs to save and examine the current state of the x87 FPU, MMX technology, and/or XMM and
MXCSR registers.

The fields in Table 3-52 are defined in Table 3-53.

Table 3-53 Field Definitions

Field Definition

FCW x87 FPU Control Word (16 bits). See Figure 8-6 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for the layout of the x87 FPU control word.

FSW x87 FPU Status Word (16 bits). See Figure 8-4 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for the layout of the x87 FPU status word.

Abridged FTW x87 FPU Tag Word (8 bits). The tag information saved here is abridged, as described in the following
paragraphs.

FOP x87 FPU Opcode (16 bits). The lower 11 bits of this field contain the opcode, upper 5 bits are reserved.
See Figure 8-8 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for
the layout of the x87 FPU opcode field.

FPU IP x87 FPU Instruction Pointer Offset (32 bits). The contents of this field differ depending on the current
addressing mode (32-bit or 16-bit) of the processor when the FXSAVE instruction was executed:

32-bit mode — 32-bit IP offset.

16-bit mode — low 16 bits are IP offset; high 16 bits are reserved.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for a description of the x87 FPU instruction
pointer.

FPU CS x87 FPU Instruction Pointer Selector (16 bits). If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the
processor deprecates the FPU CS and FPU DS values, and this field is saved as 0000H.

FPU DP x87 FPU Instruction Operand (Data) Pointer Offset (32 bits). The contents of this field differ
depending on the current addressing mode (32-bit or 16-bit) of the processor when the FXSAVE
instruction was executed:

32-bit mode — 32-bit DP offset.

16-bit mode — low 16 bits are DP offset; high 16 bits are reserved.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for a description of the x87 FPU operand
pointer.

FPU DS x87 FPU Instruction Operand (Data) Pointer Selector (16 bits). If CPUID.(EAX=07H,ECX=0H):EBX[bit
13] = 1, the processor deprecates the FPU CS and FPU DS values, and this field is saved as 0000H.

MXCSR MXCSR Register State (32 bits). See Figure 10-3 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for the layout of the MXCSR register. If the OSFXSR bit in control
register CR4 is not set, the FXSAVE instruction may not save this register. This behavior is
implementation dependent.

MXCSR_
MASK

MXCSR_MASK (32 bits). This mask can be used to adjust values written to the MXCSR register,
ensuring that reserved bits are set to 0. Set the mask bits and flags in MXCSR to the mode of
operation desired for SSE and SSE2 SIMD floating-point instructions. See “Guidelines for Writing to the
MXCSR Register” in Chapter 11 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for instructions for how to determine and use the MXCSR_MASK value.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 83

The FXSAVE instruction saves an abridged version of the x87 FPU tag word in the FTW field (unlike the FSAVE
instruction, which saves the complete tag word). The tag information is saved in physical register order (R0
through R7), rather than in top-of-stack (TOS) order. With the FXSAVE instruction, however, only a single bit (1
for valid or 0 for empty) is saved for each tag. For example, assume that the tag word is currently set as follows:

R7 R6 R5 R4 R3 R2 R1 R0
11 xx xx xx 11 11 11 11

Here, 11B indicates empty stack elements and “xx” indicates valid (00B), zero (01B), or special (10B).

For this example, the FXSAVE instruction saves only the following 8 bits of information:

R7 R6 R5 R4 R3 R2 R1 R0
0 1 1 1 0 0 0 0

Here, a 1 is saved for any valid, zero, or special tag, and a 0 is saved for any empty tag.

The operation of the FXSAVE instruction differs from that of the FSAVE instruction, the as follows:
• FXSAVE instruction does not check for pending unmasked floating-point exceptions. (The FXSAVE operation in

this regard is similar to the operation of the FNSAVE instruction).
• After the FXSAVE instruction has saved the state of the x87 FPU, MMX technology, XMM, and MXCSR registers,

the processor retains the contents of the registers. Because of this behavior, the FXSAVE instruction cannot be
used by an application program to pass a “clean” x87 FPU state to a procedure, since it retains the current
state. To clean the x87 FPU state, an application must explicitly execute an FINIT instruction after an FXSAVE
instruction to reinitialize the x87 FPU state.

• The format of the memory image saved with the FXSAVE instruction is the same regardless of the current
addressing mode (32-bit or 16-bit) and operating mode (protected, real address, or system management).
This behavior differs from the FSAVE instructions, where the memory image format is different depending on
the addressing mode and operating mode. Because of the different image formats, the memory image saved
with the FXSAVE instruction cannot be restored correctly with the FRSTOR instruction, and likewise the state
saved with the FSAVE instruction cannot be restored correctly with the FXRSTOR instruction.

The FSAVE format for FTW can be recreated from the FTW valid bits and the stored 80-bit FP data (assuming the
stored data was not the contents of MMX technology registers) using Table 3-54.

ST0/MM0 through ST7/
MM7

x87 FPU or MMX technology registers. These 80-bit fields contain the x87 FPU data registers or the
MMX technology registers, depending on the state of the processor prior to the execution of the
FXSAVE instruction. If the processor had been executing x87 FPU instruction prior to the FXSAVE
instruction, the x87 FPU data registers are saved; if it had been executing MMX instructions (or SSE or
SSE2 instructions that operated on the MMX technology registers), the MMX technology registers are
saved. When the MMX technology registers are saved, the high 16 bits of the field are reserved.

XMM0 through XMM7 XMM registers (128 bits per field). If the OSFXSR bit in control register CR4 is not set, the FXSAVE
instruction may not save these registers. This behavior is implementation dependent.

Table 3-53 Field Definitions (Contd.)

Field Definition

Table 3-54 Recreating FSAVE Format

Exponent
all 1’s

Exponent
all 0’s

Fraction
all 0’s

J and M
bits

FTW valid bit
x87 FTW

0 0 0 0x 1 Special 10

0 0 0 1x 1 Valid 00

0 0 1 00 1 Special 10

0 0 1 10 1 Valid 00

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 84

The J-bit is defined to be the 1-bit binary integer to the left of the decimal place in the significand. The M-bit is
defined to be the most significant bit of the fractional portion of the significand (i.e., the bit immediately to the
right of the decimal place).

When the M-bit is the most significant bit of the fractional portion of the significand, it must be 0 if the fraction is
all 0’s.

IA-32e Mode Operation

In compatibility sub-mode of IA-32e mode, legacy SSE registers, XMM0 through XMM7, are saved according to
the legacy FXSAVE map. In 64-bit mode, all of the SSE registers, XMM0 through XMM15, are saved. Additionally,
there are two different layouts of the FXSAVE map in 64-bit mode, corresponding to FXSAVE64 (which requires
REX.W=1) and FXSAVE (REX.W=0). In the FXSAVE64 map (Table 3-55), the FPU IP and FPU DP pointers are 64-
bit wide. In the FXSAVE map for 64-bit mode (Table 3-56), the FPU IP and FPU DP pointers are 32-bits.

0 1 0 0x 1 Special 10

0 1 0 1x 1 Special 10

0 1 1 00 1 Zero 01

0 1 1 10 1 Special 10

1 0 0 1x 1 Special 10

1 0 0 1x 1 Special 10

1 0 1 00 1 Special 10

1 0 1 10 1 Special 10

For all legal combinations above. 0 Empty 11

Table 3-54 Recreating FSAVE Format (Contd.)

Exponent
all 1’s

Exponent
all 0’s

Fraction
all 0’s

J and M
bits

FTW valid bit
x87 FTW

Table 3-55 Layout of the 64-bit-mode FXSAVE64 Map
(requires REX.W = 1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FPU IP FOP Reserved FTW FSW FCW 0

MXCSR_MASK MXCSR FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 85

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496

Table 3-55 Layout of the 64-bit-mode FXSAVE64 Map
(requires REX.W = 1) (Contd.)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 3-56 Layout of the 64-bit-mode FXSAVE Map (REX.W = 0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved FPU CS FPU IP FOP Reserved FTW FSW FCW 0

MXCSR_MASK MXCSR Reserved FPU DS FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 86

Operation

IF 64-Bit Mode
THEN

IF REX.W = 1
THEN

DEST ← Save64BitPromotedFxsave(x87 FPU, MMX, XMM15-XMM0,
MXCSR);

ELSE
DEST ← Save64BitDefaultFxsave(x87 FPU, MMX, XMM15-XMM0, MXCSR);

FI;
ELSE

DEST ← SaveLegacyFxsave(x87 FPU, MMX, XMM7-XMM0, MXCSR);
FI;

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496

Table 3-56 Layout of the 64-bit-mode FXSAVE Map (REX.W = 0) (Contd.) (Contd.)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 87

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of segment. (See the
description of the alignment check exception [#AC] below.)

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1.

If CR0.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.
#UD If the LOCK prefix is used.
#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory

operand is not aligned on a 16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.

If CR0.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.
#AC For unaligned memory reference.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 88

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1.

If CR0.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.

If the LOCK prefix is used.
#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory

operand is not aligned on a 16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Implementation Note

The order in which the processor signals general-protection (#GP) and page-fault (#PF) exceptions when they
both occur on an instruction boundary is given in Table 5-2 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B. This order vary for FXSAVE for different processor implementations.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 89

Jcc—Jump if Condition Is Met

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

77 cb JA rel8 D Valid Valid Jump short if above (CF=0 and ZF=0).

73 cb JAE rel8 D Valid Valid Jump short if above or equal (CF=0).

72 cb JB rel8 D Valid Valid Jump short if below (CF=1).

76 cb JBE rel8 D Valid Valid Jump short if below or equal (CF=1 or ZF=1).

72 cb JC rel8 D Valid Valid Jump short if carry (CF=1).

E3 cb JCXZ rel8 D N.E. Valid Jump short if CX register is 0.

E3 cb JECXZ rel8 D Valid Valid Jump short if ECX register is 0.

E3 cb JRCXZ rel8 D Valid N.E. Jump short if RCX register is 0.

74 cb JE rel8 D Valid Valid Jump short if equal (ZF=1).

7F cb JG rel8 D Valid Valid Jump short if greater (ZF=0 and SF=OF).

7D cb JGE rel8 D Valid Valid Jump short if greater or equal (SF=OF).

7C cb JL rel8 D Valid Valid Jump short if less (SF≠ OF).

7E cb JLE rel8 D Valid Valid Jump short if less or equal (ZF=1 or SF≠ OF).

76 cb JNA rel8 D Valid Valid Jump short if not above (CF=1 or ZF=1).

72 cb JNAE rel8 D Valid Valid Jump short if not above or equal (CF=1).

73 cb JNB rel8 D Valid Valid Jump short if not below (CF=0).

77 cb JNBE rel8 D Valid Valid Jump short if not below or equal (CF=0 and
ZF=0).

73 cb JNC rel8 D Valid Valid Jump short if not carry (CF=0).

75 cb JNE rel8 D Valid Valid Jump short if not equal (ZF=0).

7E cb JNG rel8 D Valid Valid Jump short if not greater (ZF=1 or SF≠ OF).

7C cb JNGE rel8 D Valid Valid Jump short if not greater or equal (SF≠ OF).

7D cb JNL rel8 D Valid Valid Jump short if not less (SF=OF).

7F cb JNLE rel8 D Valid Valid Jump short if not less or equal (ZF=0 and
SF=OF).

71 cb JNO rel8 D Valid Valid Jump short if not overflow (OF=0).

7B cb JNP rel8 D Valid Valid Jump short if not parity (PF=0).

79 cb JNS rel8 D Valid Valid Jump short if not sign (SF=0).

75 cb JNZ rel8 D Valid Valid Jump short if not zero (ZF=0).

70 cb JO rel8 D Valid Valid Jump short if overflow (OF=1).

7A cb JP rel8 D Valid Valid Jump short if parity (PF=1).

7A cb JPE rel8 D Valid Valid Jump short if parity even (PF=1).

7B cb JPO rel8 D Valid Valid Jump short if parity odd (PF=0).

78 cb JS rel8 D Valid Valid Jump short if sign (SF=1).

74 cb JZ rel8 D Valid Valid Jump short if zero (ZF = 1).

0F 87 cw JA rel16 D N.S. Valid Jump near if above (CF=0 and ZF=0). Not
supported in 64-bit mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 90

0F 87 cd JA rel32 D Valid Valid Jump near if above (CF=0 and ZF=0).

0F 83 cw JAE rel16 D N.S. Valid Jump near if above or equal (CF=0). Not
supported in 64-bit mode.

0F 83 cd JAE rel32 D Valid Valid Jump near if above or equal (CF=0).

0F 82 cw JB rel16 D N.S. Valid Jump near if below (CF=1). Not supported in
64-bit mode.

0F 82 cd JB rel32 D Valid Valid Jump near if below (CF=1).

0F 86 cw JBE rel16 D N.S. Valid Jump near if below or equal (CF=1 or ZF=1).
Not supported in 64-bit mode.

0F 86 cd JBE rel32 D Valid Valid Jump near if below or equal (CF=1 or ZF=1).

0F 82 cw JC rel16 D N.S. Valid Jump near if carry (CF=1). Not supported in
64-bit mode.

0F 82 cd JC rel32 D Valid Valid Jump near if carry (CF=1).

0F 84 cw JE rel16 D N.S. Valid Jump near if equal (ZF=1). Not supported in
64-bit mode.

0F 84 cd JE rel32 D Valid Valid Jump near if equal (ZF=1).

0F 84 cw JZ rel16 D N.S. Valid Jump near if 0 (ZF=1). Not supported in 64-bit
mode.

0F 84 cd JZ rel32 D Valid Valid Jump near if 0 (ZF=1).

0F 8F cw JG rel16 D N.S. Valid Jump near if greater (ZF=0 and SF=OF). Not
supported in 64-bit mode.

0F 8F cd JG rel32 D Valid Valid Jump near if greater (ZF=0 and SF=OF).

0F 8D cw JGE rel16 D N.S. Valid Jump near if greater or equal (SF=OF). Not
supported in 64-bit mode.

0F 8D cd JGE rel32 D Valid Valid Jump near if greater or equal (SF=OF).

0F 8C cw JL rel16 D N.S. Valid Jump near if less (SF≠ OF). Not supported in
64-bit mode.

0F 8C cd JL rel32 D Valid Valid Jump near if less (SF≠ OF).

0F 8E cw JLE rel16 D N.S. Valid Jump near if less or equal (ZF=1 or SF≠ OF).
Not supported in 64-bit mode.

0F 8E cd JLE rel32 D Valid Valid Jump near if less or equal (ZF=1 or SF≠ OF).

0F 86 cw JNA rel16 D N.S. Valid Jump near if not above (CF=1 or ZF=1). Not
supported in 64-bit mode.

0F 86 cd JNA rel32 D Valid Valid Jump near if not above (CF=1 or ZF=1).

0F 82 cw JNAE rel16 D N.S. Valid Jump near if not above or equal (CF=1). Not
supported in 64-bit mode.

0F 82 cd JNAE rel32 D Valid Valid Jump near if not above or equal (CF=1).

0F 83 cw JNB rel16 D N.S. Valid Jump near if not below (CF=0). Not supported
in 64-bit mode.

0F 83 cd JNB rel32 D Valid Valid Jump near if not below (CF=0).

0F 87 cw JNBE rel16 D N.S. Valid Jump near if not below or equal (CF=0 and
ZF=0). Not supported in 64-bit mode.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 91

0F 87 cd JNBE rel32 D Valid Valid Jump near if not below or equal (CF=0 and
ZF=0).

0F 83 cw JNC rel16 D N.S. Valid Jump near if not carry (CF=0). Not supported
in 64-bit mode.

0F 83 cd JNC rel32 D Valid Valid Jump near if not carry (CF=0).

0F 85 cw JNE rel16 D N.S. Valid Jump near if not equal (ZF=0). Not supported
in 64-bit mode.

0F 85 cd JNE rel32 D Valid Valid Jump near if not equal (ZF=0).

0F 8E cw JNG rel16 D N.S. Valid Jump near if not greater (ZF=1 or SF≠ OF).
Not supported in 64-bit mode.

0F 8E cd JNG rel32 D Valid Valid Jump near if not greater (ZF=1 or SF≠ OF).

0F 8C cw JNGE rel16 D N.S. Valid Jump near if not greater or equal (SF≠ OF).
Not supported in 64-bit mode.

0F 8C cd JNGE rel32 D Valid Valid Jump near if not greater or equal (SF≠ OF).

0F 8D cw JNL rel16 D N.S. Valid Jump near if not less (SF=OF). Not supported
in 64-bit mode.

0F 8D cd JNL rel32 D Valid Valid Jump near if not less (SF=OF).

0F 8F cw JNLE rel16 D N.S. Valid Jump near if not less or equal (ZF=0 and
SF=OF). Not supported in 64-bit mode.

0F 8F cd JNLE rel32 D Valid Valid Jump near if not less or equal (ZF=0 and
SF=OF).

0F 81 cw JNO rel16 D N.S. Valid Jump near if not overflow (OF=0). Not
supported in 64-bit mode.

0F 81 cd JNO rel32 D Valid Valid Jump near if not overflow (OF=0).

0F 8B cw JNP rel16 D N.S. Valid Jump near if not parity (PF=0). Not supported
in 64-bit mode.

0F 8B cd JNP rel32 D Valid Valid Jump near if not parity (PF=0).

0F 89 cw JNS rel16 D N.S. Valid Jump near if not sign (SF=0). Not supported in
64-bit mode.

0F 89 cd JNS rel32 D Valid Valid Jump near if not sign (SF=0).

0F 85 cw JNZ rel16 D N.S. Valid Jump near if not zero (ZF=0). Not supported in
64-bit mode.

0F 85 cd JNZ rel32 D Valid Valid Jump near if not zero (ZF=0).

0F 80 cw JO rel16 D N.S. Valid Jump near if overflow (OF=1). Not supported
in 64-bit mode.

0F 80 cd JO rel32 D Valid Valid Jump near if overflow (OF=1).

0F 8A cw JP rel16 D N.S. Valid Jump near if parity (PF=1). Not supported in
64-bit mode.

0F 8A cd JP rel32 D Valid Valid Jump near if parity (PF=1).

0F 8A cw JPE rel16 D N.S. Valid Jump near if parity even (PF=1). Not
supported in 64-bit mode.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 92

Instruction Operand Encoding

Description

Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF, SF, and ZF) and, if the flags
are in the specified state (condition), performs a jump to the target instruction specified by the destination
operand. A condition code (cc) is associated with each instruction to indicate the condition being tested for. If the
condition is not satisfied, the jump is not performed and execution continues with the instruction following the Jcc
instruction.

The target instruction is specified with a relative offset (a signed offset relative to the current value of the
instruction pointer in the EIP register). A relative offset (rel8, rel16, or rel32) is generally specified as a label in
assembly code, but at the machine code level, it is encoded as a signed, 8-bit or 32-bit immediate value, which
is added to the instruction pointer. Instruction coding is most efficient for offsets of –128 to +127. If the
operand-size attribute is 16, the upper two bytes of the EIP register are cleared, resulting in a maximum
instruction pointer size of 16 bits.
The conditions for each Jcc mnemonic are given in the “Description” column of the table on the preceding page.
The terms “less” and “greater” are used for comparisons of signed integers and the terms “above” and “below”
are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two ways, two mnemonics are
defined for some opcodes. For example, the JA (jump if above) instruction and the JNBE (jump if not below or
equal) instruction are alternate mnemonics for the opcode 77H.

The Jcc instruction does not support far jumps (jumps to other code segments). When the target for the condi-
tional jump is in a different segment, use the opposite condition from the condition being tested for the Jcc
instruction, and then access the target with an unconditional far jump (JMP instruction) to the other segment. For
example, the following conditional far jump is illegal:

JZ FARLABEL;

To accomplish this far jump, use the following two instructions:
JNZ BEYOND;
JMP FARLABEL;
BEYOND:

0F 8A cd JPE rel32 D Valid Valid Jump near if parity even (PF=1).

0F 8B cw JPO rel16 D N.S. Valid Jump near if parity odd (PF=0). Not supported
in 64-bit mode.

0F 8B cd JPO rel32 D Valid Valid Jump near if parity odd (PF=0).

0F 88 cw JS rel16 D N.S. Valid Jump near if sign (SF=1). Not supported in 64-
bit mode.

0F 88 cd JS rel32 D Valid Valid Jump near if sign (SF=1).

0F 84 cw JZ rel16 D N.S. Valid Jump near if 0 (ZF=1). Not supported in 64-bit
mode.

0F 84 cd JZ rel32 D Valid Valid Jump near if 0 (ZF=1).

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

Op/En Operand 1 Operand 2 Operand 3 Operand 4

D Offset NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 93

The JRCXZ, JECXZ and JCXZ instructions differ from other Jcc instructions because they do not check status flags.
Instead, they check RCX, ECX or CX for 0. The register checked is determined by the address-size attribute. These
instructions are useful when used at the beginning of a loop that terminates with a conditional loop instruction
(such as LOOPNE). They can be used to prevent an instruction sequence from entering a loop when RCX, ECX or
CX is 0. This would cause the loop to execute 264, 232 or 64K times (not zero times).

All conditional jumps are converted to code fetches of one or two cache lines, regardless of jump address or
cacheability.

In 64-bit mode, operand size is fixed at 64 bits. JMP Short is RIP = RIP + 8-bit offset sign extended to 64 bits. JMP
Near is RIP = RIP + 32-bit offset sign extended to 64-bits.

Operation

IF condition
THEN

 tempEIP ← EIP + SignExtend(DEST);
 IF OperandSize = 16

THEN tempEIP ← tempEIP AND 0000FFFFH;
 FI;

IF tempEIP is not within code segment limit
THEN #GP(0);

 ELSE EIP ← tempEIP
 FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the offset being jumped to is beyond the limits of the CS segment.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the offset being jumped to is beyond the limits of the CS segment or is outside of the effec-

tive address space from 0 to FFFFH. This condition can occur if a 32-bit address size override
prefix is used.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#UD If the LOCK prefix is used.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 94

LDDQU—Load Unaligned Integer 128 Bits

Instruction Operand Encoding

Description

The instruction is functionally similar to (V)MOVDQU ymm/xmm, m256/m128 for loading from memory. That is:
32/16 bytes of data starting at an address specified by the source memory operand (second operand) are fetched
from memory and placed in a destination register (first operand). The source operand need not be aligned on a
32/16-byte boundary. Up to 64/32 bytes may be loaded from memory; this is implementation dependent.

This instruction may improve performance relative to (V)MOVDQU if the source operand crosses a cache line
boundary. In situations that require the data loaded by (V)LDDQU be modified and stored to the same location,
use (V)MOVDQU or (V)MOVDQA instead of (V)LDDQU. To move a double quadword to or from memory locations
that are known to be aligned on 16-byte boundaries, use the (V)MOVDQA instruction.

Implementation Notes

• If the source is aligned to a 32/16-byte boundary, based on the implementation, the 32/16 bytes may be
loaded more than once. For that reason, the usage of (V)LDDQU should be avoided when using uncached or
write-combining (WC) memory regions. For uncached or WC memory regions, keep using (V)MOVDQU.

• This instruction is a replacement for (V)MOVDQU (load) in situations where cache line splits significantly affect
performance. It should not be used in situations where store-load forwarding is performance critical. If
performance of store-load forwarding is critical to the application, use (V)MOVDQA store-load pairs when data
is 256/128-bit aligned or (V)MOVDQU store-load pairs when data is 256/128-bit unaligned.

• If the memory address is not aligned on 32/16-byte boundary, some implementations may load up to 64/32
bytes and return 32/16 bytes in the destination. Some processor implementations may issue multiple loads to
access the appropriate 32/16 bytes. Developers of multi-threaded or multi-processor software should be
aware that on these processors the loads will be performed in a non-atomic way.

• If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check exception
(#AC) may or may not be generated (depending on processor implementation) when the memory address is
not aligned on an 8-byte boundary.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F2 0F F0 /r

LDDQU xmm1, mem

RM V/V SSE3 Load unaligned data from mem and return
double quadword in xmm1.

VEX.128.F2.0F.WIG F0 /r

VLDDQU xmm1, m128

RM V/V AVX Load unaligned packed integer values from
mem to xmm1.

VEX.256.F2.0F.WIG F0 /r

VLDDQU ymm1, m256

RM V/V AVX Load unaligned packed integer values from
mem to ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 95

Operation

LDDQU (128-bit Legacy SSE version)
DEST[127:0] SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)

VLDDQU (VEX.128 encoded version)
DEST[127:0] SRC[127:0]
DEST[VLMAX-1:128] 0

VLDDQU (VEX.256 encoded version)
DEST[255:0] SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

LDDQU: __m128i _mm_lddqu_si128 (__m128i * p);

VLDDQU: __m256i _mm256_lddqu_si256 (__m256i * p);

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 4;
Note treatment of #AC varies.

...

MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask

Instruction Operand Encoding

Description

Extracts the sign bits from the packed double-precision floating-point values in the source operand (second
operand), formats them into a 2-bit mask, and stores the mask in the destination operand (first operand). The

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

66 0F 50 /r

MOVMSKPD reg, xmm

RM V/V SSE2 Extract 2-bit sign mask from xmm and store in
reg. The upper bits of r32 or r64 are filled with
zeros.

VEX.128.66.0F.WIG 50 /r

VMOVMSKPD reg, xmm2

RM V/V AVX Extract 2-bit sign mask from xmm2 and store
in reg. The upper bits of r32 or r64 are zeroed.

VEX.256.66.0F.WIG 50 /r

VMOVMSKPD reg, ymm2

RM V/V AVX Extract 4-bit sign mask from ymm2 and store
in reg. The upper bits of r32 or r64 are zeroed.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 96

source operand is an XMM register, and the destination operand is a general-purpose register. The mask is stored
in the 2 low-order bits of the destination operand. Zero-extend the upper bits of the destination.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when used with a REX.R
prefix. The default operand size is 64-bit in 64-bit mode.
128-bit versions: The source operand is a YMM register. The destination operand is a general purpose register.
VEX.256 encoded version: The source operand is a YMM register. The destination operand is a general purpose
register.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

(V)MOVMSKPD (128-bit versions)
DEST[0] SRC[63]
DEST[1] SRC[127]
IF DEST = r32

THEN DEST[31:2] 0;
ELSE DEST[63:2] 0;

FI

VMOVMSKPD (VEX.256 encoded version)
DEST[0] SRC[63]
DEST[1] SRC[127]
DEST[2] SRC[191]
DEST[3] SRC[255]
IF DEST = r32

THEN DEST[31:4] 0;
ELSE DEST[63:4] 0;

FI

Intel C/C++ Compiler Intrinsic Equivalent

MOVMSKPD: int _mm_movemask_pd (__m128d a)

VMOVMSKPD: _mm256_movemask_pd(__m256d a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.vvvv ≠ 1111B.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 97

10.Updates to Chapter 4, Volume 2B
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B: Instruction Set Reference, N-Z.

--
...

PMOVMSKB—Move Byte Mask

Instruction Operand Encoding

Description

Creates a mask made up of the most significant bit of each byte of the source operand (second operand) and
stores the result in the low byte or word of the destination operand (first operand).
The byte mask is 8 bits for 64-bit source operand, 16 bits for 128-bit source operand and 32 bits for 256-bit
source operand. The destination operand is a general-purpose register.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when used with a REX.R
prefix. The default operand size is 64-bit in 64-bit mode.
Legacy SSE version: The source operand is an MMX technology register.
128-bit Legacy SSE version: The source operand is an XMM register.

VEX.128 encoded version: The source operand is an XMM register.
VEX.256 encoded version: The source operand is a YMM register.
Note: VEX.vvvv is reserved and must be 1111b.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F D7 /r1

PMOVMSKB reg, mm

RM V/V SSE Move a byte mask of mm to reg. The upper
bits of r32 or r64 are zeroed

66 0F D7 /r

PMOVMSKB reg, xmm

RM V/V SSE2 Move a byte mask of xmm to reg. The upper
bits of r32 or r64 are zeroed

VEX.128.66.0F.WIG D7 /r

VPMOVMSKB reg, xmm1

RM V/V AVX Move a byte mask of xmm1 to reg. The upper
bits of r32 or r64 are filled with zeros.

VEX.256.66.0F.WIG D7 /r

VPMOVMSKB reg, ymm1

RM V/V AVX2 Move a 32-bit mask of ymm1 to reg. The
upper bits of r64 are filled with zeros.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 98

Operation

PMOVMSKB (with 64-bit source operand and r32)
r32[0] ← SRC[7];
r32[1] ← SRC[15];
(* Repeat operation for bytes 2 through 6 *)
r32[7] ← SRC[63];
r32[31:8] ← ZERO_FILL;

(V)PMOVMSKB (with 128-bit source operand and r32)
r32[0] ← SRC[7];
r32[1] ← SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r32[15] ← SRC[127];
r32[31:16] ← ZERO_FILL;

VPMOVMSKB (with 256-bit source operand and r32)
r32[0] SRC[7];
r32[1] SRC[15];
(* Repeat operation for bytes 3rd through 31*)
r32[31] SRC[255];

PMOVMSKB (with 64-bit source operand and r64)
r64[0] ← SRC[7];
r64[1] ← SRC[15];
(* Repeat operation for bytes 2 through 6 *)
r64[7] ← SRC[63];
r64[63:8] ← ZERO_FILL;

(V)PMOVMSKB (with 128-bit source operand and r64)
r64[0] ← SRC[7];
r64[1] ← SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r64[15] ← SRC[127];
r64[63:16] ← ZERO_FILL;

VPMOVMSKB (with 256-bit source operand and r64)
r64[0] SRC[7];
r64[1] SRC[15];
(* Repeat operation for bytes 2 through 31*)
r64[31] SRC[255];
r64[63:32] ZERO_FILL;

Intel C/C++ Compiler Intrinsic Equivalent

PMOVMSKB: int _mm_movemask_pi8(__m64 a)

(V)PMOVMSKB: int _mm_movemask_epi8 (__m128i a)

VPMOVMSKB: int _mm256_movemask_epi8 (__m256i a)

Flags Affected

None.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 99

Numeric Exceptions

None.

Other Exceptions
See Exceptions Type 7; additionally
#UD If VEX.vvvv ≠ 1111B.
...

POPCNT — Return the Count of Number of Bits Set to 1

Instruction Operand Encoding

Description

This instruction calculates the number of bits set to 1 in the second operand (source) and returns the count in
the first operand (a destination register).

Operation

Count = 0;
For (i=0; i < OperandSize; i++)
{ IF (SRC[i] = 1) // i’th bit

THEN Count++; FI;
}
DEST Count;

Flags Affected

OF, SF, ZF, AF, CF, PF are all cleared. ZF is set if SRC = 0, otherwise ZF is cleared.

Intel C/C++ Compiler Intrinsic Equivalent

POPCNT: int _mm_popcnt_u32(unsigned int a);

POPCNT: int64_t _mm_popcnt_u64(unsigned __int64 a);

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

F3 0F B8 /r POPCNT r16, r/m16 RM Valid Valid POPCNT on r/m16

F3 0F B8 /r POPCNT r32, r/m32 RM Valid Valid POPCNT on r/m32

F3 REX.W 0F B8 /r POPCNT r64, r/m64 RM Valid N.E. POPCNT on r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 100

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS segments.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF (fault-code) For a page fault.
#AC(0) If an unaligned memory reference is made while the current privilege level is 3 and alignment

checking is enabled.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.

Real-Address Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF (fault-code) For a page fault.
#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 101

PSHUFB — Packed Shuffle Bytes

Instruction Operand Encoding

Description

PSHUFB performs in-place shuffles of bytes in the destination operand (the first operand) according to the shuffle
control mask in the source operand (the second operand). The instruction permutes the data in the destination
operand, leaving the shuffle mask unaffected. If the most significant bit (bit[7]) of each byte of the shuffle control
mask is set, then constant zero is written in the result byte. Each byte in the shuffle control mask forms an index
to permute the corresponding byte in the destination operand. The value of each index is the least significant 4
bits (128-bit operation) or 3 bits (64-bit operation) of the shuffle control byte. When the source operand is a 128-
bit memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception
(#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.
Legacy SSE version: Both operands can be MMX registers.

128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-
1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: The destination operand is the first operand, the first source operand is the second
operand, the second source operand is the third operand. Bits (VLMAX-1:128) of the destination YMM register are
zeroed.
VEX.256 encoded version: Bits (255:128) of the destination YMM register stores the 16-byte shuffle result of the
upper 16 bytes of the first source operand, using the upper 16-bytes of the second source operand as control
mask. The value of each index is for the high 128-bit lane is the least significant 4 bits of the respective shuffle
control byte. The index value selects a source data element within each 128-bit lane.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 00 /r1

PSHUFB mm1, mm2/m64

RM V/V SSSE3 Shuffle bytes in mm1 according to contents of
mm2/m64.

66 0F 38 00 /r

PSHUFB xmm1, xmm2/m128

RM V/V SSSE3 Shuffle bytes in xmm1 according to contents
of xmm2/m128.

VEX.NDS.128.66.0F38.WIG 00 /r

VPSHUFB xmm1, xmm2, xmm3/m128

RVM V/V AVX Shuffle bytes in xmm2 according to contents
of xmm3/m128.

VEX.NDS.256.66.0F38.WIG 00 /r

VPSHUFB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Shuffle bytes in ymm2 according to contents
of ymm3/m256.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 102

Operation

PSHUFB (with 64 bit operands)
TEMP ← DEST
for i = 0 to 7 {

if (SRC[(i * 8)+7] = 1) then
DEST[(i*8)+7...(i*8)+0] ← 0;

else
index[2..0] ← SRC[(i*8)+2 .. (i*8)+0];
DEST[(i*8)+7...(i*8)+0] ← TEMP[(index*8+7)..(index*8+0)];

endif;
}

PSHUFB (with 128 bit operands)
TEMP ← DEST
for i = 0 to 15 {

if (SRC[(i * 8)+7] = 1) then
DEST[(i*8)+7..(i*8)+0] ← 0;

 else
index[3..0] ← SRC[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0] ← TEMP[(index*8+7)..(index*8+0)];

endif
}
DEST[VLMAX-1:128] 0

VPSHUFB (VEX.128 encoded version)
for i = 0 to 15 {

if (SRC2[(i * 8)+7] = 1) then
DEST[(i*8)+7..(i*8)+0] 0;
else
index[3..0] SRC2[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0] SRC1[(index*8+7)..(index*8+0)];

endif
}
DEST[VLMAX-1:128] 0

VPSHUFB (VEX.256 encoded version)
for i = 0 to 15 {

if (SRC2[(i * 8)+7] == 1) then
DEST[(i*8)+7..(i*8)+0] 0;
else
index[3..0] SRC2[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0] SRC1[(index*8+7)..(index*8+0)];

endif
if (SRC2[128 + (i * 8)+7] == 1) then

DEST[128 + (i*8)+7..(i*8)+0] 0;
else
index[3..0] SRC2[128 + (i*8)+3 .. (i*8)+0];
DEST[128 + (i*8)+7..(i*8)+0] SRC1[128 + (index*8+7)..(index*8+0)];

endif
}

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 103

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFB: __m64 _mm_shuffle_pi8 (__m64 a, __m64 b)

(V)PSHUFB: __m128i _mm_shuffle_epi8 (__m128i a, __m128i b)

VPSHUFB: __m256i _mm256_shuffle_epi8(__m256i a, __m256i b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.
...

RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values

Figure 4-11 PSHUFB with 64-Bit Operands

07H 07H FFH 80H 01H 00H 00H 00H

04H 01H 07H 03H 02H 02H FFH 01H

04H 04H 00H 00H FFH 01H 01H 01H

MM2

MM1

MM1

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 53 /r

RCPPS xmm1, xmm2/m128

RM V/V SSE Computes the approximate reciprocals of the
packed single-precision floating-point values
in xmm2/m128 and stores the results in
xmm1.

VEX.128.0F.WIG 53 /r

VRCPPS xmm1, xmm2/m128

RM V/V AVX Computes the approximate reciprocals of
packed single-precision values in xmm2/mem
and stores the results in xmm1.

VEX.256.0F.WIG 53 /r

VRCPPS ymm1, ymm2/m256

RM V/V AVX Computes the approximate reciprocals of
packed single-precision values in ymm2/mem
and stores the results in ymm1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 104

Instruction Operand Encoding

Description

Performs a SIMD computation of the approximate reciprocals of the four packed single-precision floating-point
values in the source operand (second operand) stores the packed single-precision floating-point results in the
destination operand. The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. See Figure 10-5 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for an illustration of a SIMD single-precision floating-point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12

The RCPPS instruction is not affected by the rounding control bits in the MXCSR register. When a source value is
a 0.0, an ∞ of the sign of the source value is returned. A denormal source value is treated as a 0.0 (of the same
sign). Tiny results (see Section 4.9.1.5, “Numeric Underflow Exception (#U)” in Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1) are always flushed to 0.0, with the sign of the operand. (Input values
greater than or equal to |1.11111111110100000000000B∗2125| are guaranteed to not produce tiny results; input
values less than or equal to |1.00000000000110000000001B*2126| are guaranteed to produce tiny results,
which are in turn flushed to 0.0; and input values in between this range may or may not produce tiny results,
depending on the implementation.) When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN
or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destina-
tion operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM
register or a 256-bit memory location. The destination operand is a YMM register.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

RCPPS (128-bit Legacy SSE version)
DEST[31:0] APPROXIMATE(1/SRC[31:0])
DEST[63:32] APPROXIMATE(1/SRC[63:32])
DEST[95:64] APPROXIMATE(1/SRC[95:64])
DEST[127:96] APPROXIMATE(1/SRC[127:96])
DEST[VLMAX-1:128] (Unmodified)

VRCPPS (VEX.128 encoded version)
DEST[31:0] APPROXIMATE(1/SRC[31:0])
DEST[63:32] APPROXIMATE(1/SRC[63:32])
DEST[95:64] APPROXIMATE(1/SRC[95:64])
DEST[127:96] APPROXIMATE(1/SRC[127:96])
DEST[VLMAX-1:128] 0

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 105

VRCPPS (VEX.256 encoded version)
DEST[31:0] APPROXIMATE(1/SRC[31:0])
DEST[63:32] APPROXIMATE(1/SRC[63:32])
DEST[95:64] APPROXIMATE(1/SRC[95:64])
DEST[127:96] APPROXIMATE(1/SRC[127:96])
DEST[159:128] APPROXIMATE(1/SRC[159:128])
DEST[191:160] APPROXIMATE(1/SRC[191:160])
DEST[223:192] APPROXIMATE(1/SRC[223:192])
DEST[255:224] APPROXIMATE(1/SRC[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

RCCPS: __m128 _mm_rcp_ps(__m128 a)

RCPPS: __m256 _mm256_rcp_ps (__m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.vvvv ≠ 1111B.
...

RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Opcode*/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 53 /r

RCPSS xmm1, xmm2/m32

RM V/V SSE Computes the approximate reciprocal of the
scalar single-precision floating-point value in
xmm2/m32 and stores the result in xmm1.

VEX.NDS.LIG.F3.0F.WIG 53 /r

VRCPSS xmm1, xmm2, xmm3/m32

RVM V/V AVX Computes the approximate reciprocal of the
scalar single-precision floating-point value in
xmm3/m32 and stores the result in xmm1.
Also, upper single precision floating-point
values (bits[127:32]) from xmm2 are copied to
xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 106

Description

Computes of an approximate reciprocal of the low single-precision floating-point value in the source operand
(second operand) and stores the single-precision floating-point result in the destination operand. The source
operand can be an XMM register or a 32-bit memory location. The destination operand is an XMM register. The
three high-order doublewords of the destination operand remain unchanged. See Figure 10-6 in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a scalar single-precision
floating-point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12

The RCPSS instruction is not affected by the rounding control bits in the MXCSR register. When a source value is
a 0.0, an ∞ of the sign of the source value is returned. A denormal source value is treated as a 0.0 (of the same
sign). Tiny results (see Section 4.9.1.5, “Numeric Underflow Exception (#U)” in Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1) are always flushed to 0.0, with the sign of the operand. (Input values
greater than or equal to |1.11111111110100000000000B∗2125| are guaranteed to not produce tiny results; input
values less than or equal to |1.00000000000110000000001B*2126| are guaranteed to produce tiny results,
which are in turn flushed to 0.0; and input values in between this range may or may not produce tiny results,
depending on the implementation.) When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN
or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers
(XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-
1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

RCPSS (128-bit Legacy SSE version)
DEST[31:0] APPROXIMATE(1/SRC[31:0])
DEST[VLMAX-1:32] (Unmodified)

VRCPSS (VEX.128 encoded version)
DEST[31:0] APPROXIMATE(1/SRC2[31:0])
DEST[127:32] SRC1[127:32]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

RCPSS: __m128 _mm_rcp_ss(__m128 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 5.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 107

SYSENTER—Fast System Call

Instruction Operand Encoding

Description

Executes a fast call to a level 0 system procedure or routine. SYSENTER is a companion instruction to SYSEXIT.
The instruction is optimized to provide the maximum performance for system calls from user code running at priv-
ilege level 3 to operating system or executive procedures running at privilege level 0.

When executed in IA-32e mode, the SYSENTER instruction transitions the logical processor to 64-bit mode;
otherwise, the logical processor remains in protected mode.

Prior to executing the SYSENTER instruction, software must specify the privilege level 0 code segment and code
entry point, and the privilege level 0 stack segment and stack pointer by writing values to the following MSRs:
• IA32_SYSENTER_CS (MSR address 174H) — The lower 16 bits of this MSR are the segment selector for the

privilege level 0 code segment. This value is also used to determine the segment selector of the privilege level
0 stack segment (see the Operation section). This value cannot indicate a null selector.

• IA32_SYSENTER_EIP (MSR address 176H) — The value of this MSR is loaded into RIP (thus, this value
references the first instruction of the selected operating procedure or routine). In protected mode, only
bits 31:0 are loaded.

• IA32_SYSENTER_ESP (MSR address 175H) — The value of this MSR is loaded into RSP (thus, this value
contains the stack pointer for the privilege level 0 stack). This value cannot represent a non-canonical
address. In protected mode, only bits 31:0 are loaded.

These MSRs can be read from and written to using RDMSR/WRMSR. The WRMSR instruction ensures that the
IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs always contain canonical addresses.

While SYSENTER loads the CS and SS selectors with values derived from the IA32_SYSENTER_CS MSR, the CS
and SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by those selectors.
Instead, the descriptor caches are loaded with fixed values. See the Operation section for details. It is the respon-
sibility of OS software to ensure that the descriptors (in GDT or LDT) referenced by those selector values corre-
spond to the fixed values loaded into the descriptor caches; the SYSENTER instruction does not ensure this
correspondence.

The SYSENTER instruction can be invoked from all operating modes except real-address mode.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not constitute a call/return pair.
When executing a SYSENTER instruction, the processor does not save state information for the user code (e.g.,
the instruction pointer), and neither the SYSENTER nor the SYSEXIT instruction supports passing parameters on
the stack.

To use the SYSENTER and SYSEXIT instructions as companion instructions for transitions between privilege level
3 code and privilege level 0 operating system procedures, the following conventions must be followed:
• The segment descriptors for the privilege level 0 code and stack segments and for the privilege level 3 code

and stack segments must be contiguous in a descriptor table. This convention allows the processor to
compute the segment selectors from the value entered in the SYSENTER_CS_MSR MSR.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 34 SYSENTER NP Valid Valid Fast call to privilege level 0 system
procedures.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 108

• The fast system call “stub” routines executed by user code (typically in shared libraries or DLLs) must save the
required return IP and processor state information if a return to the calling procedure is required. Likewise,
the operating system or executive procedures called with SYSENTER instructions must have access to and use
this saved return and state information when returning to the user code.

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the Pentium II processor.
The availability of these instructions on a processor is indicated with the SYSENTER/SYSEXIT present (SEP)
feature flag returned to the EDX register by the CPUID instruction. An operating system that qualifies the SEP flag
must also qualify the processor family and model to ensure that the SYSENTER/SYSEXIT instructions are actually
present. For example:

IF CPUID SEP bit is set
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)

THEN
SYSENTER/SYSEXIT_Not_Supported; FI;

ELSE
SYSENTER/SYSEXIT_Supported; FI;

FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the processor returns a the SEP
flag as set, but does not support the SYSENTER/SYSEXIT instructions.

Operation

IF CR0.PE = 0 OR IA32_SYSENTER_CS[15:2] = 0 THEN #GP(0); FI;

RFLAGS.VM ← 0; (* Ensures protected mode execution *)
RFLAGS.IF ← 0; (* Mask interrupts *)
IF in IA-32e mode

THEN
RSP ← IA32_SYSENTER_ESP;
RIP ← IA32_SYSENTER_EIP;

ELSE
ESP ← IA32_SYSENTER_ESP[31:0];
EIP ← IA32_SYSENTER_EIP[31:0];

FI;

CS.Selector ← IA32_SYSENTER_CS[15:0] AND FFFCH;
(* Operating system provides CS; RPL forced to 0 *)

(* Set rest of CS to a fixed value *)
CS.Base ← 0; (* Flat segment *)
CS.Limit ← FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
CS.Type ← 11; (* Execute/read code, accessed *)
CS.S ← 1;
CS.DPL ← 0;
CS.P ← 1;
IF in IA-32e mode

THEN
CS.L ← 1; (* Entry is to 64-bit mode *)
CS.D ← 0; (* Required if CS.L = 1 *)

ELSE
CS.L ← 0;
CS.D ← 1; (* 32-bit code segment*)

FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 109

CS.G ← 1; (* 4-KByte granularity *)
CPL ← 0;

SS.Selector ← CS.Selector + 8; (* SS just above CS *)
(* Set rest of SS to a fixed value *)
SS.Base ← 0; (* Flat segment *)
SS.Limit ← FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
SS.Type ← 3; (* Read/write data, accessed *)
SS.S ← 1;
SS.DPL ← 0;
SS.P ← 1;
SS.B ← 1; (* 32-bit stack segment*)
SS.G ← 1; (* 4-KByte granularity *)

Flags Affected

VM, IF (see Operation above)

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP The SYSENTER instruction is not recognized in real-address mode.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 110

UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs an interleaved unpack of the low-order single-precision floating-point values from the source operand
(second operand) and the destination operand (first operand). See Figure 4-26. The source operand can be an
XMM register or a 128-bit memory location; the destination operand is an XMM register.

When unpacking from a memory operand, an implementation may fetch only the appropriate 64 bits; however,
alignment to 16-byte boundary and normal segment checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding
YMM register destination are unmodified.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 14 /r

UNPCKLPS xmm1, xmm2/m128

RM V/V SSE Unpacks and Interleaves single-precision
floating-point values from low quadwords of
xmm1 and xmm2/mem into xmm1.

VEX.NDS.128.0F.WIG 14 /r

VUNPCKLPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Unpacks and Interleaves single-precision
floating-point values from low quadwords of
xmm2 and xmm3/m128.

VEX.NDS.256.0F.WIG 14 /r

VUNPCKLPS ymm1,ymm2,ymm3/m256

RVM V/V AVX Unpacks and Interleaves single-precision
floating-point values from low quadwords of
ymm2 and ymm3/m256.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Figure 4-26 UNPCKLPS Instruction Low Unpack and Interleave Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y1 X1 Y0 X0

DEST

SRC

DEST

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 111

VEX.128 encoded version: The first source operand is an XMM register or 128-bit memory location. The destina-
tion operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are
zeroed.

Operation

UNPCKLPS (128-bit Legacy SSE version)
DEST[31:0] SRC1[31:0]
DEST[63:32] SRC2[31:0]
DEST[95:64] SRC1[63:32]
DEST[127:96] SRC2[63:32]
DEST[VLMAX-1:128] (Unmodified)

VUNPCKLPS (VEX.128 encoded version)
DEST[31:0] SRC1[31:0]
DEST[63:32] SRC2[31:0]
DEST[95:64] SRC1[63:32]
DEST[127:96] SRC2[63:32]
DEST[VLMAX-1:128] 0

VUNPCKLPS (VEX.256 encoded version)
DEST[31:0] SRC1[31:0]
DEST[63:32] SRC2[31:0]
DEST[95:64] SRC1[63:32]
DEST[127:96] SRC2[63:32]
DEST[159:128] SRC1[159:128]
DEST[191:160] SRC2[159:128]
DEST[223:192] SRC1[191:160]
DEST[255:224] SRC2[191:160]

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKLPS: __m128 _mm_unpacklo_ps(__m128 a, __m128 b)

UNPCKLPS: __m256 _mm256_unpacklo_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 112

VCVTPS2PH—Convert Single-Precision FP value to 16-bit FP value

Instruction Operand Encoding

Description

Convert four or eight packed single-precision floating values in first source operand to four or eight packed half-
precision (16-bit) floating-point values. The rounding mode is specified using the immediate field (imm8).
Non-zero tiny results are converted to zero, denormals, or the smallest normalized half-precision floating-point
value. MXCSR.FTZ is ignored. If a source element is denormal relative to input format with MXCSR.DAZ not set,
DM masked and at least one of PM or UM unmasked; a SIMD exception will be raised with DE, UE and PE set.
128-bit version: The source operand is a XMM register. The destination operand is a XMM register or 64-bit
memory location. The upper-bits vector register zeroing behavior of VEX prefix encoding still applies if the desti-
nation operand is a xmm register. So the upper bits (255:64) of corresponding YMM register are zeroed.
256-bit version: The source operand is a YMM register. The destination operand is a XMM register or 128-bit
memory location. The upper-bits vector register zeroing behavior of VEX prefix encoding still applies if the desti-
nation operand is a xmm register. So the upper bits (255:128) of the corresponding YMM register are zeroed.
Note: VEX.vvvv is reserved (must be 1111b).
The diagram below illustrates how data is converted from four packed single precision (in 128 bits) to four half
precision (in 64 bits) FP values.

Opcode/
Instruction

Op/
En

64/32-
bit
Mode

CPUID
Feature
Flag

Description

VEX.256.66.0F3A.W0 1D /r ib MR V/V F16C Convert eight packed single-precision
floating-point value in ymm2 to packed
half-precision (16-bit) floating-point value
in xmm1/mem. Imm8 provides rounding
controls.

VCVTPS2PH xmm1/m128, ymm2, imm8

VEX.128.66.0F3A.W0.1D /r ib MR V/V F16C Convert four packed single-precision float-
ing-point value in xmm2 to packed half-
precision (16-bit) floating-point value in
xmm1/mem. Imm8 provides rounding con-
trols.

VCVTPS2PH xmm1/m64, xmm2, imm8

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 113

The immediate byte defines several bit fields that controls rounding operation. The effect and encoding of RC
field are listed in Table 4-17.

Operation

vCvt_s2h(SRC1[31:0])
{
IF Imm[2] = 0
THEN // using Imm[1:0] for rounding control, see Table 4-17

RETURN Cvt_Single_Precision_To_Half_Precision_FP_Imm(SRC1[31:0]);
ELSE // using MXCSR.RC for rounding control

RETURN Cvt_Single_Precision_To_Half_Precision_FP_Mxcsr(SRC1[31:0]);
FI;
}

Figure 4-32 VCVTPS2PH (128-bit Version)

VH0VH1VH2VH3

15 031 1647 3263 4895 64127 96

VS0VS1VS2VS3

31 063 3295 64127 96

xmm1/mem64

xmm2

VCVTPS2PH xmm1/mem64, xmm2, imm8

convertconvert convertconvert

Table 4-17 Immediate Byte Encoding for 16-bit Floating-Point Conversion Instructions

Bits Field Name/value Description Comment

Imm[1:0] RC=00B Round to nearest even If Imm[2] = 0

RC=01B Round down

RC=10B Round up

RC=11B Truncate

Imm[2] MS1=0 Use imm[1:0] for rounding Ignore MXCSR.RC

MS1=1 Use MXCSR.RC for rounding

Imm[7:3] Ignored Ignored by processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 114

VCVTPS2PH (VEX.256 encoded version)
DEST[15:0] vCvt_s2h(SRC1[31:0]);
DEST[31:16] vCvt_s2h(SRC1[63:32]);
DEST[47:32] vCvt_s2h(SRC1[95:64]);
DEST[63:48] vCvt_s2h(SRC1[127:96]);
DEST[79:64] vCvt_s2h(SRC1[159:128]);
DEST[95:80] vCvt_s2h(SRC1[191:160]);
DEST[111:96] vCvt_s2h(SRC1[223:192]);
DEST[127:112] vCvt_s2h(SRC1[255:224]);
DEST[255:128] 0; // if DEST is a register

VCVTPS2PH (VEX.128 encoded version)
DEST[15:0] vCvt_s2h(SRC1[31:0]);
DEST[31:16] vCvt_s2h(SRC1[63:32]);
DEST[47:32] vCvt_s2h(SRC1[95:64]);
DEST[63:48] vCvt_s2h(SRC1[127:96]);
DEST[VLMAX-1:64] 0; // if DEST is a register

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

__m128i _mm_cvtps_ph (__m128 m1, const int imm);

__m128i _mm256_cvtps_ph(__m256 m1, const int imm);

SIMD Floating-Point Exceptions
Invalid, Underflow, Overflow, Precision, Denormal (if MXCSR.DAZ=0);

Other Exceptions
Exceptions Type 11 (do not report #AC); additionally
#UD If VEX.W=1.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 115

VINSERTF128 — Insert Packed Floating-Point Values

Instruction Operand Encoding

Description

Performs an insertion of 128-bits of packed floating-point values from the second source operand (third operand)
into an the destination operand (first operand) at an 128-bit offset from imm8[0]. The remaining portions of the
destination are written by the corresponding fields of the first source operand (second operand). The second
source operand can be either an XMM register or a 128-bit memory location.
The high 7 bits of the immediate are ignored.

Operation

TEMP[255:0] SRC1[255:0]
CASE (imm8[0]) OF

0: TEMP[127:0] SRC2[127:0]
1: TEMP[255:128] SRC2[127:0]

ESAC
DEST TEMP

Intel C/C++ Compiler Intrinsic Equivalent

VINSERTF128: __m256 _mm256_insertf128_ps (__m256 a, __m128 b, int offset);

VINSERTF128: __m256d _mm256_insertf128_pd (__m256d a, __m128d b, int offset);

VINSERTF128: __m256i _mm256_insertf128_si256 (__m256i a, __m128i b, int offset);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.W = 1.
...

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

VEX.NDS.256.66.0F3A.W0 18 /r ib

VINSERTF128 ymm1, ymm2, xmm3/m128, imm8

RVM V/V AVX Insert a single precision floating-point value
selected by imm8 from xmm3/m128 into
ymm2 at the specified destination element
specified by imm8 and zero out destination
elements in ymm1 as indicated in imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 116

VMASKMOV—Conditional SIMD Packed Loads and Stores

Instruction Operand Encoding

Description

Conditionally moves packed data elements from the second source operand into the corresponding data element
of the destination operand, depending on the mask bits associated with each data element. The mask bits are
specified in the first source operand.
The mask bit for each data element is the most significant bit of that element in the first source operand. If a mask
is 1, the corresponding data element is copied from the second source operand to the destination operand. If the
mask is 0, the corresponding data element is set to zero in the load form of these instructions, and unmodified in
the store form.
The second source operand is a memory address for the load form of these instruction. The destination operand
is a memory address for the store form of these instructions. The other operands are both XMM registers (for
VEX.128 version) or YMM registers (for VEX.256 version).
Faults occur only due to mask-bit required memory accesses that caused the faults. Faults will not occur due to
referencing any memory location if the corresponding mask bit for that memory location is 0. For example, no
faults will be detected if the mask bits are all zero.
Unlike previous MASKMOV instructions (MASKMOVQ and MASKMOVDQU), a nontemporal hint is not applied to
these instructions.
Instruction behavior on alignment check reporting with mask bits of less than all 1s are the same as with mask
bits of all 1s.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

VEX.NDS.128.66.0F38.W0 2C /r

VMASKMOVPS xmm1, xmm2, m128

RVM V/V AVX Conditionally load packed single-precision values from
m128 using mask in xmm2 and store in xmm1.

VEX.NDS.256.66.0F38.W0 2C /r

VMASKMOVPS ymm1, ymm2, m256

RVM V/V AVX Conditionally load packed single-precision values from
m256 using mask in ymm2 and store in ymm1.

VEX.NDS.128.66.0F38.W0 2D /r

VMASKMOVPD xmm1, xmm2, m128

RVM V/V AVX Conditionally load packed double-precision values from
m128 using mask in xmm2 and store in xmm1.

VEX.NDS.256.66.0F38.W0 2D /r

VMASKMOVPD ymm1, ymm2, m256

RVM V/V AVX Conditionally load packed double-precision values from
m256 using mask in ymm2 and store in ymm1.

VEX.NDS.128.66.0F38.W0 2E /r

VMASKMOVPS m128, xmm1, xmm2

MVR V/V AVX Conditionally store packed single-precision values from
xmm2 using mask in xmm1.

VEX.NDS.256.66.0F38.W0 2E /r

VMASKMOVPS m256, ymm1, ymm2

MVR V/V AVX Conditionally store packed single-precision values from
ymm2 using mask in ymm1.

VEX.NDS.128.66.0F38.W0 2F /r

VMASKMOVPD m128, xmm1, xmm2

MVR V/V AVX Conditionally store packed double-precision values from
xmm2 using mask in xmm1.

VEX.NDS.256.66.0F38.W0 2F /r

VMASKMOVPD m256, ymm1, ymm2

MVR V/V AVX Conditionally store packed double-precision values from
ymm2 using mask in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

MVR ModRM:r/m (w) VEX.vvvv (r) ModRM:reg (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 117

VMASKMOV should not be used to access memory mapped I/O and un-cached memory as the access and the
ordering of the individual loads or stores it does is implementation specific.
In cases where mask bits indicate data should not be loaded or stored paging A and D bits will be set in an imple-
mentation dependent way. However, A and D bits are always set for pages where data is actually loaded/stored.
Note: for load forms, the first source (the mask) is encoded in VEX.vvvv; the second source is encoded in
rm_field, and the destination register is encoded in reg_field.
Note: for store forms, the first source (the mask) is encoded in VEX.vvvv; the second source register is encoded
in reg_field, and the destination memory location is encoded in rm_field.

Operation

VMASKMOVPS -128-bit load
DEST[31:0] IF (SRC1[31]) Load_32(mem) ELSE 0
DEST[63:32] IF (SRC1[63]) Load_32(mem + 4) ELSE 0
DEST[95:64] IF (SRC1[95]) Load_32(mem + 8) ELSE 0
DEST[127:97] IF (SRC1[127]) Load_32(mem + 12) ELSE 0
DEST[VLMAX-1:128] 0

VMASKMOVPS - 256-bit load
DEST[31:0] IF (SRC1[31]) Load_32(mem) ELSE 0
DEST[63:32] IF (SRC1[63]) Load_32(mem + 4) ELSE 0
DEST[95:64] IF (SRC1[95]) Load_32(mem + 8) ELSE 0
DEST[127:96] IF (SRC1[127]) Load_32(mem + 12) ELSE 0
DEST[159:128] IF (SRC1[159]) Load_32(mem + 16) ELSE 0
DEST[191:160] IF (SRC1[191]) Load_32(mem + 20) ELSE 0
DEST[223:192] IF (SRC1[223]) Load_32(mem + 24) ELSE 0
DEST[255:224] IF (SRC1[255]) Load_32(mem + 28) ELSE 0

VMASKMOVPD - 128-bit load
DEST[63:0] IF (SRC1[63]) Load_64(mem) ELSE 0
DEST[127:64] IF (SRC1[127]) Load_64(mem + 16) ELSE 0
DEST[VLMAX-1:128] 0

VMASKMOVPD - 256-bit load
DEST[63:0] IF (SRC1[63]) Load_64(mem) ELSE 0
DEST[127:64] IF (SRC1[127]) Load_64(mem + 8) ELSE 0
DEST[195:128] IF (SRC1[191]) Load_64(mem + 16) ELSE 0
DEST[255:196] IF (SRC1[255]) Load_64(mem + 24) ELSE 0

VMASKMOVPS - 128-bit store
IF (SRC1[31]) DEST[31:0] SRC2[31:0]
IF (SRC1[63]) DEST[63:32] SRC2[63:32]
IF (SRC1[95]) DEST[95:64] SRC2[95:64]
IF (SRC1[127]) DEST[127:96] SRC2[127:96]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 118

VMASKMOVPS - 256-bit store
IF (SRC1[31]) DEST[31:0] SRC2[31:0]
IF (SRC1[63]) DEST[63:32] SRC2[63:32]
IF (SRC1[95]) DEST[95:64] SRC2[95:64]
IF (SRC1[127]) DEST[127:96] SRC2[127:96]
IF (SRC1[159]) DEST[159:128] SRC2[159:128]
IF (SRC1[191]) DEST[191:160] SRC2[191:160]
IF (SRC1[223]) DEST[223:192] SRC2[223:192]
IF (SRC1[255]) DEST[255:224] SRC2[255:224]

VMASKMOVPD - 128-bit store
IF (SRC1[63]) DEST[63:0] SRC2[63:0]
IF (SRC1[127]) DEST[127:64] SRC2[127:64]

VMASKMOVPD - 256-bit store
IF (SRC1[63]) DEST[63:0] SRC2[63:0]
IF (SRC1[127]) DEST[127:64] SRC2[127:64]
IF (SRC1[191]) DEST[191:128] SRC2[191:128]
IF (SRC1[255]) DEST[255:192] SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

__m256 _mm256_maskload_ps(float const *a, __m256i mask)

void _mm256_maskstore_ps(float *a, __m256i mask, __m256 b)

__m256d _mm256_maskload_pd(double *a, __m256i mask);

void _mm256_maskstore_pd(double *a, __m256i mask, __m256d b);

__m128 _mm128_maskload_ps(float const *a, __m128i mask)

void _mm128_maskstore_ps(float *a, __m128i mask, __m128 b)

__m128d _mm128_maskload_pd(double *a, __m128i mask);

void _mm128_maskstore_pd(double *a, __m128i mask, __m128d b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6 (No AC# reported for any mask bit combinations);
additionally
#UD If VEX.W = 1.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 119

VPERMILPS — Permute Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

(variable control version)
Permute single-precision floating-point values in the first source operand (second operand) using 8-bit control
fields in the low bytes of corresponding elements the shuffle control (third operand) and store results in the desti-
nation operand (first operand). The first source operand is a YMM register, the second source operand is a YMM
register or a 256-bit memory location, and the destination operand is a YMM register.

Figure 4-40 VPERMILPS Operation

There is one control byte per destination single-precision element. Each control byte is aligned with the low 8 bits
of the corresponding single-precision destination element. Each control byte contains a 2-bit select field (see

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

VEX.NDS.128.66.0F38.W0 0C /r
VPERMILPS xmm1, xmm2, xmm3/m128

RVM V/V AVX Permute single-precision floating-point values in
xmm2 using controls from xmm3/mem and store
result in xmm1.

VEX.128.66.0F3A.W0 04 /r ib
VPERMILPS xmm1, xmm2/m128, imm8

RMI V/V AVX Permute single-precision floating-point values in
xmm2/mem using controls from imm8 and store
result in xmm1.

VEX.NDS.256.66.0F38.W0 0C /r
VPERMILPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Permute single-precision floating-point values in
ymm2 using controls from ymm3/mem and store
result in ymm1.

VEX.256.66.0F3A.W0 04 /r ib
VPERMILPS ymm1, ymm2/m256, imm8

RMI V/V AVX Permute single-precision floating-point values in
ymm2/mem using controls from imm8 and store
result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

X7 .. X4 X7 .. X4 X3 ..X0 X3 .. X0DEST

SRC1 X0X1X2X3X4X5X6X7

X3 .. X0X7 .. X4 X7 .. X4 X3 ..X0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 120

Figure 4-41) that determines which of the source elements are selected. Source elements are restricted to lie in
the same source 128-bit region as the destination.

Figure 4-41 VPERMILPS Shuffle Control

(immediate control version)
Permute single-precision floating-point values in the first source operand (second operand) using four 2-bit
control fields in the 8-bit immediate and store results in the destination operand (first operand). The source
operand is a YMM register or 256-bit memory location and the destination operand is a YMM register. This is
similar to a wider version of PSHUFD, just operating on single-precision floating-point values.
Note: For the VEX.128.66.0F3A 04 instruction version, VEX.vvvv is reserved and must be 1111b otherwise
instruction will #UD.
Note: For the VEX.256.66.0F3A 04 instruction version, VEX.vvvv is reserved and must be 1111b otherwise
instruction will #UD.

Operation

Select4(SRC, control) {
CASE (control[1:0]) OF

0: TMP SRC[31:0];
1: TMP SRC[63:32];
2: TMP SRC[95:64];
3: TMP SRC[127:96];

ESAC;
RETURN TMP
}

VPERMILPS (256-bit immediate version)
DEST[31:0] Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] Select4(SRC1[127:0], imm8[5:4]);
DEST[127:96] Select4(SRC1[127:0], imm8[7:6]);
DEST[159:128] Select4(SRC1[255:128], imm8[1:0]);
DEST[191:160] Select4(SRC1[255:128], imm8[3:2]);
DEST[223:192] Select4(SRC1[255:128], imm8[5:4]);
DEST[255:224] Select4(SRC1[255:128], imm8[7:6]);

sel

Bit
34 33 32

sel . . .

226 225 224

sel ignored

Control Field 1Control Field 2Control Field 7

1 0255

ignored ignored

63 31

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 121

VPERMILPS (128-bit immediate version)
DEST[31:0] Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] Select4(SRC1[127:0], imm8[5:4]);
DEST[127:96] Select4(SRC1[127:0], imm8[7:6]);
DEST[VLMAX-1:128] 0

VPERMILPS (256-bit variable version)
DEST[31:0] Select4(SRC1[127:0], SRC2[1:0]);
DEST[63:32] Select4(SRC1[127:0], SRC2[33:32]);
DEST[95:64] Select4(SRC1[127:0], SRC2[65:64]);
DEST[127:96] Select4(SRC1[127:0], SRC2[97:96]);
DEST[159:128] Select4(SRC1[255:128], SRC2[129:128]);
DEST[191:160] Select4(SRC1[255:128], SRC2[161:160]);
DEST[223:192] Select4(SRC1[255:128], SRC2[193:192]);
DEST[255:224] Select4(SRC1[255:128], SRC2[225:224]);

VPERMILPS (128-bit variable version)
DEST[31:0] Select4(SRC1[127:0], SRC2[1:0]);
DEST[63:32] Select4(SRC1[127:0], SRC2[33:32]);
DEST[95:64] Select4(SRC1[127:0], SRC2[65:64]);
DEST[127:96] Select4(SRC1[127:0], SRC2[97:96]);
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

VPERMILPS: __m128 _mm_permute_ps (__m128 a, int control);

VPERMILPS: __m256 _mm256_permute_ps (__m256 a, int control);

VPERMILPS: __m128 _mm_permutevar_ps (__m128 a, __m128i control);

VPERMILPS: __m256 _mm256_permutevar_ps (__m256 a, __m256i control);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.W = 1.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 122

XSAVEC—Save Processor Extended States with Compaction

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the
logical-AND of EDX:EAX and XCR0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Section 13.9, “Operation of XSAVEC,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
1 provides a detailed description of the operation of the XSAVEC instruction. The following items provide a high-
level outline:
• Execution of XSAVEC is similar to that of XSAVE. XSAVEC differs from XSAVE in that it uses compaction and

that it may use the init optimization.
• XSAVEC saves state component i if and only if RFBM[i] = 1 and XINUSE[i] = 1.1 (XINUSE is a bitmap by which

the processor tracks the status of various state components. See Section 13.5.4, “Processor Tracking of
XSAVE-Managed State.”)

• XSAVEC does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy
Region of an XSAVE Area”).

• XSAVEC writes the logical AND of RFBM and XINUSE to the XSTATE_BV field of the XSAVE header.2,3 (See
Section 13.4.2, “XSAVE Header.”) XSAVEC sets bit 63 of the XCOMP_BV field and sets bits 62:0 of that field to
RFBM[62:0]. XSAVEC does not write to any parts of the XSAVE header other than the XSTATE_BV and
XCOMP_BV fields.

• XSAVEC always uses the compacted format of the extended region of the XSAVE area (see Section 13.4.3,
“Extended Region of an XSAVE Area”).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F C7 /4 XSAVEC mem M Valid Valid Save state components specified by EDX:EAX
to mem with compaction.

REX.W+ 0F C7 /4 XSAVEC64 mem M Valid N.E. Save state components specified by EDX:EAX
to mem with compaction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

1. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not
have its initial value of 1F80H. In this case, XSAVEC saves SSE state as long as RFBM[1] = 1.

2. Unlike XSAVE and XSAVEOPT, XSAVEC clears bits in the XSTATE_BV field that correspond to bits that are clear in RFBM.

3. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not
have its initial value of 1F80H. In this case, XSAVEC sets XSTATE_BV[1] to 1 as long as RFBM[1] = 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 123

Operation

RFBM ← XCR0 AND EDX:EAX; /* bitwise logical AND */
COMPMASK ← RFBM OR 80000000_00000000H;

IF RFBM[0] = 1 and XINUSE[0] = 1
THEN store x87 state into legacy region of XSAVE area;

FI;
IF RFBM[1] = 1 and (XINUSE[1] = 1 or MXCSR ≠ 1F80H)

THEN store SSE state into legacy region of XSAVE area;
FI;
IF RFBM[2] = 1 AND XINUSE[2] = 1

THEN store AVX state into extended region of XSAVE area;
FI;

XSTATE_BV field in XSAVE header ← XINUSE AND RFBM;1

XCOMP_BV field in XSAVE header ← COMPMASK;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVEC: void _xsavec(void * , unsigned __int64);

XSAVEC64: void _xsavec64(void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

1. If MXCSR does not have its initial value of 1F80H, XSAVEC sets XSTATE_BV[1] to 1 as long as RFBM[1] = 1, regardless of the value
of XINUSE[1].

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 124

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

...

11. Updates to Chapter 1, Volume 3A
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 125

• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Core™2 Extreme QX9000 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 126

• 4th generation Intel® Core™ processors
• The Intel® Core™ M processor family
• Intel® Core™ i7-59xx Processor Extreme Edition
• Intel® Core™ i7-49xx Processor Extreme Edition
• Intel® Xeon® processor E3-1200 v3 product family
• Intel® Xeon® processor E5-2600/1600 v3 product families
• 5th generation Intel® Core™ processors
• Intel® Atom™ processor Z8000 series
• Intel® Atom™ processor Z3400 series
• Intel® Atom™ processor Z3500 series

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on
Enhanced Intel® Core™ microarchitecture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture and supports Intel 64 archi-
tecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel®
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32nm version of
Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and
various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These
processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2
product family and 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code name
Ivy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Intel® microarchitecture
code name Ivy Bridge-E and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

The Intel® Core™ M processor family and 5th generation Intel® Core™ processors are based on the Intel® micro-
architecture code name Broadwell and support Intel 64 architecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 127

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Intel® microarchitecture code name Haswell-E and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Intel microarchitecture code name Airmont.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Intel
microarchitecture code name Silvermont.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors,
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel®
64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is a
superset of and compatible with IA-32 architecture.

...

12. Updates to Chapter 2, Volume 3A
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCR0)
If CPUID.01H:ECX.XSAVE[bit 26] is 1, the processor supports one or more extended control registers (XCRs).
Currently, the only such register defined is XCR0. This register specifies the set of processor state components for
which the operating system provides context management, e.g. x87 FPU state, SSE state, AVX state. The OS
programs XCR0 to reflect the features for which it provides context management.

Software can access XCR0 only if CR4.OSXSAVE[bit 18] = 1. (This bit is also readable as
CPUID.01H:ECX.OSXSAVE[bit 27].) Software can use CPUID leaf function 0DH to enumerate the bits in XCR0 that

Figure 2-8 XCR0

63

Reserved for XCR0 bit vector expansion
Reserved / Future processor extended states

2 1 0

AVX state

1

Reserved (must be 0)

x87 FPU/MMX state (must be 1)
SSE state

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 128

the processor supports (see CPUID instruction in Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A). Each supported state component is represented by a bit in XCR0. System software enables state
components by loading an appropriate bit mask value into XCR0 using the XSETBV instruction.
As each bit in XCR0 (except bit 63) corresponds to a processor state component, XCR0 thus provides support for
up to 63 sets of processor state components. Bit 63 of XCR0 is reserved for future expansion and will not repre-
sent a processor state component.

Currently, XCR0 defines support for the following state components:
• XCR0.X87 (bit 0): This bit 0 must be 1. An attempt to write 0 to this bit causes a #GP exception.
• XCR0.SSE (bit 1): If 1, the XSAVE feature set can be used to manage MXCSR and the XMM registers (XMM0-

XMM15 in 64-bit mode; otherwise XMM0-XMM7).
• XCR0.AVX (bit 2): If 1, AVX instructions can be executed and the XSAVE feature set can be used to manage

the upper halves of the YMM registers (YMM0-YMM15 in 64-bit mode; otherwise YMM0-YMM7).

Any attempt to use XSETBV to set a bit reserved in XCR0 for a given processor (as determined by the contents of
EAX and EDX after executing CPUID with EAX=0DH, ECX= 0H) results in a #GP exception. An attempt to write 0
to XCR0.x87 (bit 0) also results in a #GP exception, as does any attempt to write 0 to XCR0.SSE (bit 1) and 1 to
XCR0.AVX (bit 2).
After reset, all bits (except bit 0) in XCR0 are cleared to zero, XCR0[0] is set to 1.

...

13. Updates to Chapter 4, Volume 3A
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

4.1 PAGING MODES AND CONTROL BITS
Paging behavior is controlled by the following control bits:
• The WP and PG flags in control register CR0 (bit 16 and bit 31, respectively).
• The PSE, PAE, PGE, PCIDE, SMEP, and SMAP flags in control register CR4 (bit 4, bit 5, bit 7, bit 17, bit 20, and

bit 21, respectively).
• The LME and NXE flags in the IA32_EFER MSR (bit 8 and bit 11, respectively).
• The AC flag in the EFLAGS register (bit 18).

Software enables paging by using the MOV to CR0 instruction to set CR0.PG. Before doing so, software should
ensure that control register CR3 contains the physical address of the first paging structure that the processor will
use for linear-address translation (see Section 4.2) and that structure is initialized as desired. See Table 4-3,
Table 4-7, and Table 4-12 for the use of CR3 in the different paging modes.

Section 4.1.1 describes how the values of CR0.PG, CR4.PAE, and IA32_EFER.LME determine whether paging is in
use and, if so, which of three paging modes is in use. Section 4.1.2 explains how to manage these bits to establish
or make changes in paging modes. Section 4.1.3 discusses how CR0.WP, CR4.PSE, CR4.PGE, CR4.PCIDE,
CR4.SMEP, CR4.SMAP, and IA32_EFER.NXE modify the operation of the different paging modes.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 129

4.1.1 Three Paging Modes
If CR0.PG = 0, paging is not used. The logical processor treats all linear addresses as if they were physical
addresses. CR4.PAE and IA32_EFER.LME are ignored by the processor, as are CR0.WP, CR4.PSE, CR4.PGE,
CR4.SMEP, CR4.SMAP, and IA32_EFER.NXE.

Paging is enabled if CR0.PG = 1. Paging can be enabled only if protection is enabled (CR0.PE = 1). If paging is
enabled, one of three paging modes is used. The values of CR4.PAE and IA32_EFER.LME determine which paging
mode is used:
• If CR0.PG = 1 and CR4.PAE = 0, 32-bit paging is used. 32-bit paging is detailed in Section 4.3. 32-bit paging

uses CR0.WP, CR4.PSE, CR4.PGE, CR4.SMEP, and CR4.SMAP as described in Section 4.1.3.
• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 0, PAE paging is used. PAE paging is detailed in Section

4.4. PAE paging uses CR0.WP, CR4.PGE, CR4.SMEP, CR4.SMAP, and IA32_EFER.NXE as described in Section
4.1.3.

• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 1, IA-32e paging is used.1 IA-32e paging is detailed in
Section 4.5. IA-32e paging uses CR0.WP, CR4.PGE, CR4.PCIDE, CR4.SMEP, CR4.SMAP, and IA32_EFER.NXE
as described in Section 4.1.3. IA-32e paging is available only on processors that support the Intel 64 archi-
tecture.

The three paging modes differ with regard to the following details:
• Linear-address width. The size of the linear addresses that can be translated.
• Physical-address width. The size of the physical addresses produced by paging.
• Page size. The granularity at which linear addresses are translated. Linear addresses on the same page are

translated to corresponding physical addresses on the same page.
• Support for execute-disable access rights. In some paging modes, software can be prevented from fetching

instructions from pages that are otherwise readable.
• Support for PCIDs. In some paging modes, software can enable a facility by which a logical processor caches

information for multiple linear-address spaces. The processor may retain cached information when software
switches between different linear-address spaces.

Table 4-1 illustrates the principal differences between the three paging modes.

1. The LMA flag in the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical processor is in IA-32e mode (and thus
using IA-32e paging). The processor always sets IA32_EFER.LMA to CR0.PG & IA32_EFER.LME. Software cannot directly modify
IA32_EFER.LMA; an execution of WRMSR to the IA32_EFER MSR ignores bit 10 of its source operand.

Table 4-1 Properties of Different Paging Modes

Paging
Mode

PG in
CR0

PAE in
CR4

LME in
IA32_EFER

Lin.-
Addr.
Width

Phys.-
Addr.
Width1

Page
Sizes

Supports
Execute-
Disable?

Supports
PCIDs?

None 0 N/A N/A 32 32 N/A No No

32-bit 1 0 02 32
Up to
403

4 KB
4 MB4 No No

PAE 1 1 0 32
Up to
52

4 KB
2 MB

Yes5 No

IA-32e 1 1 1 48
Up to
52

4 KB
2 MB
1 GB6

Yes5 Yes7

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 130

Because they are used only if IA32_EFER.LME = 0, 32-bit paging and PAE paging is used only in legacy protected
mode. Because legacy protected mode cannot produce linear addresses larger than 32 bits, 32-bit paging and
PAE paging translate 32-bit linear addresses.

Because it is used only if IA32_EFER.LME = 1, IA-32e paging is used only in IA-32e mode. (In fact, it is the use of
IA-32e paging that defines IA-32e mode.) IA-32e mode has two sub-modes:
• Compatibility mode. This mode uses only 32-bit linear addresses. IA-32e paging treats bits 47:32 of such an

address as all 0.
• 64-bit mode. While this mode produces 64-bit linear addresses, the processor ensures that bits 63:47 of such

an address are identical.1 IA-32e paging does not use bits 63:48 of such addresses.

...

4.1.3 Paging-Mode Modifiers
Details of how each paging mode operates are determined by the following control bits:
• The WP flag in CR0 (bit 16).
• The PSE, PGE, PCIDE, SMEP, and SMAP flags in CR4 (bit 4, bit 7, bit 17, bit 20, and bit 21 respectively).
• The NXE flag in the IA32_EFER MSR (bit 11).

CR0.WP allows pages to be protected from supervisor-mode writes. If CR0.WP = 0, supervisor-mode write
accesses are allowed to linear addresses with read-only access rights; if CR0.WP = 1, they are not. (User-mode
write accesses are never allowed to linear addresses with read-only access rights, regardless of the value of
CR0.WP.) Section 4.6 explains how access rights are determined, including the definition of supervisor-mode and
user-mode accesses.

CR4.PSE enables 4-MByte pages for 32-bit paging. If CR4.PSE = 0, 32-bit paging can use only 4-KByte pages; if
CR4.PSE = 1, 32-bit paging can use both 4-KByte pages and 4-MByte pages. See Section 4.3 for more informa-
tion. (PAE paging and IA-32e paging can use multiple page sizes regardless of the value of CR4.PSE.)

CR4.PGE enables global pages. If CR4.PGE = 0, no translations are shared across address spaces; if CR4.PGE =
1, specified translations may be shared across address spaces. See Section 4.10.2.4 for more information.

CR4.PCIDE enables process-context identifiers (PCIDs) for IA-32e paging (CR4.PCIDE can be 1 only when IA-32e
paging is in use). PCIDs allow a logical processor to cache information for multiple linear-address spaces. See
Section 4.10.1 for more information.

CR4.SMEP allows pages to be protected from supervisor-mode instruction fetches. If CR4.SMEP = 1, software
operating in supervisor mode cannot fetch instructions from linear addresses that are accessible in user mode.
Section 4.6 explains how access rights are determined, including the definition of supervisor-mode accesses and
user-mode accessibility.

NOTES:
1. The physical-address width is always bounded by MAXPHYADDR; see Section 4.1.4.
2. The processor ensures that IA32_EFER.LME must be 0 if CR0.PG = 1 and CR4.PAE = 0.
3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and only if the PSE-36 mechanism is

supported; see Section 4.1.4 and Section 4.3.
4. 4-MByte pages are used with 32-bit paging only if CR4.PSE = 1; see Section 4.3.
5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 4.6.
6. Not all processors that support IA-32e paging support 1-GByte pages; see Section 4.1.4.
7. PCIDs are used only if CR4.PCIDE = 1; see Section 4.10.1.

1. Such an address is called canonical. Use of a non-canonical linear address in 64-bit mode produces a general-protection exception
(#GP(0)); the processor does not attempt to translate non-canonical linear addresses using IA-32e paging.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 131

CR4.SMAP allows pages to be protected from supervisor-mode data accesses. If CR4.SMAP = 1, software oper-
ating in supervisor mode cannot access data at linear addresses that are accessible in user mode. Software can
override this protection by setting EFLAGS.AC. Section 4.6 explains how access rights are determined, including
the definition of supervisor-mode accesses and user-mode accessibility.

IA32_EFER.NXE enables execute-disable access rights for PAE paging and IA-32e paging. If IA32_EFER.NXE = 1,
instructions fetches can be prevented from specified linear addresses (even if data reads from the addresses are
allowed). Section 4.6 explains how access rights are determined. (IA32_EFER.NXE has no effect with 32-bit
paging. Software that wants to use this feature to limit instruction fetches from readable pages must use either
PAE paging or IA-32e paging.)

...

4.5 IA-32E PAGING
A logical processor uses IA-32e paging if CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 1. With IA-32e
paging, linear address are translated using a hierarchy of in-memory paging structures located using the contents
of CR3. IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses.1 Although 52 bits corre-
sponds to 4 PBytes, linear addresses are limited to 48 bits; at most 256 TBytes of linear-address space may be
accessed at any given time.

IA-32e paging uses a hierarchy of paging structures to produce a translation for a linear address. CR3 is used to
locate the first paging-structure, the PML4 table. Use of CR3 with IA-32e paging depends on whether process-
context identifiers (PCIDs) have been enabled by setting CR4.PCIDE:
• Table 4-12 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 0.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used by IA-32e paging. (The corre-
sponding bits are reserved in the paging-structure entries.) See Section 4.1.4 for how to determine MAXPHYADDR.

Table 4-12 Use of CR3 with IA-32e Paging and CR4.PCIDE = 0

Bit
Position(s)

Contents

2:0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the PML4 table during linear-
address translation (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the PML4 table during linear-address
translation (see Section 4.9.2)

11:5 Ignored

M–1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address translation1

63:M Reserved (must be 0)

NOTES:
1. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 132

• Table 4-13 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 1.

After software modifies the value of CR4.PCIDE, the logical processor immediately begins using CR3 as specified
for the new value. For example, if software changes CR4.PCIDE from 1 to 0, the current PCID immediately
changes from CR3[11:0] to 000H (see also Section 4.10.4.1). In addition, the logical processor subsequently
determines the memory type used to access the PML4 table using CR3.PWT and CR3.PCD, which had been
bits 4:3 of the PCID.

IA-32e paging may map linear addresses to 4-KByte pages, 2-MByte pages, or 1-GByte pages.1 Figure 4-8 illus-
trates the translation process when it produces a 4-KByte page; Figure 4-9 covers the case of a 2-MByte page,
and Figure 4-10 the case of a 1-GByte page.

Table 4-13 Use of CR3 with IA-32e Paging and CR4.PCIDE = 1

Bit
Position(s)

Contents

11:0 PCID (see Section 4.10.1)1

M–1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address translation2

63:M Reserved (must be 0)3

NOTES:
1. Section 4.9.2 explains how the processor determines the memory type used to access the PML4 table during linear-address transla-

tion with CR4.PCIDE = 1.
2. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.
3. See Section 4.10.4.1 for use of bit 63 of the source operand of the MOV to CR3 instruction.

1. Not all processors support 1-GByte pages; see Section 4.1.4.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 133

Figure 4-8 Linear-Address Translation to a 4-KByte Page using IA-32e Paging

Directory Ptr

PTE

Linear Address

Page Table

PDPTE

CR3

39 38

Pointer Table

9
9

40

12
9

40

4-KByte Page

Offset

Physical Addr

PDE with PS=0

Table

011122021

Directory

30 29

Page-Directory-

Page-Directory

PML4

47

9

PML4E

40

40

40

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 134

Figure 4-9 Linear-Address Translation to a 2-MByte Page using IA-32e Paging

Figure 4-10 Linear-Address Translation to a 1-GByte Page using IA-32e Paging

Directory Ptr

Linear Address

PDPTE

CR3

39 38

Pointer Table

9
9

40

21

31

2-MByte Page

Offset

Physical Addr

PDE with PS=1

02021

Directory

30 29

Page-Directory-

Page-Directory

PML4

47

9

PML4E

40

40

Directory Ptr

Linear Address

PDPTE with PS=1

CR3

39 38

Pointer Table

9

40

30

22

1-GByte Page

Offset

Physical Addr

030 29

Page-Directory-

PML4

47

9

PML4E

40

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 135

The following items describe the IA-32e paging process in more detail as well has how the page size is deter-
mined.
• A 4-KByte naturally aligned PML4 table is located at the physical address specified in bits 51:12 of CR3 (see

Table 4-12). A PML4 table comprises 512 64-bit entries (PML4Es). A PML4E is selected using the physical
address defined as follows:

— Bits 51:12 are from CR3.

— Bits 11:3 are bits 47:39 of the linear address.

— Bits 2:0 are all 0.
Because a PML4E is identified using bits 47:39 of the linear address, it controls access to a 512-GByte region
of the linear-address space.

• A 4-KByte naturally aligned page-directory-pointer table is located at the physical address specified in
bits 51:12 of the PML4E (see Table 4-14). A page-directory-pointer table comprises 512 64-bit entries
(PDPTEs). A PDPTE is selected using the physical address defined as follows:

— Bits 51:12 are from the PML4E.

— Bits 11:3 are bits 38:30 of the linear address.

— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the linear address, it controls access to a 1-GByte region of the
linear-address space. Use of the PDPTE depends on its PS flag (bit 7):1

• If the PDPTE’s PS flag is 1, the PDPTE maps a 1-GByte page (see Table 4-15). The final physical address is
computed as follows:

— Bits 51:30 are from the PDPTE.

— Bits 29:0 are from the original linear address.
• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page directory is located at the physical address specified

in bits 51:12 of the PDPTE (see Table 4-16). A page directory comprises 512 64-bit entries (PDEs). A PDE is
selected using the physical address defined as follows:

— Bits 51:12 are from the PDPTE.

— Bits 11:3 are bits 29:21 of the linear address.

— Bits 2:0 are all 0.

Because a PDE is identified using bits 47:21 of the linear address, it controls access to a 2-MByte region of the
linear-address space. Use of the PDE depends on its PS flag:
• If the PDE’s PS flag is 1, the PDE maps a 2-MByte page. The final physical address is computed as shown in

Table 4-17.

— Bits 51:21 are from the PDE.

— Bits 20:0 are from the original linear address.
• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical address specified in

bits 51:12 of the PDE (see Table 4-18). A page table comprises 512 64-bit entries (PTEs). A PTE is selected
using the physical address defined as follows:

— Bits 51:12 are from the PDE.

— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are all 0.

1. The PS flag of a PDPTE is reserved and must be 0 (if the P flag is 1) if 1-GByte pages are not supported. See Section 4.1.4 for how
to determine whether 1-GByte pages are supported.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 136

• Because a PTE is identified using bits 47:12 of the linear address, every PTE maps a 4-KByte page (see Table
4-19). The final physical address is computed as follows:

— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the entry is used neither to
reference another paging-structure entry nor to map a page. There is no translation for a linear address whose
translation would use such a paging-structure entry; a reference to such a linear address causes a page-fault
exception (see Section 4.7).

The following bits are reserved with IA-32e paging:
• If the P flag of a paging-structure entry is 1, bits 51:MAXPHYADDR are reserved.
• If the P flag of a PML4E is 1, the PS flag is reserved.
• If 1-GByte pages are not supported and the P flag of a PDPTE is 1, the PS flag is reserved.1

• If the P flag and the PS flag of a PDPTE are both 1, bits 29:13 are reserved.
• If the P flag and the PS flag of a PDE are both 1, bits 20:13 are reserved.
• If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, the XD flag (bit 63) is reserved.

A reference using a linear address that is successfully translated to a physical address is performed only if allowed
by the access rights of the translation; see Section 4.6.

Figure 4-11 gives a summary of the formats of CR3 and the IA-32e paging-structure entries. For the paging struc-
ture entries, it identifies separately the format of entries that map pages, those that reference other paging struc-
tures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are highlighted because
they determine how a paging-structure entry is used.

1. See Section 4.1.4 for how to determine whether 1-GByte pages are supported.

Table 4-14 Format of an IA-32e PML4 Entry (PML4E) that References a Page-Directory-Pointer Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page-directory-pointer table

1 (R/W) Read/write; if 0, writes may not be allowed to the 512-GByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 512-GByte region controlled by this entry (see
Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page-directory-pointer table
referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page-directory-pointer table
referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Reserved (must be 0)

11:8 Ignored

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 137

M–1:12 Physical address of 4-KByte aligned page-directory-pointer table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 512-GByte region
controlled by this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-14 Format of an IA-32e PML4 Entry (PML4E) that References a Page-Directory-Pointer Table (Contd.)

Bit
Position(s)

Contents

Table 4-15 Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 1-GByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 1-GByte page referenced by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 1-GByte page referenced by this
entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 1-GByte page referenced by this
entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 1-GByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 1-GByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page directory; see Table 4-16)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 1-GByte page referenced by this entry (see Section
4.9.2)1

29:13 Reserved (must be 0)

(M–1):30 Physical address of the 1-GByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 1-GByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

NOTES:
1. The PAT is supported on all processors that support IA-32e paging.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 138

Table 4-16 Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that References a Page Directory

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page directory

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 1-GByte region controlled by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory referenced by
this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory referenced by
this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 1-GByte page; see Table 4-15)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 1-GByte region controlled
by this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-17 Format of an IA-32e Page-Directory Entry that Maps a 2-MByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte page referenced by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 2-MByte page referenced by
this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 2-MByte page referenced by
this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by this entry (see Section 4.8)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 139

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-18)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 2-MByte page referenced by this entry (see Section
4.9.2)

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-17 Format of an IA-32e Page-Directory Entry that Maps a 2-MByte Page (Contd.)

Bit
Position(s)

Contents

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 140

Table 4-18 Format of an IA-32e Page-Directory Entry that References a Page Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte region controlled by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 4-17)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte region controlled
by this entry; see Section 4.6); otherwise, reserved (must be 0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 141

...

4.6 ACCESS RIGHTS
There is a translation for a linear address if the processes described in Section 4.3, Section 4.4.2, and Section 4.5
(depending upon the paging mode) completes and produces a physical address. Whether an access is permitted
by a translation is determined by the access rights specified by the paging-structure entries controlling the trans-
lation;1 paging-mode modifiers in CR0, CR4, and the IA32_EFER MSR; EFLAGS.AC; and the mode of the access.

Every access to a linear address is either a supervisor-mode access or a user-mode access. For all instruction
fetches and most data accesses, this distinction is determined by the current privilege level (CPL): accesses made
while CPL < 3 are supervisor-mode accesses, while accesses made while CPL = 3 are user-mode accesses.

Some operations implicitly access system data structures with linear addresses; the resulting accesses to those
data structures are supervisor-mode accesses regardless of CPL. Examples of such accesses include the
following: accesses to the global descriptor table (GDT) or local descriptor table (LDT) to load a segment

Table 4-19 Format of an IA-32e Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by
this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) Indirectly determines the memory type used to access the 4-KByte page referenced by this entry (see Section 4.9.2)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

(M–1):12 Physical address of the 4-KByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 4-KByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

1. With PAE paging, the PDPTEs do not determine access rights.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 142

descriptor; accesses to the interrupt descriptor table (IDT) when delivering an interrupt or exception; and
accesses to the task-state segment (TSS) as part of a task switch or change of CPL. All these accesses are called
implicit supervisor-mode accesses regardless of CPL. Other accesses made while CPL < 3 are called explicit
supervisor-mode accesses.

Access rights are also controlled by the mode of a linear address as specified by the paging-structure entries
controlling the translation of the linear address. If the U/S flag (bit 2) is 0 in at least one of the paging-structure
entries, the address is a supervisor-mode address. Otherwise, the address is a user-mode address.

The following items detail how paging determines access rights:
• For supervisor-mode accesses:

— Data may be read (implicitly or explicitly) from any supervisor-mode address.

— Data reads from user-mode pages.
Access rights depend on the value of CR4.SMAP:

• If CR4.SMAP = 0, data may be read from any user-mode address.

• If CR4.SMAP = 1, access rights depend on the value of EFLAGS.AC and whether the access is implicit
or explicit:

— If EFLAGS.AC = 1 and the access is explicit, data may be read from any user-mode address.

— If EFLAGS.AC = 0 or the access is implicit, data may not be read from any user-mode address.

— Data writes to supervisor-mode addresses.
Access rights depend on the value of CR0.WP:

• If CR0.WP = 0, data may be written to any supervisor-mode address.

• If CR0.WP = 1, data may be written to any supervisor-mode address with a translation for which the
R/W flag (bit 1) is 1 in every paging-structure entry controlling the translation; data may not be
written to any supervisor-mode address with a translation for which the R/W flag is 0 in any paging-
structure entry controlling the translation.

— Data writes to user-mode addresses.
Access rights depend on the value of CR0.WP:

• If CR0.WP = 0, access rights depend on the value of CR4.SMAP:

— If CR4.SMAP = 0, data may be written to any user-mode address.

— If CR4.SMAP = 1, access rights depend on the value of EFLAGS.AC and whether the access is
implicit or explicit:

• If EFLAGS.AC = 1 and the access is explicit, data may be written to any user-mode address.

• If EFLAGS.AC = 0 or the access is implicit, data may not be written to any user-mode
address.

• If CR0.WP = 1, access rights depend on the value of CR4.SMAP:

— If CR4.SMAP = 0, data may be written to any user-mode address with a translation for which the
R/W flag is 1 in every paging-structure entry controlling the translation; data may not be written
to any user-mode address with a translation for which the R/W flag is 0 in any paging-structure
entry controlling the translation.

— If CR4.SMAP = 1, access rights depend on the value of EFLAGS.AC and whether the access is
implicit or explicit:

• If EFLAGS.AC = 1 and the access is explicit, data may be written to any user-mode address
with a translation for which the R/W flag is 1 in every paging-structure entry controlling the
translation; data may not be written to any user-mode address with a translation for which
the R/W flag is 0 in any paging-structure entry controlling the translation.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 143

• If EFLAGS.AC = 0 or the access is implicit, data may not be written to any user-mode
address.

— Instruction fetches from supervisor-mode addresses.

• For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any supervisor-mode
address.

• For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, instructions may be fetched from any
supervisor-mode address with a translation for which the XD flag (bit 63) is 0 in every paging-
structure entry controlling the translation; instructions may not be fetched from any supervisor-mode
address with a translation for which the XD flag is 1 in any paging-structure entry controlling the trans-
lation.

— Instruction fetches from user-mode addresses.
Access rights depend on the values of CR4.SMEP:

• If CR4.SMEP = 0, access writes depend on the paging mode and the value of IA32_EFER.NXE:

— For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any user-mode
address.

— For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, instructions may be fetched from any
user-mode address with a translation for which the XD flag is 0 in every paging-structure entry
controlling the translation; instructions may not be fetched from any user-mode address with a
translation for which the XD flag is 1 in any paging-structure entry controlling the translation.

• If CR4.SMEP = 1, instructions may not be fetched from any user-mode address.
• For user-mode accesses:

— Data reads.
Access rights depend on the mode of the linear address:

• Data may be read from any user-mode address.

• Data may not be read from any supervisor-mode address.

— Data writes.
Access rights depend on the mode of the linear address:

• Data may be written to any user-mode address with a translation for which the R/W flag is 1 in every
paging-structure entry controlling the translation.

• Data may not be written to any supervisor-mode address.

— Instruction fetches.
Access rights depend on the mode of the linear address, the paging mode, and the value of
IA32_EFER.NXE:

• For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any user-mode address.

• For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, instructions may be fetched from any user-
mode address with a translation for which the XD flag is 0 in every paging-structure entry controlling
the translation.

• Instructions may not be fetched from any supervisor-mode address.

A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see
Section 4.10). These structures may include information about access rights. The processor may enforce access
rights based on the TLBs and paging-structure caches instead of on the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change access rights, the processor might
not use that change for a subsequent access to an affected linear address (see Section 4.10.4.3). See Section
4.10.4.2 for how software can ensure that the processor uses the modified access rights.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 144

...

14. Updates to Chapter 6, Volume 3A
Change bars show changes to Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

6.3.1 External Interrupts
External interrupts are received through pins on the processor or through the local APIC. The primary interrupt
pins on Pentium 4, Intel Xeon, P6 family, and Pentium processors are the LINT[1:0] pins, which are connected to
the local APIC (see Chapter 10, “Advanced Programmable Interrupt Controller (APIC)”). When the local APIC is
enabled, the LINT[1:0] pins can be programmed through the APIC’s local vector table (LVT) to be associated with
any of the processor’s exception or interrupt vectors.

When the local APIC is global/hardware disabled, these pins are configured as INTR and NMI pins, respectively.
Asserting the INTR pin signals the processor that an external interrupt has occurred. The processor reads from
the system bus the interrupt vector number provided by an external interrupt controller, such as an 8259A (see
Section 6.2, “Exception and Interrupt Vectors”). Asserting the NMI pin signals a non-maskable interrupt (NMI),
which is assigned to interrupt vector 2.

Table 6-1 Protected-Mode Exceptions and Interrupts

Vector Mne-
monic

Description Type Error
Code

Source

 0 #DE Divide Error Fault No DIV and IDIV instructions.

 1 #DB Debug Exception Fault/ Trap No Instruction, data, and I/O breakpoints;
single-step; and others.

 2 — NMI Interrupt Interrupt No Nonmaskable external interrupt.

 3 #BP Breakpoint Trap No INT 3 instruction.

 4 #OF Overflow Trap No INTO instruction.

 5 #BR BOUND Range Exceeded Fault No BOUND instruction.

 6 #UD Invalid Opcode (Undefined Opcode) Fault No UD2 instruction or reserved opcode.1

 7 #NM Device Not Available (No Math
Coprocessor)

Fault No Floating-point or WAIT/FWAIT instruction.

 8 #DF Double Fault Abort Yes
(zero)

Any instruction that can generate an
exception, an NMI, or an INTR.

 9 Coprocessor Segment Overrun
(reserved)

Fault No Floating-point instruction.2

10 #TS Invalid TSS Fault Yes Task switch or TSS access.

11 #NP Segment Not Present Fault Yes Loading segment registers or accessing
system segments.

12 #SS Stack-Segment Fault Fault Yes Stack operations and SS register loads.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 145

The processor’s local APIC is normally connected to a system-based I/O APIC. Here, external interrupts received
at the I/O APIC’s pins can be directed to the local APIC through the system bus (Pentium 4, Intel Core Duo, Intel
Core 2, Intel® Atom™, and Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors). The
I/O APIC determines the vector number of the interrupt and sends this number to the local APIC. When a system
contains multiple processors, processors can also send interrupts to one another by means of the system bus
(Pentium 4, Intel Core Duo, Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6 family
and Pentium processors).

The LINT[1:0] pins are not available on the Intel486 processor and earlier Pentium processors that do not contain
an on-chip local APIC. These processors have dedicated NMI and INTR pins. With these processors, external inter-
rupts are typically generated by a system-based interrupt controller (8259A), with the interrupts being signaled
through the INTR pin.

Note that several other pins on the processor can cause a processor interrupt to occur. However, these interrupts
are not handled by the interrupt and exception mechanism described in this chapter. These pins include the
RESET#, FLUSH#, STPCLK#, SMI#, R/S#, and INIT# pins. Whether they are included on a particular processor
is implementation dependent. Pin functions are described in the data books for the individual processors. The
SMI# pin is described in Chapter 34, “System Management Mode.”

...

13 #GP General Protection Fault Yes Any memory reference and other
protection checks.

14 #PF Page Fault Fault Yes Any memory reference.

15 — (Intel reserved. Do not use.) No

16 #MF x87 FPU Floating-Point Error (Math
Fault)

Fault No x87 FPU floating-point or WAIT/FWAIT
instruction.

17 #AC Alignment Check Fault Yes
(Zero)

Any data reference in memory.3

18 #MC Machine Check Abort No Error codes (if any) and source are model
dependent.4

19 #XM SIMD Floating-Point Exception Fault No SSE/SSE2/SSE3 floating-point
instructions5

20 #VE Virtualization Exception Fault No EPT violations6

21-31 — Intel reserved. Do not use.

32-255 — User Defined (Non-reserved)
Interrupts

Interrupt External interrupt or INT n instruction.

NOTES:
1. The UD2 instruction was introduced in the Pentium Pro processor.
2. Processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.
4. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.
5. This exception was introduced in the Pentium III processor.
6. This exception can occur only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.

Table 6-1 Protected-Mode Exceptions and Interrupts (Contd.)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 146

Interrupt 8—Double Fault Exception (#DF)

Exception Class Abort.

Description

Indicates that the processor detected a second exception while calling an exception handler for a prior exception.
Normally, when the processor detects another exception while trying to call an exception handler, the two excep-
tions can be handled serially. If, however, the processor cannot handle them serially, it signals the double-fault
exception. To determine when two faults need to be signalled as a double fault, the processor divides the excep-
tions into three classes: benign exceptions, contributory exceptions, and page faults (see Table 6-4).

Table 6-5 shows the various combinations of exception classes that cause a double fault to be generated. A
double-fault exception falls in the abort class of exceptions. The program or task cannot be restarted or resumed.
The double-fault handler can be used to collect diagnostic information about the state of the machine and/or,
when possible, to shut the application and/or system down gracefully or restart the system.

Table 6-4 Interrupt and Exception Classes

Class Vector Number Description

Benign Exceptions and Interrupts 1
 2
 3
 4
 5
 6
 7
9
16
17
18

19
All
All

Debug
NMI Interrupt
Breakpoint
Overflow
BOUND Range Exceeded
Invalid Opcode
Device Not Available
Coprocessor Segment Overrun
Floating-Point Error
Alignment Check
Machine Check

SIMD floating-point
INT n
INTR

Contributory Exceptions 0
10
11
12
13

Divide Error
Invalid TSS
Segment Not Present
Stack Fault
General Protection

Page Faults 14
20

Page Fault
Virtualization Exception

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 147

A segment or page fault may be encountered while prefetching instructions; however, this behavior is outside the
domain of Table 6-5. Any further faults generated while the processor is attempting to transfer control to the
appropriate fault handler could still lead to a double-fault sequence.

If another contributory or page fault exception occurs while attempting to call the double-fault handler, the
processor enters shutdown mode. This mode is similar to the state following execution of an HLT instruction. In
this mode, the processor stops executing instructions until an NMI interrupt, SMI interrupt, hardware reset, or
INIT# is received. The processor generates a special bus cycle to indicate that it has entered shutdown mode.
Software designers may need to be aware of the response of hardware when it goes into shutdown mode. For
example, hardware may turn on an indicator light on the front panel, generate an NMI interrupt to record diag-
nostic information, invoke reset initialization, generate an INIT initialization, or generate an SMI. If any events are
pending during shutdown, they will be handled after an wake event from shutdown is processed (for example,
A20M# interrupts).

If a shutdown occurs while the processor is executing an NMI interrupt handler, then only a hardware reset can
restart the processor. Likewise, if the shutdown occurs while executing in SMM, a hardware reset must be used to
restart the processor.

Exception Error Code

Zero. The processor always pushes an error code of 0 onto the stack of the double-fault handler.

Saved Instruction Pointer

The saved contents of CS and EIP registers are undefined.

Program State Change

A program-state following a double-fault exception is undefined. The program or task cannot be resumed or
restarted. The only available action of the double-fault exception handler is to collect all possible context informa-
tion for use in diagnostics and then close the application and/or shut down or reset the processor.

If the double fault occurs when any portion of the exception handling machine state is corrupted, the handler
cannot be invoked and the processor must be reset.

...

Table 6-5 Conditions for Generating a Double Fault

Second Exception

First Exception Benign Contributory Page Fault

Benign Handle Exceptions Serially Handle Exceptions Serially Handle Exceptions Serially

Contributory Handle Exceptions Serially Generate a Double Fault Handle Exceptions Serially

Page Fault Handle Exceptions Serially Generate a Double Fault Generate a Double Fault

Double Fault Handle Exceptions Serially Enter Shutdown Mode Enter Shutdown Mode

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 148

Interrupt 14—Page-Fault Exception (#PF)

Exception Class Fault.

Description

Indicates that, with paging enabled (the PG flag in the CR0 register is set), the processor detected one of the
following conditions while using the page-translation mechanism to translate a linear address to a physical
address:
• The P (present) flag in a page-directory or page-table entry needed for the address translation is clear,

indicating that a page table or the page containing the operand is not present in physical memory.
• The procedure does not have sufficient privilege to access the indicated page (that is, a procedure running in

user mode attempts to access a supervisor-mode page). If the SMAP flag is set in CR4, a page fault may also
be triggered by code running in supervisor mode that tries to access data at a user-mode address.

• Code running in user mode attempts to write to a read-only page. If the WP flag is set in CR0, the page fault
will also be triggered by code running in supervisor mode that tries to write to a read-only page.

• An instruction fetch to a linear address that translates to a physical address in a memory page with the
execute-disable bit set (for information about the execute-disable bit, see Chapter 4, “Paging”). If the SMEP
flag is set in CR4, a page fault will also be triggered by code running in supervisor mode that tries to fetch an
instruction from a user-mode address.

• One or more reserved bits in page directory entry are set to 1. See description below of RSVD error code flag.

The exception handler can recover from page-not-present conditions and restart the program or task without any
loss of program continuity. It can also restart the program or task after a privilege violation, but the problem that
caused the privilege violation may be uncorrectable.

See also: Section 4.7, “Page-Fault Exceptions.”

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of information to aid in diag-
nosing the exception and recovering from it:
• An error code on the stack. The error code for a page fault has a format different from that for other

exceptions (see Figure 6-9). The processor establishes the bits in the error code as follows:

— P flag (bit 0).
This flag is 0 if there is no translation for the linear address because the P flag was 0 in one of the paging-
structure entries used to translate that address.

— W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, it is 0. This flag
describes the access causing the page-fault exception, not the access rights specified by paging.

— U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is 0 if a supervisor-mode access
did so. This flag describes the access causing the page-fault exception, not the access rights specified by
paging.

— RSVD flag (bit 3).
This flag is 1 if there is no translation for the linear address because a reserved bit was set in one of the
paging-structure entries used to translate that address.

— I/D flag (bit 4).
This flag is 1 if the access causing the page-fault exception was an instruction fetch. This flag describes the
access causing the page-fault exception, not the access rights specified by paging.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 149

See Section 4.6, “Access Rights” and Section 4.7, “Page-Fault Exceptions” for more information about page-
fault exceptions and the error codes that they produce.

The contents of the CR2 register. The processor loads the CR2 register with the 32-bit linear address that
generated the exception. The page-fault handler can use this address to locate the corresponding page
directory and page-table entries. Another page fault can potentially occur during execution of the page-fault
handler; the handler should save the contents of the CR2 register before a second page fault can occur.1 If a
page fault is caused by a page-level protection violation, the access flag in the page-directory entry is set
when the fault occurs. The behavior of IA-32 processors regarding the access flag in the corresponding page-
table entry is model specific and not architecturally defined.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the exception. If the
page-fault exception occurred during a task switch, the CS and EIP registers may point to the first instruction of
the new task (as described in the following “Program State Change” section).

Program State Change

A program-state change does not normally accompany a page-fault exception, because the instruction that
causes the exception to be generated is not executed. After the page-fault exception handler has corrected the
violation (for example, loaded the missing page into memory), execution of the program or task can be resumed.

When a page-fault exception is generated during a task switch, the program-state may change, as follows. During
a task switch, a page-fault exception can occur during any of following operations:
• While writing the state of the original task into the TSS of that task.
• While reading the GDT to locate the TSS descriptor of the new task.
• While reading the TSS of the new task.

Figure 6-9 Page-Fault Error Code

1. Processors update CR2 whenever a page fault is detected. If a second page fault occurs while an earlier page fault is being deliv-
ered, the faulting linear address of the second fault will overwrite the contents of CR2 (replacing the previous address). These
updates to CR2 occur even if the page fault results in a double fault or occurs during the delivery of a double fault.

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

A supervisor-mode access caused the fault.
A user-mode access caused the fault.

31 0

Reserved

1234

The fault was not caused by reserved bit violation.
The fault was caused by a reserved bit set to 1 in some

P 0
1

W/R 0
1

U/S 0

RSVD 0
1

1

I/D

I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

PW
/R

U/S
RSVD

paging-structure entry.

5

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 150

• While reading segment descriptors associated with segment selectors from the new task.
• While reading the LDT of the new task to verify the segment registers stored in the new TSS.

In the last two cases the exception occurs in the context of the new task. The instruction pointer refers to the first
instruction of the new task, not to the instruction which caused the task switch (or the last instruction to be
executed, in the case of an interrupt). If the design of the operating system permits page faults to occur during
task-switches, the page-fault handler should be called through a task gate.

If a page fault occurs during a task switch, the processor will load all the state information from the new TSS
(without performing any additional limit, present, or type checks) before it generates the exception. The page-
fault handler should thus not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and
GS registers without causing another exception. (See the Program State Change description for “Interrupt 10—
Invalid TSS Exception (#TS)” in this chapter for additional information on how to handle this situation.)

Additional Exception-Handling Information

Special care should be taken to ensure that an exception that occurs during an explicit stack switch does not
cause the processor to use an invalid stack pointer (SS:ESP). Software written for 16-bit IA-32 processors often
use a pair of instructions to change to a new stack, for example:

MOV SS, AX
MOV SP, StackTop

When executing this code on one of the 32-bit IA-32 processors, it is possible to get a page fault, general-protec-
tion fault (#GP), or alignment check fault (#AC) after the segment selector has been loaded into the SS register
but before the ESP register has been loaded. At this point, the two parts of the stack pointer (SS and ESP) are
inconsistent. The new stack segment is being used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the exception handler switches to a well defined stack
(that is, the handler is a task or a more privileged procedure). However, if the exception handler is called at the
same privilege level and from the same task, the processor will attempt to use the inconsistent stack pointer.

In systems that handle page-fault, general-protection, or alignment check exceptions within the faulting task
(with trap or interrupt gates), software executing at the same privilege level as the exception handler should
initialize a new stack by using the LSS instruction rather than a pair of MOV instructions, as described earlier in
this note. When the exception handler is running at privilege level 0 (the normal case), the problem is limited to
procedures or tasks that run at privilege level 0, typically the kernel of the operating system.

...

15. Updates to Chapter 8, Volume 3A
Change bars show changes to Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

8.4 MULTIPLE-PROCESSOR (MP) INITIALIZATION
The IA-32 architecture (beginning with the P6 family processors) defines a multiple-processor (MP) initialization
protocol called the Multiprocessor Specification Version 1.4. This specification defines the boot protocol to be used
by IA-32 processors in multiple-processor systems. (Here, multiple processors is defined as two or more
processors.) The MP initialization protocol has the following important features:
• It supports controlled booting of multiple processors without requiring dedicated system hardware.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 151

• It allows hardware to initiate the booting of a system without the need for a dedicated signal or a predefined
boot processor.

• It allows all IA-32 processors to be booted in the same manner, including those supporting Intel Hyper-
Threading Technology.

• The MP initialization protocol also applies to MP systems using Intel 64 processors.

The mechanism for carrying out the MP initialization protocol differs depending on the Intel processor genera-
tions. The following bullets summarizes the evolution of the changes:
• For P6 family or older processors supporting MP operations— The selection of the BSP and APs (see

Section 8.4.1, “BSP and AP Processors”) is handled through arbitration on the APIC bus, using BIPI and FIPI
messages. These processor generations have CPUID signatures of (family=06H, extended_model=0,
model<=0DH), or family <06H. See Section 8.11.1, “Overview of the MP Initialization Process For P6 Family
Processors” for a complete discussion of MP initialization for P6 family processors.

• Early generations of IA processors with family 0FH — The selection of the BSP and APs (see Section
8.4.1, “BSP and AP Processors”) is handled through arbitration on the system bus, using BIPI and FIPI
messages (see Section 8.4.3, “MP Initialization Protocol Algorithm for MP Systems”). These processor
generations have CPUID signatures of family=0FH, model=0H, stepping<=09H.

• Later generations of IA processors with family 0FH, and IA processors with system bus — The
selection of the BSP and APs is handled through a special system bus cycle, without using BIPI and FIPI
message arbitration (see Section 8.4.3, “MP Initialization Protocol Algorithm for MP Systems”). These
processor generations have CPUID signatures of family=0FH with (model=0H, stepping>=0AH) or (model
>0, all steppings); or family=06H, extended_model=0, model>=0EH.

• All other modern IA processor generations supporting MP operations— The selection of the BSP and
APs in the system is handled by platform-specific arrangement of the combination of hardware, BIOS, and/or
configuration input options. The basis of the selection mechanism is similar to those of the Later generations
of family 0FH and other Intel processor using system bus (see Section 8.4.3, “MP Initialization Protocol
Algorithm for MP Systems”). These processor generations have CPUID signatures of family=06H,
extended_model>0.

The family, model, and stepping ID for a processor is given in the EAX register when the CPUID instruction is
executed with a value of 1 in the EAX register.

...

8.4.3 MP Initialization Protocol Algorithm for MP Systems
Following a power-up or RESET of an MP system, the processors in the system execute the MP initialization
protocol algorithm to initialize each of the logical processors on the system bus or coherent link domain. In the
course of executing this algorithm, the following boot-up and initialization operations are carried out:

1. Each logical processor is assigned a unique APIC ID, based on system topology. The unique ID is a 32-bit value
if the processor supports CPUID leaf 0BH, otherwise the unique ID is an 8-bit value. (see Section 8.4.5,
“Identifying Logical Processors in an MP System”).

2. Each logical processor is assigned a unique arbitration priority based on its APIC ID.

3. Each logical processor executes its internal BIST simultaneously with the other logical processors in the
system.

4. Upon completion of the BIST, the logical processors use a hardware-defined selection mechanism to select the
BSP and the APs from the available logical processors on the system bus. The BSP selection mechanism differs
depending on the family, model, and stepping IDs of the processors, as follows:

— Later generations of IA processors within family 0FH (see Section 8.4), IA processors with system bus
(family=06H, extended_model=0, model>=0EH), or all other modern Intel processors (family=06H,
extended_model>0):

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 152

• The logical processors begin monitoring the BNR# signal, which is toggling. When the BNR# pin stops
toggling, each processor attempts to issue a NOP special cycle on the system bus.

• The logical processor with the highest arbitration priority succeeds in issuing a NOP special cycle and
is nominated the BSP. This processor sets the BSP flag in its IA32_APIC_BASE MSR, then fetches and
begins executing BIOS boot-strap code, beginning at the reset vector (physical address FFFF FFF0H).

• The remaining logical processors (that failed in issuing a NOP special cycle) are designated as APs.
They leave their BSP flags in the clear state and enter a “wait-for-SIPI state.”

— Early generations of IA processors within family 0FH (family=0FH, model=0H, stepping<=09H), P6 family
or older processors supporting MP operations (family=06H, extended_model=0, model<=0DH; or family
<06H):

• Each processor broadcasts a BIPI to “all including self.” The first processor that broadcasts a BIPI (and
thus receives its own BIPI vector), selects itself as the BSP and sets the BSP flag in its
IA32_APIC_BASE MSR. (See Section 8.11.1, “Overview of the MP Initialization Process For P6 Family
Processors” for a description of the BIPI, FIPI, and SIPI messages.)

• The remainder of the processors (which were not selected as the BSP) are designated as APs. They
leave their BSP flags in the clear state and enter a “wait-for-SIPI state.”

• The newly established BSP broadcasts an FIPI message to “all including self,” which the BSP and APs
treat as an end of MP initialization signal. Only the processor with its BSP flag set responds to the FIPI
message. It responds by fetching and executing the BIOS boot-strap code, beginning at the reset
vector (physical address FFFF FFF0H).

5. As part of the boot-strap code, the BSP creates an ACPI table and/or an MP table and adds its initial APIC ID
to these tables as appropriate.

6. At the end of the boot-strap procedure, the BSP sets a processor counter to 1, then broadcasts a SIPI
message to all the APs in the system. Here, the SIPI message contains a vector to the BIOS AP initialization
code (at 000VV000H, where VV is the vector contained in the SIPI message).

7. The first action of the AP initialization code is to set up a race (among the APs) to a BIOS initialization
semaphore. The first AP to the semaphore begins executing the initialization code. (See Section 8.4.4, “MP
Initialization Example,” for semaphore implementation details.) As part of the AP initialization procedure, the
AP adds its APIC ID number to the ACPI and/or MP tables as appropriate and increments the processor
counter by 1. At the completion of the initialization procedure, the AP executes a CLI instruction and halts
itself.

8. When each of the APs has gained access to the semaphore and executed the AP initialization code, the BSP
establishes a count for the number of processors connected to the system bus, completes executing the BIOS
boot-strap code, and then begins executing operating-system boot-strap and start-up code.

9. While the BSP is executing operating-system boot-strap and start-up code, the APs remain in the halted state.
In this state they will respond only to INITs, NMIs, and SMIs. They will also respond to snoops and to
assertions of the STPCLK# pin.

The following section gives an example (with code) of the MP initialization protocol for of multiple processors
operating in an MP configuration.

Chapter 35, “Model-Specific Registers (MSRs),” describes how to program the LINT[0:1] pins of the processor’s
local APICs after an MP configuration has been completed.

...

8.4.4.1 Typical BSP Initialization Sequence
After the BSP and APs have been selected (by means of a hardware protocol, see Section 8.4.3, “MP Initialization
Protocol Algorithm for MP Systems”), the BSP begins executing BIOS boot-strap code (POST) at the normal IA-32
architecture starting address (FFFF FFF0H). The boot-strap code typically performs the following operations:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 153

1. Initializes memory.

2. Loads the microcode update into the processor.

3. Initializes the MTRRs.

4. Enables the caches.

5. Executes the CPUID instruction with a value of 0H in the EAX register, then reads the EBX, ECX, and EDX
registers to determine if the BSP is “GenuineIntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves the values in the EAX, ECX,
and EDX registers in a system configuration space in RAM for use later.

7. Loads start-up code for the AP to execute into a 4-KByte page in the lower 1 MByte of memory.

8. Switches to protected mode and ensures that the APIC address space is mapped to the strong uncacheable
(UC) memory type.

9. Determine the BSP’s APIC ID from the local APIC ID register (default is 0), the code snippet below is an
example that applies to logical processors in a system whose local APIC units operate in xAPIC mode that APIC
registers are accessed using memory mapped interface:

MOV ESI, APIC_ID; Address of local APIC ID register
MOV EAX, [ESI];
AND EAX, 0FF000000H; Zero out all other bits except APIC ID
MOV BOOT_ID, EAX; Save in memory

Saves the APIC ID in the ACPI and/or MP tables and optionally in the system configuration space in RAM.

10. Converts the base address of the 4-KByte page for the AP’s bootup code into 8-bit vector. The 8-bit vector
defines the address of a 4-KByte page in the real-address mode address space (1-MByte space). For example,
a vector of 0BDH specifies a start-up memory address of 000BD000H.

11. Enables the local APIC by setting bit 8 of the APIC spurious vector register (SVR).

MOV ESI, SVR; Address of SVR
MOV EAX, [ESI];
OR EAX, APIC_ENABLED; Set bit 8 to enable (0 on reset)
MOV [ESI], EAX;

12. Sets up the LVT error handling entry by establishing an 8-bit vector for the APIC error handler.

MOV ESI, LVT3;
MOV EAX, [ESI];
AND EAX, FFFFFF00H; Clear out previous vector.
OR EAX, 000000xxH; xx is the 8-bit vector the APIC error handler.
MOV [ESI], EAX;

13. Initializes the Lock Semaphore variable VACANT to 00H. The APs use this semaphore to determine the order
in which they execute BIOS AP initialization code.

14. Performs the following operation to set up the BSP to detect the presence of APs in the system and the
number of processors (within a finite duration, minimally 100 milliseconds):

— Sets the value of the COUNT variable to 1.

— In the AP BIOS initialization code, the AP will increment the COUNT variable to indicate its presence. The
finite duration while waiting for the COUNT to be updated can be accomplished with a timer. When the
timer expires, the BSP checks the value of the COUNT variable. If the timer expires and the COUNT
variable has not been incremented, no APs are present or some error has occurred.

15. Broadcasts an INIT-SIPI-SIPI IPI sequence to the APs to wake them up and initialize them. If software knows
how many logical processors it expects to wake up, it may choose to poll the COUNT variable. If the expected

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 154

processors show up before the 100 millisecond timer expires, the timer can be canceled and skip to step 16.
The left-hand-side of the procedure illustrated in Table 8-1 provides an algorithm when the expected
processor count is unknown. The right-hand-side of Table 8-1 can be used when the expected processor count
is known.

16. Reads and evaluates the COUNT variable and establishes a processor count.

17. If necessary, reconfigures the APIC and continues with the remaining system diagnostics as appropriate.

8.4.4.2 Typical AP Initialization Sequence
When an AP receives the SIPI, it begins executing BIOS AP initialization code at the vector encoded in the SIPI.
The AP initialization code typically performs the following operations:

1. Waits on the BIOS initialization Lock Semaphore. When control of the semaphore is attained, initialization
continues.

2. Loads the microcode update into the processor.

3. Initializes the MTRRs (using the same mapping that was used for the BSP).

4. Enables the cache.

5. Executes the CPUID instruction with a value of 0H in the EAX register, then reads the EBX, ECX, and EDX
registers to determine if the AP is “GenuineIntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves the values in the EAX, ECX,
and EDX registers in a system configuration space in RAM for use later.

7. Switches to protected mode and ensures that the APIC address space is mapped to the strong uncacheable
(UC) memory type.

8. Determines the AP’s APIC ID from the local APIC ID register, and adds it to the MP and ACPI tables and
optionally to the system configuration space in RAM.

Table 8-1 Broadcast INIT-SIPI-SIPI Sequence and Choice of Timeouts
INIT-SIPI-SIPI when the expected processor count is unknown INIT-SIPI-SIPI when the expected processor count is known

MOV ESI, ICR_LOW; Load address of ICR low dword into ESI.

MOV EAX, 000C4500H; Load ICR encoding for broadcast INIT IPI

; to all APs into EAX.

MOV [ESI], EAX; Broadcast INIT IPI to all APs

; 10-millisecond delay loop.

MOV EAX, 000C46XXH; Load ICR encoding for broadcast SIPI IP

; to all APs into EAX, where xx is the vector computed in step 10.

MOV [ESI], EAX; Broadcast SIPI IPI to all APs

; 200-microsecond delay loop

MOV [ESI], EAX; Broadcast second SIPI IPI to all APs

;Waits for the timer interrupt until the timer expires

MOV ESI, ICR_LOW; Load address of ICR low dword into ESI.

MOV EAX, 000C4500H; Load ICR encoding for broadcast INIT IPI

; to all APs into EAX.

MOV [ESI], EAX; Broadcast INIT IPI to all APs

; 10-millisecond delay loop.

MOV EAX, 000C46XXH; Load ICR encoding for broadcast SIPI IP

; to all APs into EAX, where xx is the vector computed in step 10.

MOV [ESI], EAX; Broadcast SIPI IPI to all APs

; 200 microsecond delay loop with check to see if COUNT has

; reached the expected processor count. If COUNT reaches

; expected processor count, cancel timer and go to step 16.

MOV [ESI], EAX; Broadcast second SIPI IPI to all APs

; Wait for the timer interrupt polling COUNT. If COUNT reaches

; expected processor count, cancel timer and go to step 16.

; If timer expires, go to step 16.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 155

9. Initializes and configures the local APIC by setting bit 8 in the SVR register and setting up the LVT3 (error LVT)
for error handling (as described in steps 9 and 10 in Section 8.4.4.1, “Typical BSP Initialization Sequence”).

10. Configures the APs SMI execution environment. (Each AP and the BSP must have a different SMBASE
address.)

11. Increments the COUNT variable by 1.

12. Releases the semaphore.

13. Executes one of the following:

— the CLI and HLT instructions (if MONITOR/MWAIT is not supported), or

— the CLI, MONITOR and MWAIT sequence to enter a deep C-state.

14. Waits for an INIT IPI.

...

16. Updates to Chapter 11, Volume 3A
Change bars show changes to Chapter 11 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

11.11.2.3 Variable Range MTRRs
The Pentium 4, Intel Xeon, and P6 family processors permit software to specify the memory type for m variable-
size address ranges, using a pair of MTRRs for each range. The number m of ranges supported is given in bits 7:0
of the IA32_MTRRCAP MSR (see Figure 11-5 in Section 11.11.1).

The first entry in each pair (IA32_MTRR_PHYSBASEn) defines the base address and memory type for the range;
the second entry (IA32_MTRR_PHYSMASKn) contains a mask used to determine the address range. The “n” suffix
is in the range 0 through m–1 and identifies a specific register pair.

For P6 family processors, the prefixes for these variable range MTRRs are MTRRphysBase and MTRRphysMask.

Table 11-9 Address Mapping for Fixed-Range MTRRs
Address Range (hexadecimal) MTRR

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

70000-
7FFFF

60000-
6FFFF

50000-
5FFFF

40000-
4FFFF

30000-
3FFFF

20000-
2FFFF

10000-
1FFFF

00000-
0FFFF

IA32_MTRR_
FIX64K_00000

9C000
9FFFF

98000-
9BFFF

94000-
97FFF

90000-
93FFF

8C000-
8FFFF

88000-
8BFFF

84000-
87FFF

80000-
83FFF

IA32_MTRR_
FIX16K_80000

BC000
BFFFF

B8000-
BBFFF

B4000-
B7FFF

B0000-
B3FFF

AC000-
AFFFF

A8000-
ABFFF

A4000-
A7FFF

A0000-
A3FFF

IA32_MTRR_
FIX16K_A0000

C7000
C7FFF

C6000-
C6FFF

C5000-
C5FFF

C4000-
C4FFF

C3000-
C3FFF

C2000-
C2FFF

C1000-
C1FFF

C0000-
C0FFF

IA32_MTRR_
FIX4K_C0000

CF000
CFFFF

CE000-
CEFFF

CD000-
CDFFF

CC000-
CCFFF

CB000-
CBFFF

CA000-
CAFFF

C9000-
C9FFF

C8000-
C8FFF

IA32_MTRR_
FIX4K_C8000

D7000
D7FFF

D6000-
D6FFF

D5000-
D5FFF

D4000-
D4FFF

D3000-
D3FFF

D2000-
D2FFF

D1000-
D1FFF

D0000-
D0FFF

IA32_MTRR_
FIX4K_D0000

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 156

...

17. Updates to Chapter 17, Volume 3B
Change bars show changes to Chapter 17 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

17.4.9.1 64 Bit Format of the DS Save Area
When DTES64 = 1 (CPUID.1.ECX[2] = 1), the structure of the DS save area is shown in Figure 17-8.

When DTES64 = 0 (CPUID.1.ECX[2] = 0) and IA-32e mode is active, the structure of the DS save area is shown
in Figure 17-8. If IA-32e mode is not active the structure of the DS save area is as shown in Figure 17-6.

DF000
DFFFF

DE000-
DEFFF

DD000-
DDFFF

DC000-
DCFFF

DB000-
DBFFF

DA000-
DAFFF

D9000-
D9FFF

D8000-
D8FFF

IA32_MTRR_
FIX4K_D8000

E7000
E7FFF

E6000-
E6FFF

E5000-
E5FFF

E4000-
E4FFF

E3000-
E3FFF

E2000-
E2FFF

E1000-
E1FFF

E0000-
E0FFF

IA32_MTRR_
FIX4K_E0000

EF000
EFFFF

EE000-
EEFFF

ED000-
EDFFF

EC000-
ECFFF

EB000-
EBFFF

EA000-
EAFFF

E9000-
E9FFF

E8000-
E8FFF

IA32_MTRR_
FIX4K_E8000

F7000
F7FFF

F6000-
F6FFF

F5000-
F5FFF

F4000-
F4FFF

F3000-
F3FFF

F2000-
F2FFF

F1000-
F1FFF

F0000-
F0FFF

IA32_MTRR_
FIX4K_F0000

FF000
FFFFF

FE000-
FEFFF

FD000-
FDFFF

FC000-
FCFFF

FB000-
FBFFF

FA000-
FAFFF

F9000-
F9FFF

F8000-
F8FFF

IA32_MTRR_
FIX4K_F8000

Table 11-9 Address Mapping for Fixed-Range MTRRs (Contd.)
Address Range (hexadecimal) MTRR

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 157

The IA32_DS_AREA MSR holds the 64-bit linear address of the first byte of the DS buffer management area. The
structure of a branch trace record is similar to that shown in Figure 17-6, but each field is 8 bytes in length. This
makes each BTS record 24 bytes (see Figure 17-9). The structure of a PEBS record is similar to that shown in
Figure 17-7, but each field is 8 bytes in length and architectural states include register R8 through R15. This
makes the size of a PEBS record in 64-bit mode 144 bytes (see Figure 17-10).

...

Figure 17-8 IA-32e Mode DS Save Area

Figure 17-9 64-bit Branch Trace Record Format

BTS Buffer Base

BTS Index

BTS Absolute

BTS Interrupt

PEBS Absolute

PEBS Interrupt

PEBS

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter Reset

Reserved

0H

8H

10H

18H

20H

28H

30H

38H

40H

48H

50H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR

Last Branch From

Last Branch To

Branch Predicted

0H

8H

10H

063 4

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 158

17.13.4 Invariant Time-Keeping
The invariant TSC is based on the invariant timekeeping hardware (called Always Running Timer or ART), that
runs at the core crystal clock frequency. The ratio defined by CPUID leaf 15H expresses the frequency relationship
between the ART hardware and TSC.

If CPUID.15H:EBX[31:0] != 0 and CPUID.80000007H:EDX[InvariantTSC] = 1, the following linearity relationship
holds between TSC and the ART hardware:

TSC_Value = (ART_Value * CPUID.15H:EBX[31:0])/ CPUID.15H:EAX[31:0] + K

Where 'K' is an offset that can be adjusted by a privileged agent1.

When ART hardware is reset, both invariant TSC and K are also reset.

...

18. Updates to Chapter 19, Volume 3B
Change bars show changes to Chapter 19 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

19.5 PERFORMANCE MONITORING EVENTS FOR 2ND GENERATION
INTEL® CORE™ I7-2XXX, INTEL® CORE™ I5-2XXX, INTEL® CORE™ I3-2XXX
PROCESSOR SERIES

2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series, and Intel
Xeon processor E3-1200 product family are based on the Intel microarchitecture code name Sandy Bridge. They
support architectural performance-monitoring events listed in Table 19-1. Non-architectural performance-moni-
toring events in the processor core are listed in Table 19-9, Table 19-10, and Table 19-11. The events in Table 19-
9 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following values:
06_2AH and 06_2DH. The events in Table 19-10 apply to processors with CPUID signature 06_2AH. The events in
Table 19-11 apply to processors with CPUID signature 06_2DH.

Additional informations on event specifics (e.g. derivative events using specific IA32_PERFEVTSELx modifiers,
limitations, special notes and recommendations) can be found at http://software.intel.com/en-us/forums/soft-
ware-tuning-performance-optimization-platform-monitoring.

1. IA32_TSC_ADJUST MSR and the TSC-offset field in the VM execution controls of VMCS are some of the common interfaces that
privileged software can use to manage the time stamp counter for keeping time

Table 19-9 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 01H LD_BLOCKS.DATA_UNKNOWN blocked loads due to store buffer blocks with
unknown data.

03H 02H LD_BLOCKS.STORE_FORWARD loads blocked by overlapping with store buffer that
cannot be forwarded.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 159

03H 08H LD_BLOCKS.NO_SR # of Split loads blocked due to resource not
available.

03H 10H LD_BLOCKS.ALL_BLOCK Number of cases where any load is blocked but has
no DCU miss.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRES
S_ALIAS

False dependencies in MOB due to partial compare
on address.

07H 08H LD_BLOCKS_PARTIAL.ALL_STA
_BLOCK

The number of times that load operations are
temporarily blocked because of older stores, with
addresses that are not yet known. A load operation
may incur more than one block of this type.

08H 01H DTLB_LOAD_MISSES.MISS_CA
USES_A_WALK

Misses in all TLB levels that cause a page walk of
any page size.

08H 02H DTLB_LOAD_MISSES.WALK_CO
MPLETED

Misses in all TLB levels that caused page walk
completed of any size.

08H 04H DTLB_LOAD_MISSES.WALK_DU
RATION

Cycle PMH is busy with a walk.

08H 10H DTLB_LOAD_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

0DH 03H INT_MISC.RECOVERY_CYCLES Cycles waiting to recover after Machine Clears or
JEClear. Set Cmask= 1.

Set Edge to count
occurrences

0DH 40H INT_MISC.RAT_STALL_CYCLES Cycles RAT external stall is sent to IDQ for this
thread.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the
RAT to RS.

Set Cmask = 1, Inv = 1, Any= 1to count stalled cycles
of this core.

Set Cmask = 1, Inv = 1to
count stalled cycles

10H 01H FP_COMP_OPS_EXE.X87 Counts number of X87 uops executed.

10H 10H FP_COMP_OPS_EXE.SSE_FP_P
ACKED_DOUBLE

Counts number of SSE* double precision FP packed
uops executed.

10H 20H FP_COMP_OPS_EXE.SSE_FP_S
CALAR_SINGLE

Counts number of SSE* single precision FP scalar
uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_PACK
ED SINGLE

Counts number of SSE* single precision FP packed
uops executed.

10H 80H FP_COMP_OPS_EXE.SSE_SCAL
AR_DOUBLE

Counts number of SSE* double precision FP scalar
uops executed.

11H 01H SIMD_FP_256.PACKED_SINGLE Counts 256-bit packed single-precision floating-
point instructions.

11H 02H SIMD_FP_256.PACKED_DOUBL
E

Counts 256-bit packed double-precision floating-
point instructions.

Table 19-9 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 160

14H 01H ARITH.FPU_DIV_ACTIVE Cycles that the divider is active, includes INT and FP.
Set 'edge =1, cmask=1' to count the number of
divides.

17H 01H INSTS_WRITTEN_TO_IQ.INSTS Counts the number of instructions written into the
IQ every cycle.

24H 01H L2_RQSTS.DEMAND_DATA_RD
_HIT

Demand Data Read requests that hit L2 cache.

24H 03H L2_RQSTS.ALL_DEMAND_DAT
A_RD

Counts any demand and L1 HW prefetch data load
requests to L2.

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO requests that hit
the L2 cache.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache.

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 10H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache.

24H 20H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2
cache.

24H 30H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Requests from L2 Hardware prefetcher that hit L2.

24H 80H L2_RQSTS.PF_MISS Requests from L2 Hardware prefetcher that missed
L2.

24H C0H L2_RQSTS.ALL_PF Any requests from L2 Hardware prefetchers.

27H 01H L2_STORE_LOCK_RQSTS.MISS RFOs that miss cache lines.

27H 04H L2_STORE_LOCK_RQSTS.HIT_
E

RFOs that hit cache lines in E state.

27H 08H L2_STORE_LOCK_RQSTS.HIT_
M

RFOs that hit cache lines in M state.

27H 0FH L2_STORE_LOCK_RQSTS.ALL RFOs that access cache lines in any state.

28H 01H L2_L1D_WB_RQSTS.MISS Not rejected writebacks from L1D to L2 cache lines
that missed L2.

28H 02H L2_L1D_WB_RQSTS.HIT_S Not rejected writebacks from L1D to L2 cache lines
in S state.

28H 04H L2_L1D_WB_RQSTS.HIT_E Not rejected writebacks from L1D to L2 cache lines
in E state.

28H 08H L2_L1D_WB_RQSTS.HIT_M Not rejected writebacks from L1D to L2 cache lines
in M state.

28H 0FH L2_L1D_WB_RQSTS.ALL Not rejected writebacks from L1D to L2 cache.

2EH 4FH LONGEST_LAT_CACHE.REFERE
NCE

This event counts requests originating from the
core that reference a cache line in the last level
cache.

see Table 19-1

Table 19-9 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 161

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache.

see Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD
_P

Counts the number of thread cycles while the
thread is not in a halt state. The thread enters the
halt state when it is running the HLT instruction.
The core frequency may change from time to time
due to power or thermal throttling.

see Table 19-1

3CH 01H CPU_CLK_THREAD_UNHALTED
.REF_XCLK

Increments at the frequency of XCLK (100 MHz)
when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmask = 1 and Edge =1 to count
occurrences.

PMC2 only;

Set Cmask = 1 to count
cycles.

49H 01H DTLB_STORE_MISSES.MISS_CA
USES_A_WALK

Miss in all TLB levels causes an page walk of any
page size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_C
OMPLETED

Miss in all TLB levels causes a page walk that
completes of any page size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSES.WALK_D
URATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSES.STLB_HI
T

Store operations that miss the first TLB level but hit
the second and do not cause page walks.

4CH 01H LOAD_HIT_PRE.SW_PF Not SW-prefetch load dispatches that hit fill buffer
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Not SW-prefetch load dispatches that hit fill buffer
allocated for H/W prefetch.

4EH 02H HW_PRE_REQ.DL1_MISS Hardware Prefetch requests that miss the L1D
cache. A request is being counted each time it
access the cache & miss it, including if a block is
applicable or if hit the Fill Buffer for example.

This accounts for both L1
streamer and IP-based
(IPP) HW prefetchers.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

51H 02H L1D.ALLOCATED_IN_M Counts the number of allocations of modified L1D
cache lines.

51H 04H L1D.EVICTION Counts the number of modified lines evicted from
the L1 data cache due to replacement.

51H 08H L1D.ALL_M_REPLACEMENT Cache lines in M state evicted out of L1D due to
Snoop HitM or dirty line replacement.

59H 20H PARTIAL_RAT_STALLS.FLAGS_
MERGE_UOP

Increments the number of flags-merge uops in flight
each cycle.

Set Cmask = 1 to count cycles.

59H 40H PARTIAL_RAT_STALLS.SLOW_
LEA_WINDOW

Cycles with at least one slow LEA uop allocated.

59H 80H PARTIAL_RAT_STALLS.MUL_SI
NGLE_UOP

Number of Multiply packed/scalar single precision
uops allocated.

Table 19-9 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 162

5BH 0CH RESOURCE_STALLS2.ALL_FL_
EMPTY

Cycles stalled due to free list empty. PMC0-3 only regardless
HTT

5BH 0FH RESOURCE_STALLS2.ALL_PRF
_CONTROL

Cycles stalled due to control structures full for
physical registers.

5BH 40H RESOURCE_STALLS2.BOB_FUL
L

Cycles Allocator is stalled due Branch Order Buffer.

5BH 4FH RESOURCE_STALLS2.OOO_RS
RC

Cycles stalled due to out of order resources full.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count
transition

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring
0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

60H 01H OFFCORE_REQUESTS_OUTSTA
NDING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

60H 04H OFFCORE_REQUESTS_OUTSTA
NDING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to
uncore. Set Cmask=1 to count cycles.

60H 08H OFFCORE_REQUESTS_OUTSTA
NDING.ALL_DATA_RD

Offcore outstanding cacheable data read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC
_LOCK_DURATION

Cycles in which the L1D and L2 are locked, due to a
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_D
URATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ
from MITE path.

Set Cmask = 1 to count cycles.

Can combine Umask 04H
and 20H

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ
from DSB path.

Set Cmask = 1 to count cycles.

Can combine Umask 08H
and 10H

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ
when MS busy by DSB. Set Cmask = 1 to count
cycles MS is busy. Set Cmask=1 and Edge =1 to
count MS activations.

Can combine Umask 08H
and 10H

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ
when MS is busy by MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H
and 20H

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ
from MS by either DSB or MITE. Set Cmask = 1 to
count cycles.

Can combine Umask 04H,
08H and 30H

Table 19-9 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 163

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A
_WALK

Misses in all ITLB levels that cause page walks.

85H 02H ITLB_MISSES.WALK_COMPLET
ED

Misses in all ITLB levels that cause completed page
walks.

85H 04H ITLB_MISSES.WALK_DURATIO
N

Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 41H BR_INST_EXEC.NONTAKEN_CO
NDITIONAL

Not-taken macro conditional branches

88H 81H BR_INST_EXEC.TAKEN_CONDI
TIONAL

Taken speculative and retired conditional branches

88H 82H BR_INST_EXEC.TAKEN_DIRECT
_JUMP

Taken speculative and retired conditional branches
excluding calls and indirects

88H 84H BR_INST_EXEC.TAKEN_INDIRE
CT_JUMP_NON_CALL_RET

Taken speculative and retired indirect branches
excluding calls and returns

88H 88H BR_INST_EXEC.TAKEN_INDIRE
CT_NEAR_RETURN

Taken speculative and retired indirect branches that
are returns

88H 90H BR_INST_EXEC.TAKEN_DIRECT
_NEAR_CALL

Taken speculative and retired direct near calls

88H A0H BR_INST_EXEC.TAKEN_INDIRE
CT_NEAR_CALL

Taken speculative and retired indirect near calls

88H C1H BR_INST_EXEC.ALL_CONDITIO
NAL

Speculative and retired conditional branches

88H C2H BR_INST_EXEC.ALL_DIRECT_J
UMP

Speculative and retired conditional branches
excluding calls and indirects

88H C4H BR_INST_EXEC.ALL_INDIRECT
_JUMP_NON_CALL_RET

Speculative and retired indirect branches excluding
calls and returns

88H C8H BR_INST_EXEC.ALL_INDIRECT
_NEAR_RETURN

Speculative and retired indirect branches that are
returns

88H D0H BR_INST_EXEC.ALL_NEAR_CA
LL

Speculative and retired direct near calls

88H FFH BR_INST_EXEC.ALL_BRANCHE
S

Speculative and retired branches

89H 41H BR_MISP_EXEC.NONTAKEN_CO
NDITIONAL

Not-taken mispredicted macro conditional branches

89H 81H BR_MISP_EXEC.TAKEN_CONDI
TIONAL

Taken speculative and retired mispredicted
conditional branches

Table 19-9 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 164

89H 84H BR_MISP_EXEC.TAKEN_INDIRE
CT_JUMP_NON_CALL_RET

Taken speculative and retired mispredicted indirect
branches excluding calls and returns

89H 88H BR_MISP_EXEC.TAKEN_RETUR
N_NEAR

Taken speculative and retired mispredicted indirect
branches that are returns

89H 90H BR_MISP_EXEC.TAKEN_DIRECT
_NEAR_CALL

Taken speculative and retired mispredicted direct
near calls

89H A0H BR_MISP_EXEC.TAKEN_INDIRE
CT_NEAR_CALL

Taken speculative and retired mispredicted indirect
near calls

89H C1H BR_MISP_EXEC.ALL_CONDITIO
NAL

Speculative and retired mispredicted conditional
branches

89H C4H BR_MISP_EXEC.ALL_INDIRECT
_JUMP_NON_CALL_RET

Speculative and retired mispredicted indirect
branches excluding calls and returns

89H D0H BR_MISP_EXEC.ALL_NEAR_CA
LL

Speculative and retired mispredicted direct near
calls

89H FFH BR_MISP_EXEC.ALL_BRANCHE
S

Speculative and retired mispredicted branches

9CH 01H IDQ_UOPS_NOT_DELIVERED.C
ORE

Count number of non-delivered uops to RAT per
thread.

Use Cmask to qualify uop
b/w

A1H 01H UOPS_DISPATCHED_PORT.POR
T_0

Cycles which a Uop is dispatched on port 0.

A1H 02H UOPS_DISPATCHED_PORT.POR
T_1

Cycles which a Uop is dispatched on port 1.

A1H 0CH UOPS_DISPATCHED_PORT.POR
T_2

Cycles which a Uop is dispatched on port 2.

A1H 30H UOPS_DISPATCHED_PORT.POR
T_3

Cycles which a Uop is dispatched on port 3.

A1H 40H UOPS_DISPATCHED_PORT.POR
T_4

Cycles which a Uop is dispatched on port 4.

A1H 80H UOPS_DISPATCHED_PORT.POR
T_5

Cycles which a Uop is dispatched on port 5.

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related
reason.

A2H 02H RESOURCE_STALLS.LB Counts the cycles of stall due to lack of load buffers.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available. (not
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A2H 20H RESOURCE_STALLS.FCSW Cycles stalled due to writing the FPU control word.

A3H 02H CYCLE_ACTIVITY.CYCLES_L1D_
PENDING

Cycles with pending L1 cache miss loads.Set
AnyThread to count per core.

PMC2 only

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_P
ENDING

Cycles with pending L2 miss loads. Set AnyThread
to count per core.

Table 19-9 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 165

A3H 04H CYCLE_ACTIVITY.CYCLES_NO_
DISPATCH

Cycles of dispatch stalls. Set AnyThread to count per
core.

PMC0-3 only

A8H 01H LSD.UOPS Number of Uops delivered by the LSD.

ABH 01H DSB2MITE_SWITCHES.COUNT Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHES.PENALT
Y_CYCLES

Cycles DSB to MITE switches caused delay.

ACH 02H DSB_FILL.OTHER_CANCEL Cases of cancelling valid DSB fill not because of
exceeding way limit.

ACH 08H DSB_FILL.EXCEED_DSB_LINES DSB Fill encountered > 3 DSB lines.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes 4k/2M/
4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND
_DATA_RD

Demand data read requests sent to uncore.

B0H 04H OFFCORE_REQUESTS.DEMAND
_RFO

Demand RFO read requests sent to uncore, including
regular RFOs, locks, ItoM.

B0H 08H OFFCORE_REQUESTS.ALL_DAT
A_RD

Data read requests sent to uncore (demand and
prefetch).

B1H 01H UOPS_DISPATCHED.THREAD Counts total number of uops to be dispatched per-
thread each cycle. Set Cmask = 1, INV =1 to count
stall cycles.

PMC0-3 only regardless
HTT

B1H 02H UOPS_DISPATCHED.CORE Counts total number of uops to be dispatched per-
core each cycle.

Do not need to set ANY

B2H 01H OFFCORE_REQUESTS_BUFFER
.SQ_FULL

Offcore requests buffer cannot take more entries
for this thread core.

B6H 01H AGU_BYPASS_CANCEL.COUNT Counts executed load operations with all the
following traits: 1. addressing of the format [base +
offset], 2. the offset is between 1 and 2047, 3. the
address specified in the base register is in one page
and the address [base+offset] is in another page.

B7H 01H OFF_CORE_RESPONSE_0 see Section 18.9.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A6H

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.9.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A7H

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

BFH 05H L1D_BLOCKS.BANK_CONFLICT
_CYCLES

Cycles when dispatched loads are cancelled due to
L1D bank conflicts with other load ports.

cmask=1

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only; Must quiesce
other PMCs.

C1H 02H OTHER_ASSISTS.ITLB_MISS_R
ETIRED

Instructions that experienced an ITLB miss.

Table 19-9 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 166

C1H 08H OTHER_ASSISTS.AVX_STORE Number of assists associated with 256-bit AVX
store operations.

C1H 10H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE
when penalty applicable.

C1H 20H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when
penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use
cmask=1 and invert to count active cycles or stalled
cycles.

Supports PEBS

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

Supports PEBS

C3H 02H MACHINE_CLEARS.MEMORY_O
RDERING

Counts the number of machine clears due to
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Counts the number of times that a program writes
to a code section.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load
operations that refer to an illegal address range
with the mask bits set to 0.

C4H 00H BR_INST_RETIRED.ALL_BRAN
CHES

Branch instructions at retirement. See Table 19-1

C4H 01H BR_INST_RETIRED.CONDITION
AL

Counts the number of conditional branch
instructions retired.

Supports PEBS

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS

C4H 04H BR_INST_RETIRED.ALL_BRAN
CHES

Counts the number of branch instructions retired. Supports PEBS

C4H 08H BR_INST_RETIRED.NEAR_RET
URN

Counts the number of near return instructions
retired.

Supports PEBS

C4H 10H BR_INST_RETIRED.NOT_TAKE
N

Counts the number of not taken branch instructions
retired.

C4H 20H BR_INST_RETIRED.NEAR_TAK
EN

Number of near taken branches retired. Supports PEBS

C4H 40H BR_INST_RETIRED.FAR_BRAN
CH

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted branch instructions at retirement. See Table 19-1

C5H 01H BR_MISP_RETIRED.CONDITION
AL

Mispredicted conditional branch instructions retired. Supports PEBS

C5H 02H BR_MISP_RETIRED.NEAR_CAL
L

Direct and indirect mispredicted near call
instructions retired.

Supports PEBS

C5H 04H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted macro branch instructions retired. Supports PEBS

Table 19-9 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 167

C5H 10H BR_MISP_RETIRED.NOT_TAKE
N

Mispredicted not taken branch instructions retired. Supports PEBS

C5H 20H BR_MISP_RETIRED.TAKEN Mispredicted taken branch instructions retired. Supports PEBS

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 assists due to output value.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 assists due to input value.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSE
RTS

Count cases of saving new LBR records by
hardware.

CDH 01H MEM_TRANS_RETIRED.LOAD_
LATENCY

Randomly sampled loads whose latency is above a
user defined threshold. A small fraction of the
overall loads are sampled due to randomization.
PMC3 only.

Specify threshold in MSR
3F6H

CDH 02H MEM_TRANS_RETIRED.PRECIS
E_STORE

Sample stores and collect precise store operation
via PEBS record. PMC3 only.

See Section 18.9.4.3

D0H 11H MEM_UOP_RETIRED.STLB_MIS
S_LOADS

Load uops with true STLB miss retired to
architectural path.

Supports PEBS. PMC0-3
only regardless HTT.

D0H 12H MEM_UOP_RETIRED.STLB_MIS
S_STORES

Store uops with true STLB miss retired to
architectural path.

Supports PEBS. PMC0-3
only regardless HTT.

D0H 21H MEM_UOP_RETIRED.LOCK_LO
ADS

Load uops with lock access retired to architectural
path.

Supports PEBS. PMC0-3
only regardless HTT.

D0H 22H MEM_UOP_RETIRED.LOCK_ST
ORES

Store uops with lock access retired to architectural
path.

Supports PEBS. PMC0-3
only regardless HTT.

D0H 41H MEM_UOP_RETIRED.SPLIT_LO
ADS

Load uops with cacheline split retired to
architectural path.

Supports PEBS. PMC0-3
only regardless HTT.

D0H 42H MEM_UOP_RETIRED.SPLIT_ST
ORES

Store uops with cacheline split retired to
architectural path.

Supports PEBS. PMC0-3
only regardless HTT.

D0H 81H MEM_UOP_RETIRED.ALL_LOA
DS

ALL Load uops retired to architectural path. Supports PEBS. PMC0-3
only regardless HTT.

D0H 82H MEM_UOP_RETIRED.ALL_STO
RES

ALL Store uops retired to architectural path. Supports PEBS. PMC0-3
only regardless HTT.

D0H 80H MEM_UOP_RETIRED.ALL Qualify any retired memory uops. Must combine
with umask 01H, 02H, to produce counts.

D1H 01H MEM_LOAD_UOPS_RETIRED.L
1_HIT

Retired load uops with L1 cache hits as data
sources.

Supports PEBS. PMC0-3
only regardless HTT

D1H 02H MEM_LOAD_UOPS_RETIRED.L
2_HIT

Retired load uops with L2 cache hits as data
sources.

Supports PEBS

D1H 04H MEM_LOAD_UOPS_RETIRED.LL
C_HIT

Retired load uops which data sources were data hits
in LLC without snoops required.

Supports PEBS

D1H 20H MEM_LOAD_UOPS_RETIRED.LL
C_MISS

Retired load uops which data sources were data
missed LLC (excluding unknown data source).

Supports PEBS

Table 19-9 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 168

D1H 40H MEM_LOAD_UOPS_RETIRED.HI
T_LFB

Retired load uops which data sources were load
uops missed L1 but hit FB due to preceding miss to
the same cache line with data not ready.

Supports PEBS

D2H 01H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_MISS

Retired load uops whose data source was an on-
package core cache LLC hit and cross-core snoop
missed.

Supports PEBS

D2H 02H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HIT

Retired load uops whose data source was an on-
package LLC hit and cross-core snoop hits.

Supports PEBS

D2H 04H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HITM

Retired load uops whose data source was an on-
package core cache with HitM responses.

Supports PEBS

D2H 08H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_NONE

Retired load uops whose data source was LLC hit
with no snoop required.

Supports PEBS

E6H 01H BACLEARS.ANY Counts the number of times the front end is re-
steered, mainly when the BPU cannot provide a
correct prediction and this is corrected by other
branch handling mechanisms at the front end.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF L2 or LLC HW prefetches that access L2 cache. Including rejects

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover
rejects.

F2H 01H L2_LINES_OUT.DEMAND_CLEA
N

Clean L2 cache lines evicted by demand.

F2H 02H L2_LINES_OUT.DEMAND_DIRT
Y

Dirty L2 cache lines evicted by demand.

F2H 04H L2_LINES_OUT.PF_CLEAN Clean L2 cache lines evicted by L2 prefetch.

F2H 08H L2_LINES_OUT.PF_DIRTY Dirty L2 cache lines evicted by L2 prefetch.

F2H 0AH L2_LINES_OUT.DIRTY_ALL Dirty L2 cache lines filling the L2. Counting does not cover
rejects.

F4H 10H SQ_MISC.SPLIT_LOCK Split locks in SQ.

Table 19-9 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ i7-
2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 169

Non-architecture performance monitoring events in the processor core that are applicable only to Intel processors
with CPUID signature of DisplayFamily_DisplayModel 06_2AH are listed in Table 19-10.

Table 19-10 Non-Architectural Performance Events applicable only to the Processor core for 2nd Generation Intel®
Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

D2H 01H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_MISS

Retired load uops which data sources were LLC hit and
cross-core snoop missed in on-pkg core cache.

Supports PEBS. PMC0-
3 only regardless HTT

D2H 02H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HIT

Retired load uops which data sources were LLC and
cross-core snoop hits in on-pkg core cache.

Supports PEBS.

D2H 04H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HITM

Retired load uops which data sources were HitM
responses from shared LLC.

Supports PEBS.

D2H 08H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_NONE

Retired load uops which data sources were hits in LLC
without snoops required.

Supports PEBS.

D4H 02H MEM_LOAD_UOPS_MISC_RETI
RED.LLC_MISS

Retired load uops with unknown information as data
source in cache serviced the load.

Supports PEBS. PMC0-
3 only regardless HTT

B7H/BBH 01H OFF_CORE_RESPONSE_N Sub-events of OFF_CORE_RESPONSE_N (suffix N = 0,
1) programmed using MSR 01A6H/01A7H with values
shown in the comment column.

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT_N 10003C0244H

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0244H

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.SNOOP_MISS_N 2003C0244H

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.MISS_DRAM_N 300400244H

OFFCORE_RESPONSE.ALL_DATA_RD.LLC_HIT.ANY_RESPONSE_N 3F803C0091H

OFFCORE_RESPONSE.ALL_DATA_RD.LLC_MISS.DRAM_N 300400091H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.ANY_RESPONSE_N 3F803C0240H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0240H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.HITM_OTHER_CORE_N 10003C0240H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0240H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.SNOOP_MISS_N 2003C0240H

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_MISS.DRAM_N 300400240H

OFFCORE_RESPONSE.ALL_PF_DATA_RD.LLC_MISS.DRAM_N 300400090H

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.ANY_RESPONSE_N 3F803C0120H

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0120H

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.HITM_OTHER_CORE_N 10003C0120H

OFFCORE_RESPONSE.ALL_PF_RfO.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0120H

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.SNOOP_MISS_N 2003C0120H

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_MISS.DRAM_N 300400120H

OFFCORE_RESPONSE.ALL_READS.LLC_MISS.DRAM_N 3004003F7H

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.ANY_RESPONSE_N 3F803C0122H

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0122H

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.HITM_OTHER_CORE_N 10003C0122H

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 170

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0122H

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.SNOOP_MISS_N 2003C0122H

OFFCORE_RESPONSE.ALL_RFO.LLC_MISS.DRAM_N 300400122H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.HITM_OTHER_CORE_N 10003C0004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.SNOOP_MISS_N 2003C0004H

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.DRAM_N 300400004H

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.DRAM_N 300400001H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.ANY_RESPONSE_N 3F803C0002H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0002H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HITM_OTHER_CORE_N 10003C0002H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0002H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.SNOOP_MISS_N 2003C0002H

OFFCORE_RESPONSE.DEMAND_RFO.LLC_MISS.DRAM_N 300400002H

OFFCORE_RESPONSE.OTHER.ANY_RESPONSE_N 18000H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0040H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.HITM_OTHER_CORE_N 10003C0040H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0040H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.SNOOP_MISS_N 2003C0040H

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_MISS.DRAM_N 300400040H

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.DRAM_N 300400010H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.ANY_RESPONSE_N 3F803C0020H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0020H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.HITM_OTHER_CORE_N 10003C0020H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0020H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.SNOOP_MISS_N 2003C0020H

OFFCORE_RESPONSE.PF_L2_RFO.LLC_MISS.DRAM_N 300400020H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0200H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.HITM_OTHER_CORE_N 10003C0200H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0200H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.SNOOP_MISS_N 2003C0200H

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_MISS.DRAM_N 300400200H

OFFCORE_RESPONSE.PF_LLC_DATA_RD.LLC_MISS.DRAM_N 300400080H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.ANY_RESPONSE_N 3F803C0100H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 4003C0100H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.HITM_OTHER_CORE_N 10003C0100H

Table 19-10 Non-Architectural Performance Events applicable only to the Processor core for 2nd Generation Intel®
Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 171

...

19.6 PERFORMANCE MONITORING EVENTS FOR INTEL® CORE™ I7
PROCESSOR FAMILY AND INTEL® XEON® PROCESSOR FAMILY

Processors based on the Intel microarchitecture code name Nehalem support the architectural and non-architec-
tural performance-monitoring events listed in Table 19-1 and Table 19-13. The events in Table 19-13 generally
applies to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following values:
06_1AH, 06_1EH, 06_1FH, and 06_2EH. However, Intel Xeon processors with CPUID signature of
DisplayFamily_DisplayModel 06_2EH have a small number of events that are not supported in processors with
CPUID signature 06_1AH, 06_1EH, and 06_1FH. These events are noted in the comment column.

In addition, these processors (CPUID signature of DisplayFamily_DisplayModel 06_1AH, 06_1EH, 06_1FH) also
support the following non-architectural, product-specific uncore performance-monitoring events listed in Table
19-14.

Fixed counters in the core PMU support the architecture events defined in Table 19-18.

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.NO_SNOOP_NEEDED_N 1003C0100H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.SNOOP_MISS_N 2003C0100H

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_MISS.DRAM_N 300400100H

Table 19-10 Non-Architectural Performance Events applicable only to the Processor core for 2nd Generation Intel®
Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Table 19-13 Non-Architectural Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

04H 07H SB_DRAIN.ANY Counts the number of store buffer drains.

06H 04H STORE_BLOCKS.AT_RET Counts number of loads delayed with at-Retirement
block code. The following loads need to be executed
at retirement and wait for all senior stores on the
same thread to be drained: load splitting across 4K
boundary (page split), load accessing uncacheable
(UC or WC) memory, load lock, and load with page
table in UC or WC memory region.

06H 08H STORE_BLOCKS.L1D_BLOCK Cacheable loads delayed with L1D block code.

07H 01H PARTIAL_ADDRESS_ALIAS Counts false dependency due to partial address
aliasing.

08H 01H DTLB_LOAD_MISSES.ANY Counts all load misses that cause a page walk.

08H 02H DTLB_LOAD_MISSES.WALK_CO
MPLETED

Counts number of completed page walks due to load
miss in the STLB.

08H 10H DTLB_LOAD_MISSES.STLB_HIT Number of cache load STLB hits.

08H 20H DTLB_LOAD_MISSES.PDE_MIS
S

Number of DTLB cache load misses where the low
part of the linear to physical address translation
was missed.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 172

08H 80H DTLB_LOAD_MISSES.LARGE_W
ALK_COMPLETED

Counts number of completed large page walks due
to load miss in the STLB.

0BH 01H MEM_INST_RETIRED.LOADS Counts the number of instructions with an
architecturally-visible load retired on the
architected path.

0BH 02H MEM_INST_RETIRED.STORES Counts the number of instructions with an
architecturally-visible store retired on the
architected path.

0BH 10H MEM_INST_RETIRED.LATENCY
_ABOVE_THRESHOLD

Counts the number of instructions exceeding the
latency specified with ld_lat facility.

In conjunction with ld_lat
facility

0CH 01H MEM_STORE_RETIRED.DTLB_
MISS

The event counts the number of retired stores that
missed the DTLB. The DTLB miss is not counted if
the store operation causes a fault. Does not counter
prefetches. Counts both primary and secondary
misses to the TLB.

0EH 01H UOPS_ISSUED.ANY Counts the number of Uops issued by the Register
Allocation Table to the Reservation Station, i.e. the
UOPs issued from the front end to the back end.

0EH 01H UOPS_ISSUED.STALLED_CYCLE
S

Counts the number of cycles no Uops issued by the
Register Allocation Table to the Reservation
Station, i.e. the UOPs issued from the front end to
the back end.

set “invert=1, cmask = 1“

0EH 02H UOPS_ISSUED.FUSED Counts the number of fused Uops that were issued
from the Register Allocation Table to the
Reservation Station.

0FH 01H MEM_UNCORE_RETIRED.L3_D
ATA_MISS_UNKNOWN

Counts number of memory load instructions retired
where the memory reference missed L3 and data
source is unknown.

Available only for CPUID
signature 06_2EH

0FH 02H MEM_UNCORE_RETIRED.OTHE
R_CORE_L2_HITM

Counts number of memory load instructions retired
where the memory reference hit modified data in a
sibling core residing on the same socket.

0FH 08H MEM_UNCORE_RETIRED.REMO
TE_CACHE_LOCAL_HOME_HIT

Counts number of memory load instructions retired
where the memory reference missed the L1, L2 and
L3 caches and HIT in a remote socket's cache. Only
counts locally homed lines.

0FH 10H MEM_UNCORE_RETIRED.REMO
TE_DRAM

Counts number of memory load instructions retired
where the memory reference missed the L1, L2 and
L3 caches and was remotely homed. This includes
both DRAM access and HITM in a remote socket's
cache for remotely homed lines.

0FH 20H MEM_UNCORE_RETIRED.LOCA
L_DRAM

Counts number of memory load instructions retired
where the memory reference missed the L1, L2 and
L3 caches and required a local socket memory
reference. This includes locally homed cachelines
that were in a modified state in another socket.

Table 19-13 Non-Architectural Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 173

0FH 80H MEM_UNCORE_RETIRED.UNCA
CHEABLE

Counts number of memory load instructions retired
where the memory reference missed the L1, L2 and
L3 caches and to perform I/O.

Available only for CPUID
signature 06_2EH

10H 01H FP_COMP_OPS_EXE.X87 Counts the number of FP Computational Uops
Executed. The number of FADD, FSUB, FCOM,
FMULs, integer MULsand IMULs, FDIVs, FPREMs,
FSQRTS, integer DIVs, and IDIVs. This event does
not distinguish an FADD used in the middle of a
transcendental flow from a separate FADD
instruction.

10H 02H FP_COMP_OPS_EXE.MMX Counts number of MMX Uops executed.

10H 04H FP_COMP_OPS_EXE.SSE_FP Counts number of SSE and SSE2 FP uops executed.

10H 08H FP_COMP_OPS_EXE.SSE2_INT
EGER

Counts number of SSE2 integer uops executed.

10H 10H FP_COMP_OPS_EXE.SSE_FP_P
ACKED

Counts number of SSE FP packed uops executed.

10H 20H FP_COMP_OPS_EXE.SSE_FP_S
CALAR

Counts number of SSE FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_SING
LE_PRECISION

Counts number of SSE* FP single precision uops
executed.

10H 80H FP_COMP_OPS_EXE.SSE_DOU
BLE_PRECISION

Counts number of SSE* FP double precision uops
executed.

12H 01H SIMD_INT_128.PACKED_MPY Counts number of 128 bit SIMD integer multiply
operations.

12H 02H SIMD_INT_128.PACKED_SHIFT Counts number of 128 bit SIMD integer shift
operations.

12H 04H SIMD_INT_128.PACK Counts number of 128 bit SIMD integer pack
operations.

12H 08H SIMD_INT_128.UNPACK Counts number of 128 bit SIMD integer unpack
operations.

12H 10H SIMD_INT_128.PACKED_LOGIC
AL

Counts number of 128 bit SIMD integer logical
operations.

12H 20H SIMD_INT_128.PACKED_ARITH Counts number of 128 bit SIMD integer arithmetic
operations.

12H 40H SIMD_INT_128.SHUFFLE_MOV
E

Counts number of 128 bit SIMD integer shuffle and
move operations.

13H 01H LOAD_DISPATCH.RS Counts number of loads dispatched from the
Reservation Station that bypass the Memory Order
Buffer.

Table 19-13 Non-Architectural Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 174

13H 02H LOAD_DISPATCH.RS_DELAYED Counts the number of delayed RS dispatches at the
stage latch. If an RS dispatch can not bypass to LB,
it has another chance to dispatch from the one-
cycle delayed staging latch before it is written into
the LB.

13H 04H LOAD_DISPATCH.MOB Counts the number of loads dispatched from the
Reservation Station to the Memory Order Buffer.

13H 07H LOAD_DISPATCH.ANY Counts all loads dispatched from the Reservation
Station.

14H 01H ARITH.CYCLES_DIV_BUSY Counts the number of cycles the divider is busy
executing divide or square root operations. The
divide can be integer, X87 or Streaming SIMD
Extensions (SSE). The square root operation can be
either X87 or SSE.

Set 'edge =1, invert=1, cmask=1' to count the
number of divides.

Count may be incorrect
When SMT is on.

14H 02H ARITH.MUL Counts the number of multiply operations executed.
This includes integer as well as floating point
multiply operations but excludes DPPS mul and
MPSAD.

Count may be incorrect
When SMT is on

17H 01H INST_QUEUE_WRITES Counts the number of instructions written into the
instruction queue every cycle.

18H 01H INST_DECODED.DEC0 Counts number of instructions that require decoder
0 to be decoded. Usually, this means that the
instruction maps to more than 1 uop.

19H 01H TWO_UOP_INSTS_DECODED An instruction that generates two uops was
decoded.

1EH 01H INST_QUEUE_WRITE_CYCLES This event counts the number of cycles during
which instructions are written to the instruction
queue. Dividing this counter by the number of
instructions written to the instruction queue
(INST_QUEUE_WRITES) yields the average number
of instructions decoded each cycle. If this number is
less than four and the pipe stalls, this indicates that
the decoder is failing to decode enough instructions
per cycle to sustain the 4-wide pipeline.

If SSE* instructions that
are 6 bytes or longer
arrive one after another,
then front end
throughput may limit
execution speed.

20H 01H LSD_OVERFLOW Counts number of loops that can’t stream from the
instruction queue.

24H 01H L2_RQSTS.LD_HIT Counts number of loads that hit the L2 cache. L2
loads include both L1D demand misses as well as
L1D prefetches. L2 loads can be rejected for
various reasons. Only non rejected loads are
counted.

Table 19-13 Non-Architectural Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 175

24H 02H L2_RQSTS.LD_MISS Counts the number of loads that miss the L2 cache.
L2 loads include both L1D demand misses as well as
L1D prefetches.

24H 03H L2_RQSTS.LOADS Counts all L2 load requests. L2 loads include both
L1D demand misses as well as L1D prefetches.

24H 04H L2_RQSTS.RFO_HIT Counts the number of store RFO requests that hit
the L2 cache. L2 RFO requests include both L1D
demand RFO misses as well as L1D RFO prefetches.
Count includes WC memory requests, where the
data is not fetched but the permission to write the
line is required.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache. L2 RFO requests include both L1D
demand RFO misses as well as L1D RFO prefetches.

24H 0CH L2_RQSTS.RFOS Counts all L2 store RFO requests. L2 RFO requests
include both L1D demand RFO misses as well as
L1D RFO prefetches.

24H 10H L2_RQSTS.IFETCH_HIT Counts number of instruction fetches that hit the
L2 cache. L2 instruction fetches include both L1I
demand misses as well as L1I instruction
prefetches.

24H 20H L2_RQSTS.IFETCH_MISS Counts number of instruction fetches that miss the
L2 cache. L2 instruction fetches include both L1I
demand misses as well as L1I instruction
prefetches.

24H 30H L2_RQSTS.IFETCHES Counts all instruction fetches. L2 instruction fetches
include both L1I demand misses as well as L1I
instruction prefetches.

24H 40H L2_RQSTS.PREFETCH_HIT Counts L2 prefetch hits for both code and data.

24H 80H L2_RQSTS.PREFETCH_MISS Counts L2 prefetch misses for both code and data.

24H C0H L2_RQSTS.PREFETCHES Counts all L2 prefetches for both code and data.

24H AAH L2_RQSTS.MISS Counts all L2 misses for both code and data.

24H FFH L2_RQSTS.REFERENCES Counts all L2 requests for both code and data.

26H 01H L2_DATA_RQSTS.DEMAND.I_S
TATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the I (invalid) state, i.e. a
cache miss. L2 demand loads are both L1D demand
misses and L1D prefetches.

26H 02H L2_DATA_RQSTS.DEMAND.S_S
TATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the S (shared) state. L2
demand loads are both L1D demand misses and L1D
prefetches.

Table 19-13 Non-Architectural Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 176

26H 04H L2_DATA_RQSTS.DEMAND.E_S
TATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the E (exclusive) state.
L2 demand loads are both L1D demand misses and
L1D prefetches.

26H 08H L2_DATA_RQSTS.DEMAND.M_
STATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the M (modified) state.
L2 demand loads are both L1D demand misses and
L1D prefetches.

26H 0FH L2_DATA_RQSTS.DEMAND.ME
SI

Counts all L2 data demand requests. L2 demand
loads are both L1D demand misses and L1D
prefetches.

26H 10H L2_DATA_RQSTS.PREFETCH.I_
STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the I (invalid) state, i.e. a
cache miss.

26H 20H L2_DATA_RQSTS.PREFETCH.S
_STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the S (shared) state. A
prefetch RFO will miss on an S state line, while a
prefetch read will hit on an S state line.

26H 40H L2_DATA_RQSTS.PREFETCH.E
_STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the E (exclusive) state.

26H 80H L2_DATA_RQSTS.PREFETCH.M
_STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the M (modified) state.

26H F0H L2_DATA_RQSTS.PREFETCH.M
ESI

Counts all L2 prefetch requests.

26H FFH L2_DATA_RQSTS.ANY Counts all L2 data requests.

27H 01H L2_WRITE.RFO.I_STATE Counts number of L2 demand store RFO requests
where the cache line to be loaded is in the I (invalid)
state, i.e, a cache miss. The L1D prefetcher does not
issue a RFO prefetch.

This is a demand RFO
request

27H 02H L2_WRITE.RFO.S_STATE Counts number of L2 store RFO requests where the
cache line to be loaded is in the S (shared) state.
The L1D prefetcher does not issue a RFO prefetch,.

This is a demand RFO
request

27H 08H L2_WRITE.RFO.M_STATE Counts number of L2 store RFO requests where the
cache line to be loaded is in the M (modified) state.
The L1D prefetcher does not issue a RFO prefetch.

This is a demand RFO
request

27H 0EH L2_WRITE.RFO.HIT Counts number of L2 store RFO requests where the
cache line to be loaded is in either the S, E or M
states. The L1D prefetcher does not issue a RFO
prefetch.

This is a demand RFO
request

27H 0FH L2_WRITE.RFO.MESI Counts all L2 store RFO requests.The L1D
prefetcher does not issue a RFO prefetch.

This is a demand RFO
request

27H 10H L2_WRITE.LOCK.I_STATE Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in the I (invalid)
state, i.e. a cache miss.

Table 19-13 Non-Architectural Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 177

27H 20H L2_WRITE.LOCK.S_STATE Counts number of L2 lock RFO requests where the
cache line to be loaded is in the S (shared) state.

27H 40H L2_WRITE.LOCK.E_STATE Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in the E
(exclusive) state.

27H 80H L2_WRITE.LOCK.M_STATE Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in the M
(modified) state.

27H E0H L2_WRITE.LOCK.HIT Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in either the S,
E, or M state.

27H F0H L2_WRITE.LOCK.MESI Counts all L2 demand lock RFO requests.

28H 01H L1D_WB_L2.I_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the I (invalid) state,
i.e. a cache miss.

28H 02H L1D_WB_L2.S_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the S state.

28H 04H L1D_WB_L2.E_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the E (exclusive)
state.

28H 08H L1D_WB_L2.M_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the M (modified)
state.

28H 0FH L1D_WB_L2.MESI Counts all L1 writebacks to the L2 .

2EH 4FH L3_LAT_CACHE.REFERENCE This event counts requests originating from the
core that reference a cache line in the last level
cache. The event count includes speculative traffic
but excludes cache line fills due to a L2 hardware-
prefetch. Because cache hierarchy, cache sizes and
other implementation-specific characteristics; value
comparison to estimate performance differences is
not recommended.

see Table 19-1

2EH 41H L3_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache. The event count
may include speculative traffic but excludes cache
line fills due to L2 hardware-prefetches. Because
cache hierarchy, cache sizes and other
implementation-specific characteristics; value
comparison to estimate performance differences is
not recommended.

see Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD
_P

Counts the number of thread cycles while the
thread is not in a halt state. The thread enters the
halt state when it is running the HLT instruction.
The core frequency may change from time to time
due to power or thermal throttling.

see Table 19-1

Table 19-13 Non-Architectural Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 178

3CH 01H CPU_CLK_UNHALTED.REF_P Increments at the frequency of TSC when not
halted.

see Table 19-1

40H 01H L1D_CACHE_LD.I_STATE Counts L1 data cache read requests where the
cache line to be loaded is in the I (invalid) state, i.e.
the read request missed the cache.

Counter 0, 1 only

40H 02H L1D_CACHE_LD.S_STATE Counts L1 data cache read requests where the
cache line to be loaded is in the S (shared) state.

Counter 0, 1 only

40H 04H L1D_CACHE_LD.E_STATE Counts L1 data cache read requests where the
cache line to be loaded is in the E (exclusive) state.

Counter 0, 1 only

40H 08H L1D_CACHE_LD.M_STATE Counts L1 data cache read requests where the
cache line to be loaded is in the M (modified) state.

Counter 0, 1 only

40H 0FH L1D_CACHE_LD.MESI Counts L1 data cache read requests. Counter 0, 1 only

41H 02H L1D_CACHE_ST.S_STATE Counts L1 data cache store RFO requests where the
cache line to be loaded is in the S (shared) state.

Counter 0, 1 only

41H 04H L1D_CACHE_ST.E_STATE Counts L1 data cache store RFO requests where the
cache line to be loaded is in the E (exclusive) state.

Counter 0, 1 only

41H 08H L1D_CACHE_ST.M_STATE Counts L1 data cache store RFO requests where
cache line to be loaded is in the M (modified) state.

Counter 0, 1 only

42H 01H L1D_CACHE_LOCK.HIT Counts retired load locks that hit in the L1 data
cache or hit in an already allocated fill buffer. The
lock portion of the load lock transaction must hit in
the L1D.

The initial load will pull
the lock into the L1 data
cache. Counter 0, 1 only

42H 02H L1D_CACHE_LOCK.S_STATE Counts L1 data cache retired load locks that hit the
target cache line in the shared state.

Counter 0, 1 only

42H 04H L1D_CACHE_LOCK.E_STATE Counts L1 data cache retired load locks that hit the
target cache line in the exclusive state.

Counter 0, 1 only

42H 08H L1D_CACHE_LOCK.M_STATE Counts L1 data cache retired load locks that hit the
target cache line in the modified state.

Counter 0, 1 only

43H 01H L1D_ALL_REF.ANY Counts all references (uncached, speculated and
retired) to the L1 data cache, including all loads and
stores with any memory types. The event counts
memory accesses only when they are actually
performed. For example, a load blocked by unknown
store address and later performed is only counted
once.

The event does not
include non-memory
accesses, such as I/O
accesses. Counter 0, 1
only

43H 02H L1D_ALL_REF.CACHEABLE Counts all data reads and writes (speculated and
retired) from cacheable memory, including locked
operations.

Counter 0, 1 only

49H 01H DTLB_MISSES.ANY Counts the number of misses in the STLB which
causes a page walk.

49H 02H DTLB_MISSES.WALK_COMPLET
ED

Counts number of misses in the STLB which
resulted in a completed page walk.

Table 19-13 Non-Architectural Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 179

49H 10H DTLB_MISSES.STLB_HIT Counts the number of DTLB first level misses that
hit in the second level TLB. This event is only
relevant if the core contains multiple DTLB levels.

49H 20H DTLB_MISSES.PDE_MISS Number of DTLB misses caused by low part of
address, includes references to 2M pages because
2M pages do not use the PDE.

49H 80H DTLB_MISSES.LARGE_WALK_C
OMPLETED

Counts number of misses in the STLB which
resulted in a completed page walk for large pages.

4CH 01H LOAD_HIT_PRE Counts load operations sent to the L1 data cache
while a previous SSE prefetch instruction to the
same cache line has started prefetching but has not
yet finished.

4EH 01H L1D_PREFETCH.REQUESTS Counts number of hardware prefetch requests
dispatched out of the prefetch FIFO.

4EH 02H L1D_PREFETCH.MISS Counts number of hardware prefetch requests that
miss the L1D. There are two prefetchers in the
L1D. A streamer, which predicts lines sequentially
after this one should be fetched, and the IP
prefetcher that remembers access patterns for the
current instruction. The streamer prefetcher stops
on an L1D hit, while the IP prefetcher does not.

4EH 04H L1D_PREFETCH.TRIGGERS Counts number of prefetch requests triggered by
the Finite State Machine and pushed into the
prefetch FIFO. Some of the prefetch requests are
dropped due to overwrites or competition between
the IP index prefetcher and streamer prefetcher.
The prefetch FIFO contains 4 entries.

51H 01H L1D.REPL Counts the number of lines brought into the L1 data
cache.

Counter 0, 1 only

51H 02H L1D.M_REPL Counts the number of modified lines brought into
the L1 data cache.

Counter 0, 1 only

51H 04H L1D.M_EVICT Counts the number of modified lines evicted from
the L1 data cache due to replacement.

Counter 0, 1 only

51H 08H L1D.M_SNOOP_EVICT Counts the number of modified lines evicted from
the L1 data cache due to snoop HITM intervention.

Counter 0, 1 only

52H 01H L1D_CACHE_PREFETCH_LOCK
_FB_HIT

Counts the number of cacheable load lock
speculated instructions accepted into the fill buffer.

53H 01H L1D_CACHE_LOCK_FB_HIT Counts the number of cacheable load lock
speculated or retired instructions accepted into the
fill buffer.

Table 19-13 Non-Architectural Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 180

63H 01H CACHE_LOCK_CYCLES.L1D_L2 Cycle count during which the L1D and L2 are locked.
A lock is asserted when there is a locked memory
access, due to uncacheable memory, a locked
operation that spans two cache lines, or a page walk
from an uncacheable page table.

Counter 0, 1 only. L1D
and L2 locks have a very
high performance
penalty and it is highly
recommended to avoid
such accesses.

63H 02H CACHE_LOCK_CYCLES.L1D Counts the number of cycles that cacheline in the
L1 data cache unit is locked.

Counter 0, 1 only.

6CH 01H IO_TRANSACTIONS Counts the number of completed I/O transactions.

80H 01H L1I.HITS Counts all instruction fetches that hit the L1
instruction cache.

80H 02H L1I.MISSES Counts all instruction fetches that miss the L1I
cache. This includes instruction cache misses,
streaming buffer misses, victim cache misses and
uncacheable fetches. An instruction fetch miss is
counted only once and not once for every cycle it is
outstanding.

80H 03H L1I.READS Counts all instruction fetches, including uncacheable
fetches that bypass the L1I.

80H 04H L1I.CYCLES_STALLED Cycle counts for which an instruction fetch stalls
due to a L1I cache miss, ITLB miss or ITLB fault.

82H 01H LARGE_ITLB.HIT Counts number of large ITLB hits.

85H 01H ITLB_MISSES.ANY Counts the number of misses in all levels of the ITLB
which causes a page walk.

85H 02H ITLB_MISSES.WALK_COMPLET
ED

Counts number of misses in all levels of the ITLB
which resulted in a completed page walk.

87H 01H ILD_STALL.LCP Cycles Instruction Length Decoder stalls due to
length changing prefixes: 66, 67 or REX.W (for
EM64T) instructions which change the length of the
decoded instruction.

87H 02H ILD_STALL.MRU Instruction Length Decoder stall cycles due to Brand
Prediction Unit (PBU) Most Recently Used (MRU)
bypass.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to a full instruction queue.

87H 08H ILD_STALL.REGEN Counts the number of regen stalls.

87H 0FH ILD_STALL.ANY Counts any cycles the Instruction Length Decoder is
stalled.

88H 01H BR_INST_EXEC.COND Counts the number of conditional near branch
instructions executed, but not necessarily retired.

88H 02H BR_INST_EXEC.DIRECT Counts all unconditional near branch instructions
excluding calls and indirect branches.

88H 04H BR_INST_EXEC.INDIRECT_NON
_CALL

Counts the number of executed indirect near
branch instructions that are not calls.

Table 19-13 Non-Architectural Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 181

88H 07H BR_INST_EXEC.NON_CALLS Counts all non call near branch instructions
executed, but not necessarily retired.

88H 08H BR_INST_EXEC.RETURN_NEA
R

Counts indirect near branches that have a return
mnemonic.

88H 10H BR_INST_EXEC.DIRECT_NEAR
_CALL

Counts unconditional near call branch instructions,
excluding non call branch, executed.

88H 20H BR_INST_EXEC.INDIRECT_NEA
R_CALL

Counts indirect near calls, including both register
and memory indirect, executed.

88H 30H BR_INST_EXEC.NEAR_CALLS Counts all near call branches executed, but not
necessarily retired.

88H 40H BR_INST_EXEC.TAKEN Counts taken near branches executed, but not
necessarily retired.

88H 7FH BR_INST_EXEC.ANY Counts all near executed branches (not necessarily
retired). This includes only instructions and not
micro-op branches. Frequent branching is not
necessarily a major performance issue. However
frequent branch mispredictions may be a problem.

89H 01H BR_MISP_EXEC.COND Counts the number of mispredicted conditional near
branch instructions executed, but not necessarily
retired.

89H 02H BR_MISP_EXEC.DIRECT Counts mispredicted macro unconditional near
branch instructions, excluding calls and indirect
branches (should always be 0).

89H 04H BR_MISP_EXEC.INDIRECT_NO
N_CALL

Counts the number of executed mispredicted
indirect near branch instructions that are not calls.

89H 07H BR_MISP_EXEC.NON_CALLS Counts mispredicted non call near branches
executed, but not necessarily retired.

89H 08H BR_MISP_EXEC.RETURN_NEA
R

Counts mispredicted indirect branches that have a
rear return mnemonic.

89H 10H BR_MISP_EXEC.DIRECT_NEAR
_CALL

Counts mispredicted non-indirect near calls
executed, (should always be 0).

89H 20H BR_MISP_EXEC.INDIRECT_NEA
R_CALL

Counts mispredicted indirect near calls exeucted,
including both register and memory indirect.

89H 30H BR_MISP_EXEC.NEAR_CALLS Counts all mispredicted near call branches executed,
but not necessarily retired.

89H 40H BR_MISP_EXEC.TAKEN Counts executed mispredicted near branches that
are taken, but not necessarily retired.

89H 7FH BR_MISP_EXEC.ANY Counts the number of mispredicted near branch
instructions that were executed, but not
necessarily retired.

Table 19-13 Non-Architectural Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 182

A2H 01H RESOURCE_STALLS.ANY Counts the number of Allocator resource related
stalls. Includes register renaming buffer entries,
memory buffer entries. In addition to resource
related stalls, this event counts some other events.
Includes stalls arising during branch misprediction
recovery, such as if retirement of the mispredicted
branch is delayed and stalls arising while store
buffer is draining from synchronizing operations.

Does not include stalls
due to SuperQ (off core)
queue full, too many
cache misses, etc.

A2H 02H RESOURCE_STALLS.LOAD Counts the cycles of stall due to lack of load buffer
for load operation.

A2H 04H RESOURCE_STALLS.RS_FULL This event counts the number of cycles when the
number of instructions in the pipeline waiting for
execution reaches the limit the processor can
handle. A high count of this event indicates that
there are long latency operations in the pipe
(possibly load and store operations that miss the L2
cache, or instructions dependent upon instructions
further down the pipeline that have yet to retire.

When RS is full, new
instructions can not
enter the reservation
station and start
execution.

A2H 08H RESOURCE_STALLS.STORE This event counts the number of cycles that a
resource related stall will occur due to the number
of store instructions reaching the limit of the
pipeline, (i.e. all store buffers are used). The stall
ends when a store instruction commits its data to
the cache or memory.

A2H 10H RESOURCE_STALLS.ROB_FULL Counts the cycles of stall due to re-order buffer full.

A2H 20H RESOURCE_STALLS.FPCW Counts the number of cycles while execution was
stalled due to writing the floating-point unit (FPU)
control word.

A2H 40H RESOURCE_STALLS.MXCSR Stalls due to the MXCSR register rename occurring
to close to a previous MXCSR rename. The MXCSR
provides control and status for the MMX registers.

A2H 80H RESOURCE_STALLS.OTHER Counts the number of cycles while execution was
stalled due to other resource issues.

A6H 01H MACRO_INSTS.FUSIONS_DECO
DED

Counts the number of instructions decoded that are
macro-fused but not necessarily executed or
retired.

Table 19-13 Non-Architectural Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 183

A7H 01H BACLEAR_FORCE_IQ Counts number of times a BACLEAR was forced by
the Instruction Queue. The IQ is also responsible for
providing conditional branch prediciton direction
based on a static scheme and dynamic data
provided by the L2 Branch Prediction Unit. If the
conditional branch target is not found in the Target
Array and the IQ predicts that the branch is taken,
then the IQ will force the Branch Address Calculator
to issue a BACLEAR. Each BACLEAR asserted by the
BAC generates approximately an 8 cycle bubble in
the instruction fetch pipeline.

A8H 01H LSD.UOPS Counts the number of micro-ops delivered by loop
stream detector.

Use cmask=1 and invert
to count cycles

AEH 01H ITLB_FLUSH Counts the number of ITLB flushes.

B0H 40H OFFCORE_REQUESTS.L1D_WR
ITEBACK

Counts number of L1D writebacks to the uncore.

B1H 01H UOPS_EXECUTED.PORT0 Counts number of Uops executed that were issued
on port 0. Port 0 handles integer arithmetic, SIMD
and FP add Uops.

B1H 02H UOPS_EXECUTED.PORT1 Counts number of Uops executed that were issued
on port 1. Port 1 handles integer arithmetic, SIMD,
integer shift, FP multiply and FP divide Uops.

B1H 04H UOPS_EXECUTED.PORT2_COR
E

Counts number of Uops executed that were issued
on port 2. Port 2 handles the load Uops. This is a
core count only and can not be collected per thread.

B1H 08H UOPS_EXECUTED.PORT3_COR
E

Counts number of Uops executed that were issued
on port 3. Port 3 handles store Uops. This is a core
count only and can not be collected per thread.

B1H 10H UOPS_EXECUTED.PORT4_COR
E

Counts number of Uops executed that where issued
on port 4. Port 4 handles the value to be stored for
the store Uops issued on port 3. This is a core count
only and can not be collected per thread.

B1H 1FH UOPS_EXECUTED.CORE_ACTIV
E_CYCLES_NO_PORT5

Counts cycles when the Uops executed were issued
from any ports except port 5. Use Cmask=1 for
active cycles; Cmask=0 for weighted cycles; Use
CMask=1, Invert=1 to count P0-4 stalled cycles Use
Cmask=1, Edge=1, Invert=1 to count P0-4 stalls.

B1H 20H UOPS_EXECUTED.PORT5 Counts number of Uops executed that where issued
on port 5.

B1H 3FH UOPS_EXECUTED.CORE_ACTIV
E_CYCLES

Counts cycles when the Uops are executing . Use
Cmask=1 for active cycles; Cmask=0 for weighted
cycles; Use CMask=1, Invert=1 to count P0-4 stalled
cycles Use Cmask=1, Edge=1, Invert=1 to count P0-
4 stalls.

Table 19-13 Non-Architectural Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 184

B1H 40H UOPS_EXECUTED.PORT015 Counts number of Uops executed that where issued
on port 0, 1, or 5.

use cmask=1, invert=1 to
count stall cycles

B1H 80H UOPS_EXECUTED.PORT234 Counts number of Uops executed that where issued
on port 2, 3, or 4.

B2H 01H OFFCORE_REQUESTS_SQ_FUL
L

Counts number of cycles the SQ is full to handle off-
core requests.

B7H 01H OFF_CORE_RESPONSE_0 see Section 18.7.1.3, “Off-core Response
Performance Monitoring in the Processor Core”.

Requires programming
MSR 01A6H

B8H 01H SNOOP_RESPONSE.HIT Counts HIT snoop response sent by this thread in
response to a snoop request.

B8H 02H SNOOP_RESPONSE.HITE Counts HIT E snoop response sent by this thread in
response to a snoop request.

B8H 04H SNOOP_RESPONSE.HITM Counts HIT M snoop response sent by this thread in
response to a snoop request.

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.8, “Performance Monitoring for
Processors Based on Intel® Microarchitecture Code
Name Westmere”.

Requires programming
MSR 01A7H

C0H 00H INST_RETIRED.ANY_P See Table 19-1
Notes: INST_RETIRED.ANY is counted by a
designated fixed counter. INST_RETIRED.ANY_P is
counted by a programmable counter and is an
architectural performance event. Event is
supported if CPUID.A.EBX[1] = 0.

Counting: Faulting
executions of GETSEC/
VM entry/VM Exit/MWait
will not count as retired
instructions.

C0H 02H INST_RETIRED.X87 Counts the number of MMX instructions retired.

C0H 04H INST_RETIRED.MMX Counts the number of floating point computational
operations retired: floating point computational
operations executed by the assist handler and sub-
operations of complex floating point instructions
like transcendental instructions.

C2H 01H UOPS_RETIRED.ANY Counts the number of micro-ops retired, (macro-
fused=1, micro-fused=2, others=1; maximum count
of 8 per cycle). Most instructions are composed of
one or two micro-ops. Some instructions are
decoded into longer sequences such as repeat
instructions, floating point transcendental
instructions, and assists.

Use cmask=1 and invert
to count active cycles or
stalled cycles

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

C2H 04H UOPS_RETIRED.MACRO_FUSE
D

Counts number of macro-fused uops retired.

C3H 01H MACHINE_CLEARS.CYCLES Counts the cycles machine clear is asserted.

C3H 02H MACHINE_CLEARS.MEM_ORDE
R

Counts the number of machine clears due to
memory order conflicts.

Table 19-13 Non-Architectural Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 185

C3H 04H MACHINE_CLEARS.SMC Counts the number of times that a program writes
to a code section. Self-modifying code causes a
sever penalty in all Intel 64 and IA-32 processors.
The modified cache line is written back to the L2
and L3caches.

C4H 00H BR_INST_RETIRED.ALL_BRAN
CHES

 Branch instructions at retirement See Table 19-1

C4H 01H BR_INST_RETIRED.CONDITION
AL

Counts the number of conditional branch
instructions retired.

C4H 02H BR_INST_RETIRED.NEAR_CAL
L

Counts the number of direct & indirect near
unconditional calls retired.

C5H 00H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted branch instructions at retirement See Table 19-1

C5H 02H BR_MISP_RETIRED.NEAR_CAL
L

Counts mispredicted direct & indirect near
unconditional retired calls.

C7H 01H SSEX_UOPS_RETIRED.PACKED
_SINGLE

Counts SIMD packed single-precision floating point
Uops retired.

C7H 02H SSEX_UOPS_RETIRED.SCALAR
_SINGLE

Counts SIMD calar single-precision floating point
Uops retired.

C7H 04H SSEX_UOPS_RETIRED.PACKED
_DOUBLE

Counts SIMD packed double-precision floating point
Uops retired.

C7H 08H SSEX_UOPS_RETIRED.SCALAR
_DOUBLE

Counts SIMD scalar double-precision floating point
Uops retired.

C7H 10H SSEX_UOPS_RETIRED.VECTOR
_INTEGER

Counts 128-bit SIMD vector integer Uops retired.

C8H 20H ITLB_MISS_RETIRED Counts the number of retired instructions that
missed the ITLB when the instruction was fetched.

CBH 01H MEM_LOAD_RETIRED.L1D_HIT Counts number of retired loads that hit the L1 data
cache.

CBH 02H MEM_LOAD_RETIRED.L2_HIT Counts number of retired loads that hit the L2 data
cache.

CBH 04H MEM_LOAD_RETIRED.L3_UNS
HARED_HIT

Counts number of retired loads that hit their own,
unshared lines in the L3 cache.

CBH 08H MEM_LOAD_RETIRED.OTHER_
CORE_L2_HIT_HITM

Counts number of retired loads that hit in a sibling
core's L2 (on die core). Since the L3 is inclusive of
all cores on the package, this is an L3 hit. This
counts both clean or modified hits.

CBH 10H MEM_LOAD_RETIRED.L3_MISS Counts number of retired loads that miss the L3
cache. The load was satisfied by a remote socket,
local memory or an IOH.

Table 19-13 Non-Architectural Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 186

CBH 40H MEM_LOAD_RETIRED.HIT_LFB Counts number of retired loads that miss the L1D
and the address is located in an allocated line fill
buffer and will soon be committed to cache. This is
counting secondary L1D misses.

CBH 80H MEM_LOAD_RETIRED.DTLB_MI
SS

Counts the number of retired loads that missed the
DTLB. The DTLB miss is not counted if the load
operation causes a fault. This event counts loads
from cacheable memory only. The event does not
count loads by software prefetches. Counts both
primary and secondary misses to the TLB.

CCH 01H FP_MMX_TRANS.TO_FP Counts the first floating-point instruction following
any MMX instruction. You can use this event to
estimate the penalties for the transitions between
floating-point and MMX technology states.

CCH 02H FP_MMX_TRANS.TO_MMX Counts the first MMX instruction following a
floating-point instruction. You can use this event to
estimate the penalties for the transitions between
floating-point and MMX technology states.

CCH 03H FP_MMX_TRANS.ANY Counts all transitions from floating point to MMX
instructions and from MMX instructions to floating
point instructions. You can use this event to
estimate the penalties for the transitions between
floating-point and MMX technology states.

D0H 01H MACRO_INSTS.DECODED Counts the number of instructions decoded, (but
not necessarily executed or retired).

D1H 02H UOPS_DECODED.MS Counts the number of Uops decoded by the
Microcode Sequencer, MS. The MS delivers uops
when the instruction is more than 4 uops long or a
microcode assist is occurring.

D1H 04H UOPS_DECODED.ESP_FOLDING Counts number of stack pointer (ESP) instructions
decoded: push , pop , call , ret, etc. ESP instructions
do not generate a Uop to increment or decrement
ESP. Instead, they update an ESP_Offset register
that keeps track of the delta to the current value of
the ESP register.

D1H 08H UOPS_DECODED.ESP_SYNC Counts number of stack pointer (ESP) sync
operations where an ESP instruction is corrected
by adding the ESP offset register to the current
value of the ESP register.

Table 19-13 Non-Architectural Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 187

D2H 01H RAT_STALLS.FLAGS Counts the number of cycles during which
execution stalled due to several reasons, one of
which is a partial flag register stall. A partial register
stall may occur when two conditions are met: 1) an
instruction modifies some, but not all, of the flags in
the flag register and 2) the next instruction, which
depends on flags, depends on flags that were not
modified by this instruction.

D2H 02H RAT_STALLS.REGISTERS This event counts the number of cycles instruction
execution latency became longer than the defined
latency because the instruction used a register that
was partially written by previous instruction.

D2H 04H RAT_STALLS.ROB_READ_POR
T

Counts the number of cycles when ROB read port
stalls occurred, which did not allow new micro-ops
to enter the out-of-order pipeline. Note that, at this
stage in the pipeline, additional stalls may occur at
the same cycle and prevent the stalled micro-ops
from entering the pipe. In such a case, micro-ops
retry entering the execution pipe in the next cycle
and the ROB-read port stall is counted again.

D2H 08H RAT_STALLS.SCOREBOARD Counts the cycles where we stall due to
microarchitecturally required serialization.
Microcode scoreboarding stalls.

D2H 0FH RAT_STALLS.ANY Counts all Register Allocation Table stall cycles due
to: Cycles when ROB read port stalls occurred,
which did not allow new micro-ops to enter the
execution pipe. Cycles when partial register stalls
occurred Cycles when flag stalls occurred Cycles
floating-point unit (FPU) status word stalls occurred.
To count each of these conditions separately use
the events: RAT_STALLS.ROB_READ_PORT,
RAT_STALLS.PARTIAL, RAT_STALLS.FLAGS, and
RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_STALLS Counts the number of stall cycles due to the lack of
renaming resources for the ES, DS, FS, and GS
segment registers. If a segment is renamed but not
retired and a second update to the same segment
occurs, a stall occurs in the front-end of the pipeline
until the renamed segment retires.

D5H 01H ES_REG_RENAMES Counts the number of times the ES segment
register is renamed.

DBH 01H UOP_UNFUSION Counts unfusion events due to floating point
exception to a fused uop.

E0H 01H BR_INST_DECODED Counts the number of branch instructions decoded.

E5H 01H BPU_MISSED_CALL_RET Counts number of times the Branch Prediction Unit
missed predicting a call or return branch.

Table 19-13 Non-Architectural Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 188

E6H 01H BACLEAR.CLEAR Counts the number of times the front end is
resteered, mainly when the Branch Prediction Unit
cannot provide a correct prediction and this is
corrected by the Branch Address Calculator at the
front end. This can occur if the code has many
branches such that they cannot be consumed by
the BPU. Each BACLEAR asserted by the BAC
generates approximately an 8 cycle bubble in the
instruction fetch pipeline. The effect on total
execution time depends on the surrounding code.

E6H 02H BACLEAR.BAD_TARGET Counts number of Branch Address Calculator clears
(BACLEAR) asserted due to conditional branch
instructions in which there was a target hit but the
direction was wrong. Each BACLEAR asserted by
the BAC generates approximately an 8 cycle bubble
in the instruction fetch pipeline.

E8H 01H BPU_CLEARS.EARLY Counts early (normal) Branch Prediction Unit clears:
BPU predicted a taken branch after incorrectly
assuming that it was not taken.

The BPU clear leads to 2
cycle bubble in the Front
End.

E8H 02H BPU_CLEARS.LATE Counts late Branch Prediction Unit clears due to
Most Recently Used conflicts. The PBU clear leads
to a 3 cycle bubble in the Front End.

F0H 01H L2_TRANSACTIONS.LOAD Counts L2 load operations due to HW prefetch or
demand loads.

F0H 02H L2_TRANSACTIONS.RFO Counts L2 RFO operations due to HW prefetch or
demand RFOs.

F0H 04H L2_TRANSACTIONS.IFETCH Counts L2 instruction fetch operations due to HW
prefetch or demand ifetch.

F0H 08H L2_TRANSACTIONS.PREFETCH Counts L2 prefetch operations.

F0H 10H L2_TRANSACTIONS.L1D_WB Counts L1D writeback operations to the L2.

F0H 20H L2_TRANSACTIONS.FILL Counts L2 cache line fill operations due to load, RFO,
L1D writeback or prefetch.

F0H 40H L2_TRANSACTIONS.WB Counts L2 writeback operations to the L3.

F0H 80H L2_TRANSACTIONS.ANY Counts all L2 cache operations.

F1H 02H L2_LINES_IN.S_STATE Counts the number of cache lines allocated in the
L2 cache in the S (shared) state.

F1H 04H L2_LINES_IN.E_STATE Counts the number of cache lines allocated in the
L2 cache in the E (exclusive) state.

F1H 07H L2_LINES_IN.ANY Counts the number of cache lines allocated in the
L2 cache.

F2H 01H L2_LINES_OUT.DEMAND_CLEA
N

Counts L2 clean cache lines evicted by a demand
request.

F2H 02H L2_LINES_OUT.DEMAND_DIRT
Y

Counts L2 dirty (modified) cache lines evicted by a
demand request.

Table 19-13 Non-Architectural Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 189

...

F2H 04H L2_LINES_OUT.PREFETCH_CLE
AN

Counts L2 clean cache line evicted by a prefetch
request.

F2H 08H L2_LINES_OUT.PREFETCH_DIR
TY

Counts L2 modified cache line evicted by a prefetch
request.

F2H 0FH L2_LINES_OUT.ANY Counts all L2 cache lines evicted for any reason.

F4H 10H SQ_MISC.SPLIT_LOCK Counts the number of SQ lock splits across a cache
line.

F6H 01H SQ_FULL_STALL_CYCLES Counts cycles the Super Queue is full. Neither of
the threads on this core will be able to access the
uncore.

F7H 01H FP_ASSIST.ALL Counts the number of floating point operations
executed that required micro-code assist
intervention. Assists are required in the following
cases: SSE instructions, (Denormal input when the
DAZ flag is off or Underflow result when the FTZ
flag is off): x87 instructions, (NaN or denormal are
loaded to a register or used as input from memory,
Division by 0 or Underflow output).

F7H 02H FP_ASSIST.OUTPUT Counts number of floating point micro-code assist
when the output value (destination register) is
invalid.

F7H 04H FP_ASSIST.INPUT Counts number of floating point micro-code assist
when the input value (one of the source operands
to an FP instruction) is invalid.

FDH 01H SIMD_INT_64.PACKED_MPY Counts number of SID integer 64 bit packed multiply
operations.

FDH 02H SIMD_INT_64.PACKED_SHIFT Counts number of SID integer 64 bit packed shift
operations.

FDH 04H SIMD_INT_64.PACK Counts number of SID integer 64 bit pack
operations.

FDH 08H SIMD_INT_64.UNPACK Counts number of SID integer 64 bit unpack
operations.

FDH 10H SIMD_INT_64.PACKED_LOGICA
L

Counts number of SID integer 64 bit logical
operations.

FDH 20H SIMD_INT_64.PACKED_ARITH Counts number of SID integer 64 bit arithmetic
operations.

FDH 40H SIMD_INT_64.SHUFFLE_MOVE Counts number of SID integer 64 bit shift or move
operations.

Table 19-13 Non-Architectural Performance Events In the Processor Core for
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 190

19.7 PERFORMANCE MONITORING EVENTS FOR PROCESSORS BASED ON
INTEL® MICROARCHITECTURE CODE NAME WESTMERE

Intel 64 processors based on Intel® microarchitecture code name Westmere support the architectural and non-
architectural performance-monitoring events listed in Table 19-1 and Table 19-15. Table 19-15 applies to proces-
sors with CPUID signature of DisplayFamily_DisplayModel encoding with the following values: 06_25H, 06_2CH.
In addition, these processors (CPUID signature of DisplayFamily_DisplayModel 06_25H, 06_2CH) also support
the following non-architectural, product-specific uncore performance-monitoring events listed in Table 19-16.
Fixed counters support the architecture events defined in Table 19-18.

Table 19-15 Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LOAD_BLOCK.OVERLAP_STOR
E

Loads that partially overlap an earlier store.

04H 07H SB_DRAIN.ANY All Store buffer stall cycles.

05H 02H MISALIGN_MEMORY.STORE All store referenced with misaligned address.

06H 04H STORE_BLOCKS.AT_RET Counts number of loads delayed with at-Retirement
block code. The following loads need to be executed
at retirement and wait for all senior stores on the
same thread to be drained: load splitting across 4K
boundary (page split), load accessing uncacheable
(UC or WC) memory, load lock, and load with page
table in UC or WC memory region.

06H 08H STORE_BLOCKS.L1D_BLOCK Cacheable loads delayed with L1D block code.

07H 01H PARTIAL_ADDRESS_ALIAS Counts false dependency due to partial address
aliasing.

08H 01H DTLB_LOAD_MISSES.ANY Counts all load misses that cause a page walk.

08H 02H DTLB_LOAD_MISSES.WALK_C
OMPLETED

Counts number of completed page walks due to load
miss in the STLB.

08H 04H DTLB_LOAD_MISSES.WALK_CY
CLES

Cycles PMH is busy with a page walk due to a load
miss in the STLB.

08H 10H DTLB_LOAD_MISSES.STLB_HI
T

Number of cache load STLB hits.

08H 20H DTLB_LOAD_MISSES.PDE_MIS
S

Number of DTLB cache load misses where the low
part of the linear to physical address translation
was missed.

0BH 01H MEM_INST_RETIRED.LOADS Counts the number of instructions with an
architecturally-visible load retired on the
architected path.

0BH 02H MEM_INST_RETIRED.STORES Counts the number of instructions with an
architecturally-visible store retired on the
architected path.

0BH 10H MEM_INST_RETIRED.LATENCY
_ABOVE_THRESHOLD

Counts the number of instructions exceeding the
latency specified with ld_lat facility.

In conjunction with ld_lat
facility

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 191

0CH 01H MEM_STORE_RETIRED.DTLB_
MISS

The event counts the number of retired stores that
missed the DTLB. The DTLB miss is not counted if
the store operation causes a fault. Does not counter
prefetches. Counts both primary and secondary
misses to the TLB.

0EH 01H UOPS_ISSUED.ANY Counts the number of Uops issued by the Register
Allocation Table to the Reservation Station, i.e. the
UOPs issued from the front end to the back end.

0EH 01H UOPS_ISSUED.STALLED_CYCL
ES

Counts the number of cycles no Uops issued by the
Register Allocation Table to the Reservation
Station, i.e. the UOPs issued from the front end to
the back end.

set “invert=1, cmask = 1“

0EH 02H UOPS_ISSUED.FUSED Counts the number of fused Uops that were issued
from the Register Allocation Table to the
Reservation Station.

0FH 01H MEM_UNCORE_RETIRED.UNK
NOWN_SOURCE

Load instructions retired with unknown LLC miss
(Precise Event).

Applicable to one and
two sockets

0FH 02H MEM_UNCORE_RETIRED.OHTE
R_CORE_L2_HIT

Load instructions retired that HIT modified data in
sibling core (Precise Event).

Applicable to one and
two sockets

0FH 04H MEM_UNCORE_RETIRED.REMO
TE_HITM

Load instructions retired that HIT modified data in
remote socket (Precise Event).

Applicable to two
sockets only

0FH 08H MEM_UNCORE_RETIRED.LOCA
L_DRAM_AND_REMOTE_CACH
E_HIT

Load instructions retired local dram and remote
cache HIT data sources (Precise Event).

Applicable to one and
two sockets

0FH 10H MEM_UNCORE_RETIRED.REMO
TE_DRAM

Load instructions retired remote DRAM and remote
home-remote cache HITM (Precise Event).

Applicable to two
sockets only

0FH 20H MEM_UNCORE_RETIRED.OTHE
R_LLC_MISS

Load instructions retired other LLC miss (Precise
Event).

Applicable to two
sockets only

0FH 80H MEM_UNCORE_RETIRED.UNCA
CHEABLE

Load instructions retired I/O (Precise Event). Applicable to one and
two sockets

10H 01H FP_COMP_OPS_EXE.X87 Counts the number of FP Computational Uops
Executed. The number of FADD, FSUB, FCOM,
FMULs, integer MULsand IMULs, FDIVs, FPREMs,
FSQRTS, integer DIVs, and IDIVs. This event does
not distinguish an FADD used in the middle of a
transcendental flow from a separate FADD
instruction.

10H 02H FP_COMP_OPS_EXE.MMX Counts number of MMX Uops executed.

10H 04H FP_COMP_OPS_EXE.SSE_FP Counts number of SSE and SSE2 FP uops executed.

10H 08H FP_COMP_OPS_EXE.SSE2_INT
EGER

Counts number of SSE2 integer uops executed.

10H 10H FP_COMP_OPS_EXE.SSE_FP_P
ACKED

Counts number of SSE FP packed uops executed.

Table 19-15 Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 192

10H 20H FP_COMP_OPS_EXE.SSE_FP_S
CALAR

Counts number of SSE FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_SING
LE_PRECISION

Counts number of SSE* FP single precision uops
executed.

10H 80H FP_COMP_OPS_EXE.SSE_DOU
BLE_PRECISION

Counts number of SSE* FP double precision uops
executed.

12H 01H SIMD_INT_128.PACKED_MPY Counts number of 128 bit SIMD integer multiply
operations.

12H 02H SIMD_INT_128.PACKED_SHIFT Counts number of 128 bit SIMD integer shift
operations.

12H 04H SIMD_INT_128.PACK Counts number of 128 bit SIMD integer pack
operations.

12H 08H SIMD_INT_128.UNPACK Counts number of 128 bit SIMD integer unpack
operations.

12H 10H SIMD_INT_128.PACKED_LOGIC
AL

Counts number of 128 bit SIMD integer logical
operations.

12H 20H SIMD_INT_128.PACKED_ARIT
H

Counts number of 128 bit SIMD integer arithmetic
operations.

12H 40H SIMD_INT_128.SHUFFLE_MOV
E

Counts number of 128 bit SIMD integer shuffle and
move operations.

13H 01H LOAD_DISPATCH.RS Counts number of loads dispatched from the
Reservation Station that bypass the Memory Order
Buffer.

13H 02H LOAD_DISPATCH.RS_DELAYED Counts the number of delayed RS dispatches at the
stage latch. If an RS dispatch can not bypass to LB,
it has another chance to dispatch from the one-
cycle delayed staging latch before it is written into
the LB.

13H 04H LOAD_DISPATCH.MOB Counts the number of loads dispatched from the
Reservation Station to the Memory Order Buffer.

13H 07H LOAD_DISPATCH.ANY Counts all loads dispatched from the Reservation
Station.

14H 01H ARITH.CYCLES_DIV_BUSY Counts the number of cycles the divider is busy
executing divide or square root operations. The
divide can be integer, X87 or Streaming SIMD
Extensions (SSE). The square root operation can be
either X87 or SSE.

Set 'edge =1, invert=1, cmask=1' to count the
number of divides.

Count may be incorrect
When SMT is on

14H 02H ARITH.MUL Counts the number of multiply operations executed.
This includes integer as well as floating point
multiply operations but excludes DPPS mul and
MPSAD.

Count may be incorrect
When SMT is on

Table 19-15 Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 193

17H 01H INST_QUEUE_WRITES Counts the number of instructions written into the
instruction queue every cycle.

18H 01H INST_DECODED.DEC0 Counts number of instructions that require decoder
0 to be decoded. Usually, this means that the
instruction maps to more than 1 uop.

19H 01H TWO_UOP_INSTS_DECODED An instruction that generates two uops was
decoded.

1EH 01H INST_QUEUE_WRITE_CYCLES This event counts the number of cycles during
which instructions are written to the instruction
queue. Dividing this counter by the number of
instructions written to the instruction queue
(INST_QUEUE_WRITES) yields the average number
of instructions decoded each cycle. If this number is
less than four and the pipe stalls, this indicates that
the decoder is failing to decode enough instructions
per cycle to sustain the 4-wide pipeline.

If SSE* instructions that
are 6 bytes or longer
arrive one after another,
then front end
throughput may limit
execution speed.

20H 01H LSD_OVERFLOW Number of loops that can not stream from the
instruction queue.

24H 01H L2_RQSTS.LD_HIT Counts number of loads that hit the L2 cache. L2
loads include both L1D demand misses as well as
L1D prefetches. L2 loads can be rejected for
various reasons. Only non rejected loads are
counted.

24H 02H L2_RQSTS.LD_MISS Counts the number of loads that miss the L2 cache.
L2 loads include both L1D demand misses as well as
L1D prefetches.

24H 03H L2_RQSTS.LOADS Counts all L2 load requests. L2 loads include both
L1D demand misses as well as L1D prefetches.

24H 04H L2_RQSTS.RFO_HIT Counts the number of store RFO requests that hit
the L2 cache. L2 RFO requests include both L1D
demand RFO misses as well as L1D RFO prefetches.
Count includes WC memory requests, where the
data is not fetched but the permission to write the
line is required.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache. L2 RFO requests include both L1D
demand RFO misses as well as L1D RFO prefetches.

24H 0CH L2_RQSTS.RFOS Counts all L2 store RFO requests. L2 RFO requests
include both L1D demand RFO misses as well as L1D
RFO prefetches..

24H 10H L2_RQSTS.IFETCH_HIT Counts number of instruction fetches that hit the
L2 cache. L2 instruction fetches include both L1I
demand misses as well as L1I instruction
prefetches.

Table 19-15 Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 194

24H 20H L2_RQSTS.IFETCH_MISS Counts number of instruction fetches that miss the
L2 cache. L2 instruction fetches include both L1I
demand misses as well as L1I instruction
prefetches.

24H 30H L2_RQSTS.IFETCHES Counts all instruction fetches. L2 instruction fetches
include both L1I demand misses as well as L1I
instruction prefetches.

24H 40H L2_RQSTS.PREFETCH_HIT Counts L2 prefetch hits for both code and data.

24H 80H L2_RQSTS.PREFETCH_MISS Counts L2 prefetch misses for both code and data.

24H C0H L2_RQSTS.PREFETCHES Counts all L2 prefetches for both code and data.

24H AAH L2_RQSTS.MISS Counts all L2 misses for both code and data.

24H FFH L2_RQSTS.REFERENCES Counts all L2 requests for both code and data.

26H 01H L2_DATA_RQSTS.DEMAND.I_S
TATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the I (invalid) state, i.e. a
cache miss. L2 demand loads are both L1D demand
misses and L1D prefetches.

26H 02H L2_DATA_RQSTS.DEMAND.S_
STATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the S (shared) state. L2
demand loads are both L1D demand misses and L1D
prefetches.

26H 04H L2_DATA_RQSTS.DEMAND.E_
STATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the E (exclusive) state.
L2 demand loads are both L1D demand misses and
L1D prefetches.

26H 08H L2_DATA_RQSTS.DEMAND.M_
STATE

Counts number of L2 data demand loads where the
cache line to be loaded is in the M (modified) state.
L2 demand loads are both L1D demand misses and
L1D prefetches.

26H 0FH L2_DATA_RQSTS.DEMAND.ME
SI

Counts all L2 data demand requests. L2 demand
loads are both L1D demand misses and L1D
prefetches.

26H 10H L2_DATA_RQSTS.PREFETCH.I_
STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the I (invalid) state, i.e. a
cache miss.

26H 20H L2_DATA_RQSTS.PREFETCH.S
_STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the S (shared) state. A
prefetch RFO will miss on an S state line, while a
prefetch read will hit on an S state line.

26H 40H L2_DATA_RQSTS.PREFETCH.E
_STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the E (exclusive) state.

26H 80H L2_DATA_RQSTS.PREFETCH.M
_STATE

Counts number of L2 prefetch data loads where the
cache line to be loaded is in the M (modified) state.

26H F0H L2_DATA_RQSTS.PREFETCH.M
ESI

Counts all L2 prefetch requests.

Table 19-15 Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 195

26H FFH L2_DATA_RQSTS.ANY Counts all L2 data requests.

27H 01H L2_WRITE.RFO.I_STATE Counts number of L2 demand store RFO requests
where the cache line to be loaded is in the I (invalid)
state, i.e, a cache miss. The L1D prefetcher does not
issue a RFO prefetch.

This is a demand RFO
request

27H 02H L2_WRITE.RFO.S_STATE Counts number of L2 store RFO requests where the
cache line to be loaded is in the S (shared) state.
The L1D prefetcher does not issue a RFO prefetch,.

This is a demand RFO
request

27H 08H L2_WRITE.RFO.M_STATE Counts number of L2 store RFO requests where the
cache line to be loaded is in the M (modified) state.
The L1D prefetcher does not issue a RFO prefetch.

This is a demand RFO
request

27H 0EH L2_WRITE.RFO.HIT Counts number of L2 store RFO requests where the
cache line to be loaded is in either the S, E or M
states. The L1D prefetcher does not issue a RFO
prefetch.

This is a demand RFO
request

27H 0FH L2_WRITE.RFO.MESI Counts all L2 store RFO requests.The L1D
prefetcher does not issue a RFO prefetch.

This is a demand RFO
request

27H 10H L2_WRITE.LOCK.I_STATE Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in the I (invalid)
state, i.e. a cache miss.

27H 20H L2_WRITE.LOCK.S_STATE Counts number of L2 lock RFO requests where the
cache line to be loaded is in the S (shared) state.

27H 40H L2_WRITE.LOCK.E_STATE Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in the E
(exclusive) state.

27H 80H L2_WRITE.LOCK.M_STATE Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in the M
(modified) state.

27H E0H L2_WRITE.LOCK.HIT Counts number of L2 demand lock RFO requests
where the cache line to be loaded is in either the S,
E, or M state.

27H F0H L2_WRITE.LOCK.MESI Counts all L2 demand lock RFO requests.

28H 01H L1D_WB_L2.I_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the I (invalid) state,
i.e. a cache miss.

28H 02H L1D_WB_L2.S_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the S state.

28H 04H L1D_WB_L2.E_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the E (exclusive)
state.

28H 08H L1D_WB_L2.M_STATE Counts number of L1 writebacks to the L2 where
the cache line to be written is in the M (modified)
state.

Table 19-15 Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 196

28H 0FH L1D_WB_L2.MESI Counts all L1 writebacks to the L2 .

2EH 41H L3_LAT_CACHE.MISS Counts uncore Last Level Cache misses. Because
cache hierarchy, cache sizes and other
implementation-specific characteristics; value
comparison to estimate performance differences is
not recommended.

see Table 19-1

2EH 4FH L3_LAT_CACHE.REFERENCE Counts uncore Last Level Cache references.
Because cache hierarchy, cache sizes and other
implementation-specific characteristics; value
comparison to estimate performance differences is
not recommended.

see Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD
_P

Counts the number of thread cycles while the
thread is not in a halt state. The thread enters the
halt state when it is running the HLT instruction.
The core frequency may change from time to time
due to power or thermal throttling.

see Table 19-1

3CH 01H CPU_CLK_UNHALTED.REF_P Increments at the frequency of TSC when not
halted.

see Table 19-1

49H 01H DTLB_MISSES.ANY Counts the number of misses in the STLB which
causes a page walk.

49H 02H DTLB_MISSES.WALK_COMPLE
TED

Counts number of misses in the STLB which
resulted in a completed page walk.

49H 04H DTLB_MISSES.WALK_CYCLES Counts cycles of page walk due to misses in the
STLB.

49H 10H DTLB_MISSES.STLB_HIT Counts the number of DTLB first level misses that
hit in the second level TLB. This event is only
relevant if the core contains multiple DTLB levels.

49H 20H DTLB_MISSES.PDE_MISS Number of DTLB misses caused by low part of
address, includes references to 2M pages because
2M pages do not use the PDE.

49H 80H DTLB_MISSES.LARGE_WALK_C
OMPLETED

Counts number of completed large page walks due
to misses in the STLB.

4CH 01H LOAD_HIT_PRE Counts load operations sent to the L1 data cache
while a previous SSE prefetch instruction to the
same cache line has started prefetching but has not
yet finished.

Counter 0, 1 only

4EH 01H L1D_PREFETCH.REQUESTS Counts number of hardware prefetch requests
dispatched out of the prefetch FIFO.

Counter 0, 1 only

4EH 02H L1D_PREFETCH.MISS Counts number of hardware prefetch requests that
miss the L1D. There are two prefetchers in the
L1D. A streamer, which predicts lines sequentially
after this one should be fetched, and the IP
prefetcher that remembers access patterns for the
current instruction. The streamer prefetcher stops
on an L1D hit, while the IP prefetcher does not.

Counter 0, 1 only

Table 19-15 Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 197

4EH 04H L1D_PREFETCH.TRIGGERS Counts number of prefetch requests triggered by
the Finite State Machine and pushed into the
prefetch FIFO. Some of the prefetch requests are
dropped due to overwrites or competition between
the IP index prefetcher and streamer prefetcher.
The prefetch FIFO contains 4 entries.

Counter 0, 1 only

4FH 10H EPT.WALK_CYCLES Counts Extended Page walk cycles.

51H 01H L1D.REPL Counts the number of lines brought into the L1 data
cache.

Counter 0, 1 only

51H 02H L1D.M_REPL Counts the number of modified lines brought into
the L1 data cache.

Counter 0, 1 only

51H 04H L1D.M_EVICT Counts the number of modified lines evicted from
the L1 data cache due to replacement.

Counter 0, 1 only

51H 08H L1D.M_SNOOP_EVICT Counts the number of modified lines evicted from
the L1 data cache due to snoop HITM intervention.

Counter 0, 1 only

52H 01H L1D_CACHE_PREFETCH_LOCK
_FB_HIT

Counts the number of cacheable load lock
speculated instructions accepted into the fill buffer.

60H 01H OFFCORE_REQUESTS_OUTST
ANDING.DEMAND.READ_DATA

Counts weighted cycles of offcore demand data
read requests. Does not include L2 prefetch
requests.

counter 0

60H 02H OFFCORE_REQUESTS_OUTST
ANDING.DEMAND.READ_CODE

Counts weighted cycles of offcore demand code
read requests. Does not include L2 prefetch
requests.

counter 0

60H 04H OFFCORE_REQUESTS_OUTST
ANDING.DEMAND.RFO

Counts weighted cycles of offcore demand RFO
requests. Does not include L2 prefetch requests.

counter 0

60H 08H OFFCORE_REQUESTS_OUTST
ANDING.ANY.READ

Counts weighted cycles of offcore read requests of
any kind. Include L2 prefetch requests.

counter 0

63H 01H CACHE_LOCK_CYCLES.L1D_L2 Cycle count during which the L1D and L2 are locked.
A lock is asserted when there is a locked memory
access, due to uncacheable memory, a locked
operation that spans two cache lines, or a page walk
from an uncacheable page table. This event does
not cause locks, it merely detects them.

Counter 0, 1 only. L1D
and L2 locks have a very
high performance
penalty and it is highly
recommended to avoid
such accesses.

63H 02H CACHE_LOCK_CYCLES.L1D Counts the number of cycles that cacheline in the
L1 data cache unit is locked.

Counter 0, 1 only.

6CH 01H IO_TRANSACTIONS Counts the number of completed I/O transactions.

80H 01H L1I.HITS Counts all instruction fetches that hit the L1
instruction cache.

80H 02H L1I.MISSES Counts all instruction fetches that miss the L1I
cache. This includes instruction cache misses,
streaming buffer misses, victim cache misses and
uncacheable fetches. An instruction fetch miss is
counted only once and not once for every cycle it is
outstanding.

Table 19-15 Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 198

80H 03H L1I.READS Counts all instruction fetches, including uncacheable
fetches that bypass the L1I.

80H 04H L1I.CYCLES_STALLED Cycle counts for which an instruction fetch stalls
due to a L1I cache miss, ITLB miss or ITLB fault.

82H 01H LARGE_ITLB.HIT Counts number of large ITLB hits.

85H 01H ITLB_MISSES.ANY Counts the number of misses in all levels of the ITLB
which causes a page walk.

85H 02H ITLB_MISSES.WALK_COMPLET
ED

Counts number of misses in all levels of the ITLB
which resulted in a completed page walk.

85H 04H ITLB_MISSES.WALK_CYCLES Counts ITLB miss page walk cycles.

85H 10H ITLB_MISSES.STLB_HIT Counts number of ITLB first level miss but second
level hits

85H 80H ITLB_MISSES.LARGE_WALK_C
OMPLETED

Counts number of completed large page walks due
to misses in the STLB.

87H 01H ILD_STALL.LCP Cycles Instruction Length Decoder stalls due to
length changing prefixes: 66, 67 or REX.W (for
EM64T) instructions which change the length of the
decoded instruction.

87H 02H ILD_STALL.MRU Instruction Length Decoder stall cycles due to Brand
Prediction Unit (PBU) Most Recently Used (MRU)
bypass.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to a full instruction queue.

87H 08H ILD_STALL.REGEN Counts the number of regen stalls.

87H 0FH ILD_STALL.ANY Counts any cycles the Instruction Length Decoder is
stalled.

88H 01H BR_INST_EXEC.COND Counts the number of conditional near branch
instructions executed, but not necessarily retired.

88H 02H BR_INST_EXEC.DIRECT Counts all unconditional near branch instructions
excluding calls and indirect branches.

88H 04H BR_INST_EXEC.INDIRECT_NO
N_CALL

Counts the number of executed indirect near branch
instructions that are not calls.

88H 07H BR_INST_EXEC.NON_CALLS Counts all non call near branch instructions
executed, but not necessarily retired.

88H 08H BR_INST_EXEC.RETURN_NEA
R

Counts indirect near branches that have a return
mnemonic.

88H 10H BR_INST_EXEC.DIRECT_NEAR
_CALL

Counts unconditional near call branch instructions,
excluding non call branch, executed.

88H 20H BR_INST_EXEC.INDIRECT_NEA
R_CALL

Counts indirect near calls, including both register
and memory indirect, executed.

88H 30H BR_INST_EXEC.NEAR_CALLS Counts all near call branches executed, but not
necessarily retired.

Table 19-15 Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 199

88H 40H BR_INST_EXEC.TAKEN Counts taken near branches executed, but not
necessarily retired.

88H 7FH BR_INST_EXEC.ANY Counts all near executed branches (not necessarily
retired). This includes only instructions and not
micro-op branches. Frequent branching is not
necessarily a major performance issue. However
frequent branch mispredictions may be a problem.

89H 01H BR_MISP_EXEC.COND Counts the number of mispredicted conditional near
branch instructions executed, but not necessarily
retired.

89H 02H BR_MISP_EXEC.DIRECT Counts mispredicted macro unconditional near
branch instructions, excluding calls and indirect
branches (should always be 0).

89H 04H BR_MISP_EXEC.INDIRECT_NO
N_CALL

Counts the number of executed mispredicted
indirect near branch instructions that are not calls.

89H 07H BR_MISP_EXEC.NON_CALLS Counts mispredicted non call near branches
executed, but not necessarily retired.

89H 08H BR_MISP_EXEC.RETURN_NEA
R

Counts mispredicted indirect branches that have a
rear return mnemonic.

89H 10H BR_MISP_EXEC.DIRECT_NEAR
_CALL

Counts mispredicted non-indirect near calls
executed, (should always be 0).

89H 20H BR_MISP_EXEC.INDIRECT_NE
AR_CALL

Counts mispredicted indirect near calls exeucted,
including both register and memory indirect.

89H 30H BR_MISP_EXEC.NEAR_CALLS Counts all mispredicted near call branches executed,
but not necessarily retired.

89H 40H BR_MISP_EXEC.TAKEN Counts executed mispredicted near branches that
are taken, but not necessarily retired.

89H 7FH BR_MISP_EXEC.ANY Counts the number of mispredicted near branch
instructions that were executed, but not
necessarily retired.

A2H 01H RESOURCE_STALLS.ANY Counts the number of Allocator resource related
stalls. Includes register renaming buffer entries,
memory buffer entries. In addition to resource
related stalls, this event counts some other events.
Includes stalls arising during branch misprediction
recovery, such as if retirement of the mispredicted
branch is delayed and stalls arising while store
buffer is draining from synchronizing operations.

Does not include stalls
due to SuperQ (off core)
queue full, too many
cache misses, etc.

A2H 02H RESOURCE_STALLS.LOAD Counts the cycles of stall due to lack of load buffer
for load operation.

Table 19-15 Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 200

A2H 04H RESOURCE_STALLS.RS_FULL This event counts the number of cycles when the
number of instructions in the pipeline waiting for
execution reaches the limit the processor can
handle. A high count of this event indicates that
there are long latency operations in the pipe
(possibly load and store operations that miss the L2
cache, or instructions dependent upon instructions
further down the pipeline that have yet to retire.

When RS is full, new
instructions can not
enter the reservation
station and start
execution.

A2H 08H RESOURCE_STALLS.STORE This event counts the number of cycles that a
resource related stall will occur due to the number
of store instructions reaching the limit of the
pipeline, (i.e. all store buffers are used). The stall
ends when a store instruction commits its data to
the cache or memory.

A2H 10H RESOURCE_STALLS.ROB_FULL Counts the cycles of stall due to re-order buffer full.

A2H 20H RESOURCE_STALLS.FPCW Counts the number of cycles while execution was
stalled due to writing the floating-point unit (FPU)
control word.

A2H 40H RESOURCE_STALLS.MXCSR Stalls due to the MXCSR register rename occurring
to close to a previous MXCSR rename. The MXCSR
provides control and status for the MMX registers.

A2H 80H RESOURCE_STALLS.OTHER Counts the number of cycles while execution was
stalled due to other resource issues.

A6H 01H MACRO_INSTS.FUSIONS_DECO
DED

Counts the number of instructions decoded that are
macro-fused but not necessarily executed or
retired.

A7H 01H BACLEAR_FORCE_IQ Counts number of times a BACLEAR was forced by
the Instruction Queue. The IQ is also responsible for
providing conditional branch prediciton direction
based on a static scheme and dynamic data
provided by the L2 Branch Prediction Unit. If the
conditional branch target is not found in the Target
Array and the IQ predicts that the branch is taken,
then the IQ will force the Branch Address Calculator
to issue a BACLEAR. Each BACLEAR asserted by the
BAC generates approximately an 8 cycle bubble in
the instruction fetch pipeline.

A8H 01H LSD.UOPS Counts the number of micro-ops delivered by loop
stream detector.

Use cmask=1 and invert
to count cycles

AEH 01H ITLB_FLUSH Counts the number of ITLB flushes.

B0H 01H OFFCORE_REQUESTS.DEMAN
D.READ_DATA

Counts number of offcore demand data read
requests. Does not count L2 prefetch requests.

B0H 02H OFFCORE_REQUESTS.DEMAN
D.READ_CODE

Counts number of offcore demand code read
requests. Does not count L2 prefetch requests.

Table 19-15 Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 201

B0H 04H OFFCORE_REQUESTS.DEMAN
D.RFO

Counts number of offcore demand RFO requests.
Does not count L2 prefetch requests.

B0H 08H OFFCORE_REQUESTS.ANY.REA
D

Counts number of offcore read requests. Includes
L2 prefetch requests.

B0H 10H OFFCORE_REQUESTS.ANY.RFO Counts number of offcore RFO requests. Includes L2
prefetch requests.

B0H 40H OFFCORE_REQUESTS.L1D_WR
ITEBACK

Counts number of L1D writebacks to the uncore.

B0H 80H OFFCORE_REQUESTS.ANY Counts all offcore requests.

B1H 01H UOPS_EXECUTED.PORT0 Counts number of Uops executed that were issued
on port 0. Port 0 handles integer arithmetic, SIMD
and FP add Uops.

B1H 02H UOPS_EXECUTED.PORT1 Counts number of Uops executed that were issued
on port 1. Port 1 handles integer arithmetic, SIMD,
integer shift, FP multiply and FP divide Uops.

B1H 04H UOPS_EXECUTED.PORT2_COR
E

Counts number of Uops executed that were issued
on port 2. Port 2 handles the load Uops. This is a
core count only and can not be collected per thread.

B1H 08H UOPS_EXECUTED.PORT3_COR
E

Counts number of Uops executed that were issued
on port 3. Port 3 handles store Uops. This is a core
count only and can not be collected per thread.

B1H 10H UOPS_EXECUTED.PORT4_COR
E

Counts number of Uops executed that where issued
on port 4. Port 4 handles the value to be stored for
the store Uops issued on port 3. This is a core count
only and can not be collected per thread.

B1H 1FH UOPS_EXECUTED.CORE_ACTI
VE_CYCLES_NO_PORT5

Counts number of cycles there are one or more
uops being executed and were issued on ports 0-4.
This is a core count only and can not be collected
per thread.

B1H 20H UOPS_EXECUTED.PORT5 Counts number of Uops executed that where issued
on port 5.

B1H 3FH UOPS_EXECUTED.CORE_ACTI
VE_CYCLES

Counts number of cycles there are one or more
uops being executed on any ports. This is a core
count only and can not be collected per thread.

B1H 40H UOPS_EXECUTED.PORT015 Counts number of Uops executed that where issued
on port 0, 1, or 5.

use cmask=1, invert=1
to count stall cycles

B1H 80H UOPS_EXECUTED.PORT234 Counts number of Uops executed that where issued
on port 2, 3, or 4.

B2H 01H OFFCORE_REQUESTS_SQ_FUL
L

Counts number of cycles the SQ is full to handle off-
core requests.

B3H 01H SNOOPQ_REQUESTS_OUTSTA
NDING.DATA

Counts weighted cycles of snoopq requests for
data. Counter 0 only.

Use cmask=1 to count
cycles not empty.

Table 19-15 Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 202

B3H 02H SNOOPQ_REQUESTS_OUTSTA
NDING.INVALIDATE

Counts weighted cycles of snoopq invalidate
requests. Counter 0 only.

Use cmask=1 to count
cycles not empty.

B3H 04H SNOOPQ_REQUESTS_OUTSTA
NDING.CODE

Counts weighted cycles of snoopq requests for
code. Counter 0 only.

Use cmask=1 to count
cycles not empty.

B4H 01H SNOOPQ_REQUESTS.CODE Counts the number of snoop code requests.

B4H 02H SNOOPQ_REQUESTS.DATA Counts the number of snoop data requests.

B4H 04H SNOOPQ_REQUESTS.INVALID
ATE

Counts the number of snoop invalidate requests.

B7H 01H OFF_CORE_RESPONSE_0 see Section 18.7.1.3, “Off-core Response
Performance Monitoring in the Processor Core”

Requires programming
MSR 01A6H

B8H 01H SNOOP_RESPONSE.HIT Counts HIT snoop response sent by this thread in
response to a snoop request.

B8H 02H SNOOP_RESPONSE.HITE Counts HIT E snoop response sent by this thread in
response to a snoop request.

B8H 04H SNOOP_RESPONSE.HITM Counts HIT M snoop response sent by this thread in
response to a snoop request.

BBH 01H OFF_CORE_RESPONSE_1 see Section 18.7.1.3, “Off-core Response
Performance Monitoring in the Processor Core”

Use MSR 01A7H

C0H 00H INST_RETIRED.ANY_P See Table 19-1
Notes: INST_RETIRED.ANY is counted by a
designated fixed counter. INST_RETIRED.ANY_P is
counted by a programmable counter and is an
architectural performance event. Event is
supported if CPUID.A.EBX[1] = 0.

Counting: Faulting
executions of GETSEC/
VM entry/VM Exit/MWait
will not count as retired
instructions.

C0H 02H INST_RETIRED.X87 Counts the number of floating point computational
operations retired: floating point computational
operations executed by the assist handler and sub-
operations of complex floating point instructions
like transcendental instructions.

C0H 04H INST_RETIRED.MMX Counts the number of retired: MMX instructions.

C2H 01H UOPS_RETIRED.ANY Counts the number of micro-ops retired, (macro-
fused=1, micro-fused=2, others=1; maximum count
of 8 per cycle). Most instructions are composed of
one or two micro-ops. Some instructions are
decoded into longer sequences such as repeat
instructions, floating point transcendental
instructions, and assists.

Use cmask=1 and invert
to count active cycles or
stalled cycles

C2H 02H UOPS_RETIRED.RETIRE_SLOT
S

Counts the number of retirement slots used each
cycle

C2H 04H UOPS_RETIRED.MACRO_FUSE
D

Counts number of macro-fused uops retired.

Table 19-15 Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 203

C3H 01H MACHINE_CLEARS.CYCLES Counts the cycles machine clear is asserted.

C3H 02H MACHINE_CLEARS.MEM_ORDE
R

Counts the number of machine clears due to
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Counts the number of times that a program writes
to a code section. Self-modifying code causes a
sever penalty in all Intel 64 and IA-32 processors.
The modified cache line is written back to the L2
and L3caches.

C4H 00H BR_INST_RETIRED.ALL_BRAN
CHES

Branch instructions at retirement See Table 19-1

C4H 01H BR_INST_RETIRED.CONDITION
AL

Counts the number of conditional branch
instructions retired.

C4H 02H BR_INST_RETIRED.NEAR_CAL
L

Counts the number of direct & indirect near
unconditional calls retired.

C5H 00H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted branch instructions at retirement See Table 19-1

C5H 01H BR_MISP_RETIRED.CONDITION
AL

Counts mispredicted conditional retired calls.

C5H 02H BR_MISP_RETIRED.NEAR_CAL
L

Counts mispredicted direct & indirect near
unconditional retired calls.

C5H 04H BR_MISP_RETIRED.ALL_BRAN
CHES

Counts all mispredicted retired calls.

C7H 01H SSEX_UOPS_RETIRED.PACKED
_SINGLE

Counts SIMD packed single-precision floating point
Uops retired.

C7H 02H SSEX_UOPS_RETIRED.SCALAR
_SINGLE

Counts SIMD calar single-precision floating point
Uops retired.

C7H 04H SSEX_UOPS_RETIRED.PACKED
_DOUBLE

Counts SIMD packed double-precision floating point
Uops retired.

C7H 08H SSEX_UOPS_RETIRED.SCALAR
_DOUBLE

Counts SIMD scalar double-precision floating point
Uops retired.

C7H 10H SSEX_UOPS_RETIRED.VECTOR
_INTEGER

Counts 128-bit SIMD vector integer Uops retired.

C8H 20H ITLB_MISS_RETIRED Counts the number of retired instructions that
missed the ITLB when the instruction was fetched.

CBH 01H MEM_LOAD_RETIRED.L1D_HIT Counts number of retired loads that hit the L1 data
cache.

CBH 02H MEM_LOAD_RETIRED.L2_HIT Counts number of retired loads that hit the L2 data
cache.

CBH 04H MEM_LOAD_RETIRED.L3_UNS
HARED_HIT

Counts number of retired loads that hit their own,
unshared lines in the L3 cache.

Table 19-15 Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 204

CBH 08H MEM_LOAD_RETIRED.OTHER_
CORE_L2_HIT_HITM

Counts number of retired loads that hit in a sibling
core's L2 (on die core). Since the L3 is inclusive of
all cores on the package, this is an L3 hit. This
counts both clean or modified hits.

CBH 10H MEM_LOAD_RETIRED.L3_MISS Counts number of retired loads that miss the L3
cache. The load was satisfied by a remote socket,
local memory or an IOH.

CBH 40H MEM_LOAD_RETIRED.HIT_LFB Counts number of retired loads that miss the L1D
and the address is located in an allocated line fill
buffer and will soon be committed to cache. This is
counting secondary L1D misses.

CBH 80H MEM_LOAD_RETIRED.DTLB_MI
SS

Counts the number of retired loads that missed the
DTLB. The DTLB miss is not counted if the load
operation causes a fault. This event counts loads
from cacheable memory only. The event does not
count loads by software prefetches. Counts both
primary and secondary misses to the TLB.

CCH 01H FP_MMX_TRANS.TO_FP Counts the first floating-point instruction following
any MMX instruction. You can use this event to
estimate the penalties for the transitions between
floating-point and MMX technology states.

CCH 02H FP_MMX_TRANS.TO_MMX Counts the first MMX instruction following a
floating-point instruction. You can use this event to
estimate the penalties for the transitions between
floating-point and MMX technology states.

CCH 03H FP_MMX_TRANS.ANY Counts all transitions from floating point to MMX
instructions and from MMX instructions to floating
point instructions. You can use this event to
estimate the penalties for the transitions between
floating-point and MMX technology states.

D0H 01H MACRO_INSTS.DECODED Counts the number of instructions decoded, (but not
necessarily executed or retired).

D1H 01H UOPS_DECODED.STALL_CYCLE
S

Counts the cycles of decoder stalls. INV=1, Cmask=
1

D1H 02H UOPS_DECODED.MS Counts the number of Uops decoded by the
Microcode Sequencer, MS. The MS delivers uops
when the instruction is more than 4 uops long or a
microcode assist is occurring.

D1H 04H UOPS_DECODED.ESP_FOLDIN
G

Counts number of stack pointer (ESP) instructions
decoded: push , pop , call , ret, etc. ESP instructions
do not generate a Uop to increment or decrement
ESP. Instead, they update an ESP_Offset register
that keeps track of the delta to the current value of
the ESP register.

Table 19-15 Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 205

D1H 08H UOPS_DECODED.ESP_SYNC Counts number of stack pointer (ESP) sync
operations where an ESP instruction is corrected by
adding the ESP offset register to the current value
of the ESP register.

D2H 01H RAT_STALLS.FLAGS Counts the number of cycles during which
execution stalled due to several reasons, one of
which is a partial flag register stall. A partial register
stall may occur when two conditions are met: 1) an
instruction modifies some, but not all, of the flags in
the flag register and 2) the next instruction, which
depends on flags, depends on flags that were not
modified by this instruction.

D2H 02H RAT_STALLS.REGISTERS This event counts the number of cycles instruction
execution latency became longer than the defined
latency because the instruction used a register that
was partially written by previous instruction.

D2H 04H RAT_STALLS.ROB_READ_POR
T

Counts the number of cycles when ROB read port
stalls occurred, which did not allow new micro-ops
to enter the out-of-order pipeline. Note that, at this
stage in the pipeline, additional stalls may occur at
the same cycle and prevent the stalled micro-ops
from entering the pipe. In such a case, micro-ops
retry entering the execution pipe in the next cycle
and the ROB-read port stall is counted again.

D2H 08H RAT_STALLS.SCOREBOARD Counts the cycles where we stall due to
microarchitecturally required serialization.
Microcode scoreboarding stalls.

D2H 0FH RAT_STALLS.ANY Counts all Register Allocation Table stall cycles due
to: Cycles when ROB read port stalls occurred,
which did not allow new micro-ops to enter the
execution pipe. Cycles when partial register stalls
occurred Cycles when flag stalls occurred Cycles
floating-point unit (FPU) status word stalls occurred.
To count each of these conditions separately use
the events: RAT_STALLS.ROB_READ_PORT,
RAT_STALLS.PARTIAL, RAT_STALLS.FLAGS, and
RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_STALLS Counts the number of stall cycles due to the lack of
renaming resources for the ES, DS, FS, and GS
segment registers. If a segment is renamed but not
retired and a second update to the same segment
occurs, a stall occurs in the front-end of the pipeline
until the renamed segment retires.

D5H 01H ES_REG_RENAMES Counts the number of times the ES segment
register is renamed.

DBH 01H UOP_UNFUSION Counts unfusion events due to floating point
exception to a fused uop.

Table 19-15 Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 206

E0H 01H BR_INST_DECODED Counts the number of branch instructions decoded.

E5H 01H BPU_MISSED_CALL_RET Counts number of times the Branch Prediciton Unit
missed predicting a call or return branch.

E6H 01H BACLEAR.CLEAR Counts the number of times the front end is
resteered, mainly when the Branch Prediction Unit
cannot provide a correct prediction and this is
corrected by the Branch Address Calculator at the
front end. This can occur if the code has many
branches such that they cannot be consumed by
the BPU. Each BACLEAR asserted by the BAC
generates approximately an 8 cycle bubble in the
instruction fetch pipeline. The effect on total
execution time depends on the surrounding code.

E6H 02H BACLEAR.BAD_TARGET Counts number of Branch Address Calculator clears
(BACLEAR) asserted due to conditional branch
instructions in which there was a target hit but the
direction was wrong. Each BACLEAR asserted by
the BAC generates approximately an 8 cycle bubble
in the instruction fetch pipeline.

E8H 01H BPU_CLEARS.EARLY Counts early (normal) Branch Prediction Unit clears:
BPU predicted a taken branch after incorrectly
assuming that it was not taken.

The BPU clear leads to 2
cycle bubble in the Front
End.

E8H 02H BPU_CLEARS.LATE Counts late Branch Prediction Unit clears due to
Most Recently Used conflicts. The PBU clear leads
to a 3 cycle bubble in the Front End.

ECH 01H THREAD_ACTIVE Counts cycles threads are active.

F0H 01H L2_TRANSACTIONS.LOAD Counts L2 load operations due to HW prefetch or
demand loads.

F0H 02H L2_TRANSACTIONS.RFO Counts L2 RFO operations due to HW prefetch or
demand RFOs.

F0H 04H L2_TRANSACTIONS.IFETCH Counts L2 instruction fetch operations due to HW
prefetch or demand ifetch.

F0H 08H L2_TRANSACTIONS.PREFETC
H

Counts L2 prefetch operations.

F0H 10H L2_TRANSACTIONS.L1D_WB Counts L1D writeback operations to the L2.

F0H 20H L2_TRANSACTIONS.FILL Counts L2 cache line fill operations due to load, RFO,
L1D writeback or prefetch.

F0H 40H L2_TRANSACTIONS.WB Counts L2 writeback operations to the L3.

F0H 80H L2_TRANSACTIONS.ANY Counts all L2 cache operations.

F1H 02H L2_LINES_IN.S_STATE Counts the number of cache lines allocated in the L2
cache in the S (shared) state.

F1H 04H L2_LINES_IN.E_STATE Counts the number of cache lines allocated in the L2
cache in the E (exclusive) state.

Table 19-15 Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 207

F1H 07H L2_LINES_IN.ANY Counts the number of cache lines allocated in the L2
cache.

F2H 01H L2_LINES_OUT.DEMAND_CLEA
N

Counts L2 clean cache lines evicted by a demand
request.

F2H 02H L2_LINES_OUT.DEMAND_DIRT
Y

Counts L2 dirty (modified) cache lines evicted by a
demand request.

F2H 04H L2_LINES_OUT.PREFETCH_CL
EAN

Counts L2 clean cache line evicted by a prefetch
request.

F2H 08H L2_LINES_OUT.PREFETCH_DIR
TY

Counts L2 modified cache line evicted by a prefetch
request.

F2H 0FH L2_LINES_OUT.ANY Counts all L2 cache lines evicted for any reason.

F4H 04H SQ_MISC.LRU_HINTS Counts number of Super Queue LRU hints sent to
L3.

F4H 10H SQ_MISC.SPLIT_LOCK Counts the number of SQ lock splits across a cache
line.

F6H 01H SQ_FULL_STALL_CYCLES Counts cycles the Super Queue is full. Neither of
the threads on this core will be able to access the
uncore.

F7H 01H FP_ASSIST.ALL Counts the number of floating point operations
executed that required micro-code assist
intervention. Assists are required in the following
cases: SSE instructions, (Denormal input when the
DAZ flag is off or Underflow result when the FTZ
flag is off): x87 instructions, (NaN or denormal are
loaded to a register or used as input from memory,
Division by 0 or Underflow output).

F7H 02H FP_ASSIST.OUTPUT Counts number of floating point micro-code assist
when the output value (destination register) is
invalid.

F7H 04H FP_ASSIST.INPUT Counts number of floating point micro-code assist
when the input value (one of the source operands
to an FP instruction) is invalid.

FDH 01H SIMD_INT_64.PACKED_MPY Counts number of SID integer 64 bit packed multiply
operations.

FDH 02H SIMD_INT_64.PACKED_SHIFT Counts number of SID integer 64 bit packed shift
operations.

FDH 04H SIMD_INT_64.PACK Counts number of SID integer 64 bit pack
operations.

FDH 08H SIMD_INT_64.UNPACK Counts number of SID integer 64 bit unpack
operations.

FDH 10H SIMD_INT_64.PACKED_LOGICA
L

Counts number of SID integer 64 bit logical
operations.

Table 19-15 Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 208

...

19.10 PERFORMANCE MONITORING EVENTS FOR PROCESSORS BASED ON THE
SILVERMONT MICROARCHITECTURE

Processors based on the Silvermont microarchitecture support the architectural performance-monitoring events
listed in Table 19-1 and fixed-function performance events using fixed counter. In addition, they also support the
following non-architectural performance-monitoring events listed in Table 19-20. These processors have the
CPUID signatures of 06_37H, 06_4AH, 06_4DH, 06_5AH, and 06_5DH.

FDH 20H SIMD_INT_64.PACKED_ARITH Counts number of SID integer 64 bit arithmetic
operations.

FDH 40H SIMD_INT_64.SHUFFLE_MOVE Counts number of SID integer 64 bit shift or move
operations.

Table 19-15 Non-Architectural Performance Events In the Processor Core for
Processors Based on Intel® Microarchitecture Code Name Westmere (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Table 19-20 Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

03H 01H REHABQ.LD_BLOCK_S
T_FORWARD

Loads blocked due to
store forward
restriction

This event counts the number of retired loads that were
prohibited from receiving forwarded data from the store
because of address mismatch.

03H 02H REHABQ.LD_BLOCK_S
TD_NOTREADY

Loads blocked due to
store data not ready

This event counts the cases where a forward was technically
possible, but did not occur because the store data was not
available at the right time

03H 04H REHABQ.ST_SPLITS Store uops that split
cache line boundary

This event counts the number of retire stores that experienced
cache line boundary splits

03H 08H REHABQ.LD_SPLITS Load uops that split
cache line boundary

This event counts the number of retire loads that experienced
cache line boundary splits

03H 10H REHABQ.LOCK Uops with lock
semantics

This event counts the number of retired memory operations
with lock semantics. These are either implicit locked instructions
such as the XCHG instruction or instructions with an explicit
LOCK prefix (F0H).

03H 20H REHABQ.STA_FULL Store address buffer
full

This event counts the number of retired stores that are delayed
because there is not a store address buffer available.

03H 40H REHABQ.ANY_LD Any reissued load uops This event counts the number of load uops reissued from
Rehabq

03H 80H REHABQ.ANY_ST Any reissued store
uops

This event counts the number of store uops reissued from
Rehabq

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 209

REAHBQ is an internal queue in the Silvermont microarchitecture that holds memory reference micro-ops which cannot complete for
one reason or another. The micro-ops remain in the REHABQ until they can be re-issued and successfully completed.

Examples of bottlenecks that cause micro-ops to go into REHABQ include, but are not limited to: cache line splits, blocked store forward
and data not ready. There are many other conditions that might cause a load or store to be sent to the REHABQ-- for instance, if an
older store has an unknown address, all subsequent stores must be sent to the REHABQ until that older stores address becomes
known

04H 01H MEM_UOPS_RETIRED.L
1_MISS_LOADS

Loads retired that
missed L1 data cache

This event counts the number of load ops retired that miss in L1
Data cache. Note that prefetch misses will not be counted.

04H 02H MEM_UOPS_RETIRED.L
2_HIT_LOADS

Loads retired that hit
L2

This event counts the number of load micro-ops retired that hit
L2.

04H 04H MEM_UOPS_RETIRED.L
2_MISS_LOADS

Loads retired that
missed L2

This event counts the number of load micro-ops retired that
missed L2.

04H 08H MEM_UOPS_RETIRED.
DTLB_MISS_LOADS

Loads missed DTLB This event counts the number of load ops retired that had DTLB
miss.

04H 10H MEM_UOPS_RETIRED.
UTLB_MISS

Loads missed UTLB This event counts the number of load ops retired that had UTLB
miss.

04H 20H MEM_UOPS_RETIRED.
HITM

Cross core or cross
module hitm

This event counts the number of load ops retired that got data
from the other core or from the other module.

04H 40H MEM_UOPS_RETIRED.
ALL_LOADS

All Loads This event counts the number of load ops retired

04H 80H MEM_UOP_RETIRED.A
LL_STORES

All Stores This event counts the number of store ops retired

05H 01H PAGE_WALKS.D_SIDE_
CYCLES

Duration of D-side
page-walks in core
cycles

This event counts every cycle when a D-side (walks due to a
load) page walk is in progress. Page walk duration divided by
number of page walks is the average duration of page-walks.

Edge trigger bit must be cleared. Set Edge to count the number
of page walks.

05H 02H PAGE_WALKS.I_SIDE_C
YCLES

Duration of I-side page-
walks in core cycles

This event counts every cycle when a I-side (walks due to an
instruction fetch) page walk is in progress. Page walk duration
divided by number of page walks is the average duration of
page-walks.

Edge trigger bit must be cleared. Set Edge to count the number
of page walks.

05H 03H PAGE_WALKS.WALKS Total number of page-
walks that are
completed (I-side and
D-side)

This event counts when a data (D) page walk or an instruction (I)
page walk is completed or started. Since a page walk implies a
TLB miss, the number of TLB misses can be counted by counting
the number of pagewalks.

Edge trigger bit must be set. Clear Edge to count the number of
cycles.

2EH 41H LONGEST_LAT_CACHE.
MISS

L2 cache request
misses

This event counts the total number of L2 cache references and
the number of L2 cache misses respectively.

L3 is not supported in Silvermont microarchitecture.

Table 19-20 Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 210

2EH 4FH LONGEST_LAT_CACHE.
REFERENCE

L2 cache requests
from this core

This event counts requests originating from the core that
references a cache line in the L2 cache.

L3 is not supported in Silvermont microarchitecture.

30H 00H L2_REJECT_XQ.ALL Counts the number of
request from the L2
that were not accepted
into the XQ

This event counts the number of demand and prefetch
transactions that the L2 XQ rejects due to a full or near full
condition which likely indicates back pressure from the IDI link.
The XQ may reject transactions from the L2Q (non-cacheable
requests), BBS (L2 misses) and WOB (L2 write-back victims)

When a memory reference misses the 1st level cache, the request goes to the L2 Queue (L2Q). If the request also misses the 2nd level
cache, the request is sent to the XQ, where it waits for an opportunity to be issued to memory across the IDI link. Note that since the
L2 is shared between a pair of processor cores, a single L2Q is shared between those two cores. Similarly, there is a single XQ for a pair
of processors, situated between the L2Q and the IDI link.

The XQ will fill up when the response rate from the IDI link is smaller than the rate at which new requests arrive at the XQ. The event
L2_reject_XQ indicates that a request is unable to move from the L2 Queue to the XQ because the XQ is full, and thus indicates that
the memory system is oversubscribed

31H 00H CORE_REJECT_L2Q.ALL Counts the number of
request that were not
accepted into the L2Q
because the L2Q is
FULL.

This event counts the number of demand and L1 prefetcher
requests rejected by the L2Q due to a full or nearly full condition
which likely indicates back pressure from L2Q. It also counts
requests that would have gone directly to the XQ, but are
rejected due to a full or nearly full condition, indicating back
pressure from the IDI link. The L2Q may also reject transactions
from a core to insure fairness between cores, or to delay a core's
dirty eviction when the address conflicts incoming external
snoops. (Note that L2 prefetcher requests that are dropped are
not counted by this event.).

The core_reject event indicates that a request from the core cannot be accepted at the L2Q. However, there are several additional
reasons why a request might be rejected from the L2Q. Beyond rejecting a request because the L2Q is full, a request from one core
can be rejected to maintain fairness to the other core. That is, one core is not permitted to monopolize the shared connection to the
L2Q/cache/XQ/IDI links, and might have its requests rejected even when there is room available in the L2Q. In addition, if the request
from the core is a dirty L1 cache eviction, the hardware must insure that this eviction does not conflict with any pending request in the
L2Q. (pending requests can include an external snoop). In the event of a conflict, the dirty eviction request might be rejected even
when there is room in the L2Q.

Thus, while the L2_reject_XQ event indicates that the request rate to memory from both cores exceeds the response rate of the
memory, the Core_reject event is more subtle. It can indicate that the request rate to the L2Q exceeds the response rate from the XQ,
or it can indicate the request rate to the L2Q exceeds the response rate from the L2, or it can indicate that one core is attempting to
request more than its fair share of response from the L2Q. Or, it can be an indicator of conflict between dirty evictions and other
pending requests.

In short, the L2_reject_XQ event indicates memory oversubscription. The Core_reject event can indicate either (1) memory
oversubscription, (2) L2 oversubscription, (3) rejecting one cores requests to insure fairness to the other core, or (4) a conflict between
dirty evictions and other pending requests.

3CH 00H CPU_CLK_UNHALTED.C
ORE_P

Core cycles when core
is not halted

This event counts the number of core cycles while the core is not
in a halt state. The core enters the halt state when it is running
the HLT instruction. In mobile systems the core frequency may
change from time to time. For this reason this event may have a
changing ratio with regards to time.

N/A 01H CPU_CLK_UNHALTED.C
ORE

Instructions retired This uses the fixed counter 1 to count the same condition as
CPU_CLK_UNHALTED.CORE_P does.

Table 19-20 Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 211

3CH 01H CPU_CLK_UNHALTED.R
EF_P

Reference cycles when
core is not halted

This event counts the number of reference cycles that the core
is not in a halt state. The core enters the halt state when it is
running the HLT instruction.

In mobile systems the core frequency may change from time.
This event is not affected by core frequency changes but counts
as if the core is running at the maximum frequency all the time.

N/A 02H CPU_CLK_UNHALTED.R
EF_TSC

Instructions retired This uses the fixed counter 2 to count the same condition as
CPU_CLK_UNHALTED.REF_P does.

80H 01H ICACHE.HIT Instruction fetches
from Icache

This event counts all instruction fetches from the instruction
cache.

80H 02H ICACHE.MISSES Icache miss This event counts all instruction fetches that miss the
Instruction cache or produce memory requests. This includes
uncacheable fetches. An instruction fetch miss is counted only
once and not once for every cycle it is outstanding.

80H 03H ICACHE.ACCESSES Instruction fetches This event counts all instruction fetches, including uncacheable
fetches.

B7H 01H OFFCORE_RESPONSE_
0

see Section 18.6.2 Requires MSR_OFFCORE_RESP0 to specify request type and
response.

B7H 02H OFFCORE_RESPONSE_
1

see Section 18.6.2 Requires MSR_OFFCORE_RESP1 to specify request type and
response.

C0H 00H INST_RETIRED.ANY_P Instructions retired
(PEBS supported with
IA32_PMC0).

This event counts the number of instructions that retire
execution. For instructions that consist of multiple micro-ops,
this event counts the retirement of the last micro-op of the
instruction. The counter continues counting during hardware
interrupts, traps, and inside interrupt handlers.

N/A 00H INST_RETIRED.ANY Instructions retired This uses the fixed counter 0 to count the same condition as
INST_RETIRED.ANY_P does.

C2H 01H UOPS_RETIRED.MS MSROM micro-ops
retired

This event counts the number of micro-ops retired that were
supplied from MSROM.

C2H 10H UOPS_RETIRED.ALL Micro-ops retired This event counts the number of micro-ops retired.

The processor decodes complex macro instructions into a sequence of simpler micro-ops. Most instructions are composed of one or two
micro-ops. Some instructions are decoded into longer sequences such as repeat instructions, floating point transcendental instructions,
and assists. In some cases micro-op sequences are fused or whole instructions are fused into one micro-op. See other UOPS_RETIRED
events for differentiating retired fused and non-fused micro-ops.

C3H 01H MACHINE_CLEARS.SMC Self-Modifying Code
detected

This event counts the number of times that a program writes to
a code section. Self-modifying code causes a severe penalty in all
Intel® architecture processors.

C3H 02H MACHINE_CLEARS.ME
MORY_ORDERING

Stalls due to Memory
ordering

This event counts the number of times that pipeline was cleared
due to memory ordering issues.

C3H 04H MACHINE_CLEARS.FP_
ASSIST

Stalls due to FP assists This event counts the number of times that pipeline stalled due
to FP operations needing assists.

C3H 08H MACHINE_CLEARS.ALL Stalls due to any
causes

This event counts the number of times that pipeline stalled due
to due to any causes (including SMC, MO, FP assist, etc).

Table 19-20 Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 212

There are many conditions that might cause a machine clear (including the receipt of an interrupt, or a trap or a fault). All those
conditions (including but not limited to MO, SMC and FP) are captured in the ANY event. In addition, some conditions can be specifically
counted (i.e. SMC, MO, FP). However, the sum of SMC, MO and FP machine clears will not necessarily equal the number of ANY.

FP Assist: Most of the time, the floating point execute unit can properly produce the correct output bits. On rare occasions, it needs a
little help. When help is needed, a machine clear is asserted against the instruction. After this machine clear (as described above), the
front end of the machine begins to deliver instructions that will figure out exactly what FP operation was asked for, and they will do
the extra work to produce the correct FP result (for instance, if the result was a floating point denormal, sometimes the hardware asks
the help to produce the correctly rounded IEEE compliant result).

SMC: (Self modifying code) The SMC happens when the machine fears that an instruction “in flight” is being changed. For instance, if
you wrote a piece of code that wrote to the instruction stream ahead of where you were executing. In the Silvermont
microarchitecture, the detection works in a 1K aligned region.

If you write to memory within 1K of where you are executing, the hardware may get concerned that an instruction is being modified
and a machine clear might be signaled. Since the machine clear allows the store pipeline to drain, when front end restart occurs the
correct instructions (after the write) will be executed.

MO: (Memory order) The MO machine clear happens when a snoop request occurs and the machine is uncertain if memory ordering will
be preserved. For instance, suppose you have two loads, one to address X followed by another to address Y in the program order. Both
loads have been issued; however, load to Y completes first and all the dependent ops on this load continue with the data loaded by this
load. Load to X is still waiting for the data. Suppose that at the same time another processor writes to the same address Y and causes
a snoop to address Y.

This presents a problem: the load to Y got the old value, but we have not yet finished loading X. So the other processor saw the loads
in a different order by not consuming the latest value from the store to address Y. So we need to un-do everything from the load to
address Y so that we will see the post-write data. Note we do not have to un-do load Y if there were no other pending reads-- the fact
that the load to X is not yet finished causes this ordering problem.

C4H 00H BR_INST_RETIRED.ALL
_BRANCHES

Retired branch
instructions

This event counts the number of branch instructions retired.

C4H 7EH BR_INST_RETIRED.JCC Retired branch
instructions that were
conditional jumps

This event counts the number of branch instructions retired that
were conditional jumps.

C4H BFH BR_INST_RETIRED.FAR
_BRANCH

Retired far branch
instructions

This event counts the number of far branch instructions retired.

C4H EBH BR_INST_RETIRED.NO
N_RETURN_IND

Retired instructions of
near indirect Jmp or call

This event counts the number of branch instructions retired that
were near indirect call or near indirect jmp.

C4H F7H BR_INST_RETIRED.RET
URN

Retired near return
instructions

This event counts the number of near RET branch instructions
retired

C4H F9H BR_INST_RETIRED.CAL
L

Retired near call
instructions

This event counts the number of near CALL branch instructions
retired

C4H FBH BR_INST_RETIRED.IND
_CALL

Retired near indirect
call instructions

This event counts the number of near indirect CALL branch
instructions retired

C4H FDH BR_INST_RETIRED.REL
_CALL

Retired near relative
call instructions

This event counts the number of near relative CALL branch
instructions retired

C4H FEH BR_INST_RETIRED.TAK
EN_JCC

Retired conditional
jumps that were
predicted taken

This event counts the number of branch instructions retired that
were conditional jumps and predicted taken.

C5H 00H BR_MISP_RETIRED.ALL
_BRANCHES

Retired mispredicted
branch instructions

This event counts the number of mispredicted branch
instructions retired.

Table 19-20 Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 213

C5H 7EH BR_MISP_RETIRED.JCC Retired mispredicted
conditional jumps

This event counts the number of mispredicted branch
instructions retired that were conditional jumps.

C5H BFH BR_MISP_RETIRED.FA
R

Retired mispredicted
far branch instructions

This event counts the number of mispredicted far branch
instructions retired.

C5H EBH BR_MISP_RETIRED.NO
N_RETURN_IND

Retired mispredicted
instructions of near
indirect Jmp or call

This event counts the number of mispredicted branch
instructions retired that were near indirect call or near indirect
jmp.

C5H F7H BR_MISP_RETIRED.RE
TURN

Retired mispredicted
near return
instructions

This event counts the number of mispredicted near RET branch
instructions retired

C5H F9H BR_MISP_RETIRED.CAL
L

Retired mispredicted
near call instructions

This event counts the number of mispredicted near CALL branch
instructions retired

C5H FBH BR_MISP_RETIRED.IND
_CALL

Retired mispredicted
near indirect call
instructions

This event counts the number of mispredicted near indirect CALL
branch instructions retired

C5H FDH BR_MISP_RETIRED.REL
_CALL

Retired mispredicted
near relative call
instructions

This event counts the number of mispredicted near relative CALL
branch instructions retired

C5H FEH BR_MISP_RETIRED.TA
KEN_JCC

Retired mispredicted
conditional jumps that
were predicted taken

This event counts the number of mispredicted branch
instructions retired that were conditional jumps and predicted
taken.

CAH 01H NO_ALLOC_CYCLES.RO
B_FULL

Counts the number of
cycles when no uops
are allocated and the
ROB is full (less than 2
entries available)

Counts the number of cycles when no uops are allocated and the
ROB is full (less than 2 entries available)

CAH 20H NO_ALLOC_CYCLES.RA
T_STALL

Counts the number of
cycles when no uops
are allocated and a
RATstall is asserted.

Counts the number of cycles when no uops are allocated and a
RATstall is asserted.

CAH 3FH NO_ALLOC_CYCLES.AL
L

Front end not
delivering

This event counts the number of cycles when the front-end does
not provide any instructions to be allocated for any reason

CAH 50H NO_ALLOC_CYCLES.NO
T_DELIVERED

Front end not
delivering backend not
stalled

This event counts the number of cycles when the front-end does
not provide any instructions to be allocated but the back end is
not stalled

The front-end is responsible for fetching the instruction, decoding into micro-ops (uops) and putting them into a micro-op queue to be
consumed by back end. The back-end then takes these micro-ops, allocates the required resources. When all resources are ready,
micro-ops are executed. If the back-end is not ready to accept micro-ops from the front-end, then we do not want to count these as
front-end bottlenecks. However, whenever we have bottlenecks in the back-end, we will have allocation unit stalls and eventually
forcing the front-end to wait until the back-end is ready to receive more UOPS. This event counts the cycles only when back-end is
requesting more micro-uops and front-end is not able to provide them.

CBH 01H RS_FULL_STALL.MEC MEC RS full This event counts the number of cycles the allocation pipe line
stalled due to the RS for the MEC cluster is full

CBH 1FH RS_FULL_STALL.ALL Any RS full This event counts the number of cycles that the allocation pipe
line stalled due to any one of the RS is full

Table 19-20 Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 214

...

19.10.1 Performance Monitoring Events for Processors Based on the Airmont
Microarchitecture

Intel processors based on the Airmont microarchitecture support the same architectural and the non-
architectural performance monitoring events as processors based on the Silvermont microarchitecture. All of the
events listed in Table 19-20 apply. These processors have the CPUID signatures that include 06_4CH.

...

19. Updates to Chapter 22, Volume 3B
Change bars show changes to Chapter 22 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

22.18.6.3 Numeric Underflow Exception (#U)
When the underflow exception is masked on the 32-bit x87 FPUs, the underflow exception is signaled when the
result is tiny and inexact (see Section 4.9.1.5, “Numeric Underflow Exception (#U)” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1). When the underflow exception is unmasked and the instruction

The Silvermont microarchitecture has an allocation pipeline (AKA the RAT) that moves UOPS from the front end to the backend. At the
end of the allocate pipe a UOP needs to be written into one of 6 reservation stations (the RS). Each RS holds UOPS that are to be sent
to a specific execution (or memory) cluster. Each RS has a finite capacity, and it may accumulate UOPS when it is unable to send a UOP
to its execution cluster. Typical reasons why an RS may fill include, but are not limited to, execution of long latency UOPS like divide, or
inability to schedule UOPS due to dependencies, or too many outstanding memory references. When the RS becomes full, it is unable to
accept more UOPS, and it will stall the allocation pipeline. The RS_FULL_STALL.ANY event will be asserted on any cycle when the
allocation is stalled for any one of the RSs being full and not for other reasons. (i.e. the allocate pipeline might be stalled for some other
reason, but if RS is not full, the RS_FULL_STALL.ANY will not count) The subevents allow discovery of exactly which RS (or RSs) that
are full that prevent further allocation.

CDH 01H CYCLES_DIV_BUSY.AN
Y

Divider Busy This event counts the number of cycles the divider is busy.

This event counts the cycles when the divide unit is unable to accept a new divide UOP because it is busy processing a previously
dispatched UOP. The cycles will be counted irrespective of whether or not another divide UOP is waiting to enter the divide unit (from
the RS). This event will count cycles while a divide is in progress even if the RS is empty.

E6H 01H BACLEARS.ALL BACLEARS asserted for
any branch

This event counts the number of baclears for any type of branch.

E6H 08H BACLEARS.RETURN BACLEARS asserted for
return branch

This event counts the number of baclears for return branches.

E6H 10H BACLEARS.COND BACLEARS asserted for
conditional branch

This event counts the number of baclears for conditional
branches.

E7H 01H MS_DECODED.MS_ENT
RY

MS Decode starts This event counts the number of times the MSROM starts a flow
of UOPS.

Table 19-20 Performance Events for Silvermont Microarchitecture
Event
Num.

Umask
Value Event Name Definition Description and Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 215

is supposed to store the result on the stack, the significand is rounded to the appropriate precision (according to
the PC flag in the FPU control word, for those instructions controlled by PC, otherwise to extended precision), after
adjusting the exponent.

...

22.18.7.6 FPTAN Instruction
On the 32-bit x87 FPUs, the range of the operand for the FPTAN instruction is much less restricted (| ST(0) | <
263) than on earlier math coprocessors. The instruction reduces the operand internally using an internal π/4
constant that is more accurate. The range of the operand is restricted to (| ST(0) | < π/4) on the 16-bit IA-32
math coprocessors; the operand must be reduced to this range using FPREM. This change has no impact on
existing software. See also sections 8.3.8 and section 8.3.10 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1 for more information on the accuracy of the FPTAN instruction.

...

22.18.7.8 FSIN, FCOS, and FSINCOS Instructions
On the 32-bit x87 FPUs, these instructions perform three common trigonometric functions. These instructions do
not exist on the 16-bit IA-32 math coprocessors. The availability of these instructions has no impact on existing
software, but using them provides a performance upgrade. See also sections 8.3.8 and section 8.3.10 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 for more information on the accuracy
of the FSIN, FCOS, and FSINCOS instructions.

...

20. Updates to Chapter 29, Volume 3B
Change bars show changes to Chapter 22 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

29.5 VIRTUALIZING MSR-BASED APIC ACCESSES
When the local APIC is in x2APIC mode, software accesses the local APIC’s control registers using the MSR inter-
face. Specifically, software uses the RDMSR and WRMSR instructions, setting ECX (identifying the MSR being
accessed) to values in the range 800H–8FFH (see Section 10.12, “Extended XAPIC (x2APIC)”). This section
describes how these accesses can be virtualized.

A virtual-machine monitor can virtualize these MSR-based APIC accesses by configuring the MSR bitmaps (see
Section 24.6.9) to ensure that the accesses cause VM exits (see Section 25.1.3). Alternatively, there are methods
for virtualizing some MSR-based APIC accesses without VM exits.

Normally, an execution of RDMSR or WRMSR that does not fault or cause a VM exit accesses the MSR indicated in
ECX. However, such an execution treats some values of ECX in the range 800H–8FFH specially if the “virtualize
x2APIC mode” VM-execution control is 1. The following items provide details:
• RDMSR. The instruction’s behavior depends on the setting of the “APIC-register virtualization” VM-execution

control.

— If the “APIC-register virtualization” VM-execution control is 0, behavior depends upon the value of ECX.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 216

• If ECX contains 808H (indicating the TPR MSR), the instruction reads the 8 bytes from offset 080H on
the virtual-APIC page (VTPR and the 4 bytes above it) into EDX:EAX. This occurs even if the local APIC
is not in x2APIC mode (no general-protection fault occurs because the local APIC is not x2APIC mode).

• If ECX contains any other value in the range 800H–8FFH, the instruction operates normally. If the local
APIC is in x2APIC mode and ECX indicates a readable APIC register, EDX and EAX are loaded with the
value of that register. If the local APIC is not in x2APIC mode or ECX does not indicate a readable APIC
register, a general-protection fault occurs.

— If “APIC-register virtualization” is 1 and ECX contains a value in the range 800H–8FFH, the instruction
reads the 8 bytes from offset X on the virtual-APIC page into EDX:EAX, where X = (ECX & FFH) « 4. This
occurs even if the local APIC is not in x2APIC mode (no general-protection fault occurs because the local
APIC is not in x2APIC mode).

• WRMSR. The instruction’s behavior depends on the value of ECX and the setting of the “virtual-interrupt
delivery” VM-execution control.
Special processing applies in the following cases: (1) ECX contains 808H (indicating the TPR MSR); (2) ECX
contains 80BH (indicating the EOI MSR) and the “virtual-interrupt delivery” VM-execution control is 1; and
(3) ECX contains 83FH (indicating the self-IPI MSR) and the “virtual-interrupt delivery” VM-execution control
is 1.
If special processing applies, no general-protection exception is produced due to the fact that the local APIC
is in xAPIC mode. However, WRMSR does perform the normal reserved-bit checking:

— If ECX contains 808H or 83FH, a general-protection fault occurs if either EDX or EAX[31:8] is non-zero.

— If ECX contains 80BH, a general-protection fault occurs if either EDX or EAX is non-zero.
If there is no fault, WRMSR stores EDX:EAX at offset X on the virtual-APIC page, where X = (ECX & FFH) «
4. Following this, the processor performs an operation depending on the value of ECX:

— If ECX contains 808H, the processor performs TPR virtualization (see Section 29.1.2).

— If ECX contains 80BH, the processor performs EOI virtualization (see Section 29.1.4).

— If ECX contains 83FH, the processor then checks the value of EAX[7:4] and proceeds as follows:

• If the value is non-zero, the logical processor performs self-IPI virtualization with the 8-bit vector in
EAX[7:0] (see Section 29.1.5).

• If the value is zero, the logical processor causes an APIC-write VM exit as if there had been a write
access to page offset 3F0H on the APIC-access page (see Section 29.4.3.3).

If special processing does not apply, the instruction operates normally. If the local APIC is in x2APIC mode
and ECX indicates a writeable APIC register, the value in EDX:EAX is written to that register. If the local APIC
is not in x2APIC mode or ECX does not indicate a writeable APIC register, a general-protection fault occurs.

...

21. Updates to Chapter 33, Volume 3C
Change bars show changes to Chapter 33 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

33.3.3.4 Generation of Virtual Interrupt Events by VMM
The following provides some of the general steps that need to be taken by VMM designs when generating virtual
interrupts:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 217

1. Check virtual processor interruptibility state. The virtual processor interruptibility state is reflected in the
guest RFLAGS.IF flag and the processor interruptibility-state saved in the guest state area of the controlling-
VMCS. If RFLAGS.IF is set and the interruptibility state indicates readiness to take external interrupts (STI-
masking and MOV-SS/POP-SS-masking bits are clear), the guest virtual processor is ready to take external
interrupts. If the VMM design supports non-active guest sleep states, the VMM needs to make sure the current
guest sleep state allows injection of external interrupt events.

2. If the guest virtual processor state is currently not interruptible, a VMM may utilize the “interrupt-window
exiting” VM-execution to notify the VMM (through a VM exit) when the virtual processor state changes to
interruptible state.

3. Check the virtual interrupt controller state. If the guest VM exposes a virtual local APIC, the current value of
its processor priority register specifies if guest software allows dispensing an external virtual interrupt with a
specific priority to the virtual processor. If the virtual interrupt is routed through the local vector table (LVT)
entry of the local APIC, the mask bits in the corresponding LVT entry specifies if the interrupt is currently
masked. Similarly, the virtual interrupt controller’s current mask (IO-APIC or PIC) and priority settings reflect
guest state to accept specific external interrupts. The VMM needs to check both the virtual processor and
interrupt controller states to verify its guest interruptibility state. If the guest is currently interruptible, the
VMM can inject the virtual interrupt. If the current guest state does not allow injecting a virtual interrupt, the
interrupt needs to be queued by the VMM until it can be delivered.

4. Prioritize the use of VM-entry event injection. A VMM may use VM-entry event injection to deliver various
virtual events (such as external interrupts, exceptions, traps, and so forth). VMM designs may prioritize use
of virtual-interrupt injection between these event types. Since each VM entry allows injection of one event,
depending on the VMM event priority policies, the VMM may need to queue the external virtual interrupt if a
higher priority event is to be delivered on the next VM entry. Since the VMM has masked this particular
interrupt source (if it was level triggered) and done EOI to the platform interrupt controller, other platform
interrupts can be serviced while this virtual interrupt event is queued for later delivery to the VM.

5. Update the virtual interrupt controller state. When the above checks have passed, before generating the
virtual interrupt to the guest, the VMM updates the virtual interrupt controller state (Local-APIC, IO-APIC and/
or PIC) to reflect assertion of the virtual interrupt. This involves updating the various interrupt capture
registers, and priority registers as done by the respective hardware interrupt controllers. Updating the virtual
interrupt controller state is required for proper interrupt event processing by guest software.

6. Inject the virtual interrupt on VM entry. To inject an external virtual interrupt to a guest VM, the VMM sets up
the VM-entry interruption-information field in the guest controlling-VMCS before entry to guest using
VMRESUME. Upon VM entry, the processor will use this vector to access the gate in guest’s IDT and the value
of RFLAGS and EIP in guest-state area of controlling-VMCS is pushed on the guest stack. If the guest
RFLAGS.IF is clear, the STI-masking bit is set, or the MOV- SS/POP-SS-masking bit is set, the VM entry will fail
and the processor will load state from the host-state area of the working VMCS as if a VM exit had occurred
(see Section 26.7).

...

22. Updates to Chapter 35, Volume 3C
Change bars show changes to Chapter 35 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...
This chapter list MSRs across Intel processor families. All MSRs listed can be read with the RDMSR and written
with the WRMSR instructions.

Register addresses are given in both hexadecimal and decimal. The register name is the mnemonic register name
and the bit description describes individual bits in registers.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 218

Model specific registers and its bit-fields may be supported for a finite range of processor families/models. To
distinguish between different processor family and/or models, software must use CPUID.01H leaf function to
query the combination of DisplayFamily and DisplayModel to determine model-specific availability of MSRs (see
CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A). Table 35-1 lists the signature values of DisplayFamily and DisplayModel for
various processor families or processor number series.

Table 35-1 CPUID Signature Values of DisplayFamily_DisplayModel
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_57H Next Generation Intel® Xeon Phi™ Processor Family

06_4EH Future Generation Intel Core Processor

06_56H Next Generation Intel Xeon Processor D Product Family based on Broadwell microarchitecture

06_4FH Future Generation Intel Xeon processor based on Broadwell microarchitecture

06_3DH Intel Core M-5xxx Processor, Future 5th generation Intel Core processors based on Broadwell
microarchitecture

06_3FH Intel Xeon processor E5-2600/1600 v3 product families based on Haswell-E microarchitecture, Intel
Core i7-59xx Processor Extreme Edition

06_3CH, 06_45H, 06_46H 4th Generation Intel Core processor and Intel Xeon processor E3-1200 v3 product family based on
Haswell microarchitecture

06_3EH Intel Xeon processor E7-8800/4800/2800 v2 product families based on Ivy Bridge-E
microarchitecture

06_3EH Intel Xeon processor E5-2600/1600 v2 product families and Intel Xeon processor E5-2400 v2
product family based on Ivy Bridge-E microarchitecture, Intel Core i7-49xx Processor Extreme Edition

06_3AH 3rd Generation Intel Core Processor and Intel Xeon processor E3-1200 v2 product family based on Ivy
Bridge microarchitecture

06_2DH Intel Xeon processor E5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core
i7-39xx Processor Extreme Edition

06_2FH Intel Xeon Processor E7 Family

06_2AH Intel Xeon processor E3-1200 product family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx
Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series

06_1DH Intel Xeon processor MP 7400 series

06_17H Intel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000
series

06_0FH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series,
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel
Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_4CH Intel® Atom™ processor Z8000 series

06_5DH Future Intel Atom Processor Based on Silvermont Microarchitecture

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 219

35.1 ARCHITECTURAL MSRS
Many MSRs have carried over from one generation of IA-32 processors to the next and to Intel 64 processors. A
subset of MSRs and associated bit fields, which do not change on future processor generations, are now consid-
ered architectural MSRs. For historical reasons (beginning with the Pentium 4 processor), these “architectural
MSRs” were given the prefix “IA32_”. Table 35-2 lists the architectural MSRs, their addresses, their current
names, their names in previous IA-32 processors, and bit fields that are considered architectural. MSR addresses
outside Table 35-2 and certain bit fields in an MSR address that may overlap with architectural MSR addresses are
model-specific. Code that accesses a machine specified MSR and that is executed on a processor that does not
support that MSR will generate an exception.

Architectural MSR or individual bit fields in an architectural MSR may be introduced or transitioned at the granu-
larity of certain processor family/model or the presence of certain CPUID feature flags. The right-most column of
Table 35-2 provides information on the introduction of each architectural MSR or its individual fields. This informa-
tion is expressed either as signature values of “DF_DM” (see Table 35-1) or via CPUID flags.

Certain bit field position may be related to the maximum physical address width, the value of which is expressed
as “MAXPHYWID” in Table 35-2. “MAXPHYWID” is reported by CPUID.8000_0008H leaf.

MSR address range between 40000000H - 400000FFH is marked as a specially reserved range. All existing and
future processors will not implement any features using any MSR in this range.

06_5AH Intel Atom processor Z3500 series

06_4AH Intel Atom processor Z3400 series

06_37H Intel Atom processor E3000 series, Z3600 series, Z3700 series

06_4DH Intel Atom processor C2000 series

06_36H Intel Atom processor S1000 Series

06_1CH, 06_26H, 06_27H,
06_35H, 06_36H

Intel Atom processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D
processors

0F_03H, 0F_04H Intel Xeon processor, Intel Xeon processor MP, Intel Pentium 4, Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium III Xeon processor, Intel Pentium III processor

06_03H, 06_05H Intel Pentium II Xeon processor, Intel Pentium II processor

06_01H Intel Pentium Pro processor

05_01H, 05_02H, 05_04H Intel Pentium processor, Intel Pentium processor with MMX Technology

Table 35-1 CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 220

Table 35-2 IA-32 Architectural MSRs

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

0H 0 IA32_P5_MC_ADDR (P5_MC_ADDR) See Section 35.20, “MSRs in Pentium
Processors.”

Pentium Processor
(05_01H)

1H 1 IA32_P5_MC_TYPE (P5_MC_TYPE) See Section 35.20, “MSRs in Pentium
Processors.”

DF_DM = 05_01H

6H 6 IA32_MONITOR_FILTER_SIZE See Section 8.10.5, “Monitor/Mwait
Address Range Determination.”

0F_03H

10H 16 IA32_TIME_STAMP_
COUNTER (TSC)

See Section 17.13, “Time-Stamp Counter.” 05_01H

17H 23 IA32_PLATFORM_ID
(MSR_PLATFORM_ID)

Platform ID (RO)
The operating system can use this MSR to
determine “slot” information for the
processor and the proper microcode update
to load.

06_01H

49:0 Reserved.

52:50 Platform Id (RO)

Contains information concerning the
intended platform for the processor.

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

1BH 27 IA32_APIC_BASE (APIC_BASE) 06_01H

7:0 Reserved

8 BSP flag (R/W)

9 Reserved

10 Enable x2APIC mode 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYWID - 1):12 APIC Base (R/W)

63: MAXPHYWID Reserved

3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64 Processor
(R/W)

If CPUID.01H: ECX[bit 5 or
bit 6] = 1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 221

0 Lock bit (R/WO): (1 = locked). When set,
locks this MSR from being written, writes
to this bit will result in GP(0).

Note: Once the Lock bit is set, the contents
of this register cannot be modified.
Therefore the lock bit must be set after
configuring support

If CPUID.01H:ECX[bit 5 or
bit 6] = 1

for Intel Virtualization Technology and prior
to transferring control to an option ROM or
the OS. Hence, once the Lock bit is set, the
entire IA32_FEATURE_CONTROL contents
are preserved across RESET when
PWRGOOD is not deasserted.

1 Enable VMX inside SMX operation (R/WL):
This bit enables a system executive to use
VMX in conjunction with SMX to support
Intel® Trusted Execution Technology.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag and
SMX feature flag set (ECX bits 5 and 6
respectively).

If CPUID.01H:ECX[bit 5 and
bit 6] are set to 1

2 Enable VMX outside SMX operation (R/WL):
This bit enables VMX for system executive
that do not require SMX.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag set
(ECX bit 5).

If CPUID.01H:ECX[bit 5 or
bit 6] = 1

7:3 Reserved

14:8 SENTER Local Function Enables (R/WL):
When set, each bit in the field represents
an enable control for a corresponding
SENTER function. This bit is supported only
if CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[bit 6] = 1

15 SENTER Global Enable (R/WL): This bit must
be set to enable SENTER leaf functions.
This bit is supported only if
CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[bit 6] = 1

19:16 Reserved

20 LMCE On (R/WL): When set, system
software can program the MSRs associated
with LMCE to configure delivery of some
machine check exceptions to a single logical
processor.

63:21 Reserved

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 222

3BH 59 IA32_TSC_ADJUST Per Logical Processor TSC Adjust (R/Write
to clear)

If CPUID.(EAX=07H,
ECX=0H): EBX[1] = 1

63:0 THREAD_ADJUST:

Local offset value of the IA32_TSC for a
logical processor. Reset value is Zero. A
write to IA32_TSC will modify the local
offset in IA32_TSC_ADJUST and the
content of IA32_TSC, but does not affect
the internal invariant TSC hardware.

79H 121 IA32_BIOS_UPDT_TRIG
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR instruction to this MSR
causes a microcode update to be loaded
into the processor. See Section 9.11.6,
“Microcode Update Loader.”

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

8BH 139 IA32_BIOS_SIGN_ID (BIOS_SIGN/
BBL_CR_D3)

BIOS Update Signature (RO)

Returns the microcode update signature
following the execution of CPUID.01H.

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

31:0 Reserved

63:32 It is recommended that this field be pre-
loaded with 0 prior to executing CPUID.

If the field remains 0 following the
execution of CPUID; this indicates that no
microcode update is loaded. Any non-zero
value is the microcode update signature.

9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration (R/W) If CPUID.01H: ECX[bit 5 or
bit 6] = 1

0 Valid (R/W)

1 Reserved

2 Controls SMI unblocking by VMXOFF (see
Section 34.14.4)

If IA32_VMX_MISC[bit 28])

11:3 Reserved

31:12 MSEG Base (R/W)

63:32 Reserved

9EH 158 IA32_SMBASE Base address of the logical processor’s
SMRAM image (RO, SMM only)

If IA32_VMX_MISC[bit 15])

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 223

C1H 193 IA32_PMC0 (PERFCTR0) General Performance Counter 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

C2H 194 IA32_PMC1 (PERFCTR1) General Performance Counter 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

C3H 195 IA32_PMC2 General Performance Counter 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

C4H 196 IA32_PMC3 General Performance Counter 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

C5H 197 IA32_PMC4 General Performance Counter 4 (R/W) If CPUID.0AH: EAX[15:8] >
4

C6H 198 IA32_PMC5 General Performance Counter 5 (R/W) If CPUID.0AH: EAX[15:8] >
5

C7H 199 IA32_PMC6 General Performance Counter 6 (R/W) If CPUID.0AH: EAX[15:8] >
6

C8H 200 IA32_PMC7 General Performance Counter 7 (R/W) If CPUID.0AH: EAX[15:8] >
7

E7H 231 IA32_MPERF TSC Frequency Clock Counter (R/Write to
clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_MCNT: C0 TSC Frequency Clock Count

Increments at fixed interval (relative to TSC
freq.) when the logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_APERF.

E8H 232 IA32_APERF Actual Performance Clock Counter (R/Write
to clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_ACNT: C0 Actual Frequency Clock
Count

Accumulates core clock counts at the
coordinated clock frequency, when the
logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_MPERF.

FEH 254 IA32_MTRRCAP (MTRRcap) MTRR Capability (RO) Section 11.11.2.1,
“IA32_MTRR_DEF_TYPE MSR.”

06_01H

7:0 VCNT: The number of variable memory
type ranges in the processor.

8 Fixed range MTRRs are supported when
set.

9 Reserved.

10 WC Supported when set.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 224

11 SMRR Supported when set.

63:12 Reserved.

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector

63:16 Reserved.

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H

179H 377 IA32_MCG_CAP (MCG_CAP) Global Machine Check Capability (RO) 06_01H

7:0 Count: Number of reporting banks.

8 MCG_CTL_P: IA32_MCG_CTL is present if
this bit is set

9 MCG_EXT_P: Extended machine check
state registers are present if this bit is set

10 MCP_CMCI_P: Support for corrected MC
error event is present.

06_01H

11 MCG_TES_P: Threshold-based error status
register are present if this bit is set.

15:12 Reserved

23:16 MCG_EXT_CNT: Number of extended
machine check state registers present.

24 MCG_SER_P: The processor supports
software error recovery if this bit is set.

25 Reserved.

26 MCG_ELOG_P: Indicates that the processor
allows platform firmware to be invoked
when an error is detected so that it may
provide additional platform specific
information in an ACPI format “Generic
Error Data Entry” that augments the data
included in machine check bank registers.

06_3EH

27 MCG_LMCE_P: Indicates that the processor
support extended state in
IA32_MCG_STATUS and associated
MSR necessary to configure Local
Machine Check Exception (LMCE).

06_3EH

63:28 Reserved.

17AH 378 IA32_MCG_STATUS (MCG_STATUS) Global Machine Check Status (R/W0) 06_01H

0 RIPV. Restart IP valid 06_01H

1 EIPV. Error IP valid 06_01H

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 225

2 MCIP. Machine check in progress 06_01H

3 LMCE_S. If IA32_MCG_CAP.LMCE_P
=1

63:4 Reserved.

17BH 379 IA32_MCG_CTL (MCG_CTL) Global Machine Check Control (R/W) 06_01H

180H-
185H

384-
389

Reserved 06_0EH1

186H 390 IA32_PERFEVTSEL0 (PERFEVTSEL0) Performance Event Select Register 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

7:0 Event Select: Selects a performance event
logic unit.

15:8 UMask: Qualifies the microarchitectural
condition to detect on the selected event
logic.

16 USR: Counts while in privilege level is not
ring 0.

17 OS: Counts while in privilege level is ring 0.

18 Edge: Enables edge detection if set.

19 PC: enables pin control.

20 INT: enables interrupt on counter overflow.

21 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

22 EN: enables the corresponding performance
counter to commence counting when this
bit is set.

23 INV: invert the CMASK.

31:24 CMASK: When CMASK is not zero, the
corresponding performance counter
increments each cycle if the event count is
greater than or equal to the CMASK.

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 (PERFEVTSEL1) Performance Event Select Register 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

188H 392 IA32_PERFEVTSEL2 Performance Event Select Register 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 226

189H 393 IA32_PERFEVTSEL3 Performance Event Select Register 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

18AH-
197H

394-
407

Reserved 06_0EH2

198H 408 IA32_PERF_STATUS (RO) 0F_03H

15:0 Current performance State Value

63:16 Reserved.

199H 409 IA32_PERF_CTL (R/W) 0F_03H

15:0 Target performance State Value

31:16 Reserved.

32 IDA Engage. (R/W)

When set to 1: disengages IDA

06_0FH (Mobile only)

63:33 Reserved.

19AH 410 IA32_CLOCK_MODULATION Clock Modulation Control (R/W)

See Section 14.7.3, “Software Controlled
Clock Modulation.”

0F_0H

0 Extended On-Demand Clock Modulation
Duty Cycle:

If CPUID.06H:EAX[5] = 1

3:1 On-Demand Clock Modulation Duty Cycle:
Specific encoded values for target duty
cycle modulation.

4 On-Demand Clock Modulation Enable: Set 1
to enable modulation.

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the processor’s thermal
sensors and thermal monitor.

See Section 14.7.2, “Thermal Monitor.”

0F_0H

0 High-Temperature Interrupt Enable

1 Low-Temperature Interrupt Enable

2 PROCHOT# Interrupt Enable

3 FORCEPR# Interrupt Enable

4 Critical Temperature Interrupt Enable

7:5 Reserved.

14:8 Threshold #1 Value

15 Threshold #1 Interrupt Enable

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 227

22:16 Threshold #2 Value

23 Threshold #2 Interrupt Enable

24 Power Limit Notification Enable If CPUID.06H:EAX[4] = 1

63:25 Reserved.

19CH 412 IA32_THERM_STATUS Thermal Status Information (RO)

Contains status information about the
processor’s thermal sensor and automatic
thermal monitoring facilities.

See Section 14.7.2, “Thermal Monitor”

0F_0H

0 Thermal Status (RO):

1 Thermal Status Log (R/W):

2 PROCHOT # or FORCEPR# event (RO)

3 PROCHOT # or FORCEPR# log (R/WC0)

4 Critical Temperature Status (RO)

5 Critical Temperature Status log (R/WC0)

6 Thermal Threshold #1 Status (RO) If CPUID.01H:ECX[8] = 1

7 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1

8 Thermal Threshold #2 Status (RO) If CPUID.01H:ECX[8] = 1

9 Thermal Threshold #2 log (R/WC0) If CPUID.01H:ECX[8] = 1

10 Power Limitation Status (RO) If CPUID.06H:EAX[4] = 1

11 Power Limitation log (R/WC0) If CPUID.06H:EAX[4] = 1

12 Current Limit Status (RO) If CPUID.06H:EAX[7] = 1

13 Current Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

14 Cross Domain Limit Status (RO) If CPUID.06H:EAX[7] = 1

15 Cross Domain Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

22:16 Digital Readout (RO) If CPUID.06H:EAX[0] = 1

26:23 Reserved.

30:27 Resolution in Degrees Celsius (RO) If CPUID.06H:EAX[0] = 1

31 Reading Valid (RO) If CPUID.06H:EAX[0] = 1

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to
be enabled and disabled.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 228

0 Fast-Strings Enable

When set, the fast-strings feature (for REP
MOVS and REP STORS) is enabled (default);
when clear, fast-strings are disabled.

0F_0H

2:1 Reserved.

3 Automatic Thermal Control Circuit Enable
(R/W)

1 = Setting this bit enables the thermal
control circuit (TCC) portion of the
Intel Thermal Monitor feature. This
allows the processor to automatically
reduce power consumption in
response to TCC activation.

0 = Disabled (default).
Note: In some products clearing this bit
might be ignored in critical thermal
conditions, and TM1, TM2 and adaptive
thermal throttling will still be activated.

0F_0H

6:4 Reserved

7 Performance Monitoring Available (R)

1 = Performance monitoring enabled
0 = Performance monitoring disabled

0F_0H

10:8 Reserved.

11 Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch
trace storage (BTS)

0 = BTS is supported

0F_0H

12 Precise Event Based Sampling (PEBS)
Unavailable (RO)

1 = PEBS is not supported;
0 = PEBS is supported.

06_0FH

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology
Enable (R/W)

0= Enhanced Intel SpeedStep
Technology disabled

1 = Enhanced Intel SpeedStep
Technology enabled

If CPUID.01H: ECX[7] =1

17 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 229

18 ENABLE MONITOR FSM (R/W)

When this bit is set to 0, the MONITOR
feature flag is not set (CPUID.01H:ECX[bit
3] = 0). This indicates that MONITOR/
MWAIT are not supported.

Software attempts to execute MONITOR/
MWAIT will cause #UD when this bit is 0.

When this bit is set to 1 (default),
MONITOR/MWAIT are supported
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag ECX[0] is not set
(CPUID.01H:ECX[bit 0] = 0), the OS must
not attempt to alter this bit. BIOS must
leave it in the default state. Writing this bit
when the SSE3 feature flag is set to 0 may
generate a #GP exception.

0F_03H

21:19 Reserved.

22 Limit CPUID Maxval (R/W)

When this bit is set to 1, CPUID.00H returns
a maximum value in EAX[7:0] of 3.

BIOS should contain a setup question that
allows users to specify when the installed
OS does not support CPUID functions
greater than 3.

Before setting this bit, BIOS must execute
the CPUID.0H and examine the maximum
value returned in EAX[7:0]. If the maximum
value is greater than 3, the bit is supported.

Otherwise, the bit is not supported. Writing
to this bit when the maximum value is
greater than 3 may generate a #GP
exception.

Setting this bit may cause unexpected
behavior in software that depends on the
availability of CPUID leaves greater than 3.

0F_03H

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are
disabled. xTPR messages are optional
messages that allow the processor to
inform the chipset of its priority.

if CPUID.01H:ECX[14] = 1

33:24 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 230

34 XD Bit Disable (R/W)

When set to 1, the Execute Disable Bit
feature (XD Bit) is disabled and the XD Bit
extended feature flag will be clear
(CPUID.80000001H: EDX[20]=0).

When set to a 0 (default), the Execute
Disable Bit feature (if available) allows the
OS to enable PAE paging and take
advantage of data only pages.

BIOS must not alter the contents of this bit
location, if XD bit is not supported. Writing
this bit to 1 when the XD Bit extended
feature flag is set to 0 may generate a #GP
exception.

if
CPUID.80000001H:EDX[2
0] = 1

63:35 Reserved.

1B0H 432 IA32_ENERGY_PERF_BIAS Performance Energy Bias Hint (R/W) if CPUID.6H:ECX[3] = 1

3:0 Power Policy Preference:

0 indicates preference to highest
performance.

15 indicates preference to maximize
energy saving.

63:4 Reserved.

1B1H 433 IA32_PACKAGE_THERM_STATUS Package Thermal Status Information (RO)

Contains status information about the
package’s thermal sensor.

See Section 14.8, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg Thermal Status (RO):

1 Pkg Thermal Status Log (R/W):

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature Status (RO)

5 Pkg Critical Temperature Status log (R/
WC0)

6 Pkg Thermal Threshold #1 Status (RO)

7 Pkg Thermal Threshold #1 log (R/WC0)

8 Pkg Thermal Threshold #2 Status (RO)

9 Pkg Thermal Threshold #1 log (R/WC0)

10 Pkg Power Limitation Status (RO)

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 231

11 Pkg Power Limitation log (R/WC0)

15:12 Reserved.

22:16 Pkg Digital Readout (RO)

63:23 Reserved.

1B2H 434 IA32_PACKAGE_THERM_INTERRUPT Pkg Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the package’s thermal
sensor.

See Section 14.8, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg High-Temperature Interrupt Enable

1 Pkg Low-Temperature Interrupt Enable

2 Pkg PROCHOT# Interrupt Enable

3 Reserved.

4 Pkg Overheat Interrupt Enable

7:5 Reserved.

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt Enable

22:16 Pkg Threshold #2 Value

23 Pkg Threshold #2 Interrupt Enable

24 Pkg Power Limit Notification Enable

63:25 Reserved.

1D9H 473 IA32_DEBUGCTL (MSR_DEBUGCTLA,
MSR_DEBUGCTLB)

Trace/Profile Resource Control (R/W) 06_0EH

0 LBR: Setting this bit to 1 enables the
processor to record a running trace of the
most recent branches taken by the
processor in the LBR stack.

06_01H

1 BTF: Setting this bit to 1 enables the
processor to treat EFLAGS.TF as single-step
on branches instead of single-step on
instructions.

06_01H

5:2 Reserved.

6 TR: Setting this bit to 1 enables branch
trace messages to be sent.

06_0EH

7 BTS: Setting this bit enables branch trace
messages (BTMs) to be logged in a BTS
buffer.

06_0EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 232

8 BTINT: When clear, BTMs are logged in a
BTS buffer in circular fashion. When this bit
is set, an interrupt is generated by the BTS
facility when the BTS buffer is full.

06_0EH

9 1: BTS_OFF_OS: When set, BTS or BTM is
skipped if CPL = 0.

06_0FH

10 BTS_OFF_USR: When set, BTS or BTM is
skipped if CPL > 0.

06_0FH

11 FREEZE_LBRS_ON_PMI: When set, the LBR
stack is frozen on a PMI request.

If CPUID.01H: ECX[15] = 1
and CPUID.0AH: EAX[7:0] >
1

12 FREEZE_PERFMON_ON_PMI: When set,
each ENABLE bit of the global counter
control MSR are frozen (address 3BFH) on a
PMI request

If CPUID.01H: ECX[15] = 1
and CPUID.0AH: EAX[7:0] >
1

13 ENABLE_UNCORE_PMI: When set, enables
the logical processor to receive and
generate PMI on behalf of the uncore.

06_1AH

14 FREEZE_WHILE_SMM: When set, freezes
perfmon and trace messages while in SMM.

if
IA32_PERF_CAPABILITIES[
12] = '1

15 RTM_DEBUG: When set, enables DR7 debug
bit on XBEGIN

If (CPUID.(EAX=07H,
ECX=0):EBX[bit 11] = 1)

63:16 Reserved.

1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address (Writeable only in
SMM)

Base address of SMM memory range.

If IA32_MTRRCAP[SMRR]
= 1

7:0 Type. Specifies memory type of the range.

11:8 Reserved.

31:12 PhysBase.

SMRR physical Base Address.

63:32 Reserved.

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask. (Writeable only in
SMM)

Range Mask of SMM memory range.

If IA32_MTRRCAP[SMRR]
= 1

10:0 Reserved.

11 Valid

Enable range mask.

31:12 PhysMask

SMRR address range mask.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 233

63:32 Reserved.

1F8H 504 IA32_PLATFORM_DCA_CAP DCA Capability (R) 06_0FH

1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-Hint type.

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and Control register. 06_2EH

0 DCA_ACTIVE: Set by HW when DCA is fuse-
enabled and no defeatures are set.

2:1 TRANSACTION

6:3 DCA_TYPE

10:7 DCA_QUEUE_SIZE

12:11 Reserved.

16:13 DCA_DELAY: Writes will update the register
but have no HW side-effect.

23:17 Reserved.

24 SW_BLOCK: SW can request DCA block by
setting this bit.

25 Reserved.

26 HW_BLOCK: Set when DCA is blocked by
HW (e.g. CR0.CD = 1).

31:27 Reserved.

200H 512 IA32_MTRR_PHYSBASE0
(MTRRphysBase0)

See Section 11.11.2.3, “Variable Range
MTRRs.”

06_01H

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 06_01H

202H 514 IA32_MTRR_PHYSBASE1 MTRRphysBase1 06_01H

203H 515 IA32_MTRR_PHYSMASK1 MTRRphysMask1 06_01H

204H 516 IA32_MTRR_PHYSBASE2 MTRRphysBase2 06_01H

205H 517 IA32_MTRR_PHYSMASK2 MTRRphysMask2 06_01H

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 06_01H

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 06_01H

208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 06_01H

209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 06_01H

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 06_01H

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 06_01H

20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 06_01H

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 06_01H

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 06_01H

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 234

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 06_01H

210H 528 IA32_MTRR_PHYSBASE8 MTRRphysBase8 if IA32_MTRRCAP[7:0] > 8

211H 529 IA32_MTRR_PHYSMASK8 MTRRphysMask8 if IA32_MTRRCAP[7:0] > 8

212H 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 if IA32_MTRRCAP[7:0] > 9

213H 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 if IA32_MTRRCAP[7:0] > 9

250H 592 IA32_MTRR_FIX64K_00000 MTRRfix64K_00000 06_01H

258H 600 IA32_MTRR_FIX16K_80000 MTRRfix16K_80000 06_01H

259H 601 IA32_MTRR_FIX16K_A0000 MTRRfix16K_A0000 06_01H

268H 616 IA32_MTRR_FIX4K_C0000
(MTRRfix4K_C0000)

See Section 11.11.2.2, “Fixed Range
MTRRs.”

06_01H

269H 617 IA32_MTRR_FIX4K_C8000 MTRRfix4K_C8000 06_01H

26AH 618 IA32_MTRR_FIX4K_D0000 MTRRfix4K_D0000 06_01H

26BH 619 IA32_MTRR_FIX4K_D8000 MTRRfix4K_D8000 06_01H

26CH 620 IA32_MTRR_FIX4K_E0000 MTRRfix4K_E0000 06_01H

26DH 621 IA32_MTRR_FIX4K_E8000 MTRRfix4K_E8000 06_01H

26EH 622 IA32_MTRR_FIX4K_F0000 MTRRfix4K_F0000 06_01H

26FH 623 IA32_MTRR_FIX4K_F8000 MTRRfix4K_F8000 06_01H

277H 631 IA32_PAT IA32_PAT (R/W) 06_05H

2:0 PA0

7:3 Reserved.

10:8 PA1

15:11 Reserved.

18:16 PA2

23:19 Reserved.

26:24 PA3

31:27 Reserved.

34:32 PA4

39:35 Reserved.

42:40 PA5

47:43 Reserved.

50:48 PA6

55:51 Reserved.

58:56 PA7

63:59 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 235

280H 640 IA32_MC0_CTL2 (R/W) 06_1AH

14:0 Corrected error count threshold.

29:15 Reserved.

30 CMCI_EN

63:31 Reserved.

281H 641 IA32_MC1_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

282H 642 IA32_MC2_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

283H 643 IA32_MC3_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

284H 644 IA32_MC4_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

285H 645 IA32_MC5_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

286H 646 IA32_MC6_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

287H 647 IA32_MC7_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

288H 648 IA32_MC8_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

289H 649 IA32_MC9_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28AH 650 IA32_MC10_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28BH 651 IA32_MC11_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28CH 652 IA32_MC12_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28DH 653 IA32_MC13_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28EH 654 IA32_MC14_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28FH 655 IA32_MC15_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

290H 656 IA32_MC16_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

291H 657 IA32_MC17_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

292H 658 IA32_MC18_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

293H 659 IA32_MC19_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

294H 660 IA32_MC20_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

295H 661 IA32_MC21_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

296H 662 IA32_MC22_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

297H 663 IA32_MC23_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

298H 664 IA32_MC24_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

299H 665 IA32_MC25_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29AH 666 IA32_MC26_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29BH 667 IA32_MC27_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29CH 668 IA32_MC28_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29DH 669 IA32_MC29_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 236

29EH 670 IA32_MC30_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29FH 671 IA32_MC31_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType (R/W) 06_01H

2:0 Default Memory Type

9:3 Reserved.

10 Fixed Range MTRR Enable

11 MTRR Enable

63:12 Reserved.

309H 777 IA32_FIXED_CTR0
(MSR_PERF_FIXED_CTR0)

Fixed-Function Performance Counter 0 (R/
W): Counts Instr_Retired.Any.

If CPUID.0AH: EDX[4:0] > 0

30AH 778 IA32_FIXED_CTR1
(MSR_PERF_FIXED_CTR1)

Fixed-Function Performance Counter 1 0
(R/W): Counts CPU_CLK_Unhalted.Core

If CPUID.0AH: EDX[4:0] > 1

30BH 779 IA32_FIXED_CTR2
(MSR_PERF_FIXED_CTR2)

Fixed-Function Performance Counter 0 0
(R/W): Counts CPU_CLK_Unhalted.Ref

If CPUID.0AH: EDX[4:0] > 2

345H 837 IA32_PERF_CAPABILITIES RO If CPUID.01H: ECX[15] = 1

5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is supported.

13 1: Full width of counter writable via
IA32_A_PMCx.

63:14 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL
(MSR_PERF_FIXED_CTR_CTRL)

Fixed-Function Performance Counter
Control (R/W)

Counter increments while the results of
ANDing respective enable bit in
IA32_PERF_GLOBAL_CTRL with the
corresponding OS or USR bits in this MSR is
true.

If CPUID.0AH: EAX[7:0] > 1

0 EN0_OS: Enable Fixed Counter 0 to count
while CPL = 0.

1 EN0_Usr: Enable Fixed Counter 0 to count
while CPL > 0.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 237

2 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

3 EN0_PMI: Enable PMI when fixed counter 0
overflows.

4 EN1_OS: Enable Fixed Counter 1to count
while CPL = 0.

5 EN1_Usr: Enable Fixed Counter 1to count
while CPL > 0.

6 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

7 EN1_PMI: Enable PMI when fixed counter 1
overflows.

8 EN2_OS: Enable Fixed Counter 2 to count
while CPL = 0.

9 EN2_Usr: Enable Fixed Counter 2 to count
while CPL > 0.

10 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

11 EN2_PMI: Enable PMI when fixed counter 2
overflows.

63:12 Reserved.

38EH 910 IA32_PERF_GLOBAL_STATUS
(MSR_PERF_GLOBAL_STATUS)

Global Performance Counter Status (RO) If CPUID.0AH: EAX[7:0] > 0

0 Ovf_PMC0: Overflow status of IA32_PMC0. If CPUID.0AH: EAX[15:8] >
0

1 Ovf_PMC1: Overflow status of IA32_PMC1. If CPUID.0AH: EAX[15:8] >
1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 238

2 Ovf_PMC2: Overflow status of IA32_PMC2. 06_2EH

3 Ovf_PMC3: Overflow status of IA32_PMC3. 06_2EH

31:4 Reserved.

32 Ovf_FixedCtr0: Overflow status of
IA32_FIXED_CTR0.

If CPUID.0AH: EAX[7:0] > 1

33 Ovf_FixedCtr1: Overflow status of
IA32_FIXED_CTR1.

If CPUID.0AH: EAX[7:0] > 1

34 Ovf_FixedCtr2: Overflow status of
IA32_FIXED_CTR2.

If CPUID.0AH: EAX[7:0] > 1

54:35 Reserved.

55 Trace_ToPA_PMI: A PMI occurred due to a
ToPA entry memory buffer was completely
filled.

If IA32_RTIT_CTL.ToPA = 1

60:56 Reserved.

61 Ovf_Uncore: Uncore counter overflow
status.

If CPUID.0AH: EAX[7:0] > 2

62 OvfBuf: DS SAVE area Buffer overflow
status.

If CPUID.0AH: EAX[7:0] > 0

63 CondChgd: status bits of this register has
changed.

If CPUID.0AH: EAX[7:0] > 0

38FH 911 IA32_PERF_GLOBAL_CTRL
(MSR_PERF_GLOBAL_CTRL)

Global Performance Counter Control (R/W)

Counter increments while the result of
ANDing respective enable bit in this MSR
with the corresponding OS or USR bits in
the general-purpose or fixed counter
control MSR is true.

If CPUID.0AH: EAX[7:0] > 0

0 EN_PMC0 If CPUID.0AH: EAX[7:0] > 0

1 EN_PMC1 If CPUID.0AH: EAX[7:0] > 0

31:2 Reserved.

32 EN_FIXED_CTR0 If CPUID.0AH: EAX[7:0] > 1

33 EN_FIXED_CTR1 If CPUID.0AH: EAX[7:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH: EAX[7:0] > 1

63:35 Reserved.

390H 912 IA32_PERF_GLOBAL_OVF_CTRL
(MSR_PERF_GLOBAL_OVF_CTRL)

Global Performance Counter Overflow
Control (R/W)

If CPUID.0AH: EAX[7:0] > 0

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[7:0] > 0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[7:0] > 0

31:2 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 239

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EAX[7:0] > 1

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EAX[7:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EAX[7:0] > 1

60:35 Reserved.

61 Set 1 to Clear Ovf_Uncore: bit. 06_2EH

62 Set 1 to Clear OvfBuf: bit. If CPUID.0AH: EAX[7:0] > 0

63 Set to 1to clear CondChgd: bit. If CPUID.0AH: EAX[7:0] > 0

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0. 06_0FH

1-3 Reserved or Model specific.

31:4 Reserved.

35-32 Reserved or Model specific.

63:36 Reserved.

400H 1024 IA32_MC0_CTL MC0_CTL 06_01H

401H 1025 IA32_MC0_STATUS MC0_STATUS 06_01H

402H 1026 IA32_MC0_ADDR1 MC0_ADDR 06_01H

403H 1027 IA32_MC0_MISC MC0_MISC 06_01H

404H 1028 IA32_MC1_CTL MC1_CTL 06_01H

405H 1029 IA32_MC1_STATUS MC1_STATUS 06_01H

406H 1030 IA32_MC1_ADDR2 MC1_ADDR 06_01H

407H 1031 IA32_MC1_MISC MC1_MISC 06_01H

408H 1032 IA32_MC2_CTL MC2_CTL 06_01H

409H 1033 IA32_MC2_STATUS MC2_STATUS 06_01H

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR 06_01H

40BH 1035 IA32_MC2_MISC MC2_MISC 06_01H

40CH 1036 IA32_MC3_CTL MC3_CTL 06_01H

40DH 1037 IA32_MC3_STATUS MC3_STATUS 06_01H

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR 06_01H

40FH 1039 IA32_MC3_MISC MC3_MISC 06_01H

410H 1040 IA32_MC4_CTL MC4_CTL 06_01H

411H 1041 IA32_MC4_STATUS MC4_STATUS 06_01H

412H 1042 IA32_MC4_ADDR1 MC4_ADDR 06_01H

413H 1043 IA32_MC4_MISC MC4_MISC 06_01H

414H 1044 IA32_MC5_CTL MC5_CTL 06_0FH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 240

415H 1045 IA32_MC5_STATUS MC5_STATUS 06_0FH

416H 1046 IA32_MC5_ADDR1 MC5_ADDR 06_0FH

417H 1047 IA32_MC5_MISC MC5_MISC 06_0FH

418H 1048 IA32_MC6_CTL MC6_CTL 06_1DH

419H 1049 IA32_MC6_STATUS MC6_STATUS 06_1DH

41AH 1050 IA32_MC6_ADDR1 MC6_ADDR 06_1DH

41BH 1051 IA32_MC6_MISC MC6_MISC 06_1DH

41CH 1052 IA32_MC7_CTL MC7_CTL 06_1AH

41DH 1053 IA32_MC7_STATUS MC7_STATUS 06_1AH

41EH 1054 IA32_MC7_ADDR1 MC7_ADDR 06_1AH

41FH 1055 IA32_MC7_MISC MC7_MISC 06_1AH

420H 1056 IA32_MC8_CTL MC8_CTL 06_1AH

421H 1057 IA32_MC8_STATUS MC8_STATUS 06_1AH

422H 1058 IA32_MC8_ADDR1 MC8_ADDR 06_1AH

423H 1059 IA32_MC8_MISC MC8_MISC 06_1AH

424H 1060 IA32_MC9_CTL MC9_CTL 06_2EH

425H 1061 IA32_MC9_STATUS MC9_STATUS 06_2EH

426H 1062 IA32_MC9_ADDR1 MC9_ADDR 06_2EH

427H 1063 IA32_MC9_MISC MC9_MISC 06_2EH

428H 1064 IA32_MC10_CTL MC10_CTL 06_2EH

429H 1065 IA32_MC10_STATUS MC10_STATUS 06_2EH

42AH 1066 IA32_MC10_ADDR1 MC10_ADDR 06_2EH

42BH 1067 IA32_MC10_MISC MC10_MISC 06_2EH

42CH 1068 IA32_MC11_CTL MC11_CTL 06_2EH

42DH 1069 IA32_MC11_STATUS MC11_STATUS 06_2EH

42EH 1070 IA32_MC11_ADDR1 MC11_ADDR 06_2EH

42FH 1071 IA32_MC11_MISC MC11_MISC 06_2EH

430H 1072 IA32_MC12_CTL MC12_CTL 06_2EH

431H 1073 IA32_MC12_STATUS MC12_STATUS 06_2EH

432H 1074 IA32_MC12_ADDR1 MC12_ADDR 06_2EH

433H 1075 IA32_MC12_MISC MC12_MISC 06_2EH

434H 1076 IA32_MC13_CTL MC13_CTL 06_2EH

435H 1077 IA32_MC13_STATUS MC13_STATUS 06_2EH

436H 1078 IA32_MC13_ADDR1 MC13_ADDR 06_2EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 241

437H 1079 IA32_MC13_MISC MC13_MISC 06_2EH

438H 1080 IA32_MC14_CTL MC14_CTL 06_2EH

439H 1081 IA32_MC14_STATUS MC14_STATUS 06_2EH

43AH 1082 IA32_MC14_ADDR1 MC14_ADDR 06_2EH

43BH 1083 IA32_MC14_MISC MC14_MISC 06_2EH

43CH 1084 IA32_MC15_CTL MC15_CTL 06_2EH

43DH 1085 IA32_MC15_STATUS MC15_STATUS 06_2EH

43EH 1086 IA32_MC15_ADDR1 MC15_ADDR 06_2EH

43FH 1087 IA32_MC15_MISC MC15_MISC 06_2EH

440H 1088 IA32_MC16_CTL MC16_CTL 06_2EH

441H 1089 IA32_MC16_STATUS MC16_STATUS 06_2EH

442H 1090 IA32_MC16_ADDR1 MC16_ADDR 06_2EH

443H 1091 IA32_MC16_MISC MC16_MISC 06_2EH

444H 1092 IA32_MC17_CTL MC17_CTL 06_2EH

445H 1093 IA32_MC17_STATUS MC17_STATUS 06_2EH

446H 1094 IA32_MC17_ADDR1 MC17_ADDR 06_2EH

447H 1095 IA32_MC17_MISC MC17_MISC 06_2EH

448H 1096 IA32_MC18_CTL MC18_CTL 06_2EH

449H 1097 IA32_MC18_STATUS MC18_STATUS 06_2EH

44AH 1098 IA32_MC18_ADDR1 MC18_ADDR 06_2EH

44BH 1099 IA32_MC18_MISC MC18_MISC 06_2EH

44CH 1100 IA32_MC19_CTL MC19_CTL 06_2EH

44DH 1101 IA32_MC19_STATUS MC19_STATUS 06_2EH

44EH 1102 IA32_MC19_ADDR1 MC19_ADDR 06_2EH

44FH 1103 IA32_MC19_MISC MC19_MISC 06_2EH

450H 1104 IA32_MC20_CTL MC20_CTL 06_2EH

451H 1105 IA32_MC20_STATUS MC20_STATUS 06_2EH

452H 1106 IA32_MC20_ADDR1 MC20_ADDR 06_2EH

453H 1107 IA32_MC20_MISC MC20_MISC 06_2EH

454H 1108 IA32_MC21_CTL MC21_CTL 06_2EH

455H 1109 IA32_MC21_STATUS MC21_STATUS 06_2EH

456H 1110 IA32_MC21_ADDR1 MC21_ADDR 06_2EH

457H 1111 IA32_MC21_MISC MC21_MISC 06_2EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 242

480H 1152 IA32_VMX_BASIC Reporting Register of Basic VMX
Capabilities (R/O)

See Appendix A.1, “Basic VMX Information.”

If CPUID.01H:ECX.[bit 5] =
1

481H 1153 IA32_VMX_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If CPUID.01H:ECX.[bit 5] =
1

482H 1154 IA32_VMX_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-based VM-execution Controls
(R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If CPUID.01H:ECX.[bit 5] =
1

483H 1155 IA32_VMX_EXIT_CTLS Capability Reporting Register of VM-exit
Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If CPUID.01H:ECX.[bit 5] =
1

484H 1156 IA32_VMX_ENTRY_CTLS Capability Reporting Register of VM-
entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If CPUID.01H:ECX.[bit 5] =
1

485H 1157 IA32_VMX_MISC Reporting Register of Miscellaneous
VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data.”

If CPUID.01H:ECX.[bit 5] =
1

486H 1158 IA32_VMX_CR0_FIXED0 Capability Reporting Register of CR0 Bits
Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[bit 5] =
1

487H 1159 IA32_VMX_CR0_FIXED1 Capability Reporting Register of CR0 Bits
Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[bit 5] =
1

488H 1160 IA32_VMX_CR4_FIXED0 Capability Reporting Register of CR4 Bits
Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[bit 5] =
1

489H 1161 IA32_VMX_CR4_FIXED1 Capability Reporting Register of CR4 Bits
Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[bit 5] =
1

48AH 1162 IA32_VMX_VMCS_ENUM Capability Reporting Register of VMCS
Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration.”

If CPUID.01H:ECX.[bit 5] =
1

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Capability Reporting Register of
Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3.3, “Secondary Processor-
Based VM-Execution Controls.”

If (CPUID.01H:ECX.[bit 5]
and
IA32_VMX_PROCBASED_C
TLS[bit 63])

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 243

48CH 1164 IA32_VMX_EPT_VPID_CAP Capability Reporting Register of EPT and
VPID (R/O)

See Appendix A.10, “VPID and EPT
Capabilities.”

If (CPUID.01H:ECX.[bit 5],
IA32_VMX_PROCBASED_C
TLS[bit 63], and either
IA32_VMX_PROCBASED_C
TLS2[bit 33] or
IA32_VMX_PROCBASED_C
TLS2[bit 37])

48DH 1165 IA32_VMX_TRUE_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Flex Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If (CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-based VM-execution Flex
Controls (R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Capability Reporting Register of VM-exit
Flex Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Capability Reporting Register of VM-
entry Flex Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

491H 1169 IA32_VMX_VMFUNC Capability Reporting Register of VM-
function Controls (R/O)

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

4C1H 1217 IA32_A_PMC0 Full Width Writable IA32_PMC0 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
0) &

IA32_PERF_CAPABILITIES[
13] = 1

4C2H 1218 IA32_A_PMC1 Full Width Writable IA32_PMC1 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
1) &

IA32_PERF_CAPABILITIES[
13] = 1

4C3H 1219 IA32_A_PMC2 Full Width Writable IA32_PMC2 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
2) &

IA32_PERF_CAPABILITIES[
13] = 1

4C4H 1220 IA32_A_PMC3 Full Width Writable IA32_PMC3 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
3) &

IA32_PERF_CAPABILITIES[
13] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 244

4C5H 1221 IA32_A_PMC4 Full Width Writable IA32_PMC4 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
4) &

IA32_PERF_CAPABILITIES[
13] = 1

4C6H 1222 IA32_A_PMC5 Full Width Writable IA32_PMC5 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
5) &

IA32_PERF_CAPABILITIES[
13] = 1

4C7H 1223 IA32_A_PMC6 Full Width Writable IA32_PMC6 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
6) &

IA32_PERF_CAPABILITIES[
13] = 1

4C8H 1224 IA32_A_PMC7 Full Width Writable IA32_PMC7 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
7) &

IA32_PERF_CAPABILITIES[
13] = 1

4D0H 1232 IA32_MCG_EXT_CTL (R/W) If IA32_MCG_CAP.LMCE_P
=1

0 LMCE_EN.

63:1 Reserved.

560H 1376 IA32_RTIT_OUTPUT_BASE Trace Output Base Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)

6:0 Reserved

MAXPHYADDR3-1:7 Base physical address of the current ToPA
table.

63:MAXPHYADDR Reserved.

561H 1377 IA32_RTIT_OUTPUT_MASK_PTRS Trace Output Mask Pointers Register (R/
W)

If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)

6:0 Reserved

31:7 MaskOrTableOffset

63:32 Output Offset.

570H 1392 IA32_RTIT_CTL Trace Packet Control Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)

0 TraceEn

1 Reserved,

2 OS

3 User

6:4 Reserved,

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 245

7 CR3 filter

8 ToPA

9 Reserved,

10 TSCEn

11 DisRETC

12 Reserved,

13 BranchEn

63:14 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Tracing Status Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)

0 Reserved,

1 ContexEn, (writes ignored)

2 TriggerEn, (writes ignored)

3 Reserved

4 Error

5 Stopped

63:6 Reserved.

572H 1394 IA32_RTIT_CR3_MATCH Trace Filter CR3 Match Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)

4:0 Reserved

63:5 CR3[63:5] value to match

600H 1536 IA32_DS_AREA DS Save Area (R/W)

Points to the linear address of the first
byte of the DS buffer management area,
which is used to manage the BTS and PEBS
buffers.

See Section 18.13.4, “Debug Store (DS)
Mechanism.”

0F_0H

63:0 The linear address of the first byte of the
DS buffer management area, if IA-32e
mode is active.

31:0 The linear address of the first byte of the
DS buffer management area, if not in IA-
32e mode.

63:32 Reserved if not in IA-32e mode.

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s TSC Deadline
Mode (R/W)

If(CPUID.01H:ECX.[bit 24]
= 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 246

770H 1904 IA32_PM_ENABLE Enable/disable HWP (R/W) If(CPUID.06H:EAX.[bit 7] =
1

0 HWP_ENABLE (R/W1-Once).

See Section 14.4.2, “Enabling HWP”

If(CPUID.06H:EAX.[bit 7] =
1

63:1 Reserved.

771H 1905 IA32_HWP_CAPABILITIES HWP Performance Range Enumeration
(RO)

If(CPUID.06H:EAX.[bit 7] =
1

7:0 Highest_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If(CPUID.06H:EAX.[bit 7] =
1

15:8 Guaranteed_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If(CPUID.06H:EAX.[bit 7] =
1

23:16 Most_Efficient_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If(CPUID.06H:EAX.[bit 7] =
1

31:24 Lowest_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If(CPUID.06H:EAX.[bit 7] =
1

63:32 Reserved.

772H 1906 IA32_HWP_REQUEST_PKG Power Management Control Hints for All
Logical Processors in a Package (R/W)

If(CPUID.06H:EAX.[bit 11]
= 1

7:0 Minimum_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1

15:8 Maximum_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1

23:16 Desired_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1

31:24 Energy_Performance_Preference

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1 and

CPUID.06HEAX.[bit 10] = 1

41:32 Activity_Window

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1 and

CPUID.06HEAX.[bit 9] = 1

63:42 Reserved.

773H 1907 IA32_HWP_INTERRUPT Control HWP Native Interrupts (R/W) If(CPUID.06H:EAX.[bit 8] =
1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 247

0 EN_Guaranteed_Performance_Change.

See Section 14.4.6, “HWP Notifications”

If(CPUID.06H:EAX.[bit 8] =
1

1 EN_Excursion_Minimum.

See Section 14.4.6, “HWP Notifications”

If(CPUID.06H:EAX.[bit 8] =
1

63:2 Reserved.

774H 1908 IA32_HWP_REQUEST Power Management Control Hints to a
Logical Processor (R/W)

If(CPUID.06H:EAX.[bit 7] =
1

7:0 Minimum_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 7] =
1

15:8 Maximum_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 7] =
1

23:16 Desired_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 7] =
1

31:24 Energy_Performance_Preference

See Section 14.4.4, “Managing HWP”

If CPUID.06HEAX.[bit 7] =
1 and (CPUID.06H:EAX.[bit
10] = 1

41:32 Activity_Window

See Section 14.4.4, “Managing HWP”

If CPUID.06HEAX.[bit 7] =
1 and (CPUID.06H:EAX.[bit
9] = 1

42 Package_Control

See Section 14.4.4, “Managing HWP”

IfCPUID.06HEAX.[bit 7] = 1
and (CPUID.06H:EAX.[bit
11] = 1

63:43 Reserved.

777H 1911 IA32_HWP_STATUS Log bits indicating changes to
Guaranteed & excursions to Minimum (R/
W)

If(CPUID.06H:EAX.[bit 7] =
1

0 Guaranteed_Performance_Change (R/
WC0).

See Section 14.4.5, “HWP Feedback”

If(CPUID.06H:EAX.[bit 7] =
1

1 Reserved.

2 Excursion_To_Minimum (R/WC0).

See Section 14.4.5, “HWP Feedback”

If(CPUID.06H:EAX.[bit 7] =
1

63:3 Reserved.

802H 2050 IA32_X2APIC_APICID x2APIC ID Register (R/O)

See x2APIC Specification

If (CPUID.01H:ECX.[bit 21]
= 1)

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register (R/O) If (CPUID.01H:ECX.[bit 21]
= 1)

808H 2056 IA32_X2APIC_TPR x2APIC Task Priority Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 248

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority Register (R/O) If (CPUID.01H:ECX.[bit 21]
= 1)

80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register (W/O) If (CPUID.01H:ECX.[bit 21]
= 1)

80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination Register (R/
O)

If (CPUID.01H:ECX.[bit 21]
= 1)

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt Vector
Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register Bits 31:0 (R/
O)

If (CPUID.01H:ECX.[bit 21]
= 1)

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register Bits 63:32
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register Bits 95:64
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register Bits 127:96
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register Bits 159:128
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register Bits 191:160
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register Bits 223:192
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register Bits 255:224
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode Register Bits 31:0
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode Register Bits 63:32
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode Register Bits 95:64
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode Register Bits
127:96 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode Register Bits
159:128 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode Register Bits
191:160 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode Register Bits
223:192 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode Register Bits
255:224 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 249

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request Register Bits
31:0 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request Register Bits
63:32 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request Register Bits
95:64 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request Register Bits
127:96 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request Register Bits
159:128 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request Register Bits
191:160 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request Register Bits
223:192 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request Register Bits
255:224 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

828H 2088 IA32_X2APIC_ESR x2APIC Error Status Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected Machine Check
Interrupt Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command Register (R/
W)

If (CPUID.01H:ECX.[bit 21]
= 1)

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer Interrupt Register (R/
W)

If (CPUID.01H:ECX.[bit 21]
= 1)

833H 2099 IA32_X2APIC_LVT_THERMAL x2APIC LVT Thermal Sensor Interrupt
Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance Monitor
Interrupt Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0 Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1 Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

837H 2103 IA32_X2APIC_LVT_ERROR x2APIC LVT Error Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

838H 2104 IA32_X2APIC_INIT_COUNT x2APIC Initial Count Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

839H 2105 IA32_X2APIC_CUR_COUNT x2APIC Current Count Register (R/O) If (CPUID.01H:ECX.[bit 21]
= 1)

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide Configuration Register (R/
W)

If (CPUID.01H:ECX.[bit 21]
= 1)

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 250

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register (W/O) If (CPUID.01H:ECX.[bit 21]
= 1)

C80H 3200 IA32_DEBUG_INTERFACE Silicon Debug Feature Control (R/W) If(CPUID.01H:ECX.[bit 11]
= 1

0 Enable (R/W).

BIOS set 1 to enable Silicon debug features.
Default is 0

If(CPUID.01H:ECX.[bit 11]
= 1

29:1 Reserved.

30 Lock (R/W): If 1, locks any further change
to the MSR. The lock bit is set automatically
on the first SMI assertion even if not
explicitly set by BIOS. Default is 0.

If(CPUID.01H:ECX.[bit 11]
= 1

31 Debug Occurred (R/O): This “sticky bit” is
set by hardware to indicate the status of
bit 0. Default is 0.

If(CPUID.01H:ECX.[bit 11]
= 1

63:32 Reserved.

C8DH 3213 IA32_QM_EVTSEL Monitoring Event Select Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 12] = 1)

7:0 Event ID: ID of a supported monitoring
event to report via IA32_QM_CTR.

31: 8 Reserved.

N+31:32 Resource Monitoring ID: ID for monitoring
hardware to report monitored data via
IA32_QM_CTR.

N = Ceil (Log2 (
CPUID.(EAX= 0FH,
ECX=0H).EBX[31:0] +1))

63:N+32 Reserved.

C8EH 3214 IA32_QM_CTR Monitoring Counter Register (R/O) If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 12] = 1)

61:0 Resource Monitored Data

62 Unavailable: If 1, indicates data for this
RMID is not available or not monitored for
this resource or RMID.

63 Error: If 1, indicates and unsupported RMID
or event type was written to
IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC Resource Association Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 12] = 1)

N-1:0 Resource Monitoring ID (R/W): ID for
monitoring hardware to track internal
operation, e.g. memory access.

N = Ceil (Log2 (
CPUID.(EAX= 0FH,
ECX=0H).EBX[31:0] +1))

31:N Reserved

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 251

63:32 COS (R/W). The class of service
(COS) to enforce (on writes);
returns the current COS when
read.

If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 15] = 1)

C90H -
D8FH

Reserved MSR Address Space for
Platform Enforcement Mask Registers

See Section 17.15.2.1, “Enumeration and
Detection Support of Cache Allocation
Technology”

C90H 3216 IA32_L3_MASK_0 L3 CQE Mask for COS0 (R/W) If (CPUID.(10H, 0):EBX[bit
1] != 0)

31:0 Capacity Bit Mask (R/W).

63:32 Reserved.

C90H+
n

3216+n IA32_L3_MASK_n L3 CQE Mask for COSn (R/W) n = CPUID.(10H,
1):EDX[15:0]

31:0 Capacity Bit Mask (R/W).

63:32 Reserved.

DA0H 3488 IA32_XSS Extended Supervisor State Mask (R/W) If(CPUID.(0DH, 1):EAX.[bit
3] = 1

7:0 Reserved

8 Trace Packet Configuration State (R/W).

63:9 Reserved.

DB0H 3504 IA32_PKG_HDC_CTL Package Level Enable/disable HDC (R/W) If(CPUID.06H:EAX.[bit 13]
= 1

0 HDC_Pkg_Enable (R/W).

Force HDC idling or wake up HDC-idled
logical processors in the package. See
Section 14.5.2, “Package level Enabling
HDC”

If(CPUID.06H:EAX.[bit 13]
= 1

63:1 Reserved.

DB1H 3505 IA32_PM_CTL1 Enable/disable HWP (R/W) If(CPUID.06H:EAX.[bit 13]
= 1

0 HDC_Allow_Block (R/W)

Allow/Block this logical processor for
package level HDC control. See Section
14.5.3

If(CPUID.06H:EAX.[bit 13]
= 1

63:1 Reserved.

DB2H 3506 IA32_THREAD_STALL Per-Logical_Processor HDC Idle
Residency (R/0)

If(CPUID.06H:EAX.[bit 13]
= 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 252

63:0 Stall_Cycle_Cnt (R/W)

Stalled cycles due to HDC forced idle on this
logical processor. See Section 14.5.4.1

If(CPUID.06H:EAX.[bit 13]
= 1

4000_
0000H
-
4000_
00FFH

Reserved MSR Address Space All existing and future processors will
not implement MSR in this range.

C000_
0080H

IA32_EFER Extended Feature Enables If (
CPUID.80000001.EDX.[bit
20] or
CPUID.80000001.EDX.[bit
29])

0 SYSCALL Enable: IA32_EFER.SCE (R/W)

Enables SYSCALL/SYSRET instructions in
64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable: IA32_EFER.LME (R/
W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active: IA32_EFER.LMA (R)

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable:
IA32_EFER.NXE (R/W)

63:12 Reserved.

C000_
0081H

IA32_STAR System Call Target Address (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0082H

IA32_LSTAR IA-32e Mode System Call Target Address
(R/W)

If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0084H

IA32_FMASK System Call Flag Mask (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0100H

IA32_FS_BASE Map of BASE Address of FS (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0101H

IA32_GS_BASE Map of BASE Address of GS (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 253

...

35.4 MSRS IN THE PROCESSORS BASED ON SILVERMONT
MICROARCHITECTURE

Table 35-6 lists model-specific registers (MSRs) for Intel processors based on the Silvermont microarchitecture
These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_37H, 06_4AH, 06_4DH,
06_5AH, and 06_5DH, see Table 35-1.

The column “Scope” lists the core/shared/package granularity of sharing in the Silvermont microarchitecture.
“Core” means each processor core has a separate MSR, or a bit field not shared with another processor core.
“Shared” means the MSR or the bit field is shared by more than one processor cores in the physical package.
“Package” means all processor cores in the physical package share the same MSR or bit interface.

C000_
0102H

IA32_KERNEL_GS_BASE Swap Target of BASE Address of GS (R/
W)

If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0103H

IA32_TSC_AUX Auxiliary TSC (RW) If CPUID.80000001H:
EDX[27] = 1

31:0 AUX: Auxiliary signature of TSC

63:32 Reserved.
NOTES:

1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are supported, software must treat them as
model-specific. Starting with Intel Core Duo processors, MSR addresses 180H-185H, 188H-197H are reserved.

2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. See Section 15.3.2.3 and Section
15.3.2.4 for more information.

3. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

0H 0 IA32_P5_MC_ADDR Shared See Section 35.20, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Shared See Section 35.20, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Core See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
andTable 35-2

10H 16 IA32_TIME_STAMP_
COUNTER

Core See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R)
See Table 35-2.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 254

7:0 Reserved.

12:8 Maximum Qualified Ratio (R)

The maximum allowed bus ratio.

49:13 Reserved.

52:50 See Table 35-2

63:33 Reserved.

1BH 27 IA32_APIC_BASE Core See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W) Enables and
disables processor features;

(R) indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

3 AERR# Drive Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

4 BERR# Enable for initiator bus requests (R/W)

1 = Enabled; 0 = Disabled
Always 0.

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

8 Reserved.

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

10 AERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

11 Reserved.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 255

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

Always 00B.

19: 18 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio (R/O)

34H 52 MSR_SMI_COUNT Core SMI Counter (R/O)

31:0 SMI Count (R/O)

Running count of SMI events since last RESET.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Core Control Features in Intel 64Processor (R/W)

See Table 35-2.

0 Lock (R/WL)

1 Reserved

2 Enable VMX outside SMX operation (R/WL)

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Core Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the source
instruction for one of the last eight branches, exceptions, or
interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.11, “Last Branch, Interrupt, and Exception Recording

(Pentium M Processors).”

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Core Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Core Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Core Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 256

44H 68 MSR_
LASTBRANCH_4_FROM_IP

Core Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_FROM_IP

Core Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_FROM_IP

Core Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_FROM_IP

Core Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_TO_IP

Core Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the
destination instruction for one of the last eight branches,
exceptions, or interrupts taken by the processor.

61H 97 MSR_
LASTBRANCH_1_TO_IP

Core Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

62H 98 MSR_
LASTBRANCH_2_TO_IP

Core Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

63H 99 MSR_
LASTBRANCH_3_TO_IP

Core Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

64H 100 MSR_
LASTBRANCH_4_TO_IP

Core Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

65H 101 MSR_
LASTBRANCH_5_TO_IP

Core Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

66H 102 MSR_
LASTBRANCH_6_TO_IP

Core Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

67H 103 MSR_
LASTBRANCH_7_TO_IP

Core Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Core BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Core Performance counter register

See Table 35-2.

C2H 194 IA32_PMC1 Core Performance Counter Register

See Table 35-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Silvermont microarchitecture:

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 257

2:0 • 100B: 080.0 MHz
• 000B: 083.3 MHz
• 001B: 100.0 MHz
• 010B: 133.3 MHz
• 011B: 116.7 MHz

63:3 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Shared C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

100b: C4

110b: C6

111b: C7 (Silvermont only).

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Shared Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 258

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to
be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

100b - C4 is the max C-State to include

110b - C6 is the max C-State to include

111b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Core Maximum Performance Frequency Clock Count (RW)

See Table 35-2.

E8H 232 IA32_APERF Core Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Core Memory Type Range Register (R)

See Table 35-2.

11EH 281 MSR_BBL_CR_CTL3 Shared

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Core See Table 35-2.

175H 373 IA32_SYSENTER_ESP Core See Table 35-2.

176H 374 IA32_SYSENTER_EIP Core See Table 35-2.

179H 377 IA32_MCG_CAP Core See Table 35-2.

17AH 378 IA32_MCG_STATUS Core

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 259

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Core See Table 35-2.

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 Reserved

22 EN

23 INV

31:24 CMASK

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 Core See Table 35-2.

198H 408 IA32_PERF_STATUS Shared See Table 35-2.

199H 409 IA32_PERF_CTL Core See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Core Clock Modulation (R/W)

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-2.

1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 260

0 Core Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Shared Automatic Thermal Control Circuit Enable (R/W)

See Table 35-2.

6:4 Reserved.

7 Core Performance Monitoring Available (R)

See Table 35-2.

10:8 Reserved.

11 Core Branch Trace Storage Unavailable (RO)

See Table 35-2.

12 Core Precise Event Based Sampling Unavailable (RO)

See Table 35-2.

15:13 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-2.

18 Core ENABLE MONITOR FSM (R/W)

See Table 35-2.

21:19 Reserved.

22 Core Limit CPUID Maxval (R/W)

See Table 35-2.

23 Shared xTPR Message Disable (R/W)

See Table 35-2.

33:24 Reserved.

34 Core XD Bit Disable (R/W)

See Table 35-2.

37:35 Reserved.

38 Shared Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 261

1A2H 418 MSR_
TEMPERATURE_TARGET

Package

15:0 Reserved.

23:16 Temperature Target (R)

The default thermal throttling or PROCHOT# activation
temperature in degree C, The effective temperature for thermal
throttling or PROCHOT# activation is “Temperature Target” +
“Target Offset”

29:24 Target Offset (R/W)

Specifies an offset in degrees C to adjust the throttling and
PROCHOT# activation temperature from the default target
specified in TEMPERATURE_TARGET (bits 23:16).

63:30 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Shared Offcore Response Event Select Register (R/W)

1A7H 423 MSR_OFFCORE_RSP_1 Shared Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode (RW)

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved

1B0H 432 IA32_ENERGY_PERF_BIAS Core See Table 35-2.

1C9H 457 MSR_LASTBRANCH_TOS Core Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-2) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Core Debug Control (R/W)

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Core Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 262

1DEH 478 MSR_LER_TO_LIP Core Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

200H 512 IA32_MTRR_PHYSBASE0 Core See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Core See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Core See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Core See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Core See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Core See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Core See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Core See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Core See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Core See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Core See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Core See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Core See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Core See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Core See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Core See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Core See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Core See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Core See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Core See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Core See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Core See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Core See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Core See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Core See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Core See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Core See Table 35-2.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 263

277H 631 IA32_PAT Core See Table 35-2.

2FFH 767 IA32_MTRR_DEF_TYPE Core Default Memory Types (R/W)

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Core Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Core Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Core Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Core See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Core Fixed-Function-Counter Control Register (R/W)

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Core See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

38FH 911 IA32_PERF_GLOBAL_CTRL Core See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Core See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Core See Table 35-2. See Section 18.4.4, “Precise Event Based Sampling
(PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

3FAH 1018 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Counts at the TSC Frequency.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Counts at the TSC Frequency.

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 264

402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40CH 1036 MSR_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

4OEH 1038 MSR_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 265

480H 1152 IA32_VMX_BASIC Core Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Core Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Core Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Core Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Core Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Core Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Core Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Core Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Core Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Core Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Core Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Core Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 266

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Core Capability Reporting Register of EPT and VPID (R/O)

See Table 35-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Core Capability Reporting Register of Pin-based VM-execution Flex
Controls (R/O)

See Table 35-2

48EH 1166 IA32_VMX_TRUE_PROCBA
SED_CTLS

Core Capability Reporting Register of Primary Processor-based
VM-execution Flex Controls (R/O)

See Table 35-2

48FH 1167 IA32_VMX_TRUE_EXIT_CT
LS

Core Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 35-2

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Core Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 35-2

491H 1169 IA32_VMX_FMFUNC Core Capability Reporting Register of VM-function Controls (R/O)

See Table 35-2

4C1H 1217 IA32_A_PMC0 Core See Table 35-2.

4C2H 1218 IA32_A_PMC1 Core See Table 35-2.

600H 1536 IA32_DS_AREA Core DS Save Area (R/W)

See Table 35-2.

See Section 18.13.4, “Debug Store (DS) Mechanism.”

660H 1632 MSR_CORE_C1_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C1 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C1
states. Counts at the TSC frequency.

6E0H 1760 IA32_TSC_DEADLINE Core TSC Target of Local APIC’s TSC Deadline Mode (R/W)

See Table 35-2

C000_
0080H

IA32_EFER Core Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Core System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Core IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Core System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Core Map of BASE Address of FS (R/W)

See Table 35-2.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 267

Table 35-7 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor E3000 Series (CPUID
signature with DisplayFamily_DisplayModel of 06_37H) and future Intel Atom processors (CPUID signatures with
DisplayFamily_DisplayModel of 06_4AH, 06_5AH, 06_5DH).

C000_
0101H

IA32_GS_BASE Core Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Core Swap Target of BASE Address of GS (R/W) See Table 35-2.

C000_
0103H

IA32_TSC_AUX Core AUXILIARY TSC Signature. (R/W) See Table 35-2

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Table 35-7 Specific MSRs Supported by Intel® Atom™ Processors with CPUID Signature 06_37H, 06_4AH,
06_5AH, 06_5DH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.9.1, “RAPL Interfaces.”

3:0 Power Units.

Power related information (in milliWatts) is based on the multiplier,
2^PU; where PU is an unsigned integer represented by bits 3:0.
Default value is 0101b, indicating power unit is in 32 milliWatts
increment.

7:4 Reserved

12:8 Energy Status Units.

Energy related information (in microJoules) is based on the
multiplier, 2^ESU; where ESU is an unsigned integer represented
by bits 12:8. Default value is 00101b, indicating energy unit is in
32 microJoules increment.

15:13 Reserved

19:16 Time Unit.

The value is 0000b, indicating time unit is in one second.

63:20 Reserved

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

14:0 Package Power Limit #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.” and
MSR_RAPL_POWER_UNIT in Table 35-7.

15 Enable Power Limit #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 268

Table 35-8 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor E3000 Series (CPUID
signature with DisplayFamily_DisplayModel of 06_37H).

Table 35-9 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor C2000 Series (CPUID
signature with DisplayFamily_DisplayModel of 06_4DH).

16 Package Clamping Limitation #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

23:17 Time Window for Power Limit #1. (R/W)

in unit of second. If 0 is specified in bits [23:17], defaults to 1
second window.

63:24 Reserved

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O)

See Section 14.9.3, “Package RAPL Domain.” and
MSR_RAPL_POWER_UNIT in Table 35-7

639H 1593 MSR_PP0_ENERGY_STATU
S

Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.” and
MSR_RAPL_POWER_UNIT in Table 35-7

Table 35-7 Specific MSRs Supported by Intel® Atom™ Processors with CPUID Signature 06_37H, 06_4AH,
06_5AH, 06_5DH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-8 Specific MSRs Supported by Intel® Atom™ Processor E3000 Series with CPUID Signature 06_37H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

668H 1640 MSR_CC6_DEMOTION_POLI
CY_CONFIG

Package Core C6 demotion policy config MSR

63:0 Controls per-core C6 demotion policy. Writing a value of 0 disables
core level HW demotion policy.

669H 1641 MSR_MC6_DEMOTION_POLI
CY_CONFIG

Package Module C6 demotion policy config MSR

63:0 Controls module (i.e. two cores sharing the second-level cache) C6
demotion policy. Writing a value of 0 disables module level HW
demotion policy.

664H 1636 MSR_MC6_RESIDENCY_COU
NTER

Module Module C6 Residency Counter (R/0)

Note: C-state values are processor specific C-state code names,

unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Time that this module is in module-specific C6 states since last

reset. Counts at 1 Mhz frequency.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 269

Table 35-9 Specific MSRs Supported by Intel® Atom™ Processor C2000 Series with CPUID Signature 06_4DH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode (RW)

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.9.1, “RAPL Interfaces.”

3:0 Power Units.

Power related information (in milliWatts) is based on the multiplier,
2^PU; where PU is an unsigned integer represented by bits 3:0.
Default value is 0101b, indicating power unit is in 32 milliWatts
increment.

7:4 Reserved

12:8 Energy Status Units.

Energy related information (in microJoules) is based on the
multiplier, 2^ESU; where ESU is an unsigned integer represented
by bits 12:8. Default value is 00101b, indicating energy unit is in
32 microJoules increment.

15:13 Reserved

19:16 Time Unit.

The value is 0000b, indicating time unit is in one second.

63:20 Reserved

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.9.3, “Package RAPL Domain.”

66EH 1646 MSR_PKG_POWER_INFO Package PKG RAPL Parameter (R/0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 270

35.4.1 MSRs In Future Intel Atom Processors Based on Airmont Microarchitecture
Intel Atom processors based on the Airmont microarchitecture supports MSRs listed in Table 35-6, Table 35-7,
and Table 35-10. These processors have a CPUID signature with DisplayFamily_DisplayModel including 06_4CH,
see Table 35-1.

14:0 Thermal Spec Power. (R/0)

The unsigned integer value is the equivalent of thermal
specification power of the package domain. The unit of this field is
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT

63:15 Reserved

Table 35-9 Specific MSRs Supported by Intel® Atom™ Processor C2000 Series (Contd.)with CPUID Signature

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-10 MSRs in Intel Atom Processors Based on the Airmont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Airmont microarchitecture:

4:0 • 00000B: 083.3 MHz
• 00001B: 100.0 MHz
• 00010B: 133.3 MHz
• 00011B: 116.5 MHz
• 00100B: 083.3 MHz
• 00101B: 100.0 MHz
• 00110B: 133.3 MHz
• 00111B: 116.7 MHz
• 01100B: 080.0 MHz
• 01101B: 093.3 MHz
• 01110B: 090.0 MHz
• 01111B: 088.9 MHz
• 10100B: 087.5 MHz

63:5 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Shared C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 271

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: No limit

001b: C1

010b: C2

110b: C6

111b: C7

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Shared Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to
be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - Deep Power Down Technology is the max C-State

010b - C7 is the max C-State to include

63:19 Reserved.

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

14:0 PP0 Power Limit #1. (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.” and
MSR_RAPL_POWER_UNIT in Table 35-7.

15 Enable Power Limit #1. (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

Table 35-10 MSRs in Intel Atom Processors Based on the Airmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 272

35.5 MSRS IN THE INTEL® MICROARCHITECTURE CODE NAME NEHALEM
Table 35-11 lists model-specific registers (MSRs) that are common for Intel® microarchitecture code name
Nehalem. These include Intel Core i7 and i5 processor family. Architectural MSR addresses are also included in
Table 35-11. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_1AH, 06_1EH,
06_1FH, 06_2EH, see Table 35-1. Additional MSRs specific to 06_1AH, 06_1EH, 06_1FH are listed in Table 35-12.
Some MSRs listed in these tables are used by BIOS. More information about these MSR can be found at http://
biosbits.org.

The column “Scope” represents the package/core/thread scope of individual bit field of an MSR. “Thread” means
this bit field must be programmed on each logical processor independently. “Core” means the bit field must be
programmed on each processor core independently, logical processors in the same core will be affected by change
of this bit on the other logical processor in the same core. “Package” means the bit field must be programmed
once for each physical package. Change of a bit filed with a package scope will affect all logical processors in that
physical package.

16 Reserved

23:17 Time Window for Power Limit #1. (R/W)

Specifies the time duration over which the average power must
remain below PP0_POWER_LIMIT #1(14:0). Supported Encodings:

0x0: 1 second time duration.

0x1: 5 second time duration (Default).

0x2: 10 second time duration.

0x3: 15 second time duration.

0x4: 20 second time duration.

0x5: 25 second time duration.

0x6: 30 second time duration.

0x7: 35 second time duration.

0x8: 40 second time duration.

0x9: 45 second time duration.

0xA: 50 second time duration.

0xB-0x7F - reserved.

63:24 Reserved

Table 35-10 MSRs in Intel Atom Processors Based on the Airmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem

Register
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 35.20, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 35.20, “MSRs in Pentium Processors.”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 273

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,”
and Table 35-2.

10H 16 IA32_TIME_
STAMP_COUNTER

Thread See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 35-2.

17H 23 MSR_PLATFORM_ID Package Model Specific Platform ID (R)

49:0 Reserved.

52:50 See Table 35-2.

63:53 Reserved.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

Running count of SMI events since last RESET.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 35-2.

79H 121 IA32_BIOS_
UPDT_TRIG

Core BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 IA32_BIOS_
SIGN_ID

Thread BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register

See Table 35-2.

C2H 194 IA32_PMC1 Thread Performance Counter Register

See Table 35-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register

See Table 35-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package see http://biosbits.org.

7:0 Reserved.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 274

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at. The
invariant TSC frequency can be computed by multiplying this ratio
by 133.33 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDC-TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDC/TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDC and TDP Limits for
Turbo mode are not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 133.33MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States. See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

010b: C3

011b: C6

100b: C7

101b and 110b: Reserved

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 275

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

23:16 Reserved.

24 Interrupt filtering enable (R/W)

When set, processor cores in a deep C-State will wake only when
the event message is destined for that core. When 0, all processor
cores in a deep C-State will wake for an event message.

25 C3 state auto demotion enable (R/W)

When set, the processor will conditionally demote C6/C7 requests
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W)

When set, the processor will conditionally demote C3/C6/C7
requests to C1 based on uncore auto-demote information.

63:27 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to
be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 35-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Thread See Table 35-2.

174H 372 IA32_SYSENTER_CS Thread See Table 35-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-2.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 276

176H 374 IA32_SYSENTER_EIP Thread See Table 35-2.

179H 377 IA32_MCG_CAP Thread See Table 35-2.

17AH 378 IA32_MCG_STATUS Thread

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Thread See Table 35-2.

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 AnyThread

22 EN

23 INV

31:24 CMASK

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 Thread See Table 35-2.

188H 392 IA32_PERFEVTSEL2 Thread See Table 35-2.

189H 393 IA32_PERFEVTSEL3 Thread See Table 35-2.

198H 408 IA32_PERF_STATUS Core See Table 35-2.

15:0 Current Performance State Value.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 277

63:16 Reserved.

199H 409 IA32_PERF_CTL Thread See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Thread Clock Modulation (R/W)

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

0 Reserved.

3:1 On demand Clock Modulation Duty Cycle (R/W)

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-2.

1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Thread Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Thread Automatic Thermal Control Circuit Enable (R/W)

See Table 35-2.

6:4 Reserved.

7 Thread Performance Monitoring Available (R)

See Table 35-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable (RO)

See Table 35-2.

12 Thread Precise Event Based Sampling Unavailable (RO)

See Table 35-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 35-2.

21:19 Reserved.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 278

22 Thread Limit CPUID Maxval (R/W)

See Table 35-2.

23 Thread xTPR Message Disable (R/W)

See Table 35-2.

33:24 Reserved.

34 Thread XD Bit Disable (R/W)

See Table 35-2.

37:35 Reserved.

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Thread

15:0 Reserved.

23:16 Temperature Target (R)

The minimum temperature at which PROCHOT# will be asserted.
The value is degree C.

63:24 Reserved.

1A4H 420 MSR_MISC_FEATURE_
CONTROL

Miscellaneous Feature Control (R/W)

0 Core L2 Hardware Prefetcher Disable (R/W)

If 1, disables the L2 hardware prefetcher, which fetches additional
lines of code or data into the L2 cache.

1 Core L2 Adjacent Cache Line Prefetcher Disable (R/W)

If 1, disables the adjacent cache line prefetcher, which fetches the
cache line that comprises a cache line pair (128 bytes).

2 Core DCU Hardware Prefetcher Disable (R/W)

If 1, disables the L1 data cache prefetcher, which fetches the next
cache line into L1 data cache.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 279

3 Core DCU IP Prefetcher Disable (R/W)

If 1, disables the L1 data cache IP prefetcher, which uses
sequential load history (based on instruction Pointer of previous
loads) to determine whether to prefetch additional lines.

63:4 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT See http://biosbits.org.

0 Package EIST Hardware Coordination Disable (R/W)

When 0, enables hardware coordination of Enhanced Intel
Speedstep Technology request from processor cores; When 1,
disables hardware coordination of Enhanced Intel Speedstep
Technology requests.

1 Thread Energy/Performance Bias Enable (R/W)

This bit makes the IA32_ENERGY_PERF_BIAS register (MSR 1B0h)
visible to software with Ring 0 privileges. This bit’s status (1 or 0)
is also reflected by CPUID.(EAX=06h):ECX[3].

63:2 Reserved.

1ACH 428 MSR_TURBO_POWER_
CURRENT_LIMIT

See http://biosbits.org.

14:0 Package TDP Limit (R/W)

TDP limit in 1/8 Watt granularity.

15 Package TDP Limit Override Enable (R/W)

A value = 0 indicates override is not active, and a value = 1
indicates active.

30:16 Package TDC Limit (R/W)

TDC limit in 1/8 Amp granularity.

31 Package TDC Limit Override Enable (R/W)

A value = 0 indicates override is not active, and a value = 1
indicates active.

63:32 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 280

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register (R/W)

See Section 17.6.2, “Filtering of Last Branch Records.”

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

1FCH 508 MSR_POWER_CTL Core Power Control Register. See http://biosbits.org.

0 Reserved.

1 Package C1E Enable (R/W)

When set to ‘1’, will enable the CPU to switch to the Minimum
Enhanced Intel SpeedStep Technology operating point when all
execution cores enter MWAIT (C1).

63:2 Reserved.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 35-2.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 281

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 35-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 35-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 35-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 35-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 35-2.

277H 631 IA32_PAT Thread See Table 35-2.

280H 640 IA32_MC0_CTL2 Package See Table 35-2.

281H 641 IA32_MC1_CTL2 Package See Table 35-2.

282H 642 IA32_MC2_CTL2 Core See Table 35-2.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 282

283H 643 IA32_MC3_CTL2 Core See Table 35-2.

284H 644 IA32_MC4_CTL2 Core See Table 35-2.

285H 645 IA32_MC5_CTL2 Core See Table 35-2.

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

288H 648 IA32_MC8_CTL2 Package See Table 35-2.

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W)

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 35-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 35-2.

11:8 PEBS_REC_FORMAT. See Table 35-2.

12 SMM_FREEZE. See Table 35-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

38EH 910 MSR_PERF_GLOBAL_STAUS Thread (RO)

61 UNC_Ovf

Uncore overflowed if 1.

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 MSR_PERF_GLOBAL_OVF_
CTRL

Thread (R/W)

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 283

61 CLR_UNC_Ovf

Set 1 to clear UNC_Ovf.

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.7.1.1, “Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

3F6H 1014 MSR_PEBS_LD_LAT Thread See Section 18.7.1.2, “Load Latency Performance Monitoring
Facility.”

15:0 Minimum threshold latency value of tagged load operation that will
be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Count at the same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7
states. Count at the same frequency as the TSC.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 284

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

403H 1027 MSR_MC0_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC1_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

407H 1031 MSR_MC1_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40BH 1035 MSR_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 285

40CH 1036 MSR_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40FH 1039 MSR_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

413H 1043 MSR_MC4_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

414H 1044 MSR_MC5_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 MSR_MC5_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 286

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration (R/
O).

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 287

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-2.

See Section 18.13.4, “Debug Store (DS) Mechanism.”

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
source instruction for one of the last sixteen branches,
exceptions, or interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_FROM_IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 288

68DH 1677 MSR_
LASTBRANCH_13_FROM_IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_FROM_IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
destination instruction for one of the last sixteen branches,
exceptions, or interrupts taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 289

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

802H 2050 IA32_X2APIC_APICID Thread x2APIC ID register (R/O) See x2APIC Specification.

803H 2051 IA32_X2APIC_VERSION Thread x2APIC Version register (R/O)

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority register (R/W)

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority register (R/O)

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI register (W/O)

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination register (R/O)

80FH 2063 IA32_X2APIC_SIVR Thread x2APIC Spurious Interrupt Vector register (R/W)

810H 2064 IA32_X2APIC_ISR0 Thread x2APIC In-Service register bits [31:0] (R/O)

811H 2065 IA32_X2APIC_ISR1 Thread x2APIC In-Service register bits [63:32] (R/O)

812H 2066 IA32_X2APIC_ISR2 Thread x2APIC In-Service register bits [95:64] (R/O)

813H 2067 IA32_X2APIC_ISR3 Thread x2APIC In-Service register bits [127:96] (R/O)

814H 2068 IA32_X2APIC_ISR4 Thread x2APIC In-Service register bits [159:128] (R/O)

815H 2069 IA32_X2APIC_ISR5 Thread x2APIC In-Service register bits [191:160] (R/O)

816H 2070 IA32_X2APIC_ISR6 Thread x2APIC In-Service register bits [223:192] (R/O)

817H 2071 IA32_X2APIC_ISR7 Thread x2APIC In-Service register bits [255:224] (R/O)

818H 2072 IA32_X2APIC_TMR0 Thread x2APIC Trigger Mode register bits [31:0] (R/O)

819H 2073 IA32_X2APIC_TMR1 Thread x2APIC Trigger Mode register bits [63:32] (R/O)

81AH 2074 IA32_X2APIC_TMR2 Thread x2APIC Trigger Mode register bits [95:64] (R/O)

81BH 2075 IA32_X2APIC_TMR3 Thread x2APIC Trigger Mode register bits [127:96] (R/O)

81CH 2076 IA32_X2APIC_TMR4 Thread x2APIC Trigger Mode register bits [159:128] (R/O)

81DH 2077 IA32_X2APIC_TMR5 Thread x2APIC Trigger Mode register bits [191:160] (R/O)

81EH 2078 IA32_X2APIC_TMR6 Thread x2APIC Trigger Mode register bits [223:192] (R/O)

81FH 2079 IA32_X2APIC_TMR7 Thread x2APIC Trigger Mode register bits [255:224] (R/O)

820H 2080 IA32_X2APIC_IRR0 Thread x2APIC Interrupt Request register bits [31:0] (R/O)

821H 2081 IA32_X2APIC_IRR1 Thread x2APIC Interrupt Request register bits [63:32] (R/O)

822H 2082 IA32_X2APIC_IRR2 Thread x2APIC Interrupt Request register bits [95:64] (R/O)

823H 2083 IA32_X2APIC_IRR3 Thread x2APIC Interrupt Request register bits [127:96] (R/O)

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 290

824H 2084 IA32_X2APIC_IRR4 Thread x2APIC Interrupt Request register bits [159:128] (R/O)

825H 2085 IA32_X2APIC_IRR5 Thread x2APIC Interrupt Request register bits [191:160] (R/O)

826H 2086 IA32_X2APIC_IRR6 Thread x2APIC Interrupt Request register bits [223:192] (R/O)

827H 2087 IA32_X2APIC_IRR7 Thread x2APIC Interrupt Request register bits [255:224] (R/O)

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status register (R/W)

82FH 2095 IA32_X2APIC_LVT_CMCI Thread x2APIC LVT Corrected Machine Check Interrupt register (R/W)

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command register (R/W)

832H 2098 IA32_X2APIC_LVT_TIMER Thread x2APIC LVT Timer Interrupt register (R/W)

833H 2099 IA32_X2APIC_LVT_THERM
AL

Thread x2APIC LVT Thermal Sensor Interrupt register (R/W)

834H 2100 IA32_X2APIC_LVT_PMI Thread x2APIC LVT Performance Monitor register (R/W)

835H 2101 IA32_X2APIC_LVT_LINT0 Thread x2APIC LVT LINT0 register (R/W)

836H 2102 IA32_X2APIC_LVT_LINT1 Thread x2APIC LVT LINT1 register (R/W)

837H 2103 IA32_X2APIC_LVT_ERROR Thread x2APIC LVT Error register (R/W)

838H 2104 IA32_X2APIC_INIT_COUNT Thread x2APIC Initial Count register (R/W)

839H 2105 IA32_X2APIC_CUR_COUNT Thread x2APIC Current Count register (R/O)

83EH 2110 IA32_X2APIC_DIV_CONF Thread x2APIC Divide Configuration register (R/W)

83FH 2111 IA32_X2APIC_SELF_IPI Thread x2APIC Self IPI register (W/O)

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W) See Table 35-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W) See Table 35-2 and Section
17.13.2, “IA32_TSC_AUX Register and RDTSCP Support.”

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 291

...

35.8 MSRS IN INTEL® PROCESSOR FAMILY BASED ON INTEL®
MICROARCHITECTURE CODE NAME SANDY BRIDGE

Table 35-16 lists model-specific registers (MSRs) that are common to Intel® processor family based on Intel
microarchitecture code name Sandy Bridge. All architectural MSRs listed in Table 35-2 are supported. These
processors have a CPUID signature with DisplayFamily_DisplayModel of 06_2AH, 06_2DH, see Table 35-1. Addi-
tional MSRs specific to 06_2AH are listed in Table 35-17.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge

Register
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 35.20, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 35.20, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,”
and Table 35-2.

10H 16 IA32_TIME_STAMP_
COUNTER

Thread See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 35-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

Count SMIs.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 35-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Thread BIOS Update Signature ID (RO)

See Table 35-2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 292

C1H 193 IA32_PMC0 Thread Performance Counter Register

See Table 35-2.

C2H 194 IA32_PMC1 Thread Performance Counter Register

See Table 35-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register

See Table 35-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register

See Table 35-2.

C5H 197 IA32_PMC4 Core Performance Counter Register

See Table 35-2.

C6H 198 IA32_PMC5 Core Performance Counter Register

See Table 35-2.

C7H 199 IA32_PMC6 Core Performance Counter Register

See Table 35-2.

C8H 200 IA32_PMC7 Core Performance Counter Register

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

63:48 Reserved.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 293

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

24:16 Reserved.

25 C3 state auto demotion enable (R/W)

When set, the processor will conditionally demote C6/C7 requests
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W)

When set, the processor will conditionally demote C3/C6/C7
requests to C1 based on uncore auto-demote information.

27 Enable C3 undemotion (R/W)

When set, enables undemotion from demoted C3.

28 Enable C1 undemotion (R/W)

When set, enables undemotion from demoted C1.

63:29 Reserved.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 294

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is
the IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name
to be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 35-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Thread See Table 35-2.

174H 372 IA32_SYSENTER_CS Thread See Table 35-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 35-2.

179H 377 IA32_MCG_CAP Thread See Table 35-2.

17AH 378 IA32_MCG_STATUS Thread

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 295

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Thread See Table 35-2.

187H 391 IA32_
PERFEVTSEL1

Thread See Table 35-2.

188H 392 IA32_
PERFEVTSEL2

Thread See Table 35-2.

189H 393 IA32_
PERFEVTSEL3

Thread See Table 35-2.

18AH 394 IA32_
PERFEVTSEL4

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18BH 395 IA32_
PERFEVTSEL5

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18CH 396 IA32_
PERFEVTSEL6

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18DH 397 IA32_
PERFEVTSEL7

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

198H 408 IA32_PERF_STATUS Package See Table 35-2.

15:0 Current Performance State Value.

63:16 Reserved.

198H 408 MSR_PERF_STATUS Package

47:32 Core Voltage (R/O)

P-state core voltage can be computed by

MSR_PERF_STATUS[37:32] * (float) 1/(2^13).

199H 409 IA32_PERF_CTL Thread See Table 35-2.

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation (R/W)

See Table 35-2

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

3:0 On demand Clock Modulation Duty Cycle (R/W)

In 6.25% increment

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 296

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-2.

0 Thermal status (RO)

See Table 35-2.

1 Thermal status log (R/WC0)

See Table 35-2.

2 PROTCHOT # or FORCEPR# status (RO)

See Table 35-2.

3 PROTCHOT # or FORCEPR# log (R/WC0)

See Table 35-2.

4 Critical Temperature status (RO)

See Table 35-2.

5 Critical Temperature status log (R/WC0)

See Table 35-2.

6 Thermal threshold #1 status (RO)

See Table 35-2.

7 Thermal threshold #1 log (R/WC0)

See Table 35-2.

8 Thermal threshold #2 status (RO)

See Table 35-2.

9 Thermal threshold #2 log (R/WC0)

See Table 35-2.

10 Power Limitation status (RO)

See Table 35-2.

11 Power Limitation log (R/WC0)

See Table 35-2.

15:12 Reserved.

22:16 Digital Readout (RO)

See Table 35-2.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

See Table 35-2.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 297

31 Reading Valid (RO)

See Table 35-2.

63:32 Reserved.

1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Thread Fast-Strings Enable

See Table 35-2

6:1 Reserved.

7 Thread Performance Monitoring Available (R)

See Table 35-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable (RO)

See Table 35-2.

12 Thread Precise Event Based Sampling Unavailable (RO)

See Table 35-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 35-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval (R/W)

See Table 35-2.

23 Thread xTPR Message Disable (R/W)

See Table 35-2.

33:24 Reserved.

34 Thread XD Bit Disable (R/W)

See Table 35-2.

37:35 Reserved.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 298

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Unique

15:0 Reserved.

23:16 Temperature Target (R)

The minimum temperature at which PROCHOT# will be asserted.
The value is degree C.

63:24 Reserved.

1A4H 420 MSR_MISC_FEATURE_
CONTROL

Miscellaneous Feature Control (R/W)

0 Core L2 Hardware Prefetcher Disable (R/W)

If 1, disables the L2 hardware prefetcher, which fetches additional
lines of code or data into the L2 cache.

1 Core L2 Adjacent Cache Line Prefetcher Disable (R/W)

If 1, disables the adjacent cache line prefetcher, which fetches the
cache line that comprises a cache line pair (128 bytes).

2 Core DCU Hardware Prefetcher Disable (R/W)

If 1, disables the L1 data cache prefetcher, which fetches the next
cache line into L1 data cache.

3 Core DCU IP Prefetcher Disable (R/W)

If 1, disables the L1 data cache IP prefetcher, which uses
sequential load history (based on instruction Pointer of previous
loads) to determine whether to prefetch additional lines.

63:4 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1A7H 422 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT See http://biosbits.org.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 35-2.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 299

1B1H 433 IA32_PACKAGE_THERM_
STATUS

Package See Table 35-2.

1B2H 434 IA32_PACKAGE_THERM_
INTERRUPT

Package See Table 35-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

See Section 17.6.2, “Filtering of Last Branch Records.”

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 35-2.

0 LBR: Last Branch Record

1 BTF

5:2 Reserved.

6 TR: Branch Trace

7 BTS: Log Branch Trace Message to BTS buffer

8 BTINT

9 BTS_OFF_OS

10 BTS_OFF_USER

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

63:15 Reserved.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 300

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

1FCH 508 MSR_POWER_CTL Core See http://biosbits.org.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 35-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 35-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 35-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 35-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 35-2.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 301

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 35-2.

277H 631 IA32_PAT Thread See Table 35-2.

280H 640 IA32_MC0_CTL2 Core See Table 35-2.

281H 641 IA32_MC1_CTL2 Core See Table 35-2.

282H 642 IA32_MC2_CTL2 Core See Table 35-2.

283H 643 IA32_MC3_CTL2 Core See Table 35-2.

284H 644 MSR_MC4_CTL2 Package Always 0 (CMCI not supported).

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W)

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 35-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 35-2.

11:8 PEBS_REC_FORMAT. See Table 35-2.

12 SMM_FREEZE. See Table 35-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Ovf_PMC0

1 Ovf_PMC1

2 Ovf_PMC2

3 Ovf_PMC3

31:4 Reserved.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 302

32 Ovf_FixedCtr0

33 Ovf_FixedCtr1

34 Ovf_FixedCtr2

60:35 Reserved.

61 Ovf_Uncore

62 Ovf_BufDSSAVE

63 CondChgd

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Set 1 to clear Ovf_PMC0

1 Set 1 to clear Ovf_PMC1

2 Set 1 to clear Ovf_PMC2

3 Set 1 to clear Ovf_PMC3

31:4 Reserved.

32 Set 1 to clear Ovf_FixedCtr0

33 Set 1 to clear Ovf_FixedCtr1

34 Set 1 to clear Ovf_FixedCtr2

60:35 Reserved.

61 Set 1 to clear Ovf_Uncore

62 Set 1 to clear Ovf_BufDSSAVE

63 Set 1 to clear CondChgd

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.7.1.1, “Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 303

3F6H 1014 MSR_PEBS_LD_LAT Thread see See Section 18.7.1.2, “Load Latency Performance Monitoring
Facility.”

15:0 Minimum threshold latency value of tagged load operation that will
be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Count at the same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Count at the same frequency as the TSC.

3FEH 1022 MSR_CORE_C7_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 304

63:0 CORE C7 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C7
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

403H 1027 IA32_MC0_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

406H 1030 IA32_MC1_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

407H 1031 IA32_MC1_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

0 PCU Hardware Error (R/W)

When set, enables signaling of PCU hardware detected errors.

1 PCU Controller Error (R/W)

When set, enables signaling of PCU controller detected errors

2 PCU Firmware Error (R/W)

When set, enables signaling of PCU firmware detected errors

63:2 Reserved.

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 305

482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Thread Capability Reporting Register of EPT and VPID (R/O)

See Table 35-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Thread Capability Reporting Register of Pin-based VM-execution Flex
Controls (R/O)

See Table 35-2

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 306

48EH 1166 IA32_VMX_TRUE_PROCBA
SED_CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Flex Controls (R/O)

See Table 35-2

48FH 1167 IA32_VMX_TRUE_EXIT_CT
LS

Thread Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 35-2

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Thread Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 35-2

4C1H 1217 IA32_A_PMC0 Thread See Table 35-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 35-2.

4C3H 1219 IA32_A_PMC2 Thread See Table 35-2.

4C4H 1220 IA32_A_PMC3 Thread See Table 35-2.

4C5H 1221 IA32_A_PMC4 Core See Table 35-2.

4C6H 1222 IA32_A_PMC5 Core See Table 35-2.

4C7H 1223 IA32_A_PMC6 Core See Table 35-2.

4C8H 200 IA32_A_PMC7 Core See Table 35-2.

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-2.

See Section 18.13.4, “Debug Store (DS) Mechanism.”

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.9.1, “RAPL Interfaces.”

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C3 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 307

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60BH 1547 MSR_PKGC6_IRTL Package Package C6 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the package to exit from
C6 to a C0 state, where interrupt request can be delivered to the
core and serviced. Additional core-exit latency amy be applicable
depending on the actual C-state the core is in.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C6 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C2 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C2
states. Count at the same frequency as the TSC.

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.9.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATU
S

Package PKG Energy Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 308

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) See Section 14.9.3, “Package RAPL
Domain.”

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERGY_STATU
S

Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
source instruction for one of the last sixteen branches,
exceptions, or interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_
IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_FROM_
IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 309

68CH 1676 MSR_
LASTBRANCH_12_FROM_
IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_
IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_
IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_FROM_
IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
destination instruction for one of the last sixteen branches,
exceptions, or interrupts taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 310

35.8.1 MSRs In 2nd Generation Intel® Core™ Processor Family (Based on Intel®
Microarchitecture Code Name Sandy Bridge)

Table 35-17 lists model-specific registers (MSRs) that are specific to the 2nd generation Intel® Core™ processor
family (based on Intel microarchitecture code name Sandy Bridge). These processors have a CPUID signature
with DisplayFamily_DisplayModel of 06_2AH, see Table 35-1.

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6E0H 1760 IA32_TSC_DEADLINE Thread See Table 35-2.

802H-
83FH

X2APIC MSRs Thread See Table 35-2.

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W)

See Table 35-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature (R/W)

See Table 35-2 and Section 17.13.2, “IA32_TSC_AUX Register and
RDTSCP Support.”

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 311

Table 35-17 MSRs Supported by 2nd Generation Intel® Core™ Processors (Intel® microarchitecture code name
Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

392H 914 MSR_UNC_PERF_GLOBAL_
STATUS

Package Uncore PMU main status

0 Fixed counter overflowed

1 An ARB counter overflowed

2 Reserved

3 A CBox counter overflowed (on any slice)

63:4 Reserved.

394H 916 MSR_UNC_PERF_FIXED_
CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow propagation

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 312

21 Reserved

22 Enable counting

63:23 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box configuration information (R/O)

3:0 Encoded number of C-Box, derive value by “-1“

63:4 Reserved.

3B0H 946 MSR_UNC_ARB_PER_CTR0 Package Uncore Arb unit, performance counter 0

3B1H 947 MSR_UNC_ARB_PER_CTR1 Package Uncore Arb unit, performance counter 1

3B2H 944 MSR_UNC_ARB_
PERFEVTSEL0

Package Uncore Arb unit, counter 0 event select MSR

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

60CH 1548 MSR_PKGC7_IRTL Package Package C7 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the package to exit from
C7 to a C0 state, where interrupt request can be delivered to the
core and serviced. Additional core-exit latency amy be applicable
depending on the actual C-state the core is in.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C7 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

Table 35-17 MSRs Supported by 2nd Generation Intel® Core™ Processors (Intel® microarchitecture code name
Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 313

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

63AH 1594 MSR_PP0_POLICY Package PP0 Balance Policy (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

63BH 1595 MSR_PP0_PERF_STATUS Package PP0 Performance Throttling Status (R/O) See Section 14.9.4,
“PP0/PP1 RAPL Domains.”

640H 1600 MSR_PP1_POWER_LIMIT Package PP1 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATU
S

Package PP1 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

706H 1798 MSR_UNC_CBO_0_PER_
CTR0

Package Uncore C-Box 0, performance counter 0

707H 1799 MSR_UNC_CBO_0_PER_
CTR1

Package Uncore C-Box 0, performance counter 1

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

716H 1814 MSR_UNC_CBO_1_PER_
CTR0

Package Uncore C-Box 1, performance counter 0

717H 1815 MSR_UNC_CBO_1_PER_
CTR1

Package Uncore C-Box 1, performance counter 1

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

721H 1824 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

726H 1830 MSR_UNC_CBO_2_PER_
CTR0

Package Uncore C-Box 2, performance counter 0

Table 35-17 MSRs Supported by 2nd Generation Intel® Core™ Processors (Intel® microarchitecture code name
Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 314

...

35.9 MSRS IN THE 3RD GENERATION INTEL® CORE™ PROCESSOR FAMILY
(BASED ON INTEL® MICROARCHITECTURE CODE NAME IVY BRIDGE)

The 3rd generation Intel® Core™ processor family and Intel® Xeon® processor E3-1200v2 product family (based
on Intel microarchitecture code name Ivy Bridge) supports the MSR interfaces listed in Table 35-16, Table 35-17
and Table 35-19.

727H 1831 MSR_UNC_CBO_2_PER_
CTR1

Package Uncore C-Box 2, performance counter 1

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR.

736H 1846 MSR_UNC_CBO_3_PER_
CTR0

Package Uncore C-Box 3, performance counter 0.

737H 1847 MSR_UNC_CBO_3_PER_
CTR1

Package Uncore C-Box 3, performance counter 1.

Table 35-17 MSRs Supported by 2nd Generation Intel® Core™ Processors (Intel® microarchitecture code name
Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-19 Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Intel®
microarchitecture code name Ivy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 315

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

31:30 Reserved.

32 Package Low Power Mode Support (LPM) (R/O)

When set to 1, indicates that LPM is supported, and when set to 0,
indicates LPM is not supported.

34:33 Package Number of ConfigTDP Levels (R/O)

00: Only Base TDP level available.

01: One additional TDP level available.

02: Two additional TDP level available.

11: Reserved

39:35 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

55:48 Package Minimum Operating Ratio (R/O)

Contains the minimum supported

operating ratio in units of 100 MHz.

63:56 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

Table 35-19 Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Intel®
microarchitecture code name Ivy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 316

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register specified
by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

24:16 Reserved.

25 C3 state auto demotion enable (R/W)

When set, the processor will conditionally demote C6/C7 requests
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W)

When set, the processor will conditionally demote C3/C6/C7
requests to C1 based on uncore auto-demote information.

27 Enable C3 undemotion (R/W)

When set, enables undemotion from demoted C3.

28 Enable C1 undemotion (R/W)

When set, enables undemotion from demoted C1.

63:29 Reserved.

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Base TDP Ratio (R/O)

7:0 Config_TDP_Base

Base TDP level ratio to be used for this specific processor (in units
of 100 MHz).

63:8 Reserved.

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O)

14:0 PKG_TDP_LVL1. Power setting for ConfigTDP Level 1.

15 Reserved

23:16 Config_TDP_LVL1_Ratio. ConfigTDP level 1 ratio to be used for this
specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL1. Max Power setting allowed for ConfigTDP
Level 1.

47 Reserved

62:48 PKG_MIN_PWR_LVL1. MIN Power setting allowed for ConfigTDP
Level 1.

Table 35-19 Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Intel®
microarchitecture code name Ivy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 317

63 Reserved.

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O)

14:0 PKG_TDP_LVL2. Power setting for ConfigTDP Level 2.

15 Reserved

23:16 Config_TDP_LVL2_Ratio. ConfigTDP level 2 ratio to be used for this
specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL2. Max Power setting allowed for ConfigTDP
Level 2.

47 Reserved

62:48 PKG_MIN_PWR_LVL2. MIN Power setting allowed for ConfigTDP
Level 2.

63 Reserved.

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

1:0 TDP_LEVEL (RW/L)

System BIOS can program this field.

30:2 Reserved.

31 Config_TDP_Lock (RW/L)

When this bit is set, the content of this register is locked until a
reset.

63:32 Reserved.

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field.

30:8 Reserved.

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is locked until a
reset.

63:32 Reserved.

See Table 35-16, Table 35-17 for other MSR definitions applicable to processors with CPUID signature 06_3AH

Table 35-19 Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Intel®
microarchitecture code name Ivy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 318

35.9.1 MSRs In Intel® Xeon® Processor E5 v2 Product Family (Based on Ivy Bridge-E
Microarchitecture)

Table 35-20 lists model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5 v2 Product
Family (based on Ivy Bridge-E microarchitecture). These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_3EH, see Table 35-1. These processors supports the MSR interfaces listed in
Table 35-16, and Table 35-20.

Table 35-20 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control (R/W)

0 LockOut (R/WO)

Set 1to prevent further writes to MSR_PPIN_CTL. Writing 1 to

MSR_PPINCTL[bit 0] is permitted only if MSR_PPIN_CTL[bit 1] is

clear, Default is 0.

BIOS should provide an opt-in menu to enable the user to turn on

MSR_PPIN_CTL[bit 1] for privileged inventory initialization agent to

access MSR_PPIN. After reading MSR_PPIN, the privileged

inventory initialization agent should write ‘01b’ to MSR_PPIN_CTL

to disable further access to MSR_PPIN and prevent unauthorized

modification to MSR_PPIN_CTL.

1 Enable_PPIN (R/W)

If 1, enables MSR_PPIN to be accessible using RDMSR. Once set,

attempt to write 1 to MSR_PPIN_CTL[bit 0] will cause #GP.

If 0, an attempt to read MSR_PPIN will cause #GP. Default is 0.

63:2 Reserved.

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

63:0 Protected Processor Inventory Number (R/O)

A unique value within a given CPUID family/model/stepping

signature that a privileged inventory initialization agent can access

to identify each physical processor, when access to MSR_PPIN is

enabled. Access to MSR_PPIN is permitted only if

MSR_PPIN_CTL[bits 1:0] = ‘10b’

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

22:16 Reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 319

23 Package PPIN_CAP (R/O)

When set to 1, indicates that Protected Processor Inventory

Number (PPIN) capability can be enabled for privileged system

inventory agent to read PPIN from MSR_PPIN.

When set to 0, PPIN capability is not supported. An attempt to

access MSR_PPIN_CTL or MSR_PPIN will cause #GP.

27:24 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

Table 35-20 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 320

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 Reserved.

26 MCG_ELOG_P

63:27 Reserved.

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W)

When set, enables IMC status bank to log additional info in bits
36:32.

63:2 Reserved.

1AEH 430 MSR_TURBO_RATIO_LIMIT
1

Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active.

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10core active.

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

Table 35-20 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 321

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

63:32 Reserved

285H 645 IA32_MC5_CTL2 Package See Table 35-2.

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

288H 648 IA32_MC8_CTL2 Package See Table 35-2.

289H 649 IA32_MC9_CTL2 Package See Table 35-2.

28AH 650 IA32_MC10_CTL2 Package See Table 35-2.

28BH 651 IA32_MC11_CTL2 Package See Table 35-2.

28CH 652 IA32_MC12_CTL2 Package See Table 35-2.

28DH 653 IA32_MC13_CTL2 Package See Table 35-2.

28EH 654 IA32_MC14_CTL2 Package See Table 35-2.

28FH 655 IA32_MC15_CTL2 Package See Table 35-2.

290H 656 IA32_MC16_CTL2 Package See Table 35-2.

291H 657 IA32_MC17_CTL2 Package See Table 35-2.

292H 658 IA32_MC18_CTL2 Package See Table 35-2.

293H 659 IA32_MC19_CTL2 Package See Table 35-2.

294H 660 IA32_MC20_CTL2 Package See Table 35-2.

295H 661 IA32_MC21_CTL2 Package See Table 35-2.

296H 662 IA32_MC22_CTL2 Package See Table 35-2.

297H 663 IA32_MC23_CTL2 Package See Table 35-2.

298H 664 IA32_MC24_CTL2 Package See Table 35-2.

299H 665 IA32_MC25_CTL2 Package See Table 35-2.

29AH 666 IA32_MC26_CTL2 Package See Table 35-2.

29BH 667 IA32_MC27_CTL2 Package See Table 35-2.

29CH 668 IA32_MC28_CTL2 Package See Table 35-2.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC error from the Intel QPI module.
415H 1045 MSR_MC5_STATUS Package

416H 1046 MSR_MC5_ADDR Package

417H 1047 MSR_MC5_MISC Package

Table 35-20 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 322

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC error from the integrated I/O module.
419H 1049 MSR_MC6_STATUS Package

41AH 1050 MSR_MC6_ADDR Package

41BH 1051 MSR_MC6_MISC Package

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC7 and MC 8 report MC error from the two home agents.
41DH 1053 MSR_MC7_STATUS Package

41EH 1054 MSR_MC7_ADDR Package

41FH 1055 MSR_MC7_MISC Package

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC7 and MC 8 report MC error from the two home agents.
421H 1057 MSR_MC8_STATUS Package

422H 1058 MSR_MC8_ADDR Package

423H 1059 MSR_MC8_MISC Package

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

425H 1061 MSR_MC9_STATUS Package

426H 1062 MSR_MC9_ADDR Package

427H 1063 MSR_MC9_MISC Package

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

429H 1065 MSR_MC10_STATUS Package

42AH 1066 MSR_MC10_ADDR Package

42BH 1067 MSR_MC10_MISC Package

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_STATUS Package Bank MC11 reports MC error from a specific channel of the
integrated memory controller.42EH 1070 MSR_MC11_ADDR Package

42FH 1071 MSR_MC11_MISC Package

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

431H 1073 MSR_MC12_STATUS Package

432H 1074 MSR_MC12_ADDR Package

433H 1075 MSR_MC12_MISC Package

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

435H 1077 MSR_MC13_STATUS Package

436H 1078 MSR_MC13_ADDR Package

437H 1079 MSR_MC13_MISC Package

Table 35-20 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 323

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

439H 1081 MSR_MC14_STATUS Package

43AH 1082 MSR_MC14_ADDR Package

43BH 1083 MSR_MC14_MISC Package

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

43DH 1085 MSR_MC15_STATUS Package

43EH 1086 MSR_MC15_ADDR Package

43FH 1087 MSR_MC15_MISC Package

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

441H 1089 MSR_MC16_STATUS Package

442H 1090 MSR_MC16_ADDR Package

443H 1091 MSR_MC16_MISC Package

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

445H 1093 MSR_MC17_STATUS Package

446H 1094 MSR_MC17_ADDR Package

447H 1095 MSR_MC17_MISC Package

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

449H 1097 MSR_MC18_STATUS Package

44AH 1098 MSR_MC18_ADDR Package

44BH 1099 MSR_MC18_MISC Package

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

44DH 1101 MSR_MC19_STATUS Package

44EH 1102 MSR_MC19_ADDR Package

44FH 1103 MSR_MC19_MISC Package

450H 1104 MSR_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

451H 1105 MSR_MC20_STATUS Package Bank MC20 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.452H 1106 MSR_MC20_ADDR Package

453H 1107 MSR_MC20_MISC Package

454H 1108 MSR_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC21 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

455H 1109 MSR_MC21_STATUS Package

456H 1110 MSR_MC21_ADDR Package

457H 1111 MSR_MC21_MISC Package

Table 35-20 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 324

458H 1112 MSR_MC22_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC22 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

459H 1113 MSR_MC22_STATUS Package

45AH 1114 MSR_MC22_ADDR Package

45BH 1115 MSR_MC22_MISC Package

45CH 1116 MSR_MC23_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC23 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

45DH 1117 MSR_MC23_STATUS Package

45EH 1118 MSR_MC23_ADDR Package

45FH 1119 MSR_MC23_MISC Package

460H 1120 MSR_MC24_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC24 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

461H 1121 MSR_MC24_STATUS Package

462H 1122 MSR_MC24_ADDR Package

463H 1123 MSR_MC24_MISC Package

464H 1124 MSR_MC25_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC25 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

465H 1125 MSR_MC25_STATUS Package

466H 1126 MSR_MC25_ADDR Package

467H 1127 MSR_MC25_MISC Package

468H 1128 MSR_MC26_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC26 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

469H 1129 MSR_MC26_STATUS Package

46AH 1130 MSR_MC26_ADDR Package

46BH 1131 MSR_MC26_MISC Package

46CH 1132 MSR_MC27_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC27 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

46DH 1133 MSR_MC27_STATUS Package

46EH 1134 MSR_MC27_ADDR Package

46FH 1135 MSR_MC27_MISC Package

470H 1136 MSR_MC28_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC28 reports MC error from a specific CBo (core broadcast)
and its corresponding slice of L3.

471H 1137 MSR_MC28_STATUS Package

472H 1138 MSR_MC28_ADDR Package

473H 1139 MSR_MC28_MISC Package

613H 1555 MSR_PKG_PERF_STATUS Package Package RAPL Perf Status (R/O)

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

See Section 14.9.5, “DRAM RAPL Domain.”

Table 35-20 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 325

35.9.2 Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family
Intel® Xeon® processor E7 v2 family (based on Ivy Bridge-E microarchitecture) with CPUID
DisplayFamily_DisplayModel signature 06_3EH supports the MSR interfaces listed in Table 35-16, Table 35-20,
and Table 35-21.

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

See Table 35-16, for other MSR definitions applicable to Intel Xeon processor E5 v2 with CPUID signature 06_3EH

Table 35-20 MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-21 Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with
DisplayFamily_DisplayModel Signature 06_3EH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 35-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

20 LMCE_ON (R/WL)

63:21 Reserved.

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 Reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 326

26 MCG_ELOG_P

27 MCG_LMCE_P

63:28 Reserved.

17AH 378 IA32_MCG_STATUS Thread (R/W0)

0 RIPV

1 EIPV

2 MCIP

3 LMCE signaled

63:4 Reserved.

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active.

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10core active.

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

39:32 Package Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

47:40 Package Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

55:48 Package Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

63:56 Reserved

29DH 669 IA32_MC29_CTL2 Package See Table 35-2.

29EH 670 IA32_MC30_CTL2 Package See Table 35-2.

29FH 671 IA32_MC31_CTL2 Package See Table 35-2.

41BH 1051 IA32_MC6_MISC Package Misc MAC information of Integrated I/O. (R/O) see Section 15.3.2.4

5:0 Recoverable Address LSB

8:6 Address Mode

15:9 Reserved

Table 35-21 Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with
DisplayFamily_DisplayModel Signature 06_3EH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 327

35.10 MSRS IN THE 4TH GENERATION INTEL® CORE™ PROCESSORS (BASED ON
HASWELL MICROARCHITECTURE)

The 4th generation Intel® Core™ processor family and Intel® Xeon® processor E3-1200v3 product family (based
on Haswell microarchitecture), with CPUID DisplayFamily_DisplayModel signature 06_3CH/06_45H/06_46H,
support the MSR interfaces listed in Table 35-16, Table 35-17, Table 35-19, and Table 35-22.

The MSRs listed in Table 35-22 also apply to processors based on Haswell-E microarchitecture (see Section
35.11).

31:16 PCI Express Requestor ID

39:32 PCI Express Segment Number

63:32 Reserved

474H 1140 MSR_MC29_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC29 reports MC error from a specific CBo (core broadcast) and
its corresponding slice of L3.

475H 1141 MSR_MC29_STATUS Package

476H 1142 MSR_MC29_ADDR Package

477H 1143 MSR_MC29_MISC Package

478H 1144 MSR_MC30_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC30 reports MC error from a specific CBo (core broadcast) and
its corresponding slice of L3.

479H 1145 MSR_MC30_STATUS Package

47AH 1146 MSR_MC30_ADDR Package

47BH 1147 MSR_MC30_MISC Package

47CH 1148 MSR_MC31_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC31 reports MC error from a specific CBo (core broadcast) and
its corresponding slice of L3.

47DH 1149 MSR_MC31_STATUS Package

47EH 1150 MSR_MC31_ADDR Package

47FH 1147 MSR_MC31_MISC Package

See Table 35-16, Table 35-20 for other MSR definitions applicable to Intel Xeon processor E7 v2 with CPUID signature
06_3AH

Table 35-21 Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with
DisplayFamily_DisplayModel Signature 06_3EH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-22 Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3BH 59 IA32_TSC_ADJUST THREAD Per-Logical-Processor TSC ADJUST (R/W)

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package See Table 35-19

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 328

186H 390 IA32_PERFEVTSEL0 THREAD Performance Event Select for Counter 0 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

187H 391 IA32_PERFEVTSEL1 THREAD Performance Event Select for Counter 1 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

188H 392 IA32_PERFEVTSEL2 THREAD Performance Event Select for Counter 2 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

33 IN_TXCP: see Section 18.11.5.1

When IN_TXCP=1 & IN_TX=1 and in sampling, spurious PMI may
occur and transactions may continuously abort near overflow
conditions. Software should favor using IN_TXCP for counting over
sampling. If sampling, software should use large “sample-after”
value after clearing the counter configured to use IN_TXCP and
also always reset the counter even when no overflow condition
was reported.

189H 393 IA32_PERFEVTSEL3 THREAD Performance Event Select for Counter 3 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 35-2.

0 LBR: Last Branch Record

1 BTF

5:2 Reserved.

6 TR: Branch Trace

7 BTS: Log Branch Trace Message to BTS buffer

8 BTINT

9 BTS_OFF_OS

10 BTS_OFF_USER

Table 35-22 Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 329

35.10.1 MSRs in 4th Generation Intel® Core™ Processor Family (based on Haswell
Microarchitecture)

Table 35-23 lists model-specific registers (MSRs) that are specific to 4th generation Intel® Core™ processor
family and Intel® Xeon® processor E3-1200 v3 product family (based on Haswell microarchitecture). These
processors have a CPUID signature with DisplayFamily_DisplayModel of 06_3CH/06_45H/06_46H, see Table
Table 35-1.

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

15 RTM_DEBUG

63:15 Reserved.

491H 1169 IA32_VMX_FMFUNC THREAD Capability Reporting Register of VM-function Controls (R/O)

See Table 35-2

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Base TDP Ratio (R/O)

See Table 35-19

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O). See Table 35-19

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O). See Table 35-19

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

See Table 35-19

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

See Table 35-19

C80H 3200 IA32_DEBUG_FEATURE Package Silicon Debug Feature Control (R/W)

See Table 35-2.

Table 35-22 Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-23 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

http://biosbits.org

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 330

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

63:29 Reserved

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is
supported and the MSR_SMM_FEATURE_CONTROL is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and the MSR_SMM_DELAYED is supported.

63:60 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

Table 35-23 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 331

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

392H 914 MSR_UNC_PERF_GLOBAL_
STATUS

Package Uncore PMU main status

0 Fixed counter overflowed

1 An ARB counter overflowed

2 Reserved

3 A CBox counter overflowed (on any slice)

63:4 Reserved.

394H 916 MSR_UNC_PERF_FIXED_
CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow propagation

21 Reserved

22 Enable counting

63:23 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

Table 35-23 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 332

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box configuration information (R/O)

3:0 Encoded number of C-Box, derive value by “-1“

63:4 Reserved.

3B0H 946 MSR_UNC_ARB_PER_CTR0 Package Uncore Arb unit, performance counter 0

3B1H 947 MSR_UNC_ARB_PER_CTR1 Package Uncore Arb unit, performance counter 1

3B2H 944 MSR_UNC_ARB_
PERFEVTSEL0

Package Uncore Arb unit, counter 0 event select MSR

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

4E0H 1248 MSR_SMM_FEATURE_CONT
ROL

Package Enhanced SMM Feature Control (SMM-RW)

Reports SMM capability Enhancement. Accessible only while in
SMM.

0 Lock (SMM-RWO)

When set to ‘1’ locks this register from further changes

1 Reserved

Table 35-23 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 333

2 SMM_Code_Chk_En (SMM-RW)

This control bit is available only if MSR_SMM_MCA_CAP[58] == 1.
When set to ‘0’ (default) none of the logical processors are
prevented from executing SMM code outside the ranges defined by
the SMRR.

When set to ‘1’ any logical processor in the package that attempts
to execute SMM code not within the ranges defined by the SMRR
will assert an unrecoverable MCE.

63:3 Reserved

4E2H 1250 MSR_SMM_DELAYED Package SMM Delayed (SMM-RO)

Reports the interruptible state of all logical processors in the
package. Available only while in SMM and
MSR_SMM_MCA_CAP[LONG_FLOW_INDICATION] == 1.

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its state in a long flow of
internal operation which delays servicing an interrupt. The
corresponding bit will be set at the start of long events such as:
Microcode Update Load, C6, WBINVD, Ratio Change, Throttle.

The bit is automatically cleared at the end of each long event. The
reset value of this field is 0.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

4E3H 1251 MSR_SMM_BLOCKED Package SMM Blocked (SMM-RO)

Reports the blocked state of all logical processors in the package.
Available only while in SMM.

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its blocked state to
service an SMI. The corresponding bit will be set if the logical
processor is in one of the following states: Wait For SIPI or SENTER
Sleep.

The reset value of this field is 0FFFH.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

640H 1600 MSR_PP1_POWER_LIMIT Package PP1 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATU
S

Package PP1 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

Table 35-23 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 334

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating
system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system
request due to Processor Graphics driver override.

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system
request because the processor has detected that utilization is low.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Core Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

12 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating system
request due to multi-core turbo limits.

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating system
request due to Turbo transition attenuation. This prevents
performance degradation due to frequent operating ratio changes.

Table 35-23 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 335

15:14 Reserved

16 PROCHOT Log

When set, indicates that the corresponding PROCHOT Status bit is
set. Software can write 0 to this bit to clear PROCHOT Status.

17 Thermal Log

When set, indicates that the corresponding Thermal status bit was
set since it was last cleared by software. Software can write 0 to
this bit to clear Thermal Status.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the corresponding Graphics Driver status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear Graphics Driver Status.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the corresponding Autonomous
Utilization-Based Frequency Control status bit was set since it was
last cleared by software. Software can write 0 to this bit to clear
Autonomous Utilization-Based Frequency Control Status.

22 VR Therm Alert Log

When set, indicates that the corresponding VR Therm Alert Status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear VR Therm Alert Status.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the corresponding EDP Status bit was set
since it was last cleared by software. Software can write 0 to this
bit to clear EDP Status.

25 Core Power Limiting Log

When set, indicates that the corresponding Core Power Limiting
Status bit was set since it was last cleared by software. Software
can write 0 to this bit to clear Core Power Limiting Status.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL1 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL1 Status.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL2 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL2 Status.

Table 35-23 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 336

28 Max Turbo Limit Log

When set, indicates that the corresponding Max Turbo Limit Status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear Max Turbo Limit Status.

29 Turbo Transition Attenuation Log

When set, indicates that the corresponding Turbo Transition
Attenuation Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Turbo Transition
Attenuation Status.

63:30 Reserved.

6B0H 1712 MSR_GRAPHICS_PERF_LIMI
T_REASONS

Package Indicator of Frequency Clipping in the Processor Graphics (R/W)

(frequency refers to processor graphics frequency)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system
request due to Processor Graphics driver override.

5 Reserved.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Graphics Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

Table 35-23 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 337

15:12 Reserved

16 PROCHOT Log

When set, indicates that the corresponding PROCHOT Status bit is
set. Software can write 0 to this bit to clear PROCHOT Status.

17 Thermal Log

When set, indicates that the corresponding Thermal status bit was
set since it was last cleared by software. Software can write 0 to
this bit to clear Thermal Status.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the corresponding Graphics Driver status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear Graphics Driver Status.

21 Reserved.

22 VR Therm Alert Log

When set, indicates that the corresponding VR Therm Alert Status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear VR Therm Alert Status.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the corresponding EDP Status bit was set
since it was last cleared by software. Software can write 0 to this
bit to clear EDP Status.

25 Graphics Power Limiting Log

When set, indicates that the corresponding Graphics Power Limiting
Status bit was set since it was last cleared by software. Software
can write 0 to this bit to clear Graphics Power Limiting Status.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL1 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL1 Status.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL2 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL2 Status.

63:28 Reserved.

6B1H 1713 MSR_RING_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in the Ring Interconnect (R/W)

(frequency refers to ring interconnect in the uncore)

Table 35-23 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 338

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

5:2 Reserved.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Reserved.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

15:12 Reserved

16 PROCHOT Log

When set, indicates that the corresponding PROCHOT Status bit is
set. Software can write 0 to this bit to clear PROCHOT Status.

17 Thermal Log

When set, indicates that the corresponding Thermal status bit was
set since it was last cleared by software. Software can write 0 to
this bit to clear Thermal Status.

21:18 Reserved.

22 VR Therm Alert Log

When set, indicates that the corresponding VR Therm Alert Status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear VR Therm Alert Status.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the corresponding EDP Status bit was set
since it was last cleared by software. Software can write 0 to this
bit to clear EDP Status.

Table 35-23 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 339

25 Reserved.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL1 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL1 Status.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL2 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL2 Status.

63:28 Reserved.

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

706H 1798 MSR_UNC_CBO_0_PER_
CTR0

Package Uncore C-Box 0, performance counter 0

707H 1799 MSR_UNC_CBO_0_PER_
CTR1

Package Uncore C-Box 0, performance counter 1

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

716H 1814 MSR_UNC_CBO_1_PER_
CTR0

Package Uncore C-Box 1, performance counter 0

717H 1815 MSR_UNC_CBO_1_PER_
CTR1

Package Uncore C-Box 1, performance counter 1

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

721H 1824 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

726H 1830 MSR_UNC_CBO_2_PER_
CTR0

Package Uncore C-Box 2, performance counter 0

727H 1831 MSR_UNC_CBO_2_PER_
CTR1

Package Uncore C-Box 2, performance counter 1

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR.

Table 35-23 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 340

35.10.2 Additional Residency MSRs Supported in 4th Generation Intel® Core™ Processors
The 4th generation Intel® Core™ processor family (based on Haswell microarchitecture) with CPUID
DisplayFamily_DisplayModel signature 06_45H supports the MSR interfaces listed in Table 35-16, Table 35-17,
Table 35-19, Table 35-22, Table 35-23, and Table 35-24.

736H 1846 MSR_UNC_CBO_3_PER_
CTR0

Package Uncore C-Box 3, performance counter 0.

737H 1847 MSR_UNC_CBO_3_PER_
CTR1

Package Uncore C-Box 3, performance counter 1.

See Table 35-16, Table 35-17, Table 35-19, Table 35-22 for other MSR definitions applicable to processors with CPUID
signatures 063CH, 06_46H

Table 35-23 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-24 Additional Residency MSRs Supported by 4th Generation Intel® Core™ Processors with
DisplayFamily_DisplayModel Signature 06_45H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

http://biosbits.org

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 341

35.11 MSRS IN INTEL® XEON® PROCESSOR E5 26XX V3 PRODUCT FAMILY
Intel® Xeon® processor E5 v3 family and Intel® Xeon® processor E7 v3 family are based on Haswell-E microar-
chitecture (CPUID DisplayFamily_DisplayModel = 06_3F). These processors supports the MSR interfaces listed in
Table 35-16, Table 35-20, Table 35-22, and Table 35-25.

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

63:29 Reserved

630H 1584 MSR_PKG_C8_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

59:0 Package C8 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C8
states. Count at the same frequency as the TSC.

63:60 Reserved

631H 1585 MSR_PKG_C9_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

59:0 Package C9 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C9
states. Count at the same frequency as the TSC.

63:60 Reserved

632H 1586 MSR_PKG_C10_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

59:0 Package C10 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C10
states. Count at the same frequency as the TSC.

63:60 Reserved

See Table 35-16, Table 35-17, Table 35-19, Table 35-22, Table 35-23 for other MSR definitions applicable to processors
with CPUID signature 06_45H

Table 35-24 Additional Residency MSRs Supported by 4th Generation Intel® Core™ Processors with
DisplayFamily_DisplayModel Signature 06_45H

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 342

Table 35-25 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

63:29 Reserved

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is
supported and a host-space interface available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and a host-space interface available to SMM handler.

63:60 Reserved

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

http://biosbits.org

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 343

0 Reserved

1 MemError Log Enable (R/W)

When set, enables IMC status bank to log additional info in bits
36:32.

63:2 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active.

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10 core active.

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

Table 35-25 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 344

39:32 Package Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

47:40 Package Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

55:48 Package Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

63:56 Package Maximum Ratio Limit for16C

Maximum turbo ratio limit of 16 core active.

1AFH 431 MSR_TURBO_RATIO_LIMIT2 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 17C

Maximum turbo ratio limit of 17 core active.

15:8 Package Maximum Ratio Limit for 18C

Maximum turbo ratio limit of 18 core active.

63:16 Package Reserved

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC error from the Intel QPI 0 module.
415H 1045 MSR_MC5_STATUS Package

416H 1046 MSR_MC5_ADDR Package

417H 1047 MSR_MC5_MISC Package

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC error from the integrated I/O module.
419H 1049 MSR_MC6_STATUS Package

41AH 1050 MSR_MC6_ADDR Package

41BH 1051 MSR_MC6_MISC Package

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC error from the home agent HA 0.
41DH 1053 MSR_MC7_STATUS Package

41EH 1054 MSR_MC7_ADDR Package

41FH 1055 MSR_MC7_MISC Package

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC8 reports MC error from the home agent HA 1.
421H 1057 MSR_MC8_STATUS Package

422H 1058 MSR_MC8_ADDR Package

423H 1059 MSR_MC8_MISC Package

Table 35-25 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 345

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

425H 1061 MSR_MC9_STATUS Package

426H 1062 MSR_MC9_ADDR Package

427H 1063 MSR_MC9_MISC Package

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

429H 1065 MSR_MC10_STATUS Package

42AH 1066 MSR_MC10_ADDR Package

42BH 1067 MSR_MC10_MISC Package

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

42DH 1069 MSR_MC11_STATUS Package

42EH 1070 MSR_MC11_ADDR Package

42FH 1071 MSR_MC11_MISC Package

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

431H 1073 MSR_MC12_STATUS Package

432H 1074 MSR_MC12_ADDR Package

433H 1075 MSR_MC12_MISC Package

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

435H 1077 MSR_MC13_STATUS Package

436H 1078 MSR_MC13_ADDR Package

437H 1079 MSR_MC13_MISC Package

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

439H 1081 MSR_MC14_STATUS Package

43AH 1082 MSR_MC14_ADDR Package

43BH 1083 MSR_MC14_MISC Package

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

43DH 1085 MSR_MC15_STATUS Package

43EH 1086 MSR_MC15_ADDR Package

43FH 1087 MSR_MC15_MISC Package

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

441H 1089 MSR_MC16_STATUS Package

442H 1090 MSR_MC16_ADDR Package

443H 1091 MSR_MC16_MISC Package

Table 35-25 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 346

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, CBo12,
CBo15.

445H 1093 MSR_MC17_STATUS Package

446H 1094 MSR_MC17_ADDR Package

447H 1095 MSR_MC17_MISC Package

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo1, CBo4, CBo7, CBo10, CBo13,
CBo16.

449H 1097 MSR_MC18_STATUS Package

44AH 1098 MSR_MC18_ADDR Package

44BH 1099 MSR_MC18_MISC Package

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo2, CBo5, CBo8, CBo11, CBo14,
CBo17.

44DH 1101 MSR_MC19_STATUS Package

44EH 1102 MSR_MC19_ADDR Package

44FH 1103 MSR_MC19_MISC Package

450H 1104 MSR_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC20 reports MC error from the Intel QPI 1 module.
451H 1105 MSR_MC20_STATUS Package

452H 1106 MSR_MC20_ADDR Package

453H 1107 MSR_MC20_MISC Package

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.9.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the multiplier, 1/
2^ESU; where ESU is an unsigned integer represented by bits 12:8.
Default value is 0EH (or 61 micro-joules)

15:13 Package Reserved

19:16 Package Time Units

See Section 14.9.1, “RAPL Interfaces.”

63:20 Reserved

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating
system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

Table 35-25 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 347

5:2 Reserved.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

63:9 Reserved.

C8DH 3213 IA32_QM_EVTSEL THREAD Monitoring Event Select Register (R/W).

if CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1

7:0 EventID (RW)

Event encoding:

0x0: no monitoring

0x1: L3 occupancy monitoring

all other encoding reserved.

31:8 Reserved.

41:32 RMID (RW)

63:42 Reserved.

C8EH 3214 IA32_QM_CTR THREAD Monitoring Counter Register (R/O).

if CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1

61:0 Resource Monitored Data

62 Unavailable: If 1, indicates data for this RMID is not available or not
monitored for this resource or RMID.

63 Error: If 1, indicates and unsupported RMID or event type was
written to IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC THREAD Resource Association Register (R/W).

9:0 RMID

63: 10 Reserved

See Table 35-16, Table 35-20, Table 35-22 for other MSR definitions applicable to processors with CPUID signature
06_3FH

Table 35-25 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 348

35.12 MSRS IN INTEL® CORE™ M PROCESSORS AND 5TH GENERATION INTEL
CORE PROCESSORS

The Intel® Core™ M-5xxx processors and 5th generation Intel® Core™ Processors are based on the Broadwell
microarchitecture, with CPUID DisplayFamily_DisplayModel signature 06_3DH, supports the MSR interfaces listed
in Table 35-16, Table 35-17, Table 35-19, Table 35-22, Table 35-23, Table 35-26, and Table 35-27.

Table 35-26 lists MSRs that are common to processors based on the Broadwell microarchitectures (including Intel
Core M processors, 5th Generation Intel Core processors, future generation of Intel Xeon processor D family and
Intel Xeon processors).

Table 35-26 Additional MSRs Supported by Processors Based the Broadwell Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

63:29 Reserved

38EH 910 IA32_PERF_GLOBAL_
STAUS

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Ovf_PMC0

http://biosbits.org

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 349

1 Ovf_PMC1

2 Ovf_PMC2

3 Ovf_PMC3

31:4 Reserved.

32 Ovf_FixedCtr0

33 Ovf_FixedCtr1

34 Ovf_FixedCtr2

54:35 Reserved.

55 Trace_ToPA_PMI. See Section 36.2.4.1, “Table of Physical
Addresses (ToPA).”

60:56 Reserved.

61 Ovf_Uncore

62 Ovf_BufDSSAVE

63 CondChgd

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Set 1 to clear Ovf_PMC0

1 Set 1 to clear Ovf_PMC1

2 Set 1 to clear Ovf_PMC2

3 Set 1 to clear Ovf_PMC3

31:4 Reserved.

32 Set 1 to clear Ovf_FixedCtr0

33 Set 1 to clear Ovf_FixedCtr1

34 Set 1 to clear Ovf_FixedCtr2

54:35 Reserved.

55 Set 1 to clear Trace_ToPA_PMI. See Section 36.2.4.1, “Table of
Physical Addresses (ToPA).”

60:56 Reserved.

61 Set 1 to clear Ovf_Uncore

62 Set 1 to clear Ovf_BufDSSAVE

63 Set 1 to clear CondChgd

560H 1376 IA32_RTIT_OUTPUT_BASE THREAD Trace Output Base Register (R/W)

6:0 Reserved.

MAXPHYADDR1-1:7 Base physical address of 1st ToPA table.

63:MAXPHYADDR Reserved.

Table 35-26 Additional MSRs Supported by Processors Based the Broadwell Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 350

Table 35-27 lists MSRs that are specific to Intel Core M processors and 5th Generation Intel Core Processors.

561H 1377 IA32_RTIT_OUTPUT_MASK
_PTRS

THREAD Trace Output Mask Pointers Register (R/W)

6:0 Reserved.

31:7 MaskOrTableOffset

63:32 Output Offset.

570H 1392 IA32_RTIT_CTL Thread Trace Packet Control Register (R/W)

0 TraceEn

1 Reserved, MBZ.

2 OS

3 User

6:4 Reserved, MBZ

7 CR3 filter

8 ToPA; writing 0 will #GP if also setting TraceEn

9 Reserved, MBZ

10 TSCEn

11 DisRETC

12 Reserved, MBZ

13 Reserved; writing 0 will #GP if also setting TraceEn

63:14 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Thread Tracing Status Register (R/W)

0 Reserved, writes ignored.

1 ContexEn, writes ignored.

2 TriggerEn, writes ignored.

3 Reserved

4 Error (R/W)

5 Stopped

63:6 Reserved, MBZ.

572H 1394 IA32_RTIT_CR3_MATCH THREAD Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match
NOTES:

1. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

Table 35-26 Additional MSRs Supported by Processors Based the Broadwell Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 351

35.13 MSRS IN FUTURE GENERATION INTEL® XEON® PROCESSORS

The MSRs listed in Table 35-28 are available in future generation of Intel® Xeon® Processor D Product Family
(CPUID DisplayFamily_DisplayModel = 06_56H). It is based on the Broadwell microarchitecture.

Table 35-28 also applies to future Intel Xeon processors based on the Broadwell microarchitecture (CPUID
DisplayFamily_DisplayModel = 06_4FH).

Table 35-27 Additional MSRs Supported by Intel® Core™ M Processors and 5th Generation Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6core active.

63:48 Reserved.

See Table 35-16, Table 35-17, Table 35-19, Table 35-22, Table 35-23, Table 35-26 for other MSR definitions applicable
to processors with CPUID signature 06_3DH

Table 35-28 Additional MSRs Supported by Intel® Xeon® Processors D Family and Future Intel Xeon Processors
Based on the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-2.

0 Thermal status (RO)

See Table 35-2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 352

1 Thermal status log (R/WC0)

See Table 35-2.

2 PROTCHOT # or FORCEPR# status (RO)

See Table 35-2.

3 PROTCHOT # or FORCEPR# log (R/WC0)

See Table 35-2.

4 Critical Temperature status (RO)

See Table 35-2.

5 Critical Temperature status log (R/WC0)

See Table 35-2.

6 Thermal threshold #1 status (RO)

See Table 35-2.

7 Thermal threshold #1 log (R/WC0)

See Table 35-2.

8 Thermal threshold #2 status (RO)

See Table 35-2.

9 Thermal threshold #2 log (R/WC0)

See Table 35-2.

10 Power Limitation status (RO)

See Table 35-2.

11 Power Limitation log (R/WC0)

See Table 35-2.

12 Current Limit status (RO)

See Table 35-2.

13 Current Limit log (R/WC0)

See Table 35-2.

14 Cross Domain Limit status (RO)

See Table 35-2.

15 Cross Domain Limit log (R/WC0)

See Table 35-2.

22:16 Digital Readout (RO)

See Table 35-2.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

See Table 35-2.

Table 35-28 Additional MSRs Supported by Intel® Xeon® Processors D Family and Future Intel Xeon Processors
Based on the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 353

31 Reading Valid (RO)

See Table 35-2.

63:32 Reserved.

770H 1904 IA32_PM_ENABLE Package See Section 14.4.2, “Enabling HWP”

771H 1905 IA32_HWP_CAPABILITIES Thread See Section 14.4.3, “HWP Performance Range and Dynamic
Capabilities”

774H 1908 IA32_HWP_REQUEST Thread See Section 14.4.4, “Managing HWP”

7:0 Minimum Performance (R/W).

15:8 Maximum Performance (R/W).

23:16 Desired Performance (R/W).

63:24 Reserved.

777H 1911 IA32_HWP_STATUS Thread See Section 14.4.5, “HWP Feedback”

C8DH 3213 IA32_QM_EVTSEL THREAD Monitoring Event Select Register (R/W).

if CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1

7:0 EventID (RW)

Event encoding:

0x00: no monitoring

0x01: L3 occupancy monitoring

0x02: Total memory bandwidth monitoring

0x03: Local memory bandwidth monitoring

all other encoding reserved.

31:8 Reserved.

41:32 RMID (RW)

63:42 Reserved.

C8FH 3215 IA32_PQR_ASSOC THREAD Resource Association Register (R/W).

9:0 RMID

31:10 Reserved

51:32 COS (R/W).

63: 52 Reserved

C90H 3216 IA32_L3_QOS_MASK_0 Package L3 Class Of Service Mask - COS 0 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=0

0:19 CBM: Bit vector of available L3 ways for COS 0 enforcement

63:20 Reserved

C91H 3217 IA32_L3_QOS_MASK_1 Package L3 Class Of Service Mask - COS 1 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=1

Table 35-28 Additional MSRs Supported by Intel® Xeon® Processors D Family and Future Intel Xeon Processors
Based on the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 354

0:19 CBM: Bit vector of available L3 ways for COS 1 enforcement

63:20 Reserved

C92H 3218 IA32_L3_QOS_MASK_2 Package L3 Class Of Service Mask - COS 2 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=2

0:19 CBM: Bit vector of available L3 ways for COS 2 enforcement

63:20 Reserved

C93H 3219 IA32_L3_QOS_MASK_3 Package L3 Class Of Service Mask - COS 3 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=3

0:19 CBM: Bit vector of available L3 ways for COS 3 enforcement

63:20 Reserved

C94H 3220 IA32_L3_QOS_MASK_4 Package L3 Class Of Service Mask - COS 4 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=4

0:19 CBM: Bit vector of available L3 ways for COS 4 enforcement

63:20 Reserved

C95H 3221 IA32_L3_QOS_MASK_5 Package L3 Class Of Service Mask - COS 5 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=5

0:19 CBM: Bit vector of available L3 ways for COS 5 enforcement

63:20 Reserved

C96H 3222 IA32_L3_QOS_MASK_6 Package L3 Class Of Service Mask - COS 6 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=6

0:19 CBM: Bit vector of available L3 ways for COS 6 enforcement

63:20 Reserved

C97H 3223 IA32_L3_QOS_MASK_7 Package L3 Class Of Service Mask - COS 7 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=7

0:19 CBM: Bit vector of available L3 ways for COS 7 enforcement

63:20 Reserved

C98H 3224 IA32_L3_QOS_MASK_8 Package L3 Class Of Service Mask - COS 8 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=8

0:19 CBM: Bit vector of available L3 ways for COS 8 enforcement

63:20 Reserved

C99H 3225 IA32_L3_QOS_MASK_9 Package L3 Class Of Service Mask - COS 9 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=9

0:19 CBM: Bit vector of available L3 ways for COS 9 enforcement

63:20 Reserved

Table 35-28 Additional MSRs Supported by Intel® Xeon® Processors D Family and Future Intel Xeon Processors
Based on the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 355

...

35.15 MSRS IN THE NEXT GENERATION INTEL® XEON PHI™ PROCESSORS
The next generation Intel® Xeon Phi™ processor family, with CPUID DisplayFamily_DisplayModel signature
06_57H, supports the MSR interfaces listed in Table 35-30. These processors are based on the Knights Landing
microarchitecture. Some MSRs are shared between a pair of processor cores, the scope is marked as module.

C9AH 3226 IA32_L3_QOS_MASK_10 Package L3 Class Of Service Mask - COS 10 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX >=10

0:19 CBM: Bit vector of available L3 ways for COS 10 enforcement

63:20 Reserved

C9BH 3227 IA32_L3_QOS_MASK_11 Package L3 Class Of Service Mask - COS 11 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX >=11

0:19 CBM: Bit vector of available L3 ways for COS 11 enforcement

63:20 Reserved

C9CH 3228 IA32_L3_QOS_MASK_12 Package L3 Class Of Service Mask - COS 12 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX >=12

0:19 CBM: Bit vector of available L3 ways for COS 12 enforcement

63:20 Reserved

C9DH 3229 IA32_L3_QOS_MASK_13 Package L3 Class Of Service Mask - COS 13 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX >=13

0:19 CBM: Bit vector of available L3 ways for COS 13 enforcement

63:20 Reserved

C9EH 3230 IA32_L3_QOS_MASK_14 Package L3 Class Of Service Mask - COS 14 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX >=14

0:19 CBM: Bit vector of available L3 ways for COS 14 enforcement

63:20 Reserved

C9FH 3231 IA32_L3_QOS_MASK_15 Package L3 Class Of Service Mask - COS 15 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX >=15

0:19 CBM: Bit vector of available L3 ways for COS 15 enforcement

63:20 Reserved

Table 35-28 Additional MSRs Supported by Intel® Xeon® Processors D Family and Future Intel Xeon Processors
Based on the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 356

Table 35-30 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

0H 0 IA32_P5_MC_ADDR Module See Section 35.20, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Module See Section 35.20, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
andTable 35-2

10H 16 IA32_TIME_STAMP_
COUNTER

Thread See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 35-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 35-2.

0 Lock (R/WL)

1 Reserved

2 Enable VMX outside SMX operation (R/WL)

3BH 59 IA32_TSC_ADJUST THREAD Per-Logical-Processor TSC ADJUST (R/W)

See Table 35-2.

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID THREAD BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 THREAD Performance counter register

See Table 35-2.

C2H 194 IA32_PMC1 THREAD Performance Counter Register

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 357

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Module C-State Configuration Control (R/W)

2:0 Package C-State Limit (R/W)

The following C-state code name encodings are supported:

000b: C0/C1

001b: C2

010b: C6 No Retention

011b: C6 Retention

111b: No limit

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved.

15 CFG Lock (R/WO)

63:16 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Module Power Management IO Redirection in C-state (R/W)

15:0 LVL_2 Base Address (R/W)

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to
be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

100b - C4 is the max C-State to include

110b - C6 is the max C-State to include

63:19 Reserved.

Table 35-30 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 358

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 35-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Core Memory Type Range Register (R)

See Table 35-2.

174H 372 IA32_SYSENTER_CS Thread See Table 35-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 35-2.

179H 377 IA32_MCG_CAP Thread See Table 35-2.

17AH 378 IA32_MCG_STATUS Thread See Table 35-2.

186H 390 IA32_PERFEVTSEL0 Thread Performance Monitoring Event Select Register (R/W)

See Table 35-2.

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 AnyThread

22 EN

23 INV

31:24 CMASK

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 Thread See Table 35-2.

198H 408 IA32_PERF_STATUS Package See Table 35-2.

199H 409 IA32_PERF_CTL Thread See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Thread Clock Modulation (R/W)

See Table 35-2.

19BH 411 IA32_THERM_INTERRUPT Module Thermal Interrupt Control (R/W)

See Table 35-2.

19CH 412 IA32_THERM_STATUS Module Thermal Monitor Status (R/W)

See Table 35-2.

0 Thermal status (RO)

Table 35-30 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 359

1 Thermal status log (R/WC0)

2 PROTCHOT # or FORCEPR# status (RO)

3 PROTCHOT # or FORCEPR# log (R/WC0)

4 Critical Temperature status (RO)

5 Critical Temperature status log (R/WC0)

6 Thermal threshold #1 status (RO)

7 Thermal threshold #1 log (R/WC0)

8 Thermal threshold #2 status (RO)

9 Thermal threshold #2 log (R/WC0)

10 Power Limitation status (RO)

11 Power Limitation log (R/WC0)

15:12 Reserved.

22:16 Digital Readout (RO)

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

31 Reading Valid (RO)

63:32 Reserved.

1A0 416 IA32_MISC_ENABLE Thread Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

2:1 Reserved.

3 Automatic Thermal Control Circuit Enable (R/W)

6:4 Reserved.

7 Performance Monitoring Available (R)

10:8 Reserved.

11 Branch Trace Storage Unavailable (RO)

12 Precise Event Based Sampling Unavailable (RO)

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable (R/W)

18 ENABLE MONITOR FSM (R/W)

21:19 Reserved.

22 Limit CPUID Maxval (R/W)

23 xTPR Message Disable (R/W)

33:24 Reserved.

Table 35-30 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 360

34 XD Bit Disable (R/W)

37:35 Reserved.

38 Turbo Mode Disable (R/W)

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Package

15:0 Reserved.

23:16 Temperature Target (R)

29:24 Target Offset (R/W)

63:30 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Shared Offcore Response Event Select Register (R/W)

1A7H 423 MSR_OFFCORE_RSP_1 Shared Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode for Groups of Cores (RW)

0 Reserved

7:1 Package Maximum Number of Cores in Group 0

Number active processor cores which operates under the maximum
ratio limit for group 0.

15:8 Package Maximum Ratio Limit for Group 0

Maximum turbo ratio limit when the number of active cores are not
more than the group 0 maximum core count.

20:16 Package Number of Incremental Cores Added to Group 1

Group 1, which includes the specified number of additional cores
plus the cores in group 0, operates under the group 1 turbo max
ratio limit = “group 0 Max ratio limit” - “group ratio delta for group
1”.

23:21 Package Group Ratio Delta for Group 1

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit to Group 0.

28:24 Package Number of Incremental Cores Added to Group 2

Group 2, which includes the specified number of additional cores
plus all the cores in group 1, operates under the group 2 turbo max
ratio limit = “group 1 Max ratio limit” - “group ratio delta for group
2”.

31:29 Package Group Ratio Delta for Group 2

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 1.

Table 35-30 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 361

36:32 Package Number of Incremental Cores Added to Group 3

Group 3, which includes the specified number of additional cores
plus all the cores in group 2, operates under the group 3 turbo max
ratio limit = “group 2 Max ratio limit” - “group ratio delta for group
3”.

39:37 Package Group Ratio Delta for Group 3

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 2.

44:40 Package Number of Incremental Cores Added to Group 4

Group 4, which includes the specified number of additional cores
plus all the cores in group 3, operates under the group 4 turbo max
ratio limit = “group 3 Max ratio limit” - “group ratio delta for group
4”.

47:45 Package Group Ratio Delta for Group 4

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 3.

52:48 Package Number of Incremental Cores Added to Group 5

Group 5, which includes the specified number of additional cores
plus all the cores in group 4, operates under the group 5 turbo max
ratio limit = “group 4 Max ratio limit” - “group ratio delta for group
5”.

55:53 Package Group Ratio Delta for Group 5

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 4.

60:56 Package Number of Incremental Cores Added to Group 6

Group 6, which includes the specified number of additional cores
plus all the cores in group 5, operates under the group 6 turbo max
ratio limit = “group 5 Max ratio limit” - “group ratio delta for group
6”.

63:61 Package Group Ratio Delta for Group 6

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 5.

1B0H 432 IA32_ENERGY_PERF_BIAS Thread See Table 35-2.

1B1H 433 IA32_PACKAGE_THERM_
STATUS

Package See Table 35-2.

1B2H 434 IA32_PACKAGE_THERM_
INTERRUPT

Package See Table 35-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 35-2.

Table 35-30 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 362

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R)

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R)

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

200H 512 IA32_MTRR_PHYSBASE0 Core See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Core See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Core See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Core See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Core See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Core See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Core See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Core See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Core See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Core See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Core See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Core See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Core See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Core See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Core See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Core See Table 35-2.

250H 592 IA32_MTRR_FIX64K_00000 Core See Table 35-2.

258H 600 IA32_MTRR_FIX16K_80000 Core See Table 35-2.

259H 601 IA32_MTRR_FIX16K_A000
0

Core See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Core See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Core See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Core See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Core See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Core See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Core See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Core See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Core See Table 35-2.

277H 631 IA32_PAT Core See Table 35-2.

Table 35-30 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 363

2FFH 767 IA32_MTRR_DEF_TYPE Core Default Memory Types (R/W)

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Core See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_STAUS Thread See Table 35-2.

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-2.

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-2.

3F1H 1009 MSR_PEBS_ENABLE Thread See Table 35-2.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 Package C3 Residency Counter. (R/O)

3F9H 1017 MSR_PKG_C6_RESIDENCY Package

63:0 Package C6 Residency Counter. (R/O)

3FAH 1018 MSR_PKG_C7_RESIDENCY Package

63:0 Package C7 Residency Counter. (R/O)

3FCH 1020 MSR_MC0_RESIDENCY Module Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 Module C0 Residency Counter. (R/O)

3FDH 1021 MSR_MC6_RESIDENCY Module

63:0 Module C6 Residency Counter. (R/O)

3FFH 1023 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 CORE C6 Residency Counter. (R/O)

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 35-30 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 364

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40CH 1036 MSR_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

4OEH 1038 MSR_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

480H 1152 IA32_VMX_BASIC Core Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

481H 1153 IA32_VMX_PINBASED_
CTLS

Core Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-2.

482H 1154 IA32_VMX_PROCBASED_
CTLS

Core Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

483H 1155 IA32_VMX_EXIT_CTLS Core Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-2.

484H 1156 IA32_VMX_ENTRY_CTLS Core Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-2.

485H 1157 IA32_VMX_MISC Core Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-2.

486H 1158 IA32_VMX_CR0_FIXED0 Core Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-2.

487H 1159 IA32_VMX_CR0_FIXED1 Core Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-2.

488H 1160 IA32_VMX_CR4_FIXED0 Core Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-2.

Table 35-30 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 365

489H 1161 IA32_VMX_CR4_FIXED1 Core Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-2.

48AH 1162 IA32_VMX_VMCS_ENUM Core Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Core Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Table 35-2

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Core Capability Reporting Register of EPT and VPID (R/O)

See Table 35-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Core Capability Reporting Register of Pin-based VM-execution Flex
Controls (R/O)

See Table 35-2

48EH 1166 IA32_VMX_TRUE_PROCBAS
ED_CTLS

Core Capability Reporting Register of Primary Processor-based
VM-execution Flex Controls (R/O)

See Table 35-2

48FH 1167 IA32_VMX_TRUE_EXIT_CTL
S

Core Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 35-2

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Core Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 35-2

491H 1169 IA32_VMX_FMFUNC Core Capability Reporting Register of VM-function Controls (R/O)

See Table 35-2

4C1H 1217 IA32_A_PMC0 Thread See Table 35-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 35-2.

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-2.

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.9.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the multiplier, 1/
2^ESU; where ESU is an unsigned integer represented by bits 12:8.
Default value is 0EH (or 61 micro-joules)

15:13 Package Reserved

19:16 Package Time Units

See Section 14.9.1, “RAPL Interfaces.”

63:20 Reserved

Table 35-30 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 366

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 Package C2 Residency Counter. (R/O)

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.9.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

613H 1555 MSR_PKG_PERF_STATUS Package PKG Perf Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) See Section 14.9.3, “Package RAPL
Domain.”

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Base TDP Ratio (R/O)

See Table 35-19

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O). See Table 35-19

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O). See Table 35-19

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

See Table 35-19

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

See Table 35-19

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

1 Thermal Status (R0)

5:2 Reserved.

Table 35-30 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 367

6 VR Therm Alert Status (R0)

7 Reserved.

8 Electrical Design Point Status (R0)

63:9 Reserved.

6E0H 1760 IA32_TSC_DEADLINE Core TSC Target of Local APIC’s TSC Deadline Mode (R/W)

See Table 35-2

802H 2050 IA32_X2APIC_APICID Thread x2APIC ID register (R/O) See x2APIC Specification.

803H 2051 IA32_X2APIC_VERSION Thread x2APIC Version register (R/O)

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority register (R/W)

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority register (R/O)

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI register (W/O)

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination register (R/O)

80FH 2063 IA32_X2APIC_SIVR Thread x2APIC Spurious Interrupt Vector register (R/W)

810H 2064 IA32_X2APIC_ISR0 Thread x2APIC In-Service register bits [31:0] (R/O)

811H 2065 IA32_X2APIC_ISR1 Thread x2APIC In-Service register bits [63:32] (R/O)

812H 2066 IA32_X2APIC_ISR2 Thread x2APIC In-Service register bits [95:64] (R/O)

813H 2067 IA32_X2APIC_ISR3 Thread x2APIC In-Service register bits [127:96] (R/O)

814H 2068 IA32_X2APIC_ISR4 Thread x2APIC In-Service register bits [159:128] (R/O)

815H 2069 IA32_X2APIC_ISR5 Thread x2APIC In-Service register bits [191:160] (R/O)

816H 2070 IA32_X2APIC_ISR6 Thread x2APIC In-Service register bits [223:192] (R/O)

817H 2071 IA32_X2APIC_ISR7 Thread x2APIC In-Service register bits [255:224] (R/O)

818H 2072 IA32_X2APIC_TMR0 Thread x2APIC Trigger Mode register bits [31:0] (R/O)

819H 2073 IA32_X2APIC_TMR1 Thread x2APIC Trigger Mode register bits [63:32] (R/O)

81AH 2074 IA32_X2APIC_TMR2 Thread x2APIC Trigger Mode register bits [95:64] (R/O)

81BH 2075 IA32_X2APIC_TMR3 Thread x2APIC Trigger Mode register bits [127:96] (R/O)

81CH 2076 IA32_X2APIC_TMR4 Thread x2APIC Trigger Mode register bits [159:128] (R/O)

81DH 2077 IA32_X2APIC_TMR5 Thread x2APIC Trigger Mode register bits [191:160] (R/O)

81EH 2078 IA32_X2APIC_TMR6 Thread x2APIC Trigger Mode register bits [223:192] (R/O)

81FH 2079 IA32_X2APIC_TMR7 Thread x2APIC Trigger Mode register bits [255:224] (R/O)

820H 2080 IA32_X2APIC_IRR0 Thread x2APIC Interrupt Request register bits [31:0] (R/O)

821H 2081 IA32_X2APIC_IRR1 Thread x2APIC Interrupt Request register bits [63:32] (R/O)

822H 2082 IA32_X2APIC_IRR2 Thread x2APIC Interrupt Request register bits [95:64] (R/O)

823H 2083 IA32_X2APIC_IRR3 Thread x2APIC Interrupt Request register bits [127:96] (R/O)

824H 2084 IA32_X2APIC_IRR4 Thread x2APIC Interrupt Request register bits [159:128] (R/O)

Table 35-30 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 368

...

825H 2085 IA32_X2APIC_IRR5 Thread x2APIC Interrupt Request register bits [191:160] (R/O)

826H 2086 IA32_X2APIC_IRR6 Thread x2APIC Interrupt Request register bits [223:192] (R/O)

827H 2087 IA32_X2APIC_IRR7 Thread x2APIC Interrupt Request register bits [255:224] (R/O)

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status register (R/W)

82FH 2095 IA32_X2APIC_LVT_CMCI Thread x2APIC LVT Corrected Machine Check Interrupt register (R/W)

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command register (R/W)

832H 2098 IA32_X2APIC_LVT_TIMER Thread x2APIC LVT Timer Interrupt register (R/W)

833H 2099 IA32_X2APIC_LVT_THERMA
L

Thread x2APIC LVT Thermal Sensor Interrupt register (R/W)

834H 2100 IA32_X2APIC_LVT_PMI Thread x2APIC LVT Performance Monitor register (R/W)

835H 2101 IA32_X2APIC_LVT_LINT0 Thread x2APIC LVT LINT0 register (R/W)

836H 2102 IA32_X2APIC_LVT_LINT1 Thread x2APIC LVT LINT1 register (R/W)

837H 2103 IA32_X2APIC_LVT_ERROR Thread x2APIC LVT Error register (R/W)

838H 2104 IA32_X2APIC_INIT_COUNT Thread x2APIC Initial Count register (R/W)

839H 2105 IA32_X2APIC_CUR_COUNT Thread x2APIC Current Count register (R/O)

83EH 2110 IA32_X2APIC_DIV_CONF Thread x2APIC Divide Configuration register (R/W)

83FH 2111 IA32_X2APIC_SELF_IPI Thread x2APIC Self IPI register (W/O)

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W) See Table 35-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W) See Table 35-2

Table 35-30 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

	Revision History
	Preface
	Summary Tables of Changes
	Documentation Changes
	1. Updates to Chapter 1, Volume 1
	2. Updates to Chapter 4, Volume 1
	3. Updates to Chapter 5, Volume 1
	4. Updates to Chapter 8, Volume 1
	5. Updates to Chapter 11, Volume 1
	6. Updates to Chapter 13, Volume 1
	7. Updates to Appendix E, Volume 1
	8. Updates to Chapter 1, Volume 2A
	9. Updates to Chapter 3, Volume 2A
	10. Updates to Chapter 4, Volume 2B
	11. Updates to Chapter 1, Volume 3A
	12. Updates to Chapter 2, Volume 3A
	13. Updates to Chapter 4, Volume 3A
	14. Updates to Chapter 6, Volume 3A
	15. Updates to Chapter 8, Volume 3A
	16. Updates to Chapter 11, Volume 3A
	17. Updates to Chapter 17, Volume 3B
	18. Updates to Chapter 19, Volume 3B
	19. Updates to Chapter 22, Volume 3B
	20. Updates to Chapter 29, Volume 3B
	21. Updates to Chapter 33, Volume 3C
	22. Updates to Chapter 35, Volume 3C

