
Document Number: 252046-046

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Documentation Changes

April 2015

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages
resulting from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from pub-
lished specifications. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is sub-
ject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or by visiting http://www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation
in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 1997-2015, Intel Corporation. All Rights Reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents

Revision History . 4

Preface . 7

Summary Tables of Changes . 8

Documentation Changes. 9

Revision History

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Revision Description Date

-001 • Initial release November 2002

-002
• Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual
December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion

February 2003

-004 • Removed Documentation changes 1-17.
• Added Documentation changes 1-24. June 2003

-005 • Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007 • Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008 • Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012 • Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the

document.
July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015 • Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017 • Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019 • Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Added Documentation Changes 20-27. May 2007

-021 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1-6

November 2007

-022 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-6

August 2008

-023 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-21

March 2009

Revision History

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

§

-024 • Removed Documentation Changes 1-21
• Added Documentation Changes 1-16

June 2009

-025 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

September 2009

-026 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-15

December 2009

-027 • Removed Documentation Changes 1-15
• Added Documentation Changes 1-24

March 2010

-028 • Removed Documentation Changes 1-24
• Added Documentation Changes 1-29

June 2010

-029 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

September 2010

-030 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

January 2011

-031 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

April 2011

-032 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-14

May 2011

-033 • Removed Documentation Changes 1-14
• Added Documentation Changes 1-38

October 2011

-034 • Removed Documentation Changes 1-38
• Added Documentation Changes 1-16

December 2011

-035 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

March 2012

-036 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-17

May 2012

-037 • Removed Documentation Changes 1-17
• Added Documentation Changes 1-28

August 2012

-038 • Removed Documentation Changes 1-28
• Add Documentation Changes 1-22

January 2013

-039 • Removed Documentation Changes 1-22
• Add Documentation Changes 1-17

June 2013

-040 • Removed Documentation Changes 1-17
• Add Documentation Changes 1-24

September 2013

-041 • Removed Documentation Changes 1-24
• Add Documentation Changes 1-20

February 2014

-042 • Removed Documentation Changes 1-20
• Add Documentation Changes 1-8

February 2014

-043 • Removed Documentation Changes 1-8
• Add Documentation Changes 1-43

June 2014

-044 • Removed Documentation Changes 1-43
• Add Documentation Changes 1-12

September 2014

-045 • Removed Documentation Changes 1-12
• Add Documentation Changes 1-22

January 2015

-046 • Removed Documentation Changes 1-22
• Add Documentation Changes 1-25

April 2015

Revision Description Date

Revision History

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Preface

This document is an update to the specifications contained in the Affected Documents table below. This
document is a compilation of device and documentation errata, specification clarifications and changes. It is
intended for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents

Nomenclature
Documentation Changes include typos, errors, or omissions from the current published specifications. These
will be incorporated in any new release of the specification.

Document Title Document Number/
Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture 253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A: Instruction Set
Reference, A-M 253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B: Instruction Set
Reference, N-Z 253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C: Instruction Set
Reference 326018

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System
Programming Guide, Part 1 253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System
Programming Guide, Part 2 253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C: System
Programming Guide, Part 3 326019

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 8

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and IA-32 architectures. This
table uses the following notations:

Codes Used in Summary Tables
Change bar to left of table row indicates this erratum is either new or modified from the previous version of the
document.

Documentation Changes
No. DOCUMENTATION CHANGES

1 Updates to Chapter 1, Volume 1

2 Updates to Chapter 4, Volume 1

3 Updates to Chapter 5, Volume 1

4 Updates to Chapter 7, Volume 1

5 Updates to Chapter 13, Volume 1

6 Updates to Chapter 16, Volume 1

7 Updates to Chapter 17, Volume 1

8 Updates to Appendix A, Volume 1

9 Updates to Chapter 1, Volume 2A

10 Updates to Chapter 2, Volume 2A

11 Updates to Chapter 3, Volume 2A

12 Updates to Chapter 4, Volume 2B

13 Updates to Chapter 1, Volume 3A

14 Updates to Chapter 2, Volume 3A

15 Updates to Chapter 4, Volume 3A

16 Updates to Chapter 6, Volume 3A

17 Updates to Chapter 10, Volume 3A

18 Updates to Chapter 13, Volume 3A

19 Updates to Chapter 14, Volume 3B

20 Updates to Chapter 17, Volume 3B

21 Updates to Chapter 18, Volume 3B

22 Updates to Chapter 19, Volume 3B

23 Updates to Chapter 22, Volume 3B

24 Updates to Chapter 25, Volume 3C

25 Updates to Chapter 35, Volume 3C

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

Documentation Changes

1. Updates to Chapter 1, Volume 1
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed and viewable on-line at:
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

See also:
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Fortran Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Software Development Tools:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in three or seven volumes):

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
• Intel® 64 and IA-32 Architectures Optimization Reference Manual:

http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimi-
zation-manual.html

• Intel 64 Architecture x2APIC Specification:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specifi-
cation.html

• Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:

http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
• Developing Multi-threaded Applications: A Platform Consistent Approach:

https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applica-
tions.pdf

• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
http://software.intel.com/en-us/articles/ap949-using-spin-loops-on-intel-pentiumr-4-processor-and-intel-
xeonr-processor/

• Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

Literature related to selected features in future Intel processors are available at:
• Intel® Architecture Instruction Set Extensions Programming Reference

https://software.intel.com/en-us/isa-extensions

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://software.intel.com/en-us/articles/intel-compilers/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specification.html
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
https://software.intel.com/en-us/isa-extensions

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 10

• Intel® Software Guard Extensions (Intel® SGX) Programming Reference
https://software.intel.com/en-us/isa-extensions/intel-sgx

More relevant links are:
• Intel® Developer Zone:

https://software.intel.com/en-us
• Developer centers:

http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
• Processor support general link:

http://www.intel.com/support/processors/
• Software products and packages:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel® Hyper-Threading Technology (Intel® HT Technology):

http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

...

2. Updates to Chapter 4, Volume 1
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

4.8.3.5 Operating on SNaNs and QNaNs
When a floating-point operation is performed on an SNaN and/or a QNaN, the result of the operation is either a
QNaN delivered to the destination operand or the generation of a floating-point invalid operation exception,
depending on the following rules:
• If one of the source operands is an SNaN and the floating-point invalid-operation exception is not masked (see

Section 4.9.1.1, “Invalid Operation Exception (#I)”), then a floating-point invalid-operation exception is
signaled and no result is stored in the destination operand.

• If either or both of the source operands are NaNs and floating-point invalid-operation exception is masked,
the result is as shown in Table 4-7. When an SNaN is converted to a QNaN, the conversion is handled by
setting the most-significant fraction bit of the SNaN to 1. Also, when one of the source operands is an SNaN,
the floating-point invalid-operation exception flag is set. Note that for some combinations of source operands,
the result is different for x87 FPU operations and for SSE/SSE2/SSE3/SSE4.1 operations. Intel AVX follows the
same behavior as SSE/SSE2/SSE3/SSE4.1 in this respect.

• When neither of the source operands is a NaN, but the operation generates a floating-point invalid-operation
exception (see Tables 8-10 and 11-1), the result is commonly a QNaN FP Indefinite (Section 4.8.3.7).

Any exceptions to the behavior described in Table 4-7 are described in Section 8.5.1.2, “Invalid Arithmetic
Operand Exception (#IA),” and Section 11.5.2.1, “Invalid Operation Exception (#I).”

...

https://software.intel.com/en-us/isa-extensions/intel-sgx
https://software.intel.com/en-us
https://software.intel.com/en-us
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
https://software.intel.com/en-us/articles/resource-center/
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
http://www.intel.com/support/processors/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/technology/hyperthread/
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

4.8.3.6 Using SNaNs and QNaNs in Applications
Except for the rules given at the beginning of Section 4.8.3.4, “NaNs,” for encoding SNaNs and QNaNs, software
is free to use the bits in the significand of a NaN for any purpose. Both SNaNs and QNaNs can be encoded to carry
and store data, such as diagnostic information.

By unmasking the invalid operation exception, the programmer can use signaling NaNs to trap to the exception
handler. The generality of this approach and the large number of NaN values that are available provide the sophis-
ticated programmer with a tool that can be applied to a variety of special situations.

For example, a compiler can use signaling NaNs as references to uninitialized (real) array elements. The compiler
can preinitialize each array element with a signaling NaN whose significand contains the index (relative position)
of the element. Then, if an application program attempts to access an element that it has not initialized, it can use
the NaN placed there by the compiler. If the invalid operation exception is unmasked, an interrupt will occur, and
the exception handler will be invoked. The exception handler can determine which element has been accessed,
since the operand address field of the exception pointer will point to the NaN, and the NaN will contain the index
number of the array element.

Quiet NaNs are often used to speed up debugging. In its early testing phase, a program often contains multiple
errors. An exception handler can be written to save diagnostic information in memory whenever it is invoked.
After storing the diagnostic data, it can supply a quiet NaN as the result of the erroneous instruction, and that NaN
can point to its associated diagnostic area in memory. The program will then continue, creating a different NaN for
each error. When the program ends, the NaN results can be used to access the diagnostic data saved at the time
the errors occurred. Many errors can thus be diagnosed and corrected in one test run.

In embedded applications that use computed results in further computations, an undetected QNaN can invalidate
all subsequent results. Such applications should therefore periodically check for QNaNs and provide a recovery
mechanism to be used if a QNaN result is detected.

...

3. Updates to Chapter 5, Volume 1
Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

5.12 AESNI AND PCLMULQDQ
Six AESNI instructions operate on XMM registers to provide accelerated primitives for block encryption/decryption
using Advanced Encryption Standard (FIPS-197). The PCLMULQDQ instruction performs carry-less multiplication
for two binary numbers up to 64-bit wide.
AESDEC Perform an AES decryption round using an 128-bit state and a round key
AESDECLAST Perform the last AES decryption round using an 128-bit state and a round key
AESENC Perform an AES encryption round using an 128-bit state and a round key
AESENCLAST Perform the last AES encryption round using an 128-bit state and a round key
AESIMC Perform an inverse mix column transformation primitive
AESKEYGENASSIST Assist the creation of round keys with a key expansion schedule
PCLMULQDQ Perform carryless multiplication of two 64-bit numbers

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 12

5.19 64-BIT MODE INSTRUCTIONS
The following instructions are introduced in 64-bit mode. This mode is a sub-mode of IA-32e mode.
CDQE Convert doubleword to quadword
CMPSQ Compare string operands
CMPXCHG16B Compare RDX:RAX with m128
LODSQ Load qword at address (R)SI into RAX
MOVSQ Move qword from address (R)SI to (R)DI
MOVZX (64-bits) Move bytes/words to doublewords/quadwords, zero-extension
STOSQ Store RAX at address RDI
SWAPGS Exchanges current GS base register value with value in MSR address C0000102H
SYSCALL Fast call to privilege level 0 system procedures
SYSRET Return from fast system call

...

4. Updates to Chapter 7, Volume 1
Change bars show changes to Chapter 7 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

7.3.1.2 Exchange Instructions
The exchange instructions swap the contents of one or more operands and, in some cases, perform additional
operations such as asserting the LOCK signal or modifying flags in the EFLAGS register.

The XCHG (exchange) instruction swaps the contents of two operands. This instruction takes the place of three
MOV instructions and does not require a temporary location to save the contents of one operand location while the
other is being loaded. When a memory operand is used with the XCHG instruction, the processor’s LOCK signal is
automatically asserted. This instruction is thus useful for implementing semaphores or similar data structures for
process synchronization. See “Bus Locking” in Chapter 8, “Multiple-Processor Management,”of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information on bus locking.

The BSWAP (byte swap) instruction reverses the byte order in a 32-bit register operand. Bit positions 0 through 7
are exchanged with 24 through 31, and bit positions 8 through 15 are exchanged with 16 through 23. Executing
this instruction twice in a row leaves the register with the same value as before. The BSWAP instruction is useful
for converting between “big-endian” and “little-endian” data formats. This instruction also speeds execution of
decimal arithmetic. (The XCHG instruction can be used to swap the bytes in a word.)

Table 7-2 Conditional Move Instructions

Instruction Mnemonic Status Flag States Condition Description

Unsigned Conditional Moves

 CMOVA/CMOVNBE (CF or ZF) = 0 Above/not below or equal

 CMOVAE/CMOVNB CF = 0 Above or equal/not below

 CMOVNC CF = 0 Not carry

 CMOVB/CMOVNAE CF = 1 Below/not above or equal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

The XADD (exchange and add) instruction swaps two operands and then stores the sum of the two operands in
the destination operand. The status flags in the EFLAGS register indicate the result of the addition. This instruc-
tion can be combined with the LOCK prefix (see “LOCK—Assert LOCK# Signal Prefix” in Chapter 3, “Instruction Set
Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A) in a multipro-
cessing system to allow multiple processors to execute one DO loop.

The CMPXCHG (compare and exchange) and CMPXCHG8B (compare and exchange 8 bytes) instructions are
used to synchronize operations in systems that use multiple processors. The CMPXCHG instruction requires
three operands: a source operand in a register, another source operand in the EAX register, and a destination
operand. If the values contained in the destination operand and the EAX register are equal, the destination
operand is replaced with the value of the other source operand (the value not in the EAX register). Otherwise,
the original value of the destination operand is loaded in the EAX register. The status flags in the EFLAGS
register reflect the result that would have been obtained by subtracting the destination operand from the value
in the EAX register.

The CMPXCHG instruction is commonly used for testing and modifying semaphores. It checks to see if a sema-
phore is free. If the semaphore is free, it is marked allocated; otherwise it gets the ID of the current owner. This
is all done in one uninterruptible operation. In a single-processor system, the CMPXCHG instruction eliminates the
need to switch to protection level 0 (to disable interrupts) before executing multiple instructions to test and
modify a semaphore.

For multiple processor systems, CMPXCHG can be combined with the LOCK prefix to perform the compare and
exchange operation atomically. (See “Locked Atomic Operations” in Chapter 8, “Multiple-Processor Management,”
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information on
atomic operations.)

The CMPXCHG8B instruction also requires three operands: a 64-bit value in EDX:EAX, a 64-bit value in
ECX:EBX, and a destination operand in memory. The instruction compares the 64-bit value in the EDX:EAX
registers with the destination operand. If they are equal, the 64-bit value in the ECX:EBX registers is stored in
the destination operand. If the EDX:EAX registers and the destination are not equal, the destination is loaded in
the EDX:EAX registers. The CMPXCHG8B instruction can be combined with the LOCK prefix to perform the
operation atomically.

...

 CMOVC CF = 1 Carry

 CMOVBE/CMOVNA (CF or ZF) = 1 Below or equal/not above

 CMOVE/CMOVZ ZF = 1 Equal/zero

 CMOVNE/CMOVNZ ZF = 0 Not equal/not zero

 CMOVP/CMOVPE PF = 1 Parity/parity even

 CMOVNP/CMOVPO PF = 0 Not parity/parity odd

Signed Conditional Moves

 CMOVGE/CMOVNL (SF xor OF) = 0 Greater or equal/not less

 CMOVL/CMOVNGE (SF xor OF) = 1 Less/not greater or equal

 CMOVLE/CMOVNG ((SF xor OF) or ZF) = 1 Less or equal/not greater

 CMOVO OF = 1 Overflow

 CMOVNO OF = 0 Not overflow

 CMOVS SF = 1 Sign (negative)

 CMOVNS SF = 0 Not sign (non-negative)

Table 7-2 Conditional Move Instructions (Contd.)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 14

7.3.2 Binary Arithmetic Instructions
Binary arithmetic instructions operate on 8-, 16-, and 32-bit numeric data encoded as signed or unsigned binary
integers. The binary arithmetic instructions may also be used in algorithms that operate on decimal (BCD) values.

For the purpose of this discussion, these instructions are divided into subordinate subgroups of instructions that:
• Add and subtract
• Increment and decrement
• Compare and change signs
• Multiply and divide

...

7.3.2.4 Comparison and Sign Change Instructions
The CMP (compare) instruction computes the difference between two integer operands and updates the OF, SF,
ZF, AF, PF, and CF flags according to the result. The source operands are not modified, nor is the result saved. The
CMP instruction is commonly used in conjunction with a Jcc (jump) or SETcc (byte set on condition) instruction,
with the latter instructions performing an action based on the result of a CMP instruction.

The NEG (negate) instruction subtracts a signed integer operand from zero. The effect of the NEG instruction is to
change the sign of a two's complement operand while keeping its magnitude.

7.3.2.5 Multiplication and Division Instructions
The processor provides two multiply instructions, MUL (unsigned multiply) and IMUL (signed multiply), and two
divide instructions, DIV (unsigned divide) and IDIV (signed divide).

The MUL instruction multiplies two unsigned integer operands. The result is computed to twice the size of the
source operands (for example, if word operands are being multiplied, the result is a doubleword).

The IMUL instruction multiplies two signed integer operands. The result is computed to twice the size of the
source operands; however, in some cases the result is truncated to the size of the source operands (see “IMUL—
Signed Multiply” in Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A).

The DIV instruction divides one unsigned operand by another unsigned operand and returns a quotient and a
remainder.

The IDIV instruction is identical to the DIV instruction, except that IDIV performs a signed division.

...

7.3.3 Decimal Arithmetic Instructions
Decimal arithmetic can be performed by combining the binary arithmetic instructions ADD, SUB, MUL, and DIV
(discussed in Section 7.3.2, “Binary Arithmetic Instructions”) with the decimal arithmetic instructions. The
decimal arithmetic instructions are provided to carry out the following operations:
• To adjust the results of a previous binary arithmetic operation to produce a valid BCD result.
• To adjust the operands of a subsequent binary arithmetic operation so that the operation will produce a valid

BCD result.

These instructions operate on both packed and unpacked BCD values. For the purpose of this discussion, the
decimal arithmetic instructions are divided into subordinate subgroups of instructions that provide:
• Packed BCD adjustments

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 15

• Unpacked BCD adjustments

...

7.3.3.2 Unpacked BCD Adjustment Instructions
The AAA (ASCII adjust after addition), AAS (ASCII adjust after subtraction), AAM (ASCII adjust after multiplica-
tion), and AAD (ASCII adjust before division) instructions adjust the results of arithmetic operations performed
on unpacked BCD values (see Section 4.7, “BCD and Packed BCD Integers”). All these instructions assume that
the value to be adjusted is stored in the AL register or, in one instance, the AL and AH registers.

The AAA instruction adjusts the contents of the AL register following the addition of two unpacked BCD values. It
converts the binary value in the AL register into a decimal value and stores the result in the AL register in
unpacked BCD format (the decimal number is stored in the lower 4 bits of the register and the upper 4 bits are
cleared). If a decimal carry occurred as a result of the addition, the CF flag is set and the contents of the AH
register are incremented by 1.

The AAS instruction adjusts the contents of the AL register following the subtraction of two unpacked BCD values.
Here again, a binary value is converted into an unpacked BCD value. If a borrow was required to complete the
decimal subtract, the CF flag is set and the contents of the AH register are decremented by 1.

The AAM instruction adjusts the contents of the AL register following a multiplication of two unpacked BCD values.
It converts the binary value in the AL register into a decimal value and stores the least significant digit of the
result in the AL register (in unpacked BCD format) and the most significant digit, if there is one, in the AH register
(also in unpacked BCD format).

The AAD instruction adjusts a two-digit BCD value so that when the value is divided with the DIV instruction, a
valid unpacked BCD result is obtained. The instruction converts the BCD value in registers AH (most significant
digit) and AL (least significant digit) into a binary value and stores the result in register AL. When the value in AL
is divided by an unpacked BCD value, the quotient and remainder will be automatically encoded in unpacked BCD
format.

7.3.4 Decimal Arithmetic Instructions in 64-Bit Mode
Decimal arithmetic instructions are not supported in 64-bit mode, they are either invalid or not encodable.

...

7.3.6 Shift and Rotate Instructions
The shift and rotate instructions rearrange the bits within an operand. For the purpose of this discussion, these
instructions are further divided into subordinate subgroups of instructions that:
• Shift bits
• Double-shift bits (move them between operands)
• Rotate bits

...

7.3.7 Bit and Byte Instructions
These instructions operate on bit or byte strings. For the purpose of this discussion, they are further divided into
subordinate subgroups that:
• Test and modify a single bit

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 16

• Scan a bit string
• Set a byte given conditions
• Test operands and report results

...

7.3.8 Control Transfer Instructions
The processor provides both conditional and unconditional control transfer instructions to direct the flow of
program execution. Conditional transfers are taken only for specified states of the status flags in the EFLAGS
register. Unconditional control transfers are always executed.

For the purpose of this discussion, these instructions are further divided into subordinate subgroups that process:
• Unconditional transfers
• Conditional transfers
• Software interrupts

7.3.8.1 Unconditional Transfer Instructions
The JMP, CALL, RET, INT, and IRET instructions transfer program control to another location (destination address)
in the instruction stream. The destination can be within the same code segment (near transfer) or in a different
code segment (far transfer).

Jump instruction — The JMP (jump) instruction unconditionally transfers program control to a destination
instruction. The transfer is one-way; that is, a return address is not saved. A destination operand specifies the
address (the instruction pointer) of the destination instruction. The address can be a relative address or an
absolute address.

A relative address is a displacement (offset) with respect to the address in the EIP register. The destination
address (a near pointer) is formed by adding the displacement to the address in the EIP register. The displace-
ment is specified with a signed integer, allowing jumps either forward or backward in the instruction stream.

An absolute address is a offset from address 0 of a segment. It can be specified in either of the following ways:
• An address in a general-purpose register — This address is treated as a near pointer, which is copied into

the EIP register. Program execution then continues at the new address within the current code segment.
• An address specified using the standard addressing modes of the processor — Here, the address can

be a near pointer or a far pointer. If the address is for a near pointer, the address is translated into an offset
and copied into the EIP register. If the address is for a far pointer, the address is translated into a segment
selector (which is copied into the CS register) and an offset (which is copied into the EIP register).

In protected mode, the JMP instruction also allows jumps to a call gate, a task gate, and a task-state segment.

Call and return instructions — The CALL (call procedure) and RET (return from procedure) instructions allow a
jump from one procedure (or subroutine) to another and a subsequent jump back (return) to the calling proce-
dure.

The CALL instruction transfers program control from the current (or calling) procedure to another procedure (the
called procedure). To allow a subsequent return to the calling procedure, the CALL instruction saves the current
contents of the EIP register on the stack before jumping to the called procedure. The EIP register (prior to trans-
ferring program control) contains the address of the instruction following the CALL instruction. When this address
is pushed on the stack, it is referred to as the return instruction pointer or return address.

The address of the called procedure (the address of the first instruction in the procedure being jumped to) is spec-
ified in a CALL instruction the same way as it is in a JMP instruction (see “Jump instruction” on page 2-16). The

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

address can be specified as a relative address or an absolute address. If an absolute address is specified, it can be
either a near or a far pointer.

The RET instruction transfers program control from the procedure currently being executed (the called procedure)
back to the procedure that called it (the calling procedure). Transfer of control is accomplished by copying the
return instruction pointer from the stack into the EIP register. Program execution then continues with the instruc-
tion pointed to by the EIP register.

The RET instruction has an optional operand, the value of which is added to the contents of the ESP register as
part of the return operation. This operand allows the stack pointer to be incremented to remove parameters from
the stack that were pushed on the stack by the calling procedure.

See Section 6.3, “Calling Procedures Using CALL and RET,” for more information on the mechanics of making
procedure calls with the CALL and RET instructions.

Return from interrupt instruction — When the processor services an interrupt, it performs an implicit call to
an interrupt-handling procedure. The IRET (return from interrupt) instruction returns program control from an
interrupt handler to the interrupted procedure (that is, the procedure that was executing when the interrupt
occurred). The IRET instruction performs a similar operation to the RET instruction (see “Call and return instruc-
tions” on page 2-16) except that it also restores the EFLAGS register from the stack. The contents of the EFLAGS
register are automatically stored on the stack along with the return instruction pointer when the processor
services an interrupt.

7.3.8.2 Conditional Transfer Instructions
The conditional transfer instructions execute jumps or loops that transfer program control to another instruction
in the instruction stream if specified conditions are met. The conditions for control transfer are specified with a set
of condition codes that define various states of the status flags (CF, ZF, OF, PF, and SF) in the EFLAGS register.

Conditional jump instructions — The Jcc (conditional) jump instructions transfer program control to a destina-
tion instruction if the conditions specified with the condition code (cc) associated with the instruction are satisfied
(see Table 7-4). If the condition is not satisfied, execution continues with the instruction following the Jcc instruc-
tion. As with the JMP instruction, the transfer is one-way; that is, a return address is not saved.

Table 7-4 Conditional Jump Instructions
Instruction Mnemonic Condition (Flag States) Description

Unsigned Conditional Jumps

 JA/JNBE (CF or ZF) = 0 Above/not below or equal

 JAE/JNB CF = 0 Above or equal/not below

 JB/JNAE CF = 1 Below/not above or equal

 JBE/JNA (CF or ZF) = 1 Below or equal/not above

 JC CF = 1 Carry

 JE/JZ ZF = 1 Equal/zero

 JNC CF = 0 Not carry

 JNE/JNZ ZF = 0 Not equal/not zero

 JNP/JPO PF = 0 Not parity/parity odd

 JP/JPE PF = 1 Parity/parity even

 JCXZ CX = 0 Register CX is zero

 JECXZ ECX = 0 Register ECX is zero

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 18

The destination operand specifies a relative address (a signed offset with respect to the address in the EIP
register) that points to an instruction in the current code segment. The Jcc instructions do not support far trans-
fers; however, far transfers can be accomplished with a combination of a Jcc and a JMP instruction (see “Jcc—
Jump if Condition Is Met” in Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A).

Table 7-4 shows the mnemonics for the Jcc instructions and the conditions being tested for each instruction. The
condition code mnemonics are appended to the letter “J” to form the mnemonic for a Jcc instruction. The instruc-
tions are divided into two groups: unsigned and signed conditional jumps. These groups correspond to the results
of operations performed on unsigned and signed integers respectively. Those instructions listed as pairs (for
example, JA/JNBE) are alternate names for the same instruction. Assemblers provide alternate names to make it
easier to read program listings.

The JCXZ and JECXZ instructions test the CX and ECX registers, respectively, instead of one or more status flags.
See “Jump if zero instructions” on page 7-17 for more information about these instructions.

Loop instructions — The LOOP, LOOPE (loop while equal), LOOPZ (loop while zero), LOOPNE (loop while not
equal), and LOOPNZ (loop while not zero) instructions are conditional jump instructions that use the value of the
ECX register as a count for the number of times to execute a loop. All the loop instructions decrement the count
in the ECX register each time they are executed and terminate a loop when zero is reached. The LOOPE, LOOPZ,
LOOPNE, and LOOPNZ instructions also accept the ZF flag as a condition for terminating the loop before the count
reaches zero.

The LOOP instruction decrements the contents of the ECX register (or the CX register, if the address-size attribute
is 16), then tests the register for the loop-termination condition. If the count in the ECX register is non-zero,
program control is transferred to the instruction address specified by the destination operand. The destination
operand is a relative address (that is, an offset relative to the contents of the EIP register), and it generally points
to the first instruction in the block of code that is to be executed in the loop. When the count in the ECX register
reaches zero, program control is transferred to the instruction immediately following the LOOP instruction,
which terminates the loop. If the count in the ECX register is zero when the LOOP instruction is first executed, the
register is pre-decremented to FFFFFFFFH, causing the loop to be executed 232 times.

The LOOPE and LOOPZ instructions perform the same operation (they are mnemonics for the same instruction).
These instructions operate the same as the LOOP instruction, except that they also test the ZF flag.

If the count in the ECX register is not zero and the ZF flag is set, program control is transferred to the destination
operand. When the count reaches zero or the ZF flag is clear, the loop is terminated by transferring program
control to the instruction immediately following the LOOPE/LOOPZ instruction.

The LOOPNE and LOOPNZ instructions (mnemonics for the same instruction) operate the same as the LOOPE/
LOOPZ instructions, except that they terminate the loop if the ZF flag is set.

Signed Conditional Jumps

 JG/JNLE ((SF xor OF) or ZF) = 0 Greater/not less or equal

 JGE/JNL (SF xor OF) = 0 Greater or equal/not less

 JL/JNGE (SF xor OF) = 1 Less/not greater or equal

 JLE/JNG ((SF xor OF) or ZF) = 1 Less or equal/not greater

 JNO OF = 0 Not overflow

 JNS SF = 0 Not sign (non-negative)

 JO OF = 1 Overflow

 JS SF = 1 Sign (negative)

Table 7-4 Conditional Jump Instructions (Contd.)
Instruction Mnemonic Condition (Flag States) Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

Jump if zero instructions — The JECXZ (jump if ECX zero) instruction jumps to the location specified in the
destination operand if the ECX register contains the value zero. This instruction can be used in combination with
a loop instruction (LOOP, LOOPE, LOOPZ, LOOPNE, or LOOPNZ) to test the ECX register prior to beginning a loop.
As described in “Loop instructions” on page 2-18, the loop instructions decrement the contents of the ECX register
before testing for zero. If the value in the ECX register is zero initially, it will be decremented to FFFFFFFFH on the
first loop instruction, causing the loop to be executed 232 times. To prevent this problem, a JECXZ instruction can
be inserted at the beginning of the code block for the loop, causing a jump out of the loop if the ECX register count
is initially zero. When used with repeated string scan and compare instructions, the JECXZ instruction can deter-
mine whether the loop terminated because the count reached zero or because the scan or compare conditions
were satisfied.

The JCXZ (jump if CX is zero) instruction operates the same as the JECXZ instruction when the 16-bit address-size
attribute is used. Here, the CX register is tested for zero.

...

7.3.9.2 Repeated String Operations
Each of the string instructions described in Section 7.3.9.1 perform one iteration of a string operation. To operate
on strings longer than a doubleword, the string instructions can be combined with a repeat prefix (REP) to create
a repeating instruction or be placed in a loop.

When used in string instructions, the ESI and EDI registers are automatically incremented or decremented after
each iteration of an instruction to point to the next element (byte, word, or doubleword) in the string. String oper-
ations can thus begin at higher addresses and work toward lower ones, or they can begin at lower addresses and
work toward higher ones. The DF flag in the EFLAGS register controls whether the registers are incremented (DF
= 0) or decremented (DF = 1). The STD and CLD instructions set and clear this flag, respectively.

The following repeat prefixes can be used in conjunction with a count in the ECX register to cause a string instruc-
tion to repeat:
• REP — Repeat while the ECX register not zero.
• REPE/REPZ — Repeat while the ECX register not zero and the ZF flag is set.
• REPNE/REPNZ — Repeat while the ECX register not zero and the ZF flag is clear.

When a string instruction has a repeat prefix, the operation executes until one of the termination conditions spec-
ified by the prefix is satisfied. The REPE/REPZ and REPNE/REPNZ prefixes are used only with the CMPS and SCAS
instructions. Also, note that a REP STOS instruction is the fastest way to initialize a large block of memory.

7.3.9.3 Fast-String Operation
To improve performance, more recent processors support modifications to the processor’s operation during the
string store operations initiated with the MOVS, MOVSB, STOS, and STOSB instructions. This optimized operation,
called fast-string operation, is used when the execution of one of those instructions meets certain initial condi-
tions (see below). Instructions using fast-string operation effectively operate on the string in groups that may
include multiple elements of the native data size (byte, word, doubleword, or quadword). With fast-string opera-
tion, the processor recognizes interrupts and data breakpoints only on boundaries between these groups. Fast-
string operation is used only if the source and destination addresses both use either the WB or WC memory types.

The initial conditions for fast-string operation are implementation-specific and may vary with the native string
size. Examples of parameters that may impact the use of fast-string operation include the following:
• the alignment indicated in the EDI and ESI alignment registers;
• the address order of the string operation;
• the value of the initial operation counter (ECX); and
• the difference between the source and destination addresses.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 20

NOTE
Initial conditions for fast-string operation in future Intel 64 or IA-32 processor families may differ
from above. The Intel® 64 and IA-32 Architectures Optimization Reference Manual may contain
model-specific information.

Software can disable fast-string operation by clearing the fast-string-enable bit (bit 0) of IA32_MISC_ENABLE
MSR. However, Intel recommends that system software always enable fast-string operation.

When fast-string operation is enabled (because IA32_MISC_ENABLE[0] = 1), some processors may further
enhance the operation of the REP MOVSB and REP STOSB instructions. A processor supports these enhancements
if CPUID.(EAX=07H, ECX=0H):EBX[bit 9] is 1. The Intel® 64 and IA-32 Architectures Optimization Reference
Manual may include model-specific recommendations for use of these enhancements.

The stores produced by fast-string operation may appear to execute out of order. Software dependent upon
sequential store ordering should not use string operations for the entire data structure to be stored. Data and
semaphores should be separated. Order-dependent code should write to a discrete semaphore variable after any
string operations to allow correctly ordered data to be seen by all processors. Atomicity of load and store opera-
tions is guaranteed only for native data elements of the string with native data size, and only if they are included
in a single cache line. See Section 8.2.4, “Fast-String Operation and Out-of-Order Stores” of Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

...

7.3.10 I/O Instructions
The IN (input from port to register), INS (input from port to string), OUT (output from register to port), and OUTS
(output string to port) instructions move data between the processor’s I/O ports and either a register or memory.

The register I/O instructions (IN and OUT) move data between an I/O port and the EAX register (32-bit I/O), the
AX register (16-bit I/O), or the AL (8-bit I/O) register. The I/O port being read or written to is specified with an
immediate operand or an address in the DX register.

The block I/O instructions (INS and OUTS) instructions move blocks of data (strings) between an I/O port and
memory. These instructions operate similar to the string instructions (see Section 7.3.9, “String Operations”).
The ESI and EDI registers are used to specify string elements in memory and the repeat prefix (REP) is used to
repeat the instructions to implement block moves. The assembler recognizes the following alternate mnemonics
for these instructions: INSB (input byte), INSW (input word), and INSD (input doubleword), and OUTSB (output
byte), OUTSW (output word), and OUTSD (output doubleword).

The INS and OUTS instructions use an address in the DX register to specify the I/O port to be read or written to.

...

7.3.13 Flag Control (EFLAG) Instructions
The Flag Control (EFLAG) instructions allow the state of selected flags in the EFLAGS register to be read or modi-
fied. For the purpose of this discussion, these instructions are further divided into subordinate subgroups of
instructions that manipulate:
• Carry and direction flags
• The EFLAGS register
• Interrupt flags

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 21

7.3.13.1 Carry and Direction Flag Instructions
The STC (set carry flag), CLC (clear carry flag), and CMC (complement carry flag) instructions allow the CF flag in
the EFLAGS register to be modified directly. They are typically used to initialize the CF flag to a known state before
an instruction that uses the flag in an operation is executed. They are also used in conjunction with the rotate-
with-carry instructions (RCL and RCR).

The STD (set direction flag) and CLD (clear direction flag) instructions allow the DF flag in the EFLAGS register to
be modified directly. The DF flag determines the direction in which index registers ESI and EDI are stepped when
executing string processing instructions. If the DF flag is clear, the index registers are incremented after each iter-
ation of a string instruction; if the DF flag is set, the registers are decremented.

...

7.3.13.3 Interrupt Flag Instructions
The STI (set interrupt flag) and CLI (clear interrupt flag) instructions allow the interrupt IF flag in the EFLAGS
register to be modified directly. The IF flag controls the servicing of hardware-generated interrupts (those
received at the processor’s INTR pin). If the IF flag is set, the processor services hardware interrupts; if the IF flag
is clear, hardware interrupts are masked.

The ability to execute these instructions depends on the operating mode of the processor and the current privilege
level (CPL) of the program or task attempting to execute these instructions.

...

7.3.15 Segment Register Instructions
The processor provides a variety of instructions that address the segment registers of the processor directly.
These instructions are only used when an operating system or executive is using the segmented or the real-
address mode memory model.

For the purpose of this discussion, these instructions are divided into subordinate subgroups of instructions that
allow:
• Segment-register load and store
• Far control transfers
• Software interrupt calls
• Handling of far pointers

...

7.3.15.2 Far Control Transfer Instructions
The JMP and CALL instructions (see Section 7.3.8, “Control Transfer Instructions”) both accept a far pointer as a
destination to transfer program control to a segment other than the segment currently being pointed to by the CS
register. When a far call is made with the CALL instruction, the current values of the EIP and CS registers are both
pushed on the stack.

The RET instruction (see “Call and return instructions” on page 2-16) can be used to execute a far return. Here,
program control is transferred from a code segment that contains a called procedure back to the code segment
that contained the calling procedure. The RET instruction restores the values of the CS and EIP registers for the
calling procedure from the stack.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 22

7.3.15.3 Software Interrupt Instructions
The software interrupt instructions INT, INTO, and IRET (see Section 7.3.8.4, “Software Interrupt Instructions”)
can also call and return from interrupt and exception handler procedures that are located in a code segment other
than the current code segment. With these instructions, however, the switching of code segments is handled
transparently from the application program.

...

7.3.17.1 RDRAND
The RDRAND instruction returns a random number. All Intel processors that support the RDRAND instruction indi-
cate the availability of the RDRAND instruction via reporting CPUID.01H:ECX.RDRAND[bit 30] = 1.
RDRAND returns random numbers that are supplied by a cryptographically secure, deterministic random bit
generator DRBG. The DRBG is designed to meet the NIST SP 800-90A standard. The DRBG is re-seeded
frequently from an on-chip non-deterministic entropy source to guarantee data returned by RDRAND is statisti-
cally uniform, non-periodic and non-deterministic.
In order for the hardware design to meet its security goals, the random number generator continuously tests itself
and the random data it is generating. Runtime failures in the random number generator circuitry or statistically
anomalous data occurring by chance will be detected by the self test hardware and flag the resulting data as being
bad. In such extremely rare cases, the RDRAND instruction will return no data instead of bad data.
Under heavy load, with multiple cores executing RDRAND in parallel, it is possible, though unlikely, for the
demand of random numbers by software processes/threads to exceed the rate at which the random number
generator hardware can supply them. This will lead to the RDRAND instruction returning no data transitorily. The
RDRAND instruction indicates the occurrence of this rare situation by clearing the CF flag.
The RDRAND instruction returns with the carry flag set (CF = 1) to indicate valid data is returned. It is recom-
mended that software using the RDRAND instruction to get random numbers retry for a limited number of itera-
tions while RDRAND returns CF=0 and complete when valid data is returned, indicated with CF=1. This will deal
with transitory underflows. A retry limit should be employed to prevent a hard failure in the RNG (expected to be
extremely rare) leading to a busy loop in software.
The intrinsic primitive for RDRAND is defined to address software’s need for the common cases (CF = 1) and the
rare situations (CF = 0). The intrinsic primitive returns a value that reflects the value of the carry flag returned by
the underlying RDRAND instruction. The example below illustrates the recommended usage of an RDRAND
intrinsic in a utility function, a loop to fetch a 64 bit random value with a retry count limit of 10. A C implementa-
tion might be written as follows:

--
#define SUCCESS 1
#define RETRY_LIMIT_EXCEEDED 0
#define RETRY_LIMIT 10

int get_random_64(unsigned __int 64 * arand)
{int i ;

for (i = 0; i < RETRY_LIMIT; i ++) {
if(_rdrand64_step(arand)) return SUCCESS;

}
return RETRY_LIMIT_EXCEEDED;

}

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 23

...

5. Updates to Chapter 13, Volume 1
Change bars show changes to Chapter 13 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

13.1 XSAVE-SUPPORTED FEATURES AND STATE-COMPONENT BITMAPS
The XSAVE feature set supports the saving and restoring of state components, each of which is a discrete set of
processor registers (or parts of registers). In general, each such state component corresponds to a particular CPU
feature. Such a feature is XSAVE-supported. Some XSAVE-supported features use registers in multiple XSAVE-
managed state components.

The XSAVE feature set organizes the state components of the XSAVE-supported features using state-compo-
nent bitmaps. A state-component bitmap comprises 64 bits; each bit in such a bitmap corresponds to a single
state component. The following bits are defined in state-component bitmaps:
• Bit 0 corresponds to the state component used for the x87 FPU execution environment (x87 state). See

Section 13.5.1.
• Bit 1 corresponds to the state component used for registers used by the streaming SIMD extensions (SSE

state). See Section 13.5.2.
• Bit 2 corresponds to the state component used for the additional register state used by the Intel® Advanced

Vector Extensions (AVX state). See Section 13.5.3.
• Bits 7:5 correspond to the three state components used for the additional register state used by Intel®

Advanced Vector Extensions 512 (AVX-512 state):

— State component 5 is used for the 8 64-bit opmask registers k0–k7 (opmask state).

— State component 6 is used for the upper 256 bits of the registers ZMM0–ZMM15. These 16 256-bit values
are denoted ZMM0_H–ZMM15_H (ZMM_Hi256 state).

— State component 7 is used for the 16 512-bit registers ZMM16–ZMM31 (Hi16_ZMM state).
• Bit 9 corresponds to the state component used for the protection-key feature’s register PKRU (PKRU state).

See Section 13.5.5.

Other bits in the range 62:3 are not currently defined in state-component bitmaps and are reserved for future
expansion. As individual state component is defined within bits 62:3, additional sub-sections are updated within
Section 13.5 over time. Bit 63 is used for special functionality in some bitmaps and does not correspond to any
state component.

The state component corresponding to bit i of state-component bitmaps is called state component i. Thus, x87
state is state component 0; SSE state is state component 1; AVX state is state component 2; AVX-512 state
comprises state components 5–7; and PKRU state is state component 9.

The XSAVE feature set uses state-component bitmaps in multiple ways. Most of the instructions use an implicit
operand (in EDX:EAX), called the instruction mask, which is the state-component bitmap that specifies the
state components on which the instruction operates.

Extended control register XCR0 contains a state-component bitmap that specifies the state components that soft-
ware has enabled the full XSAVE feature set to manage. If the bit corresponding to a state component is clear in
XCR0, the following instructions in the XSAVE feature set will not operate on that state component, regardless of

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 24

the value of the instruction mask: XSAVE, XRSTOR, XSAVEOPT, and XSAVEC. Details of the operation of these
instructions are given in Section 13.7 through Section 13.10.

The IA32_XSS MSR (index DA0H) contains a state-component bitmap that specifies the state components that
software has enabled XSAVES and XRSTORS to manage. If the bit corresponding to a state component is clear in
the logical-OR of XCR0 and IA32_XSS (XCR0 | IA32_XSS), XSAVES and XRSTORS will not operate on that state
component, regardless of the value of the instruction mask. Details of the operation of these instructions are
given in Section 13.11 and Section 13.12.

Some XSAVE-supported features can be used only if XCR0 has been configured so that the features’ state compo-
nents can be managed by the XSAVE feature set. Such state components and features are XSAVE-enabled. In
general, the processor will not modify (or allow modification of) the registers of a state component of an XSAVE-
enabled feature if the bit corresponding to that state component is clear in XCR0. (If software clears such a bit in
XCR0, the processor preserves the corresponding state component.) If an XSAVE-enabled feature has not been
fully enabled in XCR0, execution of any instruction defined for that feature causes an invalid-opcode exception
(#UD).

As will be explained in Section 13.3, the XSAVE feature set is enabled only if CR4.OSXSAVE[bit 18] = 1. If
CR4.OSXSAVE = 0, the processor treats XSAVE-enabled state features and their state components as if all bits in
XCR0 were clear; the state components cannot be modified and the features’ instructions cannot be executed.

The state components for x87 state, and for SSE state, and for PKRU state are XSAVE-managed but the corre-
sponding features are not XSAVE-enabled. Processors allow modification of this state, as well as execution of x87
FPU instructions and SSE instructions and use of protection keys, regardless of the value of CR4.OSXSAVE and
XCR0.

...

13.3 ENABLING THE XSAVE FEATURE SET AND XSAVE-ENABLED FEATURES
Software enables the XSAVE feature set by setting CR4.OSXSAVE[bit 18] to 1 (e.g., with the MOV to CR4 instruc-
tion). If this bit is 0, execution of any of XGETBV, XRSTOR, XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and
XSETBV causes an invalid-opcode exception (#UD).

When CR4.OSXSAVE = 1 and CPL = 0, executing the XSETBV instruction with ECX = 0 writes the 64-bit value in
EDX:EAX to XCR0 (EAX is written to XCR0[31:0] and EDX to XCR0[63:32]). (Execution of the XSETBV instruction
causes a general-protection fault — #GP — if CPL > 0.) The following items provide details regarding individual
bits in XCR0:
• XCR0[0] is associated with x87 state (see Section 13.5.1). XCR0[0] is always 1. It has that value coming out

of RESET. Executing the XSETBV instruction causes a general-protection fault (#GP) if ECX = 0 and EAX[0] is
0.

• XCR0[1] is associated with SSE state (see Section 13.5.2). Software can use the XSAVE feature set to manage
SSE state only if XCR0[1] = 1. The value of XCR0[1] in no way determines whether software can execute SSE
instructions (these instructions can be executed even if XCR0[1] = 0).
XCR0[1] is 0 coming out of RESET. As noted in Section 13.2, every processor that supports the XSAVE feature
set allows software to set XCR0[1].

• XCR0[2] is associated with AVX state (see Section 13.5.3). Software can use the XSAVE feature set to
manage AVX state only if XCR0[2] = 1. In addition, software can execute AVX instructions only if
CR4.OSXSAVE = XCR0[2] = 1. Otherwise, any execution of an AVX instruction causes an invalid-opcode
exception (#UD).
XCR0[2] is 0 coming out of RESET. As noted in Section 13.2, a processor allows software to set XCR0[2] if and
only if CPUID.(EAX=0DH,ECX=0):EAX[2] = 1. In addition, executing the XSETBV instruction causes a
general-protection fault (#GP) if ECX = 0 and EAX[2:1] has the value 10b; that is, software cannot enable the
XSAVE feature set for AVX state but not for SSE state.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 25

As noted in Section 13.1, the processor will preserve AVX state unmodified if software clears XCR0[2].
However, clearing XCR0[2] while AVX state is not in its initial configuration may cause SSE instructions to
incur a power and performance penalty. See Section 13.5.3, “Enable the Use Of XSAVE Feature Set And
XSAVE State Components” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for
how system software can avoid this penalty.

• XCR0[7:5] are associated with AVX-512 state (see Section 13.5.4). Software can use the XSAVE feature set
to manage AVX-512 state only if XCR0[7:5] = 111b. In addition, software can execute AVX-512 instructions
only if CR4.OSXSAVE = 1 and XCR0[7:5] = 111b. Otherwise, any execution of an AVX-512 instruction causes
an invalid-opcode exception (#UD).
XCR0[7:5] has value 000b coming out of RESET. As noted in Section 13.2, a processor allows software to set
XCR0[7:5] to 111b if and only if CPUID.(EAX=0DH,ECX=0):EAX[7:5] = 111b. In addition, executing the
XSETBV instruction causes a general-protection fault (#GP) if ECX = 0, EAX[7:5] is not 000b, and any bit is
clear in EAX[2:1] or EAX[7:5]; that is, software can enable the XSAVE feature set for AVX-512 state only if it
does so for all three state components, and only if it also does so for AVX state and SSE state. This implies that
the value of XCR[7:5] is always either 000b or 111b.
As noted in Section 13.1, the processor will preserve AVX-512 state unmodified if software clears XCR0[7:5].
However, clearing XCR0[7:5] while AVX-512 state is not in its initial configuration may cause SSE and AVX
instructions to incur a power and performance penalty. See Section 13.5.3, “Enable the Use Of XSAVE Feature
Set And XSAVE State Components” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A, for how system software can avoid this penalty.

• XCR0[9] is associated with PKRU state (see Section 13.5.5). Software can use the XSAVE feature set to
manage PKRU state only if XCR0[9] = 1. The value of XCR0[9] in no way determines whether software can
use protection keys or execute other instructions that access PKRU state (these instructions can be executed
even if XCR0[9] = 0).
XCR0[9] is 0 coming out of RESET. As noted in Section 13.2, a processor allows software to set XCR0[9] if and
only if CPUID.(EAX=0DH,ECX=0):EAX[9] = 1.

• XCR0[63:10], XCR0[8], and XCR0[4:3] are reserved. Executing the XSETBV instruction causes a general-
protection fault (#GP) if ECX = 0 and any corresponding bit in EDX:EAX is not 0. These bits in XCR0 are all 0
coming out of RESET.

Software operating with CPL > 0 may need to determine whether the XSAVE feature set and certain XSAVE-
enabled features have been enabled. If CPL > 0, execution of the MOV from CR4 instruction causes a general-
protection fault (#GP). The following alternative mechanisms allow software to discover the enabling of the
XSAVE feature set regardless of CPL:
• The value of CR4.OSXSAVE is returned in CPUID.1:ECX.OSXSAVE[bit 27]. If software determines that

CPUID.1:ECX.OSXSAVE = 1, the processor supports the XSAVE feature set and the feature set has been
enabled in CR4.

• Executing the XGETBV instruction with ECX = 0 returns the value of XCR0 in EDX:EAX. XGETBV can be
executed if CR4.OSXSAVE = 1 (if CPUID.1:ECX.OSXSAVE = 1), regardless of CPL.

Thus, software can use the following algorithm to determine the support and enabling for the XSAVE feature set:

1. Use CPUID to discover the value of CPUID.1:ECX.OSXSAVE.

— If the bit is 0, either the XSAVE feature set is not supported by the processor or has not been enabled by
software. Either way, the XSAVE feature set is not available, nor are XSAVE-enabled features such as AVX.

— If the bit is 1, the processor supports the XSAVE feature set — including the XGETBV instruction — and it
has been enabled by software. The XSAVE feature set can be used to manage x87 state (because XCR0[0]
is always 1). Software requiring more detailed information can go on to the next step.

2. Execute XGETBV with ECX = 0 to discover the value of XCR0. If XCR0[1] = 1, the XSAVE feature set can be
used to manage SSE state. If XCR0[2] = 1, the XSAVE feature set can be used to manage AVX state and
software can execute AVX instructions. If XCR0[7:5] is 111b, the XSAVE feature set can be used to manage

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 26

AVX-512 state and software can execute AVX-512 instructions. If XCR0[9] = 1, the XSAVE feature set can be
used to manage PKRU state.

The IA32_XSS MSR (with MSR index DA0H) is zero coming out of RESET. If CR4.OSXSAVE = 1,
CPUID.(EAX=0DH,ECX=1):EAX[3] = 1, and CPL = 0, executing the WRMSR instruction with ECX = DA0H writes
the 64-bit value in EDX:EAX to the IA32_XSS MSR (EAX is written to IA32_XSS[31:0] and EDX to
IA32_XSS[63:32]). There is no mechanism by which software operating with CPL > 0 can discover the value of
the IA32_XSS MSR.

...

13.4.3 Extended Region of an XSAVE Area
The extended region of an XSAVE area starts at byte offset 576 from the area’s base address. The size of the
extended region is determined by which state components the processor supports and which bits have been set
in XCR0 | IA32_XSS (see Section 13.3).

The XSAVE feature set uses the extended area for each state component i, where i ≥ 2. The following state
components are currently supported in the extended area: state component 2 contains AVX state; state compo-
nents 5–7 contain AVX-512 state; and state component 9 contains PKRU state.

The extended region of the an XSAVE area may have one of two formats. The standard format is supported by
all processors that support the XSAVE feature set; the compacted format is supported by those processors that
support the compaction extensions to the XSAVE feature set (see Section 13.2). Bit 63 of the XCOMP_BV field in
the XSAVE header (see Section 13.4.2) indicates which format is used.

The following items describe the two possible formats of the extended region:
• Standard format. Each state component i (i ≥ 2) is located at the byte offset from the base address of the

XSAVE area enumerated in CPUID.(EAX=0DH,ECX=i):EBX. (CPUID.(EAX=0DH,ECX=i):EAX enumerates the
number of bytes required for state component i.

• Compacted format. Each state component i (i ≥ 2) is located at a byte offset from the base address of the
XSAVE area based on the XCOMP_BV field in the XSAVE header:

— If XCOMP_BV[i] = 0, state component i is not in the XSAVE area.

— If XCOMP_BV[i] = 1, state component i is located at a byte offset locationI from the base address of the
XSAVE area, where locationI is determined by the following items:

• If XCOMP_BV[j] = 0 for every j, 2 ≤ j < i, locationI is 576. (This item applies if i is the first bit set in
bits 62:2 of the XCOMP_BV; it implies that state component i is located at the beginning of the
extended region.)

• Otherwise, let j, 2 ≤ j < i, be the greatest value such that XCOMP_BV[j] = 1. Then locationI is
determined by the following values: locationJ; sizeJ, as enumerated in CPUID.(EAX=0DH,ECX=j):EAX;
and the value of alignI, as enumerated in CPUID.(EAX=0DH,ECX=i):ECX[1]:

— If alignI = 0, locationI = locationJ + sizeJ. (This item implies that state component i is located
immediately following the preceding state component whose bit is set in XCOMP_BV.)

— If alignI = 1, locationI = ceiling(locationJ + sizeJ, 64). (This item implies that state component i is
located on the next 64-byte boundary following the preceding state component whose bit is set in
XCOMP_BV.)

13.5 XSAVE-MANAGED STATE
The section provides details regarding how the XSAVE feature set interacts with the various XSAVE-managed
state components.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

Unless otherwise state, the state pertaining to a particular state component is saved beginning at byte 0 of the
section of the XSAVE are corresponding to that state component.

...

13.5.2 SSE State
Instructions in the XSAVE feature set can manage the registers used by the streaming SIMD extensions (SSE
state) just as the FXSAVE and FXRSTOR instructions do. They organize all SSE state in the legacy region of the
XSAVE area (see Section 13.4.1). This region is illustrated in Table 13-1; the SSE state is listed below, along with
details of its interactions with the XSAVE feature set:
• Bytes 23:0 are used for x87 state (see Section 13.5.1).
• Bytes 27:24 are used for the MXCSR register. XRSTOR and XRSTORS generate general-protection faults

(#GP) in response to attempts to set any of the reserved bits of the MXCSR register.1

• Bytes 31:28 are used for the MXCSR_MASK value. XRSTOR and XRSTORS ignore this field.
• Bytes 159:32 are used for x87 state.
• Bytes 287:160 are used for the registers XMM0–XMM7.
• Bytes 415:288 are used for the registers XMM8–XMM15. These fields are used only in 64-bit mode.

Executions of XSAVE, XSAVEOPT, XSAVEC, and XSAVES outside 64-bit mode do not modify these bytes;
executions of XRSTOR and XRSTORS outside 64-bit mode do not update XMM8–XMM15. See Section 13.13.

SSE state is XSAVE-managed but the SSE feature is not XSAVE-enabled. The XSAVE feature set can operate on
SSE state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage SSE state
(XCR0[1] = 1). Software can otherwise use SSE state even if the XSAVE feature set is not enabled or has not been
configured to manage SSE state.

13.5.3 AVX State
The register state used by the Intel® Advanced Vector Extensions (AVX) comprises the MXCSR register and 16
256-bit vector registers called YMM0–YMM15. The low 128 bits of each register YMMi is identical to the SSE
register XMMi. Thus, the new state register state added by AVX comprises the upper 128 bits of the registers
YMM0–YMM15. These 16 128-bit values are denoted YMM0_H–YMM15_H and are collectively called AVX state.

As noted in Section 13.1, the XSAVE feature set manages AVX state as state component 2. Thus, AVX state is
located in the extended region of the XSAVE area (see Section 13.4.3).

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=2):EBX enumerates the offset (in bytes, from the base of the
XSAVE area) of the section of the extended region of the XSAVE area used for AVX state (when the standard
format of the extended region is used). CPUID.(EAX=0DH,ECX=2):EAX enumerates the size (in bytes) required
for AVX state.

The XSAVE feature set partitions YMM0_H–YMM15_H in a manner similar to that used for the XMM registers (see
Section 13.5.2). Bytes 127:0 of the AVX-state section are used for YMM0_H–YMM7_H. Bytes 255:128 are used
for YMM8_H–YMM15_H, but they are used only in 64-bit mode. Executions of XSAVE, XSAVEOPT, XSAVEC, and
XSAVES outside 64-bit mode do not modify bytes 255:128; executions of XRSTOR and XRSTORS outside 64-bit
mode do not update YMM8_H–YMM15_H. See Section 13.13.

AVX state is XSAVE-managed and the AVX feature is XSAVE-enabled. The XSAVE feature set can operate on AVX
state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage AVX state

1. While MXCSR and MXCSR_MASK are part of SSE state, their treatment by the XSAVE feature set is not the same as that of the
XMM registers. See Section 13.7 through Section 13.11 for details.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 28

(XCR0[2] = 1). AVX instructions cannot be used unless the XSAVE feature set is enabled and has been configured
to manage AVX state.

13.5.4 AVX-512 State
The register state used by the Intel® Advanced Vector Extensions 512 (AVX-512) comprises the MXCSR register,
the 8 64-bit opmask registers k0–k7, and 32 512-bit vector registers called ZMM0–ZMM31. For each i, 0 <= i <=
15, the low 256 bits of register ZMMi is identical to the AVX register YMMi. Thus, the new state register state
added by AVX comprises the following state components:
• The opmask registers, collective called opmask state.
• The upper 256 bits of the registers ZMM0–ZMM15. These 16 256-bit values are denoted ZMM0_H–ZMM15_H

and are collectively called ZMM_Hi256 state.
• The 16 512-bit registers ZMM16–ZMM31, collectively called Hi16_ZMM state.

Together, these three state components compose AVX-512 state.

As noted in Section 13.1, the XSAVE feature set manages AVX-512 state as state components 5–7. Thus,
AVX-512 state is located in the extended region of the XSAVE area (see Section 13.4.3). The following items detail
how these state components are organized in this region:
• Opmask state.

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=5):EBX enumerates the offset (in bytes, from the base of
the XSAVE area) of the section of the extended region of the XSAVE area used for opmask state (when the
standard format of the extended region is used). CPUID.(EAX=0DH,ECX=5):EAX enumerates the size (in
bytes) required for opmask state.

• ZMM_Hi256 state.
As noted in Section 13.2, CPUID.(EAX=0DH,ECX=6):EBX enumerates the offset of the section of the
extended region of the XSAVE area used for ZMM_Hi256 state (when the standard format of the extended
region is used). CPUID.(EAX=0DH,ECX=6):EAX enumerates the size (in bytes) required for ZMM_Hi256
state.
The XSAVE feature set partitions ZMM0_H–ZMM15_H in a manner similar to that used for the XMM registers
(see Section 13.5.2). Bytes 255:0 of the ZMM_Hi256-state section are used for ZMM0_H–ZMM7_H.
Bytes 511:256 are used for ZMM8_H–ZMM15_H, but they are used only in 64-bit mode. Executions of XSAVE,
XSAVEOPT, XSAVEC, and XSAVES outside 64-bit mode do not modify bytes 511:256; executions of XRSTOR
and XRSTORS outside 64-bit mode do not update ZMM8_H–ZMM15_H. See Section 13.13.

• Hi16_ZMM state.
As noted in Section 13.2, CPUID.(EAX=0DH,ECX=7):EBX enumerates the offset of the section of the
extended region of the XSAVE area used for Hi16_ZMM state (when the standard format of the extended
region is used). CPUID.(EAX=0DH,ECX=7):EAX enumerates the size (in bytes) required for Hi16_ZMM state.
The XSAVE feature set accesses Hi16_ZMM state only in 64-bit mode. Executions of XSAVE, XSAVEOPT,
XSAVEC, and XSAVES outside 64-bit mode do not modify the Hi16_ZMM section; executions of XRSTOR and
XRSTORS outside 64-bit mode do not update ZMM16–ZMM31. See Section 13.13.

All three components of AVX-512 state are XSAVE-managed and the AVX-512 feature is XSAVE-enabled. The
XSAVE feature set can operate on AVX-512 state only if the feature set is enabled (CR4.OSXSAVE = 1) and has
been configured to manage AVX-512 state (XCR0[7:5] = 111b). AVX-512 instructions cannot be used unless the
XSAVE feature set is enabled and has been configured to manage AVX-512 state.

13.5.5 PKRU State
The register state used by the protection-key feature (PKRU state) is the 32-bit PKRU register. As noted in
Section 13.1, the XSAVE feature set manages PKRU state as state component 9. Thus, PKRU state is located in
the extended region of the XSAVE area (see Section 13.4.3).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=9):EBX enumerates the offset (in bytes, from the base of the
XSAVE area) of the section of the extended region of the XSAVE area used for PKRU state (when the standard
format of the extended region is used). CPUID.(EAX=0DH,ECX=9):EAX enumerates the size (in bytes) required
for PKRU state. The XSAVE feature set uses bytes 3:0 of the PK-state section for the PKRU register.

PKRU state is XSAVE-managed but the protection-key feature is not XSAVE-enabled. The XSAVE feature set can
operate on PKRU state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage
PKRU state (XCR0[9] = 1). Software can otherwise use protection keys and access PKRU state even if the XSAVE
feature set is not enabled or has not been configured to manage PKRU state.

The value of the PKRU register determines the access right for user-mode linear addresses. (See Section 4.6,
“Access Rights,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.) The access
rights that pertain to an execution of the XRSTOR and XRSTORS instructions are determined by the value of the
register before the execution and not by any value that the execution might load into the PKRU register.

13.6 PROCESSOR TRACKING OF XSAVE-MANAGED STATE
The XSAVEOPT, XSAVEC, and XSAVES instructions use two optimization to reduce the amount of data that they
write to memory. They avoid writing data for any state component known to be in its initial configuration (the init
optimization). In addition, if either XSAVEOPT or XSAVES is using the same XSAVE area as that used by the
most recent execution of XRSTOR or XRSTORS, it may avoid writing data for any state component whose config-
uration is known not to have been modified since then (the modified optimization). (XSAVE does not use these
optimizations, and XSAVEC does not use the modified optimization.) The operation of XSAVEOPT, XSAVEC, and
XSAVES are described in more detail in Section 13.9 through Section 13.11.

A processor can support the init and modified optimizations with special hardware that tracks the state compo-
nents that might benefit from those optimizations. Other implementations might not include such hardware; such
a processor would always consider each such state component as not in its initial configuration and as modified
since the last execution of XRSTOR or XRSTORS.

The following notation describes the state of the init and modified optimizations:
• XINUSE denotes the state-component bitmap corresponding to the init optimization. If XINUSE[i] = 0, state

component i is known to be in its initial configuration; otherwise XINUSE[i] = 1. It is possible for XINUSE[i] to
be 1 even when state component i is in its initial configuration. On a processor that does not support the init
optimization, XINUSE[i] is always 1 for every value of i.
Executing XGETBV with ECX = 1 returns in EDX:EAX the logical-AND of XCR0 and the current value of the
XINUSE state-component bitmap. Such an execution of XGETBV always sets EAX[1] to 1 if XCR0[1] = 1 and
MXCSR does not have its RESET value of 1F80H. Section 13.2 explains how software can determine whether
a processor supports this use of XGETBV.

• XMODIFIED denotes the state-component bitmap corresponding to the modified optimization. If
XMODIFIED[i] = 0, state component i is known not to have been modified since the most recent execution of
XRSTOR or XRSTORS; otherwise XMODIFIED[i] = 1. It is possible for XMODIFIED[i] to be 1 even when state
component i has not been modified since the most recent execution of XRSTOR or XRSTORS. On a processor
that does not support the modified optimization, XMODIFIED[i] is always 1 for every value of i.

A processor that implements the modified optimization saves information about the most recent execution of
XRSTOR or XRSTORS in a quantity called XRSTOR_INFO, a 4-tuple containing the following: (1) the CPL;
(2) whether the logical processor was in VMX non-root operation; (3) the linear address of the XSAVE area; and
(4) the XCOMP_BV field in the XSAVE area. An execution of XSAVEOPT or XSAVES uses the modified optimization
only if that execution corresponds to XRSTOR_INFO on these four parameters.

This mechanism implies that, depending on details of the operating system, the processor might determine that
an execution of XSAVEOPT by one user application corresponds to an earlier execution of XRSTOR by a different
application. For this reason, Intel recommends the application software not use the XSAVEOPT instruction.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 30

The following items specify the initial configuration each state component (for the purposes of defining the
XINUSE bitmap):
• x87 state. x87 state is in its initial configuration if the following all hold: FCW is 037FH; FSW is 0000H; FTW

is FFFFH; FPU CS and FPU DS are each 0000H; FPU IP and FPU DP are each 00000000_00000000H; each of
ST0–ST7 is 0000_00000000_00000000H.

• SSE state. In 64-bit mode, SSE state is in its initial configuration if each of XMM0–XMM15 is 0. Outside 64-bit
mode, SSE state is in its initial configuration if each of XMM0–XMM7 is 0. XINUSE[1] pertains only to the state
of the XMM registers and not to MXCSR. An execution of XRSTOR or XRSTORS outside 64-bit mode does not
update XMM8–XMM15. (See Section 13.13)

• AVX state. In 64-bit mode, AVX state is in its initial configuration if each of YMM0_H–YMM15_H is 0. Outside
64-bit mode, AVX state is in its initial configuration if each of YMM0_H–YMM7_H is 0. An execution of XRSTOR
or XRSTORS outside 64-bit mode does not update YMM8_H–YMM15_H. (See Section 13.13)

• Opmask state. Opmask state is in its initial configuration if each of the opmask registers k0–k7 is 0.
• ZMM_Hi256 state. In 64-bit mode, ZMM_Hi256 state is in its initial configuration if each of ZMM0_H–

ZMM15_H is 0. Outside 64-bit mode, ZMM_Hi256 state is in its initial configuration if each of ZMM0_H–
ZMM7_H is 0. An execution of XRSTOR or XRSTORS outside 64-bit mode does not update ZMM8_H–
ZMM15_H. (See Section 13.13)

• Hi16_ZMM state. In 64-bit mode, Hi16_ZMM state is in its initial configuration if each of ZMM16–ZMM31 is
0. Outside 64-bit mode, Hi16_ZMM state is always in its initial configuration. An execution of XRSTOR or
XRSTORS outside 64-bit mode does not update ZMM31–ZMM31. (See Section 13.13)

• PKRU state. PKRU state is in its initial configuration if the value of the PKRU is 0.

13.7 OPERATION OF XSAVE
The XSAVE instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. The logical-AND of XCR0 and the instruction mask is the requested-feature bitmap (RFBM) of the state
components to be saved.

The following conditions cause execution of the XSAVE instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.1

If none of these conditions cause a fault, execution of XSAVE reads the XSTATE_BV field of the XSAVE header (see
Section 13.4.2) and writes it back to memory, setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:
• If RFBM[i] = 0, XSTATE_BV[i] is not changed.
• If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i]. Section 13.6 defines XINUSE to describe the

processor init optimization and specifies the initial configuration of each state component. The nature of that
optimization implies the following:

— If state component i is in its initial configuration, XINUSE[i] may be either 0 or 1, and XSTATE_BV[i] may
be written with either 0 or 1.

XINUSE[1] pertains only to the state of the XMM registers and not to MXCSR. Thus, XSTATE_BV[1] may
be written with 0 even if MXCSR does not have its RESET value of 1F80H.

— If state component i is not in its initial configuration, XINUSE[i] = 1 and XSTATE_BV[i] is written with 1.

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 31

(As explained in Section 13.6, the initial configurations of some state components may depend on whether the
processor is in 64-bit mode.)

The XSAVE instruction does not write any part of the XSAVE header other than the XSTATE_BV field; in particular,
it does not write to the XCOMP_BV field.

Execution of XSAVE saves into the XSAVE area those state components corresponding to bits that are set in RFBM.
State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state
component i, 2 ≤ i ≤ 62, is located in the extended region; the XSAVE instruction always uses the standard format
for the extended region (see Section 13.4.3).

The MXCSR register and MXCSR_MASK are part of SSE state (see Section 13.5.2) and are thus associated with
RFBM[1]. However, the XSAVE instruction also saves these values when RFBM[2] = 1 (even if RFBM[1] = 0).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and
operation determined by instruction prefixes. See Section 13.13 for details regarding faults caused by memory
accesses.

13.8 OPERATION OF XRSTOR
The XRSTOR instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. The logical-AND of XCR0 and the instruction mask is the requested-feature bitmap (RFBM) of the state
components to be restored.

The following conditions cause execution of the XRSTOR instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.1

After checking for these faults, the XRSTOR instruction reads the XCOMP_BV field in the XSAVE area’s XSAVE
header (see Section 13.4.2). If XCOMP_BV[63] = 0, the standard form of XRSTOR is executed (see Section
13.8.1); otherwise, the compacted form of XRSTOR is executed (see Section 13.8.2).2

See Section 13.2 for details of how to determine whether the compacted form of XRSTOR is supported.

13.8.1 Standard Form of XRSTOR
The standard from of XRSTOR performs additional fault checking. Either of the following conditions causes a
general-protection exception (#GP):
• The XSTATE_BV field of the XSAVE header sets a bit that is not set in XCR0.
• Bytes 23:8 of the XSAVE header are not all 0 (this implies that all bits in XCOMP_BV are 0).3

If none of these conditions cause a fault, the processor updates each state component i for which RFBM[i] = 1.
XRSTOR updates state component i based on the value of bit i in the XSTATE_BV field of the XSAVE header:

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

2. If the processor does not support the compacted form of XRSTOR, it may execute the standard form of XRSTOR without first
reading the XCOMP_BV field. A processor supports the compacted form of XRSTOR only if it enumerates
CPUID.(EAX=0DH,ECX=1):EAX[1] as 1.

3. Bytes 63:24 of the XSAVE header are also reserved. Software should ensure that bytes 63:16 of the XSAVE header are all 0 in
any XSAVE area. (Bytes 15:8 should also be 0 if the XSAVE area is to be used on a processor that does not support the compaction
extensions to the XSAVE feature set.)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 32

• If XSTATE_BV[i] = 0, the state component is set to its initial configuration. Section 13.6 specifies the initial
configuration of each state component.
The initial configuration of state component 1 pertains only to the XMM registers and not to MXCSR. See
below for the treatment of MXCSR

• If XSTATE_BV[i] = 1, the state component is loaded with data from the XSAVE area. See Section 13.5 for
specifics for each state component and for details regarding mode-specific operation and operation
determined by instruction prefixes. See Section 13.13 for details regarding faults caused by memory
accesses.
State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state
component i, 2 ≤ i ≤ 62, is located in the extended region; the standard form of XRSTOR uses the standard
format for the extended region (see Section 13.4.3).

The MXCSR register is part of state component 1, SSE state (see Section 13.5.2). However, the standard form of
XRSTOR loads the MXCSR register from memory whenever the RFBM[1] (SSE) or RFBM[2] (AVX) is set, regard-
less of the values of XSTATE_BV[1] and XSTATE_BV[2]. The standard form of XRSTOR causes a general-protec-
tion exception (#GP) if it would load MXCSR with an illegal value.

13.8.2 Compacted Form of XRSTOR
The compacted from of XRSTOR performs additional fault checking. Any of the following conditions causes a #GP:
• The XCOMP_BV field of the XSAVE header sets a bit in the range 62:0 that is not set in XCR0.
• The XSTATE_BV field of the XSAVE header sets a bit (including bit 63) that is not set in XCOMP_BV.
• Bytes 63:16 of the XSAVE header are not all 0.

If none of these conditions cause a fault, the processor updates each state component i for which RFBM[i] = 1.
XRSTOR updates state component i based on the value of bit i in the XSTATE_BV field of the XSAVE header:
• If XSTATE_BV[i] = 0, the state component is set to its initial configuration. Section 13.6 specifies the initial

configuration of each state component.
If XSTATE_BV[1] = 0, the compacted form XRSTOR initializes MXCSR to 1F80H. (This differs from the
standard from of XRSTOR, which loads MXCSR from the XSAVE area whenever either RFBM[1] or RFBM[2] is
set.)
State component i is set to its initial configuration as indicated above if RFBM[i] = 1 and XSTATE_BV[i] = 0 —
even if XCOMP_BV[i] = 0. This is true for all values of i, including 0 (x87 state) and 1 (SSE state).

• If XSTATE_BV[i] = 1, the state component is loaded with data from the XSAVE area.1 See Section 13.5 for
specifics for each state component and for details regarding mode-specific operation and operation
determined by instruction prefixes. See Section 13.13 for details regarding faults caused by memory
accesses.
State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state
component i, 2 ≤ i ≤ 62, is located in the extended region; the compacted form of the XRSTOR instruction uses
the compacted format for the extended region (see Section 13.4.3).

The MXCSR register is part of SSE state (see Section 13.5.2) and is thus loaded from memory if RFBM[1] =
XSTATE_BV[i] = 1. The compacted form of XRSTOR does not consider RFBM[2] (AVX) when determining whether
to update MXCSR. (This is a difference from the standard form of XRSTOR.) The compacted form of XRSTOR
causes a general-protection exception (#GP) if it would load MXCSR with an illegal value.

1. Earlier fault checking ensured that, if the instruction has reached this point in execution and XSTATE_BV[i] is 1, then XCOMP_BV[i]
is also 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 33

13.8.3 XRSTOR and the Init and Modified Optimizations
Execution of the XRSTOR instruction causes the processor to update is tracking for the init and modified optimi-
zations (see Section 13.6). The following items provide details:
• The processor updates its tracking for the init optimization as follows:

— If RFBM[i] = 0, XINUSE[i] is not changed.

— If RFBM[i] = 1 and XSTATE_BV[i] = 0, state component i may be tracked as init; XINUSE[i] may be set to
0 or 1. (As noted in Section 13.6, a processor need not implement the init optimization for state
component i; a processor that does not do so implicitly maintains XINUSE[i] = 1 at all times.)

— If RFBM[i] = 1 and XSTATE_BV[i] = 1, state component i is tracked as not init; XINUSE[i] is set to 1.
• The processor updates its tracking for the modified optimization and records information about the XRSTOR

execution for future interaction with the XSAVEOPT and XSAVES instructions (see Section 13.9 and Section
13.11) as follows:

— If RFBM[i] = 0, state component i is tracked as modified; XMODIFIED[i] is set to 1.

— If RFBM[i] = 1, state component i may be tracked as unmodified; XMODIFIED[i] may be set to 0 or 1. (As
noted in Section 13.6, a processor need not implement the modified optimization for state component i; a
processor that does not do so implicitly maintains XMODIFIED[i] = 1 at all times.)

— XRSTOR_INFO is set to the 4-tuple w,x,y,z, where w is the CPL (0); x is 1 if the logical processor is in
VMX non-root operation and 0 otherwise; y is the linear address of the XSAVE area; and z is XCOMP_BV.
In particular, the standard form of XRSTOR always sets z to all zeroes, while the compacted form of
XRSTORS never does so (because it sets at least bit 63 to 1).

13.9 OPERATION OF XSAVEOPT
The operation of XSAVEOPT is similar to that of XSAVE. Unlike XSAVE, XSAVEOPT uses the init optimization (by
which it may omit saving state components that are in their initial configuration) and the modified optimization
(by which it may omit saving state components that have not been modified since the last execution of XRSTOR);
see Section 13.6. See Section 13.2 for details of how to determine whether XSAVEOPT is supported.

The XSAVEOPT instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. The logical (bitwise) AND of XCR0 and the instruction mask is the requested-feature bitmap (RFBM) of
the state components to be saved.

The following conditions cause execution of the XSAVEOPT instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.1

If none of these conditions cause a fault, execution of XSAVEOPT reads the XSTATE_BV field of the XSAVE header
(see Section 13.4.2) and writes it back to memory, setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:
• If RFBM[i] = 0, XSTATE_BV[i] is not changed.
• If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i]. Section 13.6 defines XINUSE to describe the

processor init optimization and specifies the initial configuration of each state component. The nature of that
optimization implies the following:

— If the state component is in its initial configuration, XINUSE[i] may be either 0 or 1, and XSTATE_BV[i]
may be written with either 0 or 1.

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 34

XINUSE[1] pertains only to the state of the XMM registers and not to MXCSR. Thus, XSTATE_BV[1] may
be written with 0 even if MXCSR does not have its RESET value of 1F80H.

— If the state component is not in its initial configuration, XSTATE_BV[i] is written with 1.
(As explained in Section 13.6, the initial configurations of some state components may depend on whether the
processor is in 64-bit mode.)

The XSAVEOPT instruction does not write any part of the XSAVE header other than the XSTATE_BV field; in partic-
ular, it does not write to the XCOMP_BV field.

Execution of XSAVEOPT saves into the XSAVE area those state components corresponding to bits that are set in
RFBM (subject to the optimizations described below). State components 0 and 1 are located in the legacy region
of the XSAVE area (see Section 13.4.1). Each state component i, 2 ≤ i ≤ 62, is located in the extended region; the
XSAVEOPT instruction always uses the standard format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and
operation determined by instruction prefixes. See Section 13.13 for details regarding faults caused by memory
accesses.

Execution of XSAVEOPT performs two optimizations that reduce the amount of data written to memory:
• Init optimization.

If XINUSE[i] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). (See below for
exceptions made for MXCSR.)

• Modified optimization.
Each execution of XRSTOR and XRSTORS establishes XRSTOR_INFO as a 4-tuple w,x,y,z (see Section 13.8.3
and Section 13.12). Execution of XSAVEOPT uses the modified optimization only if the following all hold for the
current value of XRSTOR_INFO:

— w = CPL;

— x = 1 if and only if the logical processor is in VMX non-root operation;

— y is the linear address of the XSAVE area being used by XSAVEOPT; and

— z is 00000000_00000000H. (This last item implies that XSAVEOPT does not use the modified optimization
if the last execution of XRSTOR used the compacted form, or if an execution of XRSTORS followed the last
execution of XRSTOR.)

If XSAVEOPT uses the modified optimization and XMODIFIED[i] = 0 (see Section 13.6), state component i is
not saved to the XSAVE area.
(In practice, the benefit of the modified optimization for state component i depends on how the processor is
tracking state component i; see Section 13.6. Limitations on the tracking ability may result in state
component i being saved even though is in the same configuration that was loaded by the previous execution
of XRSTOR.)
Depending on details of the operating system, an execution of XSAVEOPT by a user application might use the
modified optimization when the most recent execution of XRSTOR was by a different application. Because of
this, Intel recommends the application software not use the XSAVEOPT instruction.

The MXCSR register and MXCSR_MASK are part of SSE state (see Section 13.5.2) and are thus associated with
bit 1 of RFBM. However, the XSAVEOPT instruction also saves these values when RFBM[2] = 1 (even if RFBM[1] =
0). The init and modified optimizations do not apply to the MXCSR register and MXCSR_MASK.

13.10 OPERATION OF XSAVEC
The operation of XSAVEC is similar to that of XSAVE. Two main differences are (1) XSAVEC uses the compacted
format for the extended region of the XSAVE area; and (2) XSAVEC uses the init optimization (see Section 13.6).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 35

Unlike XSAVEOPT, XSAVEC does not use the modified optimization. See Section 13.2 for details of how to deter-
mine whether XSAVEC is supported.

The XSAVEC instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. The logical (bitwise) AND of XCR0 and the instruction mask is the requested-feature bitmap (RFBM) of
the state components to be saved.

The following conditions cause execution of the XSAVEC instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.1

If none of these conditions cause a fault, execution of XSAVEC writes the XSTATE_BV field of the XSAVE header
(see Section 13.4.2), setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:2

• If RFBM[i] = 0, XSTATE_BV[i] is written as 0.
• If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i] (see below for an exception made for

XSTATE_BV[1]). Section 13.6 defines XINUSE to describe the processor init optimization and specifies the
initial configuration of each state component. The nature of that optimization implies the following:

— If state component i is in its initial configuration, XSTATE_BV[i] may be written with either 0 or 1.

— If state component i is not in its initial configuration, XSTATE_BV[i] is written with 1.
XINUSE[1] pertains only to the state of the XMM registers and not to MXCSR. However, if RFBM[1] = 1 and
MXCSR does not have the value 1F80H, XSAVEC writes XSTATE_BV[1] as 1 even if XINUSE[1] = 0.
(As explained in Section 13.6, the initial configurations of some state components may depend on whether the
processor is in 64-bit mode.)

The XSAVEC instructions sets bit 63 of the XCOMP_BV field of the XSAVE header while writing RFBM[62:0] to
XCOMP_BV[62:0]. The XSAVEC instruction does not write any part of the XSAVE header other than the
XSTATE_BV and XCOMP_BV fields.

Execution of XSAVEC saves into the XSAVE area those state components corresponding to bits that are set in
RFBM (subject to the init optimization described below). State components 0 and 1 are located in the legacy
region of the XSAVE area (see Section 13.4.1). Each state component i, 2 ≤ i ≤ 62, is located in the extended
region; the XSAVEC instruction always uses the compacted format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and
operation determined by instruction prefixes. See Section 13.13 for details regarding faults caused by memory
accesses.

Execution of XSAVEC performs the init optimization to reduce the amount of data written to memory. If
XINUSE[i] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). However, if RFBM[1] = 1
and MXCSR does not have the value 1F80H, XSAVEC writes saves all of state component 1 (SSE — including the
XMM registers) even if XINUSE[1] = 0. Unlike the XSAVE instruction, RFBM[2] does not determine whether
XSAVEC saves MXCSR and MXCSR_MASK.

13.11 OPERATION OF XSAVES
The operation of XSAVES is similar to that of XSAVEC. The main differences are (1) XSAVES can be executed only
if CPL = 0; (2) XSAVES can operate on the state components whose bits are set in XCR0 | IA32_XSS; and

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

2. Unlike the XSAVE and XSAVEOPT instructions, the XSAVEC instruction does not read the XSTATE_BV field of the XSAVE header.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 36

(3) XSAVES uses the modified optimization (see Section 13.6). See Section 13.2 for details of how to determine
whether XSAVES is supported.

The XSAVES instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. EDX:EAX & (XCR0 | IA32_XSS) (the logical AND the instruction mask with the logical OR of XCR0 and
IA32_XSS) is the requested-feature bitmap (RFBM) of the state components to be saved.

The following conditions cause execution of the XSAVES instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If CPL > 0 or if the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP)

occurs.1

If none of these conditions cause a fault, execution of XSAVES writes the XSTATE_BV field of the XSAVE header
(see Section 13.4.2), setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:
• If RFBM[i] = 0, XSTATE_BV[i] is written as 0.
• If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i] (see below for an exception made for

XSTATE_BV[1]). Section 13.6 defines XINUSE to describe the processor init optimization and specifies the
initial configuration of each state component. The nature of that optimization implies the following:

— If state component i is in its initial configuration, XSTATE_BV[i] may be written with either 0 or 1.

— If state component i is not in its initial configuration, XSTATE_BV[i] is written with 1.
XINUSE[1] pertains only to the state of the XMM registers and not to MXCSR. However, if RFBM[1] = 1 and
MXCSR does not have the value 1F80H, XSAVES writes XSTATE_BV[1] as 1 even if XINUSE[1] = 0.
(As explained in Section 13.6, the initial configurations of some state components may depend on whether the
processor is in 64-bit mode.)

The XSAVES instructions sets bit 63 of the XCOMP_BV field of the XSAVE header while writing RFBM[62:0] to
XCOMP_BV[62:0]. The XSAVES instruction does not write any part of the XSAVE header other than the
XSTATE_BV and XCOMP_BV fields.

Execution of XSAVES saves into the XSAVE area those state components corresponding to bits that are set in
RFBM (subject to the optimizations described below). State components 0 and 1 are located in the legacy region
of the XSAVE area (see Section 13.4.1). Each state component i, 2 ≤ i ≤ 62, is located in the extended region; the
XSAVES instruction always uses the compacted format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and
operation determined by instruction prefixes. See Section 13.13 for details regarding faults caused by memory
accesses.

Execution of XSAVES performs the init optimization to reduce the amount of data written to memory. If
XINUSE[i] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). However, if RFBM[1] = 1
and MXCSR does not have the value 1F80H, XSAVES writes saves all of state component 1 (SSE — including the
XMM registers) even if XINUSE[1] = 0.

Like XSAVEOPT, XSAVES may perform the modified optimization. Each execution of XRSTOR and XRSTORS estab-
lishes XRSTOR_INFO as a 4-tuple w,x,y,z (see Section 13.8.3 and Section 13.12). Execution of XSAVES uses the
modified optimization only if the following all hold:
• w = CPL;
• x = 1 if and only if the logical processor is in VMX non-root operation;
• y is the linear address of the XSAVE area being used by XSAVEOPT; and

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 37

• z[63] is 1 and z[62:0] = RFBM[62:0]. (This last item implies that XSAVES does not use the modified optimi-
zation if the last execution of XRSTOR used the standard form and followed the last execution of XRSTORS.)

If XSAVES uses the modified optimization and XMODIFIED[i] = 0 (see Section 13.6), state component i is not
saved to the XSAVE area.

13.12 OPERATION OF XRSTORS
The operation of XRSTORS is similar to that of XRSTOR. Three main differences are (1) XRSTORS can be executed
only if CPL = 0; (2) XRSTORS can operate on the state components whose bits are set in XCR0 | IA32_XSS; and
(3) XRSTORS has only a compacted form (no standard form; see Section 13.8). See Section 13.2 for details of
how to determine whether XRSTORS is supported.

The XRSTORS instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. EDX:EAX & (XCR0 | IA32_XSS) (the logical AND the instruction mask with the logical OR of XCR0 and
IA32_XSS) is the requested-feature bitmap (RFBM) of the state components to be restored.

The following conditions cause execution of the XRSTOR instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If CPL > 0 or if the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP)

occurs.1

After checking for these faults, the XRSTORS instruction reads the first 64 bytes of the XSAVE header, including
the XSTATE_BV and XCOMP_BV fields (see Section 13.4.2). A #GP occurs if any of the following conditions hold
for the values read:
• XCOMP_BV[63] = 0.
• XCOMP_BV sets a bit in the range 62:0 that is not set in XCR0 | IA32_XSS.
• XSTATE_BV sets a bit (including bit 63) that is not set in XCOMP_BV.
• Bytes 63:16 of the XSAVE header are not all 0.

If none of these conditions cause a fault, the processor updates each state component i for which RFBM[i] = 1.
XRSTORS updates state component i based on the value of bit i in the XSTATE_BV field of the XSAVE header:
• If XSTATE_BV[i] = 0, the state component is set to its initial configuration. Section 13.6 specifies the initial

configuration of each state component. If XSTATE_BV[1] = 0, XRSTORS initializes MXCSR to 1F80H.
State component i is set to its initial configuration as indicated above if RFBM[i] = 1 and XSTATE_BV[i] = 0 —
even if XCOMP_BV[i] = 0. This is true for all values of i, including 0 (x87 state) and 1 (SSE state).

• If XSTATE_BV[i] = 1, the state component is loaded with data from the XSAVE area.2 See Section 13.5 for
specifics for each state component and for details regarding mode-specific operation and operation
determined by instruction prefixes. See Section 13.13 for details regarding faults caused by memory
accesses.
State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state
component i, 2 ≤ i ≤ 62, is located in the extended region; XRSTORS uses the compacted format for the
extended region (see Section 13.4.3).

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

2. Earlier fault checking ensured that, if the instruction has reached this point in execution and XSTATE_BV[i] is 1, then XCOMP_BV[i]
is also 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 38

The MXCSR register is part of SSE state (see Section 13.5.2) and is thus loaded from memory if RFBM[1] =
XSTATE_BV[i] = 1. XRSTORS causes a general-protection exception (#GP) if it would load MXCSR with an
illegal value.

Like XRSTOR, execution of XRSTORS causes the processor to update is tracking for the init and modified optimi-
zations (see Section 13.6 and Section 13.8.3). The following items provide details:
• The processor updates its tracking for the init optimization as follows:

— If RFBM[i] = 0, XINUSE[i] is not changed.

— If RFBM[i] = 1 and XSTATE_BV[i] = 0, state component i may be tracked as init; XINUSE[i] may be set to
0 or 1.

— If RFBM[i] = 1 and XSTATE_BV[i] = 1, state component i is tracked as not init; XINUSE[i] is set to 1.
• The processor updates its tracking for the modified optimization and records information about the XRSTORS

execution for future interaction with the XSAVEOPT and XSAVES instructions as follows:

— If RFBM[i] = 0, state component i is tracked as modified; XMODIFIED[i] is set to 1.

— If RFBM[i] = 1, state component i may be tracked as unmodified; XMODIFIED[i] may be set to 0 or 1.

— XRSTOR_INFO is set to the 4-tuple w,x,y,z, where w is the CPL; x is 1 if the logical processor is in VMX
non-root operation and 0 otherwise; y is the linear address of the XSAVE area; and z is XCOMP_BV (this
implies that z[63] = 1).

13.13 MEMORY ACCESSES BY THE XSAVE FEATURE SET
Each instruction in the XSAVE feature set operates on a set of XSAVE-managed state components. The specific set
of components on which an instruction operates is determined by the values of XCR0, the IA32_XSS MSR,
EDX:EAX, and (for XRSTOR and XRSTORS) the XSAVE header.

Section 13.4 provides the details necessary to determine the location of each state component for any execution
of an instruction in the XSAVE feature set. An execution of an instruction in the XSAVE feature set may access any
byte of any state component on which that execution operates.

Section 13.5 provides details of the different XSAVE-managed state components. Some portions of some of these
components are accessible only in 64-bit mode. Executions of XRSTOR and XRSTORS outside 64-bit mode will not
update those portions; executions of XSAVE, XSAVEC, XSAVEOPT, and XSAVES will not modify the corresponding
locations in memory.

Despite this fact, any execution of these instructions outside 64-bit mode may access any byte in any state
component on which that execution operates — even those at addresses corresponding to registers that are
accessible only in 64-bit mode. As result, such an execution may incur a fault due to an attempt to access such an
address.

For example, an execution of XSAVE outside 64-bit mode may incur a page fault if paging does not map as read/
write the section of the XSAVE area containing state component 7 (Hi16_ZMM state) — despite the fact that state
component 7 can be accessed only in 64-bit mode.

...

6. Updates to Chapter 16, Volume 1
Change bars show changes to Chapter 16 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 39

16.1 I/O PORT ADDRESSING
The processor permits applications to access I/O ports in either of two ways:
• Through a separate I/O address space
• Through memory-mapped I/O

Accessing I/O ports through the I/O address space is handled through a set of I/O instructions and a special I/O
protection mechanism. Accessing I/O ports through memory-mapped I/O is handled with the processor’s general-
purpose move and string instructions, with protection provided through segmentation or paging. I/O ports can be
mapped so that they appear in the I/O address space or the physical-memory address space (memory mapped I/
O) or both.

One benefit of using the I/O address space is that writes to I/O ports are guaranteed to be completed before the
next instruction in the instruction stream is executed. Thus, I/O writes to control system hardware cause the
hardware to be set to its new state before any other instructions are executed. See Section 16.6, “Ordering I/O,”
for more information on serializing of I/O operations.

...

16.3.1 Memory-Mapped I/O
I/O devices that respond like memory components can be accessed through the processor’s physical-memory
address space (see Figure 16-1). When using memory-mapped I/O, any of the processor’s instructions that refer-
ence memory can be used to access an I/O port located at a physical-memory address. For example, the MOV
instruction can transfer data between any register and a memory-mapped I/O port. The AND, OR, and TEST
instructions may be used to manipulate bits in the control and status registers of a memory-mapped peripheral
device.

When using memory-mapped I/O, caching of the address space mapped for I/O operations must be prevented.
With the Pentium 4, Intel Xeon, and P6 family processors, caching of I/O accesses can be prevented by using
memory type range registers (MTRRs) to map the address space used for the memory-mapped I/O as uncache-
able (UC). See Chapter 11, “Memory Cache Control” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A, for a complete discussion of the MTRRs.

The Pentium and Intel486 processors do not support MTRRs. Instead, they provide the KEN# pin, which when
held inactive (high) prevents caching of all addresses sent out on the system bus. To use this pin, external
address decoding logic is required to block caching in specific address spaces.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 40

All the IA-32 processors that have on-chip caches also provide the PCD (page-level cache disable) flag in page
table and page directory entries. This flag allows caching to be disabled on a page-by-page basis. See “Page-
Directory and Page-Table Entries” in Chapter 4 of in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

...

16.4 I/O INSTRUCTIONS
The processor’s I/O instructions provide access to I/O ports through the I/O address space. (These instructions
cannot be used to access memory-mapped I/O ports.) There are two groups of I/O instructions:
• Those that transfer a single item (byte, word, or doubleword) between an I/O port and a general-purpose

register
• Those that transfer strings of items (strings of bytes, words, or doublewords) between an I/O port and

memory

The register I/O instructions IN (input from I/O port) and OUT (output to I/O port) move data between I/O ports
and the EAX register (32-bit I/O), the AX register (16-bit I/O), or the AL (8-bit I/O) register. The address of the I/
O port can be given with an immediate value or a value in the DX register.

The string I/O instructions INS (input string from I/O port) and OUTS (output string to I/O port) move data
between an I/O port and a memory location. The address of the I/O port being accessed is given in the DX
register; the source or destination memory address is given in the DS:ESI or ES:EDI register, respectively.

When used with the repeat prefix REP, the INS and OUTS instructions perform string (or block) input or output
operations. The repeat prefix REP modifies the INS and OUTS instructions to transfer blocks of data between an
I/O port and memory. Here, the ESI or EDI register is incremented or decremented (according to the setting of
the DF flag in the EFLAGS register) after each byte, word, or doubleword is transferred between the selected I/O
port and memory.

See the references for IN, INS, OUT, and OUTS in Chapter 3 and Chapter 4 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volumes 2A & 2B, for more information on these instructions.

Figure 16-1 Memory-Mapped I/O

FFFF

I/O Port

EPROM

RAM

Physical Memory

0

I/O Port
I/O Port

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 41

...

16.5.1 I/O Privilege Level
In systems where I/O protection is used, the IOPL field in the EFLAGS register controls access to the I/O address
space by restricting use of selected instructions. This protection mechanism permits the operating system or
executive to set the privilege level needed to perform I/O. In a typical protection ring model, access to the I/O
address space is restricted to privilege levels 0 and 1. Here, the kernel and the device drivers are allowed to
perform I/O, while less privileged device drivers and application programs are denied access to the I/O address
space. Application programs must then make calls to the operating system to perform I/O.

The following instructions can be executed only if the current privilege level (CPL) of the program or task currently
executing is less than or equal to the IOPL: IN, INS, OUT, OUTS, CLI (clear interrupt-enable flag), and STI (set
interrupt-enable flag). These instructions are called I/O sensitive instructions, because they are sensitive to the
IOPL field. Any attempt by a less privileged program or task to use an I/O sensitive instruction results in a
general-protection exception (#GP) being signaled. Because each task has its own copy of the EFLAGS register,
each task can have a different IOPL.

The I/O permission bit map in the TSS can be used to modify the effect of the IOPL on I/O sensitive instructions,
allowing access to some I/O ports by less privileged programs or tasks (see Section 16.5.2, “I/O Permission Bit
Map”).

A program or task can change its IOPL only with the POPF and IRET instructions; however, such changes are priv-
ileged. No procedure may change the current IOPL unless it is running at privilege level 0. An attempt by a less
privileged procedure to change the IOPL does not result in an exception; the IOPL simply remains unchanged.

The POPF instruction also may be used to change the state of the IF flag (as can the CLI and STI instructions);
however, the POPF instruction in this case is also I/O sensitive. A procedure may use the POPF instruction to
change the setting of the IF flag only if the CPL is less than or equal to the current IOPL. An attempt by a less priv-
ileged procedure to change the IF flag does not result in an exception; the IF flag simply remains unchanged.

16.5.2 I/O Permission Bit Map
The I/O permission bit map is a device for permitting limited access to I/O ports by less privileged programs or
tasks and for tasks operating in virtual-8086 mode. The I/O permission bit map is located in the TSS (see Figure
16-2) for the currently running task or program. The address of the first byte of the I/O permission bit map is
given in the I/O map base address field of the TSS. The size of the I/O permission bit map and its location in the
TSS are variable.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 42

Because each task has its own TSS, each task has its own I/O permission bit map. Access to individual I/O ports
can thus be granted to individual tasks.

If in protected mode and the CPL is less than or equal to the current IOPL, the processor allows all I/O operations
to proceed. If the CPL is greater than the IOPL or if the processor is operating in virtual-8086 mode, the processor
checks the I/O permission bit map to determine if access to a particular I/O port is allowed. Each bit in the map
corresponds to an I/O port byte address. For example, the control bit for I/O port address 29H in the I/O address
space is found at bit position 1 of the sixth byte in the bit map. Before granting I/O access, the processor tests all
the bits corresponding to the I/O port being addressed. For a doubleword access, for example, the processors
tests the four bits corresponding to the four adjacent 8-bit port addresses. If any tested bit is set, a general-
protection exception (#GP) is signaled. If all tested bits are clear, the I/O operation is allowed to proceed.

Because I/O port addresses are not necessarily aligned to word and doubleword boundaries, the processor reads
two bytes from the I/O permission bit map for every access to an I/O port. To prevent exceptions from being
generated when the ports with the highest addresses are accessed, an extra byte needs to be included in the TSS
immediately after the table. This byte must have all of its bits set, and it must be within the segment limit.

It is not necessary for the I/O permission bit map to represent all the I/O addresses. I/O addresses not spanned
by the map are treated as if they had set bits in the map. For example, if the TSS segment limit is 10 bytes past
the bit-map base address, the map has 11 bytes and the first 80 I/O ports are mapped. Higher addresses in the
I/O address space generate exceptions.

If the I/O bit map base address is greater than or equal to the TSS segment limit, there is no I/O permission map,
and all I/O instructions generate exceptions when the CPL is greater than the current IOPL.

16.6 ORDERING I/O
When controlling I/O devices it is often important that memory and I/O operations be carried out in precisely the
order programmed. For example, a program may write a command to an I/O port, then read the status of the I/
O device from another I/O port. It is important that the status returned be the status of the device after it
receives the command, not before.

When using memory-mapped I/O, caution should be taken to avoid situations in which the programmed order is
not preserved by the processor. To optimize performance, the processor allows cacheable memory reads to be
reordered ahead of buffered writes in most situations. Internally, processor reads (cache hits) can be reordered

Figure 16-2 I/O Permission Bit Map

I/O Map Base

Task State Segment (TSS)

64H

31 24 23 0

1 1111111

I/O Permission Bit Map

0

I/O map base
must not
exceed DFFFH.

Last byte of
bitmap must be
followed by a
byte with all
bits set.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 43

around buffered writes. When using memory-mapped I/O, therefore, it is possible that an I/O read might be
performed before the memory write of a previous instruction. The recommended method of enforcing program
ordering of memory-mapped I/O accesses with the Pentium 4, Intel Xeon, and P6 family processors is to use the
MTRRs to make the memory mapped I/O address space uncacheable; for the Pentium and Intel486 processors,
either the KEN# pin or the PCD flags can be used for this purpose (see Section 16.3.1, “Memory-Mapped I/O”).

When the target of a read or write is in an uncacheable region of memory, memory reordering does not occur
externally at the processor’s pins (that is, reads and writes appear in-order). Designating a memory mapped I/O
region of the address space as uncacheable insures that reads and writes of I/O devices are carried out in
program order. See Chapter 11, “Memory Cache Control” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A, for more information on using MTRRs.

Another method of enforcing program order is to insert one of the serializing instructions, such as the CPUID
instruction, between operations. See Chapter 8, “Multiple-Processor Management” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A, for more information on serialization of instructions.

It should be noted that the chip set being used to support the processor (bus controller, memory controller, and/
or I/O controller) may post writes to uncacheable memory which can lead to out-of-order execution of memory
accesses. In situations where out-of-order processing of memory accesses by the chip set can potentially cause
faulty memory-mapped I/O processing, code must be written to force synchronization and ordering of I/O opera-
tions. Serializing instructions can often be used for this purpose.

When the I/O address space is used instead of memory-mapped I/O, the situation is different in two respects:
• The processor never buffers I/O writes. Therefore, strict ordering of I/O operations is enforced by the

processor. (As with memory-mapped I/O, it is possible for a chip set to post writes in certain I/O ranges.)
• The processor synchronizes I/O instruction execution with external bus activity (see Table 16-1).

...

7. Updates to Chapter 17, Volume 1
Change bars show changes to Chapter 17 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

Table 16-1 I/O Instruction Serialization

Instruction Being
Executed

Processor Delays Execution of … Until Completion of …

Current Instruction? Next Instruction? Pending Stores? Current Store?

IN Yes Yes

INS Yes Yes

REP INS Yes Yes

OUT Yes Yes Yes

OUTS Yes Yes Yes

REP OUTS Yes Yes Yes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 44

17.1 USING THE CPUID INSTRUCTION
Use the CPUID instruction for processor identification in the Pentium M processor family, Pentium 4 processor
family, Intel Xeon processor family, P6 family, Pentium processor, and later Intel486 processors. This instruction
returns the family, model and (for some processors) a brand string for the processor that executes the instruction.
It also indicates the features that are present in the processor and gives information about the processor’s caches
and TLB.

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can
set and clear this flag, the processor executing the procedure supports the CPUID instruction. The CPUID instruc-
tion will cause the invalid opcode exception (#UD) if executed on a processor that does not support it.

To obtain processor identification information, a source operand value is placed in the EAX register to select the
type of information to be returned. When the CPUID instruction is executed, selected information is returned in
the EAX, EBX, ECX, and EDX registers. For a complete description of the CPUID instruction, tables indicating
values returned, and example code, see CPUID—CPU Identification in Chapter 3 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A.

17.1.1 Notes on Where to Start
The following guidelines are among the most important, and should always be followed when using the CPUID
instruction to determine available features:
• Always begin by testing for the “GenuineIntel,” message in the EBX, EDX, and ECX registers when the CPUID

instruction is executed with EAX equal to 0. If the processor is not genuine Intel, the feature identification
flags may have different meanings than are described in Intel documentation.

• Test feature identification flags individually and do not make assumptions about undefined bits.

17.1.2 Identification of Earlier IA-32 Processors
The CPUID instruction is not available in earlier IA-32 processors up through the earlier Intel486 processors. For
these processors, several other architectural features can be exploited to identify the processor.
The settings of bits 12 and 13 (IOPL), 14 (NT), and 15 (reserved) in the EFLAGS register are different for Intel’s
32-bit processors than for the Intel 8086 and Intel 286 processors. By examining the settings of these bits (with
the PUSHF/PUSHFD and POPF/POPFD instructions), an application program can determine whether the processor
is an 8086, Intel 286, or one of the Intel 32-bit processors:
• 8086 processor — Bits 12 through 15 of the EFLAGS register are always set.
• Intel 286 processor — Bits 12 through 15 are always clear in real-address mode.
• 32-bit processors — In real-address mode, bit 15 is always clear and bits 12 through 14 have the last value

loaded into them. In protected mode, bit 15 is always clear, bit 14 has the last value loaded into it, and the
IOPL bits depend on the current privilege level (CPL). The IOPL field can be changed only if the CPL is 0.

Other EFLAGS register bits that can be used to differentiate between the 32-bit processors:
• Bit 18 (AC) — Implemented only on the Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors.

The inability to set or clear this bit distinguishes an Intel386 processor from the later IA-32 processors.
• Bit 21 (ID) — Determines if the processor is able to execute the CPUID instruction. The ability to set and clear

this bit indicates that it is a Pentium 4, Intel Xeon, P6 family, Pentium, or later-version Intel486 processor.
To determine whether an x87 FPU or NPX is present in a system, applications can write to the x87 FPU status and
control registers using the FNINIT instruction and then verify that the correct values are read back using the
FNSTENV instruction.
After determining that an x87 FPU or NPX is present, its type can then be determined. In most cases, the
processor type will determine the type of FPU or NPX; however, an Intel386 processor is compatible with either an
Intel 287 or Intel 387 math coprocessor.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 45

The method the coprocessor uses to represent ∞ (after the execution of the FINIT, FNINIT, or RESET instruction)
indicates which coprocessor is present. The Intel 287 math coprocessor uses the same bit representation for +∞
and −∞; whereas, the Intel 387 math coprocessor uses different representations for +∞ and −∞.

...

8. Updates to Appendix A, Volume 1
Change bars show changes to Appendix A of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

A.1 EFLAGS AND INSTRUCTIONS
Table A-2 summarizes how the instructions affect the flags in the EFLAGS register. The following codes describe
how the flags are affected.

Table A-1 Codes Describing Flags

T Instruction tests flag.

M Instruction modifies flag (either sets or resets depending on operands).

0 Instruction resets flag.

1 Instruction sets flag.

— Instruction's effect on flag is undefined.

R Instruction restores prior value of flag.

Blank Instruction does not affect flag.

Table A-2 EFLAGS Cross-Reference

Instruction OF SF ZF AF PF CF TF IF DF NT RF

AAA — — — TM — M

AAD — M M — M —

AAM — M M — M —

AAS — — — TM — M

ADC M M M M M TM

ADD M M M M M M

AND 0 M M — M 0

ARPL M

BOUND

BSF/BSR — — M — — —

BSWAP

BT/BTS/BTR/BTC — — — — M

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 46

CALL

CBW

CLC 0

CLD 0

CLI 0

CLTS

CMC M

CMOVcc T T T T T

CMP M M M M M M

CMPS M M M M M M T

CMPXCHG M M M M M M

CMPXCHG8B M

COMISD 0 0 M 0 M M

COMISS 0 0 M 0 M M

CPUID

CWD

DAA — M M TM M TM

DAS — M M TM M TM

DEC M M M M M

DIV — — — — — —

ENTER

ESC

FCMOVcc T T T

FCOMI, FCOMIP, FUCOMI, FUCOMIP 0 0 M 0 M M

HLT

IDIV — — — — — —

IMUL M — — — — M

IN

INC M M M M M

INS T

INT 0 0

INTO T 0 0

INVD

INVLPG

UCOMISD 0 0 M 0 M M

UCOMISS 0 0 M 0 M M

Table A-2 EFLAGS Cross-Reference (Contd.)

Instruction OF SF ZF AF PF CF TF IF DF NT RF

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 47

IRET R R R R R R R R R T

Jcc T T T T T

JCXZ

JMP

LAHF

LAR M

LDS/LES/LSS/LFS/LGS

LEA

LEAVE

LGDT/LIDT/LLDT/LMSW

LOCK

LODS T

LOOP

LOOPE/LOOPNE T

LSL M

LTR

MONITOR

MWAIT

MOV

MOV control, debug, test — — — — — —

MOVS T

MOVSX/MOVZX

MUL M — — — — M

NEG M M M M M M

NOP

NOT

OR 0 M M — M 0

OUT

OUTS T

POP/POPA

POPF R R R R R R R R R R

PUSH/PUSHA/PUSHF

RCL/RCR 1 M TM

RCL/RCR count — TM

RDMSR

RDPMC

Table A-2 EFLAGS Cross-Reference (Contd.)

Instruction OF SF ZF AF PF CF TF IF DF NT RF

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 48

...

9. Updates to Chapter 1, Volume 2A
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-M.

--

RDTSC

REP/REPE/REPNE

RET

ROL/ROR 1 M M

ROL/ROR count — M

RSM M M M M M M M M M M M

SAHF R R R R R

SAL/SAR/SHL/SHR 1 M M M — M M

SAL/SAR/SHL/SHR count — M M — M M

SBB M M M M M TM

SCAS M M M M M M T

SETcc T T T T T

SGDT/SIDT/SLDT/SMSW

SHLD/SHRD — M M — M M

STC 1

STD 1

STI 1

STOS T

STR

SUB M M M M M M

TEST 0 M M — M 0

UD2

VERR/VERRW M

WAIT

WBINVD

WRMSR

XADD M M M M M M

XCHG

XLAT

XOR 0 M M — M 0

Table A-2 EFLAGS Cross-Reference (Contd.)

Instruction OF SF ZF AF PF CF TF IF DF NT RF

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 49

...

1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed and viewable on-line at:
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

See also:
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Fortran Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Software Development Tools:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in three or seven volumes):

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
• Intel® 64 and IA-32 Architectures Optimization Reference Manual:

http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimi-
zation-manual.html

• Intel 64 Architecture x2APIC Specification:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specifi-
cation.html

• Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:

http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
• Developing Multi-threaded Applications: A Platform Consistent Approach:

https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applica-
tions.pdf

• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
http://software.intel.com/en-us/articles/ap949-using-spin-loops-on-intel-pentiumr-4-processor-and-intel-
xeonr-processor/

• Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

Literature related to selected features in future Intel processors are available at:
• Intel® Architecture Instruction Set Extensions Programming Reference

https://software.intel.com/en-us/isa-extensions
• Intel® Software Guard Extensions (Intel® SGX) Programming Reference

https://software.intel.com/en-us/isa-extensions/intel-sgx

More relevant links are:
• Intel® Developer Zone:

https://software.intel.com/en-us
• Developer centers:

http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
• Processor support general link:

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://software.intel.com/en-us/articles/intel-compilers/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specification.html
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
https://software.intel.com/en-us/isa-extensions
https://software.intel.com/en-us/isa-extensions/intel-sgx
https://software.intel.com/en-us
https://software.intel.com/en-us
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
https://software.intel.com/en-us/articles/resource-center/
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 50

http://www.intel.com/support/processors/
• Software products and packages:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel® Hyper-Threading Technology (Intel® HT Technology):

http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

...

10.Updates to Chapter 2, Volume 2A
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-M.

--
...

2.4 INSTRUCTION EXCEPTION SPECIFICATION
To look up the exceptions of legacy 128-bit SIMD instruction, 128-bit VEX-encoded instructions, and 256-bit VEX-
encoded instruction, Table 2-14 summarizes the exception behavior into separate classes, with detailed exception
conditions defined in sub-sections 2.4.1 through 2.5.1. For example, ADDPS contains the entry:
“See Exceptions Type 2”
In this entry, “Type2” can be looked up in Table 2-14.
The instruction’s corresponding CPUID feature flag can be identified in the fourth column of the Instruction
summary table.
Note: #UD on CPUID feature flags=0 is not guaranteed in a virtualized environment if the hardware supports the
feature flag.

NOTE
Instructions that operate only with MMX, X87, or general-purpose registers are not covered by the
exception classes defined in this section. For instructions that operate on MMX registers, see
Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Table 2-14 Exception class description

Exception Class Instruction set Mem arg Floating-Point
Exceptions (#XM)

Type 1
AVX,

Legacy SSE
16/32 byte explicitly

aligned
none

Type 2
AVX,

Legacy SSE
16/32 byte not explicitly

aligned
yes

Type 3
AVX,

Legacy SSE
< 16 byte yes

Type 4
AVX,

Legacy SSE
16/32 byte not explicitly

aligned
no

Type 5
AVX,

Legacy SSE
< 16 byte no

http://www.intel.com/support/processors/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/technology/hyperthread/
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 51

See Table 2-15 for lists of instructions in each exception class.

Table 2-15 Instructions in each Exception Class

Type 6 AVX (no Legacy SSE) Varies (At present, none do)

Type 7 AVX, Legacy SSE none none

Type 8 AVX none none

Type 11
F16C 8 or 16 byte, Not explicitly

aligned, no AC#
yes

Type 12
AVX2 Not explicitly aligned, no

AC#
no

Exception Class Instruction set Mem arg
Floating-Point

Exceptions (#XM)

Exception Class Instruction

Type 1 (V)MOVAPD, (V)MOVAPS, (V)MOVDQA, (V)MOVNTDQ, (V)MOVNTDQA, (V)MOVNTPD, (V)MOVNTPS

Type 2

(V)ADDPD, (V)ADDPS, (V)ADDSUBPD, (V)ADDSUBPS, (V)CMPPD, (V)CMPPS, (V)CVTDQ2PS, (V)CVTPD2DQ,
(V)CVTPD2PS, (V)CVTPS2DQ, (V)CVTTPD2DQ, (V)CVTTPS2DQ, (V)DIVPD, (V)DIVPS, (V)DPPD*, (V)DPPS*,
VFMADD132PD, VFMADD213PD, VFMADD231PD, VFMADD132PS, VFMADD213PS, VFMADD231PS,
VFMADDSUB132PD, VFMADDSUB213PD, VFMADDSUB231PD, VFMADDSUB132PS, VFMADDSUB213PS,
VFMADDSUB231PS, VFMSUBADD132PD, VFMSUBADD213PD, VFMSUBADD231PD, VFMSUBADD132PS,
VFMSUBADD213PS, VFMSUBADD231PS, VFMSUB132PD, VFMSUB213PD, VFMSUB231PD, VFMSUB132PS,
VFMSUB213PS, VFMSUB231PS, VFNMADD132PD, VFNMADD213PD, VFNMADD231PD, VFNMADD132PS,
VFNMADD213PS, VFNMADD231PS, VFNMSUB132PD, VFNMSUB213PD, VFNMSUB231PD, VFNMSUB132PS,
VFNMSUB213PS, VFNMSUB231PS, (V)HADDPD, (V)HADDPS, (V)HSUBPD, (V)HSUBPS, (V)MAXPD, (V)MAXPS,
(V)MINPD, (V)MINPS, (V)MULPD, (V)MULPS, (V)ROUNDPS, (V)SQRTPD, (V)SQRTPS, (V)SUBPD, (V)SUBPS

Type 3

(V)ADDSD, (V)ADDSS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)CVTPS2PD, (V)CVTSD2SI, (V)CVTSD2SS,
(V)CVTSI2SD, (V)CVTSI2SS, (V)CVTSS2SD, (V)CVTSS2SI, (V)CVTTSD2SI, (V)CVTTSS2SI, (V)DIVSD, (V)DIVSS,
VFMADD132SD, VFMADD213SD, VFMADD231SD, VFMADD132SS, VFMADD213SS, VFMADD231SS,
VFMSUB132SD, VFMSUB213SD, VFMSUB231SD, VFMSUB132SS, VFMSUB213SS, VFMSUB231SS,
VFNMADD132SD, VFNMADD213SD, VFNMADD231SD, VFNMADD132SS, VFNMADD213SS, VFNMADD231SS,
VFNMSUB132SD, VFNMSUB213SD, VFNMSUB231SD, VFNMSUB132SS, VFNMSUB213SS, VFNMSUB231SS,
(V)MAXSD, (V)MAXSS, (V)MINSD, (V)MINSS, (V)MULSD, (V)MULSS, (V)ROUNDSD, (V)ROUNDSS, (V)SQRTSD,
(V)SQRTSS, (V)SUBSD, (V)SUBSS, (V)UCOMISD, (V)UCOMISS

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 52

(*) - Additional exception restrictions are present - see the Instruction description for details
(**) - Instruction behavior on alignment check reporting with mask bits of less than all 1s are the same as with

mask bits of all 1s, i.e. no alignment checks are performed.
(***) - PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM and LDDQU instructions do not cause #GP if the

memory operand is not aligned to 16-Byte boundary.
...

Type 4

(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST, (V)ANDPD,
(V)ANDPS, (V)ANDNPD, (V)ANDNPS, (V)BLENDPD, (V)BLENDPS, VBLENDVPD, VBLENDVPS, (V)LDDQU***,
(V)MASKMOVDQU, (V)PTEST, VTESTPS, VTESTPD, (V)MOVDQU*, (V)MOVSHDUP, (V)MOVSLDUP, (V)MOVUPD*,
(V)MOVUPS*, (V)MPSADBW, (V)ORPD, (V)ORPS, (V)PABSB, (V)PABSW, (V)PABSD, (V)PACKSSWB, (V)PACKSSDW,
(V)PACKUSWB, (V)PACKUSDW, (V)PADDB, (V)PADDW, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW,
(V)PADDUSB, (V)PADDUSW, (V)PALIGNR, (V)PAND, (V)PANDN, (V)PAVGB, (V)PAVGW, (V)PBLENDVB,
(V)PBLENDW, (V)PCMP(E/I)STRI/M***, (V)PCMPEQB, (V)PCMPEQW, (V)PCMPEQD, (V)PCMPEQQ, (V)PCMPGTB,
(V)PCMPGTW, (V)PCMPGTD, (V)PCMPGTQ, (V)PCLMULQDQ, (V)PHADDW, (V)PHADDD, (V)PHADDSW,
(V)PHMINPOSUW, (V)PHSUBD, (V)PHSUBW, (V)PHSUBSW, (V)PMADDWD, (V)PMADDUBSW, (V)PMAXSB,
(V)PMAXSW, (V)PMAXSD, (V)PMAXUB, (V)PMAXUW, (V)PMAXUD, (V)PMINSB, (V)PMINSW, (V)PMINSD,
(V)PMINUB, (V)PMINUW, (V)PMINUD, (V)PMULHUW, (V)PMULHRSW, (V)PMULHW, (V)PMULLW, (V)PMULLD,
(V)PMULUDQ, (V)PMULDQ, (V)POR, (V)PSADBW, (V)PSHUFB, (V)PSHUFD, (V)PSHUFHW, (V)PSHUFLW,
(V)PSIGNB, (V)PSIGNW, (V)PSIGND, (V)PSLLW, (V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD,
(V)PSRLQ, (V)PSUBB, (V)PSUBW, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PUNPCKHBW,
(V)PUNPCKHWD, (V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKLBW, (V)PUNPCKLWD, (V)PUNPCKLDQ,
(V)PUNPCKLQDQ, (V)PXOR, (V)RCPPS, (V)RSQRTPS, (V)SHUFPD, (V)SHUFPS, (V)UNPCKHPD, (V)UNPCKHPS,
(V)UNPCKLPD, (V)UNPCKLPS, (V)XORPD, (V)XORPS, VPBLENDD, VPERMD, VPERMPS, VPERMPD, VPERMQ,
VPSLLVD, VPSLLVQ, VPSRAVD, VPSRLVD, VPSRLVQ, VPERMILPD, VPERMILPS, VPERM2F128

Type 5
(V)CVTDQ2PD, (V)EXTRACTPS, (V)INSERTPS, (V)MOVD, (V)MOVQ, (V)MOVDDUP, (V)MOVLPD, (V)MOVLPS,
(V)MOVHPD, (V)MOVHPS, (V)MOVSD, (V)MOVSS, (V)PEXTRB, (V)PEXTRD, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB,
(V)PINSRD, (V)PINSRW, (V)PINSRQ, (V)RCPSS, (V)RSQRTSS, (V)PMOVSX/ZX, VLDMXCSR*, VSTMXCSR

Type 6
VEXTRACTF128, VBROADCASTSS, VBROADCASTSD, VBROADCASTF128, VINSERTF128, VMASKMOVPS**,
VMASKMOVPD**, VPMASKMOVD, VPMASKMOVQ, VBROADCASTI128, VPBROADCASTB, VPBROADCASTD,
VPBROADCASTW, VPBROADCASTQ, VEXTRACTI128, VINSERTI128, VPERM2I128

Type 7
(V)MOVLHPS, (V)MOVHLPS, (V)MOVMSKPD, (V)MOVMSKPS, (V)PMOVMSKB, (V)PSLLDQ, (V)PSRLDQ, (V)PSLLW,
(V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ

Type 8 VZEROALL, VZEROUPPER

Type 11 VCVTPH2PS, VCVTPS2PH

Type 12
VGATHERDPS, VGATHERDPD, VGATHERQPS, VGATHERQPD, VPGATHERDD, VPGATHERDQ, VPGATHERQD,
VPGATHERQQ

Exception Class Instruction

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 53

2.4.1 Exceptions Type 1 (Aligned memory reference)

Table 2-18 Type 1 Class Exception Conditions

...

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protec-
tion, #GP(0)

X X
VEX.256: Memory operand is not 32-byte aligned.
VEX.128: Memory operand is not 16-byte aligned.

X X X X Legacy SSE: Memory operand is not 16-byte aligned.

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 54

2.4.3 Exceptions Type 3 (<16 Byte memory argument)

Table 2-20 Type 3 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference of 8 Bytes or
less is made while the current privilege level is 3.

SIMD Floating-point
Exception, #XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 55

2.4.4 Exceptions Type 4 (>=16 Byte mem arg no alignment, no floating-point exceptions)

Table 2-21 Type 4 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned.1

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

NOTES:
1. PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM and LDDQU instructions do not cause #GP if the memory operand is not aligned to

16-Byte boundary.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 56

2.4.5 Exceptions Type 5 (<16 Byte mem arg and no FP exceptions)

Table 2-22 Type 5 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH.

Page Fault
#PF(fault-code)

X X X For a page fault.

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 57

2.4.6 Exceptions Type 6 (VEX-Encoded Instructions Without Legacy SSE Analogues)
Note: At present, the AVX instructions in this category do not generate floating-point exceptions.

Table 2-23 Type 6 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

Page Fault
#PF(fault-code)

X X For a page fault.

Alignment Check
#AC(0)

X X
For 4 or 8 byte memory references if alignment checking is enabled and an
unaligned memory reference is made while the current privilege level is 3.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 58

2.4.7 Exceptions Type 7 (No FP exceptions, no memory arg)

Table 2-24 Type 7 Class Exception Conditions

2.4.8 Exceptions Type 8 (AVX and no memory argument)

Table 2-25 Type 8 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X Always in Real or Virtual-8086 mode.

X X If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.
If CPUID.01H.ECX.AVX[bit 28]=0.
If VEX.vvvv ≠ 1111B.

X X X X If proceeded by a LOCK prefix (F0H).

Device Not Available,
#NM

X X If CR0.TS[bit 3]=1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 59

2.4.9 Exception Type 11 (VEX-only, mem arg no AC, floating-point exceptions)

Table 2-26 Type 11 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X VEX prefix

X X VEX prefix:
If XFEATURE_ENABLED_MASK[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X If preceded by a LOCK prefix (F0H)

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix

X X X X If any corresponding CPUID feature flag is ‘0’

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1

Stack, SS(0) X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH

Page Fault #PF
(fault-code)

X X X For a page fault

SIMD Floating-Point
Exception, #XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 60

2.4.10 Exception Type 12 (VEX-only, VSIB mem arg, no AC, no floating-point exceptions)

2.5.1 Exception Conditions for VEX-Encoded GPR Instructions
The exception conditions applicable to VEX-encoded GPR instruction differs from those of legacy GPR instructions.
Table 2-28 lists VEX-encoded GPR instructions. The exception conditions for VEX-encoded GRP instructions are
found in Table 2-29 for those instructions which have a default operand size of 32 bits and 16-bit operand size is
not encodable.

Table 2-27 Type 12 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X VEX prefix

X X VEX prefix:
If XFEATURE_ENABLED_MASK[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X If preceded by a LOCK prefix (F0H)

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix

X X X NA If address size attribute is 16 bit

X X X X If ModR/M.mod = ‘11b’

X X X X If ModR/M.rm ≠ ‘100b’

X X X X If any corresponding CPUID feature flag is ‘0’

X X X X If any vector register is used more than once between the destination register,
mask register and the index register in VSIB addressing.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1

Stack, SS(0) X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH

Page Fault #PF (fault-
code)

X X X For a page fault

Table 2-28 VEX-Encoded GPR Instructions

Exception Class Instruction

See Table 2-29 ANDN, BLSI, BLSMSK, BLSR, BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 61

(*) - Additional exception restrictions are present - see the Instruction description for details

...

11.Updates to Chapter 3, Volume 2A
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-M.

--
...

3.1.1.9 Operation Section
The “Operation” section contains an algorithm description (frequently written in pseudo-code) for the instruction.
Algorithms are composed of the following elements:
• Comments are enclosed within the symbol pairs “(*” and “*)”.
• Compound statements are enclosed in keywords, such as: IF, THEN, ELSE and FI for an if statement; DO and

OD for a do statement; or CASE... OF for a case statement.
• A register name implies the contents of the register. A register name enclosed in brackets implies the contents

of the location whose address is contained in that register. For example, ES:[DI] indicates the contents of the
location whose ES segment relative address is in register DI. [SI] indicates the contents of the address
contained in register SI relative to the SI register’s default segment (DS) or the overridden segment.

Table 2-29 Exception Definition (VEX-Encoded GPR Instructions)

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X X X If BMI1/BMI2 CPUID feature flag is ‘0’

X X If a VEX prefix is present

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix

Stack, SS(0) X X X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.
If the DS, ES, FS, or GS register is used to access memory and it contains a null
segment selector.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH

Page Fault #PF(fault-
code)

X X X For a page fault

Alignment Check
#AC(0)

X X X If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 62

• Parentheses around the “E” in a general-purpose register name, such as (E)SI, indicates that the offset is read
from the SI register if the address-size attribute is 16, from the ESI register if the address-size attribute is 32.
Parentheses around the “R” in a general-purpose register name, (R)SI, in the presence of a 64-bit register
definition such as (R)SI, indicates that the offset is read from the 64-bit RSI register if the address-size
attribute is 64.

• Brackets are used for memory operands where they mean that the contents of the memory location is a
segment-relative offset. For example, [SRC] indicates that the content of the source operand is a segment-
relative offset.

• A ← B indicates that the value of B is assigned to A.
• The symbols =, ≠, >, <, ≥, and ≤ are relational operators used to compare two values: meaning equal, not

equal, greater or equal, less or equal, respectively. A relational expression such as A = B is TRUE if the value
of A is equal to B; otherwise it is FALSE.

• The expression “« COUNT” and “» COUNT” indicates that the destination operand should be shifted left or
right by the number of bits indicated by the count operand.

The following identifiers are used in the algorithmic descriptions:
• OperandSize and AddressSize — The OperandSize identifier represents the operand-size attribute of the

instruction, which is 16, 32 or 64-bits. The AddressSize identifier represents the address-size attribute, which
is 16, 32 or 64-bits. For example, the following pseudo-code indicates that the operand-size attribute depends
on the form of the MOV instruction used.

IF Instruction = MOVW
THEN OperandSize ← 16;

ELSE
IF Instruction = MOVD

THEN OperandSize ← 32;
ELSE

IF Instruction = MOVQ
THEN OperandSize ← 64;

FI;
FI;

FI;

See “Operand-Size and Address-Size Attributes” in Chapter 3 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for guidelines on how these attributes are determined.

• StackAddrSize — Represents the stack address-size attribute associated with the instruction, which has a
value of 16, 32 or 64-bits. See “Address-Size Attribute for Stack” in Chapter 6, “Procedure Calls, Interrupts,
and Exceptions,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

• SRC — Represents the source operand.
• DEST — Represents the destination operand.
• VLMAX — The maximum vector register width pertaining to the instruction. This is not the vector-length

encoding in the instruction's prefix but is instead determined by the current value of XCR0. For existing
processors, VLMAX is 256 whenever XCR0.YMM[bit 2] is 1. Future processors may defined new bits in XCR0
whose setting may imply other values for VLMAX.

VLMAX Definition

XCR0 Component VLMAX

XCR0.YMM 256

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 63

The following functions are used in the algorithmic descriptions:
• ZeroExtend(value) — Returns a value zero-extended to the operand-size attribute of the instruction. For

example, if the operand-size attribute is 32, zero extending a byte value of –10 converts the byte from F6H to
a doubleword value of 000000F6H. If the value passed to the ZeroExtend function and the operand-size
attribute are the same size, ZeroExtend returns the value unaltered.

• SignExtend(value) — Returns a value sign-extended to the operand-size attribute of the instruction. For
example, if the operand-size attribute is 32, sign extending a byte containing the value –10 converts the byte
from F6H to a doubleword value of FFFFFFF6H. If the value passed to the SignExtend function and the
operand-size attribute are the same size, SignExtend returns the value unaltered.

• SaturateSignedWordToSignedByte — Converts a signed 16-bit value to a signed 8-bit value. If the signed
16-bit value is less than –128, it is represented by the saturated value -128 (80H); if it is greater than 127, it
is represented by the saturated value 127 (7FH).

• SaturateSignedDwordToSignedWord — Converts a signed 32-bit value to a signed 16-bit value. If the
signed 32-bit value is less than –32768, it is represented by the saturated value –32768 (8000H); if it is
greater than 32767, it is represented by the saturated value 32767 (7FFFH).

• SaturateSignedWordToUnsignedByte — Converts a signed 16-bit value to an unsigned 8-bit value. If the
signed 16-bit value is less than zero, it is represented by the saturated value zero (00H); if it is greater than
255, it is represented by the saturated value 255 (FFH).

• SaturateToSignedByte — Represents the result of an operation as a signed 8-bit value. If the result is less
than –128, it is represented by the saturated value –128 (80H); if it is greater than 127, it is represented by
the saturated value 127 (7FH).

• SaturateToSignedWord — Represents the result of an operation as a signed 16-bit value. If the result is
less than –32768, it is represented by the saturated value –32768 (8000H); if it is greater than 32767, it is
represented by the saturated value 32767 (7FFFH).

• SaturateToUnsignedByte — Represents the result of an operation as a signed 8-bit value. If the result is
less than zero it is represented by the saturated value zero (00H); if it is greater than 255, it is represented
by the saturated value 255 (FFH).

• SaturateToUnsignedWord — Represents the result of an operation as a signed 16-bit value. If the result is
less than zero it is represented by the saturated value zero (00H); if it is greater than 65535, it is represented
by the saturated value 65535 (FFFFH).

• LowOrderWord(DEST * SRC) — Multiplies a word operand by a word operand and stores the least
significant word of the doubleword result in the destination operand.

• HighOrderWord(DEST * SRC) — Multiplies a word operand by a word operand and stores the most
significant word of the doubleword result in the destination operand.

• Push(value) — Pushes a value onto the stack. The number of bytes pushed is determined by the operand-
size attribute of the instruction. See the “Operation” subsection of the “PUSH—Push Word, Doubleword or
Quadword Onto the Stack” section in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B.

• Pop() removes the value from the top of the stack and returns it. The statement EAX ← Pop(); assigns to EAX
the 32-bit value from the top of the stack. Pop will return either a word, a doubleword or a quadword
depending on the operand-size attribute. See the “Operation” subsection in the “POP—Pop a Value from the
Stack” section of Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2B.

• PopRegisterStack — Marks the FPU ST(0) register as empty and increments the FPU register stack pointer
(TOP) by 1.

• Switch-Tasks — Performs a task switch.
• Bit(BitBase, BitOffset) — Returns the value of a bit within a bit string. The bit string is a sequence of bits in

memory or a register. Bits are numbered from low-order to high-order within registers and within memory
bytes. If the BitBase is a register, the BitOffset can be in the range 0 to [15, 31, 63] depending on the mode

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 64

and register size. See Figure 3-1: the function Bit[RAX, 21] is illustrated.

If BitBase is a memory address, the BitOffset can range has different ranges depending on the operand size
(see Table 3-2).

The addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase + (BitOffset DIV 8)) where
DIV is signed division with rounding towards negative infinity and MOD returns a positive number (see Figure
3-2).

...

Figure 3-1 Bit Offset for BIT[RAX, 21]

02131

Bit Offset ← 21

63

Table 3-2 Range of Bit Positions Specified by Bit Offset Operands

Operand Size Immediate BitOffset Register BitOffset

16 0 to 15 − 215 to 215 − 1

32 0 to 31 − 231 to 231 − 1

64 0 to 63 − 263 to 263 − 1

Figure 3-2 Memory Bit Indexing

BitBase +

0777 5 0 0

BitBase −

0777 50 0

BitBase BitBase −

BitOffset ← +13

BitOffset ← −

BitBase − BitBase

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 65

CMP—Compare Two Operands

Instruction Operand Encoding

Description

Compares the first source operand with the second source operand and sets the status flags in the EFLAGS
register according to the results. The comparison is performed by subtracting the second operand from the first

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

3C ib CMP AL, imm8 I Valid Valid Compare imm8 with AL.

3D iw CMP AX, imm16 I Valid Valid Compare imm16 with AX.

3D id CMP EAX, imm32 I Valid Valid Compare imm32 with EAX.

REX.W + 3D id CMP RAX, imm32 I Valid N.E. Compare imm32 sign-extended to 64-bits
with RAX.

80 /7 ib CMP r/m8, imm8 MI Valid Valid Compare imm8 with r/m8.

REX + 80 /7 ib CMP r/m8*, imm8 MI Valid N.E. Compare imm8 with r/m8.

81 /7 iw CMP r/m16, imm16 MI Valid Valid Compare imm16 with r/m16.

81 /7 id CMP r/m32, imm32 MI Valid Valid Compare imm32 with r/m32.

REX.W + 81 /7 id CMP r/m64, imm32 MI Valid N.E. Compare imm32 sign-extended to 64-bits
with r/m64.

83 /7 ib CMP r/m16, imm8 MI Valid Valid Compare imm8 with r/m16.

83 /7 ib CMP r/m32, imm8 MI Valid Valid Compare imm8 with r/m32.

REX.W + 83 /7 ib CMP r/m64, imm8 MI Valid N.E. Compare imm8 with r/m64.

38 /r CMP r/m8, r8 MR Valid Valid Compare r8 with r/m8.

REX + 38 /r CMP r/m8*, r8* MR Valid N.E. Compare r8 with r/m8.

39 /r CMP r/m16, r16 MR Valid Valid Compare r16 with r/m16.

39 /r CMP r/m32, r32 MR Valid Valid Compare r32 with r/m32.

REX.W + 39 /r CMP r/m64,r64 MR Valid N.E. Compare r64 with r/m64.

3A /r CMP r8, r/m8 RM Valid Valid Compare r/m8 with r8.

REX + 3A /r CMP r8*, r/m8* RM Valid N.E. Compare r/m8 with r8.

3B /r CMP r16, r/m16 RM Valid Valid Compare r/m16 with r16.

3B /r CMP r32, r/m32 RM Valid Valid Compare r/m32 with r32.

REX.W + 3B /r CMP r64, r/m64 RM Valid N.E. Compare r/m64 with r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA

MR ModRM:r/m (r) ModRM:reg (r) NA NA

MI ModRM:r/m (r) imm8 NA NA

I AL/AX/EAX/RAX (r) imm8 NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 66

operand and then setting the status flags in the same manner as the SUB instruction. When an immediate value
is used as an operand, it is sign-extended to the length of the first operand.

The condition codes used by the Jcc, CMOVcc, and SETcc instructions are based on the results of a CMP instruc-
tion. Appendix B, “EFLAGS Condition Codes,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, shows the relationship of the status flags and the condition codes.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the
beginning of this section for encoding data and limits.

Operation

temp ← SRC1 − SignExtend(SRC2);
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*)

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 67

#UD If the LOCK prefix is used.

...

CPUID—CPU Identification

Instruction Operand Encoding

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can
set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction
operates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.1 The
instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well).
For example, the following pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value
and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Table 3-17 shows information returned, depending on the initial value loaded into the EAX register. Table 3-18
shows the maximum CPUID input value recognized for each family of IA-32 processors on which CPUID is imple-
mented.

Two types of information are returned: basic and extended function information. If a value entered for CPUID.EAX
is higher than the maximum input value for basic or extended function for that processor then the data for the
highest basic information leaf is returned. For example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *)
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *)
CPUID.EAX = 0BH (* Returns Extended Topology Enumeration leaf. *)
CPUID.EAX = 0CH (* INVALID: Returns the same information as CPUID.EAX = 0BH. *)
CPUID.EAX = 80000008H (* Returns linear/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0BH. *)

If a value entered for CPUID.EAX is less than or equal to the maximum input value and the leaf is not supported
on that processor then 0 is returned in all the registers. For example, using the Intel Core i7 processor, the
following is true:

CPUID.EAX = 07H (*Returns EAX=EBX=ECX=EDX=0. *)

When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence
on input ECX value in the basic leaf is honored.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F A2 CPUID NP Valid Valid Returns processor identification and feature
information to the EAX, EBX, ECX, and EDX
registers, as determined by input entered in
EAX (in some cases, ECX as well).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 68

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution
guarantees that any modifications to flags, registers, and memory for previous instructions are completed before
the next instruction is fetched and executed.

See also:

“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A.

“Caching Translation Information” in Chapter 4, “Paging,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

Table 3-17 Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 3-18)
“Genu”
“ntel”
“ineI”

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see Figure 3-5)

Bits 07-00: Brand Index
Bits 15-08: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors in this physical package*.
Bits 31-24: Initial APIC ID

Feature Information (see Figure 3-6 and Table 3-19)
Feature Information (see Figure 3-7 and Table 3-20)

NOTES:
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the number of unique initial APIC

IDs reserved for addressing different logical processors in a physical package. This field is only valid if
CPUID.1.EDX.HTT[bit 28]= 1.

02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 3-21)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX
EBX
ECX

EDX

Reserved.
Reserved.
Bits 00-31 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value
in this register is reserved.)
Bits 32-63 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value
in this register is reserved.)

NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models, use
the PSN flag (returned using CPUID) to check for PSN support before accessing the feature.

CPUID leaves > 3 < 80000000 are visible only when IA32_MISC_ENABLE.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 69

04H NOTES:
Leaf 04H output depends on the initial value in ECX.*
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters for each level on page 2-89.

EAX Bits 04-00: Cache Type Field
0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Bits 07-05: Cache Level (starts at 1)
Bit 08: Self Initializing cache level (does not need SW initialization)
Bit 09: Fully Associative cache

Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache**, ***
Bits 31-26: Maximum number of addressable IDs for processor cores in the physical
package**, ****, *****

EBX Bits 11-00: L = System Coherency Line Size**
Bits 21-12: P = Physical Line partitions**
Bits 31-22: W = Ways of associativity**

ECX Bits 31-00: S = Number of Sets**

EDX Bit 0: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads sharing this
cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads sharing
this cache.

Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 2: Complex Cache Indexing
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using all address bits.

Bits 31-03: Reserved = 0

NOTES:
* If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n+1 is invalid if sub-

leaf n returns EAX[4:0] as 0.
** Add one to the return value to get the result.
***The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique ini-

tial APIC IDs reserved for addressing different logical processors sharing this cache
**** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of unique

Core_IDs reserved for addressing different processor cores in a physical package. Core ID is a subset of
bits of the initial APIC ID.

***** The returned value is constant for valid initial values in ECX. Valid ECX values start from 0.

MONITOR/MWAIT Leaf

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 70

05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor granularity)
Bits 31-16: Reserved = 0

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor granularity)
Bits 31-16: Reserved = 0

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported

Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled

Bits 31 - 02: Reserved

EDX Bits 03 - 00: Number of C0* sub C-states supported using MWAIT
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 23 - 20: Number of C5* sub C-states supported using MWAIT
Bits 27 - 24: Number of C6* sub C-states supported using MWAIT
Bits 31 - 28: Number of C7* sub C-states supported using MWAIT
NOTE:
* The definition of C0 through C7 states for MWAIT extension are processor-specific C-states, not ACPI C-

states.

Thermal and Power Management Leaf

06H EAX

EBX

Bit 00: Digital temperature sensor is supported if set
Bit 01: Intel Turbo Boost Technology Available (see description of IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bit 07: HWP. HWP base registers (IA32_PM_ENABLE[bit 0], IA32_HWP_CAPABILITIES,
IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set.
Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set.
Bit 09: HWP_Activity_Window. IA32_HWP_REQUEST[bits 41:32] is supported if set.
Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUEST[bits 31:24] is supported if set.
Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set.
Bit 12: Reserved.
Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs are
supported if set.
Bits 31 - 15: Reserved
Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The
capability to provide a measure of delivered processor performance (since last reset of the counters), as
a percentage of the expected processor performance when running at the TSC frequency.
Bits 02 - 01: Reserved = 0
Bit 03: The processor supports performance-energy bias preference if CPUID.06H:ECX.SETBH[bit 3] is set
and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H).
Bits 31 - 04: Reserved = 0

EDX Reserved = 0

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 71

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)

07H Sub-leaf 0 (Input ECX = 0). *

EAX Bits 31-00: Reports the maximum input value for supported leaf 7 sub-leaves.

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01: IA32_TSC_ADJUST MSR is supported if 1.
Bit 02: Reserved
Bit 03: BMI1
Bit 04: HLE
Bit 05: AVX2
Bit 06: Reserved
Bit 07: SMEP. Supports Supervisor-Mode Execution Prevention if 1.
Bit 08: BMI2
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software that manages process-context
identifiers.
Bit 11: RTM
Bit 12: Supports Platform Quality of Service Monitoring (PQM) capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.
Bit 14: Reserved.
Bit 15: Supports Platform Quality of Service Enforcement (PQE) capability if 1.
Bits 17:16: Reserved
Bit 18: RDSEED
Bit 19: ADX
Bit 20: SMAP. Supports Supervisor-Mode Access Prevention (and the CLAC/STAC instructions) if 1.
Bits 24:21: Reserved
Bit 25: Intel Processor Trace
Bits 31:26: Reserved

ECX Bit 00: PREFETCHWT1
Bits 02:01: Reserved
Bit 03: PKU. Supports protection keys for user-mode pages if 1.
Bit 04: OSPKE. If 1, OS has set CR4.PKE to enable protection keys (and the RDPKRU/WRPKRU instructions)
Bits 31:05: Reserved

EDX Reserved

NOTE:
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n

exceeds the value that sub-leaf 0 returns in EAX.

Direct Cache Access Information Leaf

09H EAX

EBX

ECX

EDX

Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H)

Reserved

Reserved

Reserved

Architectural Performance Monitoring Leaf

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 72

0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring counter
Bits 31 - 24: Length of EBX bit vector to enumerate architectural performance monitoring events

EBX Bit 00: Core cycle event not available if 1
Bit 01: Instruction retired event not available if 1
Bit 02: Reference cycles event not available if 1
Bit 03: Last-level cache reference event not available if 1
Bit 04: Last-level cache misses event not available if 1
Bit 05: Branch instruction retired event not available if 1
Bit 06: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

ECX Reserved = 0

EDX Bits 04 - 00: Number of fixed-function performance counters (if Version ID > 1)
Bits 12- 05: Bit width of fixed-function performance counters (if Version ID > 1)
Reserved = 0

Extended Topology Enumeration Leaf

0BH NOTES:
Most of Leaf 0BH output depends on the initial value in ECX.
The EDX output of leaf 0BH is always valid and does not vary with input value in ECX.
Output value in ECX[7:0] always equals input value in ECX[7:0].
For sub-leaves that return an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0.

 If an input value n in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with ECX >
n also return 0 in ECX[15:8].

EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type*.
All logical processors with the same next level ID share current level.
Bits 31-05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as shipped
by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input
Bits 15 - 08: Level type***.
Bits 31 - 16:: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 73

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in this
field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical processors
available to BIOS/OS/Applications may be different from the value of EBX[15:0], depending on software
and platform hardware configurations.

*** The value of the “level type” field is not related to level numbers in any way, higher “level type” val-
ues do not mean higher levels. Level type field has the following encoding:
0: invalid
1: SMT
2: Core
3-255: Reserved

Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0).

EAX Bits 31-00: Reports the supported bits of the lower 32 bits of XCR0. XCR0[n] can be set to 1 only if
EAX[n] is 1.
Bit 00: x87 state
Bit 01: SSE state
Bit 02: AVX state
Bits 04 - 03: Reserved
Bit 07 - 05: AVX-512 state
Bits 31- 08: Reserved

EBX Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by
enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save area
are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the XSAVE/
XRSTOR save area required by all supported features in the processor, i.e all the valid bit fields in XCR0.

EDX Bit 31-00: Reports the supported bits of the upper 32 bits of XCR0. XCR0[n+32] can be set to 1 only if
EDX[n] is 1.
Bits 31- 00: Reserved

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

0DH EAX Bits 31-04: Reserved

Bit 00: XSAVEOPT is available

Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set

Bit 02: Supports XGETBV with ECX = 1 if set

Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set

EBX Bits 31-00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.

ECX Bits 31-00: Reports the supported bits of the lower 32 bits of the IA32_XSS MSR. IA32_XSS[n] can be
set to 1 only if ECX[n] is 1.
Bits 02-00: used for XCR0
Bits 04 - 03: Reserved
Bit 07 - 05: used for XCR0
Bits 31-08: Reserved

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 74

EDX Bits 31-00: Reports the supported bits of the upper 32 bits of the IA32_XSS MSR. IA32_XSS[n+32] can
be set to 1 only if EDX[n] is 1.
Bits 31- 00: Reserved

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX.
Each sub-leaf index (starting at position 2) is supported if it corresponds to a supported bit in either the
XCR0 register or the IA32_XSS MSR.
Each valid sub-leaf index maps to a valid bit in either the XCR0 register or the IA32_XSS MSR starting
at bit position 2.
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf n (0 ≤ n ≤ 31) is invalid

if sub-leaf 0 returns 0 in EAX[n] and sub-leaf 1 returns 0 in ECX[n]. Sub-leaf n (32 ≤ n ≤ 63) is invalid if
sub-leaf 0 returns 0 in EDX[n-32] and sub-leaf 1 returns 0 in EDX[n-32].

EAX Bits 31-0: The size in bytes (from the offset specified in EBX) of the save area for an extended state fea-
ture associated with a valid sub-leaf index, n.

EBX Bits 31-0: The offset in bytes of this extended state component’s save area from the beginning of the
XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, does not map to a valid bit in the XCR0 register*.

ECX Bit 0 is set if the bit n (corresponding to the sub-leaf index) is supported in the IA32_XSS MSR; it is clear
if bit n is instead supported in XCR0.
Bits 31-1 are reserved.
This field reports 0 if the sub-leaf index, n, is invalid*.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Platform QoS Monitoring Enumeration Sub-leaf (EAX = 0FH, ECX = 0)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX.
Sub-leaf index 0 reports valid resource type starting at bit position 1 of EDX

EAX Reserved.

EBX Bits 31-0: Maximum range (zero-based) of RMID within this physical processor of all types.

ECX Reserved.

EDX Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS Monitoring if 1.
Bits 31:02: Reserved

L3 Cache QoS Monitoring Capability Enumeration Sub-leaf (EAX = 0FH, ECX = 1)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX.

EAX Reserved.

EBX Bits 31-0: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes).

ECX Maximum range (zero-based) of RMID of this resource type.

EDX Bit 00: Supports L3 occupancy monitoring if 1.
Bits 31:01: Reserved

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 75

Platform QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = 0)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.
Sub-leaf index 0 reports valid resource identification (ResID) starting at bit position 1 of EDX

EAX Reserved.

EBX Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS Enforcement if 1.
Bits 31:02: Reserved

ECX Reserved.

EDX Reserved.

L3 Cache QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = ResID =1)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.

EAX Bits 4:0: Length of the capacity bit mask for the corresponding ResID.
Bits 31:05: Reserved

EBX Bits 31-0: Bit-granular map of isolation/contention of allocation units.

ECX Bit 00: Reserved.
Bit 01: Updates of COS should be infrequent if 1.
Bits 31:02: Reserved

EDX Bits 15:0: Highest COS number supported for this ResID.
Bits 31:16: Reserved

Intel Processor Trace Enumeration Main Leaf (EAX = 14H, ECX = 0)

14H NOTES:
Leaf 14H main leaf (ECX = 0).

EAX Bits 31-0: Reports the maximum number sub-leaves that are supported in leaf 14H.

EBX Bit 00: If 1, Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that IA32_RTIT_CR3_MATCH
MSR can be accessed.
Bits 31- 01: Reserved

ECX Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output
scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
Bit 01: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the Mas-
kOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.
Bit 30:02: Reserved
Bit 31: If 1, Generated packets which contain IP payloads have LIP values, which include the CS base com-
ponent.

EDX Bits 31- 00: Reserved

Time Stamp Counter/Core Crystal Clock Information-leaf

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 76

15H NOTES:
If EBX[31:0] is 0, the TSC/”core crystal clock” ratio is not enumerated.
EBX[31:0]/EAX[31:0] indicates the ratio of the TSC frequency and the core crystal clock frequency.
“TSC frequency” = “core crystal clock frequency” * EBX/EAX.
The core crystal clock may differ from the reference clock, bus clock, or core clock frequencies.

EAX Bits 31:0: An unsigned integer which is the denominator of the TSC/”core crystal clock” ratio.

EBX Bits 31-0: An unsigned integer which is the numerator of the TSC/”core crystal clock” ratio.

ECX Bits 31:0: Reserved = 0.

EDX Bits 31:0: Reserved = 0.

Processor Frequency Information Leaf

16H EAX

EBX

ECX

EDX

Bits 15:0: Processor Base Frequency (in MHz).
Bits 31:16: Reserved =0
Bits 15:0: Maximum Frequency (in MHz).
Bits 31:16: Reserved = 0
Bits 15:0: Bus (Reference) Frequency (in MHz).
Bits 31:16: Reserved = 0
Reserved
NOTES:
* Data is returned from this interface in accordance with the processor's specification and does not reflect
actual values. Suitable use of this data includes the display of processor information in like manner to the
processor brand string and for determining the appropriate range to use when displaying processor
information e.g. frequency history graphs. The returned information should not be used for any other
purpose as the returned information does not accurately correlate to information / counters returned by
other processor interfaces.

While a processor may support the Processor Frequency Information leaf, fields that return a value of
zero are not supported.

Unimplemented CPUID Leaf Functions

40000000H
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or feature information if the initial
EAX value is in the range 40000000H to 4FFFFFFFH.

Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information (see Table 3-18).

EBX
ECX
EDX

Reserved
Reserved
Reserved

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 77

80000001H EAX

EBX

ECX

Extended Processor Signature and Feature Bits.

Reserved

Bit 00: LAHF/SAHF available in 64-bit mode
Bits 04-01 Reserved
Bit 05: LZCNT
Bits 07-06 Reserved
Bit 08: PREFETCHW
Bits 31-09 Reserved

EDX Bits 10-00: Reserved
Bit 11: SYSCALL/SYSRET available in 64-bit mode
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 25-21: Reserved = 0
Bit 26: 1-GByte pages are available if 1
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1
Bits 28: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H EAX
EBX

Reserved = 0
Reserved = 0

ECX

EDX

Bits 07-00: Cache Line size in bytes
Bits 11-08: Reserved
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 78

INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and the Vendor Identification
String

When CPUID executes with EAX set to 0, the processor returns the highest value the CPUID recognizes for
returning basic processor information. The value is returned in the EAX register (see Table 3-18) and is processor
specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the string is “Genui-
neIntel” and is expressed:

EBX ← 756e6547h (* "Genu", with G in the low eight bits of BL *)
EDX ← 49656e69h (* "ineI", with i in the low eight bits of DL *)
ECX ← 6c65746eh (* "ntel", with n in the low eight bits of CL *)

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Information

When CPUID executes with EAX set to 80000000H, the processor returns the highest value the processor recog-
nizes for returning extended processor information. The value is returned in the EAX register and is processor
specific.

NOTES:
* L2 associativity field encodings:

00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Bits 07-00: Reserved = 0
Bit 08: Invariant TSC available if 1
Bits 31-09: Reserved = 0

80000008H EAX Linear/Physical Address size
Bits 07-00: #Physical Address Bits*
Bits 15-8: #Linear Address Bits
Bits 31-16: Reserved = 0

EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported should

come from this field.

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 79

IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is loaded with the
update signature whenever CPUID executes. The signature is returned in the upper DWORD. For details, see
Chapter 9 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

INPUT EAX = 01H: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 01H, version information is returned in EAX (see Figure 3-5). For example:
model, family, and processor type for the Intel Xeon processor 5100 series is as follows:
• Model — 1111B
• Family — 0101B
• Processor Type — 00B

See Table 3-18 for available processor type values. Stepping IDs are provided as needed.

NOTE
See Chapter 17 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for information on identifying earlier IA-32 processors.

Figure 3-5 Version Information Returned by CPUID in EAX

OM16525

Processor Type

034781112131415161920272831

EAX

Family (0FH for the Pentium 4 Processor Family)

Model

Extended
Family ID

Extended
Model ID

Family
ID

Model
Stepping

ID

Extended Family ID (0)

Extended Model ID (0)

Reserved

Table 3-18 Processor Type Field
Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor (not applicable to Intel486 processors) 10B

Intel reserved 11B

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 80

The Extended Family ID needs to be examined only when the Family ID is 0FH. Integrate the fields into a display
using the following rule:

IF Family_ID ≠ 0FH
THEN DisplayFamily = Family_ID;
ELSE DisplayFamily = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

FI;
(* Show DisplayFamily as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH. Integrate the field into a
display using the following rule:

IF (Family_ID = 06H or Family_ID = 0FH)
THEN DisplayModel = (Extended_Model_ID « 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE DisplayModel = Model_ID;

FI;
(* Show DisplayModel as HEX field. *)

INPUT EAX = 01H: Returns Additional Information in EBX

When CPUID executes with EAX set to 01H, additional information is returned to the EBX register:
• Brand index (low byte of EBX) — this number provides an entry into a brand string table that contains brand

strings for IA-32 processors. More information about this field is provided later in this section.
• CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the size of the cache line

flushed with CLFLUSH instruction in 8-byte increments. This field was introduced in the Pentium 4 processor.
• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the local APIC on the

processor during power up. This field was introduced in the Pentium 4 processor.

INPUT EAX = 01H: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 01H, feature information is returned in ECX and EDX.
• Figure 3-6 and Table 3-19 show encodings for ECX.
• Figure 3-7 and Table 3-20 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret feature flags.

NOTE
Software must confirm that a processor feature is present using feature flags returned by CPUID
prior to using the feature. Software should not depend on future offerings retaining all features.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 81

Figure 3-6 Feature Information Returned in the ECX Register

OM16524b

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EIST — Enhanced Intel SpeedStep® Technology

DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT

PCLMULQDQ — Carryless Multiplication

Reserved

CMPXCHG16B

SMX — Safer Mode Extensions

xTPR Update Control

SSSE3 — SSSE3 Extensions

PDCM — Perf/Debug Capability MSR

VMX — Virtual Machine Extensions

SSE4_1 — SSE4.1

OSXSAVE

SSE4_2 — SSE4.2

DCA — Direct Cache Access

x2APIC

POPCNT

XSAVE

AVX

AES

FMA — Fused Multiply Add

SSE3 — SSE3 Extensions

PCID — Process-context Identifiers

0

DTES64 — 64-bit DS Area

MOVBE

TSC-Deadline

F16C
RDRAND

SDBG

Table 3-19 Feature Information Returned in the ECX Register

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor supports this
technology.

1 PCLMULQDQ PCLMULQDQ. A value of 1 indicates the processor supports the PCLMULQDQ instruction.

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout.

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the
Debug Store feature to allow for branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology.

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See
Chapter 5, “Safer Mode Extensions Reference”.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 82

7 EIST Enhanced Intel SpeedStep® technology. A value of 1 indicates that the processor supports this
technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology.

9 SSSE3 A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A
value of 0 indicates the instruction extensions are not present in the processor.

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode
or shared mode. A value of 0 indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.

11 SDBG A value of 1 indicates the processor supports IA32_DEBUG_INTERFACE MSR for silicon debug.

12 FMA A value of 1 indicates the processor supports FMA extensions using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is available. See the
“CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes” section in this chapter for a
description.

14 xTPR Update
Control

xTPR Update Control. A value of 1 indicates that the processor supports changing
IA32_MISC_ENABLE[bit 23].

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the processor supports the performance
and debug feature indication MSR IA32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that
software may set CR4.PCIDE to 1.

18 DCA A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped
device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1.

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2.

21 x2APIC A value of 1 indicates that the processor supports x2APIC feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT instruction.

24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer supports one-shot operation using a
TSC deadline value.

25 AESNI A value of 1 indicates that the processor supports the AESNI instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the XSAVE/XRSTOR processor extended states
feature, the XSETBV/XGETBV instructions, and XCR0.

27 OSXSAVE A value of 1 indicates that the OS has set CR4.OSXSAVE[bit 18] to enable XSETBV/XGETBV
instructions to access XCR0 and to support processor extended state management using XSAVE/
XRSTOR.

28 AVX A value of 1 indicates the processor supports the AVX instruction extensions.

29 F16C A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.

30 RDRAND A value of 1 indicates that processor supports RDRAND instruction.

31 Not Used Always returns 0.

Table 3-19 Feature Information Returned in the ECX Register (Contd.)

Bit # Mnemonic Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 83

Figure 3-7 Feature Information Returned in the EDX Register

OM16523

PBE–Pend. Brk. EN.

012345678910111213141516171819202122232425262728293031

EDX

TM–Therm. Monitor
HTT–Multi-threading
SS–Self Snoop
SSE2–SSE2 Extensions
SSE–SSE Extensions
FXSR–FXSAVE/FXRSTOR
MMX–MMX Technology
ACPI–Thermal Monitor and Clock Ctrl
DS–Debug Store
CLFSH–CLFLUSH instruction
PSN–Processor Serial Number
PSE-36 – Page Size Extension
PAT–Page Attribute Table
CMOV–Conditional Move/Compare Instruction
MCA–Machine Check Architecture
PGE–PTE Global Bit
MTRR–Memory Type Range Registers
SEP–SYSENTER and SYSEXIT
APIC–APIC on Chip
CX8–CMPXCHG8B Inst.
MCE–Machine Check Exception
PAE–Physical Address Extensions
MSR–RDMSR and WRMSR Support
TSC–Time Stamp Counter
PSE–Page Size Extensions
DE–Debugging Extensions
VME–Virtual-8086 Mode Enhancement
FPU–x87 FPU on Chip

Reserved

Table 3-20 More on Feature Information Returned in the EDX Register

Bit # Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling the
feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the TSS
with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for controlling the feature, and optional
trapping of accesses to DR4 and DR5.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 84

3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the
feature, the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs, and
PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are
supported. Some of the MSRs are implementation dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table
entry formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead of
4 Mbyte pages if PAE bit is 1.

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling the
feature. This feature does not define the model-specific implementations of machine-check error logging,
reporting, and processor shutdowns. Machine Check exception handlers may have to depend on processor
version to do model specific processing of the exception, or test for the presence of the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly
locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding to
memory mapped commands in the physical address range FFFE0000H to FFFE0FFFH (by default - some
processors permit the APIC to be relocated).

10 Reserved Reserved

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported.

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that describe
what memory types are supported, how many variable MTRRs are supported, and whether fixed MTRRs are
supported.

13 PGE Page Global Bit. The global bit is supported in paging-structure entries that map a page, indicating TLB entries
that are common to different processes and need not be flushed. The CR4.PGE bit controls this feature.

14 MCA Machine Check Architecture. The Machine Check Architecture, which provides a compatible mechanism for
error reporting in P6 family, Pentium 4, Intel Xeon processors, and future processors, is supported. The
MCG_CAP MSR contains feature bits describing how many banks of error reporting MSRs are supported.

15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is supported. In addition, if x87 FPU is
present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range
Registers (MTRRs), allowing an operating system to specify attributes of memory accessed through a linear
address on a 4KB granularity.

17 PSE-36 36-Bit Page Size Extension. 4-MByte pages addressing physical memory beyond 4 GBytes are supported with
32-bit paging. This feature indicates that upper bits of the physical address of a 4-MByte page are encoded in
bits 20:13 of the page-directory entry. Such physical addresses are limited by MAXPHYADDR and may be up to
40 bits in size.

18 PSN Processor Serial Number. The processor supports the 96-bit processor identification number feature and the
feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved

Table 3-20 More on Feature Information Returned in the EDX Register (Contd.)

Bit # Mnemonic Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 85

INPUT EAX = 02H: TLB/Cache/Prefetch Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 02H, the processor returns information about the processor’s internal TLBs,
cache and prefetch hardware in the EAX, EBX, ECX, and EDX registers. The information is reported in encoded
form and fall into the following categories:
• The least-significant byte in register EAX (register AL) will always return 01H. Software should ignore this

value and not interpret it as an informational descriptor.
• The most significant bit (bit 31) of each register indicates whether the register contains valid information (set

to 0) or is reserved (set to 1).
• If a register contains valid information, the information is contained in 1 byte descriptors. There are four types

of encoding values for the byte descriptor, the encoding type is noted in the second column of Table 3-21.
Table 3-21 lists the encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, ECX, and
EDX registers is not defined; that is, specific bytes are not designated to contain descriptors for specific cache,
prefetch, or TLB types. The descriptors may appear in any order. Note also a processor may report a general
descriptor type (FFH) and not report any byte descriptor of “cache type” via CPUID leaf 2.

21 DS Debug Store. The processor supports the ability to write debug information into a memory resident buffer.
This feature is used by the branch trace store (BTS) and precise event-based sampling (PEBS) facilities (see
Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C).

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that
allow processor temperature to be monitored and processor performance to be modulated in predefined duty
cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save and
restore of the floating point context. Presence of this bit also indicates that CR4.OSFXSR is available for an
operating system to indicate that it supports the FXSAVE and FXRSTOR instructions.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting memory types by performing a snoop of its
own cache structure for transactions issued to the bus.

28 HTT Max APIC IDs reserved field is Valid. A value of 0 for HTT indicates there is only a single logical processor in
the package and software should assume only a single APIC ID is reserved. A value of 1 for HTT indicates the
value in CPUID.1.EBX[23:16] (the Maximum number of addressable IDs for logical processors in this package) is
valid for the package.

29 TM Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC).

30 Reserved Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in the
stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the
processor should return to normal operation to handle the interrupt. Bit 10 (PBE enable) in the
IA32_MISC_ENABLE MSR enables this capability.

Table 3-20 More on Feature Information Returned in the EDX Register (Contd.)

Bit # Mnemonic Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 86

Table 3-21 Encoding of CPUID Leaf 2 Descriptors
 Value Type Description

00H General Null descriptor, this byte contains no information

01H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H TLB Instruction TLB: 4 MByte pages, fully associative, 2 entries

03H TLB Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H TLB Data TLB: 4 MByte pages, 4-way set associative, 8 entries

05H TLB Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H Cache 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H Cache 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

09H Cache 1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size

0AH Cache 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH TLB Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

0CH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

0DH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size

0EH Cache 1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size

1DH Cache 2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size

21H Cache 2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size

22H Cache 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector

23H Cache 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

24H Cache 2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size

25H Cache 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

29H Cache 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

2CH Cache 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H Cache 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size

40H Cache No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache

41H Cache 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H Cache 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H Cache 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H Cache 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H Cache 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H Cache 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H Cache 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

48H Cache 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size

49H Cache 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model
06H);

2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH Cache 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH Cache 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH Cache 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 87

4DH Cache 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

4EH Cache 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

4FH TLB Instruction TLB: 4 KByte pages, 32 entries

50H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

55H TLB Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries

56H TLB Data TLB0: 4 MByte pages, 4-way set associative, 16 entries

57H TLB Data TLB0: 4 KByte pages, 4-way associative, 16 entries

59H TLB Data TLB0: 4 KByte pages, fully associative, 16 entries

5AH TLB Data TLB0: 2-MByte or 4 MByte pages, 4-way set associative, 32 entries

5BH TLB Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH TLB Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH TLB Data TLB: 4 KByte and 4 MByte pages,256 entries

60H Cache 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

61H TLB Instruction TLB: 4 KByte pages, fully associative, 48 entries

63H TLB Data TLB: 1 GByte pages, 4-way set associative, 4 entries

66H Cache 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H Cache 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H Cache 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Cache Trace cache: 12 K-μop, 8-way set associative

71H Cache Trace cache: 16 K-μop, 8-way set associative

72H Cache Trace cache: 32 K-μop, 8-way set associative

76H TLB Instruction TLB: 2M/4M pages, fully associative, 8 entries

78H Cache 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H Cache 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7AH Cache 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7BH Cache 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7CH Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector

7DH Cache 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH Cache 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

80H Cache 2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size

82H Cache 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H Cache 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H Cache 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H Cache 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H Cache 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

Table 3-21 Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 88

A0H DTLB DTLB: 4k pages, fully associative, 32 entries

B0H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B1H TLB Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B2H TLB Instruction TLB: 4KByte pages, 4-way set associative, 64 entries

B3H TLB Data TLB: 4 KByte pages, 4-way set associative, 128 entries

B4H TLB Data TLB1: 4 KByte pages, 4-way associative, 256 entries

B5H TLB Instruction TLB: 4KByte pages, 8-way set associative, 64 entries

B6H TLB Instruction TLB: 4KByte pages, 8-way set associative, 128 entries

BAH TLB Data TLB1: 4 KByte pages, 4-way associative, 64 entries

C0H TLB Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries

C1H STLB Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries

C2H DTLB DTLB: 4 KByte/2 MByte pages, 4-way associative, 16 entries

C3H STLB Shared 2nd-Level TLB: 4 KByte /2 MByte pages, 6-way associative, 1536 entries. Also 1GBbyte pages, 4-way,
16 entries.

CAH STLB Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries

D0H Cache 3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size

D1H Cache 3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size

D2H Cache 3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size

D6H Cache 3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size

D7H Cache 3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size

D8H Cache 3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size

DCH Cache 3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size

DDH Cache 3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size

DEH Cache 3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size

E2H Cache 3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size

E3H Cache 3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size

E4H Cache 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size

EAH Cache 3rd-level cache: 12MByte, 24-way set associative, 64 byte line size

EBH Cache 3rd-level cache: 18MByte, 24-way set associative, 64 byte line size

ECH Cache 3rd-level cache: 24MByte, 24-way set associative, 64 byte line size

F0H Prefetch 64-Byte prefetching

F1H Prefetch 128-Byte prefetching

FFH General CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters

Table 3-21 Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 89

Example 3-1 Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following information about caches and TLBs
when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

Which means:
• The least-significant byte (byte 0) of register EAX is set to 01H. This value should be ignored.
• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, indicating that each register

contains valid 1-byte descriptors.
• Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte pages.

— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache line size.
• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— 00H - NULL descriptor.

— 70H - Trace cache: 12 K-μop, 8-way set associative.

— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte cache line size.

— 00H - NULL descriptor.

INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 04H and ECX contains an index value, the processor returns encoded data
that describe a set of deterministic cache parameters (for the cache level associated with the input in ECX). Valid
index values start from 0.

Software can enumerate the deterministic cache parameters for each level of the cache hierarchy starting with an
index value of 0, until the parameters report the value associated with the cache type field is 0. The architecturally
defined fields reported by deterministic cache parameters are documented in Table 3-17.

This Cache Size in Bytes

= (Ways + 1) * (Partitions + 1) * (Line_Size + 1) * (Sets + 1)

= (EBX[31:22] + 1) * (EBX[21:12] + 1) * (EBX[11:0] + 1) * (ECX + 1)

The CPUID leaf 04H also reports data that can be used to derive the topology of processor cores in a physical
package. This information is constant for all valid index values. Software can query the raw data reported by
executing CPUID with EAX=04H and ECX=0 and use it as part of the topology enumeration algorithm described in
Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

INPUT EAX = 05H: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 05H, the processor returns information about features available to
MONITOR/MWAIT instructions. The MONITOR instruction is used for address-range monitoring in conjunction with

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 90

MWAIT instruction. The MWAIT instruction optionally provides additional extensions for advanced power manage-
ment. See Table 3-17.

INPUT EAX = 06H: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 06H, the processor returns information about thermal and power manage-
ment features. See Table 3-17.

INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 07H and ECX = 0, the processor returns information about the maximum
input value for sub-leaves that contain extended feature flags. See Table 3-17.

When CPUID executes with EAX set to 07H and the input value of ECX is invalid (see leaf 07H entry in Table 3-
17), the processor returns 0 in EAX/EBX/ECX/EDX. In subleaf 0, EAX returns the maximum input value of the
highest leaf 7 sub-leaf, and EBX, ECX & EDX contain information of extended feature flags.

INPUT EAX = 09H: Returns Direct Cache Access Information

When CPUID executes with EAX set to 09H, the processor returns information about Direct Cache Access capabil-
ities. See Table 3-17.

INPUT EAX = 0AH: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 0AH, the processor returns information about support for architectural
performance monitoring capabilities. Architectural performance monitoring is supported if the version ID (see
Table 3-17) is greater than Pn 0. See Table 3-17.

For each version of architectural performance monitoring capability, software must enumerate this leaf to
discover the programming facilities and the architectural performance events available in the processor. The
details are described in Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3C.

INPUT EAX = 0BH: Returns Extended Topology Information

When CPUID executes with EAX set to 0BH, the processor returns information about extended topology enumer-
ation data. Software must detect the presence of CPUID leaf 0BH by verifying (a) the highest leaf index supported
by CPUID is >= 0BH, and (b) CPUID.0BH:EBX[15:0] reports a non-zero value. See Table 3-17.

INPUT EAX = 0DH: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 0DH and ECX = 0, the processor returns information about the bit-vector
representation of all processor state extensions that are supported in the processor and storage size require-
ments of the XSAVE/XRSTOR area. See Table 3-17.

When CPUID executes with EAX set to 0DH and ECX = n (n > 1, and is a valid sub-leaf index), the processor
returns information about the size and offset of each processor extended state save area within the XSAVE/
XRSTOR area. See Table 3-17. Software can use the forward-extendable technique depicted below to query the
valid sub-leaves and obtain size and offset information for each processor extended state save area:

For i = 2 to 62 // sub-leaf 1 is reserved
IF (CPUID.(EAX=0DH, ECX=0):VECTOR[i] = 1) // VECTOR is the 64-bit value of EDX:EAX

Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i;
FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 91

INPUT EAX = 0FH: Returns Platform Quality of Service (PQoS) Monitoring Enumeration Information

When CPUID executes with EAX set to 0FH and ECX = 0, the processor returns information about the bit-vector
representation of QoS monitoring resource types that are supported in the processor and maximum range of
RMID values the processor can use to monitor of any supported resource types. Each bit, starting from bit 1,
corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or
ResID) that software must use to query QoS monitoring capability available for that type. See Table 3-17.

When CPUID executes with EAX set to 0FH and ECX = n (n >= 1, and is a valid ResID), the processor returns
information software can use to program IA32_PQR_ASSOC, IA32_QM_EVTSEL MSRs before reading QoS data
from the IA32_QM_CTR MSR.

INPUT EAX = 10H: Returns Platform Quality of Service (PQoS) Enforcement Enumeration Information

When CPUID executes with EAX set to 10H and ECX = 0, the processor returns information about the bit-vector
representation of QoS Enforcement resource types that are supported in the processor. Each bit, starting from bit
1, corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or
ResID) that software must use to query QoS enforcement capability available for that type. See Table 3-17.

When CPUID executes with EAX set to 10H and ECX = n (n >= 1, and is a valid ResID), the processor returns
information about available classes of service and range of QoS mask MSRs that software can use to configure
each class of services using capability bit masks in the QoS Mask registers, IA32_resourceType_Mask_n.

INPUT EAX = 14H: Returns Intel Processor Trace Enumeration Information

When CPUID executes with EAX set to 14H and ECX = 0H, the processor returns information about Intel Processor
Trace extensions. See Table 3-17.

When CPUID executes with EAX set to 14H and ECX = n (n > 1and less than the number of non-zero bits in
CPUID.(EAX=14H, ECX= 0H).EAX and CPUID.(EAX=0DH, ECX= 0H).EDX), the processor returns information
about packet generation in Intel Processor Trace. See Table 3-17.

INPUT EAX = 15H: Returns Time Stamp Counter/Core Crystal Clock Information

When CPUID executes with EAX set to 15H and ECX = 0H, the processor returns information about Time Stamp
Counter/Core Crystal Clock. See Table 3-17.

INPUT EAX = 16H: Returns Processor Frequency Information

When CPUID executes with EAX set to 16H, the processor returns information about Processor Frequency Infor-
mation. See Table 3-17.

METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method.

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are available in early processors, see
Section: “Identification of Earlier IA-32 Processors” in Chapter 17 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

The Processor Brand String Method

Figure 3-8 describes the algorithm used for detection of the brand string. Processor brand identification software
should execute this algorithm on all Intel 64 and IA-32 processors.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 92

This method (introduced with Pentium 4 processors) returns an ASCII brand identification string and the
Processor Base frequency of the processor to the EAX, EBX, ECX, and EDX registers.

How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through 80000004H. For each input
value, CPUID returns 16 ASCII characters using EAX, EBX, ECX, and EDX. The returned string will be NULL-termi-
nated.

Table 3-22 shows the brand string that is returned by the first processor in the Pentium 4 processor family.

Figure 3-8 Determination of Support for the Processor Brand String

OM15194

IF (EAX & 0x80000000)

CPUID

IF (EAX Return Value
≥ 0x80000004)

CPUID
Function

Supported

True ≥
Extended

EAX Return Value =
Max. Extended CPUID

Function Index

Input: EAX=
0x80000000

Processor Brand
String Not
Supported

False

Processor Brand
String Supported

True

Table 3-22 Processor Brand String Returned with Pentium 4 Processor

EAX Input Value Return Values ASCII Equivalent

80000002H EAX = 20202020H

EBX = 20202020H

ECX = 20202020H

EDX = 6E492020H

“ ”

“ ”

“ ”

“nI ”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 93

Extracting the Processor Frequency from Brand Strings

Figure 3-9 provides an algorithm which software can use to extract the Processor Base frequency from the
processor brand string.

80000003H EAX = 286C6574H

EBX = 50202952H

ECX = 69746E65H

EDX = 52286D75H

“(let”

“P)R”

“itne”

“R(mu”

80000004H EAX = 20342029H

EBX = 20555043H

ECX = 30303531H

EDX = 007A484DH

“ 4)”

“ UPC”

“0051”

“\0zHM”

Table 3-22 Processor Brand String Returned with Pentium 4 Processor (Contd.)

Figure 3-9 Algorithm for Extracting Processor Frequency

OM15195

IF Substring Matched

"zHM", or
"zHG", or

"zHT"

Determine "Freq"
and "Multiplier"

True

Determine "Multiplier"

Scan "Brand String" in
Reverse Byte Order

Report Error
False

Scan Digits
Until Blank

Match
Substring

Determine "Freq"
Reverse Digits

To Decimal Value

Processor Base
Frequency =

"Freq" x "Multiplier" "Freq" = X.YZ if
Digits = "ZY.X"

In Reverse Order

If "zHM"

If "zHG"

If "zHT"
Multiplier = 1 x 1012

Multiplier = 1 x 109

Multiplier = 1 x 106

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 94

The Processor Brand Index Method

The brand index method (introduced with Pentium® III Xeon® processors) provides an entry point into a brand
identification table that is maintained in memory by system software and is accessible from system- and user-
level code. In this table, each brand index is associate with an ASCII brand identification string that identifies the
official Intel family and model number of a processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the low byte in EBX. Software can
then use this index to locate the brand identification string for the processor in the brand identification table. The
first entry (brand index 0) in this table is reserved, allowing for backward compatibility with processors that do not
support the brand identification feature. Starting with processor signature family ID = 0FH, model = 03H, brand
index method is no longer supported. Use brand string method instead.

Table 3-23 shows brand indices that have identification strings associated with them.

Table 3-23 Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String

00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) III processor1

03H Intel(R) Pentium(R) III Xeon(R) processor; If processor signature = 000006B1h, then Intel(R) Celeron(R)
processor

04H Intel(R) Pentium(R) III processor

06H Mobile Intel(R) Pentium(R) III processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

0AH Intel(R) Celeron(R) processor1

0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor MP

0CH Intel(R) Xeon(R) processor MP

0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor

0FH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H – 0FFH RESERVED

NOTES:
1. Indicates versions of these processors that were introduced after the Pentium III

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 95

IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor earlier than the
Intel486 processor.

Operation

IA32_BIOS_SIGN_ID MSR ← Update with installed microcode revision number;

CASE (EAX) OF
EAX = 0:

EAX ← Highest basic function input value understood by CPUID;
EBX ← Vendor identification string;
EDX ← Vendor identification string;
ECX ← Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] ← Stepping ID;
EAX[7:4] ← Model;
EAX[11:8] ← Family;
EAX[13:12] ← Processor type;
EAX[15:14] ← Reserved;
EAX[19:16] ← Extended Model;
EAX[27:20] ← Extended Family;
EAX[31:28] ← Reserved;
EBX[7:0] ← Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] ← CLFLUSH Line Size;
EBX[16:23] ← Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] ← Initial APIC ID;
ECX ← Feature flags; (* See Figure 3-6. *)
EDX ← Feature flags; (* See Figure 3-7. *)

BREAK;
EAX = 2H:

EAX ← Cache and TLB information;
 EBX ← Cache and TLB information;
 ECX ← Cache and TLB information;

EDX ← Cache and TLB information;
BREAK;
EAX = 3H:

EAX ← Reserved;
 EBX ← Reserved;
 ECX ← ProcessorSerialNumber[31:0];

(* Pentium III processors only, otherwise reserved. *)
EDX ← ProcessorSerialNumber[63:32];
(* Pentium III processors only, otherwise reserved. *

BREAK
EAX = 4H:

EAX ← Deterministic Cache Parameters Leaf; (* See Table 3-17. *)
EBX ← Deterministic Cache Parameters Leaf;

 ECX ← Deterministic Cache Parameters Leaf;
EDX ← Deterministic Cache Parameters Leaf;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 96

BREAK;
EAX = 5H:

EAX ← MONITOR/MWAIT Leaf; (* See Table 3-17. *)
 EBX ← MONITOR/MWAIT Leaf;
 ECX ← MONITOR/MWAIT Leaf;

EDX ← MONITOR/MWAIT Leaf;
BREAK;
EAX = 6H:

EAX ← Thermal and Power Management Leaf; (* See Table 3-17. *)
 EBX ← Thermal and Power Management Leaf;
 ECX ← Thermal and Power Management Leaf;

EDX ← Thermal and Power Management Leaf;
BREAK;
EAX = 7H:

EAX ← Structured Extended Feature Flags Enumeration Leaf; (* See Table 3-17. *)
EBX ← Structured Extended Feature Flags Enumeration Leaf;

 ECX ← Structured Extended Feature Flags Enumeration Leaf;
EDX ← Structured Extended Feature Flags Enumeration Leaf;

BREAK;
EAX = 8H:

EAX ← Reserved = 0;
 EBX ← Reserved = 0;
 ECX ← Reserved = 0;

EDX ← Reserved = 0;
BREAK;
EAX = 9H:

EAX ← Direct Cache Access Information Leaf; (* See Table 3-17. *)
 EBX ← Direct Cache Access Information Leaf;
 ECX ← Direct Cache Access Information Leaf;

EDX ← Direct Cache Access Information Leaf;
BREAK;
EAX = AH:

EAX ← Architectural Performance Monitoring Leaf; (* See Table 3-17. *)
 EBX ← Architectural Performance Monitoring Leaf;
 ECX ← Architectural Performance Monitoring Leaf;

EDX ← Architectural Performance Monitoring Leaf;
BREAK

EAX = BH:
EAX ← Extended Topology Enumeration Leaf; (* See Table 3-17. *)
EBX ← Extended Topology Enumeration Leaf;

 ECX ← Extended Topology Enumeration Leaf;
EDX ← Extended Topology Enumeration Leaf;

BREAK;
EAX = CH:

EAX ← Reserved = 0;
 EBX ← Reserved = 0;
 ECX ← Reserved = 0;

EDX ← Reserved = 0;
BREAK;
EAX = DH:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 97

EAX ← Processor Extended State Enumeration Leaf; (* See Table 3-17. *)
 EBX ← Processor Extended State Enumeration Leaf;
 ECX ← Processor Extended State Enumeration Leaf;

EDX ← Processor Extended State Enumeration Leaf;
BREAK;
EAX = EH:

EAX ← Reserved = 0;
 EBX ← Reserved = 0;
 ECX ← Reserved = 0;

EDX ← Reserved = 0;
BREAK;
EAX = FH:

EAX ← Platform Quality of Service Monitoring Enumeration Leaf; (* See Table 3-17. *)
 EBX ← Platform Quality of Service Monitoring Enumeration Leaf;
 ECX ← Platform Quality of Service Monitoring Enumeration Leaf;

EDX ← Platform Quality of Service Monitoring Enumeration Leaf;
BREAK;
EAX = 10H:

EAX ← Platform Quality of Service Enforcement Enumeration Leaf; (* See Table 3-17. *)
 EBX ← Platform Quality of Service Enforcement Enumeration Leaf;
 ECX ← Platform Quality of Service Enforcement Enumeration Leaf;

EDX ← Platform Quality of Service Enforcement Enumeration Leaf;
BREAK;

EAX = 14H:
EAX ← Intel Processor Trace Enumeration Leaf; (* See Table 3-17. *)

 EBX ← Intel Processor Trace Enumeration Leaf;
 ECX ← Intel Processor Trace Enumeration Leaf;

EDX ← Intel Processor Trace Enumeration Leaf;
BREAK;

EAX = 15H:
EAX ← Time Stamp Counter/Core Crystal Clock Information Leaf; (* See Table 3-17. *)

 EBX ← Time Stamp Counter/Core Crystal Clock Information Leaf;
 ECX ← Time Stamp Counter/Core Crystal Clock Information Leaf;

EDX ← Time Stamp Counter/Core Crystal Clock Information Leaf;
BREAK;
EAX = 16H:

EAX ← Processor Frequency Information Enumeration Leaf; (* See Table 3-17. *)
 EBX ← Processor Frequency Information Enumeration Leaf;
 ECX ← Processor Frequency Information Enumeration Leaf;

EDX ← Processor Frequency Information Enumeration Leaf;
BREAK;

BREAK;
EAX = 80000000H:

EAX ← Highest extended function input value understood by CPUID;
EBX ← Reserved;
ECX ← Reserved;
EDX ← Reserved;

BREAK;
EAX = 80000001H:

EAX ← Reserved;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 98

EBX ← Reserved;
ECX ← Extended Feature Bits (* See Table 3-17.*);
EDX ← Extended Feature Bits (* See Table 3-17. *);

BREAK;
EAX = 80000002H:

EAX ← Processor Brand String;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000003H:

EAX ← Processor Brand String, continued;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000004H:

EAX ← Processor Brand String, continued;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000005H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Reserved = 0;
EDX ← Reserved = 0;

BREAK;
EAX = 80000006H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Cache information;
EDX ← Reserved = 0;

BREAK;
EAX = 80000007H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Reserved = 0;
EDX ← Reserved = Misc Feature Flags;

BREAK;
EAX = 80000008H:

EAX ← Reserved = Physical Address Size Information;
EBX ← Reserved = Virtual Address Size Information;
ECX ← Reserved = 0;
EDX ← Reserved = 0;

BREAK;
EAX >= 40000000H and EAX <= 4FFFFFFFH:
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)

(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX ← Reserved; (* Information returned for highest basic information leaf. *)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 99

EBX ← Reserved; (* Information returned for highest basic information leaf. *)
ECX ← Reserved; (* Information returned for highest basic information leaf. *)
EDX ← Reserved; (* Information returned for highest basic information leaf. *)

BREAK;
ESAC;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

In earlier IA-32 processors that do not support the CPUID instruction, execution of the
instruction results in an invalid opcode (#UD) exception being generated.

...

IRET/IRETD—Interrupt Return

Instruction Operand Encoding

Description

Returns program control from an exception or interrupt handler to a program or procedure that was interrupted
by an exception, an external interrupt, or a software-generated interrupt. These instructions are also used to
perform a return from a nested task. (A nested task is created when a CALL instruction is used to initiate a task
switch or when an interrupt or exception causes a task switch to an interrupt or exception handler.) See the
section titled “Task Linking” in Chapter 7 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.

IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (interrupt return double) is intended
for use when returning from an interrupt when using the 32-bit operand size; however, most assemblers use the
IRET mnemonic interchangeably for both operand sizes.

In Real-Address Mode, the IRET instruction preforms a far return to the interrupted program or procedure. During
this operation, the processor pops the return instruction pointer, return code segment selector, and EFLAGS image
from the stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes execution of the interrupted
program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested task) and VM flags
in the EFLAGS register and the VM flag in the EFLAGS image stored on the current stack. Depending on the setting
of these flags, the processor performs the following types of interrupt returns:
• Return from virtual-8086 mode.
• Return to virtual-8086 mode.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

CF IRET NP Valid Valid Interrupt return (16-bit operand size).

CF IRETD NP Valid Valid Interrupt return (32-bit operand size).

REX.W + CF IRETQ NP Valid N.E. Interrupt return (64-bit operand size).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 100

• Intra-privilege level return.
• Inter-privilege level return.
• Return from nested task (task switch).

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return from the interrupt proce-
dure, without a task switch. The code segment being returned to must be equally or less privileged than the inter-
rupt handler routine (as indicated by the RPL field of the code segment selector popped from the stack).

As with a real-address mode interrupt return, the IRET instruction pops the return instruction pointer, return code
segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers, respectively, and then
resumes execution of the interrupted program or procedure. If the return is to another privilege level, the IRET
instruction also pops the stack pointer and SS from the stack, before resuming program execution. If the return
is to virtual-8086 mode, the processor also pops the data segment registers from the stack.

If the NT flag is set, the IRET instruction performs a task switch (return) from a nested task (a task called with a
CALL instruction, an interrupt, or an exception) back to the calling or interrupted task. The updated state of the
task executing the IRET instruction is saved in its TSS. If the task is re-entered later, the code that follows the
IRET instruction is executed.

If the NT flag is set and the processor is in IA-32e mode, the IRET instruction causes a general protection excep-
tion.

If nonmaskable interrupts (NMIs) are blocked (see Section 6.7.1, “Handling Multiple NMIs” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A), execution of the IRET instruction unblocks NMIs.
This unblocking occurs even if the instruction causes a fault. In such a case, NMIs are unmasked before the
exception handler is invoked.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.W prefix promotes operation to
64 bits (IRETQ). See the summary chart at the beginning of this section for encoding data and limits.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in
VMX non-root operation.

Operation

IF PE = 0
THEN GOTO REAL-ADDRESS-MODE;

ELSIF (IA32_EFER.LMA = 0)
THEN

IF (EFLAGS.VM = 1)
THEN GOTO RETURN-FROM-VIRTUAL-8086-MODE;
ELSE GOTO PROTECTED-MODE;

FI;
ELSE GOTO IA-32e-MODE;

FI;

REAL-ADDRESS-MODE;
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS ← Pop();
EFLAGS ← (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)
EIP ← Pop(); (* 16-bit pop; clear upper 16 bits *)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 101

CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop();

FI;
END;

RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

IF IOPL = 3 (* Virtual mode: PE = 1, VM = 1, IOPL = 3 *)
THEN IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
EFLAGS ← Pop();
(* VM, IOPL,VIP and VIF EFLAG bits not modified by pop *)
IF EIP not within CS limit

THEN #GP(0); FI;
ELSE (* OperandSize = 16 *)

EIP ← Pop(); (* 16-bit pop; clear upper 16 bits *)
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop(); (* IOPL in EFLAGS not modified by pop *)
IF EIP not within CS limit

THEN #GP(0); FI;
FI;

ELSE
#GP(0); (* Trap to virtual-8086 monitor: PE = 1, VM = 1, IOPL < 3 *)

FI;
END;

PROTECTED-MODE:
IF NT = 1

THEN GOTO TASK-RETURN; (* PE = 1, VM = 0, NT = 1 *)
FI;
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS ← Pop();

ELSE (* OperandSize = 16 *)
EIP ← Pop(); (* 16-bit pop; clear upper bits *)
CS ← Pop(); (* 16-bit pop *)
tempEFLAGS ← Pop(); (* 16-bit pop; clear upper bits *)

FI;
IF tempEFLAGS(VM) = 1 and CPL = 0

THEN GOTO RETURN-TO-VIRTUAL-8086-MODE;
ELSE GOTO PROTECTED-MODE-RETURN;

FI;

TASK-RETURN: (* PE = 1, VM = 0, NT = 1 *)
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 102

IF EIP is not within CS limit
THEN #GP(0); FI;

END;

RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE = 1, CPL=0, VM = 1 in flag image *)
IF EIP not within CS limit

THEN #GP(0); FI;
EFLAGS ← tempEFLAGS;
ESP ← Pop();
SS ← Pop(); (* Pop 2 words; throw away high-order word *)
ES ← Pop(); (* Pop 2 words; throw away high-order word *)
DS ← Pop(); (* Pop 2 words; throw away high-order word *)
FS ← Pop(); (* Pop 2 words; throw away high-order word *)
GS ← Pop(); (* Pop 2 words; throw away high-order word *)
CPL ← 3;
(* Resume execution in Virtual-8086 mode *)

END;

PROTECTED-MODE-RETURN: (* PE = 1 *)
IF CS(RPL) > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

RETURN-TO-OUTER-PRIVILEGE-LEVEL:
IF new mode ≠ 64-Bit Mode

THEN
IF EIP is not within CS limit

THEN #GP(0); FI;
ELSE (* new mode = 64-bit mode *)

IF RIP is non-canonical
THEN #GP(0); FI;

FI;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32

THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) ← tempEFLAGS; FI;
IF CPL = 0

THEN
EFLAGS(IOPL) ← tempEFLAGS;
IF OperandSize = 32

THEN EFLAGS(VM, VIF, VIP) ← tempEFLAGS; FI;
IF OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;
FI;
CPL ← CS(RPL);
FOR each SegReg in (ES, FS, GS, and DS)

DO

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 103

tempDesc ← descriptor cache for SegReg (* hidden part of segment register *)
IF tempDesc(DPL) < CPL AND tempDesc(Type) is data or non-conforming code

THEN (* Segment register invalid *)
SegReg ← NULL;

FI;
OD;

END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE = 1, RPL = CPL *)
IF new mode ≠ 64-Bit Mode

THEN
IF EIP is not within CS limit

THEN #GP(0); FI;
ELSE (* new mode = 64-bit mode *)

IF RIP is non-canonical
THEN #GP(0); FI;

FI;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) ← tempEFLAGS; FI;
IF CPL = 0

 THEN (* VM = 0 in flags image *)
 EFLAGS(IOPL) ← tempEFLAGS;
 IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;
 FI;
END;

IA-32e-MODE:
IF NT = 1

THEN #GP(0);
ELSE IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop();
tempEFLAGS ← Pop();

ELSE IF OperandSize = 16
THEN

EIP ← Pop(); (* 16-bit pop; clear upper bits *)
CS ← Pop(); (* 16-bit pop *)
tempEFLAGS ← Pop(); (* 16-bit pop; clear upper bits *)

FI;
ELSE (* OperandSize = 64 *)

THEN
RIP ← Pop();
CS ← Pop(); (* 64-bit pop, high-order 48 bits discarded *)
tempRFLAGS ← Pop();

FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 104

IF tempCS.RPL > CPL
THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE

IF instruction began in 64-Bit Mode
THEN

IF OperandSize = 32
THEN

ESP ← Pop();
SS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE IF OperandSize = 16
THEN

ESP ← Pop(); (* 16-bit pop; clear upper bits *)
SS ← Pop(); (* 16-bit pop *)

ELSE (* OperandSize = 64 *)
RSP ← Pop();
SS ← Pop(); (* 64-bit pop, high-order 48 bits discarded *)

FI;
FI;
GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on the mode of operation of the
processor. If performing a return from a nested task to a previous task, the EFLAGS register will be modified
according to the EFLAGS image stored in the previous task’s TSS.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector is NULL.

If the return instruction pointer is not within the return code segment limit.
#GP(selector) If a segment selector index is outside its descriptor table limits.

If the return code segment selector RPL is less than the CPL.
If the DPL of a conforming-code segment is greater than the return code segment selector
RPL.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment
selector.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment
selector.
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.
If the segment descriptor for a code segment does not indicate it is a code segment.
If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is not busy.
If a TSS segment descriptor specifies that the TSS is not available.

#SS(0) If the top bytes of stack are not within stack limits.
#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 105

#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is
enabled.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code segment limit.
#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code segment limit.

IF IOPL not equal to 3.
#PF(fault-code) If a page fault occurs.
#SS(0) If the top bytes of stack are not within stack limits.
#AC(0) If an unaligned memory reference occurs and alignment checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#GP(0) If EFLAGS.NT[bit 14] = 1.
Other exceptions same as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If EFLAGS.NT[bit 14] = 1.

If the return code segment selector is NULL.
If the stack segment selector is NULL going back to compatibility mode.
If the stack segment selector is NULL going back to CPL3 64-bit mode.
If a NULL stack segment selector RPL is not equal to CPL going back to non-CPL3 64-bit
mode.
If the return instruction pointer is not within the return code segment limit.
If the return instruction pointer is non-canonical.

#GP(Selector) If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the segment descriptor for a code segment does not indicate it is a code segment.
If the proposed new code segment descriptor has both the D-bit and L-bit set.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment
selector.
If CPL is greater than the RPL of the code segment selector.
If the DPL of a conforming-code segment is greater than the return code segment selector
RPL.
If the stack segment is not a writable data segment.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment
selector.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.
If an attempt to pop a value off the stack causes a non-canonical address to be referenced.

#NP(selector) If the return code or stack segment is not present.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 106

#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is

enabled.
#UD If the LOCK prefix is used.

...

12.Updates to Chapter 4, Volume 2B
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B: Instruction Set Reference, N-Z.

--
...

RDPKRU—Read Protection Key Rights for User Pages

Instruction Operand Encoding

Description

The RDPKRU instruction loads the value of PKRU into EAX and clears EDX. ECX must be 0 when RDPKRU is
executed; otherwise, a general-protection exception (#GP) occurs.

RDPKRU can be executed only if CR4.PKE = 1; otherwise, a general-protection exception (#GP) occurs. Software
can discover the value of CR4.PKE by examining CPUID.(EAX=07H,ECX=0H):ECX.OSPKE [bit 4].

In 64-bit mode, bits 63:32 of RCX are ignored, and RDPKRU clears bits 63:32 of each of RDX and RAX.

Operation

IF (ECX = 0)
THEN

EAX ← PKRU;
EDX ← 0;

ELSE #GP(0);
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If ECX ≠ 0
#UD If the LOCK prefix is used.

Opcode* Instruction Op/
En

64/32bit
Mode
Support

CPUID
Feature
Flag

Description

0F 01 EE RDPKRU NP V/V OSPKE Reads PKRU into EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 107

If CR4.PKE = 0.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...

RDTSC—Read Time-Stamp Counter

Instruction Operand Encoding

Description

Loads the current value of the processor’s time-stamp counter (a 64-bit MSR) into the EDX:EAX registers. The
EDX register is loaded with the high-order 32 bits of the MSR and the EAX register is loaded with the low-order 32
bits. (On processors that support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are
cleared.)

The processor monotonically increments the time-stamp counter MSR every clock cycle and resets it to 0 when-
ever the processor is reset. See “Time Stamp Counter” in Chapter 17 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B, for specific details of the time stamp counter behavior.

The time stamp disable (TSD) flag in register CR4 restricts the use of the RDTSC instruction as follows. When the
flag is clear, the RDTSC instruction can be executed at any privilege level; when the flag is set, the instruction can
only be executed at privilege level 0.

The time-stamp counter can also be read with the RDMSR instruction, when executing at privilege level 0.

The RDTSC instruction is not a serializing instruction. It does not necessarily wait until all previous instructions
have been executed before reading the counter. Similarly, subsequent instructions may begin execution before
the read operation is performed. If software requires RDTSC to be executed only after all previous instructions
have completed locally, it can either use RDTSCP (if the processor supports that instruction) or execute the
sequence LFENCE;RDTSC.

This instruction was introduced by the Pentium processor.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in
VMX non-root operation.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 31 RDTSC NP Valid Valid Read time-stamp counter into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 108

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CR0.PE = 0)
THEN EDX:EAX ← TimeStampCounter;
ELSE (* CR4.TSD = 1 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)

#GP(0);
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...

RDTSCP—Read Time-Stamp Counter and Processor ID

Instruction Operand Encoding

Description

Loads the current value of the processor’s time-stamp counter (a 64-bit MSR) into the EDX:EAX registers and also
loads the IA32_TSC_AUX MSR (address C000_0103H) into the ECX register. The EDX register is loaded with the
high-order 32 bits of the IA32_TSC MSR; the EAX register is loaded with the low-order 32 bits of the IA32_TSC
MSR; and the ECX register is loaded with the low-order 32-bits of IA32_TSC_AUX MSR. On processors that
support the Intel 64 architecture, the high-order 32 bits of each of RAX, RDX, and RCX are cleared.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 F9 RDTSCP NP Valid Valid Read 64-bit time-stamp counter and 32-bit
IA32_TSC_AUX value into EDX:EAX and ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 109

The processor monotonically increments the time-stamp counter MSR every clock cycle and resets it to 0 when-
ever the processor is reset. See “Time Stamp Counter” in Chapter 17 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B, for specific details of the time stamp counter behavior.

The time stamp disable (TSD) flag in register CR4 restricts the use of the RDTSCP instruction as follows. When the
flag is clear, the RDTSCP instruction can be executed at any privilege level; when the flag is set, the instruction
can only be executed at privilege level 0.

The RDTSCP instruction waits until all previous instructions have been executed before reading the counter.
However, subsequent instructions may begin execution before the read operation is performed.

The presence of the RDTSCP instruction is indicated by CPUID leaf 80000001H, EDX bit 27. If the bit is set to 1
then RDTSCP is present on the processor.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in
VMX non-root operation.

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CR0.PE = 0)
THEN

EDX:EAX ← TimeStampCounter;
ECX ← IA32_TSC_AUX[31:0];

ELSE (* CR4.TSD = 1 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)
#GP(0);

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than 0.
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Virtual-8086 Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set.
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 110

VPGATHERDD/VPGATHERQD — Gather Packed Dword Values Using Signed Dword/Qword
Indices

Instruction Operand Encoding

Description

The instruction conditionally loads up to 4 or 8 dword values from memory addresses specified by the memory
operand (the second operand) and using dword indices. The memory operand uses the VSIB form of the SIB byte
to specify a general purpose register operand as the common base, a vector register for an array of indices rela-
tive to the base and a constant scale factor.
The mask operand (the third operand) specifies the conditional load operation from each memory address and the
corresponding update of each data element of the destination operand (the first operand). Conditionality is spec-
ified by the most significant bit of each data element of the mask register. If an element’s mask bit is not set, the
corresponding element of the destination register is left unchanged. The width of data element in the destination
register and mask register are identical. The entire mask register will be set to zero by this instruction unless the
instruction causes an exception.
Using qword indices, the instruction conditionally loads up to 2 or 4 qword values from the VSIB addressing
memory operand, and updates the lower half of the destination register. The upper 128 or 256 bits of the desti-
nation register are zero’ed with qword indices.
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destina-
tion register and the mask operand are partially updated; those elements that have been gathered are placed into
the destination register and have their mask bits set to zero. If any traps or interrupts are pending from already
gathered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an
instruction breakpoint is not re-triggered when the instruction is continued.
If the data size and index size are different, part of the destination register and part of the mask register do not
correspond to any elements being gathered. This instruction sets those parts to zero. It may do this to one or

Opcode/
Instruction

Op/
En

64/
32-bit
Mode

CPUID
Feature
Flag

Description

VEX.DDS.128.66.0F38.W0 90 /r RMV V/V AVX2 Using dword indices specified in vm32x, gather dword val-
ues from memory conditioned on mask specified by
xmm2. Conditionally gathered elements are merged into
xmm1.

VPGATHERDD xmm1, vm32x, xmm2

VEX.DDS.128.66.0F38.W0 91 /r RMV V/V AVX2 Using qword indices specified in vm64x, gather dword val-
ues from memory conditioned on mask specified by
xmm2. Conditionally gathered elements are merged into
xmm1.

VPGATHERQD xmm1, vm64x, xmm2

VEX.DDS.256.66.0F38.W0 90 /r RMV V/V AVX2 Using dword indices specified in vm32y, gather dword
from memory conditioned on mask specified by ymm2.
Conditionally gathered elements are merged into ymm1.

VPGATHERDD ymm1, vm32y, ymm2

VEX.DDS.256.66.0F38.W0 91 /r RMV V/V AVX2 Using qword indices specified in vm64y, gather dword val-
ues from memory conditioned on mask specified by
xmm2. Conditionally gathered elements are merged into
xmm1.

VPGATHERQD xmm1, vm64y, xmm2

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMV ModRM:reg (r,w) BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

VEX.vvvv (r, w) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 111

both of those registers even if the instruction triggers an exception, and even if the instruction triggers the excep-
tion before gathering any elements.
VEX.128 version: For dword indices, the instruction will gather four dword values. For qword indices, the instruc-
tion will gather two values and zeroes the upper 64 bits of the destination.
VEX.256 version: For dword indices, the instruction will gather eight dword values. For qword indices, the instruc-
tion will gather four values and zeroes the upper 128 bits of the destination.
Note that:
• If any pair of the index, mask, or destination registers are the same, this instruction results a UD fault.
• The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-

64 memory-ordering model.
• Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all

elements closer to the LSB of the destination will be completed (and non-faulting). Individual elements closer
to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered in the
conventional order.

• Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements
to the left of a faulting one may be gathered before the fault is delivered. A given implementation of this
instruction is repeatable - given the same input values and architectural state, the same set of elements to the
left of the faulting one will be gathered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• This instruction will cause a #UD if the address size attribute is 16-bit.
• This instruction will cause a #UD if the memory operand is encoded without the SIB byte.
• This instruction should not be used to access memory mapped I/O as the ordering of the individual loads it

does is implementation specific, and some implementations may use loads larger than the data element size
or load elements an indeterminate number of times.

• The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-
bit mode, if the scale is greater than one). In this case, the most significant bits beyond the number of
address bits are ignored.

Operation

DEST SRC1;
BASE_ADDR: base register encoded in VSIB addressing;
VINDEX: the vector index register encoded by VSIB addressing;
SCALE: scale factor encoded by SIB:[7:6];
DISP: optional 1, 4 byte displacement;
MASK SRC3;

VPGATHERDD (VEX.128 version)
FOR j 0 to 3

i j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] 0;
FI;

ENDFOR
MASK[VLMAX-1:128] 0;
FOR j 0 to 3

i j * 32;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 112

DATA_ADDR BASE_ADDR + (SignExtend(VINDEX[i+31:i])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] 0;

ENDFOR
DEST[VLMAX-1:128] 0;
(non-masked elements of the mask register have the content of respective element cleared)

VPGATHERQD (VEX.128 version)
FOR j 0 to 3

i j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] 0;
FI;

ENDFOR
MASK[VLMAX-1:128] 0;
FOR j 0 to 1

k j * 64;
i j * 32;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] 0;

ENDFOR
MASK[127:64] 0;
DEST[VLMAX-1:64] 0;
(non-masked elements of the mask register have the content of respective element cleared)

VPGATHERDD (VEX.256 version)
FOR j 0 to 7

i j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] 0;
FI;

ENDFOR
FOR j 0 to 7

i j * 32;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX1[i+31:i])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] 0;

ENDFOR
(non-masked elements of the mask register have the content of respective element cleared)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 113

VPGATHERQD (VEX.256 version)
FOR j 0 to 7

i j * 32;
IF MASK[31+i] THEN

MASK[i +31:i] FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +31:i] 0;
FI;

ENDFOR
FOR j 0 to 3

k j * 64;
i j * 32;
DATA_ADDR BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;
IF MASK[31+i] THEN

DEST[i +31:i] FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +31:i] 0;

ENDFOR
MASK[VLMAX-1:128] 0;
DEST[VLMAX-1:128] 0;
(non-masked elements of the mask register have the content of respective element cleared)

Intel C/C++ Compiler Intrinsic Equivalent

VPGATHERDD: __m128i _mm_i32gather_epi32 (int const * base, __m128i index, const int scale);

VPGATHERDD: __m128i _mm_mask_i32gather_epi32 (__m128i src, int const * base, __m128i index, __m128i mask, const int scale);

VPGATHERDD: __m256i _mm256_i32gather_epi32 (int const * base, __m256i index, const int scale);

VPGATHERDD: __m256i _mm256_mask_i32gather_epi32 (__m256i src, int const * base, __m256i index, __m256i mask, const int
scale);

VPGATHERQD: __m128i _mm_i64gather_epi32 (int const * base, __m128i index, const int scale);

VPGATHERQD: __m128i _mm_mask_i64gather_epi32 (__m128i src, int const * base, __m128i index, __m128i mask, const int scale);

VPGATHERQD: __m128i _mm256_i64gather_epi32 (int const * base, __m256i index, const int scale);

VPGATHERQD: __m128i _mm256_mask_i64gather_epi32 (__m128i src, int const * base, __m256i index, __m128i mask, const int
scale);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 12
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 114

WRPKRU—Write Data to User Page Key Register

Instruction Operand Encoding

Description

The WRPKRU instruction loads the value of EAX into PKRU. ECX and EDX must be 0 when WRPKRU is executed;
otherwise, a general-protection exception (#GP) occurs.

WRPKRU can be executed only if CR4.PKE = 1; otherwise, a general-protection exception (#GP) occurs. Software
can discover the value of CR4.PKE by examining CPUID.(EAX=07H,ECX=0H):ECX.OSPKE [bit 4].

In 64-bit mode, WRPKRU ignores bits 63:32 of each of RAX, RCX, and RDX.

Operation

IF (ECX = 0 AND EDX = 0)
THEN PKRU ← EAX;
ELSE #GP(0);

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If ECX ≠ 0.

If EDX ≠ 0.
#UD If the LOCK prefix is used.

If CR4.PKE = 0.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Opcode* Instruction Op/
En

64/32bit
Mode
Support

CPUID
Feature
Flag

Description

0F 01 EF WRPKRU NP V/V OSPKE Writes EAX into PKRU.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 115

...

13. Updates to Chapter 1, Volume 3A
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed and viewable on-line at:
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

See also:
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Fortran Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Software Development Tools:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in three or seven volumes):

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
• Intel® 64 and IA-32 Architectures Optimization Reference Manual:

http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimi-
zation-manual.html

• Intel 64 Architecture x2APIC Specification:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specifi-
cation.html

• Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:

http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
• Developing Multi-threaded Applications: A Platform Consistent Approach:

https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applica-
tions.pdf

• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
http://software.intel.com/en-us/articles/ap949-using-spin-loops-on-intel-pentiumr-4-processor-and-intel-
xeonr-processor/

• Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

Literature related to selected features in future Intel processors are available at:
• Intel® Architecture Instruction Set Extensions Programming Reference

https://software.intel.com/en-us/isa-extensions
• Intel® Software Guard Extensions (Intel® SGX) Programming Reference

https://software.intel.com/en-us/isa-extensions/intel-sgx

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://software.intel.com/en-us/articles/intel-compilers/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specification.html
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
https://software.intel.com/en-us/isa-extensions
https://software.intel.com/en-us/isa-extensions/intel-sgx

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 116

More relevant links are:
• Intel® Developer Zone:

https://software.intel.com/en-us
• Developer centers:

http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
• Processor support general link:

http://www.intel.com/support/processors/
• Software products and packages:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel® Hyper-Threading Technology (Intel® HT Technology):

http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

...

14. Updates to Chapter 2, Volume 3A
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE
System-level architecture consists of a set of registers, data structures, and instructions designed to support
basic system-level operations such as memory management, interrupt and exception handling, task manage-
ment, and control of multiple processors.

Figure 2-1 provides a summary of system registers and data structures that applies to 32-bit modes. System
registers and data structures that apply to IA-32e mode are shown in Figure 2-2.

https://software.intel.com/en-us
https://software.intel.com/en-us
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
https://software.intel.com/en-us/articles/resource-center/
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
http://www.intel.com/support/processors/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/technology/hyperthread/
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 117

Figure 2-1 IA-32 System-Level Registers and Data Structures

Local Descriptor
Table (LDT)

EFLAGS Register

Control Registers

CR1
CR2
CR3
CR4

CR0 Global Descriptor
Table (GDT)

Interrupt Descriptor
Table (IDT)

IDTR

GDTR

Interrupt Gate

Trap Gate

LDT Desc.

TSS Desc.

Code

Stack

Code
Stack

Code
Stack

Task-State
Segment (TSS)

Code
Data

Stack

Task

Interrupt Handler

Exception Handler

Protected Procedure

TSS Seg. Sel.

Call-Gate
Segment Selector

Dir Table Offset
Linear Address

Page Directory

Pg. Dir. Entry

Linear Address Space

Linear Addr.

0

Seg. Desc.Segment Sel.

Code, Data or
Stack Segment

Interrupt
Vector

TSS Desc.

Seg. Desc.

Task Gate

Current
TSS

Call Gate

Task-State
Segment (TSS)

Code
Data

Stack

Task

Seg. Desc.

Current
TSS

Current
TSS

Segment Selector

Linear Address

Task Register

CR3*

Page Table

Pg. Tbl. Entry

Page

Physical Addr.

LDTR

This page mapping example is for 4-KByte pages
and the normal 32-bit physical address size.

Register

*Physical Address

Physical Address

XCR0 (XFEM)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 118

...

Figure 2-2 System-Level Registers and Data Structures in IA-32e Mode

Local Descriptor
Table (LDT)

CR1
CR2
CR3
CR4

CR0 Global Descriptor
Table (GDT)

Interrupt Descriptor
Table (IDT)

IDTR

GDTR

Interrupt Gate

Trap Gate

LDT Desc.

TSS Desc.

Code

Stack

Code
Stack

Code
Stack

Current TSS
Code

Stack

Interr. Handler

Interrupt Handler

Exception Handler

Protected Procedure

TR

Call-Gate
Segment Selector

Linear Address

PML4

PML4.

Linear Address Space

Linear Addr.

0

Seg. Desc.Segment Sel.

Code, Data or Stack
Segment (Base =0)

Interrupt
Vector

Seg. Desc.

Seg. Desc.

NULL

Call Gate

Task-State
Segment (TSS)

Seg. Desc.

NULL

NULL

Segment Selector

Linear Address

Task Register

CR3*

Page

LDTR

This page mapping example is for 4-KByte pages
and 40-bit physical address size.

Register

*Physical Address

Physical Address

CR8
Control Register

RFLAGS

OffsetTableDirectory

Page Table

Entry

Physical
Addr.Page Tbl

Entry

Page Dir.Pg. Dir. Ptr.

PML4 Dir. Pointer

Pg. Dir.
Entry

Interrupt Gate

IST

XCR0 (XFEM)

PKRU

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 119

2.5 CONTROL REGISTERS
Control registers (CR0, CR1, CR2, CR3, and CR4; see Figure 2-7) determine operating mode of the processor and
the characteristics of the currently executing task. These registers are 32 bits in all 32-bit modes and compati-
bility mode.

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions are used to manipulate the
register bits. Operand-size prefixes for these instructions are ignored. The following is also true:
• Bits 63:32 of CR0 and CR4 are reserved and must be written with zeros. Writing a nonzero value to any of the

upper 32 bits results in a general-protection exception, #GP(0).
• All 64 bits of CR2 are writable by software.
• Bits 51:40 of CR3 are reserved and must be 0.
• The MOV CRn instructions do not check that addresses written to CR2 and CR3 are within the linear-address

or physical-address limitations of the implementation.
• Register CR8 is available in 64-bit mode only.

The control registers are summarized below, and each architecturally defined control field in these control regis-
ters are described individually. In Figure 2-7, the width of the register in 64-bit mode is indicated in parenthesis
(except for CR0).
• CR0 — Contains system control flags that control operating mode and states of the processor.
• CR1 — Reserved.
• CR2 — Contains the page-fault linear address (the linear address that caused a page fault).
• CR3 — Contains the physical address of the base of the paging-structure hierarchy and two flags (PCD and

PWT). Only the most-significant bits (less the lower 12 bits) of the base address are specified; the lower 12
bits of the address are assumed to be 0. The first paging structure must thus be aligned to a page (4-KByte)
boundary. The PCD and PWT flags control caching of that paging structure in the processor’s internal data
caches (they do not control TLB caching of page-directory information).

When using the physical address extension, the CR3 register contains the base address of the page-directory-
pointer table In IA-32e mode, the CR3 register contains the base address of the PML4 table.

See also: Chapter 4, “Paging.”
• CR4 — Contains a group of flags that enable several architectural extensions, and indicate operating system

or executive support for specific processor capabilities. The control registers can be read and loaded (or
modified) using the move-to-or-from-control-registers forms of the MOV instruction. In protected mode, the
MOV instructions allow the control registers to be read or loaded (at privilege level 0 only). This restriction
means that application programs or operating-system procedures (running at privilege levels 1, 2, or 3) are
prevented from reading or loading the control registers.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 120

• CR8 — Provides read and write access to the Task Priority Register (TPR). It specifies the priority threshold
value that operating systems use to control the priority class of external interrupts allowed to interrupt the
processor. This register is available only in 64-bit mode. However, interrupt filtering continues to apply in
compatibility mode.

When loading a control register, reserved bits should always be set to the values previously read. The flags in
control registers are:

PG Paging (bit 31 of CR0) — Enables paging when set; disables paging when clear. When paging is
disabled, all linear addresses are treated as physical addresses. The PG flag has no effect if the PE flag (bit
0 of register CR0) is not also set; setting the PG flag when the PE flag is clear causes a general-protection
exception (#GP). See also: Chapter 4, “Paging.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also requires modifying CR0.PG.

CD Cache Disable (bit 30 of CR0) — When the CD and NW flags are clear, caching of memory locations for
the whole of physical memory in the processor’s internal (and external) caches is enabled. When the CD
flag is set, caching is restricted as described in Table 11-5. To prevent the processor from accessing and
updating its caches, the CD flag must be set and the caches must be invalidated so that no cache hits can
occur.

See also: Section 11.5.3, “Preventing Caching,” and Section 11.5, “Cache Control.”

NW Not Write-through (bit 29 of CR0) — When the NW and CD flags are clear, write-back (for Pentium 4,
Intel Xeon, P6 family, and Pentium processors) or write-through (for Intel486 processors) is enabled for
writes that hit the cache and invalidation cycles are enabled. See Table 11-5 for detailed information
about the affect of the NW flag on caching for other settings of the CD and NW flags.

Figure 2-7 Control Registers

CR1

W
P

A
M

Page-Directory Base

V
M
E

P
S
E

T
S
D

D
E

P
V
I

P
G
E

M
C
E

P
A
E

P
C
E

N
W

P
G

C
D

P
W
T

P
C
D

Page-Fault Linear Address

P
E

E
M

M
P

T
S

N
E

E
T

CR2

CR0

CR4

Reserved

CR3

Reserved

31 2930 28 19 18 17 16 15 6 5 4 3 2 1 0

31(63) 0

31(63) 0

31(63) 12 11 5 4 3 2

31(63) 9 8 7 6 5 4 3 2 1 0

(PDBR)

13 12 11 10

OSFXSR
OSXMMEXCPT

V
M
X
EE

X
M
S

1418

OSXSAVE PCIDE

17

S
M
E
P

20

FSGSBASE

16 15

S
M
A
P

22 21

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 121

AM Alignment Mask (bit 18 of CR0) — Enables automatic alignment checking when set; disables align-
ment checking when clear. Alignment checking is performed only when the AM flag is set, the AC flag in
the EFLAGS register is set, CPL is 3, and the processor is operating in either protected or virtual-8086
mode.

WP Write Protect (bit 16 of CR0) — When set, inhibits supervisor-level procedures from writing into read-
only pages; when clear, allows supervisor-level procedures to write into read-only pages (regardless of
the U/S bit setting; see Section 4.1.3 and Section 4.6). This flag facilitates implementation of the copy-
on-write method of creating a new process (forking) used by operating systems such as UNIX.

NE Numeric Error (bit 5 of CR0) — Enables the native (internal) mechanism for reporting x87 FPU errors
when set; enables the PC-style x87 FPU error reporting mechanism when clear. When the NE flag is clear
and the IGNNE# input is asserted, x87 FPU errors are ignored. When the NE flag is clear and the IGNNE#
input is deasserted, an unmasked x87 FPU error causes the processor to assert the FERR# pin to generate
an external interrupt and to stop instruction execution immediately before executing the next waiting
floating-point instruction or WAIT/FWAIT instruction.

The FERR# pin is intended to drive an input to an external interrupt controller (the FERR# pin emulates
the ERROR# pin of the Intel 287 and Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and
FERR# pin are used with external logic to implement PC-style error reporting. Using FERR# and IGNNE#
to handle floating-point exceptions is deprecated by modern operating systems; this non-native approach
also limits newer processors to operate with one logical processor active.

See also: “Software Exception Handling” in Chapter 8, “Programming with the x87 FPU,” and Appendix A,
“EFLAGS Cross-Reference,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1.

ET Extension Type (bit 4 of CR0) — Reserved in the Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors. In the Pentium 4, Intel Xeon, and P6 family processors, this flag is hardcoded to 1. In the Intel386
and Intel486 processors, this flag indicates support of Intel 387 DX math coprocessor instructions when
set.

TS Task Switched (bit 3 of CR0) — Allows the saving of the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4
context on a task switch to be delayed until an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is
actually executed by the new task. The processor sets this flag on every task switch and tests it when
executing x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

• If the TS flag is set and the EM flag (bit 2 of CR0) is clear, a device-not-available exception (#NM) is
raised prior to the execution of any x87 FPU/MMX/SSE/ SSE2/SSE3/SSSE3/SSE4 instruction; with the
exception of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and
POPCNT. See the paragraph below for the special case of the WAIT/FWAIT instructions.

• If the TS flag is set and the MP flag (bit 1 of CR0) and EM flag are clear, an #NM exception is not raised
prior to the execution of an x87 FPU WAIT/FWAIT instruction.

• If the EM flag is set, the setting of the TS flag has no affect on the execution of x87 FPU/MMX/SSE/
SSE2/SSE3/SSSE3/SSE4 instructions.

Table 2-2 shows the actions taken when the processor encounters an x87 FPU instruction based on the
settings of the TS, EM, and MP flags. Table 12-1 and 13-1 show the actions taken when the processor
encounters an MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction.

The processor does not automatically save the context of the x87 FPU, XMM, and MXCSR registers on a
task switch. Instead, it sets the TS flag, which causes the processor to raise an #NM exception whenever
it encounters an x87 FPU/MMX/SSE /SSE2/SSE3/SSSE3/SSE4 instruction in the instruction stream for the
new task (with the exception of the instructions listed above).

The fault handler for the #NM exception can then be used to clear the TS flag (with the CLTS instruction)
and save the context of the x87 FPU, XMM, and MXCSR registers. If the task never encounters an x87
FPU/MMX/SSE/SSE2/SSE3//SSSE3/SSE4 instruction; the x87 FPU/MMX/SSE/SSE2/ SSE3/SSSE3/SSE4
context is never saved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 122

EM Emulation (bit 2 of CR0) — Indicates that the processor does not have an internal or external x87 FPU
when set; indicates an x87 FPU is present when clear. This flag also affects the execution of MMX/SSE/
SSE2/SSE3/SSSE3/SSE4 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a device-not-available exception
(#NM). This flag must be set when the processor does not have an internal x87 FPU or is not connected
to an external math coprocessor. Setting this flag forces all floating-point instructions to be handled by
software emulation. Table 9-2 shows the recommended setting of this flag, depending on the IA-32
processor and x87 FPU or math coprocessor present in the system. Table 2-2 shows the interaction of the
EM, MP, and TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an invalid-opcode exception (#UD)
to be generated (see Table 12-1). Thus, if an IA-32 or Intel 64 processor incorporates MMX technology,
the EM flag must be set to 0 to enable execution of MMX instructions.

Similarly for SSE/SSE2/SSE3/SSSE3/SSE4 extensions, when the EM flag is set, execution of most SSE/
SSE2/SSE3/SSSE3/SSE4 instructions causes an invalid opcode exception (#UD) to be generated (see
Table 13-1). If an IA-32 or Intel 64 processor incorporates the SSE/SSE2/SSE3/SSSE3/SSE4 extensions,
the EM flag must be set to 0 to enable execution of these extensions. SSE/SSE2/SSE3/SSSE3/SSE4
instructions not affected by the EM flag include: PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE,
MOVNTI, CLFLUSH, CRC32, and POPCNT.

MP Monitor Coprocessor (bit 1 of CR0). — Controls the interaction of the WAIT (or FWAIT) instruction with
the TS flag (bit 3 of CR0). If the MP flag is set, a WAIT instruction generates a device-not-available excep-
tion (#NM) if the TS flag is also set. If the MP flag is clear, the WAIT instruction ignores the setting of the
TS flag. Table 9-2 shows the recommended setting of this flag, depending on the IA-32 processor and x87
FPU or math coprocessor present in the system. Table 2-2 shows the interaction of the MP, EM, and TS
flags.

PE Protection Enable (bit 0 of CR0) — Enables protected mode when set; enables real-address mode
when clear. This flag does not enable paging directly. It only enables segment-level protection. To enable
paging, both the PE and PG flags must be set.

See also: Section 9.9, “Mode Switching.”

PCD Page-level Cache Disable (bit 4 of CR3) — Controls the memory type used to access the first paging
structure of the current paging-structure hierarchy. See Section 4.9, “Paging and Memory Typing”. This
bit is not used if paging is disabled, with PAE paging, or with IA-32e paging if CR4.PCIDE=1.

Table 2-2 Action Taken By x87 FPU Instructions for Different Combinations of EM, MP, and TS

CR0 Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT

0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.

1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.

1 1 1 #NM Exception #NM exception.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 123

PWT Page-level Write-Through (bit 3 of CR3) — Controls the memory type used to access the first paging
structure of the current paging-structure hierarchy. See Section 4.9, “Paging and Memory Typing”. This
bit is not used if paging is disabled, with PAE paging, or with IA-32e paging if CR4.PCIDE=1.

VME Virtual-8086 Mode Extensions (bit 0 of CR4) — Enables interrupt- and exception-handling exten-
sions in virtual-8086 mode when set; disables the extensions when clear. Use of the virtual mode exten-
sions can improve the performance of virtual-8086 applications by eliminating the overhead of calling the
virtual-8086 monitor to handle interrupts and exceptions that occur while executing an 8086 program
and, instead, redirecting the interrupts and exceptions back to the 8086 program’s handlers. It also
provides hardware support for a virtual interrupt flag (VIF) to improve reliability of running 8086
programs in multitasking and multiple-processor environments.

See also: Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode.”

PVI Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware support for a virtual interrupt
flag (VIF) in protected mode when set; disables the VIF flag in protected mode when clear.

See also: Section 20.4, “Protected-Mode Virtual Interrupts.”

TSD Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the RDTSC instruction to procedures
running at privilege level 0 when set; allows RDTSC instruction to be executed at any privilege level when
clear. This bit also applies to the RDTSCP instruction if supported (if CPUID.80000001H:EDX[27] = 1).

DE Debugging Extensions (bit 3 of CR4) — References to debug registers DR4 and DR5 cause an unde-
fined opcode (#UD) exception to be generated when set; when clear, processor aliases references to
registers DR4 and DR5 for compatibility with software written to run on earlier IA-32 processors.

See also: Section 17.2.2, “Debug Registers DR4 and DR5.”

PSE Page Size Extensions (bit 4 of CR4) — Enables 4-MByte pages with 32-bit paging when set; restricts
32-bit paging to pages to 4 KBytes when clear.

See also: Section 4.3, “32-Bit Paging.”

PAE Physical Address Extension (bit 5 of CR4) — When set, enables paging to produce physical addresses
with more than 32 bits. When clear, restricts physical addresses to 32 bits. PAE must be set before
entering IA-32e mode.

See also: Chapter 4, “Paging.”

MCE Machine-Check Enable (bit 6 of CR4) — Enables the machine-check exception when set; disables the
machine-check exception when clear.

See also: Chapter 15, “Machine-Check Architecture.”

PGE Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family processors.) Enables the global page
feature when set; disables the global page feature when clear. The global page feature allows frequently
used or shared pages to be marked as global to all users (done with the global flag, bit 8, in a page-direc-
tory or page-table entry). Global pages are not flushed from the translation-lookaside buffer (TLB) on a
task switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting the PG flag in control register
CR0) before the PGE flag is set. Reversing this sequence may affect program correctness, and processor
performance will be impacted.

See also: Section 4.10, “Caching Translation Information.”

PCE Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables execution of the RDPMC instruc-
tion for programs or procedures running at any protection level when set; RDPMC instruction can be
executed only at protection level 0 when clear.

OSFXSR
Operating System Support for FXSAVE and FXRSTOR instructions (bit 9 of CR4) — When set, this
flag: (1) indicates to software that the operating system supports the use of the FXSAVE and FXRSTOR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 124

instructions, (2) enables the FXSAVE and FXRSTOR instructions to save and restore the contents of the
XMM and MXCSR registers along with the contents of the x87 FPU and MMX registers, and (3) enables the
processor to execute SSE/SSE2/SSE3/SSSE3/SSE4 instructions, with the exception of the PAUSE,
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT.

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and restore the contents of the x87
FPU and MMX instructions, but they may not save and restore the contents of the XMM and MXCSR regis-
ters. Also, the processor will generate an invalid opcode exception (#UD) if it attempts to execute any
SSE/SSE2/SSE3 instruction, with the exception of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE,
MOVNTI, CLFLUSH, CRC32, and POPCNT. The operating system or executive must explicitly set this flag.

NOTE
CPUID feature flags FXSR indicates availability of the FXSAVE/FXRSTOR instructions. The OSFXSR
bit provides operating system software with a means of enabling FXSAVE/FXRSTOR to save/
restore the contents of the X87 FPU, XMM and MXCSR registers. Consequently OSFXSR bit
indicates that the operating system provides context switch support for SSE/SSE2/SSE3/SSSE3/
SSE4.

OSXMMEXCPT
Operating System Support for Unmasked SIMD Floating-Point Exceptions (bit 10 of CR4) —
When set, indicates that the operating system supports the handling of unmasked SIMD floating-point
exceptions through an exception handler that is invoked when a SIMD floating-point exception (#XM) is
generated. SIMD floating-point exceptions are only generated by SSE/SSE2/SSE3/SSE4.1 SIMD floating-
point instructions.

The operating system or executive must explicitly set this flag. If this flag is not set, the processor will
generate an invalid opcode exception (#UD) whenever it detects an unmasked SIMD floating-point
exception.

VMXE
VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See Chapter 23, “Introduction to
Virtual-Machine Extensions.”

SMXE
SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See Chapter 5, “Safer Mode Exten-
sions Reference” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C.

FSGSBASE
FSGSBASE-Enable Bit (bit 16 of CR4) — Enables the instructions RDFSBASE, RDGSBASE, WRFSBASE,
and WRGSBASE.

PCIDE
PCID-Enable Bit (bit 17 of CR4) — Enables process-context identifiers (PCIDs) when set. See Section
4.10.1, “Process-Context Identifiers (PCIDs)”. Can be set only in IA-32e mode (if IA32_EFER.LMA = 1).

OSXSAVE
XSAVE and Processor Extended States-Enable Bit (bit 18 of CR4) — When set, this flag: (1) indi-
cates (via CPUID.01H:ECX.OSXSAVE[bit 27]) that the operating system supports the use of the XGETBV,
XSAVE and XRSTOR instructions by general software; (2) enables the XSAVE and XRSTOR instructions to
save and restore the x87 FPU state (including MMX registers), the SSE state (XMM registers and MXCSR),
along with other processor extended states enabled in XCR0; (3) enables the processor to execute
XGETBV and XSETBV instructions in order to read and write XCR0. See Section 2.6 and Chapter 13,
“System Programming for Instruction Set Extensions and Processor Extended States”.

SMEP
SMEP-Enable Bit (bit 20 of CR4) — Enables supervisor-mode execution prevention (SMEP) when set.
See Section 4.6, “Access Rights”.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 125

SMAP
SMAP-Enable Bit (bit 21 of CR4) — Enables supervisor-mode access prevention (SMAP) when set. See
Section 4.6, “Access Rights.”

PKE
Protection-Key-Enable Bit (bit 22 of CR4) — Enables IA-32e paging to associate each linear address
with a protection key. The PKRU register specifies, for each protection key, whether user-mode linear
addresses with that protection key can be read or written. This bit also enables access to the PKRU
register using the RDPKRU and WRPKRU instructions.

TPL
Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corresponding to the highest-
priority interrupt to be blocked. A value of 0 means all interrupts are enabled. This field is available in 64-
bit mode. A value of 15 means all interrupts will be disabled.

...

2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCR0)
If CPUID.01H:ECX.XSAVE[bit 26] is 1, the processor supports one or more extended control registers (XCRs).
Currently, the only such register defined is XCR0. This register specifies the set of processor state components for
which the operating system provides context management, e.g. x87 FPU state, SSE state, AVX state. The OS
programs XCR0 to reflect the features for which it provides context management.

Software can access XCR0 only if CR4.OSXSAVE[bit 18] = 1. (This bit is also readable as
CPUID.01H:ECX.OSXSAVE[bit 27].) Software can use CPUID leaf function 0DH to enumerate the bits in XCR0 that
the processor supports (see CPUID instruction in Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A). Each supported state component is represented by a bit in XCR0. System software enables state
components by loading an appropriate bit mask value into XCR0 using the XSETBV instruction.
As each bit in XCR0 (except bit 63) corresponds to a processor state component, XCR0 thus provides support for
up to 63 sets of processor state components. Bit 63 of XCR0 is reserved for future expansion and will not repre-
sent a processor state component.

Currently, XCR0 defines support for the following state components:
• XCR0.X87 (bit 0): This bit 0 must be 1. An attempt to write 0 to this bit causes a #GP exception.

Figure 2-8 XCR0

63

Reserved for XCR0 bit vector expansion
Reserved / Future processor extended states

2 1 0

AVX state

1

Reserved (must be 0)

x87 FPU/MMX state (must be 1)
SSE state

9

PKRU state

567

Hi16_ZMM state
ZMM_Hi256 state
Opmask state

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 126

• XCR0.SSE (bit 1): If 1, the XSAVE feature set can be used to manage MXCSR and the XMM registers (XMM0-
XMM15 in 64-bit mode; otherwise XMM0-XMM7).

• XCR0.AVX (bit 2): If 1, AVX instructions can be executed and the XSAVE feature set can be used to manage
the upper halves of the YMM registers (YMM0-YMM15 in 64-bit mode; otherwise YMM0-YMM7).

• XCR0.opmask (bit 5): If 1, AVX-512 instructions can be executed and the XSAVE feature set can be used to
manage the opmask registers k0–k7.

• XCR0.ZMM_Hi256 (bit 6): If 1, AVX-512 instructions can be executed and the XSAVE feature set can be used
to manage the upper halves of the lower ZMM registers (ZMM0-ZMM15 in 64-bit mode; otherwise ZMM0-
ZMM7).

• XCR0.Hi16_ZMM (bit 7): If 1, AVX-512 instructions can be executed and the XSAVE feature set can be used
to manage the upper ZMM registers (ZMM16-ZMM31, only in 64-bit mode).

• XCR0.PKRU (bit 9): If 1, the XSAVE feature set can be used to manage the PKRU register (see Section 2.7).

An attempt to use XSETBV to write to XCR0 results in general-protection exceptions (#GP) if it would do any of
the following:
• set a bit reserved in XCR0 for a given processor (as determined by the contents of EAX and EDX after

executing CPUID with EAX=0DH, ECX= 0H);
• clear XCR0.x87;
• clear XCR0.SSE and set XCR0.AVX;
• clear XCR0.AVX and set any of XCR0.opmask, XCR0.ZMM_Hi256, and XCR0.Hi16_ZMM; or
• set any of XCR0.opmask, XCR0.ZMM_Hi256, and XCR0.Hi16_ZMM while not setting all of them.
After reset, all bits (except bit 0) in XCR0 are cleared to zero; XCR0[0] is set to 1.

2.7 PROTECTION KEY RIGHTS REGISTER (PKRU)
If CPUID.(EAX=07H,ECX=0H):ECX.PK [bit 3] = 1, the processor supports the protection-key feature for IA-32e
paging. The feature allows selective protection of user-mode pages depending on the 4-bit protection key
assigned to each page. The protection key rights register for user pages (PKRU) allows software to specify
the access rights for each protection key.

The layout of the PKRU register is shown in Figure 2-9. It contains 16 pairs of disable controls to prevent data
accesses to user-mode linear addresses based on their protection keys. Each protection key i is associated with
two bits in the PKRU register:
• Bit 2i, shown as “ADi” (access disable): if set, the processor prevents any data accesses to user-mode linear

addresses with protection key i.
• Bit 2i+1, shown as “WDi” (write disable): if set, the processor prevents write accesses to user-mode linear

addresses with protection key i.

Figure 2-9 Protection Key Rights Register for User Pages (PKRU)

A

31 9 8 7 6 5 4 3 2 1 01418 1720 16 1522 21 1930 29 28 27 25 24 2326 Bit Position10111213

D
W
D
0

A
D
1

W
D
1 0

A
D

W
D
2

A
D
3

W
D
3 2

A
D

W
D
4

A
D
5

W
D
5 4

A
D

W
D
6

A
D
7

W
D
7 6

A
D

W
D
8

A
D
9

W
D
9 8

A
D

W
D
10

A
D
11

W
D
11 10

A
D

W
D
12

A
D
13

W
D
13 12

A
D

W
D
14

A
D
15

W
D

1415

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 127

See Section 4.6.2, “Protection Keys,” for details of how the processor uses the PKRU register to control accesses
to user-mode linear addresses.

...

15. Updates to Chapter 4, Volume 3A
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

4.1 PAGING MODES AND CONTROL BITS
Paging behavior is controlled by the following control bits:
• The WP and PG flags in control register CR0 (bit 16 and bit 31, respectively).
• The PSE, PAE, PGE, PCIDE, SMEP, SMAP, and PKE flags in control register CR4 (bit 4, bit 5, bit 7, bit 17, bit 20,

bit 21, and bit 22, respectively).
• The LME and NXE flags in the IA32_EFER MSR (bit 8 and bit 11, respectively).
• The AC flag in the EFLAGS register (bit 18).

Software enables paging by using the MOV to CR0 instruction to set CR0.PG. Before doing so, software should
ensure that control register CR3 contains the physical address of the first paging structure that the processor will
use for linear-address translation (see Section 4.2) and that structure is initialized as desired. See Table 4-3,
Table 4-7, and Table 4-12 for the use of CR3 in the different paging modes.

Section 4.1.1 describes how the values of CR0.PG, CR4.PAE, and IA32_EFER.LME determine whether paging is in
use and, if so, which of three paging modes is in use. Section 4.1.2 explains how to manage these bits to establish
or make changes in paging modes. Section 4.1.3 discusses how CR0.WP, CR4.PSE, CR4.PGE, CR4.PCIDE,
CR4.SMEP, CR4.SMAP, CR4.PKE, and IA32_EFER.NXE modify the operation of the different paging modes.

4.1.1 Three Paging Modes
If CR0.PG = 0, paging is not used. The logical processor treats all linear addresses as if they were physical
addresses. CR4.PAE and IA32_EFER.LME are ignored by the processor, as are CR0.WP, CR4.PSE, CR4.PGE,
CR4.SMEP, CR4.SMAP, and IA32_EFER.NXE.

Paging is enabled if CR0.PG = 1. Paging can be enabled only if protection is enabled (CR0.PE = 1). If paging is
enabled, one of three paging modes is used. The values of CR4.PAE and IA32_EFER.LME determine which paging
mode is used:
• If CR0.PG = 1 and CR4.PAE = 0, 32-bit paging is used. 32-bit paging is detailed in Section 4.3. 32-bit paging

uses CR0.WP, CR4.PSE, CR4.PGE, CR4.SMEP, and CR4.SMAP as described in Section 4.1.3.
• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 0, PAE paging is used. PAE paging is detailed in Section

4.4. PAE paging uses CR0.WP, CR4.PGE, CR4.SMEP, CR4.SMAP, and IA32_EFER.NXE as described in Section
4.1.3.

• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 1, IA-32e paging is used.1 IA-32e paging is detailed in
Section 4.5. IA-32e paging uses CR0.WP, CR4.PGE, CR4.PCIDE, CR4.SMEP, CR4.SMAP, CR4.PKE, and
IA32_EFER.NXE as described in Section 4.1.3. IA-32e paging is available only on processors that support the
Intel 64 architecture.

The three paging modes differ with regard to the following details:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 128

• Linear-address width. The size of the linear addresses that can be translated.
• Physical-address width. The size of the physical addresses produced by paging.
• Page size. The granularity at which linear addresses are translated. Linear addresses on the same page are

translated to corresponding physical addresses on the same page.
• Support for execute-disable access rights. In some paging modes, software can be prevented from fetching

instructions from pages that are otherwise readable.
• Support for PCIDs. With IA-32e paging, software can enable a facility by which a logical processor caches

information for multiple linear-address spaces. The processor may retain cached information when software
switches between different linear-address spaces.

• Support for protection keys. With IA-32e paging, software can enable a facility by which each linear address
is associated with a protection key. Software can use a new control register to determine, for each
protection keys, how software can access linear addresses associated with that protection key.

Table 4-1 illustrates the principal differences between the three paging modes.

Because they are used only if IA32_EFER.LME = 0, 32-bit paging and PAE paging is used only in legacy protected
mode. Because legacy protected mode cannot produce linear addresses larger than 32 bits, 32-bit paging and
PAE paging translate 32-bit linear addresses.

Because it is used only if IA32_EFER.LME = 1, IA-32e paging is used only in IA-32e mode. (In fact, it is the use of
IA-32e paging that defines IA-32e mode.) IA-32e mode has two sub-modes:

1. The LMA flag in the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical processor is in IA-32e mode (and thus
using IA-32e paging). The processor always sets IA32_EFER.LMA to CR0.PG & IA32_EFER.LME. Software cannot directly modify
IA32_EFER.LMA; an execution of WRMSR to the IA32_EFER MSR ignores bit 10 of its source operand.

Table 4-1 Properties of Different Paging Modes

Paging
Mode

PG in
CR0

PAE in
CR4

LME in
IA32_EFER

Lin.-
Addr.
Width

Phys.-
Addr.
Width1

Page
Sizes

Supports
Execute-
Disable?

Supports
PCIDs and
protection
keys?

None 0 N/A N/A 32 32 N/A No No

32-bit 1 0 02 32
Up to
403

4 KB
4 MB4 No No

PAE 1 1 0 32
Up to
52

4 KB
2 MB

Yes5 No

IA-32e 1 1 1 48
Up to
52

4 KB
2 MB
1 GB6

Yes5 Yes7

NOTES:
1. The physical-address width is always bounded by MAXPHYADDR; see Section 4.1.4.
2. The processor ensures that IA32_EFER.LME must be 0 if CR0.PG = 1 and CR4.PAE = 0.
3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and only if the PSE-36 mechanism is

supported; see Section 4.1.4 and Section 4.3.
4. 4-MByte pages are used with 32-bit paging only if CR4.PSE = 1; see Section 4.3.
5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 4.6.
6. Not all processors that support IA-32e paging support 1-GByte pages; see Section 4.1.4.
7. PCIDs are used only if CR4.PCIDE = 1; see Section 4.10.1. Protection keys are used only if certain conditions hold; see Section 4.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 129

• Compatibility mode. This mode uses only 32-bit linear addresses. IA-32e paging treats bits 47:32 of such an
address as all 0.

• 64-bit mode. While this mode produces 64-bit linear addresses, the processor ensures that bits 63:47 of such
an address are identical.1 IA-32e paging does not use bits 63:48 of such addresses.

...

4.1.3 Paging-Mode Modifiers
Details of how each paging mode operates are determined by the following control bits:
• The WP flag in CR0 (bit 16).
• The PSE, PGE, PCIDE, SMEP, SMAP, and PKE flags in CR4 (bit 4, bit 7, bit 17, bit 20, bit 21, and bit 22 respec-

tively).
• The NXE flag in the IA32_EFER MSR (bit 11).

CR0.WP allows pages to be protected from supervisor-mode writes. If CR0.WP = 0, supervisor-mode write
accesses are allowed to linear addresses with read-only access rights; if CR0.WP = 1, they are not. (User-mode
write accesses are never allowed to linear addresses with read-only access rights, regardless of the value of
CR0.WP.) Section 4.6 explains how access rights are determined, including the definition of supervisor-mode and
user-mode accesses.

CR4.PSE enables 4-MByte pages for 32-bit paging. If CR4.PSE = 0, 32-bit paging can use only 4-KByte pages; if
CR4.PSE = 1, 32-bit paging can use both 4-KByte pages and 4-MByte pages. See Section 4.3 for more informa-
tion. (PAE paging and IA-32e paging can use multiple page sizes regardless of the value of CR4.PSE.)

CR4.PGE enables global pages. If CR4.PGE = 0, no translations are shared across address spaces; if CR4.PGE =
1, specified translations may be shared across address spaces. See Section 4.10.2.4 for more information.

CR4.PCIDE enables process-context identifiers (PCIDs) for IA-32e paging (CR4.PCIDE can be 1 only when IA-32e
paging is in use). PCIDs allow a logical processor to cache information for multiple linear-address spaces. See
Section 4.10.1 for more information.

CR4.SMEP allows pages to be protected from supervisor-mode instruction fetches. If CR4.SMEP = 1, software
operating in supervisor mode cannot fetch instructions from linear addresses that are accessible in user mode.
Section 4.6 explains how access rights are determined, including the definition of supervisor-mode accesses and
user-mode accessibility.

CR4.SMAP allows pages to be protected from supervisor-mode data accesses. If CR4.SMAP = 1, software oper-
ating in supervisor mode cannot access data at linear addresses that are accessible in user mode. Software can
override this protection by setting EFLAGS.AC. Section 4.6 explains how access rights are determined, including
the definition of supervisor-mode accesses and user-mode accessibility.

CR4.PKE allows each linear address to be associated with a protection key. The PKRU register specifies, for each
protection key, whether linear addresses with that protection key can be read or written by software. See Section
4.6 for more information.

IA32_EFER.NXE enables execute-disable access rights for PAE paging and IA-32e paging. If IA32_EFER.NXE = 1,
instructions fetches can be prevented from specified linear addresses (even if data reads from the addresses are
allowed). Section 4.6 explains how access rights are determined. (IA32_EFER.NXE has no effect with 32-bit
paging. Software that wants to use this feature to limit instruction fetches from readable pages must use either
PAE paging or IA-32e paging.)

1. Such an address is called canonical. Use of a non-canonical linear address in 64-bit mode produces a general-protection exception
(#GP(0)); the processor does not attempt to translate non-canonical linear addresses using IA-32e paging.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 130

4.1.4 Enumeration of Paging Features by CPUID
Software can discover support for different paging features using the CPUID instruction:
• PSE: page-size extensions for 32-bit paging.

If CPUID.01H:EDX.PSE [bit 3] = 1, CR4.PSE may be set to 1, enabling support for 4-MByte pages with 32-bit
paging (see Section 4.3).

• PAE: physical-address extension.
If CPUID.01H:EDX.PAE [bit 6] = 1, CR4.PAE may be set to 1, enabling PAE paging (this setting is also
required for IA-32e paging).

• PGE: global-page support.
If CPUID.01H:EDX.PGE [bit 13] = 1, CR4.PGE may be set to 1, enabling the global-page feature (see Section
4.10.2.4).

• PAT: page-attribute table.
If CPUID.01H:EDX.PAT [bit 16] = 1, the 8-entry page-attribute table (PAT) is supported. When the PAT is
supported, three bits in certain paging-structure entries select a memory type (used to determine type of
caching used) from the PAT (see Section 4.9.2).

• PSE-36: page-size extensions with 40-bit physical-address extension.
If CPUID.01H:EDX.PSE-36 [bit 17] = 1, the PSE-36 mechanism is supported, indicating that translations
using 4-MByte pages with 32-bit paging may produce physical addresses with up to 40 bits (see Section 4.3).

• PCID: process-context identifiers.
If CPUID.01H:ECX.PCID [bit 17] = 1, CR4.PCIDE may be set to 1, enabling process-context identifiers (see
Section 4.10.1).

• SMEP: supervisor-mode execution prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMEP [bit 7] = 1, CR4.SMEP may be set to 1, enabling supervisor-mode
execution prevention (see Section 4.6).

• SMAP: supervisor-mode access prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMAP [bit 20] = 1, CR4.SMAP may be set to 1, enabling supervisor-mode
access prevention (see Section 4.6).

• PK: protection keys.
If CPUID.(EAX=07H,ECX=0H):ECX.PK [bit 3] = 1, CR4.PKE may be set to 1, enabling protection keys (see
Section 4.6).

• NX: execute disable.
If CPUID.80000001H:EDX.NX [bit 20] = 1, IA32_EFER.NXE may be set to 1, allowing PAE paging and IA-32e
paging to disable execute access to selected pages (see Section 4.6). (Processors that do not support CPUID
function 80000001H do not allow IA32_EFER.NXE to be set to 1.)

• Page1GB: 1-GByte pages.
If CPUID.80000001H:EDX.Page1GB [bit 26] = 1, 1-GByte pages are supported with IA-32e paging (see
Section 4.5).

• LM: IA-32e mode support.
If CPUID.80000001H:EDX.LM [bit 29] = 1, IA32_EFER.LME may be set to 1, enabling IA-32e paging.
(Processors that do not support CPUID function 80000001H do not allow IA32_EFER.LME to be set to 1.)

• CPUID.80000008H:EAX[7:0] reports the physical-address width supported by the processor. (For processors
that do not support CPUID function 80000008H, the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1
and 32 otherwise.) This width is referred to as MAXPHYADDR. MAXPHYADDR is at most 52.

• CPUID.80000008H:EAX[15:8] reports the linear-address width supported by the processor. Generally, this
value is 48 if CPUID.80000001H:EDX.LM [bit 29] = 1 and 32 otherwise. (Processors that do not support
CPUID function 80000008H, support a linear-address width of 32.)

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 131

4.5 IA-32E PAGING
A logical processor uses IA-32e paging if CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 1. With IA-32e
paging, linear address are translated using a hierarchy of in-memory paging structures located using the contents
of CR3. IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses.1 Although 52 bits corre-
sponds to 4 PBytes, linear addresses are limited to 48 bits; at most 256 TBytes of linear-address space may be
accessed at any given time.

IA-32e paging uses a hierarchy of paging structures to produce a translation for a linear address. CR3 is used to
locate the first paging-structure, the PML4 table. Use of CR3 with IA-32e paging depends on whether process-
context identifiers (PCIDs) have been enabled by setting CR4.PCIDE:
• Table 4-12 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 0.

• Table 4-13 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 1.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used by IA-32e paging. (The corre-
sponding bits are reserved in the paging-structure entries.) See Section 4.1.4 for how to determine MAXPHYADDR.

Table 4-12 Use of CR3 with IA-32e Paging and CR4.PCIDE = 0

Bit
Position(s)

Contents

2:0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the PML4 table during linear-
address translation (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the PML4 table during linear-address
translation (see Section 4.9.2)

11:5 Ignored

M–1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address translation1

63:M Reserved (must be 0)

NOTES:
1. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

Table 4-13 Use of CR3 with IA-32e Paging and CR4.PCIDE = 1

Bit
Position(s)

Contents

11:0 PCID (see Section 4.10.1)1

M–1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address translation2

63:M Reserved (must be 0)3

NOTES:
1. Section 4.9.2 explains how the processor determines the memory type used to access the PML4 table during linear-address transla-

tion with CR4.PCIDE = 1.
2. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.
3. See Section 4.10.4.1 for use of bit 63 of the source operand of the MOV to CR3 instruction.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 132

After software modifies the value of CR4.PCIDE, the logical processor immediately begins using CR3 as specified
for the new value. For example, if software changes CR4.PCIDE from 1 to 0, the current PCID immediately
changes from CR3[11:0] to 000H (see also Section 4.10.4.1). In addition, the logical processor subsequently
determines the memory type used to access the PML4 table using CR3.PWT and CR3.PCD, which had been
bits 4:3 of the PCID.

IA-32e paging may map linear addresses to 4-KByte pages, 2-MByte pages, or 1-GByte pages.1 Figure 4-8 illus-
trates the translation process when it produces a 4-KByte page; Figure 4-9 covers the case of a 2-MByte page,
and Figure 4-10 the case of a 1-GByte page.

1. Not all processors support 1-GByte pages; see Section 4.1.4.

Figure 4-8 Linear-Address Translation to a 4-KByte Page using IA-32e Paging

Directory Ptr

PTE

Linear Address

Page Table

PDPTE

CR3

39 38

Pointer Table

9
9

40

12
9

40

4-KByte Page

Offset

Physical Addr

PDE with PS=0

Table

011122021

Directory

30 29

Page-Directory-

Page-Directory

PML4

47

9

PML4E

40

40

40

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 133

Figure 4-9 Linear-Address Translation to a 2-MByte Page using IA-32e Paging

Figure 4-10 Linear-Address Translation to a 1-GByte Page using IA-32e Paging

Directory Ptr

Linear Address

PDPTE

CR3

39 38

Pointer Table

9
9

40

21

31

2-MByte Page

Offset

Physical Addr

PDE with PS=1

02021

Directory

30 29

Page-Directory-

Page-Directory

PML4

47

9

PML4E

40

40

Directory Ptr

Linear Address

PDPTE with PS=1

CR3

39 38

Pointer Table

9

40

30

22

1-GByte Page

Offset

Physical Addr

030 29

Page-Directory-

PML4

47

9

PML4E

40

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 134

If CR4.PKE = 1, IA-32e associates with each linear address a protection key. Section 4.6 explains how the
processor uses the protection key in its determination of the access rights of each linear address.

The following items describe the IA-32e paging process in more detail as well has how the page size and protec-
tion key are determined.
• A 4-KByte naturally aligned PML4 table is located at the physical address specified in bits 51:12 of CR3 (see

Table 4-12). A PML4 table comprises 512 64-bit entries (PML4Es). A PML4E is selected using the physical
address defined as follows:

— Bits 51:12 are from CR3.

— Bits 11:3 are bits 47:39 of the linear address.

— Bits 2:0 are all 0.
Because a PML4E is identified using bits 47:39 of the linear address, it controls access to a 512-GByte region
of the linear-address space.

• A 4-KByte naturally aligned page-directory-pointer table is located at the physical address specified in
bits 51:12 of the PML4E (see Table 4-14). A page-directory-pointer table comprises 512 64-bit entries
(PDPTEs). A PDPTE is selected using the physical address defined as follows:

— Bits 51:12 are from the PML4E.

— Bits 11:3 are bits 38:30 of the linear address.

— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the linear address, it controls access to a 1-GByte region of the
linear-address space. Use of the PDPTE depends on its PS flag (bit 7):1

• If the PDPTE’s PS flag is 1, the PDPTE maps a 1-GByte page (see Table 4-15). The final physical address is
computed as follows:

— Bits 51:30 are from the PDPTE.

— Bits 29:0 are from the original linear address.
If CR4.PKE = 1, the linear address’s protection key is the value of bits 62:59 of the PDPTE.

• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page directory is located at the physical address specified
in bits 51:12 of the PDPTE (see Table 4-16). A page directory comprises 512 64-bit entries (PDEs). A PDE is
selected using the physical address defined as follows:

— Bits 51:12 are from the PDPTE.

— Bits 11:3 are bits 29:21 of the linear address.

— Bits 2:0 are all 0.

Because a PDE is identified using bits 47:21 of the linear address, it controls access to a 2-MByte region of the
linear-address space. Use of the PDE depends on its PS flag:
• If the PDE’s PS flag is 1, the PDE maps a 2-MByte page. The final physical address is computed as shown in

Table 4-17.

— Bits 51:21 are from the PDE.

— Bits 20:0 are from the original linear address.
If CR4.PKE = 1, the linear address’s protection key is the value of bits 62:59 of the PDE.

• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical address specified in
bits 51:12 of the PDE (see Table 4-18). A page table comprises 512 64-bit entries (PTEs). A PTE is selected
using the physical address defined as follows:

1. The PS flag of a PDPTE is reserved and must be 0 (if the P flag is 1) if 1-GByte pages are not supported. See Section 4.1.4 for how
to determine whether 1-GByte pages are supported.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 135

— Bits 51:12 are from the PDE.

— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are all 0.
• Because a PTE is identified using bits 47:12 of the linear address, every PTE maps a 4-KByte page (see Table

4-19). The final physical address is computed as follows:

— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.
If CR4.PKE = 1, the linear address’s protection key is the value of bits 62:59 of the PTE.

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the entry is used neither to
reference another paging-structure entry nor to map a page. There is no translation for a linear address whose
translation would use such a paging-structure entry; a reference to such a linear address causes a page-fault
exception (see Section 4.7).

The following bits are reserved with IA-32e paging:
• If the P flag of a paging-structure entry is 1, bits 51:MAXPHYADDR are reserved.
• If the P flag of a PML4E is 1, the PS flag is reserved.
• If 1-GByte pages are not supported and the P flag of a PDPTE is 1, the PS flag is reserved.1

• If the P flag and the PS flag of a PDPTE are both 1, bits 29:13 are reserved.
• If the P flag and the PS flag of a PDE are both 1, bits 20:13 are reserved.
• If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, the XD flag (bit 63) is reserved.

A reference using a linear address that is successfully translated to a physical address is performed only if allowed
by the access rights of the translation; see Section 4.6.

Figure 4-11 gives a summary of the formats of CR3 and the IA-32e paging-structure entries. For the paging struc-
ture entries, it identifies separately the format of entries that map pages, those that reference other paging struc-
tures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are highlighted because
they determine how a paging-structure entry is used.

1. See Section 4.1.4 for how to determine whether 1-GByte pages are supported.

Table 4-14 Format of an IA-32e PML4 Entry (PML4E) that References a Page-Directory-Pointer Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page-directory-pointer table

1 (R/W) Read/write; if 0, writes may not be allowed to the 512-GByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 512-GByte region controlled by this entry (see
Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page-directory-pointer table
referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page-directory-pointer table
referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 136

7 (PS) Reserved (must be 0)

11:8 Ignored

M–1:12 Physical address of 4-KByte aligned page-directory-pointer table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 512-GByte region
controlled by this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-15 Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 1-GByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 1-GByte page referenced by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 1-GByte page referenced by this
entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 1-GByte page referenced by this
entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 1-GByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 1-GByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page directory; see Table 4-16)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 1-GByte page referenced by this entry (see Section
4.9.2)1

29:13 Reserved (must be 0)

(M–1):30 Physical address of the 1-GByte page referenced by this entry

Table 4-14 Format of an IA-32e PML4 Entry (PML4E) that References a Page-Directory-Pointer Table (Contd.)

Bit
Position(s)

Contents

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 137

51:M Reserved (must be 0)

58:52 Ignored

62:59 Protection key; if CR4.PKE = 1, determines the protection key of the page (see Section 4.6.2); ignored otherwise

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 1-GByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

NOTES:
1. The PAT is supported on all processors that support IA-32e paging.

Table 4-15 Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte Page (Contd.)

Bit
Position(s)

Contents

Table 4-16 Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that References a Page Directory

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page directory

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 1-GByte region controlled by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory referenced by
this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory referenced by
this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 1-GByte page; see Table 4-15)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 1-GByte region controlled
by this entry; see Section 4.6); otherwise, reserved (must be 0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 138

Table 4-17 Format of an IA-32e Page-Directory Entry that Maps a 2-MByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte page referenced by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 2-MByte page referenced by
this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 2-MByte page referenced by
this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-18)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 2-MByte page referenced by this entry (see Section
4.9.2)

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

51:M Reserved (must be 0)

58:52 Ignored

62:59 Protection key; if CR4.PKE = 1, determines the protection key of the page (see Section 4.6.2); ignored otherwise

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 139

Table 4-18 Format of an IA-32e Page-Directory Entry that References a Page Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte region controlled by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this
entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 4-17)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte region controlled
by this entry; see Section 4.6); otherwise, reserved (must be 0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 140

Table 4-19 Format of an IA-32e Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by
this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) Indirectly determines the memory type used to access the 4-KByte page referenced by this entry (see Section 4.9.2)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

(M–1):12 Physical address of the 4-KByte page referenced by this entry

51:M Reserved (must be 0)

58:52 Ignored

62:59 Protection key; if CR4.PKE = 1, determines the protection key of the page (see Section 4.6.2); ignored otherwise

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 4-KByte page controlled by
this entry; see Section 4.6); otherwise, reserved (must be 0)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 141

.

4.6 ACCESS RIGHTS
There is a translation for a linear address if the processes described in Section 4.3, Section 4.4.2, and Section 4.5
(depending upon the paging mode) completes and produces a physical address. Whether an access is permitted

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

M1 M-1 3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved2 Address of PML4 table Ignored
P
C
D

P
W
T

Ign. CR3

X
D
3

Ignored Rsvd. Address of page-directory-pointer table Ign. Rs
vd

I
g
n

A
P
C
D

P
W
T

U
/S

R
/
W

1 PML4E:
present

Ignored 0
PML4E:

not
present

X
D

Prot.
Key4 Ignored Rsvd. Address of

1GB page frame Reserved
P
A
T

Ign. G 1 D A
P
C
D

P
W
T

U
/S

R
/
W

1
PDPTE:

1GB
page

X
D

Ignored Rsvd. Address of page directory Ign. 0
I
g
n

A
P
C
D

P
W
T

U
/S

R
/
W

1
PDPTE:
page

directory

Ignored 0
PDTPE:

not
present

X
D

Prot.
Key4 Ignored Rsvd. Address of

2MB page frame Reserved
P
A
T

Ign. G 1 D A
P
C
D

P
W
T

U
/S

R
/
W

1
PDE:
2MB
page

X
D

Ignored Rsvd. Address of page table Ign. 0
I
g
n

A
P
C
D

P
W
T

U
/S

R
/
W

1
PDE:
page
table

Ignored 0
PDE:
not

present

X
D

Prot.
Key4 Ignored Rsvd. Address of 4KB page frame Ign. G

P
A
T

D A
P
C
D

P
W
T

U
/S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present

Figure 4-11 Formats of CR3 and Paging-Structure Entries with IA-32e Paging
NOTES:

1. M is an abbreviation for MAXPHYADDR.
2. Reserved fields must be 0.
3. If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, the XD flag (bit 63) is reserved.
4. If CR4.PKE = 0, the protection key is ignored.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 142

by a translation is determined by the access rights specified by the paging-structure entries controlling the trans-
lation;1 paging-mode modifiers in CR0, CR4, and the IA32_EFER MSR; EFLAGS.AC; and the mode of the access.

Section 4.6.1 describes how the processor determines the access rights for each linear address. Section 4.6.2
provides additional information about how protection keys contribute to access-rights determination. (They do so
only with IA-32e paging and only if CR4.PKE = 1.)

4.6.1 Determination of Access Rights
Every access to a linear address is either a supervisor-mode access or a user-mode access. For all instruction
fetches and most data accesses, this distinction is determined by the current privilege level (CPL): accesses made
while CPL < 3 are supervisor-mode accesses, while accesses made while CPL = 3 are user-mode accesses.

Some operations implicitly access system data structures with linear addresses; the resulting accesses to those
data structures are supervisor-mode accesses regardless of CPL. Examples of such accesses include the
following: accesses to the global descriptor table (GDT) or local descriptor table (LDT) to load a segment
descriptor; accesses to the interrupt descriptor table (IDT) when delivering an interrupt or exception; and
accesses to the task-state segment (TSS) as part of a task switch or change of CPL. All these accesses are called
implicit supervisor-mode accesses regardless of CPL. Other accesses made while CPL < 3 are called explicit
supervisor-mode accesses.

Access rights are also controlled by the mode of a linear address as specified by the paging-structure entries
controlling the translation of the linear address. If the U/S flag (bit 2) is 0 in at least one of the paging-structure
entries, the address is a supervisor-mode address. Otherwise, the address is a user-mode address.

The following items detail how paging determines access rights:
• For supervisor-mode accesses:

— Data may be read (implicitly or explicitly) from any supervisor-mode address.

— Data reads from user-mode pages.
Access rights depend on the value of CR4.SMAP:

• If CR4.SMAP = 0, data may be read from any user-mode address with a protection key for which read
access is permitted.

• If CR4.SMAP = 1, access rights depend on the value of EFLAGS.AC and whether the access is implicit
or explicit:

— If EFLAGS.AC = 1 and the access is explicit, data may be read from any user-mode address with
a protection key for which read access is permitted.

— If EFLAGS.AC = 0 or the access is implicit, data may not be read from any user-mode address.

Section 4.6.2 explains how protection keys are associated with user-mode addresses and the accesses
that are permitted for each protection key.

— Data writes to supervisor-mode addresses.
Access rights depend on the value of CR0.WP:

• If CR0.WP = 0, data may be written to any supervisor-mode address.

• If CR0.WP = 1, data may be written to any supervisor-mode address with a translation for which the
R/W flag (bit 1) is 1 in every paging-structure entry controlling the translation; data may not be
written to any supervisor-mode address with a translation for which the R/W flag is 0 in any paging-
structure entry controlling the translation.

— Data writes to user-mode addresses.
Access rights depend on the value of CR0.WP:

1. With PAE paging, the PDPTEs do not determine access rights.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 143

• If CR0.WP = 0, access rights depend on the value of CR4.SMAP:

— If CR4.SMAP = 0, data may be written to any user-mode address with a protection key for which
write access is permitted.

— If CR4.SMAP = 1, access rights depend on the value of EFLAGS.AC and whether the access is
implicit or explicit:

• If EFLAGS.AC = 1 and the access is explicit, data may be written to any user-mode address
with a protection key for which write access is permitted.

• If EFLAGS.AC = 0 or the access is implicit, data may not be written to any user-mode
address.

• If CR0.WP = 1, access rights depend on the value of CR4.SMAP:

— If CR4.SMAP = 0, data may be written to any user-mode address with a translation for which the
R/W flag is 1 in every paging-structure entry controlling the translation and with a protection key
for which write access is permitted; data may not be written to any user-mode address with a
translation for which the R/W flag is 0 in any paging-structure entry controlling the translation.

— If CR4.SMAP = 1, access rights depend on the value of EFLAGS.AC and whether the access is
implicit or explicit:

• If EFLAGS.AC = 1 and the access is explicit, data may be written to any user-mode address
with a translation for which the R/W flag is 1 in every paging-structure entry controlling the
translation and with a protection key for which write access is permitted; data may not be
written to any user-mode address with a translation for which the R/W flag is 0 in any paging-
structure entry controlling the translation.

• If EFLAGS.AC = 0 or the access is implicit, data may not be written to any user-mode
address.

Section 4.6.2 explains how protection keys are associated with user-mode addresses and the accesses
that are permitted for each protection key.

— Instruction fetches from supervisor-mode addresses.

• For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any supervisor-mode
address.

• For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, instructions may be fetched from any
supervisor-mode address with a translation for which the XD flag (bit 63) is 0 in every paging-
structure entry controlling the translation; instructions may not be fetched from any supervisor-mode
address with a translation for which the XD flag is 1 in any paging-structure entry controlling the trans-
lation.

— Instruction fetches from user-mode addresses.
Access rights depend on the values of CR4.SMEP:

• If CR4.SMEP = 0, access writes depend on the paging mode and the value of IA32_EFER.NXE:

— For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any user-mode
address.

— For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, instructions may be fetched from any
user-mode address with a translation for which the XD flag is 0 in every paging-structure entry
controlling the translation; instructions may not be fetched from any user-mode address with a
translation for which the XD flag is 1 in any paging-structure entry controlling the translation.

• If CR4.SMEP = 1, instructions may not be fetched from any user-mode address.
• For user-mode accesses:

— Data reads.
Access rights depend on the mode of the linear address:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 144

• Data may be read from any user-mode address with a protection key for which read access is
permitted. Section 4.6.2 explains how protection keys are associated with user-mode addresses and
the accesses that are permitted for each protection key.

• Data may not be read from any supervisor-mode address.

— Data writes.
Access rights depend on the mode of the linear address:

• Data may be written to any user-mode address with a translation for which the R/W flag is 1 in every
paging-structure entry controlling the translation and with a protection key for which write access is
permitted. Section 4.6.2 explains how protection keys are associated with user-mode addresses and
the accesses that are permitted for each protection key.

• Data may not be written to any supervisor-mode address.

— Instruction fetches.
Access rights depend on the mode of the linear address, the paging mode, and the value of
IA32_EFER.NXE:

• For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any user-mode address.

• For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, instructions may be fetched from any user-
mode address with a translation for which the XD flag is 0 in every paging-structure entry controlling
the translation.

• Instructions may not be fetched from any supervisor-mode address.

A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see
Section 4.10). These structures may include information about access rights. The processor may enforce access
rights based on the TLBs and paging-structure caches instead of on the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change access rights, the processor might
not use that change for a subsequent access to an affected linear address (see Section 4.10.4.3). See Section
4.10.4.2 for how software can ensure that the processor uses the modified access rights.

4.6.2 Protection Keys
The protection-key feature provides an additional mechanism by which IA-32e paging controls access to user-
mode addresses. When CR4.PKE = 1, every linear address is associated with the 4-bit protection key located in
bits 62:59 of the paging-structure entry that mapped the page containing the linear address (see Section 4.5).
The PKRU register determines, for each protection key, whether user-mode addresses with that protection key
may be read or written.

If CR4.PKE = 0, or if IA-32e paging is not active, the processor does not associate linear addresses with protec-
tion keys and does not use the access-control mechanism described in this section. In either of these cases, a
reference in Section 4.6.1 to a user-mode address with a protection key should be considered a reference to any
user-mode address.

The PKRU register (protection key rights for user pages) is a 32-bit register with the following format: for each i
(0 ≤ i ≤ 15), PKRU[2i] is the access-disable bit for protection key i (ADi); PKRU[2i+1] is the write-disable bit
for protection key i (WDi).

Software can use the RDPKRU and WRPKRU instructions with ECX = 0 to read and write PKRU. In addition, the
PKRU register is XSAVE-managed state and can thus be read and written by instructions in the XSAVE feature set.
See Chapter 13, “Managing State Using the XSAVE Feature Set,” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1 for more information about the XSAVE feature set.

How a linear address’s protection key controls access to the address depends on the mode of a linear address:
• A linear address’s protection controls only data accesses to the address. It does not in any way affect instruc-

tions fetches from the address.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 145

• The protection key of a supervisor-mode address is ignored and does not control data accesses to the
address. Because of this, Section 4.6.1 does not refer to protection keys when specifying the access rights for
supervisor-mode addresses.

• Use of the protection key i of a user-mode address depends on the value of the PKRU register:

— If ADi = 1, no data accesses are permitted.

— If WDi = 1, permission may be denied to certain data write accesses:

• User-mode write accesses are not permitted.

• Supervisor-mode write accesses are not permitted if CR0.WP = 1. (If CR0.WP = 0, WDi does not affect
supervisor-mode write accesses to user-mode addresses with protection key i.)

4.7 PAGE-FAULT EXCEPTIONS
Accesses using linear addresses may cause page-fault exceptions (#PF; exception 14). An access to a linear
address may cause page-fault exception for either of two reasons: (1) there is no translation for the linear
address; or (2) there is a translation for the linear address, but its access rights do not permit the access.

As noted in Section 4.3, Section 4.4.2, and Section 4.5, there is no translation for a linear address if the transla-
tion process for that address would use a paging-structure entry in which the P flag (bit 0) is 0 or one that sets a
reserved bit. If there is a translation for a linear address, its access rights are determined as specified in Section
4.6.

Figure 4-12 illustrates the error code that the processor provides on delivery of a page-fault exception. The
following items explain how the bits in the error code describe the nature of the page-fault exception:

• P flag (bit 0).
This flag is 0 if there is no translation for the linear address because the P flag was 0 in one of the paging-
structure entries used to translate that address.

Figure 4-12 Page-Fault Error Code

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

A supervisor-mode access caused the fault.
A user-mode access caused the fault.

31 0

Reserved

1234

The fault was not caused by reserved bit violation.
The fault was caused by a reserved bit set to 1 in some

P 0
1

W/R 0
1

U/S 0

RSVD 0
1

1

I/D

I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

PW
/R

U/S
RSVD

paging-structure entry.

PK

5

PK 0 The fault was not caused by protection keys.
1 There was a protection-key violation.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 146

• W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, it is 0. This flag describes
the access causing the page-fault exception, not the access rights specified by paging.

• U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is 0 if a supervisor-mode access did
so. This flag describes the access causing the page-fault exception, not the access rights specified by paging.
User-mode and supervisor-mode accesses are defined in Section 4.6.

• RSVD flag (bit 3).
This flag is 1 if there is no translation for the linear address because a reserved bit was set in one of the
paging-structure entries used to translate that address. (Because reserved bits are not checked in a paging-
structure entry whose P flag is 0, bit 3 of the error code can be set only if bit 0 is also set.1)
Bits reserved in the paging-structure entries are reserved for future functionality. Software developers should
be aware that such bits may be used in the future and that a paging-structure entry that causes a page-fault
exception on one processor might not do so in the future.

• I/D flag (bit 4).
This flag is 1 if (1) the access causing the page-fault exception was an instruction fetch; and (2) either
(a) CR4.SMEP = 1; or (b) both (i) CR4.PAE = 1 (either PAE paging or IA-32e paging is in use); and
(ii) IA32_EFER.NXE = 1. Otherwise, the flag is 0. This flag describes the access causing the page-fault
exception, not the access rights specified by paging.

• PK flag (bit 5).
This flag is 1 if (1) IA32_EFER.LMA = CR4.PKE = 1; (2) the access causing the page-fault exception was a
data access; (3) the linear address was a user-mode address with protection key i; and (5) the PKRU register
(see Section 4.6.2) is such that either (a) ADi = 1; or (b) the following all hold: (i) WDi = 1; (ii) the access is
a write access; and (iii) either CR0.WP = 1 or the access causing the page-fault exception was a user-mode
access.

Page-fault exceptions occur only due to an attempt to use a linear address. Failures to load the PDPTE registers
with PAE paging (see Section 4.4.1) cause general-protection exceptions (#GP(0)) and not page-fault exceptions.

...

4.10.2.2 Caching Translations in TLBs
The processor may accelerate the paging process by caching individual translations in translation lookaside
buffers (TLBs). Each entry in a TLB is an individual translation. Each translation is referenced by a page number.
It contains the following information from the paging-structure entries used to translate linear addresses with the
page number:
• The physical address corresponding to the page number (the page frame).
• The access rights from the paging-structure entries used to translate linear addresses with the page number

(see Section 4.6):

— The logical-AND of the R/W flags.

— The logical-AND of the U/S flags.

— The logical-OR of the XD flags (necessary only if IA32_EFER.NXE = 1).

— The protection key (necessary only with IA-32e paging and CR4.PKE = 1).
• Attributes from a paging-structure entry that identifies the final page frame for the page number (either a PTE

or a paging-structure entry in which the PS flag is 1):

1. Some past processors had errata for some page faults that occur when there is no translation for the linear address because the P
flag was 0 in one of the paging-structure entries used to translate that address. Due to these errata, some such page faults pro-
duced error codes that cleared bit 0 (P flag) and set bit 3 (RSVD flag).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 147

— The dirty flag (see Section 4.8).

— The memory type (see Section 4.9).

(TLB entries may contain other information as well. A processor may implement multiple TLBs, and some of these
may be for special purposes, e.g., only for instruction fetches. Such special-purpose TLBs may not contain some
of this information if it is not necessary. For example, a TLB used only for instruction fetches need not contain
information about the R/W and dirty flags.)

As noted in Section 4.10.1, any TLB entries created by a logical processor are associated with the current PCID.

Processors need not implement any TLBs. Processors that do implement TLBs may invalidate any TLB entry at any
time. Software should not rely on the existence of TLBs or on the retention of TLB entries.

...

4.10.4.2 Recommended Invalidation
The following items provide some recommendations regarding when software should perform invalidations:
• If software modifies a paging-structure entry that maps a page (rather than referencing another paging

structure), it should execute INVLPG for any linear address with a page number whose translation uses that
paging-structure entry.1

(If the paging-structure entry may be used in the translation of different page numbers — see Section
4.10.3.3 — software should execute INVLPG for linear addresses with each of those page numbers; alterna-
tively, it could use MOV to CR3 or MOV to CR4.)

• If software modifies a paging-structure entry that references another paging structure, it may use one of the
following approaches depending upon the types and number of translations controlled by the modified entry:

— Execute INVLPG for linear addresses with each of the page numbers with translations that would use the
entry. However, if no page numbers that would use the entry have translations (e.g., because the P flags
are 0 in all entries in the paging structure referenced by the modified entry), it remains necessary to
execute INVLPG at least once.

— Execute MOV to CR3 if the modified entry controls no global pages.

— Execute MOV to CR4 to modify CR4.PGE.
• If CR4.PCIDE = 1 and software modifies a paging-structure entry that does not map a page or in which the G

flag (bit 8) is 0, additional steps are required if the entry may be used for PCIDs other than the current one.
Any one of the following suffices:

— Execute MOV to CR4 to modify CR4.PGE, either immediately or before again using any of the affected
PCIDs. For example, software could use different (previously unused) PCIDs for the processes that used
the affected PCIDs.

— For each affected PCID, execute MOV to CR3 to make that PCID current (and to load the address of the
appropriate PML4 table). If the modified entry controls no global pages and bit 63 of the source operand
to MOV to CR3 was 0, no further steps are required. Otherwise, execute INVLPG for linear addresses with
each of the page numbers with translations that would use the entry; if no page numbers that would use
the entry have translations, execute INVLPG at least once.

• If software using PAE paging modifies a PDPTE, it should reload CR3 with the register’s current value to ensure
that the modified PDPTE is loaded into the corresponding PDPTE register (see Section 4.4.1).

• If the nature of the paging structures is such that a single entry may be used for multiple purposes (see
Section 4.10.3.3), software should perform invalidations for all of these purposes. For example, if a single
entry might serve as both a PDE and PTE, it may be necessary to execute INVLPG with two (or more) linear

1. One execution of INVLPG is sufficient even for a page with size greater than 4 KBytes.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 148

addresses, one that uses the entry as a PDE and one that uses it as a PTE. (Alternatively, software could use
MOV to CR3 or MOV to CR4.)

• As noted in Section 4.10.2, the TLBs may subsequently contain multiple translations for the address range if
software modifies the paging structures so that the page size used for a 4-KByte range of linear addresses
changes. A reference to a linear address in the address range may use any of these translations.
Software wishing to prevent this uncertainty should not write to a paging-structure entry in a way that would
change, for any linear address, both the page size and either the page frame, access rights, or other
attributes. It can instead use the following algorithm: first clear the P flag in the relevant paging-structure
entry (e.g., PDE); then invalidate any translations for the affected linear addresses (see above); and then
modify the relevant paging-structure entry to set the P flag and establish modified translation(s) for the new
page size.

• Software should clear bit 63 of the source operand to a MOV to CR3 instruction that establishes a PCID that
had been used earlier for a different linear-address space (e.g., with a different value in bits 51:12 of CR3).
This ensures invalidation of any information that may have been cached for the previous linear-address space.
This assumes that both linear-address spaces use the same global pages and that it is thus not necessary to
invalidate any global TLB entries. If that is not the case, software should invalidate those entries by executing
MOV to CR4 to modify CR4.PGE.

...

4.10.4.4 Delayed Invalidation
Required invalidations may be delayed under some circumstances. Software developers should understand that,
between the modification of a paging-structure entry and execution of the invalidation instruction recommended
in Section 4.10.4.2, the processor may use translations based on either the old value or the new value of the
paging-structure entry. The following items describe some of the potential consequences of delayed invalidation:
• If a paging-structure entry is modified to change the P flag from 1 to 0, an access to a linear address whose

translation is controlled by this entry may or may not cause a page-fault exception.
• If a paging-structure entry is modified to change the R/W flag from 0 to 1, write accesses to linear addresses

whose translation is controlled by this entry may or may not cause a page-fault exception.
• If a paging-structure entry is modified to change the U/S flag from 0 to 1, user-mode accesses to linear

addresses whose translation is controlled by this entry may or may not cause a page-fault exception.
• If a paging-structure entry is modified to change the XD flag from 1 to 0, instruction fetches from linear

addresses whose translation is controlled by this entry may or may not cause a page-fault exception.

As noted in Section 8.1.1, an x87 instruction or an SSE instruction that accesses data larger than a quadword may
be implemented using multiple memory accesses. If such an instruction stores to memory and invalidation has
been delayed, some of the accesses may complete (writing to memory) while another causes a page-fault excep-
tion.1 In this case, the effects of the completed accesses may be visible to software even though the overall
instruction caused a fault.

In some cases, the consequences of delayed invalidation may not affect software adversely. For example, when
freeing a portion of the linear-address space (by marking paging-structure entries “not present”), invalidation
using INVLPG may be delayed if software does not re-allocate that portion of the linear-address space or the
memory that had been associated with it. However, because of speculative execution (or errant software), there
may be accesses to the freed portion of the linear-address space before the invalidations occur. In this case, the
following can happen:
• Reads can occur to the freed portion of the linear-address space. Therefore, invalidation should not be delayed

for an address range that has read side effects.

1. If the accesses are to different pages, this may occur even if invalidation has not been delayed.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 149

• The processor may retain entries in the TLBs and paging-structure caches for an extended period of time.
Software should not assume that the processor will not use entries associated with a linear address simply
because time has passed.

• As noted in Section 4.10.3.1, the processor may create an entry in a paging-structure cache even if there are
no translations for any linear address that might use that entry. Thus, if software has marked “not present” all
entries in page table, the processor may subsequently create a PDE-cache entry for the PDE that references
that page table (assuming that the PDE itself is marked “present”).

• If software attempts to write to the freed portion of the linear-address space, the processor might not
generate a page fault. (Such an attempt would likely be the result of a software error.) For that reason, the
page frames previously associated with the freed portion of the linear-address space should not be reallocated
for another purpose until the appropriate invalidations have been performed.

...

16. Updates to Chapter 6, Volume 3A
Change bars show changes to Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

Interrupt 14—Page-Fault Exception (#PF)

Exception Class Fault.

Description

Indicates that, with paging enabled (the PG flag in the CR0 register is set), the processor detected one of the
following conditions while using the page-translation mechanism to translate a linear address to a physical
address:
• The P (present) flag in a page-directory or page-table entry needed for the address translation is clear,

indicating that a page table or the page containing the operand is not present in physical memory.
• The procedure does not have sufficient privilege to access the indicated page (that is, a procedure running in

user mode attempts to access a supervisor-mode page). If the SMAP flag is set in CR4, a page fault may also
be triggered by code running in supervisor mode that tries to access data at a user-mode address. If the PKE
flag is set in CR4, the PKRU register may cause page faults on data accesses to user-mode addresses with
certain protection keys.

• Code running in user mode attempts to write to a read-only page. If the WP flag is set in CR0, the page fault
will also be triggered by code running in supervisor mode that tries to write to a read-only page.

• An instruction fetch to a linear address that translates to a physical address in a memory page with the
execute-disable bit set (for information about the execute-disable bit, see Chapter 4, “Paging”). If the SMEP
flag is set in CR4, a page fault will also be triggered by code running in supervisor mode that tries to fetch an
instruction from a user-mode address.

• One or more reserved bits in page directory entry are set to 1. See description below of RSVD error code flag.

The exception handler can recover from page-not-present conditions and restart the program or task without any
loss of program continuity. It can also restart the program or task after a privilege violation, but the problem that
caused the privilege violation may be uncorrectable.

See also: Section 4.7, “Page-Fault Exceptions.”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 150

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of information to aid in diag-
nosing the exception and recovering from it:
• An error code on the stack. The error code for a page fault has a format different from that for other

exceptions (see Figure 6-9). The processor establishes the bits in the error code as follows:

— P flag (bit 0).
This flag is 0 if there is no translation for the linear address because the P flag was 0 in one of the paging-
structure entries used to translate that address.

— W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, it is 0. This flag
describes the access causing the page-fault exception, not the access rights specified by paging.

— U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is 0 if a supervisor-mode access
did so. This flag describes the access causing the page-fault exception, not the access rights specified by
paging.

— RSVD flag (bit 3).
This flag is 1 if there is no translation for the linear address because a reserved bit was set in one of the
paging-structure entries used to translate that address.

— I/D flag (bit 4).
This flag is 1 if the access causing the page-fault exception was an instruction fetch. This flag describes the
access causing the page-fault exception, not the access rights specified by paging.

— PK flag (bit 5).
This flag is 1 if the access causing the page-fault exception was a data access to a user-mode address with
protection key disallowed by the value of the PKRU register.

See Section 4.6, “Access Rights” and Section 4.7, “Page-Fault Exceptions” for more information about page-
fault exceptions and the error codes that they produce.

Figure 6-9 Page-Fault Error Code

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

A supervisor-mode access caused the fault.
A user-mode access caused the fault.

31 0

Reserved

1234

The fault was not caused by reserved bit violation.
The fault was caused by a reserved bit set to 1 in some

P 0
1

W/R 0
1

U/S 0

RSVD 0
1

1

I/D

I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

PW
/R

U/S
RSVD

paging-structure entry.

PK

5

PK 0 The fault was not caused by protection keys.
1 There was a protection-key violation.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 151

• The contents of the CR2 register. The processor loads the CR2 register with the 32-bit linear address that
generated the exception. The page-fault handler can use this address to locate the corresponding page
directory and page-table entries. Another page fault can potentially occur during execution of the page-fault
handler; the handler should save the contents of the CR2 register before a second page fault can occur.1 If a
page fault is caused by a page-level protection violation, the access flag in the page-directory entry is set
when the fault occurs. The behavior of IA-32 processors regarding the access flag in the corresponding page-
table entry is model specific and not architecturally defined.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the exception. If the
page-fault exception occurred during a task switch, the CS and EIP registers may point to the first instruction of
the new task (as described in the following “Program State Change” section).

Program State Change

A program-state change does not normally accompany a page-fault exception, because the instruction that
causes the exception to be generated is not executed. After the page-fault exception handler has corrected the
violation (for example, loaded the missing page into memory), execution of the program or task can be resumed.

When a page-fault exception is generated during a task switch, the program-state may change, as follows. During
a task switch, a page-fault exception can occur during any of following operations:
• While writing the state of the original task into the TSS of that task.
• While reading the GDT to locate the TSS descriptor of the new task.
• While reading the TSS of the new task.
• While reading segment descriptors associated with segment selectors from the new task.
• While reading the LDT of the new task to verify the segment registers stored in the new TSS.

In the last two cases the exception occurs in the context of the new task. The instruction pointer refers to the first
instruction of the new task, not to the instruction which caused the task switch (or the last instruction to be
executed, in the case of an interrupt). If the design of the operating system permits page faults to occur during
task-switches, the page-fault handler should be called through a task gate.

If a page fault occurs during a task switch, the processor will load all the state information from the new TSS
(without performing any additional limit, present, or type checks) before it generates the exception. The page-
fault handler should thus not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and
GS registers without causing another exception. (See the Program State Change description for “Interrupt 10—
Invalid TSS Exception (#TS)” in this chapter for additional information on how to handle this situation.)

Additional Exception-Handling Information

Special care should be taken to ensure that an exception that occurs during an explicit stack switch does not
cause the processor to use an invalid stack pointer (SS:ESP). Software written for 16-bit IA-32 processors often
use a pair of instructions to change to a new stack, for example:

MOV SS, AX
MOV SP, StackTop

When executing this code on one of the 32-bit IA-32 processors, it is possible to get a page fault, general-protec-
tion fault (#GP), or alignment check fault (#AC) after the segment selector has been loaded into the SS register
but before the ESP register has been loaded. At this point, the two parts of the stack pointer (SS and ESP) are
inconsistent. The new stack segment is being used with the old stack pointer.

1. Processors update CR2 whenever a page fault is detected. If a second page fault occurs while an earlier page fault is being deliv-
ered, the faulting linear address of the second fault will overwrite the contents of CR2 (replacing the previous address). These
updates to CR2 occur even if the page fault results in a double fault or occurs during the delivery of a double fault.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 152

The processor does not use the inconsistent stack pointer if the exception handler switches to a well defined stack
(that is, the handler is a task or a more privileged procedure). However, if the exception handler is called at the
same privilege level and from the same task, the processor will attempt to use the inconsistent stack pointer.

In systems that handle page-fault, general-protection, or alignment check exceptions within the faulting task
(with trap or interrupt gates), software executing at the same privilege level as the exception handler should
initialize a new stack by using the LSS instruction rather than a pair of MOV instructions, as described earlier in
this note. When the exception handler is running at privilege level 0 (the normal case), the problem is limited to
procedures or tasks that run at privilege level 0, typically the kernel of the operating system.

...

17. Updates to Chapter 10, Volume 3A
Change bars show changes to Chapter 10 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

10.5.4.1 TSC-Deadline Mode
The mode of operation of the local-APIC timer is determined by the LVT Timer Register. Specifically, if
CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, the mode is determined by bit 17 of the register; if
CPUID.01H:ECX.TSC_Deadline[bit 24] = 1, the mode is determined by bits 18:17. See Figure 10-8. (If
CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, bit 18 of the register is reserved.) A write to the LVT Timer Register
that changes the timer mode disarms the local APIC timer. The supported timer modes are given in Table 10-2.
The three modes of the local APIC timer are mutually exclusive.

TSC-deadline mode allows software to use the local APIC timer to signal an interrupt at an absolute time. In TSC-
deadline mode, writes to the initial-count register are ignored; and current-count register always reads 0.
Instead, timer behavior is controlled using the IA32_TSC_DEADLINE MSR.

The IA32_TSC_DEADLINE MSR (MSR address 6E0H) is a per-logical processor MSR that specifies the time at
which a timer interrupt should occur. Writing a non-zero 64-bit value into IA32_TSC_DEADLINE arms the timer.
An interrupt is generated when the logical processor’s time-stamp counter equals or exceeds the target value in
the IA32_TSC_DEADLINE MSR.1 When the timer generates an interrupt, it disarms itself and clears the
IA32_TSC_DEADLINE MSR. Thus, each write to the IA32_TSC_DEADLINE MSR generates at most one timer inter-
rupt.

Table 10-2 Local APIC Timer Modes

LVT Bits [18:17] Timer Mode

00b One-shot mode, program count-down value in an initial-count register. See Section 10.5.4

01b Periodic mode, program interval value in an initial-count register. See Section 10.5.4

10b TSC-Deadline mode, program target value in IA32_TSC_DEADLINE MSR.

11b Reserved

1. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using either RDMSR, RDTSC, or RDTSCP)
may not return the actual value of the time-stamp counter; see Chapter 27 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C. It is the responsibility of software operating in VMX root operation to coordinate the virtualization
of the time-stamp counter and the IA32_TSC_DEADLINE MSR.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 153

In TSC-deadline mode, writing 0 to the IA32_TSC_DEADLINE MSR disarms the local-APIC timer. Transitioning
between TSC-deadline mode and other timer modes also disarms the timer.

The hardware reset value of the IA32_TSC_DEADLINE MSR is 0. In other timer modes (LVT bit 18 = 0), the
IA32_TSC_DEADLINE MSR reads zero and writes are ignored.

Software can configure the TSC-deadline timer to deliver a single interrupt using the following algorithm:

1. Detect support for TSC-deadline mode by verifying CPUID.1:ECX.24 = 1.

2. Select the TSC-deadline mode by programming bits 18:17 of the LVT Timer register with 10b.

3. Program the IA32_TSC_DEADLINE MSR with the target TSC value at which the timer interrupt is desired. This
causes the processor to arm the timer.

4. The processor generates a timer interrupt when the value of time-stamp counter is greater than or equal to
that of IA32_TSC_DEADLINE. It then disarms the timer and clear the IA32_TSC_DEADLINE MSR. (Both the
time-stamp counter and the IA32_TSC_DEADLINE MSR are 64-bit unsigned integers.)

5. Software can re-arm the timer by repeating step 3.

The following are usage guidelines for TSC-deadline mode:
• Writes to the IA32_TSC_DEADLINE MSR are not serialized. Therefore, system software should not use

WRMSR to the IA32_TSC_DEADLINE MSR as a serializing instruction. Read and write accesses to the
IA32_TSC_DEADLINE and other MSR registers will occur in program order.

• Software can disarm the timer at any time by writing 0 to the IA32_TSC_DEADLINE MSR.
• If timer is armed, software can change the deadline (forward or backward) by writing a new value to the

IA32_TSC_DEADLINE MSR.
• If software disarms the timer or postpones the deadline, race conditions may result in the delivery of a

spurious timer interrupt. Software is expected to detect such spurious interrupts by checking the current
value of the time-stamp counter to confirm that the interrupt was desired.1

• In xAPIC mode (in which the local-APIC registers are memory-mapped), software must serialize between the
memory-mapped write to the LVT entry and the WRMSR to IA32_TSC_DEADLINE. In x2APIC mode, no serial-
ization is required between the two writes (by WRMSR) to the LVT and IA32_TSC_DEADLINE MSRs.

The following is a sample algorithm for serializing writes in xAPIC mode:

1. Memory-mapped write to LVT Timer Register, setting bits 18:17 to 10b.

2. WRMSR to the IA32_TSC_DEADLINE MSR a value much larger than current time-stamp counter.

3. If RDMSR of the IA32_TSC_DEADLINE MSR returns zero, go to step 2.

4. WRMSR to the IA32_TSC_DEADLINE MSR the desired deadline.

...

18. Updates to Chapter 13, Volume 3A
Change bars show changes to Chapter 13 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

1. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using either RDMSR, RDTSC, or RDTSCP)
may not return the actual value of the time-stamp counter; see Chapter 27 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C. It is the responsibility of software operating in VMX root operation to coordinate the virtualization
of the time-stamp counter and the IA32_TSC_DEADLINE MSR.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 154

13.1 PROVIDING OPERATING SYSTEM SUPPORT FOR SSE EXTENSIONS
To use SSE extensions, the operating system or executive must provide support for initializing the processor to
use these extensions, for handling SIMD floating-point exceptions, and for using FXSAVE and FXRSTOR (Section
10.5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1) to manage context.
XSAVE feature set can also be used to manage SSE state along with other processor extended states as described
in 13.5. This section primarily focuses on using FXSAVE/FXRSTOR to manage SSE state. Because SSE extensions
share the same state, experience the same sets of non-numerical and numerical exception behavior, these guide-
lines that apply to SSE also apply to other sets of SIMD extensions that operate on the same processor state and
subject to the same sets of non-numerical and numerical exception behavior.

Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2)” and Chapter 12, “Programming with
SSE3, SSSE3 and SSE4,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
provide details on SSE instruction set.

...

13.1.3 Initialization of the SSE Extensions
The operating system or executive should carry out the following steps to set up SSE extensions for use by appli-
cation programs:

1. Set CR4.OSFXSR[bit 9] = 1. Setting this flag implies that the operating system provides facilities for saving
and restoring SSE state using FXSAVE and FXRSTOR instructions. These instructions may be used to save
the SSE state during task switches and when invoking the SIMD floating-point exception (#XM) handler (see
Section 13.1.5, “Providing a Handler for the SIMD Floating-Point Exception (#XM)”).
If the processor does not support the FXSAVE and FXRSTOR instructions, attempting to set the OSFXSR flag
causes a general-protection exception (#GP) to be generated.

2. Set CR4.OSXMMEXCPT[bit 10] = 1. Setting this flag implies that the operating system provides a SIMD
floating-point exception (#XM) handler (see Section 13.1.5, “Providing a Handler for the SIMD Floating-
Point Exception (#XM)”).

NOTE
The OSFXSR and OSXMMEXCPT bits in control register CR4 must be set by the operating system.
The processor has no other way of detecting operating-system support for the FXSAVE and
FXRSTOR instructions or for handling SIMD floating-point exceptions.

3. Clear CR0.EM[bit 2] = 0. This action disables emulation of the x87 FPU, which is required when executing
SSE instructions (see Section 2.5, “Control Registers”).

4. Set CR0.MP[bit 1] = 1. This setting is required for Intel 64 and IA-32 processors that support the SSE
extensions (see Section 9.2.1, “Configuring the x87 FPU Environment”).

Table 13-1 and Table 13-2 show the actions of the processor when an SSE instruction is executed, depending on
the following:
• OSFXSR and OSXMMEXCPT flags in control register CR4
• SSE/SSE2/SSE3/SSSE3/SSE4 feature flags returned by CPUID
• EM, MP, and TS flags in control register CR0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 155

The SIMD floating-point exception mask bits (bits 7 through 12), the flush-to-zero flag (bit 15), the denormals-
are-zero flag (bit 6), and the rounding control field (bits 13 and 14) in the MXCSR register should be left in their
default values of 0. This permits the application to determine how these features are to be used.

Table 13-1 Action Taken for Combinations of OSFXSR, OSXMMEXCPT, SSE, SSE2, SSE3, EM, MP, and TS1

CR4 CPUID CR0 Flags

OSFXSR OSXMMEXCPT SSE, SSE2,
SSE32,

SSE4_13

EM MP4 TS Action

0 X5 X X 1 X #UD exception.

1 X 0 X 1 X #UD exception.

1 X 1 1 1 X #UD exception.

1 0 1 0 1 0 Execute instruction; #UD exception if unmasked
SIMD floating-point exception is detected.

1 1 1 0 1 0 Execute instruction; #XM exception if unmasked
SIMD floating-point exception is detected.

1 X 1 0 1 1 #NM exception.

NOTES:
1. For execution of any SSE instruction except the PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, and CLFLUSH instructions.
2. Exception conditions due to CR4.OSFXSR or CR4.OSXMMEXCPT do not apply to FISTTP.
3. Only applies to DPPS, DPPD, ROUNDPS, ROUNDPD, ROUNDSS, ROUNDSD.
4. For processors that support the MMX instructions, the MP flag should be set.
5. X = Don’t care.

Table 13-2 Action Taken for Combinations of OSFXSR, SSSE3, SSE4, EM, and TS

CR4 CPUID CR0 Flags

OSFXSR SSSE3
SSE4_11

SSE4_22

EM TS Action

0 X3 X X #UD exception.

1 0 X X #UD exception.

1 1 1 X #UD exception.

1 1 0 1 #NM exception.

NOTES:
1. Applies to SSE4_1 instructions except DPPS, DPPD, ROUNDPS, ROUNDPD, ROUNDSS, ROUNDSD.
2. Applies to SSE4_2 instructions except CRC32 and POPCNT.
3. X = Don’t care.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 156

13.1.4 Providing Non-Numeric Exception Handlers for Exceptions Generated by the SSE
Instructions

SSE instructions can generate the same type of memory-access exceptions (such as page faults and limit viola-
tions) and other non-numeric exceptions as other Intel 64 and IA-32 architecture instructions generate.

Ordinarily, existing exception handlers can handle these and other non-numeric exceptions without code modifi-
cation. However, depending on the mechanisms used in existing exception handlers, some modifications might
need to be made.

The SSE extensions can generate the non-numeric exceptions listed below:
• Memory Access Exceptions:

— Stack-segment fault (#SS).

— General protection exception (#GP). Executing most SSE instructions with an unaligned 128-bit memory
reference generates a general-protection exception. (The MOVUPS and MOVUPD instructions allow
unaligned a loads or stores of 128-bit memory locations, without generating a general-protection
exception.) A 128-bit reference within the stack segment that is not aligned to a 16-byte boundary will
also generate a general-protection exception, instead a stack-segment fault exception (#SS).

— Page fault (#PF).

— Alignment check (#AC). When enabled, this type of alignment check operates on operands that are less
than 128-bits in size: 16-bit, 32-bit, and 64-bit. To enable the generation of alignment check exceptions,
do the following:

• Set the AM flag (bit 18 of control register CR0)

• Set the AC flag (bit 18 of the EFLAGS register)

• CPL must be 3

If alignment check exceptions are enabled, 16-bit, 32-bit, and 64-bit misalignment will be detected for
the MOVUPD and MOVUPS instructions; detection of 128-bit misalignment is not guaranteed and may
vary with implementation.

• System Exceptions:

— Invalid-opcode exception (#UD). This exception is generated when executing SSE instructions under the
following conditions:

• SSE/SSE2/SSE3/SSSE3/SSE4_1/SSE4_2 feature flags returned by CPUID are set to 0. This condition
does not affect the CLFLUSH instruction, nor POPCNT.

• The CLFSH feature flag returned by the CPUID instruction is set to 0. This exception condition only
pertains to the execution of the CLFLUSH instruction.

• The POPCNT feature flag returned by the CPUID instruction is set to 0. This exception condition only
pertains to the execution of the POPCNT instruction.

• The EM flag (bit 2) in control register CR0 is set to 1, regardless of the value of TS flag (bit 3) of CR0.
This condition does not affect the PAUSE, PREFETCHh, MOVNTI, SFENCE, LFENCE, MFENCE, CLFLUSH,
CRC32 and POPCNT instructions.

• The OSFXSR flag (bit 9) in control register CR4 is set to 0. This condition does not affect the PSHUFW,
MOVNTQ, MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, CLFLUSH, CRC32 and POPCNT
instructions.

• Executing an instruction that causes a SIMD floating-point exception when the OSXMMEXCPT flag (bit
10) in control register CR4 is set to 0. See Section 13.4.1, “Using the TS Flag to Control the Saving of
the x87 FPU and SSE State.”

— Device not available (#NM). This exception is generated by executing a SSE instruction when the TS flag
(bit 3) of CR0 is set to 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 157

Other exceptions can occur during delivery of the above exceptions.

13.1.5 Providing a Handler for the SIMD Floating-Point Exception (#XM)
SSE instructions do not generate numeric exceptions on packed integer operations. They can generate the
following numeric (SIMD floating-point) exceptions on packed and scalar single-precision and double-precision
floating-point operations.
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormal operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (Precision) (#P)

These SIMD floating-point exceptions (with the exception of the denormal operand exception) are defined in the
IEEE Standard 754 for Binary Floating-Point Arithmetic and represent the same conditions that cause x87 FPU
floating-point error exceptions (#MF) to be generated for x87 FPU instructions.

Each of these exceptions can be masked, in which case the processor returns a reasonable result to the destina-
tion operand without invoking an exception handler. However, if any of these exceptions are left unmasked, detec-
tion of the exception condition results in a SIMD floating-point exception (#XM) being generated. See Chapter 6,
“Interrupt 19—SIMD Floating-Point Exception (#XM).”

To handle unmasked SIMD floating-point exceptions, the operating system or executive must provide an excep-
tion handler. The section titled “SSE and SSE2 SIMD Floating-Point Exceptions” in Chapter 11, “Programming with
Streaming SIMD Extensions 2 (SSE2),” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, describes the SIMD floating-point exception classes and gives suggestions for writing an exception
handler to handle them.

To indicate that the operating system provides a handler for SIMD floating-point exceptions (#XM), the OSXM-
MEXCPT flag (bit 10) must be set in control register CR4.

...

13.3 SAVING AND RESTORING SSE STATE
The SSE state consists of the state of the XMM and MXCSR registers. Intel recommends the following method for
saving and restoring this state:
• Execute the FXSAVE instruction to save the state of the XMM and MXCSR registers to memory.
• Execute the FXRSTOR instruction to restore the state of the XMM and MXCSR registers from the image saved

in memory earlier.

This save and restore method is required for all operating systems. XSAVE feature set can also be used to save/
restore SSE state. See Section 13.5, “The XSAVE Feature Set and Processor Extended State Management,” for
using the XSAVE feature set to save/restore SSE state.

In some cases, applications may choose to save only the XMM and MXCSR registers in the following manner:
• Execute MOVDQ instructions to save the contents of the XMM registers to memory.
• Execute a STMXCSR instruction to save the state of the MXCSR register to memory.

Such applications must restore the XMM and MXCSR registers as follows:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 158

• Execute MOVDQ instructions to load the saved contents of the XMM registers from memory into the XMM
registers.

• Execute a LDMXCSR instruction to restore the state of the MXCSR register from memory.

13.4 DESIGNING OS FACILITIES FOR SAVING X87 FPU, SSE AND EXTENDED
STATES ON TASK OR CONTEXT SWITCHES

The x87 FPU and SSE state consist of the state of the x87 FPU, XMM, and MXCSR registers. The FXSAVE and
FXRSTOR instructions provide a fast method for saving and restoring this state. The XSAVE feature set can also
be used to save FP and SSE state along with other extended states (see Section 13.5).

Older operating systems may use FSAVE/FNSAVE and FRSTOR to save the x87 FPU state. These facilities can be
extended to save and restore SSE state by substituting FXSAVE and FXRSTOR or the XSAVE feature set in place
of FSAVE/FNSAVE and FRSTOR.

If task or context switching facilities are written from scratch, any of several approaches may be taken for using
the FXSAVE and FXRSTOR instructions or the XSAVE feature set to save and restore x87 FPU and SSE state:
• The operating system can require applications that are intended to be run as tasks take responsibility for

saving the states prior to a task suspension during a task switch and for restoring the states when the task is
resumed. This approach is appropriate for cooperative multitasking operating systems, where the application
has control over (or is able to determine) when a task switch is about to occur and can save state prior to the
task switch.

• The operating system can take the responsibility for saving the states as part of the task switch process and
restoring the state of the registers when a suspended task is resumed. This approach is appropriate for
preemptive multitasking operating systems, where the application cannot know when it is going to be
preempted and cannot prepare in advance for task switching.

• The operating system can take the responsibility for saving the states as part of the task switch process, but
delay the restoring of the states until an instruction operating on the states is actually executed by the new
task. See Section 13.4.1, “Using the TS Flag to Control the Saving of the x87 FPU and SSE State,” for more
information. This approach is called lazy restore.
The use of lazy restore mechanism in context switches is not recommended when XSAVE feature set is used
to save/restore states for the following reasons.

— With XSAVE feature set, Intel processors have optimizations in place to avoid saving the state components
that are in their initial configurations or when they have not been modified since they were restored last.
These optimizations eliminate the need for lazy restore. See section 13.5.4 in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1.

— Intel processors have power optimizations when state components are in their initial configurations. Use
of lazy restore retains the non-initial configuration of the last thread and is not power efficient.

— Not all extended states support lazy restore mechanisms. As such, when one or more such states are
enabled it becomes very inefficient to use lazy restore as it results in two separate state restore, one in
context switch for the states that does not support lazy restore and one in the #NM handler for states that
support lazy restore.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 159

13.5 THE XSAVE FEATURE SET AND PROCESSOR EXTENDED STATE
MANAGEMENT

The architecture of XSAVE feature set is described in CHAPTER 13 of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1. The XSAVE feature set includes the following:
• An extensible data layout for existing and future processor state extensions. The layout of the XSAVE area

extends from the 512-byte FXSAVE/FXRSTOR layout to provide compatibility and migration path from
managing the legacy FXSAVE/FXRSTOR area. The XSAVE area is described in more detail in Section 13.4 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

• CPUID enhancements for feature enumeration. See Section 13.2 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1.

• Control register enhancement and dedicated register for enabling each processor extended state. See Section
13.3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

• Instructions to save state to and restore state from the XSAVE area. See Section 13.7 through Section 13.9 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

Operating systems can utilize XSAVE feature set to manage both FP/SSE state and processor extended states.
CPUID leaf 0DH enumerates XSAVE feature set related information. The following guidelines provide the steps an
operating system needs to take to support legacy FP/SSE states and processor extended states.

1. Check that the processor supports the XSAVE feature set

2. Determine the set of XSAVE managed features that the operating system intends to enable and calculate the
size of the buffer needed to save/restore the states during context switch and other flows

3. Enable use of XSAVE feature set and XSAVE managed features

4. Provide an initialization for the XSAVE managed feature state components

5. Provide (if necessary) required exception handlers for exceptions generated each of the XSAVE managed
features.

...

13.5.2 Determining the XSAVE Managed Feature States And The Required Buffer Size
Each XSAVE managed feature has one or more state components associated with it. An operating system policy
needs to determine the XSAVE managed features to support and determine the corresponding state components
to enable. When determining the XSAVE managed features to support, operating system needs to take into
account the dependencies between them (e.g. AVX feature depends on SSE feature). Similarly, when a XSAVE
managed feature has more than one state component, all of them need to be enabled. Each logical processor
enumerates supported XSAVE state components in CPUID.(EAX=0DH, ECX=0).EDX:EAX. An operating system
may enable all or a subset of the state components enumerated by the processor based on the OS policy.
The size of the memory buffer needed to save enabled XSAVE state components depends on whether the OS opts-
in to use compacted format or not. Section 13.4.3 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1 describes the layout of the extended region of the XSAVE area.

13.5.3 Enable the Use Of XSAVE Feature Set And XSAVE State Components
Operating systems need to enable the use of XSAVE feature set by writing to CR4.OSXSAVE[bit 18] to enable
XSETBV/XGETBV instructions to access XCR0 and to support processor extended state management using
XSAVE/XRSTOR. When XSAVE feature set is enabled, all enumerated XSAVE sub features such as optimized save,
compaction and supervisor state support are also enabled. Operating systems also need to enable the XSAVE
state components in XCR0 using XSETBV instruction.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 160

XSAVE state components can subsequently be disabled in XCR0. However, disabling state components of AVX or
AVX-512 that are not in initial configuration may incur power and performance penalty on SSE and AVX instruc-
tions respectively. If AVX state is disabled when it is not in its initial configuration, subsequent SSE instructions
may incur a penalty. If AVX-512 state is disabled when it is not in its initial configuration, subsequent SSE and AVX
instructions may incur a penalty. It is recommended that the operating systems and VMM set AVX or AVX-512
state components to their initial configuration before disabling them. This can be achieved by one of the two
methods below.
• Using XRSTOR: Operating system or VMM can set the state of AVX or AVX-512 state components using

XRSTOR instruction before disabling them in XCR0.
• Using VZEROUPPER: Operating system or VMM can set AVX and AVX-512 state components to their initial

configuration using VZEROUPPER instruction before disabling them in XCR0. Note that this will set both AVX
and AVX-512 state components to their initial configuration. If the intent is to only disable AVX-512 state,
Operating system or VMM will need to save AVX state before executing VZEROUPPER and restore it
afterwards.

13.5.4 Provide an Initialization for the XSAVE State Components
The XSAVE header of a newly allocated XSAVE area should be initialized to all zeroes before saving context. An
operating system may choose to establish beginning state-component values for a task by executing XRSTOR
from an XSAVE area that the OS has configured. If it is desired to begin state component i in its initial configura-
tion, the OS should clear bit i in the XSTATE_BV field in the XSAVE header; otherwise, it should set that bit and
place the desired beginning value in the appropriate location in the XSAVE area.
When a buffer is allocated for compacted size, software must ensure that the XCOMP_BV field is setup correctly
before restoring from the buffer. Bit 63 of the XCOMP_BV field indicates that the save area is in the compacted
format and the remaining bits indicate the states that have space allocated in the save area. If the buffer is first
used to save the state in compacted format, then the save instructions will setup the XCOMP_BV field appropri-
ately. If the buffer is first used to restore the state, then software must set up the XCOMP_BV field.

...

13.6 INTEROPERABILITY OF THE XSAVE FEATURE SET AND FXSAVE/FXRSTOR
The FXSAVE instruction writes x87 FPU and SSE state information to a 512-byte FXSAVE save area. FXRSTOR
restores the processor’s x87 FPU and SSE states from an FXSAVE area. The XSAVE features set supports x87 FPU
and SSE states using the same layout as the FXSAVE area to provide interoperability of FXSAVE versus XSAVE,
and FXRSTOR versus XRSTOR. The XSAVE feature set allows system software to manage SSE state independent
of x87 FPU states. Thus system software that had been using FXSAVE and FXRSTOR to manage x87 FPU and SSE
states can transition to using the XSAVE feature set to manage x87 FPU, SSE and other processor extended states
in a systematic and forward-looking manner. See Section 10.5 and Chapter 13 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1 for more details.

System software can implement forward-looking processor extended state management using the XSAVE feature
set. In this case, system software must specify the bit vector mask in EDX:EAX appropriately when executing
XSAVE/XRSTOR instructions.

For instance, the OS can supply instructions in the XSAVE feature set with a bit vector in EDX:EAX with the two
least significant bits (corresponding to x87 FPU and SSE state) equal to 0. Then, the XSAVE instruction will not
write the processor’s x87 FPU and SSE state into memory. Similarly, the XRSTOR instruction executed with a
value in EDX:EAX with the least two significant bit equal to 0 will not restore nor initialize the processor’s x87 FPU
and SSE state.

The processor’s action as a result of executing XRSTOR is given in Section 13.8 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1. The instruction may be used to initialize x87 FPU or XMM regis-

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 161

ters. When the MXCSR register is updated from memory, reserved bit checking is enforced. The saving/restoring
of MXCSR is bound to the SSE state, independent of the x87 FPU state. The action of XSAVE is given in Section
13.7 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

...

13.8.1 Intel® Advanced Vector Extensions (Intel® AVX)
Intel AVX instructions comprises of 256-bit and 128-bit instructions that operates on 256-bit YMM registers. The
XSAVE feature set allows software to save and restore the state of these registers. See Chapter 13 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

For processors that support YMM states, the YMM state exists in all operating modes. However, the available
instruction interfaces to access YMM states may vary in different modes.
Operating systems must use the XSAVE feature set for YMM state management. The XSAVE feature set also
provides flexible and efficient interface to manage XMM/MXCSR states and x87 FPU states in conjunction with
newer processor extended states like YMM states. Operating systems may need to be aware of the following when
supporting AVX.
• Saving/Restoring AVX state in non-compacted format without SSE state will also save/restore MXCSR even

though MXCSR is not part of AVX state. This does not happen when compacted format is used.
• Few AVX instructions such as VZEROUPPER/VZEROALL may operate on future expansion of YMM registers.

An operating system must enable its YMM state management to support AVX and any 256-bit extensions that
operate on YMM registers. Otherwise, an attempt to execute an instruction in AVX extensions (including an
enhanced 128-bit SIMD instructions using VEX encoding) will cause a #UD exception.

AVX instructions may generate SIMD floating-point exceptions. An OS must enable SIMD floating-point exception
support by setting CR4.OSXMMEXCPT[bit 10]=1.

13.8.2 Intel® Advanced Vector Extensions 512 (Intel® AVX-512)
Intel AVX-512 instructions are encoded using EVEX prefix. The EVEX encoding scheme can support 512-bit, 256-
bit and 128-bit instructions that operate on opmask, ZMM, YMM and XMM registers.
For processors that support the Intel AVX-512 family of instructions, the extended processor states (ZMM and
opmask registers) exist in all operating modes. However, the access to these states may vary in different modes.
The processor's support for instruction extensions that employ EVEX prefix encoding is independent of the
processor's support for using XSAVE feature set on those states.
Instructions requiring EVEX prefix encoding are generally supported in 64-bit, 32-bit modes, and 16-bit protected
mode. They are not supported in Real mode, Virtual-8086 mode or entering into SMM mode. Note that bits
MAX_VL-1:256 (511:256) of ZMM register state are maintained across transitions into and out of these modes.
Because the XSAVE feature set instruction can operate in all operating modes, it is possible that the processor's
ZMM register state can be modified by software in any operating mode by executing XRSTOR.
Operating systems must use the XSAVE/XRSTOR/XSAVEOPT instructions for ZMM and opmask state
management. An OS must enable its ZMM and opmask state management to support Intel AVX-512 Foundation
instructions. Otherwise, an attempt to execute an instruction in Intel AVX-512 Foundation instructions (including
a scalar 128-bit SIMD instructions using EVEX encoding) will cause a #UD exception. An operating system, which
enables the AVX-512 state to support Intel AVX-512 Foundation instructions, is also sufficient to support the rest
of the Intel AVX-512 family of instructions. Note that even though ZMM8-ZMM31 are not accessible in 32 bit
mode, a 32 bit OS is still required to allocate memory for the entire ZMM state.
Intel AVX-512 Foundation instructions may generate SIMD floating-point exceptions. An OS must enable SIMD
floating point exception support by setting CR4.OSXMMEXCPT[bit 10]=1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 162

...

19. Updates to Chapter 14, Volume 3B
Change bars show changes to Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

14.4.3 HWP Performance Range and Dynamic Capabilities
The OS reads the IA32_HWP_CAPABILITIES MSR to comprehend the limits of the HWP-managed performance
range as well as the dynamic capability, which may change during processor operation. The enumerated perfor-
mance range values reported by IA32_HWP_CAPABILITIES directly map to initial frequency targets (prior to
workload-specific frequency optimizations of HWP). However the mapping is processor family specific.

The layout of the IA32_HWP_CAPABILITIES MSR is shown in Figure 14-6. The bit fields are described below:

...

20. Updates to Chapter 17, Volume 3B
Change bars show changes to Chapter 17 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

17.2 DEBUG REGISTERS
Eight debug registers (see Figure 17-1 for 32-bit operation and Figure 17-2 for 64-bit operation) control the
debug operation of the processor. These registers can be written to and read using the move to/from debug
register form of the MOV instruction. A debug register may be the source or destination operand for one of these
instructions.

Figure 14-6 IA32_HWP_CAPABILITIES Register

63 0

Reserved

24 781516233132

Most_Efficient_Performance
Guaranteed_Performance
Highest_Performance

Lowest_Performance

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 163

...

17.4.1 IA32_DEBUGCTL MSR
The IA32_DEBUGCTL MSR provides bit field controls to enable debug trace interrupts, debug trace stores, trace
messages enable, single stepping on branches, last branch record recording, and to control freezing of LBR stack
or performance counters on a PMI request. IA32_DEBUGCTL MSR is located at register address 01D9H.

See Figure 17-3 for the MSR layout and the bullets below for a description of the flags:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace of

the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug exception
being generated) in the last branch record (LBR) stack. For more information, see the Section 17.5.1, “LBR
Stack” (Intel® Core™2 Duo and Intel® Atom™ Processor Family) and Section 17.6.1, “LBR Stack” (processors
based on Intel® Microarchitecture code name Nehalem).

Figure 17-1 Debug Registers

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

DR7L

Reserved

0

1234569101718252627282930

G
0

L
1

L
2

L
3

G
3

L
E

G
E

G
2

G
1

0 0 G
D

R/W
0

LEN
0

R/W
1

LEN
1

R/W
2

LEN
2

R/W
3

LEN
3

31 16 15 1314 12 11 8 7 0

DR6B
0

123456910

B
1

B
2

B
3

0 1 1 1 1 1 1 1 1B
D

B
S

B
T

31 0

DR5

31 0

DR4

31 0

DR3Breakpoint 3 Linear Address

31 0

DR2Breakpoint 2 Linear Address

31 0

DR1Breakpoint 1 Linear Address

31 0

DR0Breakpoint 0 Linear Address

0

Reserved (set to 1)

1
R
T
M

R
T
M

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 164

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism
allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on Branches,”
for more information about the BTF flag.

• TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the
processor detects a taken branch, interrupt, or exception; it sends the branch record out on the system bus
as a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,” for more information about
the TR flag.

• BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bit 8) — When set, the BTS facilities generate an interrupt when the
BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5,
“Branch Trace Store (BTS),” for a description of this mechanism.

• BTS_OFF_OS (branch trace off in privileged code) flag (bit 9) — When set, BTS or BTM is skipped if CPL
is 0. See Section 17.10.2.

• BTS_OFF_USR (branch trace off in user code) flag (bit 10) — When set, BTS or BTM is skipped if CPL is
greater than 0. See Section 17.10.2.

• FREEZE_LBRS_ON_PMI flag (bit 11) — When set, the LBR stack is frozen on a hardware PMI request (e.g.
when a counter overflows and is configured to trigger PMI). See Section 17.4.7 for details.

• FREEZE_PERFMON_ON_PMI flag (bit 12) — When set, the performance counters (IA32_PMCx and
IA32_FIXED_CTRx) are frozen on a PMI request. See Section 17.4.7 for details.

• FREEZE_WHILE_SMM_EN (bit 14) — If this bit is set, upon the delivery of an SMI, the processor will clear
all the enable bits of IA32_PERF_GLOBAL_CTRL, save a copy of the content of IA32_DEBUGCTL and disable
LBR, BTF, TR, and BTS fields of IA32_DEBUGCTL before transferring control to the SMI handler. Subsequently,
the enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of IA32_DEBUGCTL prior to SMI
delivery will be restored, after the SMI handler issues RSM to complete its service. Note that system software
must check if the processor supports the IA32_DEBUGCTL.FREEZE_WHILE_SMM_EN control bit.
IA32_DEBUGCTL.FREEZE_WHILE_SMM_EN is supported if
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 18.16 for details of
detecting the presence of IA32_PERF_CAPABILITIES MSR.

Figure 17-3 IA32_DEBUGCTL MSR for Processors based
on Intel Core microarchitecture

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

Reserved

910

BTS_OFF_OS — BTS off in OS
BTS_OFF_USR — BTS off in user code
FREEZE_LBRS_ON_PMI
FREEZE_PERFMON_ON_PMI

111214

FREEZE_WHILE_SMM_EN

15

RTM

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 165

• RTM (bit 15) — If this bit is set, advanced debugging of RTM transactional regions is enabled if DR7.RTM is
also set. See Section 17.3.3.

...

17.4.7 Freezing LBR and Performance Counters on PMI
Many issues may generate a performance monitoring interrupt (PMI); a PMI service handler will need to deter-
mine cause to handle the situation. Two capabilities that allow a PMI service routine to improve branch tracing and
performance monitoring are available for processors supporting architectural performance monitoring version 2
or greater (i.e. CPUID.0AH:EAX[7:0] > 1). These capabilities provides the following interface in IA32_DEBUGCTL
to reduce runtime overhead of PMI servicing, profiler-contributed skew effects on analysis or counter metrics:
• Freezing LBRs on PMI (bit 11)— Allows the PMI service routine to ensure the content in the LBR stack are

associated with the target workload and not polluted by the branch flows of handling the PMI. Depending on
the version ID enumerated by CPUID.0AH:EAX.ArchPerfMonVerID[bits 7:0], two flavors are supported:

— Legacy Freeze_LBR_on_PMI is supported for ArchPerfMonVerID <= 3 and ArchPerfMonVerID >1. If
IA32_DEBUGCTL.Freeze_LBR_On_PMI = 1, the LBR is frozen on the overflowed condition of the buffer
area, the processor clears the LBR bit (bit 0) in IA32_DEBUGCTL. Software must then re-enable
IA32_DEBUGCTL.LBR to resume recording branches. When using this feature, software should be careful
about writes to IA32_DEBUGCTL to avoid re-enabling LBRs by accident if they were just disabled.

— Streamlined Freeze_LBR_on_PMI is supported for ArchPerfMonVerID >= 4. If
IA32_DEBUGCTL.Freeze_LBR_On_PMI = 1, the processor behaves as follows:

• sets IA32_PERF_GLOBAL_STATUS.LBR_Frz =1 to disable recording, but does not change the LBR bit
(bit 0) in IA32_DEBUGCTL. The LBRs are frozen on the overflowed condition of the buffer area.

• Freezing PMCs on PMI (bit 12) — Allows the PMI service routine to ensure the content in the performance
counters are associated with the target workload and not polluted by the PMI and activities within the PMI
service routine. Depending on the version ID enumerated by CPUID.0AH:EAX.ArchPerfMonVerID[bits 7:0],
two flavors are supported:

— Legacy Freeze_Perfmon_on_PMI is supported for ArchPerfMonVerID <= 3 and ArchPerfMonVerID >1. If
IA32_DEBUGCTL.Freeze_Perfmon_On_PMI = 1, the performance counters are frozen on the counter
overflowed condition when the processor clears the IA32_PERF_GLOBAL_CTRL MSR (see Figure 18-3).
The PMCs affected include both general-purpose counters and fixed-function counters (see Section
18.4.1, “Fixed-function Performance Counters”). Software must re-enable counts by writing 1s to the
corresponding enable bits in IA32_PERF_GLOBAL_CTRL before leaving a PMI service routine to continue
counter operation.

— Streamlined Freeze_Perfmon_on_PMI is supported for ArchPerfMonVerID >= 4. The processor behaves as
follows:

• sets IA32_PERF_GLOBAL_STATUS.CTR_Frz =1 to disable counting on a counter overflow condition,
but does not change the IA32_PERF_GLOBAL_CTRL MSR.

Freezing LBRs and PMCs on PMIs (both legacy and streamlined operation) occur when one of the following
applies:
• A performance counter had an overflow and was programmed to signal a PMI in case of an overflow.

— For the general-purpose counters; enabling PMI is done by setting bit 20 of the IA32_PERFEVTSELx
register.

— For the fixed-function counters; enabling PMI is done by setting the 3rd bit in the corresponding 4-bit
control field of the MSR_PERF_FIXED_CTR_CTRL register (see Figure 18-1) or IA32_FIXED_CTR_CTRL
MSR (see Figure 18-2).

• The PEBS buffer is almost full and reaches the interrupt threshold.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 166

• The BTS buffer is almost full and reaches the interrupt threshold.

Table 17-3 compares the interaction of the processor with the PMI handler using the legacy versus streamlined
Freeza_Perfmon_On_PMI interface.

Table 17-3 Legacy and Streamlined Operation with Freeze_Perfmon_On_PMI = 1, Counter Overflowed

17.4.8 LBR Stack
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across Intel 64 and IA-32
processor families. However, the number of MSRs in the LBR stack and the valid range of TOS pointer value can
vary between different processor families. Table 17-4 lists the LBR stack size and TOS pointer range for several
processor families according to the CPUID signatures of DisplayFamily_DisplayModel encoding (see CPUID
instruction in Chapter 3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).

The last branch recording mechanism tracks not only branch instructions (like JMP, Jcc, LOOP and CALL instruc-
tions), but also other operations that cause a change in the instruction pointer (like external interrupts, traps and

Legacy Freeze_Perfmon_On_PMI Streamlined Freeze_Perfmon_On_PMI Comment

Processor freezes the counters on overflow Processor freezes the counters on overflow Unchanged

Processor clears IA32_PERF_GLOBAL_CTRL Processor set
IA32_PERF_GLOBAL_STATUS.CTR_FTZ

Handler reads IA32_PERF_GLOBAL_STATUS
(0x38E) to examine which counter(s) overflowed

mask = RDMSR(0x38E) Similar

Handler services the PMI Handler services the PMI Unchanged

Handler writes 1s to
IA32_PERF_GLOBAL_OVF_CTL (0x390)

Handler writes mask into
IA32_PERF_GLOBAL_OVF_RESET (0x390)

Processor clears IA32_PERF_GLOBAL_STATUS Processor clears IA32_PERF_GLOBAL_STATUS Unchanged

Handler re-enables IA32_PERF_GLOBAL_CTRL None Reduced software overhead

Table 17-4 LBR Stack Size and TOS Pointer Range
DisplayFamily_DisplayModel Size of LBR Stack Component of an LBR Entry Range of TOS Pointer

06_4EH, 06_5EH 32 FROM_IP, TO_IP, LBR_INFO1

NOTES:
1. See Section 17.9.

0 to 31

06_3DH, 06_47H, 06_4FH, 06_56H 16 FROM_IP, TO_IP 0 to 15

06_3CH, 06_45H, 06_46H, 06_3FH 16 FROM_IP, TO_IP 0 to 15

06_2AH, 06_2DH, 06_3AH, 06_3EH 16 FROM_IP, TO_IP 0 to 15

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H,
06_2CH, 06_2FH

16 FROM_IP, TO_IP 0 to 15

06_17H, 06_1DH 4 FROM_IP, TO_IP 0 to 3

06_0FH 4 FROM_IP, TO_IP 0 to 3

06_37H, 06_4AH, 06_4CH, 06_4DH, 06_5AH,
06_5DH

8 FROM_IP, TO_IP 0 to 7

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H 8 FROM_IP, TO_IP 0 to 7

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 167

faults). The branch recording mechanisms generally employs a set of MSRs, referred to as last branch record
(LBR) stack. The size and exact locations of the LBR stack are generally model-specific (see Chapter 35, “Model-
Specific Registers (MSRs)” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C for
model-specific MSR addresses).
• Last Branch Record (LBR) Stack — The LBR consists of N pairs of MSRs (N is listed in the LBR stack size

column of Table 17-4) that store source and destination address of recent branches (see Figure 17-3):

— MSR_LASTBRANCH_0_FROM_IP (address is model specific) through the next consecutive (N-1) MSR
address store source addresses

— MSR_LASTBRANCH_0_TO_IP (address is model specific) through the next consecutive (N-1) MSR
address store destination addresses.

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant M bits of the TOS Pointer MSR
(MSR_LASTBRANCH_TOS, address is model specific) contains an M-bit pointer to the MSR in the LBR stack
that contains the most recent branch, interrupt, or exception recorded. The valid range of the M-bit POS
pointer is given in Table 17-4.

17.4.8.1 LBR Stack and Intel® 64 Processors
LBR MSRs are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the address is recorded. If IA-32e
mode is enabled, the processor writes 64-bit values into the MSR.

In 64-bit mode, last branch records store 64-bit addresses; in compatibility mode, the upper 32-bits of last
branch records are cleared.

Software should query an architectural MSR IA32_PERF_CAPABILITIES[5:0] about the format of the address that
is stored in the LBR stack. Four formats are defined by the following encoding:

— 000000B (32-bit record format) — Stores 32-bit offset in current CS of respective source/destination,

— 000001B (64-bit LIP record format) — Stores 64-bit linear address of respective source/destination,

— 000010B (64-bit EIP record format) — Stores 64-bit offset (effective address) of respective source/
destination.

— 000011B (64-bit EIP record format) and Flags — Stores 64-bit offset (effective address) of
respective source/destination. LBR flags are supported in the upper bits of ‘FROM’ register in the LBR
stack. See LBR stack details below for flag support and definition.

— 000100B (64-bit EIP record format), Flags and TSX — Stores 64-bit offset (effective address) of
respective source/destination. LBR flags and TSX info are supported in the upper bits of ‘FROM’ register in
the LBR stack.

Figure 17-4 64-bit Address Layout of LBR MSR

63

Source Address

0

063

Destination Address

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_(N-1)_FROM_IP

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_(N-1)_TO_IP

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 168

— 000101B (64-bit EIP record format), Flags, TSX, LBR_INFO — Stores 64-bit offset (effective
address) of respective source/destination. LBR flags, TSX, and elapsed cycle from last LBR update are
supported in the LBR_INFO MSR stack.

Processor’s support for the architectural MSR IA32_PERF_CAPABILITIES is provided by
CPUID.01H:ECX[PERF_CAPAB_MSR] (bit 15).

...

17.5 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™
2 DUO AND INTEL® ATOM™ PROCESSOR FAMILY)

The Intel Core 2 Duo processor family and Intel Xeon processors based on Intel Core microarchitecture or
enhanced Intel Core microarchitecture provide last branch interrupt and exception recording. The facilities
described in this section also apply to Intel Atom processor family. These capabilities are similar to those found in
Pentium 4 processors, including support for the following facilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR provide bit fields for software to

configure mechanisms related to debug trace, branch recording, branch trace store, and performance counter
operations. See Section 17.4.1 for a description of the flags. See Figure 17-3 for the MSR layout.

• Last branch record (LBR) stack — There are a collection of MSR pairs that store the source and destination
addresses related to recently executed branches. See Section 17.5.1.

• Monitoring and single-stepping of branches, exceptions, and interrupts

— See Section 17.4.2 and Section 17.4.3. In addition, the ability to freeze the LBR stack on a PMI request is
available.

— The Intel Atom processor family clears the TR flag when the FREEZE_LBRS_ON_PMI flag is set.
• Branch trace messages — See Section 17.4.4.
• Last exception records — See Section 17.10.3.
• Branch trace store and CPL-qualified BTS — See Section 17.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 17.4.7 for legacy Freeze_LBRs_On_PMI operation.
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 17.4.7 for legacy Freeze_Perfmon_On_PMI

operation.
• FREEZE_WHILE_SMM_EN (bit 14) — FREEZE_WHILE_SMM_EN is supported if

IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 17.4.1.

...

17.6 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR
PROCESSORS BASED ON INTEL® MICROARCHITECTURE CODE NAME
NEHALEM

The processors based on Intel® microarchitecture code name Nehalem and Intel® microarchitecture code name
Westmere support last branch interrupt and exception recording. These capabilities are similar to those found in
Intel Core 2 processors and adds additional capabilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR provides bit fields for software

to configure mechanisms related to debug trace, branch recording, branch trace store, and performance
counter operations. See Section 17.4.1 for a description of the flags. See Figure 17-11 for the MSR layout.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 169

• Last branch record (LBR) stack — There are 16 MSR pairs that store the source and destination addresses
related to recently executed branches. See Section 17.6.1.

• Monitoring and single-stepping of branches, exceptions, and interrupts — See Section 17.4.2 and
Section 17.4.3. In addition, the ability to freeze the LBR stack on a PMI request is available.

• Branch trace messages — The IA32_DEBUGCTL MSR provides bit fields for software to enable each logical
processor to generate branch trace messages. See Section 17.4.4. However, not all BTM messages are
observable using the Intel® QPI link.

• Last exception records — See Section 17.10.3.
• Branch trace store and CPL-qualified BTS — See Section 17.4.6 and Section 17.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 17.4.7 for legacy Freeze_LBRs_On_PMI operation.
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 17.4.7 for legacy Freeze_Perfmon_On_PMI

operation.
• UNCORE_PMI_EN (bit 13) — When set. this logical processor is enabled to receive an counter overflow

interrupt form the uncore.
• FREEZE_WHILE_SMM_EN (bit 14) — FREEZE_WHILE_SMM_EN is supported if

IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 17.4.1.

Processors based on Intel microarchitecture code name Nehalem provide additional capabilities:
• Independent control of uncore PMI — The IA32_DEBUGCTL MSR provides a bit field (see Figure 17-11)

for software to enable each logical processor to receive an uncore counter overflow interrupt.
• LBR filtering — Processors based on Intel microarchitecture code name Nehalem support filtering of LBR

based on combination of CPL and branch type conditions. When LBR filtering is enabled, the LBR stack only
captures the subset of branches that are specified by MSR_LBR_SELECT.

17.6.1 LBR Stack
Processors based on Intel microarchitecture code name Nehalem provide 16 pairs of MSR to record last branch
record information. The layout of each MSR pair is shown in Table 17-7 and Table 17-8.

Figure 17-11 IA32_DEBUGCTL MSR for Processors based
on Intel microarchitecture code name Nehalem

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

Reserved

910

BTS_OFF_OS — BTS off in OS
BTS_OFF_USR — BTS off in user code
FREEZE_LBRS_ON_PMI
FREEZE_PERFMON_ON_PMI

111214

FREEZE_WHILE_SMM_EN
UNCORE_PMI_EN

13

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 170

Processors based on Intel microarchitecture code name Nehalem have an LBR MSR Stack as shown in Table 17-9.

...

17.8 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING
FOR PROCESSORS BASED ON HASWELL MICROARCHITECTURE

Generally, all of the last branch record, interrupt and exception recording facility described in Section 17.7, “Last
Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name Sandy
Bridge”, apply to next generation processors based on Intel microarchitecture code name Haswell.

The LBR facility also supports an alternate capability to profile call stack profiles. Configuring the LBR facility to
conduct call stack profiling is by writing 1 to the MSR_LBR_SELECT.EN_CALLSTACK[bit 9]; see Table 17-12. If
MSR_LBR_SELECT.EN_CALLSTACK is clear, the LBR facility will capture branches normally as described in Section
17.7.

Table 17-7 MSR_LASTBRANCH_x_FROM_IP
Bit Field Bit Offset Access Description

Data 47:0 R/O The linear address of the branch instruction itself, this is the “branch from“ address.

SIGN_EXt 62:48 R/0 Signed extension of bit 47 of this register.

MISPRED 63 R/O When set, indicates either the target of the branch was mispredicted and/or the
direction (taken/non-taken) was mispredicted; otherwise, the target branch was
predicted.

Table 17-8 MSR_LASTBRANCH_x_TO_IP
Bit Field Bit Offset Access Description

Data 47:0 R/O The linear address of the target of the branch instruction itself, this is the “branch to“
address.

SIGN_EXt 63:48 R/0 Signed extension of bit 47 of this register.

Table 17-12 MSR_LBR_SELECT for Intel® microarchitecture code name Haswell
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches occurring in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches occurring in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except near relative calls.

FAR_BRANCH 8 R/W When set, do not capture far branches

EN_CALLSTACK1 9 Enable LBR stack to use LIFO filtering to capture Call stack profile

Reserved 63:10 Must be zero

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 171

The call stack profiling capability is an enhancement of the LBR facility. The LBR stack is a ring buffer typically
used to profile control flow transitions resulting from branches. However, the finite depth of the LBR stack often
become less effective when profiling certain high-level languages (e.g. C++), where a transition of the execution
flow is accompanied by a large number of leaf function calls, each of which returns an individual parameter to
form the list of parameters for the main execution function call. A long list of such parameters returned by the leaf
functions would serve to flush the data captured in the LBR stack, often losing the main execution context.

When the call stack feature is enabled, the LBR stack will capture unfiltered call data normally, but as return
instructions are executed the last captured branch record is flushed from the on-chip registers in a last-in first-out
(LIFO) manner. Thus, branch information relative to leaf functions will not be captured, while preserving the call
stack information of the main line execution path.

The configuration of the call stack facility is summarized below:
• Set IA32_DEBUGCTL.LBR (bit 0) to enable the LBR stack to capture branch records. The source and target

addresses of the call branches will be captured in the 16 pairs of From/To LBR MSRs that form the LBR stack.
• Program the Top of Stack (TOS) MSR that points to the last valid from/to pair. This register is incremented by

1, modulo 16, before recording the next pair of addresses.
• Program the branch filtering bits of MSR_LBR_SELECT (bits 0:8) as desired.
• Program the MSR_LBR_SELECT to enable LIFO filtering of return instructions with:

— The following bits in MSR_LBR_SELECT must be set to ‘1’: JCC, NEAR_IND_JMP, NEAR_REL_JMP,
FAR_BRANCH, EN_CALLSTACK;

— The following bits in MSR_LBR_SELECT must be cleared: NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET;

— At most one of CPL_EQ_0, CPL_NEQ_0 is set.

Note that when call stack profiling is enabled, “zero length calls” are excluded from writing into the LBRs. (A “zero
length call” uses the attribute of the call instruction to push the immediate instruction pointer on to the stack and
then pops off that address into a register. This is accomplished without any matching return on the call.)

17.8.1 LBR Stack Enhancement
Processors based on Intel microarchitecture code name Haswell provide 16 pairs of MSR to record last branch
record information. The layout of each MSR pair is enumerated by IA32_PERF_CAPABILITIES[5:0] = 04H, and is
shown in Table 17-13 and Table 17-8.

NOTES:
1. Must set valid combination of bits 0-8 in conjunction with bit 9 (as described below), otherwise the contents of the LBR MSRs are

undefined.

Table 17-13 MSR_LASTBRANCH_x_FROM_IP with TSX Information
Bit Field Bit Offset Access Description

Data 47:0 R/O The linear address of the branch instruction itself, this is the “branch from“ address.

SIGN_EXT 60:48 R/0 Signed extension of bit 47 of this register.

TSX_ABORT 61 R/0 When set, indicates a TSX Abort entry
LBR_FROM: EIP at the time of the TSX Abort
LBR_TO: EIP of the start of HLE region, or EIP of the RTM Abort Handler

IN_TSX 62 R/0 When set, indicates the entry occurred in a TSX region

MISPRED 63 R/O When set, indicates either the target of the branch was mispredicted and/or the
direction (taken/non-taken) was mispredicted; otherwise, the target branch was
predicted.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 172

17.9 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING
FOR PROCESSORS BASED ON SKY LAKE MICROARCHITECTURE

Processors based on the Sky Lake microarchitecture provide a number of enhancement with storing last branch
records:
• enumeration of new LBR format: encoding 001001b in IA32_PERF_CAPABILITIES[5:0] is supported, see

Section 17.4.8.1.
• Each LBR stack entry consists of a triplets of MSRs:

— MSR_LASTBRANCH_x_FROM_IP, the layout is simplified, see Table 17-7.

— MSR_LASTBRANCH_x_TO_IP, the layout is the same as Table 17-8.

— MSR_LBR_INFO_x, stores branch prediction flag, TSX info, and elapsed cycle data.
• Size of LBR stack increased to 32.

Processors based on the Sky Lake microarchitecture supports the same LBR filtering capabilities as described in
Table 17-12.

Table 17-14 LBR Stack Size and TOS Pointer Range

17.9.1 MSR_LBR_INFO_x MSR
The layout of each MSR_LBR_INFO_x MSR is shown in Table 17-15.

17.9.2 Streamlined Freeze_LBRs_On_PMI Operation
The capability to freeze the content of LBR to maintain recorded data quality continues to use the same interface
IA32_DEBUGCTL.Freeze_LBRs_ON_PMI. Architectural performance monitoring version 4 and above supports a

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_4EH, 06_5EH 32 0 to 31

Table 17-15 MSR_LBR_INFO_x
Bit Field Bit Offset Access Description

Cycle Count
(saturating)

15:0 R/O Elapsed core clocks since last update to the LBR stack

Reserved 60:16 R/O Reserved

TSX_ABORT 61 R/0 When set, indicates a TSX Abort entry
LBR_FROM: EIP at the time of the TSX Abort
LBR_TO: EIP of the start of HLE region OR
 EIP of the RTM Abort Handler

IN_TSX 62 R/0 When set, indicates the entry occurred in a TSX region.

MISPRED 63 R/O When set, indicates either the target of the branch was mispredicted and/or the
direction (taken/non-taken) was mispredicted; otherwise, the target branch was
predicted.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 173

streamlined Freeze_LBRs_ON_PMI operation for PMI service routine that replaces the legacy
Freeze_LBRs_ON_PMI operation (see Section 17.4.7).

Table 17-16 compares the interaction of the processor with the PMI handler.

Table 17-16 Legacy and Streamlined Operation with Freeze_LBRs_On_PMI = 1, Buffer Full

17.9.3 LBR behavior on software C6
The LBR contents are cleared when a software request successfully enters a C6 or deeper sleep-state. This
includes the FROM, TO, INFO, LAST_BRANCH, LER and LBR_TOS registers. The LBR enable bit and LBR_FROZEN
bit will not be changed. The LBR-time of the first LBR record inserted after an exit from such a C6 request will be
zero.

...

21. Updates to Chapter 18, Volume 3B
Change bars show changes to Chapter 18 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

18.1 PERFORMANCE MONITORING OVERVIEW
Performance monitoring was introduced in the Pentium processor with a set of model-specific performance-moni-
toring counter MSRs. These counters permit selection of processor performance parameters to be monitored and
measured. The information obtained from these counters can be used for tuning system and compiler perfor-
mance.

In Intel P6 family of processors, the performance monitoring mechanism was enhanced to permit a wider selec-
tion of events to be monitored and to allow greater control events to be monitored. Next, Pentium 4 and Intel
Xeon processors introduced a new performance monitoring mechanism and new set of performance events.

Legacy Freeze_LBRs_On_PMI Streamlined Freeze_LBRs_On_PMI Comment

Processor freezes the LBR stack on PEBS buffer full Processor freezes the LBR stack on PEBS buffer full Unchanged

Processor clears IA32_DEBUGCTRL.LBR (0x1D9) Processor set
IA32_PERF_GLOBAL_STATUS.LBR_Frz

dbgmask = RDMSR(0x1D9) mask = RDMSR(0x38E)

Handler services the PMI Handler services the PMI Unchanged

Updates dbgmask to include LBR for subsequent
write to IA32_DEBUG_CTL

Handler writes mask into
IA32_PERF_GLOBAL_OVF_RESET (0x390)

NA Processor clears IA32_PERF_GLOBAL_STATUS

Handler writes dbgmask to re-enables
IA32_DEBUGCTL.LBR

NA Prevents race condition
of MSR 0x1D9 being
updated by the
processor and handler

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 174

The performance monitoring mechanisms and performance events defined for the Pentium, P6 family, Pentium 4,
and Intel Xeon processors are not architectural. They are all model specific (not compatible among processor
families). Intel Core Solo and Intel Core Duo processors support a set of architectural performance events and a
set of non-architectural performance events. Processors based on Intel Core microarchitecture and Intel® Atom™
microarchitecture support enhanced architectural performance events and non-architectural performance events.

Starting with Intel Core Solo and Intel Core Duo processors, there are two classes of performance monitoring
capabilities. The first class supports events for monitoring performance using counting or sampling usage. These
events are non-architectural and vary from one processor model to another. They are similar to those available in
Pentium M processors. These non-architectural performance monitoring events are specific to the microarchitec-
ture and may change with enhancements. They are discussed in Section 18.3, “Performance Monitoring (Intel®
Core™ Solo and Intel® Core™ Duo Processors).” Non-architectural events for a given microarchitecture can not
be enumerated using CPUID; and they are listed in Chapter 19, “Performance-Monitoring Events.”

The second class of performance monitoring capabilities is referred to as architectural performance monitoring.
This class supports the same counting and sampling usages, with a smaller set of available events. The visible
behavior of architectural performance events is consistent across processor implementations. Availability of
architectural performance monitoring capabilities is enumerated using the CPUID.0AH. These events are
discussed in Section 18.2.

See also:

— Section 18.2, “Architectural Performance Monitoring”

— Section 18.3, “Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors)”

— Section 18.4, “Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture)”

— Section 18.5, “Performance Monitoring (Processors Based on Intel® Atom™ Microarchitecture)”

— Section 18.6, “Performance Monitoring (Processors Based on the Silvermont Microarchitecture)”

— Section 18.7, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Nehalem”

— Section 18.7.4, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Westmere”

— Section 18.8, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Sandy Bridge”

— Section 18.8.8, “Intel® Xeon® Processor E5 Family Uncore Performance Monitoring Facility”

— Section 18.9, “3rd Generation Intel® Core™ Processor Performance Monitoring Facility”

— Section 18.10, “4th Generation Intel® Core™ Processor Performance Monitoring Facility”

— Section 18.11, “Intel® Core™ M Processor Performance Monitoring Facility”

— Section 18.12, “Next Generation Intel® Core™ Processor Performance Monitoring Facility”

— Section 18.13, “Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture)”

— Section 18.14, “Performance Monitoring and Intel Hyper-Threading Technology in Processors Based on
Intel NetBurst® Microarchitecture”

— Section 18.17, “Performance Monitoring and Dual-Core Technology”

— Section 18.18, “Performance Monitoring on 64-bit Intel Xeon Processor MP with Up to 8-MByte L3 Cache”

— Section 18.20, “Performance Monitoring (P6 Family Processor)”

— Section 18.21, “Performance Monitoring (Pentium Processors)”

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 175

18.2.2 Architectural Performance Monitoring Version 2
The enhanced features provided by architectural performance monitoring version 2 include the following:
• Fixed-function performance counter register and associated control register — Three of the architec-

tural performance events are counted using three fixed-function MSRs (IA32_FIXED_CTR0 through
IA32_FIXED_CTR2). Each of the fixed-function PMC can count only one architectural performance event.
Configuring the fixed-function PMCs is done by writing to bit fields in the MSR (IA32_FIXED_CTR_CTRL)
located at address 38DH. Unlike configuring performance events for general-purpose PMCs (IA32_PMCx) via
UMASK field in (IA32_PERFEVTSELx), configuring, programming IA32_FIXED_CTR_CTRL for fixed-function
PMCs do not require any UMASK.

• Simplified event programming — Most frequent operation in programming performance events are
enabling/disabling event counting and checking the status of counter overflows. Architectural performance
event version 2 provides three architectural MSRs:

— IA32_PERF_GLOBAL_CTRL allows software to enable/disable event counting of all or any combination of
fixed-function PMCs (IA32_FIXED_CTRx) or any general-purpose PMCs via a single WRMSR.

— IA32_PERF_GLOBAL_STATUS allows software to query counter overflow conditions on any combination of
fixed-function PMCs or general-purpose PMCs via a single RDMSR.

— IA32_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow conditions on any combination
of fixed-function PMCs or general-purpose PMCs via a single WRMSR.

• PMI Overhead Mitigation — Architectural performance monitoring version 2 introduces two bit field
interface in IA32_DEBUGCTL for PMI service routine to accumulate performance monitoring data and LBR
records with reduced perturbation from servicing the PMI. The two bit fields are:

— IA32_DEBUGCTL.Freeze_LBR_On_PMI(bit 11). In architectural performance monitoring version 2, only
the legacy semantic behavior is supported. See Section 17.4.7 for details of the legacy Freeze LBRs on PMI
control.

— IA32_DEBUGCTL.Freeze_PerfMon_On_PMI(bit 12). In architectural performance monitoring version 2,
only the legacy semantic behavior is supported. See Section 17.4.7 for details of the legacy Freeze LBRs
on PMI control.

The facilities provided by architectural performance monitoring version 2 can be queried from CPUID leaf 0AH by
examining the content of register EDX:
• Bits 0 through 4 of CPUID.0AH.EDX indicates the number of fixed-function performance counters available per

core,
• Bits 5 through 12 of CPUID.0AH.EDX indicates the bit-width of fixed-function performance counters. Bits

beyond the width of the fixed-function counter are reserved and must be written as zeros.

NOTE
Early generation of processors based on Intel Core microarchitecture may report in
CPUID.0AH:EDX of support for version 2 but indicating incorrect information of version 2 facilities.

The IA32_FIXED_CTR_CTRL MSR include multiple sets of 4-bit field, each 4 bit field controls the operation of
a fixed-function performance counter. Figure 18-2 shows the layout of 4-bit controls for each fixed-function
PMC. Two sub-fields are currently defined within each control. The definitions of the bit fields are:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 176

• Enable field (lowest 2 bits within each 4-bit control) — When bit 0 is set, performance counting is
enabled in the corresponding fixed-function performance counter to increment while the target condition
associated with the architecture performance event occurred at ring 0. When bit 1 is set, performance
counting is enabled in the corresponding fixed-function performance counter to increment while the target
condition associated with the architecture performance event occurred at ring greater than 0. Writing 0 to
both bits stops the performance counter. Writing a value of 11B enables the counter to increment irrespective
of privilege levels.

• PMI field (the fourth bit within each 4-bit control) — When set, the logical processor generates an
exception through its local APIC on overflow condition of the respective fixed-function counter.

IA32_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting of each performance counter.
Figure 18-3 shows the layout of IA32_PERF_GLOBAL_CTRL. Each enable bit in IA32_PERF_GLOBAL_CTRL is
AND’ed with the enable bits for all privilege levels in the respective IA32_PERFEVTSELx or
IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective counters. Counting is enabled if the
AND’ed results is true; counting is disabled when the result is false.

The fixed-function performance counters supported by architectural performance version 2 is listed in Table 18-8,
the pairing between each fixed-function performance counter to an architectural performance event is also
shown.

Figure 18-2 Layout of IA32_FIXED_CTR_CTRL MSR

Figure 18-3 Layout of IA32_PERF_GLOBAL_CTRL MSR

Cntr2 — Controls for IA32_FIXED_CTR2
Cntr1 — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow
Cntr0 — Controls for IA32_FIXED_CTR0

8 7 0

ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II

IA32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable
IA32_FIXED_CTR0 enable
IA32_PMC1 enable

2 1 0

IA32_PMC0 enable

3132333435

Reserved

63

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 177

IA32_PERF_GLOBAL_STATUS MSR provides single-bit status for software to query the overflow condition of each
performance counter. The MSR also provides additional status bit to indicate overflow conditions when counters
are programmed for precise-event-based sampling (PEBS). IA32_PERF_GLOBAL_STATUS MSR also provides a
CondChgd bit to indicate changes to the state of performance monitoring hardware. Figure 18-4 shows the layout
of IA32_PERF_GLOBAL_STATUS. A value of 1 in bits 0, 1, 32 through 34 indicates a counter overflow condition
has occurred in the associated counter.

When a performance counter is configured for PEBS, overflow condition in the counter generates a performance-
monitoring interrupt signaling a PEBS event. On a PEBS event, the processor stores data records into the buffer
area (see Section 18.15.5), clears the counter overflow status., and sets the “OvfBuffer” bit in
IA32_PERF_GLOBAL_STATUS.

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of any general-purpose or
fixed-function counters via a single WRMSR. Software should clear overflow indications when
• Setting up new values in the event select and/or UMASK field for counting or sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling.

The layout of IA32_PERF_GLOBAL_OVF_CTL is shown in Figure 18-5.

Figure 18-4 Layout of IA32_PERF_GLOBAL_STATUS MSR

Figure 18-5 Layout of IA32_PERF_GLOBAL_OVF_CTRL MSR

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow
IA32_PMC1 Overflow

2 1 0

IA32_PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfDSBuffer

62

IA32_FIXED_CTR2 ClrOverflow
IA32_FIXED_CTR1 ClrOverflow
IA32_FIXED_CTR0 ClrOverflow
IA32_PMC1 ClrOverflow

2 1 0

IA32_PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfDSBuffer

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 178

18.2.3 Architectural Performance Monitoring Version 3
Processors supporting architectural performance monitoring version 3 also supports version 1 and 2, as well as
capability enumerated by CPUID leaf 0AH. Specifically, version 3 provides the following enhancement in perfor-
mance monitoring facilities if a processor core comprising of more than one logical processor, i.e. a processor core
supporting Intel Hyper-Threading Technology or simultaneous multi-threading capability:
• Anythread counting for processor core supporting two or more logical processors. The interface that supports

AnyThread counting include:

— Each IA32_PERFEVTSELx MSR (starting at MSR address 186H) support the bit field layout defined in
Figure 18-6.

Bit 21 (AnyThread) of IA32_PERFEVTSELx is supported in architectural performance monitoring version 3
for processor core comprising of two or more logical processors. When set to 1, it enables counting the
associated event conditions (including matching the thread’s CPL with the OS/USR setting of
IA32_PERFEVTSELx) occurring across all logical processors sharing a processor core. When bit 21 is 0, the
counter only increments the associated event conditions (including matching the thread’s CPL with the OS/
USR setting of IA32_PERFEVTSELx) occurring in the logical processor which programmed the
IA32_PERFEVTSELx MSR.

— Each fixed-function performance counter IA32_FIXED_CTRx (starting at MSR address 309H) is configured
by a 4-bit control block in the IA32_PERF_FIXED_CTR_CTRL MSR. The control block also allow thread-
specificity configuration using an AnyThread bit. The layout of IA32_PERF_FIXED_CTR_CTRL MSR is
shown.

Figure 18-6 Layout of IA32_PERFEVTSELx MSRs Supporting Architectural Performance Monitoring Version 3

Figure 18-7 IA32_FIXED_CTR_CTRL MSR Supporting Architectural Performance Monitoring Version 3

31

INV—Invert counter mask
EN—Enable counters

INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

Counter Mask
EE

N

I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S

Unit Mask (UMASK)(CMASK)

63

ANY—Any Thread

A
N
Y

Cntr2 — Controls for IA32_FIXED_CTR2
Cntr1 — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow on IA32_FIXED_CTR0
AnyThread — AnyThread for IA32_FIXED_CTR0

8 7 0

ENABLE — IA32_FIXED_CTR0. 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II

A
N
Y

A
N
Y

A
N
Y

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 179

Each control block for a fixed-function performance counter provides a AnyThread (bit position 2 + 4*N, N=
0, 1, etc.) bit. When set to 1, it enables counting the associated event conditions (including matching the
thread’s CPL with the ENABLE setting of the corresponding control block of IA32_PERF_FIXED_CTR_CTRL)
occurring across all logical processors sharing a processor core. When an AnyThread bit is 0 in
IA32_PERF_FIXED_CTR_CTRL, the corresponding fixed counter only increments the associated event
conditions occurring in the logical processor which programmed the IA32_PERF_FIXED_CTR_CTRL MSR.

• The IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, IA32_PERF_GLOBAL_OVF_CTRL MSRs
provide single-bit controls/status for each general-purpose and fixed-function performance counter. Figure
18-8 and Figure 18-9 show the layout of these MSRs for N general-purpose performance counters (where N is
reported by CPUID.0AH:EAX[15:8]) and three fixed-function counters.
Note: The Intel Atom processor family supports two general-purpose performance monitoring counters (i.e.
N =2 in Figure 18-9), other processor families in Intel 64 architecture may support a different value of N in
Figure 18-9. The number N is reported by CPUID.0AH:EAX[15:8]. The Intel Core i7 processor supports four
general-purpose performance monitoring counters (i.e. N =4 in Figure 18-9).

Figure 18-8 Layout of Global Performance Monitoring Control MSR

IA32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable
IA32_FIXED_CTR0 enable
IA32_PMC(N-1) enable

.. 1 0

.................... enable

3132333435

Reserved

63 ..N

IA32_PMC1 enable
IA32_PMC0 enable

Global Enable Controls IA32_PERF_GLOBAL_CTRL

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 180

18.2.3.1 AnyThread Counting and Software Evolution
The motivation for characterizing software workload over multiple software threads running on multiple logical
processors of the same processor core originates from a time earlier than the introduction of the AnyThread inter-
face in IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL. While Anythread counting provides some benefits in
simple software environments of an earlier era, the evolution contemporary software environments introduce
certain concepts and pre-requisites that AnyThread counting does not comply with.

One example is the proliferation of software environments that support multiple virtual machines (VM) under VMX
(see Chapter 23, “Introduction to Virtual-Machine Extensions”) where each VM represents a domain separated
from one another.

A Virtual Machine Monitor (VMM) that manages the VMs may allow individual VM to employ performance moni-
toring facilities to profiles the performance characteristics of a workload. The use of the Anythread interface in
IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL is discouraged with software environments supporting virtual-
ization or requiring domain separation.

Specifically, Intel recommends VMM:
• configure the MSR bitmap to cause VM-exits for WRMSR to IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL

in VMX non-Root operation (see CHAPTER 24 for additional information),
• clear the AnyThread bit of IA32_PERFEVTSELx and IA32_FIXED_CTR_CTRL in the MSR-load lists for VM exits

and VM entries (see CHAPTER 24, CHAPTER 26, and CHAPTER 27).

Even when operating in simpler legacy software environments which might not emphasize the pre-requisites of a
virtualized software environment, the use of the AnyThread interface should be moderated and follow any event-
specific guidance where explicitly noted (see relevant sections of Chapter 19, “Performance Monitoring Events”).

Figure 18-9 Global Performance Monitoring Overflow Status and Control MSRs

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow
IA32_PMC1 Overflow

.. 1 0

IA32_PMC0 Overflow

313233343563

CondChgd
OvfDSBuffer

..N

...................... Overflow
IA32_PMC(N-1) Overflow

Global Overflow Status IA32_PERF_GLOBAL_STATUS

62

IA32_FIXED_CTR2 ClrOverflow
IA32_FIXED_CTR1 ClrOverflow
IA32_FIXED_CTR0 ClrOverflow
IA32_PMC1 ClrOverflow

.. 1 0

IA32_PMC0 ClrOverflow

313233343563

ClrCondChgd
ClrOvfDSBuffer

Global Overflow Status IA32_PERF_GLOBAL_OVF_CTRL

........................ ClrOverflow
IA32_PMC(N-1) ClrOverflow

N ..

ClrOvfUncore

OvfUncore

61

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 181

18.2.4 Architectural Performance Monitoring Version 4
Processors supporting architectural performance monitoring version 4 also supports version 1, 2, and 3, as well
as capability enumerated by CPUID leaf 0AH. Version 4 introduced a streamlined PMI overhead mitigation inter-
face that replaces the legacy semantic behavior but retains the same control interface in
IA32_DEBUGCTL.Freeze_LBRs_On_PMI and Freeze_PerfMon_On_PMI. Specifically version 4 provides the
following enhancement:
• New indicators (LBR_FRZ, CTR_FRZ) in IA32_PERF_GLOBAL_STATUS, see Section 18.2.4.1.
• Streamlined Freeze/PMI Overhead management interfaces to use IA32_DEBUGCTL.Freeze_LBRs_On_PMI

and IA32_DEBUGCTL.Freeze_PerfMon_On_PMI: see Section 18.2.4.1. Legacy semantics of
Freeze_LBRs_On_PMI and Freeze_PerfMon_On_PMI (applicable to version 2 and 3) are not supported with
version 4 or higher.

• Fine-grain separation of control interface to manage overflow/status of IA32_PERF_GLOBAL_STATUS and
read-only performance counter enabling interface in IA32_PERF_GLOBAL_STATUS: see Section 18.2.4.2.

• Performance monitoring resource in-use MSR to facilitate cooperative sharing protocol between perfmon-
managing privilege agents.

18.2.4.1 Enhancement in IA32_PERF_GLOBAL_STATUS
The IA32_PERF_GLOBAL_STATUS MSR provides the following indicators with architectural performance moni-
toring version 4:
• IA32_PERF_GLOBAL_STATUS.LBR_FRZ[bit 58]: This bit is set due to the following conditions:

— IA32_DEBUGCTL.FREEZE_LBR_ON_PMI has been set by the profiling agent, and

— A performance counter, configured to generate PMI, has overflowed to signal a PMI. Consequently the LBR
stack is frozen.

Effectively, the IA32_PERF_GLOBAL_STATUS.LBR_FRZ bit also serve as an read-only control to enable
capturing data in the LBR stack. To enable capturing LBR records, the following expression must hold with
architectural perfmon version 4 or higher:

— (IA32_DEBUGCTL.LBR & (!IA32_PERF_GLOBAL_STATUS.LBR_FRZ)) =1
• IA32_PERF_GLOBAL_STATUS.CTR_FRZ[bit 59]: This bit is set due to the following conditions:

— IA32_DEBUGCTL.FREEZE_PERFMON_ON_PMI has been set by the profiling agent, and

— A performance counter, configured to generate PMI, has overflowed to signal a PMI. Consequently, all the
performance counters are frozen.

Effectively, the IA32_PERF_GLOBAL_STATUS.CTR_FRZ bit also serve as an read-only control to enable
programmable performance counters and fixed counters in the core PMU. To enable counting with the
performance counters, the following expression must hold with architectural perfmon version 4 or higher:

• (IA32_PERFEVTSELn.EN & IA32_PERF_GLOBAL_CTRL.PMCn &
(!IA32_PERF_GLOBAL_STATUS.CTR_FRZ)) = 1 for programmable counter ‘n’, or

• (IA32_PERF_FIXED_CRTL.ENi & IA32_PERF_GLOBAL_CTRL.FCi &
(!IA32_PERF_GLOBAL_STATUS.CTR_FRZ)) = 1 for fixed counter ‘i’

The read-only enable interface IA32_PERF_GLOBAL_STATUS.CTR_FRZ provides a more efficient flow for a PMI
handler to use IA32_DEBUGCTL.Freeza_Perfmon_On_PMI to filter out data that may distort target workload anal-
ysis, see Table 17-3. It should be noted the IA32_PERF_GLOBAL_CTRL register continue to serve as the primary
interface to control all performance counters of the logical processor.

For example, when the Freeze-On-PMI mode is not being used, a PMI handler would be setting
IA32_PERF_GLOBAL_CTRL as the very last step to commence the overall operation after configuring the indi-
vidual counter registers, controls and PEBS facility. This does not only assure atomic monitoring but also avoids

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 182

unnecessary complications (e.g. race conditions) when software attempts to change the core PMU configuration
while some counters are kept enabled.

Additionally, IA32_PERF_GLOBAL_STATUS.TraceToPAPMI[bit 55]: On processors that support Intel Processor
Trace and configured to store trace output packets to physical memory using the ToPA scheme, bit 55 is set when
a PMI occurred due to a ToPA entry memory buffer was completely filled.

IA32_PERF_GLOBAL_STATUS also provides an indicator to distinguish interaction of performance monitoring
operations with other side-band activities, which apply Intel SGX on processors that support SGX (For additional
information about Intel SGX, see “Intel® Software Guard Extensions Programming Reference”.):
• IA32_PERF_GLOBAL_STATUS.ASCI[bit 60]: This bit is set when data accumulated in any of the configured

performance counters (i.e. IA32_PMCx or IA32_FIXED_CTRx) may include contributions from direct or indirect
operation of Intel SGX to protect an enclave (since the last time IA32_PERF_GLOBAL_STATUS.ASCI was
cleared).

Note, a processor’s support for IA32_PERF_GLOBAL_STATUS.TraceToPAPMI[bit 55] is enumerated as a result of
CPUID enumerated capability of Intel Processor Trace and the use of the ToPA buffer scheme. Support of
IA32_PERF_GLOBAL_STATUS.ASCI[bit 60] is enumerated by the CPUID enumeration of Intel SGX.

18.2.4.2 IA32_PERF_GLOBAL_STATUS_RESET and IA32_PERF_GLOBAL_STATUS_SET MSRS
With architectural performance monitoring version 3 and lower, clearing of the set bits in
IA32_PERF_GLOBAL_STATUS MSR by software is done via IA32_PERF_GLOBAL_OVF_CTRL MSR. Starting with
architectural performance monitoring version 4, software can manage the overflow and other indicators in
IA32_PERF_GLOBAL_STATUS using separate interfaces to set or clear individual bits.

The address and the architecturally-defined bits of IA32_PERF_GLOBAL_OVF_CTRL is inherited by
IA32_PERF_GLOBAL_STATUS_RESET (see Figure 18-11). Further, IA32_PERF_GLOBAL_STATUS_RESET provides
additional bit fields to clear the new indicators in IA32_PERF_GLOBAL_STATUS described in Section 18.2.4.1.

Figure 18-10 IA32_PERF_GLOBAL_STATUS MSR and Architectural Perfmon Version 4

Reserved

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow

TraceToPAPMI

.. 1 0

IA32_PMC0 Overflow

313233343563

CondChgd
OvfDSBuffer

..N

...................... Overflow
IA32_PMC(N-1) Overflow

OvfUncore

61

IA32_PMC1 Overflow

60 59 58 55

ASCI

LBR_Frz
CTR_Frz

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 183

The IA32_PERF_GLOBAL_STATUS_SET MSR is introduced with architectural performance monitoring version 4. It
allows software to set individual bits in IA32_PERF_GLOBAL_STATUS. The IA32_PERF_GLOBAL_STATUS_SET
interface can be used by a VMM to virtualize the state of IA32_PERF_GLOBAL_STATUS across VMs.

18.2.4.3 IA32_PERF_GLOBAL_INUSE MSR
In a contemporary software environment, multiple privileged service agents may wish to employ the processor’s
performance monitoring facilities. The IA32_MISC_ENABLES.PERFMON_AVAILABLE[bit 7] interface could not
serve the need of multiple agent adequately. A white paper, “Performance Monitoring Unit Sharing Guideline”1,
proposed a cooperative sharing protocol that is voluntary for participating software agents.

Architectural performance monitoring version 4 introduces a new MSR, IA32_PERF_GLOBAL_INUSE, that simpli-
fies the task of multiple cooperating agents to implement the sharing protocol.

The layout of IA32_PERF_GLOBAL_INUSE is shown in Figure 18-13.

Figure 18-11 IA32_PERF_GLOBAL_STATUS_RESET MSR and Architectural Perfmon Version 4

Figure 18-12 IA32_PERF_GLOBAL_STATUS_SET MSR and Architectural Perfmon Version 4

1. Available at http://www.intel.com/sdm

Reserved

62

Clr IA32_FIXED_CTR2 Ovf
Clr IA32_FIXED_CTR1 Ovf
Clr IA32_FIXED_CTR0 Ovf

Clr TraceToPAPMI

.. 1 0

Clr IA32_PMC0 Ovf

313233343563

Clr CondChgd
Clr OvfDSBuffer

..N

Clr Ovf
Clr IA32_PMC(N-1) Ovf

Clr OvfUncore

61

Clr IA32_PMC1 Ovf

60 59 58 55

Clr ASCI

Clr LBR_Frz
Clr CTR_Frz

Reserved

62

Set IA32_FIXED_CTR2 Ovf
Set IA32_FIXED_CTR1 Ovf
Set IA32_FIXED_CTR0 Ovf

Set TraceToPAPMI

.. 1 0

Set IA32_PMC0 Ovf

313233343563

Set CondChgd
Set OvfDSBuffer

..N

Set Ovf
Set IA32_PMC(N-1) Ovf

Set OvfUncore

61

Set IA32_PMC1 Ovf

60 59 58 55

Set ASCI

Set LBR_Frz
Set CTR_Frz

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 184

The IA32_PERF_GLOBAL_INUSE MSR provides an “InUse” bit for each programmable performance counter and
fixed counter in the processor. Additionally, it includes an indicator if the PMI mechanism has been configured by
a profiling agent.
• IA32_PERF_GLOBAL_INUSE.PERFEVTSEL0_InUse[bit 0]: This bit reflects the logical state of

(IA32_PERFEVTSEL0[7:0] != 0).
• IA32_PERF_GLOBAL_INUSE.PERFEVTSEL1_InUse[bit 1]: This bit reflects the logical state of

(IA32_PERFEVTSEL1[7:0] != 0).
• IA32_PERF_GLOBAL_INUSE.PERFEVTSEL2_InUse[bit 2]: This bit reflects the logical state of

(IA32_PERFEVTSEL2[7:0] != 0).
• IA32_PERF_GLOBAL_INUSE.PERFEVTSELn_InUse[bit n]: This bit reflects the logical state of

(IA32_PERFEVTSELn[7:0] != 0), n < CPUID.0AH:EAX[15:8].
• IA32_PERF_GLOBAL_INUSE.FC0_InUse[bit 32]: This bit reflects the logical state of

(IA32_FIXED_CTR_CTRL[1:0] != 0).
• IA32_PERF_GLOBAL_INUSE.FC1_InUse[bit 33]: This bit reflects the logical state of

(IA32_FIXED_CTR_CTRL[5:4] != 0).
• IA32_PERF_GLOBAL_INUSE.FC2_InUse[bit 34]: This bit reflects the logical state of

(IA32_FIXED_CTR_CTRL[9:8] != 0).
• IA32_PERF_GLOBAL_INUSE.PMI_InUse[bit 32]: This bit is set if any one of the following bit is set:

— IA32_PERFEVTSELn.INT[bit 20], n < CPUID.0AH:EAX[15:8];

— IA32_FIXED_CTR_CTRL.ENi_PMI, i = 0, 1, 2;

— IA32_PEBS_ENABLES.EN_PMCi, i = 0, 1, 2, 3

...

18.4.4.2 PEBS Record Format
The PEBS record format may be extended across different processor implementations. The
IA32_PERF_CAPABILITES MSR defines a mechanism for software to handle the evolution of PEBS record format
in processors that support architectural performance monitoring with version id equals 2 or higher. The bit fields
of IA32_PERF_CAPABILITES are defined in Table 35-2 of Chapter 35, “Model-Specific Registers (MSRs)”. The rele-
vant bit fields that governs PEBS are:

Figure 18-13 IA32_PERF_GLOBAL_INUSE MSR and Architectural Perfmon Version 4

Reserved

PMI InUse
FIXED_CTR2 InUse
FIXED_CTR1 InUse

.. 1 0

PERFEVTSEL0 InUse

313233343563 ..N

 InUse
PERFEVTSEL(N-1) InUse

PERFEVTSEL1 InUse
FIXED_CTR0 InUse

N = CPUID.0AH:EAX[15:8]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 185

• PEBSTrap [bit 6]: When set, PEBS recording is trap-like. After the PEBS-enabled counter has overflowed,
PEBS record is recorded for the next PEBS-able event at the completion of the sampled instruction causing the
PEBS event. When clear, PEBS recording is fault-like. The PEBS record is recorded before the sampled
instruction causing the PEBS event.

• PEBSSaveArchRegs [bit 7]: When set, PEBS will save architectural register and state information according to
the encoded value of the PEBSRecordFormat field. When clear, only the return instruction pointer and flags are
recorded. On processors based on Intel Core microarchitecture, this bit is always 1

• PEBSRecordFormat [bits 11:8]: Valid encodings are:

— 0000B: Only general-purpose registers, instruction pointer and RFLAGS registers are saved in each PEBS
record (seeSection 18.13.7).

— 0001B: PEBS record includes additional information of IA32_PERF_GLOBAL_STATUS and load latency
data. (seeSection 18.7.1.1).

— 0010B: PEBS record includes additional information of IA32_PERF_GLOBAL_STATUS, load latency data,
and TSX tuning information. (seeSection 18.10.2).

— 0011B: PEBS record includes additional information of load latency data, TSX tuning information, TSC
data, and the applicable counter field replaces IA32_PERF_GLOBAL_STATUS at offset 90H. (see Section
18.12.1.1).

...

18.8 PERFORMANCE MONITORING FOR PROCESSORS BASED ON INTEL®

MICROARCHITECTURE CODE NAME SANDY BRIDGE
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series, and Intel® Xeon® processor
E3-1200 family are based on Intel microarchitecture code name Sandy Bridge; this section describes the perfor-
mance monitoring facilities provided in the processor core. The core PMU supports architectural performance
monitoring capability with version ID 3 (see Section 18.2.3) and a host of non-architectural monitoring capabili-
ties.

Architectural performance monitoring events and non-architectural monitoring events are programmed using
fixed counters and programmable counters/event select MSRS described in Section 18.2.3.

The core PMU’s capability is similar to those described in Section 18.7.1 and Section 18.7.4, with some differences
and enhancements relative to Intel microarchitecture code name Westmere summarized in Table 18-25.

Table 18-25 Core PMU Comparison

Box
Intel® microarchitecture code name
Sandy Bridge

Intel® microarchitecture
code name Westmere Comment

of Fixed counters per
thread

3 3 Use CPUID to enumerate # of
counters.

of general-purpose
counters per core

8 8

Counter width (R,W) R:48 , W: 32/48 R:48, W:32 See Section 18.2.4.

of programmable counters
per thread

4 or (8 if a core not shared by two
threads)

4 Use CPUID to enumerate # of
counters.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 186

...

18.8.5 Off-core Response Performance Monitoring
The core PMU in processors based on Intel microarchitecture code name Sandy Bridge provides off-core response
facility similar to prior generation. Off-core response can be programmed only with a specific pair of event select
and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attri-
butes of the off-core transaction. Two event codes are dedicated for off-core response event programming. Each
event code for off-core response monitoring requires programming an associated configuration MSR,
MSR_OFFCORE_RSP_x. Table 18-30 lists the event code, mask value and additional off-core configuration MSR
that must be programmed to count off-core response events using IA32_PMCx.

The layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 are shown in Figure 18-36 and Figure 18-37.
Bits 15:0 specifies the request type of a transaction request to the uncore. Bits 30:16 specifies supplier informa-
tion, bits 37:31 specifies snoop response information.

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with
legacy semantics.

• Freeze_on_LBR with legacy
semantics for branch profiling

• Freeze_while_SMM

• Freeze_Perfmon_on_PMI
with legacy semantics.

• Freeze_on_LBR with
legacy semantics for
branch profiling

• Freeze_while_SMM

See Section 17.4.7

Precise Event Based
Sampling (PEBS) Events

See Table 18-27 See Table 18-10 IA32_PMC4-IA32_PMC7 do
not support PEBS.

PEBS-Load Latency See Section 18.8.4.2;

• Data source encoding,
• STLB miss encoding,
• Lock transaction encoding

Data source encoding

PEBS-Precise Store Section 18.8.4.3 No

PEBS-PDIR yes (using precise
INST_RETIRED.ALL)

No

Off-core Response Event MSR 1A6H and 1A7H; Extended
request and response types

MSR 1A6H and 1A7H, limited
response types

Nehalem supports 1A6H only.

Table 18-25 Core PMU Comparison

Box
Intel® microarchitecture code name
Sandy Bridge

Intel® microarchitecture
code name Westmere Comment

Table 18-30 Off-Core Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-3 B7H 01H MSR_OFFCORE_RSP_0 (address 1A6H)

PMC0-3 BBH 01H MSR_OFFCORE_RSP_1 (address 1A7H)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 187

...

Figure 18-36 Request_Type Fields for MSR_OFFCORE_RSP_x

RESPONSE TYPE — Other (R/W)
RESERVED

8 7 0

REQUEST TYPE — STRM_ST (R/W)

11 312 1

Reserved

63 249 5610131415

REQUEST TYPE — BUS_LOCKS (R/W)
REQUEST TYPE — PF_LLC_IFETCH (R/W)
REQUEST TYPE — PF_LLC_RFO (R/W)
REQUEST TYPE — PF_LLC_DATA_RD (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 00000000_00000000H

37

See Figure 18-30

Table 18-31 MSR_OFFCORE_RSP_x Request_Type Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand data reads of full and partial cachelines as well as demand data
page table entry cacheline reads. Does not count L2 data read prefetches or instruction fetches.

DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated
by a write to data cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction cacheline reads. Does not count L2
code read prefetches.

WB 3 (R/W). Counts the number of writeback (modified to exclusive) transactions.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 prefetchers.

PF_LLC_DATA_RD 7 (R/W). L2 prefetcher to L3 for loads.

PF_LLC_RFO 8 (R/W). RFO requests generated by L2 prefetcher

PF_LLC_IFETCH 9 (R/W). L2 prefetcher to L3 for instruction fetches.

BUS_LOCKS 10 (R/W). Bus lock and split lock requests

STRM_ST 11 (R/W). Streaming store requests

OTHER 15 (R/W). Any other request that crosses IDI, including I/O.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 188

18.8.8 Intel® Xeon® Processor E5 Family Uncore Performance Monitoring Facility
The uncore subsystem in the Intel Xeon processor E5-2600 product family has some similarities with those of the
Intel Xeon processor E7 family. Within the uncore subsystem, localized performance counter sets are provided at
logic control unit scope. For example, each Cbox caching agent has a set of local performance counters, and the
power controller unit (PCU) has its own local performance counters. Up to 8 C-Box units are supported in the
uncore sub-system.

Table 18-36 summarizes the uncore PMU facilities providing MSR interfaces.

Details of the uncore performance monitoring facility of Intel Xeon Processor E5 family is available in “Intel®
Xeon® Processor E5 Uncore Performance Monitoring Programming Reference Manual”. The MSR-based uncore
PMU interfaces are listed in Table 35-19.

...

18.9.1 Intel® Xeon® Processor E5 v2 and E7 v2 Family Uncore Performance Monitoring
Facility

The uncore subsystem in the Intel Xeon processor E5 v2 and Intel Xeon Processor E7 v2 product families are
based on the Ivy Bridge-E microarchitecture. There are some similarities with those of the Intel Xeon processor
E5 family based on the Sandy Bridge microarchitecture. Within the uncore subsystem, localized performance
counter sets are provided at logic control unit scope.

Details of the uncore performance monitoring facility of Intel Xeon Processor E5 v2 and Intel Xeon Processor E7
v2 families are available in “Intel® Xeon® Processor E5 v2 and E7 v2 Uncore Performance Monitoring Program-
ming Reference Manual”. The MSR-based uncore PMU interfaces are listed in Table 35-23.

18.10 4TH GENERATION INTEL® CORE™ PROCESSOR PERFORMANCE
MONITORING FACILITY

The 4th generation Intel® Core™ processor and Intel® Xeon® processor E3-1200 v3 product family are based on
the Haswell microarchitecture. The core PMU supports architectural performance monitoring capability with
version ID 3 (see Section 18.2.3) and a host of non-architectural monitoring capabilities.

Architectural performance monitoring events and non-architectural monitoring events are programmed using
fixed counters and programmable counters/event select MSRS as described in Section 18.2.3.

The core PMU’s capability is similar to those described in Section 18.8 through Section 18.8.5, with some differ-
ences and enhancements summarized in Table 18-37. Additionally, the core PMU provides some enhancement to
support performance monitoring when the target workload contains instruction streams using Intel® Transac-
tional Synchronization Extensions (TSX), see Section 18.10.5. For details of Intel TSX, see Chapter 15, “Program-
ming with Intel® Transactional Synchronization Extensions” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.

Table 18-36 Uncore PMU MSR Summary for Intel® Xeon® Processor E5 Family

Box # of Boxes Counters per Box
Counter
Width

General
Purpose

Global
Enable Sub-control MSRs

C-Box 8 4 44 Yes per-box None

PCU 1 4 48 Yes per-box Match/Mask

U-Box 1 2 44 Yes uncore None

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 189

18.10.1 Precise Event Based Sampling (PEBS) Facility
The PEBS facility in the 4th Generation Intel Core processor is similar to those in processors based on Intel micro-
architecture code name Sandy Bridge, with several enhanced features. The key components and differences of
PEBS facility relative to Intel microarchitecture code name Sandy Bridge is summarized in Table 18-38.

Table 18-37 Core PMU Comparison

Box
Intel® microarchitecture code
name Haswell

Intel® microarchitecture code
name Sandy Bridge Comment

of Fixed counters per thread 3 3

of general-purpose counters
per core

8 8

Counter width (R,W) R:48 , W: 32/48 R:48 , W: 32/48 See Section 18.2.4.

of programmable counters per
thread

4 or (8 if a core not shared by two
threads)

4 or (8 if a core not shared by
two threads)

Use CPUID to enumerate
of counters.

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with
legacy semantics.

• Freeze_on_LBR with legacy
semantics for branch profiling

• Freeze_while_SMM

• Freeze_Perfmon_on_PMI
with legacy semantics.

• Freeze_on_LBR with legacy
semantics for branch
profiling

• Freeze_while_SMM

See Section 17.4.7

Precise Event Based Sampling
(PEBS) Events

See Table 18-27 and Section
18.10.5.1

See Table 18-27 IA32_PMC4-IA32_PMC7
do not support PEBS.

PEBS-Load Latency See Section 18.8.4.2; See Section 18.8.4.2;

PEBS-Precise Store No, replaced by Data Address
profiling

Section 18.8.4.3

PEBS-PDIR yes (using precise
INST_RETIRED.ALL)

yes (using precise
INST_RETIRED.ALL)

PEBS-EventingIP yes no

Data Address Profiling yes no

LBR Profiling yes yes

Call Stack Profiling yes, see Section 17.8 no Use LBR facility

Off-core Response Event MSR 1A6H and 1A7H; Extended
request and response types

MSR 1A6H and 1A7H; Extended
request and response types

Intel TSX support for Perfmon See Section 18.10.5; no

Table 18-38 PEBS Facility Comparison

Box
Intel® microarchitecture code
name Haswell

Intel® microarchitecture code
name Sandy Bridge Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7

PEBS Buffer Programming Section 18.7.1.1 Section 18.7.1.1 Unchanged

IA32_PEBS_ENABLE Layout Figure 18-21 Figure 18-35

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 190

Only IA32_PMC0 through IA32_PMC3 support PEBS.

NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero:
AnyThread, Edge, Invert, CMask.

In a PMU with PDIR capability, PEBS behavior is unpredictable if IA32_PERFEVTSELx or
IA32_PMCx is changed for a PEBS-enabled counter while an event is being counted. To avoid this,
changes to the programming or value of a PEBS-enabled counter should be performed when the
counter is disabled.

18.10.2 PEBS Data Format
The PEBS record format for the 4th Generation Intel Core processor is shown in Table 18-39. The PEBS record
format, along with debug/store area storage format, does not change regardless of whether IA-32e mode is
active or not. CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-
independent. When set, it uses 64-bit DS storage format.

PEBS record layout Table 18-39, Enhanced fields at
offsets 98H, A0H, A8H, B0H

Table 18-18, Enhanced fields
at offsets 98H, A0H, A8H

PEBS Events See Table 18-27 See Table 18-27 IA32_PMC4-IA32_PMC7 do not
support PEBS.

PEBS-Load Latency See Table 18-28 Table 18-28

PEBS-Precise Store no, replaced by data address
profiling

yes; see Section 18.8.4.3

PEBS-PDIR yes yes IA32_PMC1 only

PEBS skid from EventingIP 1 (or 2 if micro+macro fusion) 1

SAMPLING Restriction Small SAV(CountDown) value incur higher overhead than prior
generation.

Table 18-38 PEBS Facility Comparison

Box
Intel® microarchitecture code
name Haswell

Intel® microarchitecture code
name Sandy Bridge Comment

Table 18-39 PEBS Record Format for 4th Generation Intel Core Processor Family

Byte Offset Field Byte Offset Field

00H R/EFLAGS 60H R10

08H R/EIP 68H R11

10H R/EAX 70H R12

18H R/EBX 78H R13

20H R/ECX 80H R14

28H R/EDX 88H R15

30H R/ESI 90H IA32_PERF_GLOBAL_STATUS

38H R/EDI 98H Data Linear Address

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 191

The layout of PEBS records are almost identical to those shown in Table 18-18. Offset B0H is a new field that
records the eventing IP address of the retired instruction that triggered the PEBS assist.

The PEBS records at offsets 98H, A0H, and ABH record data gathered from three of the PEBS capabilities in prior
processor generations: load latency facility (Section 18.8.4.2), PDIR (Section 18.8.4.4), and the equivalent capa-
bility of precise store in prior generation (see Section 18.10.3).

In the core PMU of the 4th generation Intel Core processor, load latency facility and PDIR capabilities are
unchanged. However, precise store is replaced by an enhanced capability, data address profiling, that is not
restricted to store address. Data address profiling also records information in PEBS records at offsets 98H, A0H,
and ABH.

18.10.3 PEBS Data Address Profiling
The Data Linear Address facility is also abbreviated as DataLA. The facility is a replacement or extension of the
precise store facility in previous processor generations. The DataLA facility complements the load latency facility
by providing a means to profile load and store memory references in the system, leverages the PEBS facility, and
provides additional information about sampled loads and stores. Having precise memory reference events with
linear address information for both loads and stores provides information to improve data structure layout, elim-
inate remote node references, and identify cache-line conflicts in NUMA systems.

The DataLA facility in the 4th generation processor supports the following events configured to use PEBS:

DataLA can use any one of the IA32_PMC0-IA32_PMC3 counters. Counter overflows will initiate the generation of
PEBS records. Upon counter overflow, hardware captures the linear address and possible other status information
of the retiring memory uop. This information is then written to the PEBS record that is subsequently generated.

To enable the DataLA facility, software must complete the following steps. Please note that the DataLA facility
relies on the PEBS facility, so the PEBS configuration requirements must be completed before attempting to
capture DataLA information.

40H R/EBP A0H Data Source Encoding

48H R/ESP A8H Latency value (core cycles)

50H R8 B0H EventingIP

58H R9 B8H TX Abort Information (Section 18.10.5.1)

Table 18-39 PEBS Record Format for 4th Generation Intel Core Processor Family

Byte Offset Field Byte Offset Field

Table 18-40 Precise Events That Supports Data Linear Address Profiling
Event Name Event Name

MEM_UOPS_RETIRED.STLB_MISS_LOADS MEM_UOPS_RETIRED.STLB_MISS_STORES

MEM_UOPS_RETIRED.LOCK_LOADS MEM_UOPS_RETIRED.SPLIT_STORES

MEM_UOPS_RETIRED.SPLIT_LOADS MEM_UOPS_RETIRED.ALL_STORES

MEM_UOPS_RETIRED.ALL_LOADS MEM_LOAD_UOPS_LLC_MISS_RETIRED.LOCAL_DRAM

MEM_LOAD_UOPS_RETIRED.L1_HIT MEM_LOAD_UOPS_RETIRED.L2_HIT

MEM_LOAD_UOPS_RETIRED.L3_HIT MEM_LOAD_UOPS_RETIRED.L1_MISS

MEM_LOAD_UOPS_RETIRED.L2_MISS MEM_LOAD_UOPS_RETIRED.L3_MISS

MEM_LOAD_UOPS_RETIRED.HIT_LFB MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS

MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM

UOPS_RETIRED.ALL (if load or store is tagged) MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_NONE

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 192

• Complete the PEBS configuration steps.
• Program the an event listed in Table 18-40 using any one of IA32_PERFEVTSEL0-IA32_PERFEVTSEL3.
• Set the corresponding IA32_PEBS_ENABLE.PEBS_EN_CTRx bit. This enables the corresponding IA32_PMCx

as a PEBS counter and enables the DataLA facility.

When the DataLA facility is enabled, the relevant information written into a PEBS record affects entries at offsets
98H, A0H and A8H, as shown in Table 18-41.

...

18.10.4 Off-core Response Performance Monitoring
The core PMU facility to collect off-core response events are similar to those described in Section 18.8.5. The
event codes are listed in Table 18-30. Each event code for off-core response monitoring requires programming an
associated configuration MSR, MSR_OFFCORE_RSP_x. Software must program MSR_OFFCORE_RSP_x according
to:
• Transaction request type encoding (bits 15:0): see Table 18-42.
• Supplier information (bits 30:16): see Table 18-43 and Table 18-43.
• Snoop response information (bits 37:31): see Table 18-33.

Table 18-41 Layout of Data Linear Address Information In PEBS Record

Field Offset Description

Data Linear
Address

98H The linear address of the load or the destination of the store.

Store Status A0H • DCU Hit (Bit 0): The store hit the data cache closest to the core (L1 cache) if this bit is set, otherwise
the store missed the data cache. This information is valid only for the following store events:
UOPS_RETIRED.ALL (if store is tagged),
MEM_UOPS_RETIRED.STLB_MISS_STORES,
MEM_UOPS_RETIRED.LOCK_STORES,
MEM_UOPS_RETIRED.SPLIT_STORES, MEM_UOPS_RETIRED.ALL_STORES

• Other bits are zero, The STLB_MISS, LOCK bit information can be obtained by programming the
corresponding store event in Table 18-40.

Reserved A8H Always zero

Table 18-42 MSR_OFFCORE_RSP_x Request_Type Definition (Haswell microarchitecture)

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand data reads of full and partial cachelines as well as demand data
page table entry cacheline reads. Does not count L2 data read prefetches or instruction fetches.

DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated
by a write to data cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction cacheline reads. Does not count L2
code read prefetches.

Reserved 3 Reserved

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 prefetchers.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 193

The supplier information field listed in Table 18-43 and Table 18-43. The fields vary across products (according to
CPUID signatures) and is noted in the description.

18.10.4.1 Off-core Response Performance Monitoring in Intel Xeon Processors E5 v3 Series
Table 18-43 lists the supplier information field that apply to Intel Xeon processor E5 v3 series (CPUID signature
06_3FH).

Reserved 7-14 Reserved

OTHER 15 (R/W). Any other request that crosses IDI, including I/O.

Table 18-42 MSR_OFFCORE_RSP_x Request_Type Definition (Contd.)(Haswell microarchitecture)

Bit Name Offset Description

Table 18-43 MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature 06_3CH, 06_46H)

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier
Info

NO_SUPP 17 (R/W). No Supplier Information available

L3_HITM 18 (R/W). M-state initial lookup stat in L3.

L3_HITE 19 (R/W). E-state

L3_HITS 20 (R/W). S-state

Reserved 21 Reserved

LOCAL 22 (R/W). Local DRAM Controller

Reserved 30:23 Reserved

Table 18-44 MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature 06_45H)

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier
Info

NO_SUPP 17 (R/W). No Supplier Information available

L3_HITM 18 (R/W). M-state initial lookup stat in L3.

L3_HITE 19 (R/W). E-state

L3_HITS 20 (R/W). S-state

Reserved 21 Reserved

L4_HIT_LOCAL_L4 22 (R/W). L4 Cache

L4_HIT_REMOTE_HOP0_L4 23 (R/W). L4 Cache

L4_HIT_REMOTE_HOP1_L4 24 (R/W). L4 Cache

L4_HIT_REMOTE_HOP2P_L4 25 (R/W). L4 Cache

Reserved 30:26 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 194

...

18.10.7 Intel® Xeon® Processor E5 v3 Family Uncore Performance Monitoring Facility
Details of the uncore performance monitoring facility of Intel Xeon Processor E5 v3 families are available in
“Intel® Xeon® Processor E5 v3 Uncore Performance Monitoring Programming Reference Manual”. The MSR-
based uncore PMU interfaces are listed in Table 35-28.

18.11 INTEL® CORE™ M PROCESSOR PERFORMANCE MONITORING FACILITY
The Intel® Core™ M processor and the 5th Generation Intel Core processor families are based on the Broadwell
microarchitecture. The core PMU supports architectural performance monitoring capability with version ID 3 (see
Section 18.2.3) and a host of non-architectural monitoring capabilities.

Architectural performance monitoring events and non-architectural monitoring events are programmed using
fixed counters and programmable counters/event select MSRS as described in Section 18.2.3.

The core PMU has the same capability as those described in Section 18.10. IA32_PERF_GLOBAL_STATUS provide
a bit indicator (bit 55) for PMI handler to distinguish PMI due to output buffer overflow condition due to accumu-
lating packet data from Intel Processor Trace.

Table 18-45 MSR_OFFCORE_RSP_x Supplier Info Field Definition

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier
Info

NO_SUPP 17 (R/W). No Supplier Information available

L3_HITM 18 (R/W). M-state initial lookup stat in L3.

L3_HITE 19 (R/W). E-state

L3_HITS 20 (R/W). S-state

L3_HITF 21 (R/W). F-state

LOCAL 22 (R/W). Local DRAM Controller

Reserved 26:23 Reserved

L3_MISS_REMOTE_HOP0 27 (R/W). Hop 0 Remote supplier

L3_MISS_REMOTE_HOP1 28 (R/W). Hop 1 Remote supplier

L3_MISS_REMOTE_HOP2P 29 (R/W). Hop 2 or more Remote supplier

Reserved 30 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 195

Details of Intel Processor Trace is described in Chapter 36, “Intel® Processor Trace”.
IA32_PERF_GLOBAL_OVF_CTRL MSR provide a corresponding reset control bit.

The specifics of non-architectural performance events are listed in Chapter 19, “Performance Monitoring Events”.

Figure 18-41 IA32_PERF_GLOBAL_STATUS MSR in Broadwell Microarchitecture

Figure 18-42 IA32_PERF_GLOBAL_OVF_CTRL MSR in Broadwell microarchitecture

62

FIXED_CTR2 Overflow (RO)
FIXED_CTR1 Overflow (RO)
FIXED_CTR0 Overflow (RO)
PMC7_OVF (RO, If PMC7 present)

2 1 0

PMC6_OVF (RO, If PMC6 present)

3132333435

Reserved

63

CondChgd
Ovf_Buffer

8 7 6 5 4 3

PMC5_OVF (RO, If PMC5 present)
PMC4_OVF (RO, If PMC4 present)
PMC3_OVF (RO)
PMC2_OVF (RO)
PMC1_OVF (RO)
PMC0_OVF (RO)

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

Ovf_UncorePMU

61

Trace_ToPA_PMI

55

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC7_ClrOvf (if PMC7 present)

2 1 0

PMC6_ClrOvf (if PMC6 present)

3132333435

Reserved

63

ClrCondChgd
ClrOvfDSBuffer

8 7 6 5 4 3

PMC5_ClrOvf (if PMC5 present)
PMC4_ClrOvf (if PMC4 present)
PMC3_ClrOvf
PMC2_ClrOvf
PMC1_ClrOvf
PMC0_ClrOvf

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

ClrOvfUncore
ClrTraceToPA_PMI

61 55

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 196

18.12 NEXT GENERATION INTEL® CORE™ PROCESSOR PERFORMANCE
MONITORING FACILITY

The next generation Intel® Core™ processor is based on the Sky Lake microarchitecture. The core PMU supports
architectural performance monitoring capability with version ID 4 (see Section 18.2.4) and a host of non-archi-
tectural monitoring capabilities.

Architectural performance monitoring events and non-architectural monitoring events are programmed using
fixed counters and programmable counters/event select MSRS as described in Section 18.2.3.

The core PMU’s capability is similar to those described in Section 18.8 through Section 18.8.5, with some differ-
ences and enhancements summarized in Table 18-37. Additionally, the core PMU provides some enhancement to
support performance monitoring when the target workload contains instruction streams using Intel® Transac-
tional Synchronization Extensions (TSX), see Section 18.10.5. For details of Intel TSX, see Chapter 15, “Program-
ming with Intel® Transactional Synchronization Extensions” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.

Performance monitoring result may be affected by side-band activity on processors that support Intel SGX, details
are described in Chapter 7 of the “Intel® Software Guard Extensions Programming Reference”.

Table 18-48 Core PMU Comparison

Box
Intel® microarchitecture code name
Sky Lake

Intel® microarchitecture code
name Haswell and Broadwell Comment

of Fixed counters per thread 3 3

of general-purpose counters
per core

8 8

Counter width (R,W) R:48 , W: 32/48 R:48 , W: 32/48 See Section 18.2.4.

of programmable counters
per thread

4 or (8 if a core not shared by two
threads)

4 or (8 if a core not shared by two
threads)

CPUID enumerates
of counters.

Architectural Perfmon version 4 3 See Section 18.2.4

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with
streamlined semantics.

• Freeze_on_LBR with streamlined
semantics

• Freeze_while_SMM

• Freeze_Perfmon_on_PMI with
legacy semantics.

• Freeze_on_LBR with legacy
semantics for branch profiling

• Freeze_while_SMM

See Section 17.4.7.

Legacy semantics
not supported with
version 4 or higher

Counter and Buffer Overflow
Status Management

• Query via
IA32_PERF_GLOBAL_STATUS

• Reset via
IA32_PERF_GLOBAL_STATUS_RESET

• Set via
IA32_PERF_GLOBAL_STATUS_SET

• Query via
IA32_PERF_GLOBAL_STATUS

• Reset via
IA32_PERF_GLOBAL_OVF_CTRL

See Section 18.2.4.

IA32_PERF_GLOBAL_STATUS
Indicators of Overflow/
Overhead/Interference

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow
• CTR_Frz, LBR_Frz, ASCI

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow (applicable

to Broadwell microarchitecture)

See Section 18.2.4.

Enable control in
IA32_PERF_GLOBAL_STATUS

• CTR_Frz,
• LBR_Frz

NA See Section
18.2.4.1.

Perfmon Counter In-Use
Indicator

Query IA32_PERF_GLOBAL_INUSE NA See Section
18.2.4.3.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 197

18.12.1 Precise Event Based Sampling (PEBS) Facility
The PEBS facility in the Next Generation Intel Core processor provides a number enhancement relative to PEBS in
processors based on Haswell/Broadwell microarchitectures. The key components and differences of PEBS facility
relative to Haswell/Broadwell microarchitecture is summarized in Table 18-49.

Precise Event Based Sampling
(PEBS) Events

See Table 18-51 See Table 18-27 IA32_PMC4-PMC7
do not support
PEBS.

LBR Record Format Encoding 000101b 000100b Section 17.4.8.1

LBR Size 32 entries 16 entries

LBR Entry From_IP/To_IP/LBR_Info triplet From_IP/To_IP pair Section 17.9

LBR Timing yes no Section 17.9.1

Call Stack Profiling yes, see Section 17.8 yes, see Section 17.8 Use LBR facility

Off-core Response Event MSR 1A6H and 1A7H; Extended request
and response types

MSR 1A6H and 1A7H; Extended
request and response types

Intel TSX support for Perfmon See Section 18.10.5; See Section 18.10.5;

Table 18-48 Core PMU Comparison (Contd.)

Box
Intel® microarchitecture code name
Sky Lake

Intel® microarchitecture code
name Haswell and Broadwell Comment

Table 18-49 PEBS Facility Comparison

Box
Intel® microarchitecture code
name Sky Lake

Intel® microarchitecture code
name Haswell and Broadwell Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7

PEBS Buffer Programming Section 18.7.1.1 Section 18.7.1.1 Unchanged

IA32_PEBS_ENABLE Layout Figure 18-21 Figure 18-21

PEBS-EventingIP yes yes

PEBS record format encoding 0011b 0010b

PEBS record layout Table 18-50, Enhanced fields
at offsets 98H- B8H; and new
fields at C0H

Table 18-39, Enhanced fields at
offsets 98H, A0H, A8H, B0H

Multi-counter PEBS
resolution

PEBS record 90H resolves the
eventing counter overflow

PEBS record 90H reflects
IA32_PERF_GLOBAL_STATUS

PEBS Events See Table 18-51 See Table 18-27 IA32_PMC4-IA32_PMC7 do not
support PEBS.

PEBS-PDIR yes yes IA32_PMC1 only

PEBS-Load Latency See Section 18.8.4.2; See Section 18.8.4.2;

PEBS-Precise Store No, replaced by Data Address
profiling

No, replaced by Data Address
profiling

see Section 18.8.4.3

Data Address Profiling yes yes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 198

Only IA32_PMC0 through IA32_PMC3 support PEBS.

NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero:
AnyThread, Edge, Invert, CMask.

In a PMU with PDIR capability, PEBS behavior is unpredictable if IA32_PERFEVTSELx or
IA32_PMCx is changed for a PEBS-enabled counter while an event is being counted. To avoid this,
changes to the programming or value of a PEBS-enabled counter should be performed when the
counter is disabled.

18.12.1.1 PEBS Data Format
The PEBS record format for the next generation Intel Core processor is reporting with encoding 0011b in
IA32_PERF_CAPABILITIES[11:8]. The lay out is shown in Table 18-50. The PEBS record format, along with
debug/store area storage format, does not change regardless of whether IA-32e mode is active or not.
CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-independent.
When set, it uses 64-bit DS storage format.

The layout of PEBS records are largely identical to those shown in Table 18-39.

SAMPLING Restriction Small SAV(CountDown) value
incur higher overhead than
prior generation.

Small SAV(CountDown) value
incur higher overhead than prior
generation.

Table 18-49 PEBS Facility Comparison

Box
Intel® microarchitecture code
name Sky Lake

Intel® microarchitecture code
name Haswell and Broadwell Comment

Table 18-50 PEBS Record Format for Next Generation Intel Core Processor Family

Byte Offset Field Byte Offset Field

00H R/EFLAGS 68H R11

08H R/EIP 70H R12

10H R/EAX 78H R13

18H R/EBX 80H R14

20H R/ECX 88H R15

28H R/EDX 90H Applicable Counter

30H R/ESI 98H Data Linear Address

38H R/EDI A0H Data Source Encoding

40H R/EBP A8H Latency value (core cycles)

48H R/ESP B0H EventingIP

50H R8 B8H TX Abort Information (Section 18.10.5.1)

58H R9 C0H TSC

60H R10

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 199

The PEBS records at offsets 98H, A0H, and ABH record data gathered from three of the PEBS capabilities in prior
processor generations: load latency facility (Section 18.8.4.2), PDIR (Section 18.8.4.4), and data address
profiling (Section 18.10.3).

In the core PMU of the next generation processor, load latency facility and PDIR capabilities and data address
profiling are unchanged relative to the 4th and 5th generation Intel Core processors. Similarly, precise store is
replaced by data address profiling.

With format 0010b, a snapshot of the IA32_PERF_GLOBAL_STATUS may be useful to resolve the situations when
more than one of IA32_PMICx have been configured to collect PEBS data and two consecutive overflows of the
PEBS-enabled counters are sufficiently far apart in time. It is also possible for the image at 90H to indicate
multiple PEBS-enabled counters have overflowed. In the latter scenario, software cannot to correlate the PEBS
record entry to the multiple overflowed bits.

With PEBS record format encoding 0011b, offset 90H reports the “applicable counter” field, which is a multi-
counter PEBS resolution index allowing software to correlate the PEBS record entry with the eventing PEBS over-
flow when multiple counters are configured to record PEBS records. Additionally, offset C0H captures a snapshot
of the TSC that provides a time line annotation for each PEBS record entry.

18.12.1.2 PEBS Events
The list of PEBS events supported for processors based on the Sky Lake microarchitecture is shown in Table 18-
51.

Table 18-51 PEBS Performance Events for the Sky Lake Microarchitecture
Event Name Event Select Sub-event UMask

INST_RETIRED C0H PREC_DIST 01H

ALL_CYCLES1 01H

OTHER_ASSISTS C1H PAGE_A_D 01H

BR_INST_RETIRED C4H CONDITIONAL 01H

NEAR_CALL 02H

ALL_BRANCHES 04H

NEAR_RETURN 08H

NEAR_TAKEN 20H

FAR_BRACHES 40H

BR_MISP_RETIRED C5H CONDITIONAL 01H

ALL_BRANCHES 04H

NEAR_TAKEN 20H

HLE_RETIRED C8H ABORTED 04H

RTM_RETIRED C9H ABORTED 04H

MEM_INST_RETIRED3 D0H STLB_MISS_LOADS 11H

STLB_MISS_STORE 12H

LOCK_LOADS 21H

SPLIT_LOADS 41H

SPLIT_STORES 42H

ALL_LOADS 81H

ALL_STORES 82H

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 200

18.12.1.3 Data Address Profiling
The PEBS Data address profiling on the next generation Intel Core processor is largely unchanged from prior
generation. When the DataLA facility is enabled, the relevant information written into a PEBS record affects
entries at offsets 98H, A0H and A8H, as shown in Table 18-41.

18.12.2 Off-core Response Performance Monitoring
The core PMU facility to collect off-core response events are similar to those described in Section 18.8.5. Each
event code for off-core response monitoring requires programming an associated configuration MSR,
MSR_OFFCORE_RSP_x. Software must program MSR_OFFCORE_RSP_x according to:
• Transaction request type encoding (bits 15:0): see Table 18-53.
• Supplier information (bits 30:16): see Table 18-54.
• Snoop response information (bits 37:31): see Table 18-33.

MEM_LOAD_RETIRED2 D1H L1_Hit 01H

L2_Hit 02H

L3_Hit 04H

L1_Miss 08H

L2_Miss 10H

L3_Miss 20H

Hit_LFB 40H

MEM_LOAD_UOPS_LLC_HIT_RET
IRED3

D2H XSNP_Miss 01H

XSNP_Hit 02H

XSNP_Hitm 04H

XSNP_None 08H

NOTES:
1. INST_RETIRED.ALL_CYCLES is configured with additional parameters of cmask = 10 and INV = 1
2. Instruction with at least one load uop experiencing the condition specified in the UMask.

Table 18-51 PEBS Performance Events for the Sky Lake Microarchitecture (Contd.)
Event Name Event Select Sub-event UMask

Table 18-52 Layout of Data Linear Address Information In PEBS Record

Field Offset Description

Data Linear
Address

98H The linear address of the load or the destination of the store.

Store Status A0H • DCU Hit (Bit 0): The store hit the data cache closest to the core (L1 cache) if this bit is set, otherwise
the store missed the data cache. This information is valid only for the following store events:
UOPS_RETIRED.ALL (if store is tagged),
MEM_INST_RETIRED.STLB_MISS_STORES,
MEM_INST_RETIRED.ALL_STORES,
MEM_INST_RETIRED.SPLIT_STORES.

• Other bits are zero,

Reserved A8H Always zero

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 201

Table 18-54 lists the supplier information field that apply to next generation Intel Core processors. (CPUID signa-
ture 06_4EH, 06_5EH).

Table 18-53 MSR_OFFCORE_RSP_x Request_Type Definition (Sky Lake microarchitecture)

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand data reads of full and partial cachelines as well as demand data
page table entry cacheline reads. Does not count hw or sw prefetches.

DMND_RFO 1 (R/W). Counts the number of demand reads for ownership (RFO) requests generated by a write to data
cacheline. Does not count L2 RFO prefetches.

Reserved 2 Reserved

CORE_MWB 3 Counts the number of writebacks of core modified cachelines

Reserved 6:4 Reserved

PF_L3_DATA_RD 7 (R/W). Counts the number of MLC prefetches into L3

PF_L3_RFO 8 (R/W). Counts the number of RFO requests generated by MLC prefetches to L3.

Reserved 9 Reserved

PF_L1 10 (R/W). Counts the number of software prefetches and L1 hw prefetcher

STRM_ST 11 (R/W). Counts the number of streaming store requests

CORE_NMWB 12 Counts the number of writebacks of core non-modified cachelines

Reserved 13-14 Reserved

OTHER 15 (R/W). Any other request that crosses IDI, including I/O.

Table 18-54 MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature 06_4EH, 06_5EH)

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier
Info

NO_SUPP 17 (R/W). No Supplier Information available

L3_HITM 18 (R/W). M-state initial lookup stat in L3.

L3_HITE 19 (R/W). E-state

L3_HITS 20 (R/W). S-state

Reserved 21 Reserved

L4_HIT 22 (R/W). L4 Cache (if L4 is present in the processor)

Reserved 25:23 Reserved

DRAM 26 (R/W). Local Node

Reserved 29:27 Reserved

SPL_HIT 30 (R/W). L4 cache super line hit (if L4 is present in the processor)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 202

18.13 PERFORMANCE MONITORING (PROCESSORS
BASED ON INTEL NETBURST® MICROARCHITECTURE)

The performance monitoring mechanism provided in Pentium 4 and Intel Xeon processors is different from that
provided in the P6 family and Pentium processors. While the general concept of selecting, filtering, counting, and
reading performance events through the WRMSR, RDMSR, and RDPMC instructions is unchanged, the setup
mechanism and MSR layouts are incompatible with the P6 family and Pentium processor mechanisms. Also, the
RDPMC instruction has been enhanced to read the additional performance counters provided in the Pentium 4 and
Intel Xeon processors and to allow faster reading of counters.

The event monitoring mechanism provided with the Pentium 4 and Intel Xeon processors (based on Intel NetBurst
microarchitecture) consists of the following facilities:
• The IA32_MISC_ENABLE MSR, which indicates the availability in an Intel 64 or IA-32 processor of the

performance monitoring and precise event-based sampling (PEBS) facilities.
• Event selection control (ESCR) MSRs for selecting events to be monitored with specific performance counters.

The number available differs by family and model (43 to 45).
• 18 performance counter MSRs for counting events.
• 18 counter configuration control (CCCR) MSRs, with one CCCR associated with each performance counter.

CCCRs sets up an associated performance counter for a specific method of counting.
• A debug store (DS) save area in memory for storing PEBS records.
• The IA32_DS_AREA MSR, which establishes the location of the DS save area.
• The debug store (DS) feature flag (bit 21) returned by the CPUID instruction, which indicates the availability

of the DS mechanism.
• The MSR_PEBS_ENABLE MSR, which enables the PEBS facilities and replay tagging used in at-retirement

event counting.
• A set of predefined events and event metrics that simplify the setting up of the performance counters to count

specific events.

Table 18-57 lists the performance counters and their associated CCCRs, along with the ESCRs that select events
to be counted for each performance counter. Predefined event metrics and events are listed in Chapter 19,
“Performance-Monitoring Events.”
...

18.15.5 Cycle Counting and Opportunistic Processor Operation
As a result of the state transitions due to opportunistic processor performance operation (see Chapter 14, “Power
and Thermal Management”), a logical processor or a processor core can operate at frequency different from the
Processor Base frequency.

The following items are expected to hold true irrespective of when opportunistic processor operation causes state
transitions:
• The time stamp counter operates at a fixed-rate frequency of the processor.
• The IA32_MPERF counter increments at a fixed frequency irrespective of any transitions caused by opportu-

nistic processor operation.
• The IA32_FIXED_CTR2 counter increments at the same TSC frequency irrespective of any transitions caused

by opportunistic processor operation.
• The Local APIC timer operation is unaffected by opportunistic processor operation.
• The TSC, IA32_MPERF, and IA32_FIXED_CTR2 operate at close to the maximum non-turbo frequency, which

is equal to the product of scalable bus frequency and maximum non-turbo ratio.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 203

For processors based on Intel Core microarchitecture, the scalable bus frequency is encoded in the bit field
MSR_FSB_FREQ[2:0] at (0CDH), see Chapter 35, “Model-Specific Registers (MSRs)”. The maximum resolved bus
ratio can be read from the following bit field:
• If XE operation is disabled, the maximum resolved bus ratio can be read in MSR_PLATFORM_ID[12:8]. It

corresponds to the Processor Base frequency.
• IF XE operation is enabled, the maximum resolved bus ratio is given in MSR_PERF_STAT[44:40], it

corresponds to the maximum XE operation frequency configured by BIOS.

XE operation of an Intel 64 processor is implementation specific. XE operation can be enabled only by BIOS. If
MSR_PERF_STAT[31] is set, XE operation is enabled. The MSR_PERF_STAT[31] field is read-only.

18.16 IA32_PERF_CAPABILITIES MSR ENUMERATION
The layout of IA32_PERF_CAPABILITIES MSR is shown in Figure 18-49, it provides enumeration of a variety of
interfaces:
• IA32_PERF_CAPABILITIES.LBR_FMT[bits 5:0]: encodes the LBR format, details are described in Section

17.4.8.1.
• IA32_PERF_CAPABILITIES.PEBSTrap[6]: Trap/Fault-like indicator of PEBS recording assist, see Section

18.4.4.2.
• IA32_PERF_CAPABILITIES.PEBSArchRegs[7]: Indicator of PEBS assist save architectural registers, see

Section 18.4.4.2.
• IA32_PERF_CAPABILITIES.PEBS_FMT[bits 11:8]: Specifies the encoding of the layout of PEBS records, see

Section 18.4.4.2.
• IA32_PERF_CAPABILITIES.SMM_FRZ[12]: Indicates IA32_DEBUGCTL.FREEZE_WHILE_SMM is supported if

1, see Section 18.16.1.
• IA32_PERF_CAPABILITIES.FULL_WRITE[13]: Indicates the processor supports IA32_A_PMCx interface for

updating bits 32 and above of IA32_PMCx, see Section 18.2.5.

18.16.1 Filtering of SMM Handler Overhead
When performance monitoring facilities and/or branch profiling facilities (see Section 17.5, “Last Branch, Inter-
rupt, and Exception Recording (Intel® Core™ 2 Duo and Intel® Atom™ Processor Family)”) are enabled, these
facilities capture event counts, branch records and branch trace messages occurring in a logical processor. The
occurrence of interrupts, instruction streams due to various interrupt handlers all contribute to the results
recorded by these facilities.

Figure 18-49 Layout of IA32_PERF_CAPABILITIES MSR

SMM_FREEZE (R/O)
PEBS_REC_FMT (R/O)

8 7 012 3 1

Reserved

63 2411 56

PEBS_TRAP (R/O)
LBR_FMT (R/O)

PEBS_ARCH_REG (R/O)

13

FW_WRITE (R/O)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 204

If CPUID.01H:ECX.PDCM[bit 15] is 1, the processor supports the IA32_PERF_CAPABILITIES MSR. If
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is 1, the processor supports the ability for system soft-
ware using performance monitoring and/or branch profiling facilities to filter out the effects of servicing system
management interrupts.

If the FREEZE_WHILE_SMM capability is enabled on a logical processor and after an SMI is delivered, the
processor will clear all the enable bits of IA32_PERF_GLOBAL_CTRL, save a copy of the content of
IA32_DEBUGCTL and disable LBR, BTF, TR, and BTS fields of IA32_DEBUGCTL before transferring control to the
SMI handler.

The enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of IA32_DEBUGCTL prior to SMI
delivery will be restored, after the SMI handler issues RSM to complete its servicing.

It is the responsibility of the SMM code to ensure the state of the performance monitoring and branch profiling
facilities are preserved upon entry or until prior to exiting the SMM. If any of this state is modified due to actions
by the SMM code, the SMM code is required to restore such state to the values present at entry to the SMM
handler.

System software is allowed to set IA32_DEBUGCTL.FREEZE_WHILE_SMM_EN[bit 14] to 1 only supported as indi-
cated by IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] reporting 1.

...

22. Updates to Chapter 19, Volume 3B
Change bars show changes to Chapter 19 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...
This chapter lists the performance-monitoring events that can be monitored with the Intel 64 or IA-32 processors.
The ability to monitor performance events and the events that can be monitored in these processors are mostly
model-specific, except for architectural performance events, described in Section 19.1.

Non-architectural performance events (i.e. model-specific events) are listed for each generation of microarchitec-
ture:
• Section 19.2 - Processors based on Broadwell microarchitecture
• Section 19.3 - Processors based on Haswell microarchitecture
• Section 19.3.1 - Processors based on Haswell-E microarchitecture
• Section 19.4 - Processors based on Ivy Bridge microarchitecture
• Section 19.4.1 - Processors based on Ivy Bridge-E microarchitecture
• Section 19.5 - Processors based on Sandy Bridge microarchitecture
• Section 19.6 - Processors based on Intel® microarchitecture code name Nehalem
• Section 19.7 - Processors based on Intel® microarchitecture code name Westmere
• Section 19.8 - Processors based on Enhanced Intel® Core™ microarchitecture
• Section 19.9 - Processors based on Intel® Core™ microarchitecture
• Section 19.10 - Processors based on the Silvermont microarchitecture
• Section 19.11 - Processors based on Intel® Atom™ microarchitecture
• Section 19.12 - Intel® Core™ Solo and Intel® Core™ Duo processors
• Section 19.13 - Processors based on Intel NetBurst® microarchitecture
• Section 19.14 - Pentium® M family processors

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 205

• Section 19.15 - P6 family processors
• Section 19.16 - Pentium® processors

NOTE
These performance-monitoring events are intended to be used as guides for performance tuning.
The counter values reported by the performance-monitoring events are approximate and believed
to be useful as relative guides for tuning software. Known discrepancies are documented where
applicable.
All performance event encodings not documented in the appropriate tables for the given
processor are considered reserved, and their use will result in undefined counter updates with
associated overflow actions.
The event tables listed this chapter provide information for tool developers to support architec-
tural and non-architectural performance monitoring events. The tables are up to date at processor
launch, but are subject to changes. The most up to date event tables and additional details of
performance event implementation for end-user (including additional details beyond event code/
umask) can found at the “perfmon” repository provided by The Intel Open Source Technology
Center (https://download.01.org/perfmon/).

...

19.2 PERFORMANCE MONITORING EVENTS FOR THE INTEL® CORE™ M
PROCESSORS

The Intel® Core™ M processors and the 5th generation Intel Core processors are based on the Broadwell micro-
architecture. They support the architectural performance-monitoring events listed in Table 19-1. Non-architec-
tural performance-monitoring events in the processor core are listed in Table 19-3. The events in Table 19-3 apply
to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following values: 06_3DH
and 06_47H. Table 19-4 lists performance events supporting Intel TSX (see Section 18.10.5) and are available on
processor based Broadwell microarchitecture.

Non-architectural performance monitoring events that are located in the uncore sub-system are implementation
specific between different platforms using processors based on Broadwell microarchitecture and with different
DisplayFamily_DisplayModel signatures. Processors with CPUID signature of DisplayFamily_DisplayModel 06_3DH
and 06_47H support uncore performance events listed in Table 19-5.

...

19.3 PERFORMANCE MONITORING EVENTS FOR THE 4TH GENERATION
INTEL® CORE™ PROCESSORS

4th generation Intel® Core™ processors and Intel Xeon processor E3-1200 v3 product family are based on the
Haswell microarchitecture. They support the architectural performance-monitoring events listed in Table 19-1.
Non-architectural performance-monitoring events in the processor core are listed in Table 19-3. The events in
Table 19-3 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following
values: 06_3CH, 06_45H and 06_46H. Table 19-4 lists performance events focused on supporting Intel TSX (see
Section 18.10.5).

Additional information on event specifics (e.g. derivative events using specific IA32_PERFEVTSELx modifiers,
limitations, special notes and recommendations) can be found at http://software.intel.com/en-us/forums/soft-
ware-tuning-performance-optimization-platform-monitoring.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 206

Table 19-3 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD loads blocked by overlapping with store buffer that
cannot be forwarded .

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are
temporarily blocked because all resources for
handling the split accesses are in use.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS
_ALIAS

False dependencies in MOB due to partial compare
on address.

08H 01H DTLB_LOAD_MISSES.MISS_CAUS
ES_A_WALK

Misses in all TLB levels that cause a page walk of any
page size.

08H 02H DTLB_LOAD_MISSES.WALK_COM
PLETED_4K

Completed page walks due to demand load misses
that caused 4K page walks in any TLB levels.

08H 04H DTLB_LOAD_MISSES.WALK_COM
PLETED_2M_4M

Completed page walks due to demand load misses
that caused 2M/4M page walks in any TLB levels.

08H 0EH DTLB_LOAD_MISSES.WALK_COM
PLETED

Completed page walks in any TLB of any page size
due to demand load misses

08H 10H DTLB_LOAD_MISSES.WALK_DUR
ATION

Cycle PMH is busy with a walk.

08H 20H DTLB_LOAD_MISSES.STLB_HIT_
4K

Load misses that missed DTLB but hit STLB (4K).

08H 40H DTLB_LOAD_MISSES.STLB_HIT_
2M

Load misses that missed DTLB but hit STLB (2M).

08H 60H DTLB_LOAD_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

08H 80H DTLB_LOAD_MISSES.PDE_CACH
E_MISS

DTLB demand load misses with low part of linear-to-
physical address translation missed

0DH 03H INT_MISC.RECOVERY_CYCLES Cycles waiting to recover after Machine Clears
except JEClear. Set Cmask= 1.

Set Edge to count
occurrences

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the
RAT to RS.

Set Cmask = 1, Inv = 1, Any= 1to count stalled cycles
of this core.

Set Cmask = 1, Inv = 1to
count stalled cycles

0EH 10H UOPS_ISSUED.FLAGS_MERGE Number of flags-merge uops allocated. Such uops
adds delay.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such
uop has 3 sources (e.g. 2 sources + immediate)
regardless if as a result of LEA instruction or not.

0EH 40H UOPS_ISSUED.SiNGLE_MUL Number of multiply packed/scalar single precision
uops allocated.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 207

24H 21H L2_RQSTS.DEMAND_DATA_RD_
MISS

Demand Data Read requests that missed L2, no
rejects.

24H 41H L2_RQSTS.DEMAND_DATA_RD_
HIT

Demand Data Read requests that hit L2 cache.

24H E1H L2_RQSTS.ALL_DEMAND_DATA
_RD

Counts any demand and L1 HW prefetch data load
requests to L2.

24H 42H L2_RQSTS.RFO_HIT Counts the number of store RFO requests that hit
the L2 cache.

24H 22H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache.

24H E2H L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 44H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache.

24H 24H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2
cache.

24H 27H L2_RQSTS.ALL_DEMAND_MISS Demand requests that miss L2 cache.

24H E7H L2_RQSTS.ALL_DEMAND_REFE
RENCES

Demand requests to L2 cache.

24H E4H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 50H L2_RQSTS.L2_PF_HIT Counts all L2 HW prefetcher requests that hit L2.

24H 30H L2_RQSTS.L2_PF_MISS Counts all L2 HW prefetcher requests that missed
L2.

24H F8H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher requests.

24H 3FH L2_RQSTS.MISS All requests that missed L2.

24H FFH L2_RQSTS.REFERENCES All requests to L2 cache.

27H 50H L2_DEMAND_RQSTS.WB_HIT Not rejected writebacks that hit L2 cache

2EH 4FH LONGEST_LAT_CACHE.REFEREN
CE

This event counts requests originating from the core
that reference a cache line in the last level cache.

see Table 19-1

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache.

see Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD_
P

Counts the number of thread cycles while the thread
is not in a halt state. The thread enters the halt state
when it is running the HLT instruction. The core
frequency may change from time to time due to
power or thermal throttling.

see Table 19-1

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK

Increments at the frequency of XCLK (100 MHz)
when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmask = 1 and Edge =1 to count
occurrences.

Counter 2 only;

Set Cmask = 1 to count
cycles.

49H 01H DTLB_STORE_MISSES.MISS_CAU
SES_A_WALK

Miss in all TLB levels causes an page walk of any
page size (4K/2M/4M/1G).

Table 19-3 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 208

49H 02H DTLB_STORE_MISSES.WALK_CO
MPLETED_4K

Completed page walks due to store misses in one or
more TLB levels of 4K page structure.

49H 04H DTLB_STORE_MISSES.WALK_CO
MPLETED_2M_4M

Completed page walks due to store misses in one or
more TLB levels of 2M/4M page structure.

49H 0EH DTLB_STORE_MISSES.WALK_CO
MPLETED

Completed page walks due to store miss in any TLB
levels of any page size (4K/2M/4M/1G).

49H 10H DTLB_STORE_MISSES.WALK_DU
RATION

Cycles PMH is busy with this walk.

49H 20H DTLB_STORE_MISSES.STLB_HIT
_4K

Store misses that missed DTLB but hit STLB (4K).

49H 40H DTLB_STORE_MISSES.STLB_HIT
_2M

Store misses that missed DTLB but hit STLB (2M).

49H 60H DTLB_STORE_MISSES.STLB_HIT Store operations that miss the first TLB level but hit
the second and do not cause page walks.

49H 80H DTLB_STORE_MISSES.PDE_CAC
HE_MISS

DTLB store misses with low part of linear-to-physical
address translation missed.

4CH 01H LOAD_HIT_PRE.SW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for H/W prefetch.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

58H 04H MOVE_ELIMINATION.INT_NOT_E
LIMINATED

Number of integer Move Elimination candidate uops
that were not eliminated.

58H 08H MOVE_ELIMINATION.SIMD_NOT_
ELIMINATED

Number of SIMD Move Elimination candidate uops
that were not eliminated.

58H 01H MOVE_ELIMINATION.INT_ELIMIN
ATED

Number of integer Move Elimination candidate uops
that were eliminated.

58H 02H MOVE_ELIMINATION.SIMD_ELIMI
NATED

Number of SIMD Move Elimination candidate uops
that were eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count
transition

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring 0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read transactions
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is off

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Offcore outstanding Demand code Read transactions
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is off

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to
uncore. Set Cmask=1 to count cycles.

Use only when HTT is off

Table 19-3 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 209

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Offcore outstanding cacheable data read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

Use only when HTT is off

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC_
LOCK_DURATION

Cycles in which the L1D and L2 are locked, due to a
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_DU
RATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ from
MITE path.

Set Cmask = 1 to count cycles.

Can combine Umask 04H
and 20H

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ
from DSB path.

Set Cmask = 1 to count cycles.

Can combine Umask 08H
and 10H

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by DSB. Set Cmask = 1 to count
cycles. Add Edge=1 to count # of delivery.

Can combine Umask 04H,
08H

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ from
MS by either DSB or MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UO
PS

Counts cycles DSB is delivered at least one uops. Set
Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Counts cycles DSB is delivered four uops. Set Cmask
= 4.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UO
PS

Counts cycles MITE is delivered at least one uops. Set
Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. Set Cmask
= 4.

79H 3CH IDQ.MITE_ALL_UOPS # of uops delivered to IDQ from any path.

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A_
WALK

Misses in ITLB that causes a page walk of any page
size.

85H 02H ITLB_MISSES.WALK_COMPLETE
D_4K

Completed page walks due to misses in ITLB 4K page
entries.

85H 04H ITLB_MISSES.WALK_COMPLETE
D_2M_4M

Completed page walks due to misses in ITLB 2M/4M
page entries.

85H 0EH ITLB_MISSES.WALK_COMPLETE
D

Completed page walks in ITLB of any page size.

Table 19-3 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 210

85H 10H ITLB_MISSES.WALK_DURATION Cycle PMH is busy with a walk.

85H 20H ITLB_MISSES.STLB_HIT_4K ITLB misses that hit STLB (4K).

85H 40H ITLB_MISSES.STLB_HIT_2M ITLB misses that hit STLB (2M).

85H 60H ITLB_MISSES.STLB_HIT ITLB misses that hit STLB. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions
executed, but not necessarily retired.

Must combine with
umask 40H, 80H

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions
excluding calls and indirect branches.

Must combine with
umask 80H

88H 04H BR_INST_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify executed indirect near branch instructions
that are not calls nor returns.

Must combine with
umask 80H

88H 08H BR_INST_EXEC.RETURN_NEAR Qualify indirect near branches that have a return
mnemonic.

Must combine with
umask 80H

88H 10H BR_INST_EXEC.DIRECT_NEAR_C
ALL

Qualify unconditional near call branch instructions,
excluding non call branch, executed.

Must combine with
umask 80H

88H 20H BR_INST_EXEC.INDIRECT_NEAR
_CALL

Qualify indirect near calls, including both register and
memory indirect, executed.

Must combine with
umask 80H

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H
only

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must combine
with 01H,02H, 04H, 08H, 10H, 20H.

88H FFH BR_INST_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions
mispredicted.

Must combine with
umask 40H, 80H

89H 04H BR_MISP_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify mispredicted indirect near branch
instructions that are not calls nor returns.

Must combine with
umask 80H

89H 08H BR_MISP_EXEC.RETURN_NEAR Qualify mispredicted indirect near branches that
have a return mnemonic.

Must combine with
umask 80H

89H 10H BR_MISP_EXEC.DIRECT_NEAR_C
ALL

Qualify mispredicted unconditional near call branch
instructions, excluding non call branch, executed.

Must combine with
umask 80H

89H 20H BR_MISP_EXEC.INDIRECT_NEAR
_CALL

Qualify mispredicted indirect near calls, including
both register and memory indirect, executed.

Must combine with
umask 80H

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches
executed.

Applicable to umask 01H
only

89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed.
Must combine with 01H,02H, 04H, 08H, 10H, 20H.

89H FFH BR_MISP_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

Table 19-3 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 211

9CH 01H IDQ_UOPS_NOT_DELIVERED.CO
RE

Count number of non-delivered uops to RAT per
thread.

Use Cmask to qualify uop
b/w

A1H 01H UOPS_EXECUTED_PORT.PORT_
0

Cycles which a Uop is dispatched on port 0 in this
thread.

Set AnyThread to count
per core

A1H 02H UOPS_EXECUTED_PORT.PORT_
1

Cycles which a Uop is dispatched on port 1 in this
thread.

Set AnyThread to count
per core

A1H 04H UOPS_EXECUTED_PORT.PORT_
2

Cycles which a uop is dispatched on port 2 in this
thread.

Set AnyThread to count
per core

A1H 08H UOPS_EXECUTED_PORT.PORT_
3

Cycles which a uop is dispatched on port 3 in this
thread.

Set AnyThread to count
per core

A1H 10H UOPS_EXECUTED_PORT.PORT_
4

Cycles which a uop is dispatched on port 4 in this
thread.

Set AnyThread to count
per core

A1H 20H UOPS_EXECUTED_PORT.PORT_
5

Cycles which a uop is dispatched on port 5 in this
thread.

Set AnyThread to count
per core

A1H 40H UOPS_EXECUTED_PORT.PORT_
6

Cycles which a Uop is dispatched on port 6 in this
thread.

Set AnyThread to count
per core

A1H 80H UOPS_EXECUTED_PORT.PORT_
7

Cycles which a Uop is dispatched on port 7 in this
thread

Set AnyThread to count
per core

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related
reason.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_PE
NDING

Cycles with pending L2 miss loads. Set Cmask=2 to
count cycle.

Use only when HTT is off

A3H 02H CYCLE_ACTIVITY.CYCLES_LDM_
PENDING

Cycles with pending memory loads. Set Cmask=2 to
count cycle.

A3H 05H CYCLE_ACTIVITY.STALLS_L2_PE
NDING

Number of loads missed L2. Use only when HTT is off

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_P
ENDING

Cycles with pending L1 data cache miss loads. Set
Cmask=8 to count cycle.

PMC2 only

A3H 0CH CYCLE_ACTIVITY.STALLS_L1D_P
ENDING

Execution stalls due to L1 data cache miss loads. Set
Cmask=0CH.

PMC2 only

A8H 01H LSD.UOPS Number of Uops delivered by the LSD.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes 4k/2M/
4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_
DATA_RD

Demand data read requests sent to uncore. Use only when HTT is off

B0H 02H OFFCORE_REQUESTS.DEMAND_
CODE_RD

Demand code read requests sent to uncore. Use only when HTT is off

Table 19-3 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 212

B0H 04H OFFCORE_REQUESTS.DEMAND_
RFO

Demand RFO read requests sent to uncore, including
regular RFOs, locks, ItoM.

Use only when HTT is off

B0H 08H OFFCORE_REQUESTS.ALL_DATA
_RD

Data read requests sent to uncore (demand and
prefetch).

Use only when HTT is off

B1H 02H UOPS_EXECUTED.CORE Counts total number of uops to be executed per-core
each cycle.

Do not need to set ANY

B7H 01H OFF_CORE_RESPONSE_0 see Table 18-43 or Table 18-44. Requires MSR 01A6H

BBH 01H OFF_CORE_RESPONSE_1 See Table 18-43 or Table 18-44. Requires MSR 01A7H

BCH 11H PAGE_WALKER_LOADS.DTLB_L1 Number of DTLB page walker loads that hit in the
L1+FB.

BCH 21H PAGE_WALKER_LOADS.ITLB_L1 Number of ITLB page walker loads that hit in the
L1+FB.

BCH 12H PAGE_WALKER_LOADS.DTLB_L2 Number of DTLB page walker loads that hit in the L2.

BCH 22H PAGE_WALKER_LOADS.ITLB_L2 Number of ITLB page walker loads that hit in the L2.

BCH 14H PAGE_WALKER_LOADS.DTLB_L3 Number of DTLB page walker loads that hit in the L3.

BCH 24H PAGE_WALKER_LOADS.ITLB_L3 Number of ITLB page walker loads that hit in the L3.

BCH 18H PAGE_WALKER_LOADS.DTLB_M
EMORY

Number of DTLB page walker loads from memory.

BCH 28H PAGE_WALKER_LOADS.ITLB_ME
MORY

Number of ITLB page walker loads from memory.

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only;

C1H 08H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE
when penalty applicable.

C1H 10H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when
penalty applicable.

C1H 40H OTHER_ASSISTS.ANY_WB_ASSI
ST

Number of microcode assists invoked by HW upon
uop writeback.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use
cmask=1 and invert to count active cycles or stalled
cycles.

Supports PEBS and
DataLA, use Any=1 for
core granular.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

Supports PEBS

C3H 02H MACHINE_CLEARS.MEMORY_OR
DERING

Counts the number of machine clears due to memory
order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears
detected.

Table 19-3 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 213

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load
operations that refer to an illegal address range with
the mask bits set to 0.

C4H 00H BR_INST_RETIRED.ALL_BRANC
HES

Branch instructions at retirement. See Table 19-1

C4H 01H BR_INST_RETIRED.CONDITIONA
L

Counts the number of conditional branch instructions
retired.

Supports PEBS

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS

C4H 04H BR_INST_RETIRED.ALL_BRANC
HES

Counts the number of branch instructions retired. Supports PEBS

C4H 08H BR_INST_RETIRED.NEAR_RETU
RN

Counts the number of near return instructions
retired.

Supports PEBS

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions
retired.

C4H 20H BR_INST_RETIRED.NEAR_TAKE
N

Number of near taken branches retired. Supports PEBS

C4H 40H BR_INST_RETIRED.FAR_BRANC
H

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted branch instructions at retirement See Table 19-1

C5H 01H BR_MISP_RETIRED.CONDITIONA
L

Mispredicted conditional branch instructions retired. Supports PEBS

C5H 04H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted macro branch instructions retired. Supports PEBS

C5H 20H BR_MISP_RETIRED.NEAR_TAKE
N

Number of near branch instructions retired that
were taken but mispredicted.

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 FP assists due to Output values.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 FP assists due to input values.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to Output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSER
TS

Count cases of saving new LBR records by hardware.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY

Randomly sampled loads whose latency is above a
user defined threshold. A small fraction of the overall
loads are sampled due to randomization.

Specify threshold in MSR
3F6H

D0H 01H MEM_UOPS_RETIRED.LOADS Qualify retired memory uops that are loads. Combine
with umask 10H, 20H, 40H, 80H.

Supports PEBS and
DataLA

D0H 10H MEM_UOPS_RETIRED.STLB_MIS
S

Qualify retired memory uops with STLB miss. Must
combine with umask 01H, 02H, to produce counts.

Supports PEBS and
DataLA

D0H 40H MEM_UOPS_RETIRED.SPLIT Qualify retired memory uops with line split. Must
combine with umask 01H, 02H, to produce counts.

Supports PEBS and
DataLA

Table 19-3 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 214

D0H 80H MEM_UOPS_RETIRED.ALL Qualify any retired memory uops. Must combine with
umask 01H, 02H, to produce counts.

Supports PEBS and
DataLA

D1H 01H MEM_LOAD_UOPS_RETIRED.L1_
HIT

Retired load uops with L1 cache hits as data sources. Supports PEBS and
DataLA

D1H 02H MEM_LOAD_UOPS_RETIRED.L2_
HIT

Retired load uops with L2 cache hits as data sources. Supports PEBS and
DataLA

D1H 04H MEM_LOAD_UOPS_RETIRED.L3_
HIT

Retired load uops with L3 cache hits as data sources. Supports PEBS and
DataLA

D1H 08H MEM_LOAD_UOPS_RETIRED.L1_
MISS

Retired load uops missed L1 cache as data sources. Supports PEBS and
DataLA

D1H 10H MEM_LOAD_UOPS_RETIRED.L2_
MISS

Retired load uops missed L2. Unknown data source
excluded.

Supports PEBS and
DataLA

D1H 20H MEM_LOAD_UOPS_RETIRED.L3_
MISS

Retired load uops missed L3. Excludes unknown data
source .

Supports PEBS and
DataLA

D1H 40H MEM_LOAD_UOPS_RETIRED.HIT
_LFB

Retired load uops which data sources were load uops
missed L1 but hit FB due to preceding miss to the
same cache line with data not ready.

Supports PEBS and
DataLA

D2H 01H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_MISS

Retired load uops which data sources were L3 hit
and cross-core snoop missed in on-pkg core cache.

Supports PEBS and
DataLA

D2H 02H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HIT

Retired load uops which data sources were L3 and
cross-core snoop hits in on-pkg core cache.

Supports PEBS and
DataLA

D2H 04H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HITM

Retired load uops which data sources were HitM
responses from shared L3.

Supports PEBS and
DataLA

D2H 08H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_NONE

Retired load uops which data sources were hits in L3
without snoops required.

Supports PEBS and
DataLA

D3H 01H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.LOCAL_DRAM

Retired load uops which data sources missed L3 but
serviced from local dram.

Supports PEBS and
DataLA.

E6H 1FH BACLEARS.ANY Number of front end re-steers due to BPU
misprediction.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF Any MLC or L3 HW prefetch accessing L2, including
rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover
rejects.

Table 19-3 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 215

19.3.1 Performance Monitoring Events in the Processor Core of Intel Xeon Processor E5 v3
Family

Non-architectural performance monitoring events in the processor core that are applicable only to Intel Xeon
processor E5 v3 family based on the Haswell-E microarchitecture, with CPUID signature of
DisplayFamily_DisplayModel 06_3FH, are listed in Table 19-8. The performance events listed in Table 19-3 and
Table 19-4 also apply Intel Xeon processor E5 v3 family, except that the OFF_CORE_RESPONSE_x event listed in
Table 19-3 should reference Table 18-45.

Uncore performance monitoring events for Intel Xeon Processor E5 v3 families are described in “Intel® Xeon®
Processor E5 v3 Uncore Performance Monitoring Programming Reference Manual”.

...

19.4 PERFORMANCE MONITORING EVENTS FOR 3RD GENERATION
INTEL® CORE™ PROCESSORS

3rd generation Intel® Core™ processors and Intel Xeon processor E3-1200 v2 product family are based on Intel
microarchitecture code name Ivy Bridge. They support architectural performance-monitoring events listed in
Table 19-1. Non-architectural performance-monitoring events in the processor core are listed in Table 19-7. The
events in Table 19-7 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the
following values: 06_3AH.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover
rejects.

F2H 05H L2_LINES_OUT.DEMAND_CLEAN Clean L2 cache lines evicted by demand.

F2H 06H L2_LINES_OUT.DEMAND_DIRTY Dirty L2 cache lines evicted by demand.

Table 19-3 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Table 19-6 Non-Architectural Performance Events Applicable only to the Processor Core of
Intel® Xeon® Processor E5 v3 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

D3H 04H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.REMOTE_DRAM

Retired load uops whose data sources was remote
DRAM (snoop not needed, Snoop Miss).

Supports PEBS

D3H 10H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.REMOTE_HITM

Retired load uops whose data sources was remote
cache HITM.

Supports PEBS

D3H 20H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.REMOTE_FWD

Retired load uops whose data sources was forwards
from a remote cache.

Supports PEBS

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 216

Additional information on event specifics (e.g. derivative events using specific IA32_PERFEVTSELx modifiers,
limitations, special notes and recommendations) can be found at http://software.intel.com/en-us/forums/soft-
ware-tuning-performance-optimization-platform-monitoring.

Table 19-7 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD loads blocked by overlapping with store buffer that
cannot be forwarded .

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are
temporarily blocked because all resources for
handling the split accesses are in use.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS_
ALIAS

False dependencies in MOB due to partial compare
on address.

08H 81H DTLB_LOAD_MISSES.MISS_CAUSE
S_A_WALK

Misses in all TLB levels that cause a page walk of
any page size from demand loads.

08H 82H DTLB_LOAD_MISSES.WALK_COM
PLETED

Misses in all TLB levels that caused page walk
completed of any size by demand loads.

08H 84H DTLB_LOAD_MISSES.WALK_DUR
ATION

Cycle PMH is busy with a walk due to demand loads.

08H 88H DTLB_LOAD_MISSES.LARGE_PAG
E_WALK_DURATION

 Page walk for a large page completed for Demand
load

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the
RAT to RS.

Set Cmask = 1, Inv = 1, Any= 1to count stalled
cycles of this core.

Set Cmask = 1, Inv = 1to
count stalled cycles

0EH 10H UOPS_ISSUED.FLAGS_MERGE Number of flags-merge uops allocated. Such uops
adds delay.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such
uop has 3 sources (e.g. 2 sources + immediate)
regardless if as a result of LEA instruction or not.

0EH 40H UOPS_ISSUED.SiNGLE_MUL Number of multiply packed/scalar single precision
uops allocated.

10H 01H FP_COMP_OPS_EXE.X87 Counts number of X87 uops executed.

10H 10H FP_COMP_OPS_EXE.SSE_FP_PAC
KED_DOUBLE

Counts number of SSE* or AVX-128 double
precision FP packed uops executed.

10H 20H FP_COMP_OPS_EXE.SSE_FP_SCA
LAR_SINGLE

Counts number of SSE* or AVX-128 single precision
FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_PACKED
SINGLE

Counts number of SSE* or AVX-128 single precision
FP packed uops executed.

10H 80H FP_COMP_OPS_EXE.SSE_SCALAR
_DOUBLE

Counts number of SSE* or AVX-128 double
precision FP scalar uops executed.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 217

11H 01H SIMD_FP_256.PACKED_SINGLE Counts 256-bit packed single-precision floating-
point instructions.

11H 02H SIMD_FP_256.PACKED_DOUBLE Counts 256-bit packed double-precision floating-
point instructions.

14H 01H ARITH.FPU_DIV_ACTIVE Cycles that the divider is active, includes INT and FP.
Set 'edge =1, cmask=1' to count the number of
divides.

24H 01H L2_RQSTS.DEMAND_DATA_RD_H
IT

Demand Data Read requests that hit L2 cache

24H 03H L2_RQSTS.ALL_DEMAND_DATA_
RD

Counts any demand and L1 HW prefetch data load
requests to L2.

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO requests that hit
the L2 cache.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache.

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 10H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache.

24H 20H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2
cache.

24H 30H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Counts all L2 HW prefetcher requests that hit L2.

24H 80H L2_RQSTS.PF_MISS Counts all L2 HW prefetcher requests that missed
L2.

24H C0H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher requests.

27H 01H L2_STORE_LOCK_RQSTS.MISS RFOs that miss cache lines

27H 08H L2_STORE_LOCK_RQSTS.HIT_M RFOs that hit cache lines in M state

27H 0FH L2_STORE_LOCK_RQSTS.ALL RFOs that access cache lines in any state

28H 01H L2_L1D_WB_RQSTS.MISS Not rejected writebacks that missed LLC.

28H 04H L2_L1D_WB_RQSTS.HIT_E Not rejected writebacks from L1D to L2 cache lines
in E state.

28H 08H L2_L1D_WB_RQSTS.HIT_M Not rejected writebacks from L1D to L2 cache lines
in M state.

28H 0FH L2_L1D_WB_RQSTS.ALL Not rejected writebacks from L1D to L2 cache lines
in any state.

2EH 4FH LONGEST_LAT_CACHE.REFERENC
E

This event counts requests originating from the
core that reference a cache line in the last level
cache.

see Table 19-1

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache.

see Table 19-1

Table 19-7 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 218

3CH 00H CPU_CLK_UNHALTED.THREAD_P Counts the number of thread cycles while the
thread is not in a halt state. The thread enters the
halt state when it is running the HLT instruction.
The core frequency may change from time to time
due to power or thermal throttling.

see Table 19-1

3CH 01H CPU_CLK_THREAD_UNHALTED.R
EF_XCLK

Increments at the frequency of XCLK (100 MHz)
when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmask = 1 and Edge =1 to count
occurrences.

PMC2 only;

Set Cmask = 1 to count
cycles.

49H 01H DTLB_STORE_MISSES.MISS_CAUS
ES_A_WALK

Miss in all TLB levels causes an page walk of any
page size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_CO
MPLETED

Miss in all TLB levels causes a page walk that
completes of any page size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSES.WALK_DUR
ATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSES.STLB_HIT Store operations that miss the first TLB level but hit
the second and do not cause page walks

4CH 01H LOAD_HIT_PRE.SW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for H/W prefetch.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

58H 04H MOVE_ELIMINATION.INT_NOT_EL
IMINATED

Number of integer Move Elimination candidate uops
that were not eliminated.

58H 08H MOVE_ELIMINATION.SIMD_NOT_E
LIMINATED

Number of SIMD Move Elimination candidate uops
that were not eliminated.

58H 01H MOVE_ELIMINATION.INT_ELIMINA
TED

Number of integer Move Elimination candidate uops
that were eliminated.

58H 02H MOVE_ELIMINATION.SIMD_ELIMIN
ATED

Number of SIMD Move Elimination candidate uops
that were eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count
transition

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring
0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

5FH 04H DTLB_LOAD_MISSES.STLB_HIT Counts load operations that missed 1st level DTLB
but hit the 2nd level.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

Table 19-7 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 219

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Offcore outstanding Demand Code Read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to
uncore. Set Cmask=1 to count cycles.

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Offcore outstanding cacheable data read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC_L
OCK_DURATION

Cycles in which the L1D and L2 are locked, due to a
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_DUR
ATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ
from MITE path.

Set Cmask = 1 to count cycles.

Can combine Umask 04H
and 20H

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ
from DSB path.

Set Cmask = 1 to count cycles.

Can combine Umask 08H
and 10H

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by DSB. Set Cmask = 1 to count
cycles. Add Edge=1 to count # of delivery.

Can combine Umask 04H,
08H

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ
from MS by either DSB or MITE. Set Cmask = 1 to
count cycles.

Can combine Umask 04H,
08H

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UOP
S

Counts cycles DSB is delivered at least one uops.
Set Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Counts cycles DSB is delivered four uops. Set Cmask
= 4.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UOP
S

Counts cycles MITE is delivered at least one uops.
Set Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. Set
Cmask = 4.

79H 3CH IDQ.MITE_ALL_UOPS # of uops delivered to IDQ from any path.

80H 04H ICACHE.IFETCH_STALL Cycles where a code-fetch stalled due to L1
instruction-cache miss or an iTLB miss

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A_W
ALK

Misses in all ITLB levels that cause page walks

Table 19-7 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 220

85H 02H ITLB_MISSES.WALK_COMPLETED Misses in all ITLB levels that cause completed page
walks

85H 04H ITLB_MISSES.WALK_DURATION Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions
executed, but not necessarily retired.

Must combine with
umask 40H, 80H

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions
excluding calls and indirect branches.

Must combine with
umask 80H

88H 04H BR_INST_EXEC.INDIRECT_JMP_N
ON_CALL_RET

Qualify executed indirect near branch instructions
that are not calls nor returns.

Must combine with
umask 80H

88H 08H BR_INST_EXEC.RETURN_NEAR Qualify indirect near branches that have a return
mnemonic.

Must combine with
umask 80H

88H 10H BR_INST_EXEC.DIRECT_NEAR_C
ALL

Qualify unconditional near call branch instructions,
excluding non call branch, executed.

Must combine with
umask 80H

88H 20H BR_INST_EXEC.INDIRECT_NEAR_
CALL

Qualify indirect near calls, including both register
and memory indirect, executed.

Must combine with
umask 80H

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H
only

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must
combine with 01H,02H, 04H, 08H, 10H, 20H.

88H FFH BR_INST_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions
mispredicted.

Must combine with
umask 40H, 80H

89H 04H BR_MISP_EXEC.INDIRECT_JMP_N
ON_CALL_RET

Qualify mispredicted indirect near branch
instructions that are not calls nor returns.

Must combine with
umask 80H

89H 08H BR_MISP_EXEC.RETURN_NEAR Qualify mispredicted indirect near branches that
have a return mnemonic.

Must combine with
umask 80H

89H 10H BR_MISP_EXEC.DIRECT_NEAR_C
ALL

Qualify mispredicted unconditional near call branch
instructions, excluding non call branch, executed.

Must combine with
umask 80H

89H 20H BR_MISP_EXEC.INDIRECT_NEAR_
CALL

Qualify mispredicted indirect near calls, including
both register and memory indirect, executed.

Must combine with
umask 80H

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches
executed.

Applicable to umask 01H
only

89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed.
Must combine with 01H,02H, 04H, 08H, 10H, 20H.

89H FFH BR_MISP_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

Table 19-7 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 221

9CH 01H IDQ_UOPS_NOT_DELIVERED.COR
E

Count number of non-delivered uops to RAT per
thread.

Use Cmask to qualify uop
b/w

A1H 01H UOPS_DISPATCHED_PORT.PORT_
0

Cycles which a Uop is dispatched on port 0.

A1H 02H UOPS_DISPATCHED_PORT.PORT_
1

Cycles which a Uop is dispatched on port 1

A1H 0CH UOPS_DISPATCHED_PORT.PORT_
2

Cycles which a Uop is dispatched on port 2.

A1H 30H UOPS_DISPATCHED_PORT.PORT_
3

Cycles which a Uop is dispatched on port 3.

A1H 40H UOPS_DISPATCHED_PORT.PORT_
4

Cycles which a Uop is dispatched on port 4.

A1H 80H UOPS_DISPATCHED_PORT.PORT_
5

Cycles which a Uop is dispatched on port 5.

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related
reason.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_PEN
DING

Cycles with pending L2 miss loads. Set AnyThread
to count per core.

A3H 02H CYCLE_ACTIVITY.CYCLES_LDM_P
ENDING

Cycles with pending memory loads. Set AnyThread
to count per core.

Restricted to counters 0-
3 when HTT is disabled.

A3H 04H CYCLE_ACTIVITY.CYCLES_NO_EX
ECUTE

Cycles of dispatch stalls. Set AnyThread to count
per core.

Restricted to counters 0-
3 when HTT is disabled.

A3H 05H CYCLE_ACTIVITY.STALLS_L2_PEN
DING

Number of loads missed L2. Restricted to counters 0-
3 when HTT is disabled.

A3H 06H CYCLE_ACTIVITY.STALLS_LDM_P
ENDING

Restricted to counters 0-
3 when HTT is disabled.

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_PE
NDING

Cycles with pending L1 cache miss loads. Set
AnyThread to count per core.

PMC2 only

A3H 0CH CYCLE_ACTIVITY.STALLS_L1D_PE
NDING

Execution stalls due to L1 data cache miss loads.
Set Cmask=0CH.

PMC2 only

A8H 01H LSD.UOPS Number of Uops delivered by the LSD.

ABH 01H DSB2MITE_SWITCHES.COUNT Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHES.PENALTY_
CYCLES

Cycles DSB to MITE switches caused delay.

ACH 08H DSB_FILL.EXCEED_DSB_LINES DSB Fill encountered > 3 DSB lines.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes 4k/2M/
4M pages.

Table 19-7 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 222

B0H 01H OFFCORE_REQUESTS.DEMAND_D
ATA_RD

Demand data read requests sent to uncore.

B0H 02H OFFCORE_REQUESTS.DEMAND_C
ODE_RD

Demand code read requests sent to uncore.

B0H 04H OFFCORE_REQUESTS.DEMAND_R
FO

Demand RFO read requests sent to uncore,
including regular RFOs, locks, ItoM

B0H 08H OFFCORE_REQUESTS.ALL_DATA_
RD

Data read requests sent to uncore (demand and
prefetch).

B1H 01H UOPS_EXECUTED.THREAD Counts total number of uops to be executed per-
thread each cycle. Set Cmask = 1, INV =1 to count
stall cycles.

B1H 02H UOPS_EXECUTED.CORE Counts total number of uops to be executed per-
core each cycle.

Do not need to set ANY

B7H 01H OFFCORE_RESPONSE_0 See Section 18.8.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A6H

BBH 01H OFFCORE_RESPONSE_1 See Section 18.8.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A7H

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only

C1H 08H OTHER_ASSISTS.AVX_STORE Number of assists associated with 256-bit AVX
store operations.

C1H 10H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE
when penalty applicable.

C1H 20H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when
penalty applicable.

C1H 80H OTHER_ASSISTS.WB Number of times microcode assist is invoked by
hardware upon uop writeback

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use
cmask=1 and invert to count active cycles or stalled
cycles.

Supports PEBS, use
Any=1 for core granular.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

Supports PEBS

C3H 02H MACHINE_CLEARS.MEMORY_ORD
ERING

Counts the number of machine clears due to
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears
detected.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load
operations that refer to an illegal address range
with the mask bits set to 0.

Table 19-7 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 223

C4H 00H BR_INST_RETIRED.ALL_BRANCH
ES

Branch instructions at retirement. See Table 19-1

C4H 01H BR_INST_RETIRED.CONDITIONAL Counts the number of conditional branch
instructions retired.

Supports PEBS

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS

C4H 04H BR_INST_RETIRED.ALL_BRANCH
ES

Counts the number of branch instructions retired. Supports PEBS

C4H 08H BR_INST_RETIRED.NEAR_RETUR
N

Counts the number of near return instructions
retired.

Supports PEBS

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions
retired.

Supports PEBS

C4H 20H BR_INST_RETIRED.NEAR_TAKEN Number of near taken branches retired. Supports PEBS

C4H 40H BR_INST_RETIRED.FAR_BRANCH Number of far branches retired. Supports PEBS

C5H 00H BR_MISP_RETIRED.ALL_BRANCH
ES

Mispredicted branch instructions at retirement. See Table 19-1

C5H 01H BR_MISP_RETIRED.CONDITIONAL Mispredicted conditional branch instructions retired. Supports PEBS

C5H 04H BR_MISP_RETIRED.ALL_BRANCH
ES

Mispredicted macro branch instructions retired. Supports PEBS

C5H 20H BR_MISP_RETIRED.NEAR_TAKEN Mispredicted taken branch instructions retired. Supports PEBS

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 FP assists due to Output values. Supports PEBS

CAH 04H FP_ASSIST.X87_INPUT Number of X87 FP assists due to input values. Supports PEBS

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to Output values. Supports PEBS

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSERT
S

Count cases of saving new LBR records by
hardware.

CDH 01H MEM_TRANS_RETIRED.LOAD_LA
TENCY

Randomly sampled loads whose latency is above a
user defined threshold. A small fraction of the
overall loads are sampled due to randomization.

Specify threshold in MSR
3F6H. PMC 3 only.

CDH 02H MEM_TRANS_RETIRED.PRECISE_
STORE

Sample stores and collect precise store operation
via PEBS record. PMC3 only.

See Section 18.8.4.3

D0H 01H MEM_UOPS_RETIRED.LOADS Qualify retired memory uops that are loads.
Combine with umask 10H, 20H, 40H, 80H.

Supports PEBS

D0H 10H MEM_UOPS_RETIRED.STLB_MISS Qualify retired memory uops with STLB miss. Must
combine with umask 01H, 02H, to produce counts.

Supports PEBS

D0H 40H MEM_UOPS_RETIRED.SPLIT Qualify retired memory uops with line split. Must
combine with umask 01H, 02H, to produce counts.

Supports PEBS

D0H 80H MEM_UOPS_RETIRED.ALL Qualify any retired memory uops. Must combine
with umask 01H, 02H, to produce counts.

Supports PEBS

D1H 01H MEM_LOAD_UOPS_RETIRED.L1_
HIT

Retired load uops with L1 cache hits as data
sources.

Supports PEBS

Table 19-7 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 224

D1H 02H MEM_LOAD_UOPS_RETIRED.L2_
HIT

Retired load uops with L2 cache hits as data
sources.

Supports PEBS

D1H 04H MEM_LOAD_UOPS_RETIRED.LLC_
HIT

Retired load uops whose data source was LLC hit
with no snoop required.

Supports PEBS

D1H 08H MEM_LOAD_UOPS_RETIRED.L1_
MISS

Retired load uops whose data source followed an
L1 miss

Supports PEBS

D1H 10H MEM_LOAD_UOPS_RETIRED.L2_
MISS

Retired load uops that missed L2, excluding
unknown sources

Supports PEBS

D1H 20H MEM_LOAD_UOPS_RETIRED.LLC_
MISS

Retired load uops whose data source is LLC miss Supports PEBS.
Restricted to counters 0-
3 when HTT is disabled.

D1H 40H MEM_LOAD_UOPS_RETIRED.HIT_
LFB

Retired load uops which data sources were load
uops missed L1 but hit FB due to preceding miss to
the same cache line with data not ready.

Supports PEBS

D2H 01H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_MISS

Retired load uops whose data source was an on-
package core cache LLC hit and cross-core snoop
missed.

Supports PEBS

D2H 02H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_HIT

Retired load uops whose data source was an on-
package LLC hit and cross-core snoop hits.

Supports PEBS

D2H 04H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_HITM

Retired load uops whose data source was an on-
package core cache with HitM responses.

Supports PEBS

D2H 08H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_NONE

Retired load uops whose data source was LLC hit
with no snoop required.

Supports PEBS

D3H 01H MEM_LOAD_UOPS_LLC_MISS_RE
TIRED.LOCAL_DRAM

Retired load uops whose data source was local
memory (cross-socket snoop not needed or missed).

Supports PEBS.

E6H 1FH BACLEARS.ANY Number of front end re-steers due to BPU
misprediction.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF Any MLC or LLC HW prefetch accessing L2, including
rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover
rejects.

Table 19-7 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 225

...

23. Updates to Chapter 22, Volume 3B
Change bars show changes to Chapter 22 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

22.25.3 Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers
MMX instructions and a subset of SSE, SSE2, SSSE3 instructions operate on MMX registers. The exception condi-
tions of these instructions are described in the following tables.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover
rejects.

F2H 01H L2_LINES_OUT.DEMAND_CLEAN Clean L2 cache lines evicted by demand.

F2H 02H L2_LINES_OUT.DEMAND_DIRTY Dirty L2 cache lines evicted by demand.

F2H 04H L2_LINES_OUT.PF_CLEAN Clean L2 cache lines evicted by the MLC prefetcher.

F2H 08H L2_LINES_OUT.PF_DIRTY Dirty L2 cache lines evicted by the MLC prefetcher.

F2H 0AH L2_LINES_OUT.DIRTY_ALL Dirty L2 cache lines filling the L2. Counting does not cover
rejects.

Table 19-7 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Table 22-4 Exception Conditions for Legacy SIMD/MMX Instructions with FP Exception and 16-Byte Alignment

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 226

General Protec-
tion, #GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH

#PF(fault-code) X X X For a page fault

#XM X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1

Applicable
Instructions

CVTPD2PI, CVTTPD2PI

Table 22-4 Exception Conditions for Legacy SIMD/MMX Instructions with FP Exception and 16-Byte Alignment

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 227

Table 22-5 Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP Exception

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0.

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH

#PF(fault-code) X X X For a page fault

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made while
the current privilege level is 3.

SIMD Floating-point
Exception, #XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1

Applicable Instruc-
tions

CVTPI2PS, CVTPS2PI, CVTTPS2PI

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 228

Table 22-6 Exception Conditions for Legacy SIMD/MMX Instructions with XMM and without FP Exception

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF1 X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to
FFFFH

 #PF(fault-code) X X X For a page fault

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Applicable Instruc-
tions

CVTPI2PD

NOTES:
1. Applies to “CVTPI2PD xmm, mm” but not “CVTPI2PD xmm, m64”.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 229

Table 22-7 Exception Conditions for SIMD/MMX Instructions with Memory Reference

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X If CR0.EM[bit 2] = 1.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection,
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made while
the current privilege level is 3.

Applicable Instruc-
tions

PABSB, PABSD, PABSW, PACKSSWB, PACKSSDW, PACKUSWB, PADDB, PADDD, PADDQ, PADDW, PADDSB,
PADDSW, PADDUSB, PADDUSW, PALIGNR, PAND, PANDN, PAVGB, PAVGW, PCMPEQB, PCMPEQD, PCMPEQW,
PCMPGTB, PCMPGTD, PCMPGTW, PHADDD, PHADDW, PHADDSW, PHSUBD, PHSUBW, PHSUBSW, PINSRW,
PMADDUBSW, PMADDWD, PMAXSW, PMAXUB, PMINSW, PMINUB, PMULHRSW, PMULHUW, PMULHW, PMULLW,
PMULUDQ, PSADBW, PSHUFB, PSHUFW, PSIGNB PSIGND PSIGNW, PSLLW, PSLLD, PSLLQ, PSRAD, PSRAW,
PSRLW, PSRLD, PSRLQ, PSUBB, PSUBD, PSUBQ, PSUBW, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW,
PUNPCKHBW, PUNPCKHWD, PUNPCKHDQ, PUNPCKLBW, PUNPCKLWD, PUNPCKLDQ, PXOR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 230

Table 22-8 Exception Conditions for Legacy SIMD/MMX Instructions without FP Exception

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X
If CR0.EM[bit 2] = 1.
If ModR/M.mod ≠ 11b1

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

#GP(0)

X

For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.
If the destination operand is in a non-writable segment.2

If the DS, ES, FS, or GS register contains a NULL segment selector.3

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

#AC(0) X X X
If alignment checking is enabled and an unaligned memory reference is made while
the current privilege level is 3.

Applicable Instruc-
tions

MASKMOVQ, MOVNTQ, “MOVQ (mmreg)”

NOTES:
1. Applies to MASKMOVQ only.
2. Applies to MASKMOVQ and MOVQ (mmreg) only.
3. Applies to MASKMOVQ only.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 231

...

24. Updates to Chapter 25, Volume 3C
Change bars show changes to Chapter 25 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

25.2 OTHER CAUSES OF VM EXITS
In addition to VM exits caused by instruction execution, the following events can cause VM exits:
• Exceptions. Exceptions (faults, traps, and aborts) cause VM exits based on the exception bitmap (see

Section 24.6.3). If an exception occurs, its vector (in the range 0–31) is used to select a bit in the exception
bitmap. If the bit is 1, a VM exit occurs; if the bit is 0, the exception is delivered normally through the guest
IDT. This use of the exception bitmap applies also to exceptions generated by the instructions INT3, INTO,
BOUND, and UD2.
Page faults (exceptions with vector 14) are specially treated. When a page fault occurs, a processor consults
(1) bit 14 of the exception bitmap; (2) the error code produced with the page fault [PFEC]; (3) the page-fault
error-code mask field [PFEC_MASK]; and (4) the page-fault error-code match field [PFEC_MATCH]. It checks
if PFEC & PFEC_MASK = PFEC_MATCH. If there is equality, the specification of bit 14 in the exception bitmap
is followed (for example, a VM exit occurs if that bit is set). If there is inequality, the meaning of that bit is
reversed (for example, a VM exit occurs if that bit is clear).
Thus, if software desires VM exits on all page faults, it can set bit 14 in the exception bitmap to 1 and set the
page-fault error-code mask and match fields each to 00000000H. If software desires VM exits on no page
faults, it can set bit 14 in the exception bitmap to 1, the page-fault error-code mask field to 00000000H, and
the page-fault error-code match field to FFFFFFFFH.

• Triple fault. A VM exit occurs if the logical processor encounters an exception while attempting to call the
double-fault handler and that exception itself does not cause a VM exit due to the exception bitmap. This
applies to the case in which the double-fault exception was generated within VMX non-root operation, the

Table 22-9 Exception Conditions for Legacy SIMD/MMX Instructions without Memory Reference

Exception
R

ea
l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X If CR0.EM[bit 2] = 1.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X If CR0.TS[bit 3]=1

Applicable Instruc-
tions

PEXTRW, PMOVMSKB

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 232

case in which the double-fault exception was generated during event injection by VM entry, and to the case in
which VM entry is injecting a double-fault exception.

• External interrupts. An external interrupt causes a VM exit if the “external-interrupt exiting” VM-execution
control is 1. (See Section 25.6 for an exception.) Otherwise, the interrupt is delivered normally through the
IDT. (If a logical processor is in the shutdown state or the wait-for-SIPI state, external interrupts are blocked.
The interrupt is not delivered through the IDT and no VM exit occurs.)

• Non-maskable interrupts (NMIs). An NMI causes a VM exit if the “NMI exiting” VM-execution control is 1.
Otherwise, it is delivered using descriptor 2 of the IDT. (If a logical processor is in the wait-for-SIPI state, NMIs
are blocked. The NMI is not delivered through the IDT and no VM exit occurs.)

• INIT signals. INIT signals cause VM exits. A logical processor performs none of the operations normally
associated with these events. Such exits do not modify register state or clear pending events as they would
outside of VMX operation. (If a logical processor is in the wait-for-SIPI state, INIT signals are blocked. They
do not cause VM exits in this case.)

• Start-up IPIs (SIPIs). SIPIs cause VM exits. If a logical processor is not in the wait-for-SIPI activity state
when a SIPI arrives, no VM exit occurs and the SIPI is discarded. VM exits due to SIPIs do not perform any of
the normal operations associated with those events: they do not modify register state as they would outside
of VMX operation. (If a logical processor is not in the wait-for-SIPI state, SIPIs are blocked. They do not cause
VM exits in this case.)

• Task switches. Task switches are not allowed in VMX non-root operation. Any attempt to effect a task switch
in VMX non-root operation causes a VM exit. See Section 25.4.2.

• System-management interrupts (SMIs). If the logical processor is using the dual-monitor treatment of
SMIs and system-management mode (SMM), SMIs cause SMM VM exits. See Section 34.15.2.1

• VMX-preemption timer. A VM exit occurs when the timer counts down to zero. See Section 25.5.1 for
details of operation of the VMX-preemption timer.
Debug-trap exceptions and higher priority events take priority over VM exits caused by the VMX-preemption
timer. VM exits caused by the VMX-preemption timer take priority over VM exits caused by the “NMI-window
exiting” VM-execution control and lower priority events.
These VM exits wake a logical processor from the same inactive states as would a non-maskable interrupt.
Specifically, they wake a logical processor from the shutdown state and from the states entered using the HLT
and MWAIT instructions. These VM exits do not occur if the logical processor is in the wait-for-SIPI state.

In addition, there are controls that cause VM exits based on the readiness of guest software to receive interrupts:
• If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs before execution of any

instruction if RFLAGS.IF = 1 and there is no blocking of events by STI or by MOV SS (see Table 24-3). Such a
VM exit occurs immediately after VM entry if the above conditions are true (see Section 26.6.5).
Non-maskable interrupts (NMIs) and higher priority events take priority over VM exits caused by this control.
VM exits caused by this control take priority over external interrupts and lower priority events.
These VM exits wake a logical processor from the same inactive states as would an external interrupt. Specif-
ically, they wake a logical processor from the states entered using the HLT and MWAIT instructions. These
VM exits do not occur if the logical processor is in the shutdown state or the wait-for-SIPI state.

• If the “NMI-window exiting” VM-execution control is 1, a VM exit occurs before execution of any instruction if
there is no virtual-NMI blocking and there is no blocking of events by MOV SS (see Table 24-3). (A logical
processor may also prevent such a VM exit if there is blocking of events by STI.) Such a VM exit occurs
immediately after VM entry if the above conditions are true (see Section 26.6.6).
VM exits caused by the VMX-preemption timer and higher priority events take priority over VM exits caused
by this control. VM exits caused by this control take priority over non-maskable interrupts (NMIs) and lower
priority events.

1. Under the dual-monitor treatment of SMIs and SMM, SMIs also cause SMM VM exits if they occur in VMX root operation outside
SMM. If the processor is using the default treatment of SMIs and SMM, SMIs are delivered as described in Section 34.14.1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 233

These VM exits wake a logical processor from the same inactive states as would an NMI. Specifically, they
wake a logical processor from the shutdown state and from the states entered using the HLT and MWAIT
instructions. These VM exits do not occur if the logical processor is in the wait-for-SIPI state.

...

25. Updates to Chapter 29, Volume 3C
Change bars show changes to Chapter 29 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

29.4.3.2 APIC-Write Emulation
If the processor virtualizes a write access to the APIC-access page, it performs additional actions after completion
of an operation of which the access was a part. These actions are called APIC-write emulation.

The details of APIC-write emulation depend upon the page offset of the virtualized write access:1

• 080H (task priority). The processor clears bytes 3:1 of VTPR and then causes TPR virtualization (Section
29.1.2).

• 0B0H (end of interrupt). If the “virtual-interrupt delivery” VM-execution control is 1, the processor clears
VEOI and then causes EOI virtualization (Section 29.1.4); otherwise, the processor causes an APIC-write
VM exit (Section 29.4.3.3).

• 300H (interrupt command — low). If the “virtual-interrupt delivery” VM-execution control is 1, the processor
checks the value of VICR_LO to determine whether the following are all true:

— Reserved bits (31:20, 17:16, 13) and bit 12 (delivery status) are all 0.

— Bits 19:18 (destination shorthand) are 01B (self).

— Bit 15 (trigger mode) is 0 (edge).

— Bits 10:8 (delivery mode) are 000B (fixed).

— Bits 7:4 (the upper half of the vector) are not 0000B.
If all of the items above are true, the processor performs self-IPI virtualization using the 8-bit vector in
byte 0 of VICR_LO (Section 29.1.5).
If the “virtual-interrupt delivery” VM-execution control is 0, or if any of the items above are false, the
processor causes an APIC-write VM exit (Section 29.4.3.3).

• 310H–313H (interrupt command — high). The processor clears bytes 2:0 of VICR_HI. No other virtualization
or VM exit occurs.

• Any other page offset. The processor causes an APIC-write VM exit (Section 29.4.3.3).

APIC-write emulation takes priority over system-management interrupts (SMIs), INIT signals, and lower priority
events. APIC-write emulation is not blocked if RFLAGS.IF = 0 or by the MOV SS, POP SS, or STI instructions.

If an operation causes a fault after a write access to the APIC-access page and before APIC-write emulation, and
that fault is delivered without a VM exit, APIC-write emulation occurs after the fault is delivered and before the
fault handler can execute. If an operation causes a VM exit (perhaps due to a fault) after a write access to the
APIC-access page and before APIC-write emulation, the APIC-write emulation does not occur.

1. For any operation, there can be only one page offset for which a write access was virtualized. This is because a write access is not
virtualized if the processor has already virtualized a write access for the same operation with a different page offset.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 234

...

29.4.4 Instruction-Specific Considerations
Certain instructions that use linear address may cause page faults even though they do not use those addresses
to access memory. The APIC-virtualization features may affect these instructions as well:
• CLFLUSH. With regard to faulting, the processor operates as if CLFLUSH reads from the linear address in its

source operand. If that address translates to one on the APIC-access page, the instruction may cause an
APIC-access VM exit. If it does not, it will flush the corresponding cache line on the virtual-APIC page instead
of the APIC-access page.

• ENTER. With regard to faulting, the processor operates if ENTER writes to the byte referenced by the final
value of the stack pointer (even though it does not if its size operand is non-zero). If that value translates to
an address on the APIC-access page, the instruction may cause an APIC-access VM exit. If it does not, it will
cause the APIC-write emulation appropriate to the address’s page offset.

• MASKMOVQ and MAKSMOVDQU. Even if the instruction’s mask is zero, the processor may operate with
regard to faulting as if MASKMOVQ or MASKMOVDQU writes to memory (the behavior is implementation-
specific). In such a situation, an APIC-access VM exit may occur.

• MONITOR. With regard to faulting, the processor operates as if MONITOR reads from the effective address in
RAX. If the resulting linear address translates to one on the APIC-access page, the instruction may cause an
APIC-access VM exit.1 If it does not, it will monitor the corresponding address on the virtual-APIC page
instead of the APIC-access page.

• PREFETCH. An execution of the PREFETCH instruction that would result in an access to the APIC-access page
does not cause an APIC-access VM exit. Such an access may prefetch data; if so, it is from the corresponding
address on the virtual-APIC page.

Virtualization of accesses to the APIC-access page is principally intended for basic instructions such as AND, MOV,
OR, TEST, XCHG, and XOR. Use of an instruction that normally operates on floating-point, SSE, AVX, or AVX-512
registers may cause an APIC-access VM exit unconditionally regardless of the page offset it accesses on the APIC-
access page.

...

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX
operation also support Intel 64 architecture. For IA-32 processors, this notation refers to the 32-bit forms of those registers (EAX,
EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 235

26. Updates to Chapter 35, Volume 3C
Change bars show changes to Chapter 35 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...
This chapter list MSRs across Intel processor families. All MSRs listed can be read with the RDMSR and written
with the WRMSR instructions.

Register addresses are given in both hexadecimal and decimal. The register name is the mnemonic register name
and the bit description describes individual bits in registers.

Model specific registers and its bit-fields may be supported for a finite range of processor families/models. To
distinguish between different processor family and/or models, software must use CPUID.01H leaf function to
query the combination of DisplayFamily and DisplayModel to determine model-specific availability of MSRs (see
CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A). Table 35-1 lists the signature values of DisplayFamily and DisplayModel for
various processor families or processor number series.

Table 35-1 CPUID Signature Values of DisplayFamily_DisplayModel
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_57H Next Generation Intel® Xeon Phi™ Processor Family

06_4EH, 06_5EH Next Generation Intel Core Processor based on Sky Lake microarchitecture

06_56H Next Generation Intel Xeon Processor D Product Family based on Broadwell microarchitecture

06_4FH Future Generation Intel Xeon processor based on Broadwell microarchitecture

06_47H 5th generation Intel Core processors based on Broadwell microarchitecture

06_3DH Intel Core M-5xxx Processor, 5th generation Intel Core processors based on Broadwell
microarchitecture

06_3FH Intel Xeon processor E5-2600/1600 v3 product families based on Haswell-E microarchitecture, Intel
Core i7-59xx Processor Extreme Edition

06_3CH, 06_45H, 06_46H 4th Generation Intel Core processor and Intel Xeon processor E3-1200 v3 product family based on
Haswell microarchitecture

06_3EH Intel Xeon processor E7-8800/4800/2800 v2 product families based on Ivy Bridge-E
microarchitecture

06_3EH Intel Xeon processor E5-2600/1600 v2 product families and Intel Xeon processor E5-2400 v2
product family based on Ivy Bridge-E microarchitecture, Intel Core i7-49xx Processor Extreme Edition

06_3AH 3rd Generation Intel Core Processor and Intel Xeon processor E3-1200 v2 product family based on Ivy
Bridge microarchitecture

06_2DH Intel Xeon processor E5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core
i7-39xx Processor Extreme Edition

06_2FH Intel Xeon Processor E7 Family

06_2AH Intel Xeon processor E3-1200 product family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx
Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 236

35.1 ARCHITECTURAL MSRS
Many MSRs have carried over from one generation of IA-32 processors to the next and to Intel 64 processors. A
subset of MSRs and associated bit fields, which do not change on future processor generations, are now consid-
ered architectural MSRs. For historical reasons (beginning with the Pentium 4 processor), these “architectural
MSRs” were given the prefix “IA32_”. Table 35-2 lists the architectural MSRs, their addresses, their current
names, their names in previous IA-32 processors, and bit fields that are considered architectural. MSR addresses
outside Table 35-2 and certain bit fields in an MSR address that may overlap with architectural MSR addresses are
model-specific. Code that accesses a machine specified MSR and that is executed on a processor that does not
support that MSR will generate an exception.

06_1AH Intel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series

06_1DH Intel Xeon processor MP 7400 series

06_17H Intel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000
series

06_0FH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series,
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel
Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_4CH Intel® Atom™ processor X7-Z8000 and X5-Z8000 series based on Airmont Microarchitecture

06_5DH Intel® Atom™ processor X3-C3000 based on Silvermont Microarchitecture

06_5AH Intel Atom processor Z3500 series

06_4AH Intel Atom processor Z3400 series

06_37H Intel Atom processor E3000 series, Z3600 series, Z3700 series

06_4DH Intel Atom processor C2000 series

06_36H Intel Atom processor S1000 Series

06_1CH, 06_26H, 06_27H,
06_35H, 06_36H

Intel Atom processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D
processors

0F_03H, 0F_04H Intel Xeon processor, Intel Xeon processor MP, Intel Pentium 4, Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium III Xeon processor, Intel Pentium III processor

06_03H, 06_05H Intel Pentium II Xeon processor, Intel Pentium II processor

06_01H Intel Pentium Pro processor

05_01H, 05_02H, 05_04H Intel Pentium processor, Intel Pentium processor with MMX Technology

Table 35-1 CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 237

Architectural MSR or individual bit fields in an architectural MSR may be introduced or transitioned at the granu-
larity of certain processor family/model or the presence of certain CPUID feature flags. The right-most column of
Table 35-2 provides information on the introduction of each architectural MSR or its individual fields. This informa-
tion is expressed either as signature values of “DF_DM” (see Table 35-1) or via CPUID flags.

Certain bit field position may be related to the maximum physical address width, the value of which is expressed
as “MAXPHYWID” in Table 35-2. “MAXPHYWID” is reported by CPUID.8000_0008H leaf.

MSR address range between 40000000H - 400000FFH is marked as a specially reserved range. All existing and
future processors will not implement any features using any MSR in this range.

Table 35-2 IA-32 Architectural MSRs

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

0H 0 IA32_P5_MC_ADDR (P5_MC_ADDR) See Section 35.20, “MSRs in Pentium
Processors.”

Pentium Processor
(05_01H)

1H 1 IA32_P5_MC_TYPE (P5_MC_TYPE) See Section 35.20, “MSRs in Pentium
Processors.”

DF_DM = 05_01H

6H 6 IA32_MONITOR_FILTER_SIZE See Section 8.10.5, “Monitor/Mwait
Address Range Determination.”

0F_03H

10H 16 IA32_TIME_STAMP_
COUNTER (TSC)

See Section 17.14, “Time-Stamp Counter.” 05_01H

17H 23 IA32_PLATFORM_ID
(MSR_PLATFORM_ID)

Platform ID (RO)
The operating system can use this MSR to
determine “slot” information for the
processor and the proper microcode update
to load.

06_01H

49:0 Reserved.

52:50 Platform Id (RO)

Contains information concerning the
intended platform for the processor.

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

1BH 27 IA32_APIC_BASE (APIC_BASE) 06_01H

7:0 Reserved

8 BSP flag (R/W)

9 Reserved

10 Enable x2APIC mode 06_1AH

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 238

11 APIC Global Enable (R/W)

(MAXPHYWID - 1):12 APIC Base (R/W)

63: MAXPHYWID Reserved

3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64 Processor
(R/W)

If CPUID.01H: ECX[bit 5 or
bit 6] = 1

0 Lock bit (R/WO): (1 = locked). When set,
locks this MSR from being written, writes
to this bit will result in GP(0).

Note: Once the Lock bit is set, the contents
of this register cannot be modified.
Therefore the lock bit must be set after
configuring support

If CPUID.01H:ECX[bit 5 or
bit 6] = 1

for Intel Virtualization Technology and prior
to transferring control to an option ROM or
the OS. Hence, once the Lock bit is set, the
entire IA32_FEATURE_CONTROL contents
are preserved across RESET when
PWRGOOD is not deasserted.

1 Enable VMX inside SMX operation (R/WL):
This bit enables a system executive to use
VMX in conjunction with SMX to support
Intel® Trusted Execution Technology.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag and
SMX feature flag set (ECX bits 5 and 6
respectively).

If CPUID.01H:ECX[bit 5 and
bit 6] are set to 1

2 Enable VMX outside SMX operation (R/WL):
This bit enables VMX for system executive
that do not require SMX.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag set
(ECX bit 5).

If CPUID.01H:ECX[bit 5 or
bit 6] = 1

7:3 Reserved

14:8 SENTER Local Function Enables (R/WL):
When set, each bit in the field represents
an enable control for a corresponding
SENTER function. This bit is supported only
if CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[bit 6] = 1

15 SENTER Global Enable (R/WL): This bit must
be set to enable SENTER leaf functions.
This bit is supported only if
CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[bit 6] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 239

19:16 Reserved

20 LMCE On (R/WL): When set, system
software can program the MSRs associated
with LMCE to configure delivery of some
machine check exceptions to a single logical
processor.

63:21 Reserved

3BH 59 IA32_TSC_ADJUST Per Logical Processor TSC Adjust (R/Write
to clear)

If CPUID.(EAX=07H,
ECX=0H): EBX[1] = 1

63:0 THREAD_ADJUST:

Local offset value of the IA32_TSC for a
logical processor. Reset value is Zero. A
write to IA32_TSC will modify the local
offset in IA32_TSC_ADJUST and the
content of IA32_TSC, but does not affect
the internal invariant TSC hardware.

79H 121 IA32_BIOS_UPDT_TRIG
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR instruction to this MSR
causes a microcode update to be loaded
into the processor. See Section 9.11.6,
“Microcode Update Loader.”

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

8BH 139 IA32_BIOS_SIGN_ID (BIOS_SIGN/
BBL_CR_D3)

BIOS Update Signature (RO)

Returns the microcode update signature
following the execution of CPUID.01H.

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

31:0 Reserved

63:32 It is recommended that this field be pre-
loaded with 0 prior to executing CPUID.

If the field remains 0 following the
execution of CPUID; this indicates that no
microcode update is loaded. Any non-zero
value is the microcode update signature.

9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration (R/W) If CPUID.01H: ECX[bit 5 or
bit 6] = 1

0 Valid (R/W)

1 Reserved

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 240

2 Controls SMI unblocking by VMXOFF (see
Section 34.14.4)

If IA32_VMX_MISC[bit 28])

11:3 Reserved

31:12 MSEG Base (R/W)

63:32 Reserved

9EH 158 IA32_SMBASE Base address of the logical processor’s
SMRAM image (RO, SMM only)

If IA32_VMX_MISC[bit 15])

C1H 193 IA32_PMC0 (PERFCTR0) General Performance Counter 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

C2H 194 IA32_PMC1 (PERFCTR1) General Performance Counter 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

C3H 195 IA32_PMC2 General Performance Counter 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

C4H 196 IA32_PMC3 General Performance Counter 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

C5H 197 IA32_PMC4 General Performance Counter 4 (R/W) If CPUID.0AH: EAX[15:8] >
4

C6H 198 IA32_PMC5 General Performance Counter 5 (R/W) If CPUID.0AH: EAX[15:8] >
5

C7H 199 IA32_PMC6 General Performance Counter 6 (R/W) If CPUID.0AH: EAX[15:8] >
6

C8H 200 IA32_PMC7 General Performance Counter 7 (R/W) If CPUID.0AH: EAX[15:8] >
7

E7H 231 IA32_MPERF TSC Frequency Clock Counter (R/Write to
clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_MCNT: C0 TSC Frequency Clock Count

Increments at fixed interval (relative to TSC
freq.) when the logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_APERF.

E8H 232 IA32_APERF Actual Performance Clock Counter (R/Write
to clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_ACNT: C0 Actual Frequency Clock
Count

Accumulates core clock counts at the
coordinated clock frequency, when the
logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_MPERF.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 241

FEH 254 IA32_MTRRCAP (MTRRcap) MTRR Capability (RO) Section 11.11.2.1,
“IA32_MTRR_DEF_TYPE MSR.”

06_01H

7:0 VCNT: The number of variable memory
type ranges in the processor.

8 Fixed range MTRRs are supported when
set.

9 Reserved.

10 WC Supported when set.

11 SMRR Supported when set.

63:12 Reserved.

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector

63:16 Reserved.

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H

179H 377 IA32_MCG_CAP (MCG_CAP) Global Machine Check Capability (RO) 06_01H

7:0 Count: Number of reporting banks.

8 MCG_CTL_P: IA32_MCG_CTL is present if
this bit is set

9 MCG_EXT_P: Extended machine check
state registers are present if this bit is set

10 MCP_CMCI_P: Support for corrected MC
error event is present.

06_01H

11 MCG_TES_P: Threshold-based error status
register are present if this bit is set.

15:12 Reserved

23:16 MCG_EXT_CNT: Number of extended
machine check state registers present.

24 MCG_SER_P: The processor supports
software error recovery if this bit is set.

25 Reserved.

26 MCG_ELOG_P: Indicates that the processor
allows platform firmware to be invoked
when an error is detected so that it may
provide additional platform specific
information in an ACPI format “Generic
Error Data Entry” that augments the data
included in machine check bank registers.

06_3EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 242

27 MCG_LMCE_P: Indicates that the processor
support extended state in
IA32_MCG_STATUS and associated
MSR necessary to configure Local
Machine Check Exception (LMCE).

06_3EH

63:28 Reserved.

17AH 378 IA32_MCG_STATUS (MCG_STATUS) Global Machine Check Status (R/W0) 06_01H

0 RIPV. Restart IP valid 06_01H

1 EIPV. Error IP valid 06_01H

2 MCIP. Machine check in progress 06_01H

3 LMCE_S. If IA32_MCG_CAP.LMCE_P
=1

63:4 Reserved.

17BH 379 IA32_MCG_CTL (MCG_CTL) Global Machine Check Control (R/W) 06_01H

180H-
185H

384-
389

Reserved 06_0EH1

186H 390 IA32_PERFEVTSEL0 (PERFEVTSEL0) Performance Event Select Register 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

7:0 Event Select: Selects a performance event
logic unit.

15:8 UMask: Qualifies the microarchitectural
condition to detect on the selected event
logic.

16 USR: Counts while in privilege level is not
ring 0.

17 OS: Counts while in privilege level is ring 0.

18 Edge: Enables edge detection if set.

19 PC: enables pin control.

20 INT: enables interrupt on counter overflow.

21 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

22 EN: enables the corresponding performance
counter to commence counting when this
bit is set.

23 INV: invert the CMASK.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 243

31:24 CMASK: When CMASK is not zero, the
corresponding performance counter
increments each cycle if the event count is
greater than or equal to the CMASK.

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 (PERFEVTSEL1) Performance Event Select Register 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

188H 392 IA32_PERFEVTSEL2 Performance Event Select Register 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

189H 393 IA32_PERFEVTSEL3 Performance Event Select Register 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

18AH-
197H

394-
407

Reserved 06_0EH2

198H 408 IA32_PERF_STATUS (RO) 0F_03H

15:0 Current performance State Value

63:16 Reserved.

199H 409 IA32_PERF_CTL (R/W) 0F_03H

15:0 Target performance State Value

31:16 Reserved.

32 IDA Engage. (R/W)

When set to 1: disengages IDA

06_0FH (Mobile only)

63:33 Reserved.

19AH 410 IA32_CLOCK_MODULATION Clock Modulation Control (R/W)

See Section 14.7.3, “Software Controlled
Clock Modulation.”

0F_0H

0 Extended On-Demand Clock Modulation
Duty Cycle:

If CPUID.06H:EAX[5] = 1

3:1 On-Demand Clock Modulation Duty Cycle:
Specific encoded values for target duty
cycle modulation.

4 On-Demand Clock Modulation Enable: Set 1
to enable modulation.

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the processor’s thermal
sensors and thermal monitor.

See Section 14.7.2, “Thermal Monitor.”

0F_0H

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 244

0 High-Temperature Interrupt Enable

1 Low-Temperature Interrupt Enable

2 PROCHOT# Interrupt Enable

3 FORCEPR# Interrupt Enable

4 Critical Temperature Interrupt Enable

7:5 Reserved.

14:8 Threshold #1 Value

15 Threshold #1 Interrupt Enable

22:16 Threshold #2 Value

23 Threshold #2 Interrupt Enable

24 Power Limit Notification Enable If CPUID.06H:EAX[4] = 1

63:25 Reserved.

19CH 412 IA32_THERM_STATUS Thermal Status Information (RO)

Contains status information about the
processor’s thermal sensor and automatic
thermal monitoring facilities.

See Section 14.7.2, “Thermal Monitor”

0F_0H

0 Thermal Status (RO):

1 Thermal Status Log (R/W):

2 PROCHOT # or FORCEPR# event (RO)

3 PROCHOT # or FORCEPR# log (R/WC0)

4 Critical Temperature Status (RO)

5 Critical Temperature Status log (R/WC0)

6 Thermal Threshold #1 Status (RO) If CPUID.01H:ECX[8] = 1

7 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1

8 Thermal Threshold #2 Status (RO) If CPUID.01H:ECX[8] = 1

9 Thermal Threshold #2 log (R/WC0) If CPUID.01H:ECX[8] = 1

10 Power Limitation Status (RO) If CPUID.06H:EAX[4] = 1

11 Power Limitation log (R/WC0) If CPUID.06H:EAX[4] = 1

12 Current Limit Status (RO) If CPUID.06H:EAX[7] = 1

13 Current Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

14 Cross Domain Limit Status (RO) If CPUID.06H:EAX[7] = 1

15 Cross Domain Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

22:16 Digital Readout (RO) If CPUID.06H:EAX[0] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 245

26:23 Reserved.

30:27 Resolution in Degrees Celsius (RO) If CPUID.06H:EAX[0] = 1

31 Reading Valid (RO) If CPUID.06H:EAX[0] = 1

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to
be enabled and disabled.

0 Fast-Strings Enable

When set, the fast-strings feature (for REP
MOVS and REP STORS) is enabled (default);
when clear, fast-strings are disabled.

0F_0H

2:1 Reserved.

3 Automatic Thermal Control Circuit Enable
(R/W)

1 = Setting this bit enables the thermal
control circuit (TCC) portion of the
Intel Thermal Monitor feature. This
allows the processor to automatically
reduce power consumption in
response to TCC activation.

0 = Disabled (default).
Note: In some products clearing this bit
might be ignored in critical thermal
conditions, and TM1, TM2 and adaptive
thermal throttling will still be activated.

0F_0H

6:4 Reserved

7 Performance Monitoring Available (R)

1 = Performance monitoring enabled
0 = Performance monitoring disabled

0F_0H

10:8 Reserved.

11 Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch
trace storage (BTS)

0 = BTS is supported

0F_0H

12 Precise Event Based Sampling (PEBS)
Unavailable (RO)

1 = PEBS is not supported;
0 = PEBS is supported.

06_0FH

15:13 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 246

16 Enhanced Intel SpeedStep Technology
Enable (R/W)

0= Enhanced Intel SpeedStep
Technology disabled

1 = Enhanced Intel SpeedStep
Technology enabled

If CPUID.01H: ECX[7] =1

17 Reserved.

18 ENABLE MONITOR FSM (R/W)

When this bit is set to 0, the MONITOR
feature flag is not set (CPUID.01H:ECX[bit
3] = 0). This indicates that MONITOR/
MWAIT are not supported.

Software attempts to execute MONITOR/
MWAIT will cause #UD when this bit is 0.

When this bit is set to 1 (default),
MONITOR/MWAIT are supported
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag ECX[0] is not set
(CPUID.01H:ECX[bit 0] = 0), the OS must
not attempt to alter this bit. BIOS must
leave it in the default state. Writing this bit
when the SSE3 feature flag is set to 0 may
generate a #GP exception.

0F_03H

21:19 Reserved.

22 Limit CPUID Maxval (R/W)

When this bit is set to 1, CPUID.00H returns
a maximum value in EAX[7:0] of 3.

BIOS should contain a setup question that
allows users to specify when the installed
OS does not support CPUID functions
greater than 3.

Before setting this bit, BIOS must execute
the CPUID.0H and examine the maximum
value returned in EAX[7:0]. If the maximum
value is greater than 3, the bit is supported.

Otherwise, the bit is not supported. Writing
to this bit when the maximum value is
greater than 3 may generate a #GP
exception.

Setting this bit may cause unexpected
behavior in software that depends on the
availability of CPUID leaves greater than 3.

0F_03H

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 247

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are
disabled. xTPR messages are optional
messages that allow the processor to
inform the chipset of its priority.

if CPUID.01H:ECX[14] = 1

33:24 Reserved.

34 XD Bit Disable (R/W)

When set to 1, the Execute Disable Bit
feature (XD Bit) is disabled and the XD Bit
extended feature flag will be clear
(CPUID.80000001H: EDX[20]=0).

When set to a 0 (default), the Execute
Disable Bit feature (if available) allows the
OS to enable PAE paging and take
advantage of data only pages.

BIOS must not alter the contents of this bit
location, if XD bit is not supported. Writing
this bit to 1 when the XD Bit extended
feature flag is set to 0 may generate a #GP
exception.

if
CPUID.80000001H:EDX[2
0] = 1

63:35 Reserved.

1B0H 432 IA32_ENERGY_PERF_BIAS Performance Energy Bias Hint (R/W) if CPUID.6H:ECX[3] = 1

3:0 Power Policy Preference:

0 indicates preference to highest
performance.

15 indicates preference to maximize
energy saving.

63:4 Reserved.

1B1H 433 IA32_PACKAGE_THERM_STATUS Package Thermal Status Information (RO)

Contains status information about the
package’s thermal sensor.

See Section 14.8, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg Thermal Status (RO):

1 Pkg Thermal Status Log (R/W):

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature Status (RO)

5 Pkg Critical Temperature Status log (R/
WC0)

6 Pkg Thermal Threshold #1 Status (RO)

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 248

7 Pkg Thermal Threshold #1 log (R/WC0)

8 Pkg Thermal Threshold #2 Status (RO)

9 Pkg Thermal Threshold #1 log (R/WC0)

10 Pkg Power Limitation Status (RO)

11 Pkg Power Limitation log (R/WC0)

15:12 Reserved.

22:16 Pkg Digital Readout (RO)

63:23 Reserved.

1B2H 434 IA32_PACKAGE_THERM_INTERRUPT Pkg Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the package’s thermal
sensor.

See Section 14.8, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg High-Temperature Interrupt Enable

1 Pkg Low-Temperature Interrupt Enable

2 Pkg PROCHOT# Interrupt Enable

3 Reserved.

4 Pkg Overheat Interrupt Enable

7:5 Reserved.

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt Enable

22:16 Pkg Threshold #2 Value

23 Pkg Threshold #2 Interrupt Enable

24 Pkg Power Limit Notification Enable

63:25 Reserved.

1D9H 473 IA32_DEBUGCTL (MSR_DEBUGCTLA,
MSR_DEBUGCTLB)

Trace/Profile Resource Control (R/W) 06_0EH

0 LBR: Setting this bit to 1 enables the
processor to record a running trace of the
most recent branches taken by the
processor in the LBR stack.

06_01H

1 BTF: Setting this bit to 1 enables the
processor to treat EFLAGS.TF as single-step
on branches instead of single-step on
instructions.

06_01H

5:2 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 249

6 TR: Setting this bit to 1 enables branch
trace messages to be sent.

06_0EH

7 BTS: Setting this bit enables branch trace
messages (BTMs) to be logged in a BTS
buffer.

06_0EH

8 BTINT: When clear, BTMs are logged in a
BTS buffer in circular fashion. When this bit
is set, an interrupt is generated by the BTS
facility when the BTS buffer is full.

06_0EH

9 1: BTS_OFF_OS: When set, BTS or BTM is
skipped if CPL = 0.

06_0FH

10 BTS_OFF_USR: When set, BTS or BTM is
skipped if CPL > 0.

06_0FH

11 FREEZE_LBRS_ON_PMI: When set, the LBR
stack is frozen on a PMI request.

If CPUID.01H: ECX[15] = 1
and CPUID.0AH: EAX[7:0] >
1

12 FREEZE_PERFMON_ON_PMI: When set,
each ENABLE bit of the global counter
control MSR are frozen (address 38FH) on a
PMI request

If CPUID.01H: ECX[15] = 1
and CPUID.0AH: EAX[7:0] >
1

13 ENABLE_UNCORE_PMI: When set, enables
the logical processor to receive and
generate PMI on behalf of the uncore.

06_1AH

14 FREEZE_WHILE_SMM: When set, freezes
perfmon and trace messages while in SMM.

if
IA32_PERF_CAPABILITIES[
12] = '1

15 RTM_DEBUG: When set, enables DR7 debug
bit on XBEGIN

If (CPUID.(EAX=07H,
ECX=0):EBX[bit 11] = 1)

63:16 Reserved.

1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address (Writeable only in
SMM)

Base address of SMM memory range.

If IA32_MTRRCAP[SMRR]
= 1

7:0 Type. Specifies memory type of the range.

11:8 Reserved.

31:12 PhysBase.

SMRR physical Base Address.

63:32 Reserved.

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask. (Writeable only in
SMM)

Range Mask of SMM memory range.

If IA32_MTRRCAP[SMRR]
= 1

10:0 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 250

11 Valid

Enable range mask.

31:12 PhysMask

SMRR address range mask.

63:32 Reserved.

1F8H 504 IA32_PLATFORM_DCA_CAP DCA Capability (R) 06_0FH

1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-Hint type.

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and Control register. 06_2EH

0 DCA_ACTIVE: Set by HW when DCA is fuse-
enabled and no defeatures are set.

2:1 TRANSACTION

6:3 DCA_TYPE

10:7 DCA_QUEUE_SIZE

12:11 Reserved.

16:13 DCA_DELAY: Writes will update the register
but have no HW side-effect.

23:17 Reserved.

24 SW_BLOCK: SW can request DCA block by
setting this bit.

25 Reserved.

26 HW_BLOCK: Set when DCA is blocked by
HW (e.g. CR0.CD = 1).

31:27 Reserved.

200H 512 IA32_MTRR_PHYSBASE0
(MTRRphysBase0)

See Section 11.11.2.3, “Variable Range
MTRRs.”

06_01H

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 06_01H

202H 514 IA32_MTRR_PHYSBASE1 MTRRphysBase1 06_01H

203H 515 IA32_MTRR_PHYSMASK1 MTRRphysMask1 06_01H

204H 516 IA32_MTRR_PHYSBASE2 MTRRphysBase2 06_01H

205H 517 IA32_MTRR_PHYSMASK2 MTRRphysMask2 06_01H

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 06_01H

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 06_01H

208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 06_01H

209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 06_01H

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 06_01H

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 06_01H

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 251

20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 06_01H

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 06_01H

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 06_01H

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 06_01H

210H 528 IA32_MTRR_PHYSBASE8 MTRRphysBase8 if IA32_MTRRCAP[7:0] > 8

211H 529 IA32_MTRR_PHYSMASK8 MTRRphysMask8 if IA32_MTRRCAP[7:0] > 8

212H 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 if IA32_MTRRCAP[7:0] > 9

213H 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 if IA32_MTRRCAP[7:0] > 9

250H 592 IA32_MTRR_FIX64K_00000 MTRRfix64K_00000 06_01H

258H 600 IA32_MTRR_FIX16K_80000 MTRRfix16K_80000 06_01H

259H 601 IA32_MTRR_FIX16K_A0000 MTRRfix16K_A0000 06_01H

268H 616 IA32_MTRR_FIX4K_C0000
(MTRRfix4K_C0000)

See Section 11.11.2.2, “Fixed Range
MTRRs.”

06_01H

269H 617 IA32_MTRR_FIX4K_C8000 MTRRfix4K_C8000 06_01H

26AH 618 IA32_MTRR_FIX4K_D0000 MTRRfix4K_D0000 06_01H

26BH 619 IA32_MTRR_FIX4K_D8000 MTRRfix4K_D8000 06_01H

26CH 620 IA32_MTRR_FIX4K_E0000 MTRRfix4K_E0000 06_01H

26DH 621 IA32_MTRR_FIX4K_E8000 MTRRfix4K_E8000 06_01H

26EH 622 IA32_MTRR_FIX4K_F0000 MTRRfix4K_F0000 06_01H

26FH 623 IA32_MTRR_FIX4K_F8000 MTRRfix4K_F8000 06_01H

277H 631 IA32_PAT IA32_PAT (R/W) 06_05H

2:0 PA0

7:3 Reserved.

10:8 PA1

15:11 Reserved.

18:16 PA2

23:19 Reserved.

26:24 PA3

31:27 Reserved.

34:32 PA4

39:35 Reserved.

42:40 PA5

47:43 Reserved.

50:48 PA6

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 252

55:51 Reserved.

58:56 PA7

63:59 Reserved.

280H 640 IA32_MC0_CTL2 (R/W) 06_1AH

14:0 Corrected error count threshold.

29:15 Reserved.

30 CMCI_EN

63:31 Reserved.

281H 641 IA32_MC1_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

282H 642 IA32_MC2_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

283H 643 IA32_MC3_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

284H 644 IA32_MC4_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

285H 645 IA32_MC5_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

286H 646 IA32_MC6_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

287H 647 IA32_MC7_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

288H 648 IA32_MC8_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

289H 649 IA32_MC9_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28AH 650 IA32_MC10_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28BH 651 IA32_MC11_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28CH 652 IA32_MC12_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28DH 653 IA32_MC13_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28EH 654 IA32_MC14_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28FH 655 IA32_MC15_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

290H 656 IA32_MC16_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

291H 657 IA32_MC17_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

292H 658 IA32_MC18_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

293H 659 IA32_MC19_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

294H 660 IA32_MC20_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

295H 661 IA32_MC21_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

296H 662 IA32_MC22_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

297H 663 IA32_MC23_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

298H 664 IA32_MC24_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

299H 665 IA32_MC25_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29AH 666 IA32_MC26_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 253

29BH 667 IA32_MC27_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29CH 668 IA32_MC28_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29DH 669 IA32_MC29_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29EH 670 IA32_MC30_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29FH 671 IA32_MC31_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType (R/W) 06_01H

2:0 Default Memory Type

9:3 Reserved.

10 Fixed Range MTRR Enable

11 MTRR Enable

63:12 Reserved.

309H 777 IA32_FIXED_CTR0
(MSR_PERF_FIXED_CTR0)

Fixed-Function Performance Counter 0 (R/
W): Counts Instr_Retired.Any.

If CPUID.0AH: EDX[4:0] > 0

30AH 778 IA32_FIXED_CTR1
(MSR_PERF_FIXED_CTR1)

Fixed-Function Performance Counter 1 0
(R/W): Counts CPU_CLK_Unhalted.Core

If CPUID.0AH: EDX[4:0] > 1

30BH 779 IA32_FIXED_CTR2
(MSR_PERF_FIXED_CTR2)

Fixed-Function Performance Counter 0 0
(R/W): Counts CPU_CLK_Unhalted.Ref

If CPUID.0AH: EDX[4:0] > 2

345H 837 IA32_PERF_CAPABILITIES RO If CPUID.01H: ECX[15] = 1

5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is supported.

13 1: Full width of counter writable via
IA32_A_PMCx.

63:14 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Fixed-Function Performance Counter
Control (R/W)

Counter increments while the results of
ANDing respective enable bit in
IA32_PERF_GLOBAL_CTRL with the
corresponding OS or USR bits in this MSR is
true.

If CPUID.0AH: EAX[7:0] > 1

0 EN0_OS: Enable Fixed Counter 0 to count
while CPL = 0.

1 EN0_Usr: Enable Fixed Counter 0 to count
while CPL > 0.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 254

2 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

3 EN0_PMI: Enable PMI when fixed counter 0
overflows.

4 EN1_OS: Enable Fixed Counter 1to count
while CPL = 0.

5 EN1_Usr: Enable Fixed Counter 1to count
while CPL > 0.

6 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

7 EN1_PMI: Enable PMI when fixed counter 1
overflows.

8 EN2_OS: Enable Fixed Counter 2 to count
while CPL = 0.

9 EN2_Usr: Enable Fixed Counter 2 to count
while CPL > 0.

10 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

11 EN2_PMI: Enable PMI when fixed counter 2
overflows.

63:12 Reserved.

38EH 910 IA32_PERF_GLOBAL_STATUS Global Performance Counter Status (RO) If CPUID.0AH: EAX[7:0] > 0

0 Ovf_PMC0: Overflow status of IA32_PMC0. If CPUID.0AH: EAX[15:8] >
0

1 Ovf_PMC1: Overflow status of IA32_PMC1. If CPUID.0AH: EAX[15:8] >
1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 255

2 Ovf_PMC2: Overflow status of IA32_PMC2. If CPUID.0AH: EAX[15:8] >
2

3 Ovf_PMC3: Overflow status of IA32_PMC3. If CPUID.0AH: EAX[15:8] >
3

31:4 Reserved.

32 Ovf_FixedCtr0: Overflow status of
IA32_FIXED_CTR0.

If CPUID.0AH: EAX[7:0] > 1

33 Ovf_FixedCtr1: Overflow status of
IA32_FIXED_CTR1.

If CPUID.0AH: EAX[7:0] > 1

34 Ovf_FixedCtr2: Overflow status of
IA32_FIXED_CTR2.

If CPUID.0AH: EAX[7:0] > 1

54:35 Reserved.

55 Trace_ToPA_PMI: A PMI occurred due to a
ToPA entry memory buffer was completely
filled.

If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)
and IA32_RTIT_CTL.ToPA
= 1

57:56 Reserved.

58 LBR_Frz: LBRs are frozen due to

• IA32_DEBUGCTL.FREEZE_LBR_ON_PMI=1,
• The LBR stack overflowed

If CPUID.0AH: EAX[7:0] > 3

59 CTR_Frz: Performance counters in the core
PMU are frozen due to

• IA32_DEBUGCTL.FREEZE_PERFMON_ON_
PMI=1,

• one or more core PMU counters
overflowed.

If CPUID.0AH: EAX[7:0] > 3

60 ASCI: Data in the performance counters in
the core PMU may include contributions
from the direct or indirect operation intel
SGX to protect an enclave.

If CPUID.(EAX=07H,
ECX=0):EBX[bit 2] = 1

61 Ovf_Uncore: Uncore counter overflow
status.

If CPUID.0AH: EAX[7:0] > 2

62 OvfBuf: DS SAVE area Buffer overflow
status.

If CPUID.0AH: EAX[7:0] > 0

63 CondChgd: status bits of this register has
changed.

If CPUID.0AH: EAX[7:0] > 0

38FH 911 IA32_PERF_GLOBAL_CTRL Global Performance Counter Control (R/W)

Counter increments while the result of
ANDing respective enable bit in this MSR
with the corresponding OS or USR bits in
the general-purpose or fixed counter
control MSR is true.

If CPUID.0AH: EAX[7:0] > 0

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 256

0 EN_PMC0 If CPUID.0AH: EAX[15:8] >
0

1 EN_PMC1 If CPUID.0AH: EAX[15:8] >
1

2 EN_PMC2 If CPUID.0AH: EAX[15:8] >
2

n EN_PMCn If CPUID.0AH: EAX[15:8] >
n

31:n+1 Reserved.

32 EN_FIXED_CTR0 If CPUID.0AH: EDX[4:0] > 0

33 EN_FIXED_CTR1 If CPUID.0AH: EDX[4:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH: EDX[4:0] > 2

63:35 Reserved.

390H 912 IA32_PERF_GLOBAL_OVF_CTRL Global Performance Counter Overflow
Control (R/W)

If CPUID.0AH: EAX[7:0] > 0
&& CPUID.0AH: EAX[7:0]
<= 3

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[15:8] >
0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[15:8] >
1

2 Set 1 to Clear Ovf_PMC2 bit. If CPUID.0AH: EAX[15:8] >
2

n Set 1 to Clear Ovf_PMCn bit. If CPUID.0AH: EAX[15:8] >
n

31:n Reserved.

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EDX[4:0] > 0

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EDX[4:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EDX[4:0] > 2

54:35 Reserved.

55 Set 1 to Clear Trace_ToPA_PMI bit. If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)
and IA32_RTIT_CTL.ToPA
= 1

60:56 Reserved.

61 Set 1 to Clear Ovf_Uncore bit. 06_2EH

62 Set 1 to Clear OvfBuf: bit. If CPUID.0AH: EAX[7:0] > 0

63 Set to 1to clear CondChgd: bit. If CPUID.0AH: EAX[7:0] > 0

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 257

390H 912 IA32_PERF_GLOBAL_STATUS_RESET Global Performance Counter Overflow
Reset Control (R/W)

If CPUID.0AH: EAX[7:0] > 3

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[15:8] >
0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[15:8] >
1

2 Set 1 to Clear Ovf_PMC2 bit. If CPUID.0AH: EAX[15:8] >
2

n Set 1 to Clear Ovf_PMCn bit. If CPUID.0AH: EAX[15:8] >
n

31:n Reserved.

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EDX[4:0] > 0

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EDX[4:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EDX[4:0] > 2

54:35 Reserved.

55 Set 1 to Clear Trace_ToPA_PMI bit. If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)
and IA32_RTIT_CTL.ToPA
= 1

57:56 Reserved.

58 Set 1 to Clear LBR_Frz bit. If CPUID.0AH: EAX[7:0] > 3

59 Set 1 to Clear CTR_Frz bit. If CPUID.0AH: EAX[7:0] > 3

58 Set 1 to Clear ASCI bit. If CPUID.0AH: EAX[7:0] > 3

61 Set 1 to Clear Ovf_Uncore bit. 06_2EH

62 Set 1 to Clear OvfBuf: bit. If CPUID.0AH: EAX[7:0] > 0

63 Set to 1to clear CondChgd: bit. If CPUID.0AH: EAX[7:0] > 0

391H 913 IA32_PERF_GLOBAL_STATUS_SET Global Performance Counter Overflow Set
Control (R/W)

If CPUID.0AH: EAX[7:0] > 3

0 Set 1 to cause Ovf_PMC0 = 1. If CPUID.0AH: EAX[7:0] > 3

1 Set 1 to cause Ovf_PMC1 = 1 If CPUID.0AH: EAX[15:8] >
1

2 Set 1 to cause Ovf_PMC2 = 1 If CPUID.0AH: EAX[15:8] >
2

n Set 1 to cause Ovf_PMCn = 1 If CPUID.0AH: EAX[15:8] >
n

31:n Reserved.

32 Set 1 to cause Ovf_FIXED_CTR0 = 1. If CPUID.0AH: EAX[7:0] > 3

33 Set 1 to cause Ovf_FIXED_CTR1 = 1. If CPUID.0AH: EAX[7:0] > 3

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 258

34 Set 1 to cause Ovf_FIXED_CTR2 = 1. If CPUID.0AH: EAX[7:0] > 3

54:35 Reserved.

55 Set 1 to cause Trace_ToPA_PMI = 1. If CPUID.0AH: EAX[7:0] > 3

57:56 Reserved.

58 Set 1 to cause LBR_Frz = 1. If CPUID.0AH: EAX[7:0] > 3

59 Set 1 to cause CTR_Frz = 1. If CPUID.0AH: EAX[7:0] > 3

58 Set 1 to cause ASCI = 1. If CPUID.0AH: EAX[7:0] > 3

61 Set 1 to cause Ovf_Uncore = 1. If CPUID.0AH: EAX[7:0] > 3

62 Set 1 to cause OvfBuf = 1. If CPUID.0AH: EAX[7:0] > 3

63 Reserved

392H 914 IA32_PERF_GLOBAL_INUSE Indicator of core perfmon interface is in use
(RO)

If CPUID.0AH: EAX[7:0] > 3

0 IA32_PERFEVTSEL0 in use

1 IA32_PERFEVTSEL1 in use If CPUID.0AH: EAX[15:8] >
1

2 IA32_PERFEVTSEL2 in use If CPUID.0AH: EAX[15:8] >
2

n IA32_PERFEVTSELn in use If CPUID.0AH: EAX[15:8] >
n

31:n Reserved.

32 IA32_FIXED_CTR0 in use

33 IA32_FIXED_CTR1 in use

34 IA32_FIXED_CTR2 in use

35-35 Reserved or Model specific.

63 PMI in use.

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0. 06_0FH

1-3 Reserved or Model specific.

31:4 Reserved.

35-32 Reserved or Model specific.

63:36 Reserved.

400H 1024 IA32_MC0_CTL MC0_CTL 06_01H

401H 1025 IA32_MC0_STATUS MC0_STATUS 06_01H

402H 1026 IA32_MC0_ADDR1 MC0_ADDR 06_01H

403H 1027 IA32_MC0_MISC MC0_MISC 06_01H

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 259

404H 1028 IA32_MC1_CTL MC1_CTL 06_01H

405H 1029 IA32_MC1_STATUS MC1_STATUS 06_01H

406H 1030 IA32_MC1_ADDR2 MC1_ADDR 06_01H

407H 1031 IA32_MC1_MISC MC1_MISC 06_01H

408H 1032 IA32_MC2_CTL MC2_CTL 06_01H

409H 1033 IA32_MC2_STATUS MC2_STATUS 06_01H

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR 06_01H

40BH 1035 IA32_MC2_MISC MC2_MISC 06_01H

40CH 1036 IA32_MC3_CTL MC3_CTL 06_01H

40DH 1037 IA32_MC3_STATUS MC3_STATUS 06_01H

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR 06_01H

40FH 1039 IA32_MC3_MISC MC3_MISC 06_01H

410H 1040 IA32_MC4_CTL MC4_CTL 06_01H

411H 1041 IA32_MC4_STATUS MC4_STATUS 06_01H

412H 1042 IA32_MC4_ADDR1 MC4_ADDR 06_01H

413H 1043 IA32_MC4_MISC MC4_MISC 06_01H

414H 1044 IA32_MC5_CTL MC5_CTL 06_0FH

415H 1045 IA32_MC5_STATUS MC5_STATUS 06_0FH

416H 1046 IA32_MC5_ADDR1 MC5_ADDR 06_0FH

417H 1047 IA32_MC5_MISC MC5_MISC 06_0FH

418H 1048 IA32_MC6_CTL MC6_CTL 06_1DH

419H 1049 IA32_MC6_STATUS MC6_STATUS 06_1DH

41AH 1050 IA32_MC6_ADDR1 MC6_ADDR 06_1DH

41BH 1051 IA32_MC6_MISC MC6_MISC 06_1DH

41CH 1052 IA32_MC7_CTL MC7_CTL 06_1AH

41DH 1053 IA32_MC7_STATUS MC7_STATUS 06_1AH

41EH 1054 IA32_MC7_ADDR1 MC7_ADDR 06_1AH

41FH 1055 IA32_MC7_MISC MC7_MISC 06_1AH

420H 1056 IA32_MC8_CTL MC8_CTL 06_1AH

421H 1057 IA32_MC8_STATUS MC8_STATUS 06_1AH

422H 1058 IA32_MC8_ADDR1 MC8_ADDR 06_1AH

423H 1059 IA32_MC8_MISC MC8_MISC 06_1AH

424H 1060 IA32_MC9_CTL MC9_CTL 06_2EH

425H 1061 IA32_MC9_STATUS MC9_STATUS 06_2EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 260

426H 1062 IA32_MC9_ADDR1 MC9_ADDR 06_2EH

427H 1063 IA32_MC9_MISC MC9_MISC 06_2EH

428H 1064 IA32_MC10_CTL MC10_CTL 06_2EH

429H 1065 IA32_MC10_STATUS MC10_STATUS 06_2EH

42AH 1066 IA32_MC10_ADDR1 MC10_ADDR 06_2EH

42BH 1067 IA32_MC10_MISC MC10_MISC 06_2EH

42CH 1068 IA32_MC11_CTL MC11_CTL 06_2EH

42DH 1069 IA32_MC11_STATUS MC11_STATUS 06_2EH

42EH 1070 IA32_MC11_ADDR1 MC11_ADDR 06_2EH

42FH 1071 IA32_MC11_MISC MC11_MISC 06_2EH

430H 1072 IA32_MC12_CTL MC12_CTL 06_2EH

431H 1073 IA32_MC12_STATUS MC12_STATUS 06_2EH

432H 1074 IA32_MC12_ADDR1 MC12_ADDR 06_2EH

433H 1075 IA32_MC12_MISC MC12_MISC 06_2EH

434H 1076 IA32_MC13_CTL MC13_CTL 06_2EH

435H 1077 IA32_MC13_STATUS MC13_STATUS 06_2EH

436H 1078 IA32_MC13_ADDR1 MC13_ADDR 06_2EH

437H 1079 IA32_MC13_MISC MC13_MISC 06_2EH

438H 1080 IA32_MC14_CTL MC14_CTL 06_2EH

439H 1081 IA32_MC14_STATUS MC14_STATUS 06_2EH

43AH 1082 IA32_MC14_ADDR1 MC14_ADDR 06_2EH

43BH 1083 IA32_MC14_MISC MC14_MISC 06_2EH

43CH 1084 IA32_MC15_CTL MC15_CTL 06_2EH

43DH 1085 IA32_MC15_STATUS MC15_STATUS 06_2EH

43EH 1086 IA32_MC15_ADDR1 MC15_ADDR 06_2EH

43FH 1087 IA32_MC15_MISC MC15_MISC 06_2EH

440H 1088 IA32_MC16_CTL MC16_CTL 06_2EH

441H 1089 IA32_MC16_STATUS MC16_STATUS 06_2EH

442H 1090 IA32_MC16_ADDR1 MC16_ADDR 06_2EH

443H 1091 IA32_MC16_MISC MC16_MISC 06_2EH

444H 1092 IA32_MC17_CTL MC17_CTL 06_2EH

445H 1093 IA32_MC17_STATUS MC17_STATUS 06_2EH

446H 1094 IA32_MC17_ADDR1 MC17_ADDR 06_2EH

447H 1095 IA32_MC17_MISC MC17_MISC 06_2EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 261

448H 1096 IA32_MC18_CTL MC18_CTL 06_2EH

449H 1097 IA32_MC18_STATUS MC18_STATUS 06_2EH

44AH 1098 IA32_MC18_ADDR1 MC18_ADDR 06_2EH

44BH 1099 IA32_MC18_MISC MC18_MISC 06_2EH

44CH 1100 IA32_MC19_CTL MC19_CTL 06_2EH

44DH 1101 IA32_MC19_STATUS MC19_STATUS 06_2EH

44EH 1102 IA32_MC19_ADDR1 MC19_ADDR 06_2EH

44FH 1103 IA32_MC19_MISC MC19_MISC 06_2EH

450H 1104 IA32_MC20_CTL MC20_CTL 06_2EH

451H 1105 IA32_MC20_STATUS MC20_STATUS 06_2EH

452H 1106 IA32_MC20_ADDR1 MC20_ADDR 06_2EH

453H 1107 IA32_MC20_MISC MC20_MISC 06_2EH

454H 1108 IA32_MC21_CTL MC21_CTL 06_2EH

455H 1109 IA32_MC21_STATUS MC21_STATUS 06_2EH

456H 1110 IA32_MC21_ADDR1 MC21_ADDR 06_2EH

457H 1111 IA32_MC21_MISC MC21_MISC 06_2EH

480H 1152 IA32_VMX_BASIC Reporting Register of Basic VMX
Capabilities (R/O)

See Appendix A.1, “Basic VMX Information.”

If CPUID.01H:ECX.[bit 5] =
1

481H 1153 IA32_VMX_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If CPUID.01H:ECX.[bit 5] =
1

482H 1154 IA32_VMX_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-based VM-execution Controls
(R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If CPUID.01H:ECX.[bit 5] =
1

483H 1155 IA32_VMX_EXIT_CTLS Capability Reporting Register of VM-exit
Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If CPUID.01H:ECX.[bit 5] =
1

484H 1156 IA32_VMX_ENTRY_CTLS Capability Reporting Register of VM-
entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If CPUID.01H:ECX.[bit 5] =
1

485H 1157 IA32_VMX_MISC Reporting Register of Miscellaneous
VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data.”

If CPUID.01H:ECX.[bit 5] =
1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 262

486H 1158 IA32_VMX_CR0_FIXED0 Capability Reporting Register of CR0 Bits
Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[bit 5] =
1

487H 1159 IA32_VMX_CR0_FIXED1 Capability Reporting Register of CR0 Bits
Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[bit 5] =
1

488H 1160 IA32_VMX_CR4_FIXED0 Capability Reporting Register of CR4 Bits
Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[bit 5] =
1

489H 1161 IA32_VMX_CR4_FIXED1 Capability Reporting Register of CR4 Bits
Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[bit 5] =
1

48AH 1162 IA32_VMX_VMCS_ENUM Capability Reporting Register of VMCS
Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration.”

If CPUID.01H:ECX.[bit 5] =
1

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Capability Reporting Register of
Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3.3, “Secondary Processor-
Based VM-Execution Controls.”

If (CPUID.01H:ECX.[bit 5]
and
IA32_VMX_PROCBASED_C
TLS[bit 63])

48CH 1164 IA32_VMX_EPT_VPID_CAP Capability Reporting Register of EPT and
VPID (R/O)

See Appendix A.10, “VPID and EPT
Capabilities.”

If (CPUID.01H:ECX.[bit 5],
IA32_VMX_PROCBASED_C
TLS[bit 63], and either
IA32_VMX_PROCBASED_C
TLS2[bit 33] or
IA32_VMX_PROCBASED_C
TLS2[bit 37])

48DH 1165 IA32_VMX_TRUE_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Flex Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If (CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-based VM-execution Flex
Controls (R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Capability Reporting Register of VM-exit
Flex Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Capability Reporting Register of VM-
entry Flex Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 263

491H 1169 IA32_VMX_VMFUNC Capability Reporting Register of VM-
function Controls (R/O)

If(CPUID.01H:ECX.[bit 5] =
1 and
IA32_VMX_BASIC[bit 55])

4C1H 1217 IA32_A_PMC0 Full Width Writable IA32_PMC0 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
0) &

IA32_PERF_CAPABILITIES[
13] = 1

4C2H 1218 IA32_A_PMC1 Full Width Writable IA32_PMC1 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
1) &

IA32_PERF_CAPABILITIES[
13] = 1

4C3H 1219 IA32_A_PMC2 Full Width Writable IA32_PMC2 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
2) &

IA32_PERF_CAPABILITIES[
13] = 1

4C4H 1220 IA32_A_PMC3 Full Width Writable IA32_PMC3 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
3) &

IA32_PERF_CAPABILITIES[
13] = 1

4C5H 1221 IA32_A_PMC4 Full Width Writable IA32_PMC4 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
4) &

IA32_PERF_CAPABILITIES[
13] = 1

4C6H 1222 IA32_A_PMC5 Full Width Writable IA32_PMC5 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
5) &

IA32_PERF_CAPABILITIES[
13] = 1

4C7H 1223 IA32_A_PMC6 Full Width Writable IA32_PMC6 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
6) &

IA32_PERF_CAPABILITIES[
13] = 1

4C8H 1224 IA32_A_PMC7 Full Width Writable IA32_PMC7 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
7) &

IA32_PERF_CAPABILITIES[
13] = 1

4D0H 1232 IA32_MCG_EXT_CTL (R/W) If IA32_MCG_CAP.LMCE_P
=1

0 LMCE_EN.

63:1 Reserved.

560H 1376 IA32_RTIT_OUTPUT_BASE Trace Output Base Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 264

6:0 Reserved

MAXPHYADDR3-1:7 Base physical address of the current ToPA
table.

63:MAXPHYADDR Reserved.

561H 1377 IA32_RTIT_OUTPUT_MASK_PTRS Trace Output Mask Pointers Register (R/
W)

If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)

6:0 Reserved

31:7 MaskOrTableOffset

63:32 Output Offset.

570H 1392 IA32_RTIT_CTL Trace Packet Control Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)

0 TraceEn

1 Reserved,

2 OS

3 User

6:4 Reserved,

7 CR3 filter

8 ToPA

9 Reserved,

10 TSCEn

11 DisRETC

12 Reserved,

13 BranchEn

63:14 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Tracing Status Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)

0 Reserved,

1 ContexEn, (writes ignored)

2 TriggerEn, (writes ignored)

3 Reserved

4 Error

5 Stopped

63:6 Reserved.

572H 1394 IA32_RTIT_CR3_MATCH Trace Filter CR3 Match Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[bit 25] = 1)

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 265

4:0 Reserved

63:5 CR3[63:5] value to match

600H 1536 IA32_DS_AREA DS Save Area (R/W)

Points to the linear address of the first
byte of the DS buffer management area,
which is used to manage the BTS and PEBS
buffers.

See Section 18.13.4, “Debug Store (DS)
Mechanism.”

0F_0H

63:0 The linear address of the first byte of the
DS buffer management area, if IA-32e
mode is active.

31:0 The linear address of the first byte of the
DS buffer management area, if not in IA-
32e mode.

63:32 Reserved if not in IA-32e mode.

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s TSC Deadline
Mode (R/W)

If(CPUID.01H:ECX.[bit 24]
= 1

770H 1904 IA32_PM_ENABLE Enable/disable HWP (R/W) If(CPUID.06H:EAX.[bit 7] =
1

0 HWP_ENABLE (R/W1-Once).

See Section 14.4.2, “Enabling HWP”

If(CPUID.06H:EAX.[bit 7] =
1

63:1 Reserved.

771H 1905 IA32_HWP_CAPABILITIES HWP Performance Range Enumeration
(RO)

If(CPUID.06H:EAX.[bit 7] =
1

7:0 Highest_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If(CPUID.06H:EAX.[bit 7] =
1

15:8 Guaranteed_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If(CPUID.06H:EAX.[bit 7] =
1

23:16 Most_Efficient_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If(CPUID.06H:EAX.[bit 7] =
1

31:24 Lowest_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If(CPUID.06H:EAX.[bit 7] =
1

63:32 Reserved.

772H 1906 IA32_HWP_REQUEST_PKG Power Management Control Hints for All
Logical Processors in a Package (R/W)

If(CPUID.06H:EAX.[bit 11]
= 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 266

7:0 Minimum_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1

15:8 Maximum_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1

23:16 Desired_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1

31:24 Energy_Performance_Preference

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1 and

CPUID.06HEAX.[bit 10] = 1

41:32 Activity_Window

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 11]
= 1 and

CPUID.06HEAX.[bit 9] = 1

63:42 Reserved.

773H 1907 IA32_HWP_INTERRUPT Control HWP Native Interrupts (R/W) If(CPUID.06H:EAX.[bit 8] =
1

0 EN_Guaranteed_Performance_Change.

See Section 14.4.6, “HWP Notifications”

If(CPUID.06H:EAX.[bit 8] =
1

1 EN_Excursion_Minimum.

See Section 14.4.6, “HWP Notifications”

If(CPUID.06H:EAX.[bit 8] =
1

63:2 Reserved.

774H 1908 IA32_HWP_REQUEST Power Management Control Hints to a
Logical Processor (R/W)

If(CPUID.06H:EAX.[bit 7] =
1

7:0 Minimum_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 7] =
1

15:8 Maximum_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 7] =
1

23:16 Desired_Performance

See Section 14.4.4, “Managing HWP”

If(CPUID.06H:EAX.[bit 7] =
1

31:24 Energy_Performance_Preference

See Section 14.4.4, “Managing HWP”

If CPUID.06HEAX.[bit 7] =
1 and (CPUID.06H:EAX.[bit
10] = 1

41:32 Activity_Window

See Section 14.4.4, “Managing HWP”

If CPUID.06HEAX.[bit 7] =
1 and (CPUID.06H:EAX.[bit
9] = 1

42 Package_Control

See Section 14.4.4, “Managing HWP”

IfCPUID.06HEAX.[bit 7] = 1
and (CPUID.06H:EAX.[bit
11] = 1

63:43 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 267

777H 1911 IA32_HWP_STATUS Log bits indicating changes to
Guaranteed & excursions to Minimum (R/
W)

If(CPUID.06H:EAX.[bit 7] =
1

0 Guaranteed_Performance_Change (R/
WC0).

See Section 14.4.5, “HWP Feedback”

If(CPUID.06H:EAX.[bit 7] =
1

1 Reserved.

2 Excursion_To_Minimum (R/WC0).

See Section 14.4.5, “HWP Feedback”

If(CPUID.06H:EAX.[bit 7] =
1

63:3 Reserved.

802H 2050 IA32_X2APIC_APICID x2APIC ID Register (R/O)

See x2APIC Specification

If (CPUID.01H:ECX.[bit 21]
= 1)

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register (R/O) If (CPUID.01H:ECX.[bit 21]
= 1)

808H 2056 IA32_X2APIC_TPR x2APIC Task Priority Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority Register (R/O) If (CPUID.01H:ECX.[bit 21]
= 1)

80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register (W/O) If (CPUID.01H:ECX.[bit 21]
= 1)

80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination Register (R/
O)

If (CPUID.01H:ECX.[bit 21]
= 1)

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt Vector
Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register Bits 31:0 (R/
O)

If (CPUID.01H:ECX.[bit 21]
= 1)

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register Bits 63:32
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register Bits 95:64
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register Bits 127:96
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register Bits 159:128
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register Bits 191:160
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register Bits 223:192
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register Bits 255:224
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 268

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode Register Bits 31:0
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode Register Bits 63:32
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode Register Bits 95:64
(R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode Register Bits
127:96 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode Register Bits
159:128 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode Register Bits
191:160 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode Register Bits
223:192 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode Register Bits
255:224 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request Register Bits
31:0 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request Register Bits
63:32 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request Register Bits
95:64 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request Register Bits
127:96 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request Register Bits
159:128 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request Register Bits
191:160 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request Register Bits
223:192 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request Register Bits
255:224 (R/O)

If (CPUID.01H:ECX.[bit 21]
= 1)

828H 2088 IA32_X2APIC_ESR x2APIC Error Status Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected Machine Check
Interrupt Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command Register (R/
W)

If (CPUID.01H:ECX.[bit 21]
= 1)

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer Interrupt Register (R/
W)

If (CPUID.01H:ECX.[bit 21]
= 1)

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 269

833H 2099 IA32_X2APIC_LVT_THERMAL x2APIC LVT Thermal Sensor Interrupt
Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance Monitor
Interrupt Register (R/W)

If (CPUID.01H:ECX.[bit 21]
= 1)

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0 Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1 Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

837H 2103 IA32_X2APIC_LVT_ERROR x2APIC LVT Error Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

838H 2104 IA32_X2APIC_INIT_COUNT x2APIC Initial Count Register (R/W) If (CPUID.01H:ECX.[bit 21]
= 1)

839H 2105 IA32_X2APIC_CUR_COUNT x2APIC Current Count Register (R/O) If (CPUID.01H:ECX.[bit 21]
= 1)

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide Configuration Register (R/
W)

If (CPUID.01H:ECX.[bit 21]
= 1)

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register (W/O) If (CPUID.01H:ECX.[bit 21]
= 1)

C80H 3200 IA32_DEBUG_INTERFACE Silicon Debug Feature Control (R/W) If(CPUID.01H:ECX.[bit 11]
= 1

0 Enable (R/W)

BIOS set 1 to enable Silicon debug features.
Default is 0

If(CPUID.01H:ECX.[bit 11]
= 1

29:1 Reserved.

30 Lock (R/W): If 1, locks any further change
to the MSR. The lock bit is set automatically
on the first SMI assertion even if not
explicitly set by BIOS. Default is 0.

If(CPUID.01H:ECX.[bit 11]
= 1

31 Debug Occurred (R/O): This “sticky bit” is
set by hardware to indicate the status of
bit 0. Default is 0.

If(CPUID.01H:ECX.[bit 11]
= 1

63:32 Reserved.

C8DH 3213 IA32_QM_EVTSEL Monitoring Event Select Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 12] = 1)

7:0 Event ID: ID of a supported monitoring
event to report via IA32_QM_CTR.

31: 8 Reserved.

N+31:32 Resource Monitoring ID: ID for monitoring
hardware to report monitored data via
IA32_QM_CTR.

N = Ceil (Log2 (
CPUID.(EAX= 0FH,
ECX=0H).EBX[31:0] +1))

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 270

63:N+32 Reserved.

C8EH 3214 IA32_QM_CTR Monitoring Counter Register (R/O) If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 12] = 1)

61:0 Resource Monitored Data

62 Unavailable: If 1, indicates data for this
RMID is not available or not monitored for
this resource or RMID.

63 Error: If 1, indicates and unsupported RMID
or event type was written to
IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC Resource Association Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 12] = 1)

N-1:0 Resource Monitoring ID (R/W): ID for
monitoring hardware to track internal
operation, e.g. memory access.

N = Ceil (Log2 (
CPUID.(EAX= 0FH,
ECX=0H).EBX[31:0] +1))

31:N Reserved

63:32 COS (R/W). The class of service
(COS) to enforce (on writes);
returns the current COS when
read.

If (CPUID.(EAX=07H,
ECX=0):EBX.[bit 15] = 1)

C90H -
D8FH

Reserved MSR Address Space for
Platform Enforcement Mask Registers

See Section 17.16.2.1, “Enumeration and
Detection Support of Cache Allocation
Technology”

C90H 3216 IA32_L3_MASK_0 L3 CQE Mask for COS0 (R/W) If (CPUID.(10H, 0):EBX[bit
1] != 0)

31:0 Capacity Bit Mask (R/W)

63:32 Reserved.

C90H+
n

3216+n IA32_L3_MASK_n L3 CQE Mask for COSn (R/W) n = CPUID.(10H,
1):EDX[15:0]

31:0 Capacity Bit Mask (R/W)

63:32 Reserved.

DA0H 3488 IA32_XSS Extended Supervisor State Mask (R/W) If(CPUID.(0DH, 1):EAX.[bit
3] = 1

7:0 Reserved

8 Trace Packet Configuration State (R/W)

63:9 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 271

DB0H 3504 IA32_PKG_HDC_CTL Package Level Enable/disable HDC (R/W) If(CPUID.06H:EAX.[bit 13]
= 1

0 HDC_Pkg_Enable (R/W)

Force HDC idling or wake up HDC-idled
logical processors in the package. See
Section 14.5.2, “Package level Enabling
HDC”

If(CPUID.06H:EAX.[bit 13]
= 1

63:1 Reserved.

DB1H 3505 IA32_PM_CTL1 Enable/disable HWP (R/W) If(CPUID.06H:EAX.[bit 13]
= 1

0 HDC_Allow_Block (R/W)

Allow/Block this logical processor for
package level HDC control. See Section
14.5.3

If(CPUID.06H:EAX.[bit 13]
= 1

63:1 Reserved.

DB2H 3506 IA32_THREAD_STALL Per-Logical_Processor HDC Idle
Residency (R/0)

If(CPUID.06H:EAX.[bit 13]
= 1

63:0 Stall_Cycle_Cnt (R/W)

Stalled cycles due to HDC forced idle on this
logical processor. See Section 14.5.4.1

If(CPUID.06H:EAX.[bit 13]
= 1

4000_
0000H
-
4000_
00FFH

Reserved MSR Address Space All existing and future processors will
not implement MSR in this range.

C000_
0080H

IA32_EFER Extended Feature Enables If (
CPUID.80000001.EDX.[bit
20] or
CPUID.80000001.EDX.[bit
29])

0 SYSCALL Enable: IA32_EFER.SCE (R/W)

Enables SYSCALL/SYSRET instructions in
64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable: IA32_EFER.LME (R/
W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active: IA32_EFER.LMA (R)

Indicates IA-32e mode is active when set.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 272

...

35.4.1 MSRs In Future Intel Atom Processors Based on Airmont Microarchitecture
Intel Atom processor X7-Z8000 and X5-Z8000 series are based on the Airmont microarchitecture. They support
MSRs listed in Table 35-6, Table 35-7, and Table 35-10. These processors have a CPUID signature with
DisplayFamily_DisplayModel including 06_4CH, see Table 35-1.

11 Execute Disable Bit Enable:
IA32_EFER.NXE (R/W)

63:12 Reserved.

C000_
0081H

IA32_STAR System Call Target Address (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0082H

IA32_LSTAR IA-32e Mode System Call Target Address
(R/W)

If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0084H

IA32_FMASK System Call Flag Mask (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0100H

IA32_FS_BASE Map of BASE Address of FS (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0101H

IA32_GS_BASE Map of BASE Address of GS (R/W) If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0102H

IA32_KERNEL_GS_BASE Swap Target of BASE Address of GS (R/
W)

If
CPUID.80000001.EDX.[bit
29] = 1

C000_
0103H

IA32_TSC_AUX Auxiliary TSC (RW) If CPUID.80000001H:
EDX[27] = 1

31:0 AUX: Auxiliary signature of TSC

63:32 Reserved.
NOTES:

1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are supported, software must treat them as
model-specific. Starting with Intel Core Duo processors, MSR addresses 180H-185H, 188H-197H are reserved.

2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. See Section 15.3.2.3 and Section
15.3.2.4 for more information.

3. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 273

Table 35-10 MSRs in Intel Atom Processors Based on the Airmont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Airmont microarchitecture:

4:0 • 00000B: 083.3 MHz
• 00001B: 100.0 MHz
• 00010B: 133.3 MHz
• 00011B: 116.5 MHz
• 00100B: 083.3 MHz
• 00101B: 100.0 MHz
• 00110B: 133.3 MHz
• 00111B: 116.7 MHz
• 01100B: 080.0 MHz
• 01101B: 093.3 MHz
• 01110B: 090.0 MHz
• 01111B: 088.9 MHz
• 10100B: 087.5 MHz

63:5 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Shared C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: No limit

001b: C1

010b: C2

110b: C6

111b: C7

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Shared Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 274

...

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to
be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - Deep Power Down Technology is the max C-State

010b - C7 is the max C-State to include

63:19 Reserved.

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

14:0 PP0 Power Limit #1. (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.” and
MSR_RAPL_POWER_UNIT in Table 35-7.

15 Enable Power Limit #1. (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

16 Reserved

23:17 Time Window for Power Limit #1. (R/W)

Specifies the time duration over which the average power must
remain below PP0_POWER_LIMIT #1(14:0). Supported Encodings:

0x0: 1 second time duration.

0x1: 5 second time duration (Default).

0x2: 10 second time duration.

0x3: 15 second time duration.

0x4: 20 second time duration.

0x5: 25 second time duration.

0x6: 30 second time duration.

0x7: 35 second time duration.

0x8: 40 second time duration.

0x9: 45 second time duration.

0xA: 50 second time duration.

0xB-0x7F - reserved.

63:24 Reserved

Table 35-10 MSRs in Intel Atom Processors Based on the Airmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 275

35.5 MSRS IN THE INTEL® MICROARCHITECTURE CODE NAME NEHALEM
Table 35-11 lists model-specific registers (MSRs) that are common for Intel® microarchitecture code name
Nehalem. These include Intel Core i7 and i5 processor family. Architectural MSR addresses are also included in
Table 35-11. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_1AH, 06_1EH,
06_1FH, 06_2EH, see Table 35-1. Additional MSRs specific to 06_1AH, 06_1EH, 06_1FH are listed in Table 35-12.
Some MSRs listed in these tables are used by BIOS. More information about these MSR can be found at http://
biosbits.org.

The column “Scope” represents the package/core/thread scope of individual bit field of an MSR. “Thread” means
this bit field must be programmed on each logical processor independently. “Core” means the bit field must be
programmed on each processor core independently, logical processors in the same core will be affected by change
of this bit on the other logical processor in the same core. “Package” means the bit field must be programmed
once for each physical package. Change of a bit filed with a package scope will affect all logical processors in that
physical package.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem

Register
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 35.20, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 35.20, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,”
and Table 35-2.

10H 16 IA32_TIME_
STAMP_COUNTER

Thread See Section 17.14, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 35-2.

17H 23 MSR_PLATFORM_ID Package Model Specific Platform ID (R)

49:0 Reserved.

52:50 See Table 35-2.

63:53 Reserved.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

Running count of SMI events since last RESET.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 35-2.

79H 121 IA32_BIOS_
UPDT_TRIG

Core BIOS Update Trigger Register (W)

See Table 35-2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 276

8BH 139 IA32_BIOS_
SIGN_ID

Thread BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register

See Table 35-2.

C2H 194 IA32_PMC1 Thread Performance Counter Register

See Table 35-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register

See Table 35-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package see http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at. The
invariant TSC frequency can be computed by multiplying this ratio
by 133.33 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDC-TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDC/TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDC and TDP Limits for
Turbo mode are not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 133.33MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States. See http://biosbits.org.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 277

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

010b: C3

011b: C6

100b: C7

101b and 110b: Reserved

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions.

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

23:16 Reserved.

24 Interrupt filtering enable (R/W)

When set, processor cores in a deep C-State will wake only when
the event message is destined for that core. When 0, all processor
cores in a deep C-State will wake for an event message.

25 C3 state auto demotion enable (R/W)

When set, the processor will conditionally demote C6/C7 requests
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W)

When set, the processor will conditionally demote C3/C6/C7
requests to C1 based on uncore auto-demote information.

63:27 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 278

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to
be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 35-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Thread See Table 35-2.

174H 372 IA32_SYSENTER_CS Thread See Table 35-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 35-2.

179H 377 IA32_MCG_CAP Thread See Table 35-2.

17AH 378 IA32_MCG_STATUS Thread

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 279

186H 390 IA32_PERFEVTSEL0 Thread See Table 35-2.

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 AnyThread

22 EN

23 INV

31:24 CMASK

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 Thread See Table 35-2.

188H 392 IA32_PERFEVTSEL2 Thread See Table 35-2.

189H 393 IA32_PERFEVTSEL3 Thread See Table 35-2.

198H 408 IA32_PERF_STATUS Core See Table 35-2.

15:0 Current Performance State Value.

63:16 Reserved.

199H 409 IA32_PERF_CTL Thread See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Thread Clock Modulation (R/W)

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

0 Reserved.

3:1 On demand Clock Modulation Duty Cycle (R/W)

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-2.

1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 280

0 Thread Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Thread Automatic Thermal Control Circuit Enable (R/W)

See Table 35-2.

6:4 Reserved.

7 Thread Performance Monitoring Available (R)

See Table 35-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable (RO)

See Table 35-2.

12 Thread Precise Event Based Sampling Unavailable (RO)

See Table 35-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 35-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval (R/W)

See Table 35-2.

23 Thread xTPR Message Disable (R/W)

See Table 35-2.

33:24 Reserved.

34 Thread XD Bit Disable (R/W)

See Table 35-2.

37:35 Reserved.

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 281

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Thread

15:0 Reserved.

23:16 Temperature Target (R)

The minimum temperature at which PROCHOT# will be asserted.
The value is degree C.

63:24 Reserved.

1A4H 420 MSR_MISC_FEATURE_
CONTROL

Miscellaneous Feature Control (R/W)

0 Core L2 Hardware Prefetcher Disable (R/W)

If 1, disables the L2 hardware prefetcher, which fetches additional
lines of code or data into the L2 cache.

1 Core L2 Adjacent Cache Line Prefetcher Disable (R/W)

If 1, disables the adjacent cache line prefetcher, which fetches the
cache line that comprises a cache line pair (128 bytes).

2 Core DCU Hardware Prefetcher Disable (R/W)

If 1, disables the L1 data cache prefetcher, which fetches the next
cache line into L1 data cache.

3 Core DCU IP Prefetcher Disable (R/W)

If 1, disables the L1 data cache IP prefetcher, which uses
sequential load history (based on instruction Pointer of previous
loads) to determine whether to prefetch additional lines.

63:4 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT See http://biosbits.org.

0 Package EIST Hardware Coordination Disable (R/W)

When 0, enables hardware coordination of Enhanced Intel
Speedstep Technology request from processor cores; When 1,
disables hardware coordination of Enhanced Intel Speedstep
Technology requests.

1 Thread Energy/Performance Bias Enable (R/W)

This bit makes the IA32_ENERGY_PERF_BIAS register (MSR 1B0h)
visible to software with Ring 0 privileges. This bit’s status (1 or 0)
is also reflected by CPUID.(EAX=06h):ECX[3].

63:2 Reserved.

1ACH 428 MSR_TURBO_POWER_
CURRENT_LIMIT

See http://biosbits.org.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 282

14:0 Package TDP Limit (R/W)

TDP limit in 1/8 Watt granularity.

15 Package TDP Limit Override Enable (R/W)

A value = 0 indicates override is not active, and a value = 1
indicates active.

30:16 Package TDC Limit (R/W)

TDC limit in 1/8 Amp granularity.

31 Package TDC Limit Override Enable (R/W)

A value = 0 indicates override is not active, and a value = 1
indicates active.

63:32 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register (R/W)

See Section 17.6.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 283

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

1FCH 508 MSR_POWER_CTL Core Power Control Register. See http://biosbits.org.

0 Reserved.

1 Package C1E Enable (R/W)

When set to ‘1’, will enable the CPU to switch to the Minimum
Enhanced Intel SpeedStep Technology operating point when all
execution cores enter MWAIT (C1).

63:2 Reserved.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 35-2.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 284

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 35-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 35-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 35-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 35-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 35-2.

277H 631 IA32_PAT Thread See Table 35-2.

280H 640 IA32_MC0_CTL2 Package See Table 35-2.

281H 641 IA32_MC1_CTL2 Package See Table 35-2.

282H 642 IA32_MC2_CTL2 Core See Table 35-2.

283H 643 IA32_MC3_CTL2 Core See Table 35-2.

284H 644 IA32_MC4_CTL2 Core See Table 35-2.

285H 645 IA32_MC5_CTL2 Core See Table 35-2.

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

288H 648 IA32_MC8_CTL2 Package See Table 35-2.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 285

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W)

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 35-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 35-2.

11:8 PEBS_REC_FORMAT. See Table 35-2.

12 SMM_FREEZE. See Table 35-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

38EH 910 MSR_PERF_GLOBAL_STAUS Thread (RO)

61 UNC_Ovf

Uncore overflowed if 1.

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 MSR_PERF_GLOBAL_OVF_
CTRL

Thread (R/W)

61 CLR_UNC_Ovf

Set 1 to clear UNC_Ovf.

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.7.1.1, “Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 286

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

3F6H 1014 MSR_PEBS_LD_LAT Thread See Section 18.7.1.2, “Load Latency Performance Monitoring
Facility.”

15:0 Minimum threshold latency value of tagged load operation that will
be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Count at the same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 287

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

403H 1027 MSR_MC0_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC1_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

407H 1031 MSR_MC1_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40BH 1035 MSR_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 MSR_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 288

40FH 1039 MSR_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

413H 1043 MSR_MC4_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

414H 1044 MSR_MC5_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 MSR_MC5_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 289

482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration (R/
O).

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-2.

See Section 18.13.4, “Debug Store (DS) Mechanism.”

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 290

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
source instruction for one of the last sixteen branches,
exceptions, or interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_FROM_IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 291

68FH 1679 MSR_
LASTBRANCH_15_FROM_IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
destination instruction for one of the last sixteen branches,
exceptions, or interrupts taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 292

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

802H 2050 IA32_X2APIC_APICID Thread x2APIC ID register (R/O) See x2APIC Specification.

803H 2051 IA32_X2APIC_VERSION Thread x2APIC Version register (R/O)

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority register (R/W)

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority register (R/O)

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI register (W/O)

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination register (R/O)

80FH 2063 IA32_X2APIC_SIVR Thread x2APIC Spurious Interrupt Vector register (R/W)

810H 2064 IA32_X2APIC_ISR0 Thread x2APIC In-Service register bits [31:0] (R/O)

811H 2065 IA32_X2APIC_ISR1 Thread x2APIC In-Service register bits [63:32] (R/O)

812H 2066 IA32_X2APIC_ISR2 Thread x2APIC In-Service register bits [95:64] (R/O)

813H 2067 IA32_X2APIC_ISR3 Thread x2APIC In-Service register bits [127:96] (R/O)

814H 2068 IA32_X2APIC_ISR4 Thread x2APIC In-Service register bits [159:128] (R/O)

815H 2069 IA32_X2APIC_ISR5 Thread x2APIC In-Service register bits [191:160] (R/O)

816H 2070 IA32_X2APIC_ISR6 Thread x2APIC In-Service register bits [223:192] (R/O)

817H 2071 IA32_X2APIC_ISR7 Thread x2APIC In-Service register bits [255:224] (R/O)

818H 2072 IA32_X2APIC_TMR0 Thread x2APIC Trigger Mode register bits [31:0] (R/O)

819H 2073 IA32_X2APIC_TMR1 Thread x2APIC Trigger Mode register bits [63:32] (R/O)

81AH 2074 IA32_X2APIC_TMR2 Thread x2APIC Trigger Mode register bits [95:64] (R/O)

81BH 2075 IA32_X2APIC_TMR3 Thread x2APIC Trigger Mode register bits [127:96] (R/O)

81CH 2076 IA32_X2APIC_TMR4 Thread x2APIC Trigger Mode register bits [159:128] (R/O)

81DH 2077 IA32_X2APIC_TMR5 Thread x2APIC Trigger Mode register bits [191:160] (R/O)

81EH 2078 IA32_X2APIC_TMR6 Thread x2APIC Trigger Mode register bits [223:192] (R/O)

81FH 2079 IA32_X2APIC_TMR7 Thread x2APIC Trigger Mode register bits [255:224] (R/O)

820H 2080 IA32_X2APIC_IRR0 Thread x2APIC Interrupt Request register bits [31:0] (R/O)

821H 2081 IA32_X2APIC_IRR1 Thread x2APIC Interrupt Request register bits [63:32] (R/O)

822H 2082 IA32_X2APIC_IRR2 Thread x2APIC Interrupt Request register bits [95:64] (R/O)

823H 2083 IA32_X2APIC_IRR3 Thread x2APIC Interrupt Request register bits [127:96] (R/O)

824H 2084 IA32_X2APIC_IRR4 Thread x2APIC Interrupt Request register bits [159:128] (R/O)

825H 2085 IA32_X2APIC_IRR5 Thread x2APIC Interrupt Request register bits [191:160] (R/O)

826H 2086 IA32_X2APIC_IRR6 Thread x2APIC Interrupt Request register bits [223:192] (R/O)

827H 2087 IA32_X2APIC_IRR7 Thread x2APIC Interrupt Request register bits [255:224] (R/O)

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 293

...

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status register (R/W)

82FH 2095 IA32_X2APIC_LVT_CMCI Thread x2APIC LVT Corrected Machine Check Interrupt register (R/W)

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command register (R/W)

832H 2098 IA32_X2APIC_LVT_TIMER Thread x2APIC LVT Timer Interrupt register (R/W)

833H 2099 IA32_X2APIC_LVT_THERM
AL

Thread x2APIC LVT Thermal Sensor Interrupt register (R/W)

834H 2100 IA32_X2APIC_LVT_PMI Thread x2APIC LVT Performance Monitor register (R/W)

835H 2101 IA32_X2APIC_LVT_LINT0 Thread x2APIC LVT LINT0 register (R/W)

836H 2102 IA32_X2APIC_LVT_LINT1 Thread x2APIC LVT LINT1 register (R/W)

837H 2103 IA32_X2APIC_LVT_ERROR Thread x2APIC LVT Error register (R/W)

838H 2104 IA32_X2APIC_INIT_COUNT Thread x2APIC Initial Count register (R/W)

839H 2105 IA32_X2APIC_CUR_COUNT Thread x2APIC Current Count register (R/O)

83EH 2110 IA32_X2APIC_DIV_CONF Thread x2APIC Divide Configuration register (R/W)

83FH 2111 IA32_X2APIC_SELF_IPI Thread x2APIC Self IPI register (W/O)

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W) See Table 35-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W) See Table 35-2 and Section
17.14.2, “IA32_TSC_AUX Register and RDTSCP Support.”

Table 35-11 MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 294

35.8 MSRS IN INTEL® PROCESSOR FAMILY BASED ON INTEL®
MICROARCHITECTURE CODE NAME SANDY BRIDGE

Table 35-16 lists model-specific registers (MSRs) that are common to Intel® processor family based on Intel
microarchitecture code name Sandy Bridge. All architectural MSRs listed in Table 35-2 are supported. These
processors have a CPUID signature with DisplayFamily_DisplayModel of 06_2AH, 06_2DH, see Table 35-1. Addi-
tional MSRs specific to 06_2AH are listed in Table 35-17.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge

Register
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 35.20, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 35.20, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,”
and Table 35-2.

10H 16 IA32_TIME_STAMP_
COUNTER

Thread See Section 17.14, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 35-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

Count SMIs.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 35-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Thread BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register

See Table 35-2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 295

C2H 194 IA32_PMC1 Thread Performance Counter Register

See Table 35-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register

See Table 35-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register

See Table 35-2.

C5H 197 IA32_PMC4 Core Performance Counter Register (if core not shared by threads)

C6H 198 IA32_PMC5 Core Performance Counter Register (if core not shared by threads)

C7H 199 IA32_PMC6 Core Performance Counter Register (if core not shared by threads)

C8H 200 IA32_PMC7 Core Performance Counter Register (if core not shared by threads)

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 296

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

24:16 Reserved.

25 C3 state auto demotion enable (R/W)

When set, the processor will conditionally demote C6/C7 requests
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W)

When set, the processor will conditionally demote C3/C6/C7
requests to C1 based on uncore auto-demote information.

27 Enable C3 undemotion (R/W)

When set, enables undemotion from demoted C3.

28 Enable C1 undemotion (R/W)

When set, enables undemotion from demoted C1.

63:29 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 297

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is
the IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name
to be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 35-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Thread See Table 35-2.

174H 372 IA32_SYSENTER_CS Thread See Table 35-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 35-2.

179H 377 IA32_MCG_CAP Thread See Table 35-2.

17AH 378 IA32_MCG_STATUS Thread

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 298

186H 390 IA32_
PERFEVTSEL0

Thread See Table 35-2.

187H 391 IA32_
PERFEVTSEL1

Thread See Table 35-2.

188H 392 IA32_
PERFEVTSEL2

Thread See Table 35-2.

189H 393 IA32_
PERFEVTSEL3

Thread See Table 35-2.

18AH 394 IA32_
PERFEVTSEL4

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18BH 395 IA32_
PERFEVTSEL5

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18CH 396 IA32_
PERFEVTSEL6

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18DH 397 IA32_
PERFEVTSEL7

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

198H 408 IA32_PERF_STATUS Package See Table 35-2.

15:0 Current Performance State Value.

63:16 Reserved.

198H 408 MSR_PERF_STATUS Package

47:32 Core Voltage (R/O)

P-state core voltage can be computed by

MSR_PERF_STATUS[37:32] * (float) 1/(2^13).

199H 409 IA32_PERF_CTL Thread See Table 35-2.

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation (R/W)

See Table 35-2

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

3:0 On demand Clock Modulation Duty Cycle (R/W)

In 6.25% increment

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-2.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 299

0 Thermal status (RO)

See Table 35-2.

1 Thermal status log (R/WC0)

See Table 35-2.

2 PROTCHOT # or FORCEPR# status (RO)

See Table 35-2.

3 PROTCHOT # or FORCEPR# log (R/WC0)

See Table 35-2.

4 Critical Temperature status (RO)

See Table 35-2.

5 Critical Temperature status log (R/WC0)

See Table 35-2.

6 Thermal threshold #1 status (RO)

See Table 35-2.

7 Thermal threshold #1 log (R/WC0)

See Table 35-2.

8 Thermal threshold #2 status (RO)

See Table 35-2.

9 Thermal threshold #2 log (R/WC0)

See Table 35-2.

10 Power Limitation status (RO)

See Table 35-2.

11 Power Limitation log (R/WC0)

See Table 35-2.

15:12 Reserved.

22:16 Digital Readout (RO)

See Table 35-2.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

See Table 35-2.

31 Reading Valid (RO)

See Table 35-2.

63:32 Reserved.

1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 300

0 Thread Fast-Strings Enable

See Table 35-2

6:1 Reserved.

7 Thread Performance Monitoring Available (R)

See Table 35-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable (RO)

See Table 35-2.

12 Thread Precise Event Based Sampling Unavailable (RO)

See Table 35-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 35-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval (R/W)

See Table 35-2.

23 Thread xTPR Message Disable (R/W)

See Table 35-2.

33:24 Reserved.

34 Thread XD Bit Disable (R/W)

See Table 35-2.

37:35 Reserved.

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Unique

15:0 Reserved.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 301

23:16 Temperature Target (R)

The minimum temperature at which PROCHOT# will be asserted.
The value is degree C.

63:24 Reserved.

1A4H 420 MSR_MISC_FEATURE_
CONTROL

Miscellaneous Feature Control (R/W)

0 Core L2 Hardware Prefetcher Disable (R/W)

If 1, disables the L2 hardware prefetcher, which fetches additional
lines of code or data into the L2 cache.

1 Core L2 Adjacent Cache Line Prefetcher Disable (R/W)

If 1, disables the adjacent cache line prefetcher, which fetches the
cache line that comprises a cache line pair (128 bytes).

2 Core DCU Hardware Prefetcher Disable (R/W)

If 1, disables the L1 data cache prefetcher, which fetches the next
cache line into L1 data cache.

3 Core DCU IP Prefetcher Disable (R/W)

If 1, disables the L1 data cache IP prefetcher, which uses
sequential load history (based on instruction Pointer of previous
loads) to determine whether to prefetch additional lines.

63:4 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1A7H 422 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT See http://biosbits.org.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 35-2.

1B1H 433 IA32_PACKAGE_THERM_
STATUS

Package See Table 35-2.

1B2H 434 IA32_PACKAGE_THERM_
INTERRUPT

Package See Table 35-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

See Section 17.6.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 302

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 35-2.

0 LBR: Last Branch Record

1 BTF

5:2 Reserved.

6 TR: Branch Trace

7 BTS: Log Branch Trace Message to BTS buffer

8 BTINT

9 BTS_OFF_OS

10 BTS_OFF_USER

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

63:15 Reserved.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

1FCH 508 MSR_POWER_CTL Core See http://biosbits.org.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 35-2.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 303

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 35-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 35-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 35-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 35-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 35-2.

277H 631 IA32_PAT Thread See Table 35-2.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 304

280H 640 IA32_MC0_CTL2 Core See Table 35-2.

281H 641 IA32_MC1_CTL2 Core See Table 35-2.

282H 642 IA32_MC2_CTL2 Core See Table 35-2.

283H 643 IA32_MC3_CTL2 Core See Table 35-2.

284H 644 MSR_MC4_CTL2 Package Always 0 (CMCI not supported).

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W)

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 35-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 35-2.

11:8 PEBS_REC_FORMAT. See Table 35-2.

12 SMM_FREEZE. See Table 35-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Thread Ovf_PMC0

1 Thread Ovf_PMC1

2 Thread Ovf_PMC2

3 Thread Ovf_PMC3

4 Core Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Core Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Core Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Core Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 305

32 Thread Ovf_FixedCtr0

33 Thread Ovf_FixedCtr1

34 Thread Ovf_FixedCtr2

60:35 Reserved.

61 Thread Ovf_Uncore

62 Thread Ovf_BufDSSAVE

63 Thread CondChgd

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Thread Set 1 to enable PMC0 to count

1 Thread Set 1 to enable PMC1 to count

2 Thread Set 1 to enable PMC2 to count

3 Thread Set 1 to enable PMC3 to count

4 Core Set 1 to enable PMC4 to count (if CPUID.0AH:EAX[15:8] > 4)

5 Core Set 1 to enable PMC5 to count (if CPUID.0AH:EAX[15:8] > 5)

6 Core Set 1 to enable PMC6 to count (if CPUID.0AH:EAX[15:8] > 6)

7 Core Set 1 to enable PMC7 to count (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to enable FixedCtr0 to count

33 Thread Set 1 to enable FixedCtr1 to count

34 Thread Set 1 to enable FixedCtr2 to count

63:35 Reserved.

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Thread Set 1 to clear Ovf_PMC0

1 Thread Set 1 to clear Ovf_PMC1

2 Thread Set 1 to clear Ovf_PMC2

3 Thread Set 1 to clear Ovf_PMC3

4 Core Set 1 to clear Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Core Set 1 to clear Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Core Set 1 to clear Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Core Set 1 to clear Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to clear Ovf_FixedCtr0

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 306

33 Thread Set 1 to clear Ovf_FixedCtr1

34 Thread Set 1 to clear Ovf_FixedCtr2

60:35 Reserved.

61 Thread Set 1 to clear Ovf_Uncore

62 Thread Set 1 to clear Ovf_BufDSSAVE

63 Thread Set 1 to clear CondChgd

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.7.1.1, “Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

62:36 Reserved.

63 Enable Precise Store. (R/W)

3F6H 1014 MSR_PEBS_LD_LAT Thread see See Section 18.7.1.2, “Load Latency Performance Monitoring
Facility.”

15:0 Minimum threshold latency value of tagged load operation that will
be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Count at the same frequency as the TSC.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 307

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Count at the same frequency as the TSC.

3FEH 1022 MSR_CORE_C7_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C7 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C7
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

403H 1027 IA32_MC0_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

406H 1030 IA32_MC1_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

407H 1031 IA32_MC1_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 308

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

0 PCU Hardware Error (R/W)

When set, enables signaling of PCU hardware detected errors.

1 PCU Controller Error (R/W)

When set, enables signaling of PCU controller detected errors

2 PCU Firmware Error (R/W)

When set, enables signaling of PCU firmware detected errors

63:2 Reserved.

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 309

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Thread Capability Reporting Register of EPT and VPID (R/O)

See Table 35-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Thread Capability Reporting Register of Pin-based VM-execution Flex
Controls (R/O)

See Table 35-2

48EH 1166 IA32_VMX_TRUE_PROCBAS
ED_CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Flex Controls (R/O)

See Table 35-2

48FH 1167 IA32_VMX_TRUE_EXIT_CTL
S

Thread Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 35-2

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Thread Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 35-2

4C1H 1217 IA32_A_PMC0 Thread See Table 35-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 35-2.

4C3H 1219 IA32_A_PMC2 Thread See Table 35-2.

4C4H 1220 IA32_A_PMC3 Thread See Table 35-2.

4C5H 1221 IA32_A_PMC4 Core See Table 35-2.

4C6H 1222 IA32_A_PMC5 Core See Table 35-2.

4C7H 1223 IA32_A_PMC6 Core See Table 35-2.

4C8H 200 IA32_A_PMC7 Core See Table 35-2.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 310

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-2.

See Section 18.13.4, “Debug Store (DS) Mechanism.”

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.9.1, “RAPL Interfaces.”

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C3 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60BH 1547 MSR_PKGC6_IRTL Package Package C6 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the package to exit from
C6 to a C0 state, where interrupt request can be delivered to the
core and serviced. Additional core-exit latency amy be applicable
depending on the actual C-state the core is in.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C6 state.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 311

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C2 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C2
states. Count at the same frequency as the TSC.

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.9.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) See Section 14.9.3, “Package RAPL
Domain.”

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
source instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 312

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_FROM_IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_FROM_IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
destination instruction.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 313

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6E0H 1760 IA32_TSC_DEADLINE Thread See Table 35-2.

802H-
83FH

X2APIC MSRs Thread See Table 35-2.

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 314

...

35.8.2 MSRs In Intel® Xeon® Processor E5 Family (Based on Intel® Microarchitecture Code
Name Sandy Bridge)

Table 35-18 lists selected model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5
Family (based on Intel® microarchitecture code name Sandy Bridge). These processors have a CPUID signature
with DisplayFamily_DisplayModel of 06_2DH, see Table 35-1.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W)

See Table 35-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature (R/W)

See Table 35-2 and Section 17.14.2, “IA32_TSC_AUX Register and
RDTSCP Support.”

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-18 Selected MSRs Supported by Intel® Xeon® Processors E5 Family (based on Sandy Bridge
microarchitecture)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W)

When set, enables IMC status bank to log additional info in bits
36:32.

63:2 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 315

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

285H 645 IA32_MC5_CTL2 Package See Table 35-2.

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

288H 648 IA32_MC8_CTL2 Package See Table 35-2.

289H 649 IA32_MC9_CTL2 Package See Table 35-2.

28AH 650 IA32_MC10_CTL2 Package See Table 35-2.

28BH 651 IA32_MC11_CTL2 Package See Table 35-2.

28CH 652 IA32_MC12_CTL2 Package See Table 35-2.

28DH 653 IA32_MC13_CTL2 Package See Table 35-2.

28EH 654 IA32_MC14_CTL2 Package See Table 35-2.

28FH 655 IA32_MC15_CTL2 Package See Table 35-2.

290H 656 IA32_MC16_CTL2 Package See Table 35-2.

291H 657 IA32_MC17_CTL2 Package See Table 35-2.

292H 658 IA32_MC18_CTL2 Package See Table 35-2.

293H 659 IA32_MC19_CTL2 Package See Table 35-2.

39CH 924 MSR_PEBS_NUM_ALT Package

0 ENABLE_PEBS_NUM_ALT (RW)

Write 1 to enable alternate PEBS counting logic for specific events
requiring additional configuration, see Table 19-11

63:1 Reserved (must be zero).

Table 35-18 Selected MSRs Supported by Intel® Xeon® Processors E5 Family (based on Sandy Bridge
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 316

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 MSR_MC9_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 35-18 Selected MSRs Supported by Intel® Xeon® Processors E5 Family (based on Sandy Bridge
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 317

435H 1077 MSR_MC13_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 MSR_MC14_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 MSR_MC15_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 MSR_MC16_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

613H 1555 MSR_PKG_PERF_STATUS Package Package RAPL Perf Status (R/O)

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

Table 35-18 Selected MSRs Supported by Intel® Xeon® Processors E5 Family (based on Sandy Bridge
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 318

35.8.3 Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 Family
Intel Xeon Processor E5 family is based on the Sandy Bridge microarchitecture. The MSR-based uncore PMU inter-
faces are listed in Table 35-19. For complete detail of the uncore PMU, refer to Intel Xeon Processor E5 Product
Family Uncore Performance Monitoring Guide. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_2DH

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

Table 35-18 Selected MSRs Supported by Intel® Xeon® Processors E5 Family (based on Sandy Bridge
microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-19 Uncore PMU MSRs in Intel® Xeon® Processor E5 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

C08H MSR_U_PMON_UCLK_FIXED_CTL Package Uncore U-box UCLK fixed counter control

C09H MSR_U_PMON_UCLK_FIXED_CTR Package Uncore U-box UCLK fixed counter

C10H MSR_U_PMON_EVNTSEL0 Package Uncore U-box perfmon event select for U-box counter 0.

C11H MSR_U_PMON_EVNTSEL1 Package Uncore U-box perfmon event select for U-box counter 1.

C16H MSR_U_PMON_CTR0 Package Uncore U-box perfmon counter 0

C17H MSR_U_PMON_CTR1 Package Uncore U-box perfmon counter 1

C24H MSR_PCU_PMON_BOX_CTL Package Uncore PCU perfmon for PCU-box-wide control

C30H MSR_PCU_PMON_EVNTSEL0 Package Uncore PCU perfmon event select for PCU counter 0.

C31H MSR_PCU_PMON_EVNTSEL1 Package Uncore PCU perfmon event select for PCU counter 1.

C32H MSR_PCU_PMON_EVNTSEL2 Package Uncore PCU perfmon event select for PCU counter 2.

C33H MSR_PCU_PMON_EVNTSEL3 Package Uncore PCU perfmon event select for PCU counter 3.

C34H MSR_PCU_PMON_BOX_FILTER Package Uncore PCU perfmon box-wide filter.

C36H MSR_PCU_PMON_CTR0 Package Uncore PCU perfmon counter 0.

C37H MSR_PCU_PMON_CTR1 Package Uncore PCU perfmon counter 1.

C38H MSR_PCU_PMON_CTR2 Package Uncore PCU perfmon counter 2.

C39H MSR_PCU_PMON_CTR3 Package Uncore PCU perfmon counter 3.

D04H MSR_C0_PMON_BOX_CTL Package Uncore C-box 0 perfmon local box wide control.

D10H MSR_C0_PMON_EVNTSEL0 Package Uncore C-box 0 perfmon event select for C-box 0 counter 0.

D11H MSR_C0_PMON_EVNTSEL1 Package Uncore C-box 0 perfmon event select for C-box 0 counter 1.

D12H MSR_C0_PMON_EVNTSEL2 Package Uncore C-box 0 perfmon event select for C-box 0 counter 2.

D13H MSR_C0_PMON_EVNTSEL3 Package Uncore C-box 0 perfmon event select for C-box 0 counter 3.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 319

D14H MSR_C0_PMON_BOX_FILTER Package Uncore C-box 0 perfmon box wide filter.

D16H MSR_C0_PMON_CTR0 Package Uncore C-box 0 perfmon counter 0.

D17H MSR_C0_PMON_CTR1 Package Uncore C-box 0 perfmon counter 1.

D18H MSR_C0_PMON_CTR2 Package Uncore C-box 0 perfmon counter 2.

D19H MSR_C0_PMON_CTR3 Package Uncore C-box 0 perfmon counter 3.

D24H MSR_C1_PMON_BOX_CTL Package Uncore C-box 1 perfmon local box wide control.

D30H MSR_C1_PMON_EVNTSEL0 Package Uncore C-box 1 perfmon event select for C-box 1 counter 0.

D31H MSR_C1_PMON_EVNTSEL1 Package Uncore C-box 1 perfmon event select for C-box 1 counter 1.

D32H MSR_C1_PMON_EVNTSEL2 Package Uncore C-box 1 perfmon event select for C-box 1 counter 2.

D33H MSR_C1_PMON_EVNTSEL3 Package Uncore C-box 1 perfmon event select for C-box 1 counter 3.

D34H MSR_C1_PMON_BOX_FILTER Package Uncore C-box 1 perfmon box wide filter.

D36H MSR_C1_PMON_CTR0 Package Uncore C-box 1 perfmon counter 0.

D37H MSR_C1_PMON_CTR1 Package Uncore C-box 1 perfmon counter 1.

D38H MSR_C1_PMON_CTR2 Package Uncore C-box 1 perfmon counter 2.

D39H MSR_C1_PMON_CTR3 Package Uncore C-box 1 perfmon counter 3.

D44H MSR_C2_PMON_BOX_CTL Package Uncore C-box 2 perfmon local box wide control.

D50H MSR_C2_PMON_EVNTSEL0 Package Uncore C-box 2 perfmon event select for C-box 2 counter 0.

D51H MSR_C2_PMON_EVNTSEL1 Package Uncore C-box 2 perfmon event select for C-box 2 counter 1.

D52H MSR_C2_PMON_EVNTSEL2 Package Uncore C-box 2 perfmon event select for C-box 2 counter 2.

D53H MSR_C2_PMON_EVNTSEL3 Package Uncore C-box 2 perfmon event select for C-box 2 counter 3.

D54H MSR_C2_PMON_BOX_FILTER Package Uncore C-box 2 perfmon box wide filter.

D56H MSR_C2_PMON_CTR0 Package Uncore C-box 2 perfmon counter 0.

D57H MSR_C2_PMON_CTR1 Package Uncore C-box 2 perfmon counter 1.

D58H MSR_C2_PMON_CTR2 Package Uncore C-box 2 perfmon counter 2.

D59H MSR_C2_PMON_CTR3 Package Uncore C-box 2 perfmon counter 3.

D64H MSR_C3_PMON_BOX_CTL Package Uncore C-box 3 perfmon local box wide control.

D70H MSR_C3_PMON_EVNTSEL0 Package Uncore C-box 3 perfmon event select for C-box 3 counter 0.

D71H MSR_C3_PMON_EVNTSEL1 Package Uncore C-box 3 perfmon event select for C-box 3 counter 1.

D72H MSR_C3_PMON_EVNTSEL2 Package Uncore C-box 3 perfmon event select for C-box 3 counter 2.

D73H MSR_C3_PMON_EVNTSEL3 Package Uncore C-box 3 perfmon event select for C-box 3 counter 3.

D74H MSR_C3_PMON_BOX_FILTER Package Uncore C-box 3 perfmon box wide filter.

D76H MSR_C3_PMON_CTR0 Package Uncore C-box 3 perfmon counter 0.

D77H MSR_C3_PMON_CTR1 Package Uncore C-box 3 perfmon counter 1.

D78H MSR_C3_PMON_CTR2 Package Uncore C-box 3 perfmon counter 2.

Table 35-19 Uncore PMU MSRs in Intel® Xeon® Processor E5 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 320

D79H MSR_C3_PMON_CTR3 Package Uncore C-box 3 perfmon counter 3.

D84H MSR_C4_PMON_BOX_CTL Package Uncore C-box 4 perfmon local box wide control.

D90H MSR_C4_PMON_EVNTSEL0 Package Uncore C-box 4 perfmon event select for C-box 4 counter 0.

D91H MSR_C4_PMON_EVNTSEL1 Package Uncore C-box 4 perfmon event select for C-box 4 counter 1.

D92H MSR_C4_PMON_EVNTSEL2 Package Uncore C-box 4 perfmon event select for C-box 4 counter 2.

D93H MSR_C4_PMON_EVNTSEL3 Package Uncore C-box 4 perfmon event select for C-box 4 counter 3.

D94H MSR_C4_PMON_BOX_FILTER Package Uncore C-box 4 perfmon box wide filter.

D96H MSR_C4_PMON_CTR0 Package Uncore C-box 4 perfmon counter 0.

D97H MSR_C4_PMON_CTR1 Package Uncore C-box 4 perfmon counter 1.

D98H MSR_C4_PMON_CTR2 Package Uncore C-box 4 perfmon counter 2.

D99H MSR_C4_PMON_CTR3 Package Uncore C-box 4 perfmon counter 3.

DA4H MSR_C5_PMON_BOX_CTL Package Uncore C-box 5 perfmon local box wide control.

DB0H MSR_C5_PMON_EVNTSEL0 Package Uncore C-box 5 perfmon event select for C-box 5 counter 0.

DB1H MSR_C5_PMON_EVNTSEL1 Package Uncore C-box 5 perfmon event select for C-box 5 counter 1.

DB2H MSR_C5_PMON_EVNTSEL2 Package Uncore C-box 5 perfmon event select for C-box 5 counter 2.

DB3H MSR_C5_PMON_EVNTSEL3 Package Uncore C-box 5 perfmon event select for C-box 5 counter 3.

DB4H MSR_C5_PMON_BOX_FILTER Package Uncore C-box 5 perfmon box wide filter.

DB6H MSR_C5_PMON_CTR0 Package Uncore C-box 5 perfmon counter 0.

DB7H MSR_C5_PMON_CTR1 Package Uncore C-box 5 perfmon counter 1.

DB8H MSR_C5_PMON_CTR2 Package Uncore C-box 5 perfmon counter 2.

DB9H MSR_C5_PMON_CTR3 Package Uncore C-box 5 perfmon counter 3.

DC4H MSR_C6_PMON_BOX_CTL Package Uncore C-box 6 perfmon local box wide control.

DD0H MSR_C6_PMON_EVNTSEL0 Package Uncore C-box 6 perfmon event select for C-box 6 counter 0.

DD1H MSR_C6_PMON_EVNTSEL1 Package Uncore C-box 6 perfmon event select for C-box 6 counter 1.

DD2H MSR_C6_PMON_EVNTSEL2 Package Uncore C-box 6 perfmon event select for C-box 6 counter 2.

DD3H MSR_C6_PMON_EVNTSEL3 Package Uncore C-box 6 perfmon event select for C-box 6 counter 3.

DD4H MSR_C6_PMON_BOX_FILTER Package Uncore C-box 6 perfmon box wide filter.

DD6H MSR_C6_PMON_CTR0 Package Uncore C-box 6 perfmon counter 0.

DD7H MSR_C6_PMON_CTR1 Package Uncore C-box 6 perfmon counter 1.

DD8H MSR_C6_PMON_CTR2 Package Uncore C-box 6 perfmon counter 2.

DD9H MSR_C6_PMON_CTR3 Package Uncore C-box 6 perfmon counter 3.

DE4H MSR_C7_PMON_BOX_CTL Package Uncore C-box 7 perfmon local box wide control.

DF0H MSR_C7_PMON_EVNTSEL0 Package Uncore C-box 7 perfmon event select for C-box 7 counter 0.

DF1H MSR_C7_PMON_EVNTSEL1 Package Uncore C-box 7 perfmon event select for C-box 7 counter 1.

Table 35-19 Uncore PMU MSRs in Intel® Xeon® Processor E5 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 321

...

35.9.2 Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family
Intel® Xeon® processor E7 v2 family (based on Ivy Bridge-E microarchitecture) with CPUID
DisplayFamily_DisplayModel signature 06_3EH supports the MSR interfaces listed in Table 35-16, Table 35-21,
and Table 35-22.

DF2H MSR_C7_PMON_EVNTSEL2 Package Uncore C-box 7 perfmon event select for C-box 7 counter 2.

DF3H MSR_C7_PMON_EVNTSEL3 Package Uncore C-box 7 perfmon event select for C-box 7 counter 3.

DF4H MSR_C7_PMON_BOX_FILTER Package Uncore C-box 7 perfmon box wide filter.

DF6H MSR_C7_PMON_CTR0 Package Uncore C-box 7 perfmon counter 0.

DF7H MSR_C7_PMON_CTR1 Package Uncore C-box 7 perfmon counter 1.

DF8H MSR_C7_PMON_CTR2 Package Uncore C-box 7 perfmon counter 2.

DF9H MSR_C7_PMON_CTR3 Package Uncore C-box 7 perfmon counter 3.

Table 35-19 Uncore PMU MSRs in Intel® Xeon® Processor E5 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-22 Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with DisplayFamily_DisplayModel
Signature 06_3EH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 35-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

20 LMCE_ON (R/WL)

63:21 Reserved.

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 322

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 Reserved.

26 MCG_ELOG_P

27 MCG_LMCE_P

63:28 Reserved.

17AH 378 IA32_MCG_STATUS Thread (R/W0)

0 RIPV

1 EIPV

2 MCIP

3 LMCE signaled

63:4 Reserved.

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active.

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10core active.

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

39:32 Package Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

47:40 Package Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

55:48 Package Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

62:56 Reserved

63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 specified in
MSR_TURBO_RATIO_LIMIT and MSR_TURBO_RATIO_LIMIT1.

If 0, the processor uses factory-set configuration (Default).

29DH 669 IA32_MC29_CTL2 Package See Table 35-2.

Table 35-22 Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with DisplayFamily_DisplayModel
Signature 06_3EH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 323

29EH 670 IA32_MC30_CTL2 Package See Table 35-2.

29FH 671 IA32_MC31_CTL2 Package See Table 35-2.

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.7.1.1, “Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

41BH 1051 IA32_MC6_MISC Package Misc MAC information of Integrated I/O. (R/O) see Section 15.3.2.4

5:0 Recoverable Address LSB

8:6 Address Mode

15:9 Reserved

31:16 PCI Express Requestor ID

39:32 PCI Express Segment Number

63:32 Reserved

474H 1140 MSR_MC29_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC29 reports MC error from a specific CBo (core broadcast) and
its corresponding slice of L3.

475H 1141 MSR_MC29_STATUS Package

476H 1142 MSR_MC29_ADDR Package

477H 1143 MSR_MC29_MISC Package

478H 1144 MSR_MC30_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC30 reports MC error from a specific CBo (core broadcast) and
its corresponding slice of L3.

479H 1145 MSR_MC30_STATUS Package

47AH 1146 MSR_MC30_ADDR Package

47BH 1147 MSR_MC30_MISC Package

47CH 1148 MSR_MC31_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC31 reports MC error from a specific CBo (core broadcast) and
its corresponding slice of L3.

47DH 1149 MSR_MC31_STATUS Package

47EH 1150 MSR_MC31_ADDR Package

47FH 1147 MSR_MC31_MISC Package

Table 35-22 Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with DisplayFamily_DisplayModel
Signature 06_3EH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 324

35.9.3 Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 v2 and E7 v2
Families

Intel Xeon Processor E5 v2 and E7 v2 families are based on the Ivy Bridge-E microarchitecture. The MSR-based
uncore PMU interfaces are listed in Table 35-19 and Table 35-23. For complete detail of the uncore PMU, refer to
Intel Xeon Processor E5 v2 Product Family Uncore Performance Monitoring Guide. These processors have a CPUID
signature with DisplayFamily_DisplayModel of 06_3EH.

See Table 35-16, Table 35-21 for other MSR definitions applicable to Intel Xeon processor E7 v2 with CPUID signature
06_3AH

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the

factory-set configuration is dependent on features specific to the processor and the platform.

Table 35-22 Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with DisplayFamily_DisplayModel
Signature 06_3EH

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-23 Uncore PMU MSRs in Intel® Xeon® Processor E5 v2 and E7 v2 Families

Register
Address Register Name

Scope
Bit Description

 Hex Dec

C00H MSR_PMON_GLOBAL_CTL Package Uncore perfmon per-socket global control.

C01H MSR_PMON_GLOBAL_STATUS Package Uncore perfmon per-socket global status.

C06H MSR_PMON_GLOBAL_CONFIG Package Uncore perfmon per-socket global configuration.

C15H MSR_U_PMON_BOX_STATUS Package Uncore U-box perfmon U-box wide status.

C35H MSR_PCU_PMON_BOX_STATUS Package Uncore PCU perfmon box wide status.

D1AH MSR_C0_PMON_BOX_FILTER1 Package Uncore C-box 0 perfmon box wide filter1.

D3AH MSR_C1_PMON_BOX_FILTER1 Package Uncore C-box 1 perfmon box wide filter1.

D5AH MSR_C2_PMON_BOX_FILTER1 Package Uncore C-box 2 perfmon box wide filter1.

D7AH MSR_C3_PMON_BOX_FILTER1 Package Uncore C-box 3 perfmon box wide filter1.

D9AH MSR_C4_PMON_BOX_FILTER1 Package Uncore C-box 4 perfmon box wide filter1.

DBAH MSR_C5_PMON_BOX_FILTER1 Package Uncore C-box 5 perfmon box wide filter1.

DDAH MSR_C6_PMON_BOX_FILTER1 Package Uncore C-box 6 perfmon box wide filter1.

DFAH MSR_C7_PMON_BOX_FILTER1 Package Uncore C-box 7 perfmon box wide filter1.

E04H MSR_C8_PMON_BOX_CTL Package Uncore C-box 8 perfmon local box wide control.

E10H MSR_C8_PMON_EVNTSEL0 Package Uncore C-box 8 perfmon event select for C-box 8 counter 0.

E11H MSR_C8_PMON_EVNTSEL1 Package Uncore C-box 8 perfmon event select for C-box 8 counter 1.

E12H MSR_C8_PMON_EVNTSEL2 Package Uncore C-box 8 perfmon event select for C-box 8 counter 2.

E13H MSR_C8_PMON_EVNTSEL3 Package Uncore C-box 8 perfmon event select for C-box 8 counter 3.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 325

E14H MSR_C8_PMON_BOX_FILTER Package Uncore C-box 8 perfmon box wide filter.

E16H MSR_C8_PMON_CTR0 Package Uncore C-box 8 perfmon counter 0.

E17H MSR_C8_PMON_CTR1 Package Uncore C-box 8 perfmon counter 1.

E18H MSR_C8_PMON_CTR2 Package Uncore C-box 8 perfmon counter 2.

E19H MSR_C8_PMON_CTR3 Package Uncore C-box 8 perfmon counter 3.

E1AH MSR_C8_PMON_BOX_FILTER1 Package Uncore C-box 8 perfmon box wide filter1.

E24H MSR_C9_PMON_BOX_CTL Package Uncore C-box 9 perfmon local box wide control.

E30H MSR_C9_PMON_EVNTSEL0 Package Uncore C-box 9 perfmon event select for C-box 9 counter 0.

E31H MSR_C9_PMON_EVNTSEL1 Package Uncore C-box 9 perfmon event select for C-box 9 counter 1.

E32H MSR_C9_PMON_EVNTSEL2 Package Uncore C-box 9 perfmon event select for C-box 9 counter 2.

E33H MSR_C9_PMON_EVNTSEL3 Package Uncore C-box 9 perfmon event select for C-box 9 counter 3.

E34H MSR_C9_PMON_BOX_FILTER Package Uncore C-box 9 perfmon box wide filter.

E36H MSR_C9_PMON_CTR0 Package Uncore C-box 9 perfmon counter 0.

E37H MSR_C9_PMON_CTR1 Package Uncore C-box 9 perfmon counter 1.

E38H MSR_C9_PMON_CTR2 Package Uncore C-box 9 perfmon counter 2.

E39H MSR_C9_PMON_CTR3 Package Uncore C-box 9 perfmon counter 3.

E3AH MSR_C9_PMON_BOX_FILTER1 Package Uncore C-box 9 perfmon box wide filter1.

E44H MSR_C10_PMON_BOX_CTL Package Uncore C-box 10 perfmon local box wide control.

E50H MSR_C10_PMON_EVNTSEL0 Package Uncore C-box 10 perfmon event select for C-box 10 counter 0.

E51H MSR_C10_PMON_EVNTSEL1 Package Uncore C-box 10 perfmon event select for C-box 10 counter 1.

E52H MSR_C10_PMON_EVNTSEL2 Package Uncore C-box 10 perfmon event select for C-box 10 counter 2.

E53H MSR_C10_PMON_EVNTSEL3 Package Uncore C-box 10 perfmon event select for C-box 10 counter 3.

E54H MSR_C10_PMON_BOX_FILTER Package Uncore C-box 10 perfmon box wide filter.

E56H MSR_C10_PMON_CTR0 Package Uncore C-box 10 perfmon counter 0.

E57H MSR_C10_PMON_CTR1 Package Uncore C-box 10 perfmon counter 1.

E58H MSR_C10_PMON_CTR2 Package Uncore C-box 10 perfmon counter 2.

E59H MSR_C10_PMON_CTR3 Package Uncore C-box 10 perfmon counter 3.

E5AH MSR_C10_PMON_BOX_FILTER1 Package Uncore C-box 10 perfmon box wide filter1.

E64H MSR_C11_PMON_BOX_CTL Package Uncore C-box 11 perfmon local box wide control.

E70H MSR_C11_PMON_EVNTSEL0 Package Uncore C-box 11 perfmon event select for C-box 11 counter 0.

E71H MSR_C11_PMON_EVNTSEL1 Package Uncore C-box 11 perfmon event select for C-box 11 counter 1.

E72H MSR_C11_PMON_EVNTSEL2 Package Uncore C-box 11 perfmon event select for C-box 11 counter 2.

E73H MSR_C11_PMON_EVNTSEL3 Package Uncore C-box 11 perfmon event select for C-box 11 counter 3.

E74H MSR_C11_PMON_BOX_FILTER Package Uncore C-box 11 perfmon box wide filter.

Table 35-23 Uncore PMU MSRs in Intel® Xeon® Processor E5 v2 and E7 v2 Families (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 326

E76H MSR_C11_PMON_CTR0 Package Uncore C-box 11 perfmon counter 0.

E77H MSR_C11_PMON_CTR1 Package Uncore C-box 11 perfmon counter 1.

E78H MSR_C11_PMON_CTR2 Package Uncore C-box 11 perfmon counter 2.

E79H MSR_C11_PMON_CTR3 Package Uncore C-box 11 perfmon counter 3.

E7AH MSR_C11_PMON_BOX_FILTER1 Package Uncore C-box 11 perfmon box wide filter1.

E84H MSR_C12_PMON_BOX_CTL Package Uncore C-box 12 perfmon local box wide control.

E90H MSR_C12_PMON_EVNTSEL0 Package Uncore C-box 12 perfmon event select for C-box 12 counter 0.

E91H MSR_C12_PMON_EVNTSEL1 Package Uncore C-box 12 perfmon event select for C-box 12 counter 1.

E92H MSR_C12_PMON_EVNTSEL2 Package Uncore C-box 12 perfmon event select for C-box 12 counter 2.

E93H MSR_C12_PMON_EVNTSEL3 Package Uncore C-box 12 perfmon event select for C-box 12 counter 3.

E94H MSR_C12_PMON_BOX_FILTER Package Uncore C-box 12 perfmon box wide filter.

E96H MSR_C12_PMON_CTR0 Package Uncore C-box 12 perfmon counter 0.

E97H MSR_C12_PMON_CTR1 Package Uncore C-box 12 perfmon counter 1.

E98H MSR_C12_PMON_CTR2 Package Uncore C-box 12 perfmon counter 2.

E99H MSR_C12_PMON_CTR3 Package Uncore C-box 12 perfmon counter 3.

E9AH MSR_C12_PMON_BOX_FILTER1 Package Uncore C-box 12 perfmon box wide filter1.

EA4H MSR_C13_PMON_BOX_CTL Package Uncore C-box 13 perfmon local box wide control.

EB0H MSR_C13_PMON_EVNTSEL0 Package Uncore C-box 13 perfmon event select for C-box 13 counter 0.

EB1H MSR_C13_PMON_EVNTSEL1 Package Uncore C-box 13 perfmon event select for C-box 13 counter 1.

EB2H MSR_C13_PMON_EVNTSEL2 Package Uncore C-box 13 perfmon event select for C-box 13 counter 2.

EB3H MSR_C13_PMON_EVNTSEL3 Package Uncore C-box 13 perfmon event select for C-box 13 counter 3.

EB4H MSR_C13_PMON_BOX_FILTER Package Uncore C-box 13 perfmon box wide filter.

EB6H MSR_C13_PMON_CTR0 Package Uncore C-box 13 perfmon counter 0.

EB7H MSR_C13_PMON_CTR1 Package Uncore C-box 13 perfmon counter 1.

EB8H MSR_C13_PMON_CTR2 Package Uncore C-box 13 perfmon counter 2.

EB9H MSR_C13_PMON_CTR3 Package Uncore C-box 13 perfmon counter 3.

EBAH MSR_C13_PMON_BOX_FILTER1 Package Uncore C-box 13 perfmon box wide filter1.

EC4H MSR_C14_PMON_BOX_CTL Package Uncore C-box 14 perfmon local box wide control.

ED0H MSR_C14_PMON_EVNTSEL0 Package Uncore C-box 14 perfmon event select for C-box 14 counter 0.

ED1H MSR_C14_PMON_EVNTSEL1 Package Uncore C-box 14 perfmon event select for C-box 14 counter 1.

ED2H MSR_C14_PMON_EVNTSEL2 Package Uncore C-box 14 perfmon event select for C-box 14 counter 2.

ED3H MSR_C14_PMON_EVNTSEL3 Package Uncore C-box 14 perfmon event select for C-box 14 counter 3.

ED4H MSR_C14_PMON_BOX_FILTER Package Uncore C-box 14 perfmon box wide filter.

ED6H MSR_C14_PMON_CTR0 Package Uncore C-box 14 perfmon counter 0.

Table 35-23 Uncore PMU MSRs in Intel® Xeon® Processor E5 v2 and E7 v2 Families (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 327

35.10 MSRS IN THE 4TH GENERATION INTEL® CORE™ PROCESSORS (BASED ON
HASWELL MICROARCHITECTURE)

The 4th generation Intel® Core™ processor family and Intel® Xeon® processor E3-1200v3 product family (based
on Haswell microarchitecture), with CPUID DisplayFamily_DisplayModel signature 06_3CH/06_45H/06_46H,
support the MSR interfaces listed in Table 35-16, Table 35-17, Table 35-20, and Table 35-24. For an MSR listed in
Table 35-16 that also appears in Table 35-24, Table 35-24 supercede Table 35-16.

The MSRs listed in Table 35-24 also apply to processors based on Haswell-E microarchitecture (see Section
35.11).

ED7H MSR_C14_PMON_CTR1 Package Uncore C-box 14 perfmon counter 1.

ED8H MSR_C14_PMON_CTR2 Package Uncore C-box 14 perfmon counter 2.

ED9H MSR_C14_PMON_CTR3 Package Uncore C-box 14 perfmon counter 3.

EDAH MSR_C14_PMON_BOX_FILTER1 Package Uncore C-box 14 perfmon box wide filter1.

Table 35-23 Uncore PMU MSRs in Intel® Xeon® Processor E5 v2 and E7 v2 Families (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-24 Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3BH 59 IA32_TSC_ADJUST THREAD Per-Logical-Processor TSC ADJUST (R/W)

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package See Table 35-20

186H 390 IA32_PERFEVTSEL0 THREAD Performance Event Select for Counter 0 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.10.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

187H 391 IA32_PERFEVTSEL1 THREAD Performance Event Select for Counter 1 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.10.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

188H 392 IA32_PERFEVTSEL2 THREAD Performance Event Select for Counter 2 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.10.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 328

33 IN_TXCP: see Section 18.10.5.1

When IN_TXCP=1 & IN_TX=1 and in sampling, spurious PMI may
occur and transactions may continuously abort near overflow
conditions. Software should favor using IN_TXCP for counting over
sampling. If sampling, software should use large “sample-after”
value after clearing the counter configured to use IN_TXCP and
also always reset the counter even when no overflow condition
was reported.

189H 393 IA32_PERFEVTSEL3 THREAD Performance Event Select for Counter 3 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.10.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 35-2.

0 LBR: Last Branch Record

1 BTF

5:2 Reserved.

6 TR: Branch Trace

7 BTS: Log Branch Trace Message to BTS buffer

8 BTINT

9 BTS_OFF_OS

10 BTS_OFF_USER

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

15 RTM_DEBUG

63:15 Reserved.

491H 1169 IA32_VMX_FMFUNC THREAD Capability Reporting Register of VM-function Controls (R/O)

See Table 35-2

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Base TDP Ratio (R/O)

See Table 35-20

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O). See Table 35-20

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O). See Table 35-20

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

See Table 35-20

Table 35-24 Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 329

35.10.1 MSRs in 4th Generation Intel® Core™ Processor Family (based on Haswell
Microarchitecture)

Table 35-25 lists model-specific registers (MSRs) that are specific to 4th generation Intel® Core™ processor
family and Intel® Xeon® processor E3-1200 v3 product family (based on Haswell microarchitecture). These
processors have a CPUID signature with DisplayFamily_DisplayModel of 06_3CH/06_45H/06_46H, see Table
Table 35-1.

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

See Table 35-20

C80H 3200 IA32_DEBUG_FEATURE Package Silicon Debug Feature Control (R/W)

See Table 35-2.

Table 35-24 Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

http://biosbits.org

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 330

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

63:29 Reserved

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is
supported and the MSR_SMM_FEATURE_CONTROL is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and the MSR_SMM_DELAYED is supported.

63:60 Reserved

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

9 EN_CALL_STACK

63:9 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 331

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

392H 914 MSR_UNC_PERF_GLOBAL_
STATUS

Package Uncore PMU main status

0 Fixed counter overflowed

1 An ARB counter overflowed

2 Reserved

3 A CBox counter overflowed (on any slice)

63:4 Reserved.

394H 916 MSR_UNC_PERF_FIXED_
CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow propagation

21 Reserved

22 Enable counting

63:23 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box configuration information (R/O)

3:0 Encoded number of C-Box, derive value by “-1“

63:4 Reserved.

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 332

3B0H 946 MSR_UNC_ARB_PER_CTR0 Package Uncore Arb unit, performance counter 0

3B1H 947 MSR_UNC_ARB_PER_CTR1 Package Uncore Arb unit, performance counter 1

3B2H 944 MSR_UNC_ARB_
PERFEVTSEL0

Package Uncore Arb unit, counter 0 event select MSR

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

4E0H 1248 MSR_SMM_FEATURE_CONT
ROL

Package Enhanced SMM Feature Control (SMM-RW)

Reports SMM capability Enhancement. Accessible only while in
SMM.

0 Lock (SMM-RWO)

When set to ‘1’ locks this register from further changes

1 Reserved

2 SMM_Code_Chk_En (SMM-RW)

This control bit is available only if MSR_SMM_MCA_CAP[58] == 1.
When set to ‘0’ (default) none of the logical processors are
prevented from executing SMM code outside the ranges defined by
the SMRR.

When set to ‘1’ any logical processor in the package that attempts
to execute SMM code not within the ranges defined by the SMRR
will assert an unrecoverable MCE.

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 333

63:3 Reserved

4E2H 1250 MSR_SMM_DELAYED Package SMM Delayed (SMM-RO)

Reports the interruptible state of all logical processors in the
package. Available only while in SMM and
MSR_SMM_MCA_CAP[LONG_FLOW_INDICATION] == 1.

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its state in a long flow of
internal operation which delays servicing an interrupt. The
corresponding bit will be set at the start of long events such as:
Microcode Update Load, C6, WBINVD, Ratio Change, Throttle.

The bit is automatically cleared at the end of each long event. The
reset value of this field is 0.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

4E3H 1251 MSR_SMM_BLOCKED Package SMM Blocked (SMM-RO)

Reports the blocked state of all logical processors in the package.
Available only while in SMM.

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its blocked state to
service an SMI. The corresponding bit will be set if the logical
processor is in one of the following states: Wait For SIPI or SENTER
Sleep.

The reset value of this field is 0FFFH.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

640H 1600 MSR_PP1_POWER_LIMIT Package PP1 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATU
S

Package PP1 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating
system request due to assertion of external PROCHOT.

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 334

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system
request due to Processor Graphics driver override.

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system
request because the processor has detected that utilization is low.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Core Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

12 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating system
request due to multi-core turbo limits.

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating system
request due to Turbo transition attenuation. This prevents
performance degradation due to frequent operating ratio changes.

15:14 Reserved

16 PROCHOT Log

When set, indicates that the corresponding PROCHOT Status bit is
set. Software can write 0 to this bit to clear PROCHOT Status.

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 335

17 Thermal Log

When set, indicates that the corresponding Thermal status bit was
set since it was last cleared by software. Software can write 0 to
this bit to clear Thermal Status.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the corresponding Graphics Driver status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear Graphics Driver Status.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the corresponding Autonomous
Utilization-Based Frequency Control status bit was set since it was
last cleared by software. Software can write 0 to this bit to clear
Autonomous Utilization-Based Frequency Control Status.

22 VR Therm Alert Log

When set, indicates that the corresponding VR Therm Alert Status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear VR Therm Alert Status.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the corresponding EDP Status bit was set
since it was last cleared by software. Software can write 0 to this
bit to clear EDP Status.

25 Core Power Limiting Log

When set, indicates that the corresponding Core Power Limiting
Status bit was set since it was last cleared by software. Software
can write 0 to this bit to clear Core Power Limiting Status.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL1 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL1 Status.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL2 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL2 Status.

28 Max Turbo Limit Log

When set, indicates that the corresponding Max Turbo Limit Status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear Max Turbo Limit Status.

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 336

29 Turbo Transition Attenuation Log

When set, indicates that the corresponding Turbo Transition
Attenuation Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Turbo Transition
Attenuation Status.

63:30 Reserved.

6B0H 1712 MSR_GRAPHICS_PERF_LIMI
T_REASONS

Package Indicator of Frequency Clipping in the Processor Graphics (R/W)

(frequency refers to processor graphics frequency)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system
request due to Processor Graphics driver override.

5 Reserved.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Graphics Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

15:12 Reserved

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 337

16 PROCHOT Log

When set, indicates that the corresponding PROCHOT Status bit is
set. Software can write 0 to this bit to clear PROCHOT Status.

17 Thermal Log

When set, indicates that the corresponding Thermal status bit was
set since it was last cleared by software. Software can write 0 to
this bit to clear Thermal Status.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the corresponding Graphics Driver status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear Graphics Driver Status.

21 Reserved.

22 VR Therm Alert Log

When set, indicates that the corresponding VR Therm Alert Status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear VR Therm Alert Status.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the corresponding EDP Status bit was set
since it was last cleared by software. Software can write 0 to this
bit to clear EDP Status.

25 Graphics Power Limiting Log

When set, indicates that the corresponding Graphics Power Limiting
Status bit was set since it was last cleared by software. Software
can write 0 to this bit to clear Graphics Power Limiting Status.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL1 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL1 Status.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL2 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL2 Status.

63:28 Reserved.

6B1H 1713 MSR_RING_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in the Ring Interconnect (R/W)

(frequency refers to ring interconnect in the uncore)

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 338

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

5:2 Reserved.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Reserved.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

15:12 Reserved

16 PROCHOT Log

When set, indicates that the corresponding PROCHOT Status bit is
set. Software can write 0 to this bit to clear PROCHOT Status.

17 Thermal Log

When set, indicates that the corresponding Thermal status bit was
set since it was last cleared by software. Software can write 0 to
this bit to clear Thermal Status.

21:18 Reserved.

22 VR Therm Alert Log

When set, indicates that the corresponding VR Therm Alert Status
bit was set since it was last cleared by software. Software can
write 0 to this bit to clear VR Therm Alert Status.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the corresponding EDP Status bit was set
since it was last cleared by software. Software can write 0 to this
bit to clear EDP Status.

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 339

25 Reserved.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL1 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL1 Status.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the corresponding Package-level Power
Limiting PL2 Status bit was set since it was last cleared by
software. Software can write 0 to this bit to clear Package-level
Power Limiting PL2 Status.

63:28 Reserved.

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

706H 1798 MSR_UNC_CBO_0_PER_
CTR0

Package Uncore C-Box 0, performance counter 0

707H 1799 MSR_UNC_CBO_0_PER_
CTR1

Package Uncore C-Box 0, performance counter 1

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

716H 1814 MSR_UNC_CBO_1_PER_
CTR0

Package Uncore C-Box 1, performance counter 0

717H 1815 MSR_UNC_CBO_1_PER_
CTR1

Package Uncore C-Box 1, performance counter 1

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

721H 1824 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

726H 1830 MSR_UNC_CBO_2_PER_
CTR0

Package Uncore C-Box 2, performance counter 0

727H 1831 MSR_UNC_CBO_2_PER_
CTR1

Package Uncore C-Box 2, performance counter 1

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR.

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 340

...

35.11 MSRS IN INTEL® XEON® PROCESSOR E5 26XX V3 PRODUCT FAMILY
Intel® Xeon® processor E5 v3 family and Intel® Xeon® processor E7 v3 family are based on Haswell-E microar-
chitecture (CPUID DisplayFamily_DisplayModel = 06_3F). These processors supports the MSR interfaces listed in
Table 35-16, Table 35-21, Table 35-24, and Table 35-27.

736H 1846 MSR_UNC_CBO_3_PER_
CTR0

Package Uncore C-Box 3, performance counter 0.

737H 1847 MSR_UNC_CBO_3_PER_
CTR1

Package Uncore C-Box 3, performance counter 1.

See Table 35-16, Table 35-17, Table 35-20, Table 35-24 for other MSR definitions applicable to processors with CPUID
signatures 063CH, 06_46H

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

http://biosbits.org

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 341

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

63:29 Reserved

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is
supported and a host-space interface available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and a host-space interface available to SMM handler.

63:60 Reserved

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W)

When set, enables IMC status bank to log additional info in bits
36:32.

63:2 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 342

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active.

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10 core active.

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

39:32 Package Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

47:40 Package Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

55:48 Package Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

63:56 Package Maximum Ratio Limit for16C

Maximum turbo ratio limit of 16 core active.

1AFH 431 MSR_TURBO_RATIO_LIMIT2 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 17C

Maximum turbo ratio limit of 17 core active.

15:8 Package Maximum Ratio Limit for 18C

Maximum turbo ratio limit of 18 core active.

62:16 Package Reserved

63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 specified in
MSR_TURBO_RATIO_LIMIT, MSR_TURBO_RATIO_LIMIT1 and
MSR_TURBO_RATIO_LIMIT2.

If 0, the processor uses factory-set configuration (Default).

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 343

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC error from the Intel QPI 0 module.
415H 1045 MSR_MC5_STATUS Package

416H 1046 MSR_MC5_ADDR Package

417H 1047 MSR_MC5_MISC Package

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC error from the integrated I/O module.
419H 1049 MSR_MC6_STATUS Package

41AH 1050 MSR_MC6_ADDR Package

41BH 1051 MSR_MC6_MISC Package

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC error from the home agent HA 0.
41DH 1053 MSR_MC7_STATUS Package

41EH 1054 MSR_MC7_ADDR Package

41FH 1055 MSR_MC7_MISC Package

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC8 reports MC error from the home agent HA 1.
421H 1057 MSR_MC8_STATUS Package

422H 1058 MSR_MC8_ADDR Package

423H 1059 MSR_MC8_MISC Package

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

425H 1061 MSR_MC9_STATUS Package

426H 1062 MSR_MC9_ADDR Package

427H 1063 MSR_MC9_MISC Package

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

429H 1065 MSR_MC10_STATUS Package

42AH 1066 MSR_MC10_ADDR Package

42BH 1067 MSR_MC10_MISC Package

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

42DH 1069 MSR_MC11_STATUS Package

42EH 1070 MSR_MC11_ADDR Package

42FH 1071 MSR_MC11_MISC Package

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

431H 1073 MSR_MC12_STATUS Package

432H 1074 MSR_MC12_ADDR Package

433H 1075 MSR_MC12_MISC Package

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 344

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

435H 1077 MSR_MC13_STATUS Package

436H 1078 MSR_MC13_ADDR Package

437H 1079 MSR_MC13_MISC Package

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

439H 1081 MSR_MC14_STATUS Package

43AH 1082 MSR_MC14_ADDR Package

43BH 1083 MSR_MC14_MISC Package

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

43DH 1085 MSR_MC15_STATUS Package

43EH 1086 MSR_MC15_ADDR Package

43FH 1087 MSR_MC15_MISC Package

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

441H 1089 MSR_MC16_STATUS Package

442H 1090 MSR_MC16_ADDR Package

443H 1091 MSR_MC16_MISC Package

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, CBo12,
CBo15.

445H 1093 MSR_MC17_STATUS Package

446H 1094 MSR_MC17_ADDR Package

447H 1095 MSR_MC17_MISC Package

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo1, CBo4, CBo7, CBo10, CBo13,
CBo16.

449H 1097 MSR_MC18_STATUS Package

44AH 1098 MSR_MC18_ADDR Package

44BH 1099 MSR_MC18_MISC Package

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo2, CBo5, CBo8, CBo11, CBo14,
CBo17.

44DH 1101 MSR_MC19_STATUS Package

44EH 1102 MSR_MC19_ADDR Package

44FH 1103 MSR_MC19_MISC Package

450H 1104 MSR_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC20 reports MC error from the Intel QPI 1 module.
451H 1105 MSR_MC20_STATUS Package

452H 1106 MSR_MC20_ADDR Package

453H 1107 MSR_MC20_MISC Package

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 345

3:0 Package Power Units

See Section 14.9.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the multiplier, 1/
2^ESU; where ESU is an unsigned integer represented by bits 12:8.
Default value is 0EH (or 61 micro-joules)

15:13 Package Reserved

19:16 Package Time Units

See Section 14.9.1, “RAPL Interfaces.”

63:20 Reserved

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating
system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

5:2 Reserved.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

63:9 Reserved.

C8DH 3213 IA32_QM_EVTSEL THREAD Monitoring Event Select Register (R/W).

if CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1

7:0 EventID (RW)

Event encoding:

0x0: no monitoring

0x1: L3 occupancy monitoring

all other encoding reserved.

31:8 Reserved.

41:32 RMID (RW)

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 346

35.11.1 Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family
Intel Xeon Processor E5 v3 family are based on the Haswell-E microarchitecture. The MSR-based uncore PMU
interfaces are listed in Table 35-28. For complete detail of the uncore PMU, refer to Intel Xeon Processor E5 v3
Product Family Uncore Performance Monitoring Guide. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_3FH.

63:42 Reserved.

C8EH 3214 IA32_QM_CTR THREAD Monitoring Counter Register (R/O).

if CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1

61:0 Resource Monitored Data

62 Unavailable: If 1, indicates data for this RMID is not available or not
monitored for this resource or RMID.

63 Error: If 1, indicates and unsupported RMID or event type was
written to IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC THREAD Resource Association Register (R/W).

9:0 RMID

63: 10 Reserved

See Table 35-16, Table 35-21, Table 35-24 for other MSR definitions applicable to processors with CPUID signature
06_3FH

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the

factory-set configuration is dependent on features specific to the processor and the platform.

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-28 Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

700H MSR_PMON_GLOBAL_CTL Package Uncore perfmon per-socket global control.

701H MSR_PMON_GLOBAL_STATUS Package Uncore perfmon per-socket global status.

702H MSR_PMON_GLOBAL_CONFIG Package Uncore perfmon per-socket global configuration.

703H MSR_U_PMON_UCLK_FIXED_CTL Package Uncore U-box UCLK fixed counter control

704H MSR_U_PMON_UCLK_FIXED_CTR Package Uncore U-box UCLK fixed counter

705H MSR_U_PMON_EVNTSEL0 Package Uncore U-box perfmon event select for U-box counter 0.

706H MSR_U_PMON_EVNTSEL1 Package Uncore U-box perfmon event select for U-box counter 1.

708H MSR_U_PMON_BOX_STATUS Package Uncore U-box perfmon U-box wide status.

709H MSR_U_PMON_CTR0 Package Uncore U-box perfmon counter 0

70AH MSR_U_PMON_CTR1 Package Uncore U-box perfmon counter 1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 347

710H MSR_PCU_PMON_BOX_CTL Package Uncore PCU perfmon for PCU-box-wide control

711H MSR_PCU_PMON_EVNTSEL0 Package Uncore PCU perfmon event select for PCU counter 0.

712H MSR_PCU_PMON_EVNTSEL1 Package Uncore PCU perfmon event select for PCU counter 1.

713H MSR_PCU_PMON_EVNTSEL2 Package Uncore PCU perfmon event select for PCU counter 2.

714H MSR_PCU_PMON_EVNTSEL3 Package Uncore PCU perfmon event select for PCU counter 3.

715H MSR_PCU_PMON_BOX_FILTER Package Uncore PCU perfmon box-wide filter.

716H MSR_PCU_PMON_BOX_STATUS Package Uncore PCU perfmon box wide status.

717H MSR_PCU_PMON_CTR0 Package Uncore PCU perfmon counter 0.

718H MSR_PCU_PMON_CTR1 Package Uncore PCU perfmon counter 1.

719H MSR_PCU_PMON_CTR2 Package Uncore PCU perfmon counter 2.

71AH MSR_PCU_PMON_CTR3 Package Uncore PCU perfmon counter 3.

720H MSR_S0_PMON_BOX_CTL Package Uncore SBo 0 perfmon for SBo 0 box-wide control

721H MSR_S0_PMON_EVNTSEL0 Package Uncore SBo 0 perfmon event select for SBo 0 counter 0.

722H MSR_S0_PMON_EVNTSEL1 Package Uncore SBo 0 perfmon event select for SBo 0 counter 1.

723H MSR_S0_PMON_EVNTSEL2 Package Uncore SBo 0 perfmon event select for SBo 0 counter 2.

724H MSR_S0_PMON_EVNTSEL3 Package Uncore SBo 0 perfmon event select for SBo 0 counter 3.

725H MSR_S0_PMON_BOX_FILTER Package Uncore SBo 0 perfmon box-wide filter.

726H MSR_S0_PMON_CTR0 Package Uncore SBo 0 perfmon counter 0.

727H MSR_S0_PMON_CTR1 Package Uncore SBo 0 perfmon counter 1.

728H MSR_S0_PMON_CTR2 Package Uncore SBo 0 perfmon counter 2.

729H MSR_S0_PMON_CTR3 Package Uncore SBo 0 perfmon counter 3.

72AH MSR_S1_PMON_BOX_CTL Package Uncore SBo 1 perfmon for SBo 1 box-wide control

72BH MSR_S1_PMON_EVNTSEL0 Package Uncore SBo 1 perfmon event select for SBo 1 counter 0.

72CH MSR_S1_PMON_EVNTSEL1 Package Uncore SBo 1 perfmon event select for SBo 1 counter 1.

72DH MSR_S1_PMON_EVNTSEL2 Package Uncore SBo 1 perfmon event select for SBo 1 counter 2.

72EH MSR_S1_PMON_EVNTSEL3 Package Uncore SBo 1 perfmon event select for SBo 1 counter 3.

72FH MSR_S1_PMON_BOX_FILTER Package Uncore SBo 1 perfmon box-wide filter.

730H MSR_S1_PMON_CTR0 Package Uncore SBo 1 perfmon counter 0.

731H MSR_S1_PMON_CTR1 Package Uncore SBo 1 perfmon counter 1.

732H MSR_S1_PMON_CTR2 Package Uncore SBo 1 perfmon counter 2.

733H MSR_S1_PMON_CTR3 Package Uncore SBo 1 perfmon counter 3.

734H MSR_S2_PMON_BOX_CTL Package Uncore SBo 2 perfmon for SBo 2 box-wide control

735H MSR_S2_PMON_EVNTSEL0 Package Uncore SBo 2 perfmon event select for SBo 2 counter 0.

736H MSR_S2_PMON_EVNTSEL1 Package Uncore SBo 2 perfmon event select for SBo 2 counter 1.

Table 35-28 Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 348

737H MSR_S2_PMON_EVNTSEL2 Package Uncore SBo 2 perfmon event select for SBo 2 counter 2.

738H MSR_S2_PMON_EVNTSEL3 Package Uncore SBo 2 perfmon event select for SBo 2 counter 3.

739H MSR_S2_PMON_BOX_FILTER Package Uncore SBo 2 perfmon box-wide filter.

73AH MSR_S2_PMON_CTR0 Package Uncore SBo 2 perfmon counter 0.

73BH MSR_S2_PMON_CTR1 Package Uncore SBo 2 perfmon counter 1.

73CH MSR_S2_PMON_CTR2 Package Uncore SBo 2 perfmon counter 2.

73DH MSR_S2_PMON_CTR3 Package Uncore SBo 2 perfmon counter 3.

73EH MSR_S3_PMON_BOX_CTL Package Uncore SBo 3 perfmon for SBo 3 box-wide control

73FH MSR_S3_PMON_EVNTSEL0 Package Uncore SBo 3 perfmon event select for SBo 3 counter 0.

740H MSR_S3_PMON_EVNTSEL1 Package Uncore SBo 3 perfmon event select for SBo 3 counter 1.

741H MSR_S3_PMON_EVNTSEL2 Package Uncore SBo 3 perfmon event select for SBo 3 counter 2.

742H MSR_S3_PMON_EVNTSEL3 Package Uncore SBo 3 perfmon event select for SBo 3 counter 3.

743H MSR_S3_PMON_BOX_FILTER Package Uncore SBo 3 perfmon box-wide filter.

744H MSR_S3_PMON_CTR0 Package Uncore SBo 3 perfmon counter 0.

745H MSR_S3_PMON_CTR1 Package Uncore SBo 3 perfmon counter 1.

746H MSR_S3_PMON_CTR2 Package Uncore SBo 3 perfmon counter 2.

747H MSR_S3_PMON_CTR3 Package Uncore SBo 3 perfmon counter 3.

E00H MSR_C0_PMON_BOX_CTL Package Uncore C-box 0 perfmon for box-wide control

E01H MSR_C0_PMON_EVNTSEL0 Package Uncore C-box 0 perfmon event select for C-box 0 counter 0.

E02H MSR_C0_PMON_EVNTSEL1 Package Uncore C-box 0 perfmon event select for C-box 0 counter 1.

E03H MSR_C0_PMON_EVNTSEL2 Package Uncore C-box 0 perfmon event select for C-box 0 counter 2.

E04H MSR_C0_PMON_EVNTSEL3 Package Uncore C-box 0 perfmon event select for C-box 0 counter 3.

E05H MSR_C0_PMON_BOX_FILTER0 Package Uncore C-box 0 perfmon box wide filter 0.

E06H MSR_C0_PMON_BOX_FILTER1 Package Uncore C-box 0 perfmon box wide filter 1.

E07H MSR_C0_PMON_BOX_STATUS Package Uncore C-box 0 perfmon box wide status.

E08H MSR_C0_PMON_CTR0 Package Uncore C-box 0 perfmon counter 0.

E09H MSR_C0_PMON_CTR1 Package Uncore C-box 0 perfmon counter 1.

E0AH MSR_C0_PMON_CTR2 Package Uncore C-box 0 perfmon counter 2.

E0BH MSR_C0_PMON_CTR3 Package Uncore C-box 0 perfmon counter 3.

E10H MSR_C1_PMON_BOX_CTL Package Uncore C-box 1 perfmon for box-wide control

E11H MSR_C1_PMON_EVNTSEL0 Package Uncore C-box 1 perfmon event select for C-box 1 counter 0.

E12H MSR_C1_PMON_EVNTSEL1 Package Uncore C-box 1 perfmon event select for C-box 1 counter 1.

E13H MSR_C1_PMON_EVNTSEL2 Package Uncore C-box 1 perfmon event select for C-box 1 counter 2.

E14H MSR_C1_PMON_EVNTSEL3 Package Uncore C-box 1 perfmon event select for C-box 1 counter 3.

Table 35-28 Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 349

E15H MSR_C1_PMON_BOX_FILTER0 Package Uncore C-box 1 perfmon box wide filter 0.

E16H MSR_C1_PMON_BOX_FILTER1 Package Uncore C-box 1 perfmon box wide filter1.

E17H MSR_C1_PMON_BOX_STATUS Package Uncore C-box 1 perfmon box wide status.

E18H MSR_C1_PMON_CTR0 Package Uncore C-box 1 perfmon counter 0.

E19H MSR_C1_PMON_CTR1 Package Uncore C-box 1 perfmon counter 1.

E1AH MSR_C1_PMON_CTR2 Package Uncore C-box 1 perfmon counter 2.

E1BH MSR_C1_PMON_CTR3 Package Uncore C-box 1 perfmon counter 3.

E20H MSR_C2_PMON_BOX_CTL Package Uncore C-box 2 perfmon for box-wide control

E21H MSR_C2_PMON_EVNTSEL0 Package Uncore C-box 2 perfmon event select for C-box 2 counter 0.

E22H MSR_C2_PMON_EVNTSEL1 Package Uncore C-box 2 perfmon event select for C-box 2 counter 1.

E23H MSR_C2_PMON_EVNTSEL2 Package Uncore C-box 2 perfmon event select for C-box 2 counter 2.

E24H MSR_C2_PMON_EVNTSEL3 Package Uncore C-box 2 perfmon event select for C-box 2 counter 3.

E25H MSR_C2_PMON_BOX_FILTER0 Package Uncore C-box 2 perfmon box wide filter 0.

E26H MSR_C2_PMON_BOX_FILTER1 Package Uncore C-box 2 perfmon box wide filter1.

E27H MSR_C2_PMON_BOX_STATUS Package Uncore C-box 2 perfmon box wide status.

E28H MSR_C2_PMON_CTR0 Package Uncore C-box 2 perfmon counter 0.

E29H MSR_C2_PMON_CTR1 Package Uncore C-box 2 perfmon counter 1.

E2AH MSR_C2_PMON_CTR2 Package Uncore C-box 2 perfmon counter 2.

E2BH MSR_C2_PMON_CTR3 Package Uncore C-box 2 perfmon counter 3.

E30H MSR_C3_PMON_BOX_CTL Package Uncore C-box 3 perfmon for box-wide control

E31H MSR_C3_PMON_EVNTSEL0 Package Uncore C-box 3 perfmon event select for C-box 3 counter 0.

E32H MSR_C3_PMON_EVNTSEL1 Package Uncore C-box 3 perfmon event select for C-box 3 counter 1.

E33H MSR_C3_PMON_EVNTSEL2 Package Uncore C-box 3 perfmon event select for C-box 3 counter 2.

E34H MSR_C3_PMON_EVNTSEL3 Package Uncore C-box 3 perfmon event select for C-box 3 counter 3.

E35H MSR_C3_PMON_BOX_FILTER0 Package Uncore C-box 3 perfmon box wide filter 0.

E36H MSR_C3_PMON_BOX_FILTER1 Package Uncore C-box 3 perfmon box wide filter1.

E37H MSR_C3_PMON_BOX_STATUS Package Uncore C-box 3 perfmon box wide status.

E38H MSR_C3_PMON_CTR0 Package Uncore C-box 3 perfmon counter 0.

E39H MSR_C3_PMON_CTR1 Package Uncore C-box 3 perfmon counter 1.

E3AH MSR_C3_PMON_CTR2 Package Uncore C-box 3 perfmon counter 2.

E3BH MSR_C3_PMON_CTR3 Package Uncore C-box 3 perfmon counter 3.

E40H MSR_C4_PMON_BOX_CTL Package Uncore C-box 4 perfmon for box-wide control

E41H MSR_C4_PMON_EVNTSEL0 Package Uncore C-box 4 perfmon event select for C-box 4 counter 0.

E42H MSR_C4_PMON_EVNTSEL1 Package Uncore C-box 4 perfmon event select for C-box 4 counter 1.

Table 35-28 Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 350

E43H MSR_C4_PMON_EVNTSEL2 Package Uncore C-box 4 perfmon event select for C-box 4 counter 2.

E44H MSR_C4_PMON_EVNTSEL3 Package Uncore C-box 4 perfmon event select for C-box 4 counter 3.

E45H MSR_C4_PMON_BOX_FILTER0 Package Uncore C-box 4 perfmon box wide filter 0.

E46H MSR_C4_PMON_BOX_FILTER1 Package Uncore C-box 4 perfmon box wide filter1.

E47H MSR_C4_PMON_BOX_STATUS Package Uncore C-box 4 perfmon box wide status.

E48H MSR_C4_PMON_CTR0 Package Uncore C-box 4 perfmon counter 0.

E49H MSR_C4_PMON_CTR1 Package Uncore C-box 4 perfmon counter 1.

E4AH MSR_C4_PMON_CTR2 Package Uncore C-box 4 perfmon counter 2.

E4BH MSR_C4_PMON_CTR3 Package Uncore C-box 4 perfmon counter 3.

E50H MSR_C5_PMON_BOX_CTL Package Uncore C-box 5 perfmon for box-wide control

E51H MSR_C5_PMON_EVNTSEL0 Package Uncore C-box 5 perfmon event select for C-box 5 counter 0.

E52H MSR_C5_PMON_EVNTSEL1 Package Uncore C-box 5 perfmon event select for C-box 5 counter 1.

E53H MSR_C5_PMON_EVNTSEL2 Package Uncore C-box 5 perfmon event select for C-box 5 counter 2.

E54H MSR_C5_PMON_EVNTSEL3 Package Uncore C-box 5 perfmon event select for C-box 5 counter 3.

E55H MSR_C5_PMON_BOX_FILTER0 Package Uncore C-box 5 perfmon box wide filter 0.

E56H MSR_C5_PMON_BOX_FILTER1 Package Uncore C-box 5 perfmon box wide filter1.

E57H MSR_C5_PMON_BOX_STATUS Package Uncore C-box 5 perfmon box wide status.

E58H MSR_C5_PMON_CTR0 Package Uncore C-box 5 perfmon counter 0.

E59H MSR_C5_PMON_CTR1 Package Uncore C-box 5 perfmon counter 1.

E5AH MSR_C5_PMON_CTR2 Package Uncore C-box 5 perfmon counter 2.

E5BH MSR_C5_PMON_CTR3 Package Uncore C-box 5 perfmon counter 3.

E60H MSR_C6_PMON_BOX_CTL Package Uncore C-box 6 perfmon for box-wide control

E61H MSR_C6_PMON_EVNTSEL0 Package Uncore C-box 6 perfmon event select for C-box 6 counter 0.

E62H MSR_C6_PMON_EVNTSEL1 Package Uncore C-box 6 perfmon event select for C-box 6 counter 1.

E63H MSR_C6_PMON_EVNTSEL2 Package Uncore C-box 6 perfmon event select for C-box 6 counter 2.

E64H MSR_C6_PMON_EVNTSEL3 Package Uncore C-box 6 perfmon event select for C-box 6 counter 3.

E65H MSR_C6_PMON_BOX_FILTER0 Package Uncore C-box 6 perfmon box wide filter 0.

E66H MSR_C6_PMON_BOX_FILTER1 Package Uncore C-box 6 perfmon box wide filter1.

E67H MSR_C6_PMON_BOX_STATUS Package Uncore C-box 6 perfmon box wide status.

E68H MSR_C6_PMON_CTR0 Package Uncore C-box 6 perfmon counter 0.

E69H MSR_C6_PMON_CTR1 Package Uncore C-box 6 perfmon counter 1.

E6AH MSR_C6_PMON_CTR2 Package Uncore C-box 6 perfmon counter 2.

E6BH MSR_C6_PMON_CTR3 Package Uncore C-box 6 perfmon counter 3.

E70H MSR_C7_PMON_BOX_CTL Package Uncore C-box 7 perfmon for box-wide control

Table 35-28 Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 351

E71H MSR_C7_PMON_EVNTSEL0 Package Uncore C-box 7 perfmon event select for C-box 7 counter 0.

E72H MSR_C7_PMON_EVNTSEL1 Package Uncore C-box 7 perfmon event select for C-box 7 counter 1.

E73H MSR_C7_PMON_EVNTSEL2 Package Uncore C-box 7 perfmon event select for C-box 7 counter 2.

E74H MSR_C7_PMON_EVNTSEL3 Package Uncore C-box 7 perfmon event select for C-box 7 counter 3.

E75H MSR_C7_PMON_BOX_FILTER0 Package Uncore C-box 7 perfmon box wide filter 0.

E76H MSR_C7_PMON_BOX_FILTER1 Package Uncore C-box 7 perfmon box wide filter1.

E77H MSR_C7_PMON_BOX_STATUS Package Uncore C-box 7 perfmon box wide status.

E78H MSR_C7_PMON_CTR0 Package Uncore C-box 7 perfmon counter 0.

E79H MSR_C7_PMON_CTR1 Package Uncore C-box 7 perfmon counter 1.

E7AH MSR_C7_PMON_CTR2 Package Uncore C-box 7 perfmon counter 2.

E7BH MSR_C7_PMON_CTR3 Package Uncore C-box 7 perfmon counter 3.

E80H MSR_C8_PMON_BOX_CTL Package Uncore C-box 8 perfmon local box wide control.

E81H MSR_C8_PMON_EVNTSEL0 Package Uncore C-box 8 perfmon event select for C-box 8 counter 0.

E82H MSR_C8_PMON_EVNTSEL1 Package Uncore C-box 8 perfmon event select for C-box 8 counter 1.

E83H MSR_C8_PMON_EVNTSEL2 Package Uncore C-box 8 perfmon event select for C-box 8 counter 2.

E84H MSR_C8_PMON_EVNTSEL3 Package Uncore C-box 8 perfmon event select for C-box 8 counter 3.

E85H MSR_C8_PMON_BOX_FILTER0 Package Uncore C-box 8 perfmon box wide filter0.

E86H MSR_C8_PMON_BOX_FILTER1 Package Uncore C-box 8 perfmon box wide filter1.

E87H MSR_C8_PMON_BOX_STATUS Package Uncore C-box 8 perfmon box wide status.

E88H MSR_C8_PMON_CTR0 Package Uncore C-box 8 perfmon counter 0.

E89H MSR_C8_PMON_CTR1 Package Uncore C-box 8 perfmon counter 1.

E8AH MSR_C8_PMON_CTR2 Package Uncore C-box 8 perfmon counter 2.

E8BH MSR_C8_PMON_CTR3 Package Uncore C-box 8 perfmon counter 3.

E90H MSR_C9_PMON_BOX_CTL Package Uncore C-box 9 perfmon local box wide control.

E91H MSR_C9_PMON_EVNTSEL0 Package Uncore C-box 9 perfmon event select for C-box 9 counter 0.

E92H MSR_C9_PMON_EVNTSEL1 Package Uncore C-box 9 perfmon event select for C-box 9 counter 1.

E93H MSR_C9_PMON_EVNTSEL2 Package Uncore C-box 9 perfmon event select for C-box 9 counter 2.

E94H MSR_C9_PMON_EVNTSEL3 Package Uncore C-box 9 perfmon event select for C-box 9 counter 3.

E95H MSR_C9_PMON_BOX_FILTER0 Package Uncore C-box 9 perfmon box wide filter0.

E96H MSR_C9_PMON_BOX_FILTER1 Package Uncore C-box 9 perfmon box wide filter1.

E97H MSR_C9_PMON_BOX_STATUS Package Uncore C-box 9 perfmon box wide status.

E98H MSR_C9_PMON_CTR0 Package Uncore C-box 9 perfmon counter 0.

E99H MSR_C9_PMON_CTR1 Package Uncore C-box 9 perfmon counter 1.

E9AH MSR_C9_PMON_CTR2 Package Uncore C-box 9 perfmon counter 2.

Table 35-28 Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 352

E9BH MSR_C9_PMON_CTR3 Package Uncore C-box 9 perfmon counter 3.

EA0H MSR_C10_PMON_BOX_CTL Package Uncore C-box 10 perfmon local box wide control.

EA1H MSR_C10_PMON_EVNTSEL0 Package Uncore C-box 10 perfmon event select for C-box 10 counter 0.

EA2H MSR_C10_PMON_EVNTSEL1 Package Uncore C-box 10 perfmon event select for C-box 10 counter 1.

EA3H MSR_C10_PMON_EVNTSEL2 Package Uncore C-box 10 perfmon event select for C-box 10 counter 2.

EA4H MSR_C10_PMON_EVNTSEL3 Package Uncore C-box 10 perfmon event select for C-box 10 counter 3.

EA5H MSR_C10_PMON_BOX_FILTER0 Package Uncore C-box 10 perfmon box wide filter0.

EA6H MSR_C10_PMON_BOX_FILTER1 Package Uncore C-box 10 perfmon box wide filter1.

EA7H MSR_C10_PMON_BOX_STATUS Package Uncore C-box 10 perfmon box wide status.

EA8H MSR_C10_PMON_CTR0 Package Uncore C-box 10 perfmon counter 0.

EA9H MSR_C10_PMON_CTR1 Package Uncore C-box 10 perfmon counter 1.

EAAH MSR_C10_PMON_CTR2 Package Uncore C-box 10 perfmon counter 2.

EABH MSR_C10_PMON_CTR3 Package Uncore C-box 10 perfmon counter 3.

EB0H MSR_C11_PMON_BOX_CTL Package Uncore C-box 11 perfmon local box wide control.

EB1H MSR_C11_PMON_EVNTSEL0 Package Uncore C-box 11 perfmon event select for C-box 11 counter 0.

EB2H MSR_C11_PMON_EVNTSEL1 Package Uncore C-box 11 perfmon event select for C-box 11 counter 1.

EB3H MSR_C11_PMON_EVNTSEL2 Package Uncore C-box 11 perfmon event select for C-box 11 counter 2.

EB4H MSR_C11_PMON_EVNTSEL3 Package Uncore C-box 11 perfmon event select for C-box 11 counter 3.

EB5H MSR_C11_PMON_BOX_FILTER0 Package Uncore C-box 11 perfmon box wide filter0.

EB6H MSR_C11_PMON_BOX_FILTER1 Package Uncore C-box 11 perfmon box wide filter1.

EB7H MSR_C11_PMON_BOX_STATUS Package Uncore C-box 11 perfmon box wide status.

EB8H MSR_C11_PMON_CTR0 Package Uncore C-box 11 perfmon counter 0.

EB9H MSR_C11_PMON_CTR1 Package Uncore C-box 11 perfmon counter 1.

EBAH MSR_C11_PMON_CTR2 Package Uncore C-box 11 perfmon counter 2.

EBBH MSR_C11_PMON_CTR3 Package Uncore C-box 11 perfmon counter 3.

EC0H MSR_C12_PMON_BOX_CTL Package Uncore C-box 12 perfmon local box wide control.

EC1H MSR_C12_PMON_EVNTSEL0 Package Uncore C-box 12 perfmon event select for C-box 12 counter 0.

EC2H MSR_C12_PMON_EVNTSEL1 Package Uncore C-box 12 perfmon event select for C-box 12 counter 1.

EC3H MSR_C12_PMON_EVNTSEL2 Package Uncore C-box 12 perfmon event select for C-box 12 counter 2.

EC4H MSR_C12_PMON_EVNTSEL3 Package Uncore C-box 12 perfmon event select for C-box 12 counter 3.

EC5H MSR_C12_PMON_BOX_FILTER0 Package Uncore C-box 12 perfmon box wide filter0.

EC6H MSR_C12_PMON_BOX_FILTER1 Package Uncore C-box 12 perfmon box wide filter1.

EC7H MSR_C12_PMON_BOX_STATUS Package Uncore C-box 12 perfmon box wide status.

EC8H MSR_C12_PMON_CTR0 Package Uncore C-box 12 perfmon counter 0.

Table 35-28 Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 353

EC9H MSR_C12_PMON_CTR1 Package Uncore C-box 12 perfmon counter 1.

ECAH MSR_C12_PMON_CTR2 Package Uncore C-box 12 perfmon counter 2.

ECBH MSR_C12_PMON_CTR3 Package Uncore C-box 12 perfmon counter 3.

ED0H MSR_C13_PMON_BOX_CTL Package Uncore C-box 13 perfmon local box wide control.

ED1H MSR_C13_PMON_EVNTSEL0 Package Uncore C-box 13 perfmon event select for C-box 13 counter 0.

ED2H MSR_C13_PMON_EVNTSEL1 Package Uncore C-box 13 perfmon event select for C-box 13 counter 1.

ED3H MSR_C13_PMON_EVNTSEL2 Package Uncore C-box 13 perfmon event select for C-box 13 counter 2.

ED4H MSR_C13_PMON_EVNTSEL3 Package Uncore C-box 13 perfmon event select for C-box 13 counter 3.

ED5H MSR_C13_PMON_BOX_FILTER0 Package Uncore C-box 13 perfmon box wide filter0.

ED6H MSR_C13_PMON_BOX_FILTER1 Package Uncore C-box 13 perfmon box wide filter1.

ED7H MSR_C13_PMON_BOX_STATUS Package Uncore C-box 13 perfmon box wide status.

ED8H MSR_C13_PMON_CTR0 Package Uncore C-box 13 perfmon counter 0.

ED9H MSR_C13_PMON_CTR1 Package Uncore C-box 13 perfmon counter 1.

EDAH MSR_C13_PMON_CTR2 Package Uncore C-box 13 perfmon counter 2.

EDBH MSR_C13_PMON_CTR3 Package Uncore C-box 13 perfmon counter 3.

EE0H MSR_C14_PMON_BOX_CTL Package Uncore C-box 14 perfmon local box wide control.

EE1H MSR_C14_PMON_EVNTSEL0 Package Uncore C-box 14 perfmon event select for C-box 14 counter 0.

EE2H MSR_C14_PMON_EVNTSEL1 Package Uncore C-box 14 perfmon event select for C-box 14 counter 1.

EE3H MSR_C14_PMON_EVNTSEL2 Package Uncore C-box 14 perfmon event select for C-box 14 counter 2.

EE4H MSR_C14_PMON_EVNTSEL3 Package Uncore C-box 14 perfmon event select for C-box 14 counter 3.

EE5H MSR_C14_PMON_BOX_FILTER Package Uncore C-box 14 perfmon box wide filter0.

EE6H MSR_C14_PMON_BOX_FILTER1 Package Uncore C-box 14 perfmon box wide filter1.

EE7H MSR_C14_PMON_BOX_STATUS Package Uncore C-box 14 perfmon box wide status.

EE8H MSR_C14_PMON_CTR0 Package Uncore C-box 14 perfmon counter 0.

EE9H MSR_C14_PMON_CTR1 Package Uncore C-box 14 perfmon counter 1.

EEAH MSR_C14_PMON_CTR2 Package Uncore C-box 14 perfmon counter 2.

EEBH MSR_C14_PMON_CTR3 Package Uncore C-box 14 perfmon counter 3.

EF0H MSR_C15_PMON_BOX_CTL Package Uncore C-box 15 perfmon local box wide control.

EF1H MSR_C15_PMON_EVNTSEL0 Package Uncore C-box 15 perfmon event select for C-box 15 counter 0.

EF2H MSR_C15_PMON_EVNTSEL1 Package Uncore C-box 15 perfmon event select for C-box 15 counter 1.

EF3H MSR_C15_PMON_EVNTSEL2 Package Uncore C-box 15 perfmon event select for C-box 15 counter 2.

EF4H MSR_C15_PMON_EVNTSEL3 Package Uncore C-box 15 perfmon event select for C-box 15 counter 3.

EF5H MSR_C15_PMON_BOX_FILTER0 Package Uncore C-box 15 perfmon box wide filter0.

EF6H MSR_C15_PMON_BOX_FILTER1 Package Uncore C-box 15 perfmon box wide filter1.

Table 35-28 Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 354

EF7H MSR_C15_PMON_BOX_STATUS Package Uncore C-box 15 perfmon box wide status.

EF8H MSR_C15_PMON_CTR0 Package Uncore C-box 15 perfmon counter 0.

EF9H MSR_C15_PMON_CTR1 Package Uncore C-box 15 perfmon counter 1.

EFAH MSR_C15_PMON_CTR2 Package Uncore C-box 15 perfmon counter 2.

EFBH MSR_C15_PMON_CTR3 Package Uncore C-box 15 perfmon counter 3.

F00H MSR_C16_PMON_BOX_CTL Package Uncore C-box 16 perfmon for box-wide control

F01H MSR_C16_PMON_EVNTSEL0 Package Uncore C-box 16 perfmon event select for C-box 16 counter 0.

F02H MSR_C16_PMON_EVNTSEL1 Package Uncore C-box 16 perfmon event select for C-box 16 counter 1.

F03H MSR_C16_PMON_EVNTSEL2 Package Uncore C-box 16 perfmon event select for C-box 16 counter 2.

F04H MSR_C16_PMON_EVNTSEL3 Package Uncore C-box 16 perfmon event select for C-box 16 counter 3.

F05H MSR_C16_PMON_BOX_FILTER0 Package Uncore C-box 16 perfmon box wide filter 0.

F06H MSR_C16_PMON_BOX_FILTER1 Package Uncore C-box 16 perfmon box wide filter 1.

F07H MSR_C16_PMON_BOX_STATUS Package Uncore C-box 16 perfmon box wide status.

F08H MSR_C16_PMON_CTR0 Package Uncore C-box 16 perfmon counter 0.

F09H MSR_C16_PMON_CTR1 Package Uncore C-box 16 perfmon counter 1.

F0AH MSR_C16_PMON_CTR2 Package Uncore C-box 16 perfmon counter 2.

E0BH MSR_C16_PMON_CTR3 Package Uncore C-box 16 perfmon counter 3.

F10H MSR_C17_PMON_BOX_CTL Package Uncore C-box 17 perfmon for box-wide control

F11H MSR_C17_PMON_EVNTSEL0 Package Uncore C-box 17 perfmon event select for C-box 17 counter 0.

F12H MSR_C17_PMON_EVNTSEL1 Package Uncore C-box 17 perfmon event select for C-box 17 counter 1.

F13H MSR_C17_PMON_EVNTSEL2 Package Uncore C-box 17 perfmon event select for C-box 17 counter 2.

F14H MSR_C17_PMON_EVNTSEL3 Package Uncore C-box 17 perfmon event select for C-box 17 counter 3.

F15H MSR_C17_PMON_BOX_FILTER0 Package Uncore C-box 17 perfmon box wide filter 0.

F16H MSR_C17_PMON_BOX_FILTER1 Package Uncore C-box 17 perfmon box wide filter1.

F17H MSR_C17_PMON_BOX_STATUS Package Uncore C-box 17 perfmon box wide status.

F18H MSR_C17_PMON_CTR0 Package Uncore C-box 17 perfmon counter 0.

F19H MSR_C17_PMON_CTR1 Package Uncore C-box 17 perfmon counter 1.

F1AH MSR_C17_PMON_CTR2 Package Uncore C-box 17 perfmon counter 2.

F1BH MSR_C17_PMON_CTR3 Package Uncore C-box 17 perfmon counter 3.

Table 35-28 Uncore PMU MSRs in Intel® Xeon® Processor E5 v3 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 355

35.12 MSRS IN INTEL® CORE™ M PROCESSORS AND 5TH GENERATION INTEL
CORE PROCESSORS

The Intel® Core™ M-5xxx processors and 5th generation Intel® Core™ Processors are based on the Broadwell
microarchitecture, with CPUID DisplayFamily_DisplayModel signature 06_3DH, supports the MSR interfaces listed
in Table 35-16, Table 35-17, Table 35-20, Table 35-24, Table 35-25, Table 35-29, and Table 35-30. For an MSR
listed in Table 35-30 that also appears in the model-specific tables of prior generations, Table 35-30 supercede
prior generation tables.

Table 35-29 lists MSRs that are common to processors based on the Broadwell microarchitectures (including
CPUID signatures 06_3DH, 06_47H, 06_4FH, and 06_56H).

Table 35-29 Additional MSRs Supported by Processors Based the Broadwell Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

63:29 Reserved

38EH 910 IA32_PERF_GLOBAL_
STAUS

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Ovf_PMC0

http://biosbits.org

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 356

1 Ovf_PMC1

2 Ovf_PMC2

3 Ovf_PMC3

31:4 Reserved.

32 Ovf_FixedCtr0

33 Ovf_FixedCtr1

34 Ovf_FixedCtr2

54:35 Reserved.

55 Trace_ToPA_PMI. See Section 36.2.4.1, “Table of Physical
Addresses (ToPA).”

60:56 Reserved.

61 Ovf_Uncore

62 Ovf_BufDSSAVE

63 CondChgd

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Set 1 to clear Ovf_PMC0

1 Set 1 to clear Ovf_PMC1

2 Set 1 to clear Ovf_PMC2

3 Set 1 to clear Ovf_PMC3

31:4 Reserved.

32 Set 1 to clear Ovf_FixedCtr0

33 Set 1 to clear Ovf_FixedCtr1

34 Set 1 to clear Ovf_FixedCtr2

54:35 Reserved.

55 Set 1 to clear Trace_ToPA_PMI. See Section 36.2.4.1, “Table of
Physical Addresses (ToPA).”

60:56 Reserved.

61 Set 1 to clear Ovf_Uncore

62 Set 1 to clear Ovf_BufDSSAVE

63 Set 1 to clear CondChgd

560H 1376 IA32_RTIT_OUTPUT_BASE THREAD Trace Output Base Register (R/W)

6:0 Reserved.

MAXPHYADDR1-1:7 Base physical address of 1st ToPA table.

63:MAXPHYADDR Reserved.

Table 35-29 Additional MSRs Supported by Processors Based the Broadwell Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 357

...

561H 1377 IA32_RTIT_OUTPUT_MASK
_PTRS

THREAD Trace Output Mask Pointers Register (R/W)

6:0 Reserved.

31:7 MaskOrTableOffset

63:32 Output Offset.

570H 1392 IA32_RTIT_CTL Thread Trace Packet Control Register (R/W)

0 TraceEn

1 Reserved, MBZ.

2 OS

3 User

6:4 Reserved, MBZ

7 CR3 filter

8 ToPA; writing 0 will #GP if also setting TraceEn

9 Reserved, MBZ

10 TSCEn

11 DisRETC

12 Reserved, MBZ

13 Reserved; writing 0 will #GP if also setting TraceEn

63:14 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Thread Tracing Status Register (R/W)

0 Reserved, writes ignored.

1 ContexEn, writes ignored.

2 TriggerEn, writes ignored.

3 Reserved

4 Error (R/W)

5 Stopped

63:6 Reserved, MBZ.

572H 1394 IA32_RTIT_CR3_MATCH THREAD Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match
NOTES:

1. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

Table 35-29 Additional MSRs Supported by Processors Based the Broadwell Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 358

35.14 MSRS IN NEXT GENERATION INTEL® CORE™ PROCESSORS
The next generation Intel® Core™ processor family is based on the Sky Lake microarchitecture. They have CPUID
DisplayFamily_DisplayModel signatures of 06_4EH and 06_5EH, supports the MSR interfaces listed in Table 35-
16, Table 35-17, Table 35-20, Table 35-24, Table 35-30, and Table 35-32. For an MSR listed in Table 35-32 that
also appears in the model-specific tables of prior generations, Table 35-32 supercede prior generation tables.

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Sky Lake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-2.

0 Thermal status (RO)

See Table 35-2.

1 Thermal status log (R/WC0)

See Table 35-2.

2 PROTCHOT # or FORCEPR# status (RO)

See Table 35-2.

3 PROTCHOT # or FORCEPR# log (R/WC0)

See Table 35-2.

4 Critical Temperature status (RO)

See Table 35-2.

5 Critical Temperature status log (R/WC0)

See Table 35-2.

6 Thermal threshold #1 status (RO)

See Table 35-2.

7 Thermal threshold #1 log (R/WC0)

See Table 35-2.

8 Thermal threshold #2 status (RO)

See Table 35-2.

9 Thermal threshold #2 log (R/WC0)

See Table 35-2.

10 Power Limitation status (RO)

See Table 35-2.

11 Power Limitation log (R/WC0)

See Table 35-2.

12 Current Limit status (RO)

See Table 35-2.

13 Current Limit log (R/WC0)

See Table 35-2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 359

14 Cross Domain Limit status (RO)

See Table 35-2.

15 Cross Domain Limit log (R/WC0)

See Table 35-2.

22:16 Digital Readout (RO)

See Table 35-2.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

See Table 35-2.

31 Reading Valid (RO)

See Table 35-2.

63:32 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-4) that points to the MSR containing the
most recent branch record.

38EH 910 IA32_PERF_GLOBAL_
STAUS

See Table 35-2. See Section 18.2.4, “Architectural Performance
Monitoring Version 4.”

0 Thread Ovf_PMC0

1 Thread Ovf_PMC1

2 Thread Ovf_PMC2

3 Thread Ovf_PMC3

4 Thread Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Thread Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Thread Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Thread Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Ovf_FixedCtr0

33 Thread Ovf_FixedCtr1

34 Thread Ovf_FixedCtr2

54:35 Reserved.

55 Thread Trace_ToPA_PMI.

57:56 Reserved.

58 Thread LBR_Frz.

59 Thread CTR_Frz.

60 Thread ASCI.

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Sky Lake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 360

61 Thread Ovf_Uncore

62 Thread Ovf_BufDSSAVE

63 Thread CondChgd

390H 912 IA32_PERF_GLOBAL_STAT
US_RESET

See Table 35-2. See Section 18.2.4, “Architectural Performance
Monitoring Version 4.”

0 Thread Set 1 to clear Ovf_PMC0

1 Thread Set 1 to clear Ovf_PMC1

2 Thread Set 1 to clear Ovf_PMC2

3 Thread Set 1 to clear Ovf_PMC3

4 Thread Set 1 to clear Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Thread Set 1 to clear Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Thread Set 1 to clear Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Thread Set 1 to clear Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to clear Ovf_FixedCtr0

33 Thread Set 1 to clear Ovf_FixedCtr1

34 Thread Set 1 to clear Ovf_FixedCtr2

54:35 Reserved.

55 Thread Set 1 to clear Trace_ToPA_PMI.

57:56 Reserved.

58 Thread Set 1 to clear LBR_Frz.

59 Thread Set 1 to clear CTR_Frz.

60 Thread Set 1 to clear ASCI.

61 Thread Set 1 to clear Ovf_Uncore

62 Thread Set 1 to clear Ovf_BufDSSAVE

63 Thread Set 1 to clear CondChgd

391H 913 IA32_PERF_GLOBAL_STAT
US_SET

See Table 35-2. See Section 18.2.4, “Architectural Performance
Monitoring Version 4.”

0 Thread Set 1 to cause Ovf_PMC0 = 1

1 Thread Set 1 to cause Ovf_PMC1 = 1

2 Thread Set 1 to cause Ovf_PMC2 = 1

3 Thread Set 1 to cause Ovf_PMC3 = 1

4 Thread Set 1 to cause Ovf_PMC4=1 (if CPUID.0AH:EAX[15:8] > 4)

5 Thread Set 1 to cause Ovf_PMC5=1 (if CPUID.0AH:EAX[15:8] > 5)

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Sky Lake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 361

6 Thread Set 1 to cause Ovf_PMC6=1 (if CPUID.0AH:EAX[15:8] > 6)

7 Thread Set 1 to cause Ovf_PMC7=1 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to cause Ovf_FixedCtr0 = 1

33 Thread Set 1 to cause Ovf_FixedCtr1 = 1

34 Thread Set 1 to cause Ovf_FixedCtr2 = 1

54:35 Reserved.

55 Thread Set 1 to cause Trace_ToPA_PMI = 1

57:56 Reserved.

58 Thread Set 1 to cause LBR_Frz = 1

59 Thread Set 1 to cause CTR_Frz = 1

60 Thread Set 1 to cause ASCI = 1

61 Thread Set 1 to cause Ovf_Uncore

62 Thread Set 1 to cause Ovf_BufDSSAVE

63 Reserved

392H 913 IA32_PERF_GLOBAL_INUSE See Table 35-2.

64EH 1615 MSR_PPERF THREAD Productive Performance Count. (R/O).

63:0 Hardware’s view of workload scalability. See Section 14.4.5.1

652H 1614 MSR_PKG_HDC_CONFIG Package HDC Configuration (R/W).

2:0 PKG_Cx_Monitor.

Configures Package Cx state threshold for
MSR_PKG_HDC_DEEP_RESIDENCY

63: 3 Reserved

653H 1615 MSR_CORE_HDC_

RESIDENCY

Core Core HDC Idle Residency. (R/O).

63:0 Core_Cx_Duty_Cycle_Cnt.

655H 1617 MSR_PKG_HDC_SHALLOW_
RESIDENCY

Package Accumulate the cycles the package was in C2 state and at least one
logical processor was in forced idle. (R/O).

63:0 Pkg_C2_Duty_Cycle_Cnt.

656H 1618 MSR_PKG_HDC_DEEP_

RESIDENCY

Package Package Cx HDC Idle Residency. (R/O).

63:0 Pkg_Cx_Duty_Cycle_Cnt.

658H 1620 MSR_WEIGHTED_CORE_C0 Package Core-count Weighted C0 Residency. (R/O).

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Sky Lake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 362

63:0 Increment at the same rate as the TSC. The increment each cycle is
weighted by the number of processor cores in the package that
reside in C0. If N cores are simultaneously in C0, then each cycle the
counter increments by N.

659H 1621 MSR_ANY_CORE_C0 Package Any Core C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is
one if any processor core in the package is in C0.

65AH 1622 MSR_ANY_GFXE_C0 Package Any Graphics Engine C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is
one if any processor graphic device’s compute engines are in C0.

65BH 1623 MSR_CORE_GFXE_OVERLA
P_C0

Package Core and Graphics Engine Overlapped C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is
one if at least one compute engine of the processor graphics is in
C0 and at least one processor core in the package is also in C0.

690H 1680 MSR_
LASTBRANCH_16_FROM_IP

Thread Last Branch Record 16 From IP (R/W)

One of 32 triplets of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the source
instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.9

691H 1681 MSR_
LASTBRANCH_17_FROM_IP

Thread Last Branch Record 17 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

692H 1682 MSR_
LASTBRANCH_18_FROM_IP

Thread Last Branch Record 18 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

693H 1683 MSR_
LASTBRANCH_19_FROM_IP

Thread Last Branch Record 19From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

694H 1684 MSR_
LASTBRANCH_20_FROM_IP

Thread Last Branch Record 20 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

695H 1685 MSR_
LASTBRANCH_21_FROM_IP

Thread Last Branch Record 21 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

696H 1686 MSR_
LASTBRANCH_22_FROM_IP

Thread Last Branch Record 22 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

697H 1687 MSR_
LASTBRANCH_23_FROM_IP

Thread Last Branch Record 23 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

698H 1688 MSR_
LASTBRANCH_24_FROM_IP

Thread Last Branch Record 24 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Sky Lake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 363

699H 1689 MSR_
LASTBRANCH_25_FROM_IP

Thread Last Branch Record 25 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69AH 1690 MSR_
LASTBRANCH_26_FROM_IP

Thread Last Branch Record 26 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69BH 1691 MSR_
LASTBRANCH_27_FROM_IP

Thread Last Branch Record 27 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69CH 1692 MSR_
LASTBRANCH_28_FROM_IP

Thread Last Branch Record 28 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69DH 1693 MSR_
LASTBRANCH_29_FROM_IP

Thread Last Branch Record 29 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69EH 1694 MSR_
LASTBRANCH_30_FROM_IP

Thread Last Branch Record 30 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69FH 1695 MSR_
LASTBRANCH_31_FROM_IP

Thread Last Branch Record 31 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6D0H 1744 MSR_
LASTBRANCH_16_TO_IP

Thread Last Branch Record 16 To IP (R/W)

One of 32 triplets of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the
destination instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.9

6D1H 1745 MSR_
LASTBRANCH_17_TO_IP

Thread Last Branch Record 17 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D2H 1746 MSR_
LASTBRANCH_18_TO_IP

Thread Last Branch Record 18 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D3H 1747 MSR_
LASTBRANCH_19_TO_IP

Thread Last Branch Record 19To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D4H 1748 MSR_
LASTBRANCH_20_TO_IP

Thread Last Branch Record 20 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D5H 1749 MSR_
LASTBRANCH_21_TO_IP

Thread Last Branch Record 21 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D6H 1750 MSR_
LASTBRANCH_22_TO_IP

Thread Last Branch Record 22 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D7H 1751 MSR_
LASTBRANCH_23_TO_IP

Thread Last Branch Record 23 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D8H 1752 MSR_
LASTBRANCH_24_TO_IP

Thread Last Branch Record 24 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Sky Lake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 364

6D9H 1753 MSR_
LASTBRANCH_25_TO_IP

Thread Last Branch Record 25 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DAH 1754 MSR_
LASTBRANCH_26_TO_IP

Thread Last Branch Record 26 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DBH 1755 MSR_
LASTBRANCH_27_TO_IP

Thread Last Branch Record 27 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DCH 1756 MSR_
LASTBRANCH_28_TO_IP

Thread Last Branch Record 28 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DDH 1757 MSR_
LASTBRANCH_29_TO_IP

Thread Last Branch Record 29 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DEH 1758 MSR_
LASTBRANCH_30_TO_IP

Thread Last Branch Record 30 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DFH 1759 MSR_
LASTBRANCH_31_TO_IP

Thread Last Branch Record 31 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

770H 1904 IA32_PM_ENABLE Package See Section 14.4.2, “Enabling HWP”

771H 1905 IA32_HWP_CAPABILITIES Thread See Section 14.4.3, “HWP Performance Range and Dynamic
Capabilities”

772H 1906 IA32_HWP_REQUEST_PKG Package See Section 14.4.4, “Managing HWP”

773H 1907 IA32_HWP_INTERRUPT Thread See Section 14.4.6, “HWP Notifications”

774H 1908 IA32_HWP_REQUEST Thread See Section 14.4.4, “Managing HWP”

7:0 Minimum Performance (R/W).

15:8 Maximum Performance (R/W).

23:16 Desired Performance (R/W).

31:24 Energy/Performance Preference (R/W).

41:32 Activity Window (R/W).

42 Package Control (R/W).

63:43 Reserved.

777H 1911 IA32_HWP_STATUS Thread See Section 14.4.5, “HWP Feedback”

DB0H 3504 IA32_PKG_HDC_CTL Package See Section 14.5.2, “Package level Enabling HDC”

DB1H 3505 IA32_PM_CTL1 Thread See Section 14.5.3, “Logical-Processor Level HDC Control”

DB2H 3506 IA32_THREAD_STALL Thread See Section 14.5.4.1, “IA32_THREAD_STALL”

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Sky Lake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 365

DC0H 3520 MSR_LBR_INFO_0 Thread Last Branch Record 0 Additional Information (R/W)

One of 32 triplet of last branch record registers on the last branch
record stack. This part of the stack contains flag, TSX-related and
elapsed cycle information. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

DC1H 3521 MSR_LBR_INFO_1 Thread Last Branch Record 1 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC2H 3522 MSR_LBR_INFO_2 Thread Last Branch Record 2 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC3H 3523 MSR_LBR_INFO_3 Thread Last Branch Record 3 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC4H 3524 MSR_LBR_INFO_4 Thread Last Branch Record 4 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC5H 3525 MSR_LBR_INFO_5 Thread Last Branch Record 5 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC6H 3526 MSR_LBR_INFO_6 Thread Last Branch Record 6 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC7H 3527 MSR_LBR_INFO_7 Thread Last Branch Record 7 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC8H 3528 MSR_LBR_INFO_8 Thread Last Branch Record 8 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC9H 3529 MSR_LBR_INFO_9 Thread Last Branch Record 9 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCAH 3530 MSR_LBR_INFO_10 Thread Last Branch Record 10 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCBH 3531 MSR_LBR_INFO_11 Thread Last Branch Record 11 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCCH 3532 MSR_LBR_INFO_12 Thread Last Branch Record 12 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCDH 3533 MSR_LBR_INFO_13 Thread Last Branch Record 13 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCEH 3534 MSR_LBR_INFO_14 Thread Last Branch Record 14 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCFH 3535 MSR_LBR_INFO_15 Thread Last Branch Record 15 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Sky Lake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 366

...

DD0H 3536 MSR_LBR_INFO_16 Thread Last Branch Record 16 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD!H 3537 MSR_LBR_INFO_17 Thread Last Branch Record 17 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD2H 3538 MSR_LBR_INFO_18 Thread Last Branch Record 18 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD3H 3539 MSR_LBR_INFO_19 Thread Last Branch Record 19 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD4H 3520 MSR_LBR_INFO_20 Thread Last Branch Record 20 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD5H 3521 MSR_LBR_INFO_21 Thread Last Branch Record 21 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD6H 3522 MSR_LBR_INFO_22 Thread Last Branch Record 22 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD7H 3523 MSR_LBR_INFO_23 Thread Last Branch Record 23 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD8H 3524 MSR_LBR_INFO_24 Thread Last Branch Record 24 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD9H 3525 MSR_LBR_INFO_25 Thread Last Branch Record 25 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDAH 3526 MSR_LBR_INFO_26 Thread Last Branch Record 26 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDBH 3527 MSR_LBR_INFO_27 Thread Last Branch Record 27 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDCH 3528 MSR_LBR_INFO_28 Thread Last Branch Record 28 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDDH 3529 MSR_LBR_INFO_29 Thread Last Branch Record 29 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDEH 3530 MSR_LBR_INFO_30 Thread Last Branch Record 30 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDFH 3531 MSR_LBR_INFO_31 Thread Last Branch Record 31 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Sky Lake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

	Revision History
	Preface
	Summary Tables of Changes
	Documentation Changes
	1. Updates to Chapter 1, Volume 1
	2. Updates to Chapter 4, Volume 1
	3. Updates to Chapter 5, Volume 1
	4. Updates to Chapter 7, Volume 1
	5. Updates to Chapter 13, Volume 1
	6. Updates to Chapter 16, Volume 1
	7. Updates to Chapter 17, Volume 1
	8. Updates to Appendix A, Volume 1
	9. Updates to Chapter 1, Volume 2A
	10. Updates to Chapter 2, Volume 2A
	11. Updates to Chapter 3, Volume 2A
	12. Updates to Chapter 4, Volume 2B
	13. Updates to Chapter 1, Volume 3A
	14. Updates to Chapter 2, Volume 3A
	15. Updates to Chapter 4, Volume 3A
	16. Updates to Chapter 6, Volume 3A
	17. Updates to Chapter 10, Volume 3A
	18. Updates to Chapter 13, Volume 3A
	19. Updates to Chapter 14, Volume 3B
	20. Updates to Chapter 17, Volume 3B
	21. Updates to Chapter 18, Volume 3B
	22. Updates to Chapter 19, Volume 3B
	23. Updates to Chapter 22, Volume 3B
	24. Updates to Chapter 25, Volume 3C
	25. Updates to Chapter 29, Volume 3C
	26. Updates to Chapter 35, Volume 3C

