
Document Number: 252046-047

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Documentation Changes

June 2015

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages
resulting from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from pub-
lished specifications. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is sub-
ject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or by visiting http://www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation
in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 1997-2015, Intel Corporation. All Rights Reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents

Revision History . 4

Preface . 7

Summary Tables of Changes . 8

Documentation Changes. 9

Revision History

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Revision Description Date

-001 • Initial release November 2002

-002
• Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual
December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion

February 2003

-004 • Removed Documentation changes 1-17.
• Added Documentation changes 1-24. June 2003

-005 • Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007 • Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008 • Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012 • Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the

document.
July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015 • Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017 • Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019 • Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Added Documentation Changes 20-27. May 2007

-021 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1-6

November 2007

-022 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-6

August 2008

-023 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-21

March 2009

Revision History

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

-024 • Removed Documentation Changes 1-21
• Added Documentation Changes 1-16

June 2009

-025 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

September 2009

-026 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-15

December 2009

-027 • Removed Documentation Changes 1-15
• Added Documentation Changes 1-24

March 2010

-028 • Removed Documentation Changes 1-24
• Added Documentation Changes 1-29

June 2010

-029 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

September 2010

-030 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

January 2011

-031 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

April 2011

-032 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-14

May 2011

-033 • Removed Documentation Changes 1-14
• Added Documentation Changes 1-38

October 2011

-034 • Removed Documentation Changes 1-38
• Added Documentation Changes 1-16

December 2011

-035 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

March 2012

-036 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-17

May 2012

-037 • Removed Documentation Changes 1-17
• Added Documentation Changes 1-28

August 2012

-038 • Removed Documentation Changes 1-28
• Add Documentation Changes 1-22

January 2013

-039 • Removed Documentation Changes 1-22
• Add Documentation Changes 1-17

June 2013

-040 • Removed Documentation Changes 1-17
• Add Documentation Changes 1-24

September 2013

-041 • Removed Documentation Changes 1-24
• Add Documentation Changes 1-20

February 2014

-042 • Removed Documentation Changes 1-20
• Add Documentation Changes 1-8

February 2014

-043 • Removed Documentation Changes 1-8
• Add Documentation Changes 1-43

June 2014

-044 • Removed Documentation Changes 1-43
• Add Documentation Changes 1-12

September 2014

-045 • Removed Documentation Changes 1-12
• Add Documentation Changes 1-22

January 2015

-046 • Removed Documentation Changes 1-22
• Add Documentation Changes 1-25

April 2015

-047 • Removed Documentation Changes 1-25
• Add Documentation Changes 1-19

June 2015

Revision Description Date

Revision History

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

§

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Preface

This document is an update to the specifications contained in the Affected Documents table below. This
document is a compilation of device and documentation errata, specification clarifications and changes. It is
intended for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents

Nomenclature
Documentation Changes include typos, errors, or omissions from the current published specifications. These
will be incorporated in any new release of the specification.

Document Title Document Number/
Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture 253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A: Instruction Set
Reference, A-M 253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B: Instruction Set
Reference, N-Z 253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C: Instruction Set
Reference 326018

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System
Programming Guide, Part 1 253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System
Programming Guide, Part 2 253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C: System
Programming Guide, Part 3 326019

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 8

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and IA-32 architectures. This
table uses the following notations:

Codes Used in Summary Tables
Change bar to left of table row indicates this erratum is either new or modified from the previous version of the
document.

Documentation Changes
No. DOCUMENTATION CHANGES

1 Updates to Chapter 3, Volume 1

2 Updates to Chapter 5, Volume 1

3 Updates to Chapter 13, Volume 1

4 Updates to Chapter 14, Volume 1

5 New Chapter 16, Volume 1

6 Updates to Chapter 2, Volume 2A

7 Updates to Chapter 3, Volume 2A

8 Updates to Chapter 4, Volume 2B

9 Updates to Chapter 2, Volume 3A

10 Updates to Chapter 9, Volume 3A

11 Updates to Chapter 16, Volume 3B

12 Updates to Chapter 17, Volume 3B

13 Updates to Chapter 18, Volume 3B

14 Updates to Chapter 19, Volume 3B

15 Updates to Chapter 20, Volume 3B

16 Updates to Chapter 24, Volume 3B

17 Updates to Chapter 26, Volume 3C

18 Updates to Chapter 35, Volume 3C

19 Updates to Chapter 36, Volume 3C

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

Documentation Changes

1. Updates to Chapter 3, Volume 1
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

3.2 OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT
Any program or task running on an IA-32 processor is given a set of resources for executing instructions and for
storing code, data, and state information. These resources (described briefly in the following paragraphs and
shown in Figure 3-1) make up the basic execution environment for an IA-32 processor.

An Intel 64 processor supports the basic execution environment of an IA-32 processor, and a similar environment
under IA-32e mode that can execute 64-bit programs (64-bit sub-mode) and 32-bit programs (compatibility sub-
mode).

The basic execution environment is used jointly by the application programs and the operating system or execu-
tive running on the processor.
• Address space — Any task or program running on an IA-32 processor can address a linear address space of

up to 4 GBytes (232 bytes) and a physical address space of up to 64 GBytes (236 bytes). See Section 3.3.6,
“Extended Physical Addressing in Protected Mode,” for more information about addressing an address space
greater than 4 GBytes.

• Basic program execution registers — The eight general-purpose registers, the six segment registers, the
EFLAGS register, and the EIP (instruction pointer) register comprise a basic execution environment in which
to execute a set of general-purpose instructions. These instructions perform basic integer arithmetic on byte,
word, and doubleword integers, handle program flow control, operate on bit and byte strings, and address
memory. See Section 3.4, “Basic Program Execution Registers,” for more information about these registers.

• x87 FPU registers — The eight x87 FPU data registers, the x87 FPU control register, the status register, the
x87 FPU instruction pointer register, the x87 FPU operand (data) pointer register, the x87 FPU tag register, and
the x87 FPU opcode register provide an execution environment for operating on single-precision, double-
precision, and double extended-precision floating-point values, word integers, doubleword integers,
quadword integers, and binary coded decimal (BCD) values. See Section 8.1, “x87 FPU Execution
Environment,” for more information about these registers.

• MMX registers — The eight MMX registers support execution of single-instruction, multiple-data (SIMD)
operations on 64-bit packed byte, word, and doubleword integers. See Section 9.2, “The MMX Technology
Programming Environment,” for more information about these registers.

• XMM registers — The eight XMM data registers and the MXCSR register support execution of SIMD
operations on 128-bit packed single-precision and double-precision floating-point values and on 128-bit
packed byte, word, doubleword, and quadword integers. See Section 10.2, “SSE Programming Environment,”
for more information about these registers.

• YMM registers — The YMM data registers support execution of 256-bit SIMD operations on 256-bit packed
single-precision and double-precision floating-point values and on 256-bit packed byte, word, doubleword,
and quadword integers.

• Bounds registers — Each of the BND0-BND3 register stores the lower and upper bounds (64 bits each)
associated with the pointer to a memory buffer. They support execution of the Intel MPX instructions.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 10

• BNDCFGU and BNDSTATUS— BNDCFGU configures user mode MPX operations on bounds checking.
BNDSTATUS provides additional information on the #BR caused by an MPX operation.

Figure 3-1 IA-32 Basic Execution Environment for Non-64-bit Modes

0

2^32 -1
Eight 32-bit

32-bits

32-bits

General-Purpose Registers

Segment Registers

EFLAGS Register

EIP (Instruction Pointer Register)

Address Space*

*The address space can be

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

flat or segmented. Using

XMM Registers
Eight 128-bit

Registers

16 bits Control Register

16 bits Status Register

48 bits FPU Instruction Pointer Register

48 bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

XMM Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16 bits Tag Register

the physical address
extension mechanism, a
physical address space of
2^36 - 1 can be addressed.

YMM Registers
Eight 256-bit

Registers

YMM Registers

Four 128-bit Registers

Bounds Registers

BNDCFGU BNDSTATUS

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

• Stack — To support procedure or subroutine calls and the passing of parameters between procedures or
subroutines, a stack and stack management resources are included in the execution environment. The stack
(not shown in Figure 3-1) is located in memory. See Section 6.2, “Stacks,” for more information about stack
structure.

In addition to the resources provided in the basic execution environment, the IA-32 architecture provides the
following resources as part of its system-level architecture. They provide extensive support for operating-system
and system-development software. Except for the I/O ports, the system resources are described in detail in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A & 3B.
• I/O ports — The IA-32 architecture supports a transfers of data to and from input/output (I/O) ports. See

Chapter 17, “Input/Output,” in this volume.
• Control registers — The five control registers (CR0 through CR4) determine the operating mode of the

processor and the characteristics of the currently executing task. See Chapter 2, “System Architecture
Overview,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Memory management registers — The GDTR, IDTR, task register, and LDTR specify the locations of data
structures used in protected mode memory management. See Chapter 2, “System Architecture Overview,” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Debug registers — The debug registers (DR0 through DR7) control and allow monitoring of the processor’s
debugging operations. See in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B.

• Memory type range registers (MTRRs) — The MTRRs are used to assign memory types to regions of
memory. See the sections on MTRRs in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 3A & 3B.

• Machine specific registers (MSRs) — The processor provides a variety of machine specific registers that
are used to control and report on processor performance. Virtually all MSRs handle system related functions
and are not accessible to an application program. One exception to this rule is the time-stamp counter. The
MSRs are described in Chapter 35, “Model-Specific Registers (MSRs),” of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3C.

• Machine check registers — The machine check registers consist of a set of control, status, and error-
reporting MSRs that are used to detect and report on hardware (machine) errors. See Chapter 15, “Machine-
Check Architecture,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Performance monitoring counters — The performance monitoring counters allow processor performance
events to be monitored. See Chapter 18, “Performance Monitoring,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B.

The remainder of this chapter describes the organization of memory and the address space, the basic program
execution registers, and addressing modes. Refer to the following chapters in this volume for descriptions of the
other program execution resources shown in Figure 3-1:
• x87 FPU registers — See Chapter 8, “Programming with the x87 FPU.”
• MMX Registers — See Chapter 9, “Programming with Intel® MMX™ Technology.”
• XMM registers — See Chapter 10, “Programming with Intel® Streaming SIMD Extensions (Intel® SSE),”

Chapter 11, “Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2),” and Chapter 12,
“Programming with Intel® SSE3, SSSE3, Intel® SSE4 and Intel® AESNI.”

• YMM registers — See Chapter 14, “Programming with AVX, FMA and AVX2”.
• BND registers, BNDCFGU, BNDSTATUS — See Chapter 13, “Managing State Using the XSAVE Feature Set,”

and Chapter 16, “Intel® MPX”.
• Stack implementation and procedure calls — See Chapter 6, “Procedure Calls, Interrupts, and Excep-

tions.”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 12

3.2.1 64-Bit Mode Execution Environment
The execution environment for 64-bit mode is similar to that described in Section 3.2. The following paragraphs
describe the differences that apply.
• Address space — A task or program running in 64-bit mode on an IA-32 processor can address linear

address space of up to 264 bytes (subject to the canonical addressing requirement described in Section
3.3.7.1) and physical address space of up to 246 bytes. Software can query CPUID for the physical address
size supported by a processor.

• Basic program execution registers — The number of general-purpose registers (GPRs) available is 16.
GPRs are 64-bits wide and they support operations on byte, word, doubleword and quadword integers.
Accessing byte registers is done uniformly to the lowest 8 bits. The instruction pointer register becomes 64
bits. The EFLAGS register is extended to 64 bits wide, and is referred to as the RFLAGS register. The upper 32
bits of RFLAGS is reserved. The lower 32 bits of RFLAGS is the same as EFLAGS. See Figure 3-2.

• XMM registers — There are 16 XMM data registers for SIMD operations. See Section 10.2, “SSE
Programming Environment,” for more information about these registers.

• YMM registers — There are 16 YMM data registers for SIMD operations. See Chapter 14, “Programming with
AVX, FMA and AVX2” for more information about these registers.

• BND registers, BNDCFGU, BNDSTATUS — See Chapter 13, “Managing State Using the XSAVE Feature Set,”
and Chapter 16, “Intel® MPX”.

• Stack — The stack pointer size is 64 bits. Stack size is not controlled by a bit in the SS descriptor (as it is in
non-64-bit modes) nor can the pointer size be overridden by an instruction prefix.

• Control registers — Control registers expand to 64 bits. A new control register (the task priority register:
CR8 or TPR) has been added. See Chapter 2, “Intel® 64 and IA-32 Architectures,” in this volume.

• Debug registers — Debug registers expand to 64 bits. See Chapter 17, “Debug, Branch Profile, TSC, and
Quality of Service,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

...

Figure 3-2 64-Bit Mode Execution Environment

0

2^64 -1Sixteen 64-bit

64-bits

64-bits

General-Purpose Registers

Segment Registers

RFLAGS Register

RIP (Instruction Pointer Register)

Address Space

Six 16-bit
Registers

Registers

Eight 80-bit
Registers Floating-Point

Data Registers

Eight 64-bit
Registers MMX Registers

XMM Registers
Sixteen 128-bit

Registers

16 bits Control Register

16 bits Status Register

64 bits FPU Instruction Pointer Register

64 bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

XMM Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16 bits Tag Register

Four 128-bit Registers

Bounds Registers

BNDCFGU BNDSTATUS

YMM Registers
Sixteen 256-bit

Registers

YMM Registers

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 14

3.3.7.1 Canonical Addressing
In 64-bit mode, an address is considered to be in canonical form if address bits 63 through to the most-significant
implemented bit by the microarchitecture are set to either all ones or all zeros.

Intel 64 architecture defines a 64-bit linear address. Implementations can support less. The first implementation
of IA-32 processors with Intel 64 architecture supports a 48-bit linear address. This means a canonical address
must have bits 63 through 48 set to zeros or ones (depending on whether bit 47 is a zero or one).

Although implementations may not use all 64 bits of the linear address, they should check bits 63 through the
most-significant implemented bit to see if the address is in canonical form. If a linear-memory reference is not in
canonical form, the implementation should generate an exception. In most cases, a general-protection exception
(#GP) is generated. However, in the case of explicit or implied stack references, a stack fault (#SS) is generated.

Instructions that have implied stack references, by default, use the SS segment register. These include PUSH/
POP-related instructions and instructions using RSP/RBP as base registers. In these cases, the canonical fault is
#SS.

If an instruction uses base registers RSP/RBP and uses a segment override prefix to specify a non-SS segment, a
canonical fault generates a #GP (instead of an #SS). In 64-bit mode, only FS and GS segment-overrides are
applicable in this situation. Other segment override prefixes (CS, DS, ES and SS) are ignored. Note that this also
means that an SS segment-override applied to a “non-stack” register reference is ignored. Such a sequence still
produces a #GP for a canonical fault (and not an #SS).

...

2. Updates to Chapter 5, Volume 1
Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

Table 5-2 Recent Instruction Set Extensions Introduction in Intel 64 and IA-32 Processors

Instruction Set
Architecture Processor Generation Introduction

SSE4.1 Extensions Intel Xeon processor 3100, 3300, 5200, 5400, 7400, 7500 series, Intel Core 2 Extreme processors
QX9000 series, Intel Core 2 Quad processor Q9000 series, Intel Core 2 Duo processors 8000 series, T9000
series.

SSE4.2 Extensions,
CRC32, POPCNT

Intel Core i7 965 processor, Intel Xeon processors X3400, X3500, X5500, X6500, X7500 series.

AESNI, PCLMULQDQ InteL Xeon processor E7 series, Intel Xeon processors X3600, X5600, Intel Core i7 980X processor; Use
CPUID to verify presence of AESNI and PCLMULQDQ across Intel Core processor families.

Intel AVX Intel Xeon processor E3 and E5 families; 2nd Generation Intel Core i7, i5, i3 processor 2xxx families.

F16C, RDRAND, FS/GS
base access

3rd Generation Intel Core processors, Intel Xeon processor E3-1200 v2 product family, Next Generation
Intel Xeon processors, Intel Xeon processor E5 v2 and E7 v2 families.

FMA, AVX2, BMI1, BMI2,
INVPCID

Intel Xeon processor E3-1200 v3 product family; 4th Generation Intel Core processor family.

TSX Intel Xeon processor E7 v3 product family

ADX, RDSEED, CLAC,
STAC

Intel Core M processor family; 5th Generation Intel Core processor family.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 15

...

3. Updates to Chapter 13, Volume 1
Change bars show changes to Chapter 13 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...
The XSAVE feature set extends the functionality of the FXSAVE and FXRSTOR instructions (see Section 10.5,
“FXSAVE and FXRSTOR Instructions”) by supporting the saving and restoring of processor state in addition to the
x87 execution environment (x87 state) and the registers used by the streaming SIMD extensions (SSE state).

The XSAVE feature set comprises eight instructions. XGETBV and XSETBV allow software to read and write the
extended control register XCR0, which controls the operation of the XSAVE feature set. XSAVE, XSAVEOPT,
XSAVEC, and XSAVES are four instructions that save processor state to memory; XRSTOR and XRSTORS are
corresponding instructions that load processor state from memory. XGETBV, XSAVE, XSAVEOPT, XSAVEC, and
XRSTOR can be executed at any privilege level; XSETBV, XSAVES, and XRSTORS can be executed only if CPL = 0.
In addition to XCR0, the XSAVES and XRSTORS instructions are controlled also by the IA32_XSS MSR (index
DA0H).

The XSAVE feature set organizes the state that manages into state components. Operation of the instructions
is based on state-component bitmaps that have the same format as XCR0 and as the IA32_XSS MSR: each bit
corresponds to a state component. Section 13.1 discusses these state components and bitmaps in more detail.

Section 13.2 describes how the processor enumerates support for the XSAVE feature set and for XSAVE-enabled
features (those features that require use of the XSAVE feature set for their enabling). Section 13.3 explains how
software can enable the XSAVE feature set and XSAVE-enabled features.

The XSAVE feature set allows saving and loading processor state from a region of memory called an XSAVE area.
Section 13.4 presents details of the XSAVE area and its organization. Each XSAVE-managed state component is
associated with a section of the XSAVE area. Section 13.5 describes in detail each of the XSAVE-managed state
components.

Section 13.7 through Section 13.12 describe the operation of XSAVE, XRSTOR, XSAVEOPT, XSAVEC, XSAVES, and
XRSTORS, respectively.

13.1 XSAVE-SUPPORTED FEATURES AND STATE-COMPONENT BITMAPS
The XSAVE feature set supports the saving and restoring of state components, each of which is a discrete set of
processor registers (or parts of registers). In general, each such state component corresponds to a particular CPU
feature. Such a feature is XSAVE-supported. Some XSAVE-supported features use registers in multiple XSAVE-
managed state components.

The XSAVE feature set organizes the state components of the XSAVE-supported features using state-compo-
nent bitmaps. A state-component bitmap comprises 64 bits; each bit in such a bitmap corresponds to a single
state component. The following bits are defined in state-component bitmaps:
• Bit 0 corresponds to the state component used for the x87 FPU execution environment (x87 state). See

Section 13.5.1.
• Bit 1 corresponds to the state component used for registers used by the streaming SIMD extensions (SSE

state). See Section 13.5.2.
• Bit 2 corresponds to the state component used for the additional register state used by the Intel® Advanced

Vector Extensions (AVX state). See Section 13.5.3.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 16

• Bits 4:3 correspond to the two state components used for the additional register state used by Intel® Memory
Protection Extensions (MPX state):

— State component 3 is used for the 4 128-bit bounds registers BND0–BND3 (BNDREGS state).

— State component 4 is used for the 64-bit user-mode MPX configuration register BNDCFGU and the 64-bit
MPX status register BNDSTATUS (BNDCSR state).

• Bits 7:5 correspond to the three state components used for the additional register state used by Intel®
Advanced Vector Extensions 512 (AVX-512 state):

— State component 5 is used for the 8 64-bit opmask registers k0–k7 (opmask state).

— State component 6 is used for the upper 256 bits of the registers ZMM0–ZMM15. These 16 256-bit values
are denoted ZMM0_H–ZMM15_H (ZMM_Hi256 state).

— State component 7 is used for the 16 512-bit registers ZMM16–ZMM31 (Hi16_ZMM state).
• Bit 8 corresponds to the state component used for the Intel Processor Trace MSRs (PT state).
• Bit 9 corresponds to the state component used for the protection-key feature’s register PKRU (PKRU state).

See Section 13.5.7.

Bits in the range 62:10 are not currently defined in state-component bitmaps and are reserved for future expan-
sion. As individual state component is defined within bits 62:10, additional sub-sections are updated within
Section 13.5 over time. Bit 63 is used for special functionality in some bitmaps and does not correspond to any
state component.

The state component corresponding to bit i of state-component bitmaps is called state component i. Thus, x87
state is state component 0; SSE state is state component 1; AVX state is state component 2; MPX state comprises
state components 3–4; AVX-512 state comprises state components 5–7; PT state is state component 8; and
PKRU state is state component 9.

The XSAVE feature set uses state-component bitmaps in multiple ways. Most of the instructions use an implicit
operand (in EDX:EAX), called the instruction mask, which is the state-component bitmap that specifies the
state components on which the instruction operates.

Some state components are user state components, and they can be managed by the entire XSAVE feature set.
Other state components are supervisor state components, and they can be managed only by XSAVES and
XRSTORS. All the state components corresponding to bits in the range 9:0 are user state components, except PT
state (corresponding to bit 8), which is a supervisor state component.

Extended control register XCR0 contains a state-component bitmap that specifies the user state components that
software has enabled the XSAVE feature set to manage. If the bit corresponding to a state component is clear in
XCR0, instructions in the XSAVE feature set will not operate on that state component, regardless of the value of
the instruction mask.

The IA32_XSS MSR (index DA0H) contains a state-component bitmap that specifies the supervisor state compo-
nents that software has enabled XSAVES and XRSTORS to manage (XSAVE, XSAVEC, XSAVEOPT, and XRSTOR
cannot manage supervisor state components). If the bit corresponding to a state component is clear in the
IA32_XSS MSR, XSAVES and XRSTORS will not operate on that state component, regardless of the value of the
instruction mask.

Some XSAVE-supported features can be used only if XCR0 has been configured so that the features’ state compo-
nents can be managed by the XSAVE feature set. (This applies only to features with user state components.) Such
state components and features are XSAVE-enabled. In general, the processor will not modify (or allow modifi-
cation of) the registers of a state component of an XSAVE-enabled feature if the bit corresponding to that state
component is clear in XCR0. (If software clears such a bit in XCR0, the processor preserves the corresponding
state component.) If an XSAVE-enabled feature has not been fully enabled in XCR0, execution of any instruction
defined for that feature causes an invalid-opcode exception (#UD).

As will be explained in Section 13.3, the XSAVE feature set is enabled only if CR4.OSXSAVE[bit 18] = 1. If
CR4.OSXSAVE = 0, the processor treats XSAVE-enabled state features and their state components as if all bits in
XCR0 were clear; the state components cannot be modified and the features’ instructions cannot be executed.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

The state components for x87 state, for SSE state, for PT state, and for PKRU state are XSAVE-managed but the
corresponding features are not XSAVE-enabled. Processors allow modification of this state, as well as execution
of x87 FPU instructions and SSE instructions and use of Intel Processor Trace and protection keys, regardless of
the value of CR4.OSXSAVE and XCR0.

13.2 ENUMERATION OF CPU SUPPORT FOR XSAVE INSTRUCTIONS AND
XSAVE-SUPPORTED FEATURES

A processor enumerates support for the XSAVE feature set and for features supported by that feature set using
the CPUID instruction. The following items provide specific details:
• CPUID.1:ECX.XSAVE[bit 26] enumerates general support for the XSAVE feature set:

— If this bit is 0, the processor does not support any of the following instructions: XGETBV, XRSTOR,
XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and XSETBV; the processor provides no further
enumeration through CPUID function 0DH (see below).

— If this bit is 1, the processor supports the following instructions: XGETBV, XRSTOR, XSAVE, and XSETBV.1
Further enumeration is provided through CPUID function 0DH.

CR4.OSXSAVE can be set to 1 if and only if CPUID.1:ECX.XSAVE[bit 26] is enumerated as 1.
• CPUID function 0DH enumerates details of CPU support through a set of sub-functions. Software selects a

specific sub-function by the value placed in the ECX register. The following items provide specific details:

— CPUID function 0DH, sub-function 0.

• EDX:EAX is a bitmap of all the user state components that can be managed using the XSAVE feature
set. A bit can be set in XCR0 if and only if the corresponding bit is set in this bitmap. Every processor
that supports the XSAVE feature set will set EAX[0] (x87 state) and EAX[1] (SSE state).

If EAX[i] = 1 (for 1 < i < 32) or EDX[i–32] = 1 (for 32 ≤ i < 63), sub-function i enumerates details for
state component i (see below).

• ECX enumerates the size (in bytes) required by the XSAVE instruction for an XSAVE area containing all
the user state components supported by this processor.

• EBX enumerates the size (in bytes) required by the XSAVE instruction for an XSAVE area containing all
the user state components corresponding to bits currently set in XCR0.

— CPUID function 0DH, sub-function 1.

• EAX[0] enumerates support for the XSAVEOPT instruction. The instruction is supported if and only if
this bit is 1. If EAX[0] = 0, execution of XSAVEOPT causes an invalid-opcode exception (#UD).

• EAX[1] enumerates support for compaction extensions to the XSAVE feature set. The following are
supported if this bit is 1:

— The compacted format of the extended region of XSAVE areas (see Section 13.4.3).

— The XSAVEC instruction. If EAX[1] = 0, execution of XSAVEC causes a #UD.

— Execution of the compacted form of XRSTOR (see Section 13.8).

• EAX[2] enumerates support for execution of XGETBV with ECX = 1. This allows software to determine
the state of the init optimization. See Section 13.6.

• EAX[3] enumerates support for XSAVES, XRSTORS, and the IA32_XSS MSR. If EAX[3] = 0, execution
of XSAVES or XRSTORS causes a #UD; an attempt to access the IA32_XSS MSR using RDMSR or

1. If CPUID.1:ECX.XSAVE[bit 26] = 1, XGETBV and XSETBV may be executed with ECX = 0 (to read and write XCR0). Any support for
execution of these instructions with other values of ECX is enumerated separately.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 18

WRMSR causes a general-protection exception (#GP). Every processor that supports a supervisor
state component sets EAX[3]. Every processor that sets EAX[3] (XSAVES, XRSTORS, IA32_XSS) will
also set EAX[1] (the compaction extensions).

• EAX[31:4] are reserved.

• EBX enumerates the size (in bytes) required by the XSAVES instruction for an XSAVE area containing
all the state components corresponding to bits currently set in XCR0 | IA32_XSS.

• EDX:ECX is a bitmap of all the supervisor state components that can be managed by XSAVES and
XRSTORS. A bit can be set in the IA32_XSS MSR if and only if the corresponding bit is set in this
bitmap.

NOTE
In summary, the XSAVE feature set supports state component i (0 ≤ i < 63) if one of the following
is true: (1) i < 32 and CPUID.(EAX=0DH,ECX=0):EAX[i] = 1; (2) i ≥ 32 and
CPUID.(EAX=0DH,ECX=0):EAX[i–32] = 1; (3) i < 32 and CPUID.(EAX=0DH,ECX=1):ECX[i] = 1;
or (4) i ≥ 32 and CPUID.(EAX=0DH,ECX=1):EDX[i–32] = 1. The XSAVE feature set supports user
state component i if (1) or (2) holds; if (3) or (4) holds, state component i is a supervisor state
component and support is limited to XSAVES and XRSTORS.

— CPUID function 0DH, sub-function i (i > 1). This sub-function enumerates details for state component i. If
the XSAVE feature set supports state component i (see note above), the following items provide specific
details:

• EAX enumerates the size (in bytes) required for state component i.

• If state component i is a user state component, EBX enumerates the offset (in bytes, from the base of
the XSAVE area) of the section used for state component i. (This offset applies only when the standard
format for the extended region of the XSAVE area is being used; see Section 13.4.3.)

• If state component i is a supervisor state component, EBX returns 0.

• If state component i is a user state component, ECX[0] return 0; if state component i is a supervisor
state component, ECX[0] returns 1.

• The value returned by ECX[1] indicates the alignment of state component i when the compacted
format of the extended region of an XSAVE area is used (see Section 13.4.3). If ECX[1] returns 0,
state component i is located immediately following the preceding state component; if ECX[1] returns
1, state component i is located on the next 64-byte boundary following the preceding state
component.

• ECX[31:2] and EDX return 0.

If the XSAVE feature set does not support state component i, sub-function i returns 0 in EAX, EBX, ECX,
and EDX.

13.3 ENABLING THE XSAVE FEATURE SET AND XSAVE-ENABLED FEATURES
Software enables the XSAVE feature set by setting CR4.OSXSAVE[bit 18] to 1 (e.g., with the MOV to CR4 instruc-
tion). If this bit is 0, execution of any of XGETBV, XRSTOR, XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and
XSETBV causes an invalid-opcode exception (#UD).

When CR4.OSXSAVE = 1 and CPL = 0, executing the XSETBV instruction with ECX = 0 writes the 64-bit value in
EDX:EAX to XCR0 (EAX is written to XCR0[31:0] and EDX to XCR0[63:32]). (Execution of the XSETBV instruction
causes a general-protection fault — #GP — if CPL > 0.) The following items provide details regarding individual
bits in XCR0:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

• XCR0[0] is associated with x87 state (see Section 13.5.1). XCR0[0] is always 1. It has that value coming out
of RESET. Executing the XSETBV instruction causes a general-protection fault (#GP) if ECX = 0 and EAX[0] is
0.

• XCR0[1] is associated with SSE state (see Section 13.5.2). Software can use the XSAVE feature set to manage
SSE state only if XCR0[1] = 1. The value of XCR0[1] in no way determines whether software can execute SSE
instructions (these instructions can be executed even if XCR0[1] = 0).
XCR0[1] is 0 coming out of RESET. As noted in Section 13.2, every processor that supports the XSAVE feature
set allows software to set XCR0[1].

• XCR0[2] is associated with AVX state (see Section 13.5.3). Software can use the XSAVE feature set to
manage AVX state only if XCR0[2] = 1. In addition, software can execute AVX instructions only if
CR4.OSXSAVE = XCR0[2] = 1. Otherwise, any execution of an AVX instruction causes an invalid-opcode
exception (#UD).
XCR0[2] is 0 coming out of RESET. As noted in Section 13.2, a processor allows software to set XCR0[2] if and
only if CPUID.(EAX=0DH,ECX=0):EAX[2] = 1. In addition, executing the XSETBV instruction causes a
general-protection fault (#GP) if ECX = 0 and EAX[2:1] has the value 10b; that is, software cannot enable the
XSAVE feature set for AVX state but not for SSE state.
As noted in Section 13.1, the processor will preserve AVX state unmodified if software clears XCR0[2].
However, clearing XCR0[2] while AVX state is not in its initial configuration may cause SSE instructions to
incur a power and performance penalty. See Section 13.5.3, “Enable the Use Of XSAVE Feature Set And
XSAVE State Components” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for
how system software can avoid this penalty.

• XCR0[4:3] are associated with MPX state (see Section 13.5.4). Software can use the XSAVE feature set to
manage MPX state only if XCR0[4:3] = 11b. In addition, software can execute MPX instructions only if
CR4.OSXSAVE = 1 and XCR0[4:3] = 11b. Otherwise, any execution of an MPX instruction causes an invalid-
opcode exception (#UD).1

XCR0[4:3] have value 00b coming out of RESET. As noted in Section 13.2, a processor allows software to set
XCR0[4:3] to 11b if and only if CPUID.(EAX=0DH,ECX=0):EAX[4:3] = 11b. In addition, executing the
XSETBV instruction causes a general-protection fault (#GP) if ECX = 0, EAX[4:3] is neither 00b nor 11b; that
is, software can enable the XSAVE feature set for MPX state only if it does so for both state components.
As noted in Section 13.1, the processor will preserve MPX state unmodified if software clears XCR0[4:3].

• XCR0[7:5] are associated with AVX-512 state (see Section 13.5.5). Software can use the XSAVE feature set
to manage AVX-512 state only if XCR0[7:5] = 111b. In addition, software can execute AVX-512 instructions
only if CR4.OSXSAVE = 1 and XCR0[7:5] = 111b. Otherwise, any execution of an AVX-512 instruction causes
an invalid-opcode exception (#UD).
XCR0[7:5] have value 000b coming out of RESET. As noted in Section 13.2, a processor allows software to set
XCR0[7:5] to 111b if and only if CPUID.(EAX=0DH,ECX=0):EAX[7:5] = 111b. In addition, executing the
XSETBV instruction causes a general-protection fault (#GP) if ECX = 0, EAX[7:5] is not 000b, and any bit is
clear in EAX[2:1] or EAX[7:5]; that is, software can enable the XSAVE feature set for AVX-512 state only if it
does so for all three state components, and only if it also does so for AVX state and SSE state. This implies that
the value of XCR[7:5] is always either 000b or 111b.
As noted in Section 13.1, the processor will preserve AVX-512 state unmodified if software clears XCR0[7:5].
However, clearing XCR0[7:5] while AVX-512 state is not in its initial configuration may cause SSE and AVX
instructions to incur a power and performance penalty. See Section 13.5.3, “Enable the Use Of XSAVE Feature
Set And XSAVE State Components” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A, for how system software can avoid this penalty.

• XCR0[9] is associated with PKRU state (see Section 13.5.7). Software can use the XSAVE feature set to
manage PKRU state only if XCR0[9] = 1. The value of XCR0[9] in no way determines whether software can

1. If XCR0[3] = 0, executions of CALL, RET, JMP, and Jcc do not initialize the bounds registers.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 20

use protection keys or execute other instructions that access PKRU state (these instructions can be executed
even if XCR0[9] = 0).
XCR0[9] is 0 coming out of RESET. As noted in Section 13.2, a processor allows software to set XCR0[9] if and
only if CPUID.(EAX=0DH,ECX=0):EAX[9] = 1.

• XCR0[63:10] and XCR0[8] are reserved.1 Executing the XSETBV instruction causes a general-protection fault
(#GP) if ECX = 0 and any corresponding bit in EDX:EAX is not 0. These bits in XCR0 are all 0 coming out of
RESET.

Software operating with CPL > 0 may need to determine whether the XSAVE feature set and certain XSAVE-
enabled features have been enabled. If CPL > 0, execution of the MOV from CR4 instruction causes a general-
protection fault (#GP). The following alternative mechanisms allow software to discover the enabling of the
XSAVE feature set regardless of CPL:
• The value of CR4.OSXSAVE is returned in CPUID.1:ECX.OSXSAVE[bit 27]. If software determines that

CPUID.1:ECX.OSXSAVE = 1, the processor supports the XSAVE feature set and the feature set has been
enabled in CR4.

• Executing the XGETBV instruction with ECX = 0 returns the value of XCR0 in EDX:EAX. XGETBV can be
executed if CR4.OSXSAVE = 1 (if CPUID.1:ECX.OSXSAVE = 1), regardless of CPL.

Thus, software can use the following algorithm to determine the support and enabling for the XSAVE feature set:

1. Use CPUID to discover the value of CPUID.1:ECX.OSXSAVE.

— If the bit is 0, either the XSAVE feature set is not supported by the processor or has not been enabled by
software. Either way, the XSAVE feature set is not available, nor are XSAVE-enabled features such as AVX.

— If the bit is 1, the processor supports the XSAVE feature set — including the XGETBV instruction — and it
has been enabled by software. The XSAVE feature set can be used to manage x87 state (because XCR0[0]
is always 1). Software requiring more detailed information can go on to the next step.

2. Execute XGETBV with ECX = 0 to discover the value of XCR0. If XCR0[1] = 1, the XSAVE feature set can be
used to manage SSE state. If XCR0[2] = 1, the XSAVE feature set can be used to manage AVX state and
software can execute AVX instructions. If XCR0[4:3] is 11b, the XSAVE feature set can be used to manage
MPX state and software can execute MPX instructions. If XCR0[7:5] is 111b, the XSAVE feature set can be
used to manage AVX-512 state and software can execute AVX-512 instructions. If XCR0[9] = 1, the XSAVE
feature set can be used to manage PKRU state.

The IA32_XSS MSR (with MSR index DA0H) is zero coming out of RESET. If CR4.OSXSAVE = 1,
CPUID.(EAX=0DH,ECX=1):EAX[3] = 1, and CPL = 0, executing the WRMSR instruction with ECX = DA0H writes
the 64-bit value in EDX:EAX to the IA32_XSS MSR (EAX is written to IA32_XSS[31:0] and EDX to
IA32_XSS[63:32]). The following items provide details regarding individual bits in the IA32_XSS MSR:
• IA32_XSS[8] is associated with PT state (see Section 13.5.6). Software can use XSAVES and XRSTORS to

manage PT state only if IA32_XSS[8] = 1. The value of IA32_XSS[8] does not determine whether software
can use Intel Processor Trace (the feature can be used even if IA32_XSS[8] = 0).

• IA32_XSS[63:9] and IA32_XSS[7:0] are reserved.2 Executing the WRMSR instruction causes a general-
protection fault (#GP) if ECX = DA0H and any corresponding bit in EDX:EAX is not 0. These bits in XCR0 are
all 0 coming out of RESET.

The IA32_XSS MSR is 0 coming out of RESET.

There is no mechanism by which software operating with CPL > 0 can discover the value of the IA32_XSS MSR.

...

1. Bit 8 corresponds to a supervisor state component. Since bits can be set in XCR0 only for user state components, that bit of XCR0
must be 0.

2. Bit 9 and bits 7:0 correspond to user state components. Since bits can be set in the IA32_XSS MSR only for supervisor state com-
ponents, those bits of the MSR must be 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 21

13.4.1 Legacy Region of an XSAVE Area
The legacy region of an XSAVE area comprises the 512 bytes starting at the area’s base address. It has the same
format as the FXSAVE area (see Section 10.5.1). The XSAVE feature set uses the legacy area for x87 state (state
component 0) and SSE state (state component 1). Table 13-1 illustrates the format of the first 416 bytes of the
legacy region of an XSAVE area.

The x87 state component comprises bytes 23:0 and bytes 159:32. The SSE state component comprises
bytes 31:24 and bytes 415:160. The XSAVE feature set does not use bytes 511:416; bytes 463:416 are
reserved.

Table 13-1 Format of the Legacy Region of an XSAVE Area
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
 CS or FPU
IP bits 63:32

 FPU IP bits 31:0 FOP Rsvd. FTW FSW FCW 0

MXCSR_MASK MXCSR Reserved
 DS or

 FPU DP
bits 63:32

 FPU DP bits 31:0 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 22

Section 13.7 through Section 13.9 provide details of how instructions in the XSAVE feature set use the legacy
region of an XSAVE area.

...

13.5.1 x87 State
Instructions in the XSAVE feature set can manage the same state of the x87 FPU execution environment (x87
state) that can be managed using the FXSAVE and FXRSTOR instructions. They organize all x87 state as a user
state component in the legacy region of the XSAVE area (see Section 13.4.1). This region is illustrated in Table 13-
1; the x87 state is listed below, along with details of its interactions with the XSAVE feature set:
• Bytes 1:0, 3:2, 7:6. These are used for the x87 FPU Control Word (FCW), the x87 FPU Status Word (FSW),

and the x87 FPU Opcode (FOP), respectively.
• Byte 4 is used for an abridged version of the x87 FPU Tag Word (FTW). The following items describe its usage:

— For each j, 0 ≤ j ≤ 7, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save a 0 into bit j of byte 4 if x87 FPU data
register STj has a empty tag; otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save a 1 into bit j of
byte 4.

— For each j, 0 ≤ j ≤ 7, XRSTOR and XRSTORS establish the tag value for x87 FPU data register STj as
follows. If bit j of byte 4 is 0, the tag for STj in the tag register for that data register is marked empty
(11B); otherwise, the x87 FPU sets the tag for STj based on the value being loaded into that register (see
below).

• Bytes 15:8 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 11:8 are used for bits 31:0 of the x87 FPU Instruction Pointer Offset (FIP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 13:12 are used for x87 FPU Instruction Pointer
Selector (FPU CS). Otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save these bytes as 0000H,
and XRSTOR and XRSTORS ignore them.

• Bytes 15:14 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 15:8 are used for the full 64 bits of FIP.
• Bytes 23:16 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 19:16 are used for bits 31:0 of the x87 FPU Data Pointer Offset (FDP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 21:20 are used for x87 FPU Data Pointer
Selector (FPU DS). Otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save these bytes as 0000H;
and XRSTOR and XRSTORS ignore them.

• Bytes 23:22 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 23:16 are used for the full 64 bits of FDP.
• Bytes 31:24 are used for SSE state (see Section 13.5.2).
• Bytes 159:32 are used for the registers ST0–ST7 (MM0–MM7). Each of the 8 register is allocated a 128-bit

region, with the low 80 bits used for the register and the upper 48 bits unused.

x87 state is XSAVE-managed but the x87 FPU feature is not XSAVE-enabled. The XSAVE feature set can operate
on x87 state only if the feature set is enabled (CR4.OSXSAVE = 1).1 Software can otherwise use x87 state even
if the XSAVE feature set is not enabled.

1. The processor ensures that XCR0[0] is always 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 23

13.5.2 SSE State
Instructions in the XSAVE feature set can manage the registers used by the streaming SIMD extensions (SSE
state) just as the FXSAVE and FXRSTOR instructions do. They organize all SSE state as a user state component
in the legacy region of the XSAVE area (see Section 13.4.1). This region is illustrated in Table 13-1; the SSE state
is listed below, along with details of its interactions with the XSAVE feature set:
• Bytes 23:0 are used for x87 state (see Section 13.5.1).
• Bytes 27:24 are used for the MXCSR register. XRSTOR and XRSTORS generate general-protection faults

(#GP) in response to attempts to set any of the reserved bits of the MXCSR register.1

13.5.3 AVX State
The register state used by the Intel® Advanced Vector Extensions (AVX) comprises the MXCSR register and 16
256-bit vector registers called YMM0–YMM15. The low 128 bits of each register YMMi is identical to the SSE
register XMMi. Thus, the new state register state added by AVX comprises the upper 128 bits of the registers
YMM0–YMM15. These 16 128-bit values are denoted YMM0_H–YMM15_H and are collectively called AVX state.

As noted in Section 13.1, the XSAVE feature set manages AVX state as user state component 2. Thus, AVX state
is located in the extended region of the XSAVE area (see Section 13.4.3).

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=2):EBX enumerates the offset (in bytes, from the base of the
XSAVE area) of the section of the extended region of the XSAVE area used for AVX state (when the standard
format of the extended region is used). CPUID.(EAX=0DH,ECX=2):EAX enumerates the size (in bytes) required
for AVX state.

The XSAVE feature set partitions YMM0_H–YMM15_H in a manner similar to that used for the XMM registers (see
Section 13.5.2). Bytes 127:0 of the AVX-state section are used for YMM0_H–YMM7_H. Bytes 255:128 are used
for YMM8_H–YMM15_H, but they are used only in 64-bit mode. Executions of XSAVE, XSAVEOPT, XSAVEC, and
XSAVES outside 64-bit mode do not modify bytes 255:128; executions of XRSTOR and XRSTORS outside 64-bit
mode do not update YMM8_H–YMM15_H. See Section 13.13.

AVX state is XSAVE-managed and the AVX feature is XSAVE-enabled. The XSAVE feature set can operate on AVX
state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage AVX state
(XCR0[2] = 1). AVX instructions cannot be used unless the XSAVE feature set is enabled and has been configured
to manage AVX state.

13.5.4 MPX State
The register state used by the Intel® Memory Protection Extensions (MPX) comprises the 4 128-bit bounds regis-
ters BND0–BND3 (BNDREG state); and the 64-bit user-mode configuration register BNDCFGU and the 64-bit
MPX status register BNDSTATUS (collectively, BNDCSR state). Together, these two user state components
compose MPX state.

As noted in Section 13.1, the XSAVE feature set manages MPX state as state components 3–4. Thus, MPX state is
located in the extended region of the XSAVE area (see Section 13.4.3). The following items detail how these state
components are organized in this region:
• BNDREG state.

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=3):EBX enumerates the offset (in bytes, from the base of
the XSAVE area) of the section of the extended region of the XSAVE area used for BNDREG state (when the
standard format of the extended region is used). CPUID.(EAX=0DH,ECX=5):EAX enumerates the size (in
bytes) required for BNDREG state.

1. While MXCSR and MXCSR_MASK are part of SSE state, their treatment by the XSAVE feature set is not the same as that of the
XMM registers. See Section 13.7 through Section 13.11 for details.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 24

• BNDCSR state.
As noted in Section 13.2, CPUID.(EAX=0DH,ECX=4):EBX enumerates the offset of the section of the
extended region of the XSAVE area used for BNDCSR state (when the standard format of the extended region
is used). CPUID.(EAX=0DH,ECX=6):EAX enumerates the size (in bytes) required for BNDCSR state.

Both components of MPX state are XSAVE-managed and the MPX feature is XSAVE-enabled. The XSAVE feature
set can operate on MPX state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to
manage MPX state (XCR0[4:3] = 11b). MPX instructions cannot be used unless the XSAVE feature set is enabled
and has been configured to manage MPX state.

13.5.5 AVX-512 State
The register state used by the Intel® Advanced Vector Extensions 512 (AVX-512) comprises the MXCSR register,
the 8 64-bit opmask registers k0–k7, and 32 512-bit vector registers called ZMM0–ZMM31. For each i, 0 <= i <=
15, the low 256 bits of register ZMMi is identical to the AVX register YMMi. Thus, the new state register state
added by AVX comprises the following user state components:
• The opmask registers, collective called opmask state.
• The upper 256 bits of the registers ZMM0–ZMM15. These 16 256-bit values are denoted ZMM0_H–ZMM15_H

and are collectively called ZMM_Hi256 state.
• The 16 512-bit registers ZMM16–ZMM31, collectively called Hi16_ZMM state.

Together, these three state components compose AVX-512 state.

As noted in Section 13.1, the XSAVE feature set manages AVX-512 state as state components 5–7. Thus,
AVX-512 state is located in the extended region of the XSAVE area (see Section 13.4.3). The following items detail
how these state components are organized in this region:
• Opmask state.

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=5):EBX enumerates the offset (in bytes, from the base of
the XSAVE area) of the section of the extended region of the XSAVE area used for opmask state (when the
standard format of the extended region is used). CPUID.(EAX=0DH,ECX=5):EAX enumerates the size (in
bytes) required for opmask state.

• ZMM_Hi256 state.
As noted in Section 13.2, CPUID.(EAX=0DH,ECX=6):EBX enumerates the offset of the section of the
extended region of the XSAVE area used for ZMM_Hi256 state (when the standard format of the extended
region is used). CPUID.(EAX=0DH,ECX=6):EAX enumerates the size (in bytes) required for ZMM_Hi256
state.
The XSAVE feature set partitions ZMM0_H–ZMM15_H in a manner similar to that used for the XMM registers
(see Section 13.5.2). Bytes 255:0 of the ZMM_Hi256-state section are used for ZMM0_H–ZMM7_H.
Bytes 511:256 are used for ZMM8_H–ZMM15_H, but they are used only in 64-bit mode. Executions of XSAVE,
XSAVEOPT, XSAVEC, and XSAVES outside 64-bit mode do not modify bytes 511:256; executions of XRSTOR
and XRSTORS outside 64-bit mode do not update ZMM8_H–ZMM15_H. See Section 13.13.

• Hi16_ZMM state.
As noted in Section 13.2, CPUID.(EAX=0DH,ECX=7):EBX enumerates the offset of the section of the
extended region of the XSAVE area used for Hi16_ZMM state (when the standard format of the extended
region is used). CPUID.(EAX=0DH,ECX=7):EAX enumerates the size (in bytes) required for Hi16_ZMM state.
The XSAVE feature set accesses Hi16_ZMM state only in 64-bit mode. Executions of XSAVE, XSAVEOPT,
XSAVEC, and XSAVES outside 64-bit mode do not modify the Hi16_ZMM section; executions of XRSTOR and
XRSTORS outside 64-bit mode do not update ZMM16–ZMM31. See Section 13.13.

All three components of AVX-512 state are XSAVE-managed and the AVX-512 feature is XSAVE-enabled. The
XSAVE feature set can operate on AVX-512 state only if the feature set is enabled (CR4.OSXSAVE = 1) and has
been configured to manage AVX-512 state (XCR0[7:5] = 111b). AVX-512 instructions cannot be used unless the
XSAVE feature set is enabled and has been configured to manage AVX-512 state.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 25

13.5.6 PT State
The register state used by Intel Processor Trace (PT state) comprises the following 13 MSRs: IA32_RTIT_CTL,
IA32_RTIT_OUTPUT_BASE, IA32_RTIT_OUTPUT_MASK_PTRS, IA32_RTIT_STATUS, IA32_RTIT_CR3_MATCH,
IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B, IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B,
IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B, IA32_RTIT_ADDR3_A, and IA32_RTIT_ADDR3_B.1

As noted in Section 13.1, the XSAVE feature set manages PT state as supervisor state component 8. Thus, PT
state is located in the extended region of the XSAVE area (see Section 13.4.3). As noted in Section 13.2,
CPUID.(EAX=0DH,ECX=8):EAX enumerates the size (in bytes) required for PT state. Each of the MSRs is allo-
cated 8 bytes in the state component, with IA32_RTIT_CTL at byte offset 0, IA32_RTIT_OUTPUT_BASE at byte
offset 8, etc. Any locations in the state component at or beyond byte offset 72 are reserved.

PT state is XSAVE-managed but Intel Processor Trace is not XSAVE-enabled. The XSAVE feature set can operate
on PT state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage PT state
(IA32_XSS[8] = 1). Software can otherwise use Intel Processor Trace and access its MSRs (using RDMSR and
WRMSR) even if the XSAVE feature set is not enabled or has not been configured to manage PT state.

The following items describe special treatment of PT state by the XSAVES and XRSTORS instructions:
• If XSAVES saves PT state, the instruction clears IA32_RTIT_CTL.TraceEn (bit 0) after saving the value of the

IA32_RTIT_CTL MSR and before saving any other PT state. If XSAVES causes a fault or a VM exit, it restores
IA32_RTIT_CTL.TraceEn to its original value.

• If XRSTORS would restore (or initialize) PT state and IA32_RTIT_CTL.TraceEn = 1, the instruction causes a
general-protection exception (#GP) before modifying PT state.

• If XRSTORS causes an exception or a VM exit, it does so before any modification to IA32_RTIT_CTL.TraceEn
(even if it has loaded other PT state).

13.5.7 PKRU State
The register state used by the protection-key feature (PKRU state) is the 32-bit PKRU register. As noted in
Section 13.1, the XSAVE feature set manages PKRU state as user state component 9. Thus, PKRU state is located
in the extended region of the XSAVE area (see Section 13.4.3).

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=9):EBX enumerates the offset (in bytes, from the base of the
XSAVE area) of the section of the extended region of the XSAVE area used for PKRU state (when the standard
format of the extended region is used). CPUID.(EAX=0DH,ECX=9):EAX enumerates the size (in bytes) required
for PKRU state. The XSAVE feature set uses bytes 3:0 of the PK-state section for the PKRU register.

PKRU state is XSAVE-managed but the protection-key feature is not XSAVE-enabled. The XSAVE feature set can
operate on PKRU state only if the feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage
PKRU state (XCR0[9] = 1). Software can otherwise use protection keys and access PKRU state even if the XSAVE
feature set is not enabled or has not been configured to manage PKRU state.

The value of the PKRU register determines the access right for user-mode linear addresses. (See Section 4.6,
“Access Rights,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.) The access
rights that pertain to an execution of the XRSTOR and XRSTORS instructions are determined by the value of the
register before the execution and not by any value that the execution might load into the PKRU register.

1. Some of these MSRs are not supported by every processor that supports Intel Processor Trace. Software can use the CPUID
instruction to discover which are supported; see Section 36.3.1, “Detection of Intel Processor Trace and Capability Enumeration,” of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 26

13.6 PROCESSOR TRACKING OF XSAVE-MANAGED STATE
The XSAVEOPT, XSAVEC, and XSAVES instructions use two optimization to reduce the amount of data that they
write to memory. They avoid writing data for any state component known to be in its initial configuration (the init
optimization). In addition, if either XSAVEOPT or XSAVES is using the same XSAVE area as that used by the
most recent execution of XRSTOR or XRSTORS, it may avoid writing data for any state component whose config-
uration is known not to have been modified since then (the modified optimization). (XSAVE does not use these
optimizations, and XSAVEC does not use the modified optimization.) The operation of XSAVEOPT, XSAVEC, and
XSAVES are described in more detail in Section 13.9 through Section 13.11.

A processor can support the init and modified optimizations with special hardware that tracks the state compo-
nents that might benefit from those optimizations. Other implementations might not include such hardware; such
a processor would always consider each such state component as not in its initial configuration and as modified
since the last execution of XRSTOR or XRSTORS.

The following notation describes the state of the init and modified optimizations:
• XINUSE denotes the state-component bitmap corresponding to the init optimization. If XINUSE[i] = 0, state

component i is known to be in its initial configuration; otherwise XINUSE[i] = 1. It is possible for XINUSE[i] to
be 1 even when state component i is in its initial configuration. On a processor that does not support the init
optimization, XINUSE[i] is always 1 for every value of i.
Executing XGETBV with ECX = 1 returns in EDX:EAX the logical-AND of XCR0 and the current value of the
XINUSE state-component bitmap. Such an execution of XGETBV always sets EAX[1] to 1 if XCR0[1] = 1 and
MXCSR does not have its RESET value of 1F80H. Section 13.2 explains how software can determine whether
a processor supports this use of XGETBV.

• XMODIFIED denotes the state-component bitmap corresponding to the modified optimization. If
XMODIFIED[i] = 0, state component i is known not to have been modified since the most recent execution of
XRSTOR or XRSTORS; otherwise XMODIFIED[i] = 1. It is possible for XMODIFIED[i] to be 1 even when state
component i has not been modified since the most recent execution of XRSTOR or XRSTORS. On a processor
that does not support the modified optimization, XMODIFIED[i] is always 1 for every value of i.

A processor that implements the modified optimization saves information about the most recent execution of
XRSTOR or XRSTORS in a quantity called XRSTOR_INFO, a 4-tuple containing the following: (1) the CPL;
(2) whether the logical processor was in VMX non-root operation; (3) the linear address of the XSAVE area; and
(4) the XCOMP_BV field in the XSAVE area. An execution of XSAVEOPT or XSAVES uses the modified optimization
only if that execution corresponds to XRSTOR_INFO on these four parameters.

This mechanism implies that, depending on details of the operating system, the processor might determine that
an execution of XSAVEOPT by one user application corresponds to an earlier execution of XRSTOR by a different
application. For this reason, Intel recommends the application software not use the XSAVEOPT instruction.

The following items specify the initial configuration each state component (for the purposes of defining the
XINUSE bitmap):
• x87 state. x87 state is in its initial configuration if the following all hold: FCW is 037FH; FSW is 0000H; FTW

is FFFFH; FPU CS and FPU DS are each 0000H; FPU IP and FPU DP are each 00000000_00000000H; each of
ST0–ST7 is 0000_00000000_00000000H.

• SSE state. In 64-bit mode, SSE state is in its initial configuration if each of XMM0–XMM15 is 0. Outside 64-bit
mode, SSE state is in its initial configuration if each of XMM0–XMM7 is 0. XINUSE[1] pertains only to the state
of the XMM registers and not to MXCSR. An execution of XRSTOR or XRSTORS outside 64-bit mode does not
update XMM8–XMM15. (See Section 13.13.)

• AVX state. In 64-bit mode, AVX state is in its initial configuration if each of YMM0_H–YMM15_H is 0. Outside
64-bit mode, AVX state is in its initial configuration if each of YMM0_H–YMM7_H is 0. An execution of XRSTOR
or XRSTORS outside 64-bit mode does not update YMM8_H–YMM15_H. (See Section 13.13.)

• BNDREG state. BNDREG state is in its initial configuration if the value of each of BND0–BND3 is 0.
• BNDCSR state. BNDCSR state is in its initial configuration if BNDCFGU and BNDCSR each has value 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

• Opmask state. Opmask state is in its initial configuration if each of the opmask registers k0–k7 is 0.
• ZMM_Hi256 state. In 64-bit mode, ZMM_Hi256 state is in its initial configuration if each of ZMM0_H–

ZMM15_H is 0. Outside 64-bit mode, ZMM_Hi256 state is in its initial configuration if each of ZMM0_H–
ZMM7_H is 0. An execution of XRSTOR or XRSTORS outside 64-bit mode does not update ZMM8_H–
ZMM15_H. (See Section 13.13.)

• Hi16_ZMM state. In 64-bit mode, Hi16_ZMM state is in its initial configuration if each of ZMM16–ZMM31 is
0. Outside 64-bit mode, Hi16_ZMM state is always in its initial configuration. An execution of XRSTOR or
XRSTORS outside 64-bit mode does not update ZMM31–ZMM31. (See Section 13.13.)

• PT state. PT state is in its initial configuration if each of the 9 MSRs is 0.
• PKRU state. PKRU state is in its initial configuration if the value of the PKRU is 0.

13.7 OPERATION OF XSAVE
The XSAVE instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. The logical-AND of XCR0 and the instruction mask is the requested-feature bitmap (RFBM) of the user
state components to be saved.

The following conditions cause execution of the XSAVE instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.1

If none of these conditions cause a fault, execution of XSAVE reads the XSTATE_BV field of the XSAVE header (see
Section 13.4.2) and writes it back to memory, setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:
• If RFBM[i] = 0, XSTATE_BV[i] is not changed.
• If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i]. Section 13.6 defines XINUSE to describe the

processor init optimization and specifies the initial configuration of each state component. The nature of that
optimization implies the following:

— If state component i is in its initial configuration, XINUSE[i] may be either 0 or 1, and XSTATE_BV[i] may
be written with either 0 or 1.

XINUSE[1] pertains only to the state of the XMM registers and not to MXCSR. Thus, XSTATE_BV[1] may
be written with 0 even if MXCSR does not have its RESET value of 1F80H.

— If state component i is not in its initial configuration, XINUSE[i] = 1 and XSTATE_BV[i] is written with 1.
(As explained in Section 13.6, the initial configurations of some state components may depend on whether the
processor is in 64-bit mode.)

The XSAVE instruction does not write any part of the XSAVE header other than the XSTATE_BV field; in particular,
it does not write to the XCOMP_BV field.

Execution of XSAVE saves into the XSAVE area those state components corresponding to bits that are set in RFBM.
State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state
component i, 2 ≤ i ≤ 62, is located in the extended region; the XSAVE instruction always uses the standard format
for the extended region (see Section 13.4.3).

The MXCSR register and MXCSR_MASK are part of SSE state (see Section 13.5.2) and are thus associated with
RFBM[1]. However, the XSAVE instruction also saves these values when RFBM[2] = 1 (even if RFBM[1] = 0).

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 28

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and
operation determined by instruction prefixes. See Section 13.13 for details regarding faults caused by memory
accesses.

13.8 OPERATION OF XRSTOR
The XRSTOR instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. The logical-AND of XCR0 and the instruction mask is the requested-feature bitmap (RFBM) of the user
state components to be restored.

The following conditions cause execution of the XRSTOR instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.1

After checking for these faults, the XRSTOR instruction reads the XCOMP_BV field in the XSAVE area’s XSAVE
header (see Section 13.4.2). If XCOMP_BV[63] = 0, the standard form of XRSTOR is executed (see Section
13.8.1); otherwise, the compacted form of XRSTOR is executed (see Section 13.8.2).2

See Section 13.2 for details of how to determine whether the compacted form of XRSTOR is supported.

...

13.9 OPERATION OF XSAVEOPT
The operation of XSAVEOPT is similar to that of XSAVE. Unlike XSAVE, XSAVEOPT uses the init optimization (by
which it may omit saving state components that are in their initial configuration) and the modified optimization
(by which it may omit saving state components that have not been modified since the last execution of XRSTOR);
see Section 13.6. See Section 13.2 for details of how to determine whether XSAVEOPT is supported.

The XSAVEOPT instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. The logical (bitwise) AND of XCR0 and the instruction mask is the requested-feature bitmap (RFBM) of
the user state components to be saved.

The following conditions cause execution of the XSAVEOPT instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.3

If none of these conditions cause a fault, execution of XSAVEOPT reads the XSTATE_BV field of the XSAVE header
(see Section 13.4.2) and writes it back to memory, setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:
• If RFBM[i] = 0, XSTATE_BV[i] is not changed.

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

2. If the processor does not support the compacted form of XRSTOR, it may execute the standard form of XRSTOR without first
reading the XCOMP_BV field. A processor supports the compacted form of XRSTOR only if it enumerates
CPUID.(EAX=0DH,ECX=1):EAX[1] as 1.

3. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

• If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i]. Section 13.6 defines XINUSE to describe the
processor init optimization and specifies the initial configuration of each state component. The nature of that
optimization implies the following:

— If the state component is in its initial configuration, XINUSE[i] may be either 0 or 1, and XSTATE_BV[i]
may be written with either 0 or 1.

XINUSE[1] pertains only to the state of the XMM registers and not to MXCSR. Thus, XSTATE_BV[1] may
be written with 0 even if MXCSR does not have its RESET value of 1F80H.

— If the state component is not in its initial configuration, XSTATE_BV[i] is written with 1.
(As explained in Section 13.6, the initial configurations of some state components may depend on whether the
processor is in 64-bit mode.)

The XSAVEOPT instruction does not write any part of the XSAVE header other than the XSTATE_BV field; in partic-
ular, it does not write to the XCOMP_BV field.

Execution of XSAVEOPT saves into the XSAVE area those state components corresponding to bits that are set in
RFBM (subject to the optimizations described below). State components 0 and 1 are located in the legacy region
of the XSAVE area (see Section 13.4.1). Each state component i, 2 ≤ i ≤ 62, is located in the extended region; the
XSAVEOPT instruction always uses the standard format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and
operation determined by instruction prefixes. See Section 13.13 for details regarding faults caused by memory
accesses.

Execution of XSAVEOPT performs two optimizations that reduce the amount of data written to memory:
• Init optimization.

If XINUSE[i] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). (See below for
exceptions made for MXCSR.)

• Modified optimization.
Each execution of XRSTOR and XRSTORS establishes XRSTOR_INFO as a 4-tuple w,x,y,z (see Section 13.8.3
and Section 13.12). Execution of XSAVEOPT uses the modified optimization only if the following all hold for the
current value of XRSTOR_INFO:

— w = CPL;

— x = 1 if and only if the logical processor is in VMX non-root operation;

— y is the linear address of the XSAVE area being used by XSAVEOPT; and

— z is 00000000_00000000H. (This last item implies that XSAVEOPT does not use the modified optimization
if the last execution of XRSTOR used the compacted form, or if an execution of XRSTORS followed the last
execution of XRSTOR.)

If XSAVEOPT uses the modified optimization and XMODIFIED[i] = 0 (see Section 13.6), state component i is
not saved to the XSAVE area.
(In practice, the benefit of the modified optimization for state component i depends on how the processor is
tracking state component i; see Section 13.6. Limitations on the tracking ability may result in state
component i being saved even though is in the same configuration that was loaded by the previous execution
of XRSTOR.)
Depending on details of the operating system, an execution of XSAVEOPT by a user application might use the
modified optimization when the most recent execution of XRSTOR was by a different application. Because of
this, Intel recommends the application software not use the XSAVEOPT instruction.

The MXCSR register and MXCSR_MASK are part of SSE state (see Section 13.5.2) and are thus associated with
bit 1 of RFBM. However, the XSAVEOPT instruction also saves these values when RFBM[2] = 1 (even if RFBM[1] =
0). The init and modified optimizations do not apply to the MXCSR register and MXCSR_MASK.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 30

13.10 OPERATION OF XSAVEC
The operation of XSAVEC is similar to that of XSAVE. Two main differences are (1) XSAVEC uses the compacted
format for the extended region of the XSAVE area; and (2) XSAVEC uses the init optimization (see Section 13.6).
Unlike XSAVEOPT, XSAVEC does not use the modified optimization. See Section 13.2 for details of how to deter-
mine whether XSAVEC is supported.

The XSAVEC instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. The logical (bitwise) AND of XCR0 and the instruction mask is the requested-feature bitmap (RFBM) of
the user state components to be saved.

The following conditions cause execution of the XSAVEC instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.1

If none of these conditions cause a fault, execution of XSAVEC writes the XSTATE_BV field of the XSAVE header
(see Section 13.4.2), setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:2

• If RFBM[i] = 0, XSTATE_BV[i] is written as 0.
• If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i] (see below for an exception made for

XSTATE_BV[1]). Section 13.6 defines XINUSE to describe the processor init optimization and specifies the
initial configuration of each state component. The nature of that optimization implies the following:

— If state component i is in its initial configuration, XSTATE_BV[i] may be written with either 0 or 1.

— If state component i is not in its initial configuration, XSTATE_BV[i] is written with 1.
XINUSE[1] pertains only to the state of the XMM registers and not to MXCSR. However, if RFBM[1] = 1 and
MXCSR does not have the value 1F80H, XSAVEC writes XSTATE_BV[1] as 1 even if XINUSE[1] = 0.
(As explained in Section 13.6, the initial configurations of some state components may depend on whether the
processor is in 64-bit mode.)

The XSAVEC instructions sets bit 63 of the XCOMP_BV field of the XSAVE header while writing RFBM[62:0] to
XCOMP_BV[62:0]. The XSAVEC instruction does not write any part of the XSAVE header other than the
XSTATE_BV and XCOMP_BV fields.

Execution of XSAVEC saves into the XSAVE area those state components corresponding to bits that are set in
RFBM (subject to the init optimization described below). State components 0 and 1 are located in the legacy
region of the XSAVE area (see Section 13.4.1). Each state component i, 2 ≤ i ≤ 62, is located in the extended
region; the XSAVEC instruction always uses the compacted format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and
operation determined by instruction prefixes. See Section 13.13 for details regarding faults caused by memory
accesses.

Execution of XSAVEC performs the init optimization to reduce the amount of data written to memory. If
XINUSE[i] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). However, if RFBM[1] = 1
and MXCSR does not have the value 1F80H, XSAVEC writes saves all of state component 1 (SSE — including the
XMM registers) even if XINUSE[1] = 0. Unlike the XSAVE instruction, RFBM[2] does not determine whether
XSAVEC saves MXCSR and MXCSR_MASK.

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

2. Unlike the XSAVE and XSAVEOPT instructions, the XSAVEC instruction does not read the XSTATE_BV field of the XSAVE header.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 31

13.11 OPERATION OF XSAVES
The operation of XSAVES is similar to that of XSAVEC. The main differences are (1) XSAVES can be executed only
if CPL = 0; (2) XSAVES can operate on the state components whose bits are set in XCR0 | IA32_XSS and can thus
operate on supervisor state components; and (3) XSAVES uses the modified optimization (see Section 13.6). See
Section 13.2 for details of how to determine whether XSAVES is supported.

The XSAVES instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. EDX:EAX & (XCR0 | IA32_XSS) (the logical AND the instruction mask with the logical OR of XCR0 and
IA32_XSS) is the requested-feature bitmap (RFBM) of the state components to be saved.

The following conditions cause execution of the XSAVES instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If CPL > 0 or if the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP)

occurs.1

If none of these conditions cause a fault, execution of XSAVES writes the XSTATE_BV field of the XSAVE header
(see Section 13.4.2), setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:
• If RFBM[i] = 0, XSTATE_BV[i] is written as 0.
• If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i] (see below for an exception made for

XSTATE_BV[1]). Section 13.6 defines XINUSE to describe the processor init optimization and specifies the
initial configuration of each state component. The nature of that optimization implies the following:

— If state component i is in its initial configuration, XSTATE_BV[i] may be written with either 0 or 1.

— If state component i is not in its initial configuration, XSTATE_BV[i] is written with 1.
XINUSE[1] pertains only to the state of the XMM registers and not to MXCSR. However, if RFBM[1] = 1 and
MXCSR does not have the value 1F80H, XSAVES writes XSTATE_BV[1] as 1 even if XINUSE[1] = 0.
(As explained in Section 13.6, the initial configurations of some state components may depend on whether the
processor is in 64-bit mode.)

The XSAVES instructions sets bit 63 of the XCOMP_BV field of the XSAVE header while writing RFBM[62:0] to
XCOMP_BV[62:0]. The XSAVES instruction does not write any part of the XSAVE header other than the
XSTATE_BV and XCOMP_BV fields.

Execution of XSAVES saves into the XSAVE area those state components corresponding to bits that are set in
RFBM (subject to the optimizations described below). State components 0 and 1 are located in the legacy region
of the XSAVE area (see Section 13.4.1). Each state component i, 2 ≤ i ≤ 62, is located in the extended region; the
XSAVES instruction always uses the compacted format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and
operation determined by instruction prefixes; in particular, see Section 13.5.6 for some special treatment of PT
state by XSAVES. See Section 13.13 for details regarding faults caused by memory accesses.

Execution of XSAVES performs the init optimization to reduce the amount of data written to memory. If
XINUSE[i] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). However, if RFBM[1] = 1
and MXCSR does not have the value 1F80H, XSAVES writes saves all of state component 1 (SSE — including the
XMM registers) even if XINUSE[1] = 0.

Like XSAVEOPT, XSAVES may perform the modified optimization. Each execution of XRSTOR and XRSTORS estab-
lishes XRSTOR_INFO as a 4-tuple w,x,y,z (see Section 13.8.3 and Section 13.12). Execution of XSAVES uses the
modified optimization only if the following all hold:
• w = CPL;

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 32

• x = 1 if and only if the logical processor is in VMX non-root operation;
• y is the linear address of the XSAVE area being used by XSAVEOPT; and
• z[63] is 1 and z[62:0] = RFBM[62:0]. (This last item implies that XSAVES does not use the modified optimi-

zation if the last execution of XRSTOR used the standard form and followed the last execution of XRSTORS.)

If XSAVES uses the modified optimization and XMODIFIED[i] = 0 (see Section 13.6), state component i is not
saved to the XSAVE area.

13.12 OPERATION OF XRSTORS
The operation of XRSTORS is similar to that of XRSTOR. Three main differences are (1) XRSTORS can be executed
only if CPL = 0; (2) XRSTORS can operate on the state components whose bits are set in XCR0 | IA32_XSS and
can thus operate on supervisor state components; and (3) XRSTORS has only a compacted form (no standard
form; see Section 13.8). See Section 13.2 for details of how to determine whether XRSTORS is supported.

The XRSTORS instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. EDX:EAX & (XCR0 | IA32_XSS) (the logical AND the instruction mask with the logical OR of XCR0 and
IA32_XSS) is the requested-feature bitmap (RFBM) of the state components to be restored.

The following conditions cause execution of the XRSTOR instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If CPL > 0 or if the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP)

occurs.1

After checking for these faults, the XRSTORS instruction reads the first 64 bytes of the XSAVE header, including
the XSTATE_BV and XCOMP_BV fields (see Section 13.4.2). A #GP occurs if any of the following conditions hold
for the values read:
• XCOMP_BV[63] = 0.
• XCOMP_BV sets a bit in the range 62:0 that is not set in XCR0 | IA32_XSS.
• XSTATE_BV sets a bit (including bit 63) that is not set in XCOMP_BV.
• Bytes 63:16 of the XSAVE header are not all 0.

If none of these conditions cause a fault, the processor updates each state component i for which RFBM[i] = 1.
XRSTORS updates state component i based on the value of bit i in the XSTATE_BV field of the XSAVE header:
• If XSTATE_BV[i] = 0, the state component is set to its initial configuration. Section 13.6 specifies the initial

configuration of each state component. If XSTATE_BV[1] = 0, XRSTORS initializes MXCSR to 1F80H.
State component i is set to its initial configuration as indicated above if RFBM[i] = 1 and XSTATE_BV[i] = 0 —
even if XCOMP_BV[i] = 0. This is true for all values of i, including 0 (x87 state) and 1 (SSE state).

• If XSTATE_BV[i] = 1, the state component is loaded with data from the XSAVE area.2 See Section 13.5 for
specifics for each state component and for details regarding mode-specific operation and operation
determined by instruction prefixes; in particular, see Section 13.5.6 for some special treatment of PT state by
XRSTORS. See Section 13.13 for details regarding faults caused by memory accesses.

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

2. Earlier fault checking ensured that, if the instruction has reached this point in execution and XSTATE_BV[i] is 1, then XCOMP_BV[i]
is also 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 33

If XRSTORS is restoring a supervisor state component, the instruction causes a general-protection exception
(#GP) if it would load any element of that component with an unsupported value (e.g., by setting a reserved
bit in an MSR) or if a bit is set in any reserved portion of the state component in the XSAVE area.
State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state
component i, 2 ≤ i ≤ 62, is located in the extended region; XRSTORS uses the compacted format for the
extended region (see Section 13.4.3).
The MXCSR register is part of SSE state (see Section 13.5.2) and is thus loaded from memory if RFBM[1] =
XSTATE_BV[i] = 1. XRSTORS causes a general-protection exception (#GP) if it would load MXCSR with an
illegal value.

If an execution of XRSTORS causes an exception or a VM exit during or after restoring a supervisor state compo-
nent, each element of that state component may have the value it held before the XRSTORS execution, the value
loaded from the XSAVE area, or the element’s initial value (as defined in Section 13.6). See Section 13.5.6 for
some special treatment of PT state for the case in which XRSTORS causes an exception or a VM exit.

Like XRSTOR, execution of XRSTORS causes the processor to update is tracking for the init and modified optimi-
zations (see Section 13.6 and Section 13.8.3). The following items provide details:
• The processor updates its tracking for the init optimization as follows:

— If RFBM[i] = 0, XINUSE[i] is not changed.

— If RFBM[i] = 1 and XSTATE_BV[i] = 0, state component i may be tracked as init; XINUSE[i] may be set to
0 or 1.

— If RFBM[i] = 1 and XSTATE_BV[i] = 1, state component i is tracked as not init; XINUSE[i] is set to 1.
• The processor updates its tracking for the modified optimization and records information about the XRSTORS

execution for future interaction with the XSAVEOPT and XSAVES instructions as follows:

— If RFBM[i] = 0, state component i is tracked as modified; XMODIFIED[i] is set to 1.

— If RFBM[i] = 1, state component i may be tracked as unmodified; XMODIFIED[i] may be set to 0 or 1.

— XRSTOR_INFO is set to the 4-tuple w,x,y,z, where w is the CPL; x is 1 if the logical processor is in VMX
non-root operation and 0 otherwise; y is the linear address of the XSAVE area; and z is XCOMP_BV (this
implies that z[63] = 1).

...

4. Updates to Chapter 14, Volume 1
Change bars show changes to Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

...

14.4.1 Detection of F16C Instructions
Application using float 16 instruction must follow a detection sequence similar to AVX to ensure:
• The OS has enabled YMM state management support,
• The processor support AVX as indicated by the CPUID feature flag, i.e. CPUID.01H:ECX.AVX[bit 28] = 1.
• The processor support 16-bit floating-point conversion instructions via a CPUID feature flag

(CPUID.01H:ECX.F16C[bit 29] = 1).
Application detection of Float-16 conversion instructions follow the general procedural flow in Figure 14-3.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 34

--
INT supports_f16c()
{ ; result in eax

mov eax, 1
cpuid
and ecx, 038000000H
cmp ecx, 038000000H; check OSXSAVE, AVX, F16C feature flags
 jne not_supported
; processor supports AVX,F16C instructions and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XCR0 register
XGETBV; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done
NOT_SUPPORTED:
mov eax, 0
done:

}

...

Figure 14-3 General Procedural Flow of Application Detection of Float-16

Implied HW support for

Check enabled YMM state in
XCR0 via XGETBV

Check feature flags

for AVX and F16C

Check feature flag

CPUID.1H:ECX.OSXSAVE = 1?

OS provides processor
extended state management

State ok to use

XSAVE, XRSTOR, XGETBV, XCR0

enabled Instructions

Yes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 35

14.5.3 Detection of FMA
Hardware support for FMA is indicated by CPUID.1:ECX.FMA[bit 12]=1.
Application Software must identify that hardware supports AVX, after that it must also detect support for FMA by
CPUID.1:ECX.FMA[bit 12]. The recommended pseudocode sequence for detection of FMA is:
--
INT supports_fma()
{ ; result in eax

mov eax, 1
cpuid
and ecx, 018001000H
cmp ecx, 018001000H; check OSXSAVE, AVX, FMA feature flags
 jne not_supported
; processor supports AVX,FMA instructions and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XCR0 register
XGETBV; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done
NOT_SUPPORTED:
mov eax, 0
done:

}

Note that FMA comprises 256-bit and 128-bit SIMD instructions operating on YMM states.

...

14.7.1 Detection of AVX2
Hardware support for AVX2 is indicated by CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]=1.
Application Software must identify that hardware supports AVX, after that it must also detect support for AVX2 by
checking CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]. The recommended pseudocode sequence for detection of
AVX2 is:
--
INT supports_avx2()
{ ; result in eax

mov eax, 1
cpuid
and ecx, 018000000H
cmp ecx, 018000000H; check both OSXSAVE and AVX feature flags

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 36

 jne not_supported
; processor supports AVX instructions and XGETBV is enabled by OS
mov eax, 7
mov ecx, 0
cpuid
and ebx, 20H
cmp ebx, 20H; check AVX2 feature flags
 jne not_supported
mov ecx, 0; specify 0 for XCR0 register
XGETBV; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done
NOT_SUPPORTED:
mov eax, 0
done:

}

...

14.11 EMULATION
Setting the CR0.EMbit to 1 provides a technique to emulate Legacy SSE floating-point instruction sets in software.
This technique is not supported with AVX instructions.
If an operating system wishes to emulate AVX instructions, set XCR0[2:1] to zero. This will cause AVX instructions
to #UD. Emulation of F16C, AVX2, and FMA by operating system can be done similarly as with emulating AVX
instructions.

...

5. New Chapter 16, Volume 1
New chapter added to volume 1: Chapter 16 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1: Basic Architecture.

--

...
CHAPTER 16

INTEL® MEMORY PROTECTION EXTENSIONS

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 37

16.1 INTEL® MEMORY PROTECTION EXTENSIONS (INTEL® MPX)
Intel® Memory Protection Extensions (Intel® MPX) is a new capability introduced into Intel Architecture. Intel
MPX can increase the robustness of software when it is used in conjunction with compiler changes to check
memory references, for those references whose compile-time normal intentions are usurped at runtime due to
buffer overflow or underflow. Two of the most important goals of Intel MPX are to provide this capability at low
performance overhead for newly compiled code, and to provide compatibility mechanisms with legacy software
components. A direct benefit Intel MPX provides is hardening software against malicious attacks designed to
cause or exploit buffer overruns. This chapter describes the software visible interfaces of this extension.

16.2 INTRODUCTION
Intel MPX is designed to allow a system (i.e., the logical processor(s) and the OS software) to run both Intel MPX
enabled software and legacy software (written for processors without Intel MPX). When executing software
containing a mixture of Intel MPX-unaware code (legacy code) and Intel MPX-enabled code, the legacy code does
not benefit from Intel MPX, but it also does not experience any change in functionality or reduction in perfor-
mance. The performance of Intel MPX-enabled code running on processors that do not support Intel MPX may be
similar to the use of embedding NOPs in the instruction stream.
Intel MPX is designed such that an Intel MPX enabled application can link with, call into, or be called from legacy
software (libraries, etc.) while maintaining existing application binary interfaces (ABIs). And in most cases, the
benefit of Intel MPX requires minimal changes to the source code at the application programming interfaces
(APIs) to legacy library/applications. As described later, Intel MPX associates bounds with pointers in a novel
manner, and the Intel MPX hardware uses bounds to check that the pointer based accesses are suitably
constrained. Intel MPX enabled software is not required to uniformly or universally utilize the new hardware capa-
bilities over all memory references. Specifically, programmers can selectively use Intel MPX to protect a subset of
pointers.
The code enabled for Intel MPX benefits from memory protection against vulnerability such as buffer overrun.
Therefore there is a heightened incentive for software vendors to adopt this technology. At the same time, the
security benefit of Intel MPX-protection can be implemented according to the business priorities of software
vendors. A software vendor can choose to adopt Intel MPX in some modules to realize partial benefit from Intel
MPX quickly, and introduce Intel MPX in other modules in phases (e.g. some programmer intervention might be
required at the interface to legacy calls). This adaptive property of Intel MPX is designed to give software vendors
control on their schedule and modularity of adoption. It also allows a software vendor to secure defense for higher
priority or more attack-prone software first; and allows the use of Intel MPX features in one phase of software
engineering (e.g., testing) and not in another (e.g., general release) as dictated by business realities.
The initial goal of Intel MPX is twofold: (1) provide means to defend a system against attacks that originate
external to some trust perimeter where the trust perimeter subsumes the system memory and integral data
repositories, and (2) provide means to pinpoint accidental logic defects in pointer usage, by undergirding memory
references with hardware based pointer validation.
As with any instruction set extensions, Intel MPX can be used by application developers beyond detecting buffer
overflow, the processor does not limit the use of Intel MPX for buffer overflow detection.

16.3 INTEL MPX PROGRAMMING ENVIRONMENT
Intel MPX introduces new bounds registers and new instructions that operate on bounds registers. Intel MPX
allows an OS to support user mode software (operating at CPL=3) and supervisor mode software (CPL < 3) to add
memory protection capability against buffer overrun. It provides controls to enable Intel MPX extensions for user
mode and supervisor mode independently. Intel MPX extensions are designed to allow software to associate
bounds with pointers, and allow software to check memory references against the bounds associated with the
pointer to prevent out of bound memory access (thus preventing buffer overflow).The bounds registers hold lower

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 38

bound and upper bound that can be checked when referencing memory. An out-of-bounds memory reference
then causes a #BR exception. Intel MPX also introduces configuration facilities that the OS must manage to
support enabling of user-mode (and/or supervisor-mode) software operations using bounds registers.

16.3.1 Detection and Enumeration of Intel MPX Interfaces
Detection of hardware support for processor extended state component is provided by the main CPUID leaf func-
tion 0DH with index ECX = 0. Specifically, the return value in EDX:EAX of CPUID.(EAX=0DH, ECX=0) provides a
64-bit wide bit vector of hardware support of processor state components.
If CPUID.(EAX=07H, ECX=0H).EBX.MPX [bit 14] = 1 (the processor supports Intel MPX), bits [4:3] of
CPUID.(EAX=0DH, ECX=0) enumerates the state components associated with Intel MPX. The two component
states of Intel MPX are:
• BNDREGS: CPUID.(EAX=0DH, ECX=0):EAX[3] indicates XCR0.BNDREGS[bit 3] is supported. This bit

indicates bound register component of Intel MPX state, comprised of four bounds registers, BND0-BND3 (see
Section 16.3.2).

• BNDCSR: CPUID.(EAX=0DH, ECX=0):EAX[4] indicates XCR0.BNDCSR[bit 4] is supported. This bit indicates
bounds configuration and status component of Intel MPX comprised of BNDCFGU and BNDSTATUS. OS must
enable both BNDCSR and BNDREGS bits in XCR0 to ensure full Intel MPX support to applications.

• The size of the processor state component, enabled by XCR0.BNDREGS, is enumerated by CPUID.(EAX=0DH,
ECX=03H).EAX[31:0] and the byte offset of this component relative to the beginning of the XSAVE/XRSTOR
area is reported by CPUID.(EAX=0DH, ECX=03H).EBX[31:0].

• The size of the processor state component, enabled by XCR0.BNDCSR, is enumerated by CPUID.(EAX=0DH,
ECX=04H).EAX[31:0] and the byte offset of this component relative to the beginning of the XSAVE/XRSTOR
area is reported by CPUID.(EAX=0DH, ECX=04H).EBX[31:0].

On processors that support Intel MPX, CPUID.(EAX=0DH, ECX=0):EAX[3] and CPUID.(EAX=0DH,
ECX=0):EAX[4] will both be 1. On processors that do not support Intel MPX, CPUID.(EAX=0DH, ECX=0):EAX[3]
and CPUID.(EAX=0DH, ECX=0):EAX[4] will both be 0.

The layout of XCR0 for extended processor state components defined in Intel Architecture is shown in Figure 2-8
of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Enabling Intel MPX requires an OS to manage bits [4:3] of XCR0, see Section 13.5.

16.3.2 Bounds Registers
Intel MPX Architecture defines four new registers, BND0-BND3, which Intel MPX instructions operate on. Each
bounds register stores a pair of 64-bit values which are the lower bound (LB) and upper bound (UB) of a buffer,
see Figure 16-1.

The bounds are unsigned effective addresses, and are inclusive. The upper bounds are architecturally represented
in 1's complement form. Lower bound = 0, and upper bound = 0 (1's complement of all 1s) will allow access to
the entire address space. The bounds are considered as INIT when both lower and upper bounds are 0 (cover the

Figure 16-1 Layout of the Bounds Registers BND0-BND3

64 63 0127

Upper Bound (UB) Lower Bound (LB)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 39

entire address space). The two Intel MPX instructions which operate on the upper bound (BNDMK and BNDCU)
account for the 1's complement representation of the upper bounds.
The instruction set does not impose any conventions on the use of bounds registers. Software has full flexibility
associating pointers to bounds registers including sharing them for multiple pointers.
RESET or INIT# will INIT (write zero) to BND0-BND3.

16.3.3 Configuration and Status Registers
Intel MPX defines two configuration and one status registers. The two configuration registers are defined for user
mode (CPL 3) and supervisor mode (CPL 0, 1 and 2). The user-mode configuration register BNDCFGU is accessible
only with the XSAVE feature set instructions.

The supervisor mode configuration register is an architecture MSR, referred to as IA32_BNDCFGS (MSR 0D90H).
Because both configuration registers share a common layout (see Figure 16-2), when describing the common
behavior, these configuration registers are often denoted as BNDCFGx, where x can be U or S, for user and super-
visor mode respectively.

The Enable bit in BNDCFGU enables Intel MPX in user mode (see Figure 16-2), and the Enable bit in BNDCFGS
enables Intel MPX in supervisor mode. The BNDPRESERVE bit controls the initialization behavior of CALL/RET/
JMP/Jcc instructions which don't have the BND (0xF2) prefix -- see Section 16.5.3.
The reserved area must be zero for BNDCFGS (WRMSR to BNDCFGS will #GP if the reserved bits of BNDCFGS are
not all zeros. XRSTOR of BNDCFGU will not fault if reserved bits are non-zero).
The base of bound directory is a 4K page aligned linear address, and is always in canonical form. Any load into
BNDCFGx (XRSTOR or WRMSR) ensures that the highest implemented bit of the linear address is sign extended
to guarantee the canonicality of this address.
Intel MPX also defines a status register (BNDSTATUS) primarily used to communicate status information for #BR
exception. The layout of the status register is shown in Figure 16-3.

The BNDSTATUS register provides two fields to communicate the status of Intel MPX operations:

Figure 16-2 Common Layout of the Bound Configuration Registers BNDCFGU and BNDCFGS

Figure 16-3 Layout of the Bound Status Registers BNDSTATUS

12 11 063

Base of Bound Directory (Linear Address) Reserved (must be zero)

Bprv: BNDPRESERVE

En

12

En: Enable

2 1 063

ABD: Address Bound Directory Entry - Linear Address

EC: Error Code

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 40

• EC (bits 1:0): The error code field communicates status information of a bound range exception #BR or
operation involving bound directory.

• ABD: (bits 63:2):The address field of a bound directory entry can provide information when operation on the
bound directory caused a #BR.

The valid error codes are defined in Table 16-1.

RESET or INIT# will set BNDCFGx and BNDSTATUS registers to zero.

16.3.4 Read and write to IA32_BNDCFGS
The read and write MSR instructions are used to read/write IA32_BNDCFGS (XSAVE state does not include
IA32_BNDCFGS, nor does XSAVES/XRSTORS instruction accesses IA32_BNDCFGS). The write MSR instruction to
IA32_BNDCFGS checks for canonicality of the addresses being loaded into IA32_BNDCFGS independent of the
mode (loads full 64-bit address and performs canonical address check in both 32-bit and 64-bit modes). It will
#GP if canonical address reserved bits (must be zero) check fails.
Software can always read/write IA32_BNDCFGS using read/write MSR instruction as long as the processor imple-
ments Intel MPX, i.e. CPUID.(EAX=07H, ECX=0H).EBX.MPX = 1. The states of CR4 and XCR0 have no impact on
read/write to IA32_BNDCFGS.

16.4 INTEL MPX INSTRUCTION SUMMARY
When Intel MPX is not enabled or not present, all Intel MPX instructions behave as NOP. There are eight Intel MPX
instructions, Table 16-2 provides a summary.
A C/C++ compiler can implement intrinsic support for Intel MPX instructions to facilitate pointer operation with
capability of checking for valid bounds on pointers. Typically, Intel MPX intrinsics are implemented by compiler via
inline code generation where bounds register allocations are handled by the compiler without requiring the
programmer to directly manipulate any bounds registers. Therefore no new data type for a bounds register is
needed in the syntax of Intel MPX intrinsics.

Table 16-1 Error Code Definition of BNDSTATUS

EC Description Meaning

00b1 No Intel MPX exception No exception caused by Intel MPX operations.

01b Bounds violation
#BR caused by BNDCL, BNDCU or BNDCN instructions;
ABD is 0.

10b Invalid BD entry
#BR caused by BNDLDX or BNDSTX instructions, ABD will be set to the linear address of the
invalid Bound directory entry

11b Reserved Reserved
NOTES:
1.When legacy BOUND instruction cause a #BR with Intel MPX enabled (see Section 16.5.4), EC is written with

Zero.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 41

16.4.1 Instruction Encoding
All Intel MPX instructions are NOP on processors that report CPUID.(EAX=07H, ECX=0H).EBX.MPX [bit 14] = 0,
or if Intel MPX is not enabled by the operating system (see Section 13.5). Applications can selectively opt-in to
use Intel MPX instructions.
All Intel MPX opcodes encoded to operate on BND0-BND3 are valid Intel MPX instructions. All Intel MPX opcodes
encoded to operate on bound registers beyond BND3 will #UD if Intel MPX is enabled.
BNDLDX/BNDSTX opcodes require 66H as a mandatory prefix with its operand size tied to the address size attri-
bute of the supported operating modes. Attempt to override operand size attribute with 66H or with REX.W in 64-
bit mode is ignored.

16.4.2 Usage and Examples
BNDMK is typically used after memory is allocated for a buffer, e.g., by functions such as malloc, calloc, or when
the memory is allocated on the stack. However, many other usages are possible such as when accessing an array
member of a structure.

BNDMOV is typically used to copy bounds from one bound register to another when a pointer is copied from one
general purpose register to another, or to spill/fill bounds into memory corresponding to a spill/fill of a pointer.

Table 16-2 Intel MPX Instruction Summary

Intel MPX
Instruction

Description

BNDMK b, m Create LowerBound (LB) and UpperBound (UB) in the bounds register b

BNDCL b, r/m Checks the address of a memory reference or address in r against the lower bound

BNDCU b, r/m Checks the address of a memory reference or address in r against the upper bound in 1's complement form

BNDCN b, r/m
Checks the address of a memory reference or address in r against the upper bound not in 1's complement
form

BNDMOV b, b/m Copy/load LB and UB bounds from memory or a bounds register

BNDMOV b/m, b Store LB and UB bounds in a bounds register to memory or another register

BNDLDX b, mib Load bounds using address translation using an sib-addressing expression mib

BNDSTX mib, b Store bounds using address translation using an sib-addressing expression mib

Example 16-1 BNDMK Example Usage in Application and Library Code

int A[100]; //assume the array A is allocated on the stack at ‘offset’
from RBP.
// the instruction to store starting address of array will be:
 LEA RAX, [RBP+offset]
// the instruction to create the bounds for array A will be:
 BNDMK BND0, [RAX+399]
// Store RAX into BND0.LB, and ~(RAX+399) into BND0.UB.

// similarly, for a library implementation of dynamic allocated
memory
 int * k = malloc(100);
// assuming that malloc returns pointer k in RAX and holds (size
- 1) in RCX
// the malloc implementation will execute the following
instruction before returning:
 BNDMK BND0, [RAX+RCX]
// BND0.LB stores RAX, and BND0.UB stores ~(RAX+RCX)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 42

BNDCL/BNDCU/BNDCN are typically used before writing to a buffer but can be used in other instances as well. If
there are no bounds violations as a result of bound check instruction, the processor will proceed to execute the
next instruction. However, if the bound check fails, it will signal #BR exception (fault).
Typically, the pointer used to write to memory will be compared against lower bound. However, for upper bound
check, the software must add the (operand size - 1) to the pointer before upper bound checking.
For example, the software intend to write 32-bit integer in 64-bit mode into a buffer at address specified in RAX,
and the bounds are in register BND0, the instruction sequence will be:
 BNDCL BND0, [RAX]
 BNDCU BND0, [RAX+3] ; operand size is 4
 MOV Dword ptr [RAX], RBX ; RBX has the data to be written to the buffer.
Software may move one of the two bound checks out of a loop if it can determine that memory is accessed strictly
in ascending or descending order. For string instructions of the form REP MOVS, the software may choose to do
check lower bound against first access and upper bound against last access to memory. However, if software
wants to also check for wrap around conditions as part of address computation, it should check for both upper and
lower bound for first and last instructions (total of four bound checks).
BNDSTX is used to store the bounds associated with a buffer and the “pointer value” of the pointer to that buffer
onto a bound table entry via address translation using a two-level structure, see Section 16.4.3.
For example, the software has a buffer with bounds stored in BND0, the pointer to the buffer is in ESI, the
following sequence will store the “pointer value” (the buffer) and the bounds into a configured bound table entry
using address translation from the linear address associated with the base of a SIB-addressing form consisting of
a base register and a index register:
 MOV ECX, Dword ptr [ESI] ; store the pointer value in the index register ECX
 MOV EAX, ESI ; store the pointer in the base register EAX
 BNDSTX Dword ptr [EAX+ECX], BND0 ; perform address translation from the linear address of the base
EAX and store bounds and pointer value ECX onto a bound table entry.
Similarly to retrieve a buffer and its associated bounds from a bound table entry:
 MOV EAX, dword ptr [EBX] ;
 BNDLDX BND0, dword ptr [EBX+EAX]; perform address translation from the linear address of the base
EBX, and loads bounds and pointer value from a bound table entry

16.4.3 Loading and Storing Bounds using Translation
Intel MPX defines two instructions for load/store of the linear address of a pointer to a buffer, along with the
bounds of the buffer into a paging structure of extended bounds. Specifically when storing extended bounds, the
processor will perform address translation of the address where the pointer is stored to an address in the Bound
Table (BT) to determine the store location of extended bounds. Loading of an extended bounds performs the
reverse sequence.
The structure in memory to load/store an extended bound is a 4-tuple consisting of lower bound, upper bound,
pointer value and a reserved field (for use by future versions of Intel MPX, software must not use this field).
Bound loads and stores access 32-bit or 64-bit operand size according to the operation mode. Thus, a bound table
entry is 4*32 bits in 32-bit mode and 4*64 bits in 64-bit mode. The linear address of a bound table is stored in a

Example 16-2 BNDMOV Example

Spilling or caller save of bound register would use BNDMOV [RBP+ offset], BNDx.

Assuming that the calling convention is that bound of first pointer is passed in BND0, and that bound happens to be in BND3 before
the call, the software will add instruction BNDMOV BND0, BND3 prior to the call.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 43

Bound Directory (BD) entry. And the linear address of the bound directory is derived from either BNDCFGU or
BNDCFGS. Bounds in memory are stored in Bound Tables (BT) as an extended bound, which are accessed via
Bound Directory (BD) and address translation performed by BNDLDX/BNDSTX instructions.
Bounds Directory (BD) and Bounds Tables (BT) are stored in application memory and are allocated by the appli-
cation (in case of kernel use, the structures will be in kernel memory). The bound directory and each instance of
bound table are in contiguous linear memory. Figure 16-4 shows the two-level structures for address translation
of extended bounds in 64-bit mode. The bound directory contains 8-byte entries and can hold 2^28 entries. The
address of the bound directory is located from either BNDCFGx. BNDCFGx contains the linear address in canonical
form.
The 64-bit mode address translation mechanism for the two-level structures to access extended bounds consist
of:
• A 4-KByte naturally aligned bound directory is located at the linear address specified in bits 63:12 of

BNDCFGx (see Figure 16-2). A 64-bit mode bound directory comprises of 2^28 64-bit entries (BDEs). A BDE
is selected using the LAp (linear address of pointer to a buffer) to construct an index, comprised of:

— Bits 30: 3 are from LAp[47:20].

— Bits 2:0 are 0.

• Each valid BDE contains a valid bit field (bit 0) and a BT address field that points to a bound table. The valid
field indicates the BT address field is valid if 1. Each bound table is 8-byte naturally aligned and located at the
linear address specified by the BT address field of the BDE. The bound table is located at the linear address of
the BT address field shift left by 3 bits for an 8-byte aligned linear address, see Figure 16-5. A 64-bit mode
bound table comprises 2^17 bound table entries (BTEs). A BTE is selected using the LAp (linear address of
pointer to a buffer) to construct an index, comprised of:

Figure 16-4 Bound Paging Structure and Address Translation in 64-bit Mode

12 1163

BNDCFGU/BNDCFGS

0

20 1963 0

Lower Bound

Upper Bound
Pointer Value

Reserved

Linear Address of “pointer” (LAp)
3

05

0

21

LAp[19:3]

22

03

0

30

LAp[47:20]

31

Bound Table Entries

Bound Table (4MB)

Bound Directory Entries

48

Bound Directory(2GB)

012

0

63

BNDCFGx[63:12]

0

8

16

24

0

0

Base of Bound Directory (Linear Address)

64

61

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 44

— Bits 21: 5 are from LAp[19:3].

— Bits 4:0 are 0.
• Each bound table entry is comprised of

— the lower bound (LB) field is 64-bit wide

— the upper bound (UB) field is 64-bit wide

— the pointer value is 64-bit wide

— reserved field is 64-bit wide, and is reserved for future Intel MPX. Software must not use this field

Figure 16-5 shows the format of a bound directory entry for 32-bit and 64-bit modes, which comprised of:
• Valid (V, bit 0): entry is not valid if 0, valid if 1;
• The following bits are not used and not checked

— 32-bit mode: Bit 1

— 64-bit mode: Bits 2 and 1
• BT address field (bits 63:3 for 64-bit mode, bits 31:2 for 32-bit mode) is the address of the bound table

pointed by this entry.
The BT address field is valid only if V is 1. If V=0, use of this entry by BNDLDX and BNDSTX will cause #BR and
set the error code to 10 and copy bits [63:02] of the address of BD entry into BNDSTATUS register
In 64-bit mode, BT Address field specifies Bits 63-3, and Bits 2-0 of BT address are assumed to be zero. Given that
the processor treats segment base of DS as zero in this mode, the BT address specified here is the final address
used to access BT
In 32-bit and compatibility mode, BT Address field specifies Bits 31-2, and Bits 1-0 of BT address are assumed to
be zero. BT address specifies an effective address in DS segment which is always used in this address calculation.
Limit checking of segment descriptor generally applies to address translation of extended bounds. E.g., when DS
is a NULL segment, limit checking will signal #GP in 32-bit but 64-bit mode does not perform limit check.
Figure 16-6 shows the 32-bit mode address translation mechanism for the two-level structures of extended
bounds.
The 32-bit mode address translation mechanism for the two-level structures to access extended bounds consist
of:
• A 4-KByte naturally aligned bound directory is located at the linear address specified in bits 31:12 of

BNDCFGx (see Figure 16-2). A 32-bit mode bound directory comprises of 2^20 32-bit entries (BDEs). A BDE
is selected using the LAp (linear address of pointer to a buffer) to construct an index, comprised of:

— Bits 21: 2 are from LAp[31:12].

— Bits 1:0 are 0.

Figure 16-5 Layout of a Bound Directory Entry

2 1 0

Bound Table Address

Ignored, Not checked

0

32-bit Mode Bound Directory Entry

Valid

313 1 0

Bound Table Address

Ignored, Not checked

0

64-bit Mode Bound Directory Entry

Valid

63

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 45

• Each valid BDE contains a valid bit field (bit 0) and a BT address field that points to a bound table. The valid
field indicates the BT address field is valid if 1. Each bound table is 4-byte naturally aligned and located at the
linear address specified by the BT address field of the BDE. The bound table is located at the linear address of
the BT address field shift left by 2 bits for an 4-byte aligned linear address, see Figure 16-5. A 32-bit mode
bound table comprises 2^10 bound table entries (BTEs). A BTE is selected using the LAp (linear address of
pointer to a buffer) to construct an index, comprised of:

— Bits 13:4 are from LAp[11:3].

— Bits 3:0 are 0.

• Each bound table entry is comprised of

— the lower bound (LB) field is 32-bit wide

— the upper bound (UB) field is 32-bit wide

— the pointer value is 32-bit wide

— reserved field is 32-bit wide, and is reserved for future Intel MPX. Software must not use this field.
Bounds in memory are associated with the memory address where the pointer is stored, i.e., Ap. Linear address
LAp is computed by adding segment base to Ap (note that segment override to these instructions applies to
computation of LAp only). The upper 20 bits LAp[31:12] in protected/compatibility modes or upper 28 bits
LAp[47:20] in 64-bit mode (IA-32e architecture currently implements 48-bits of virtual address space) are used
to index into the bound directory BD. The base address of BD is obtained from BNDCFGx[63:12]. As mentioned in
Section 16.3.4, BNDCFGx contains linear address in canonical form. Each valid BD entry points to a bound table

Figure 16-6 Bound Paging Structure and Address Translation in 32-bit Mode

12 1131

BNDCFGU/BNDCFGS

0

12 1131 0

Lower Bound

Upper Bound
Pointer Value

Reserved

Linear Address of “pointer” (LAp)
2

04

0

13

LAp[11:2]

14

02

0

21

LAp[31:12]

22

Bound Table Entries

Bound Table (16KB)

Bound Directory Entries

Bound Directory(4MB)

012

0

31

BNDCFGx[31:12]

0

4

8

12

0

0

Base of Bound Directory (Linear Address)

32

30

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 46

BT. In 32-bit and compatibility mode, this is an effective address in DS segment. In 64-bit mode, this is the final
address used for BT access because DS segment base is treated as zero by processor. Bits LAp[11:2] in protected/
compatibility modes or bits LAp[19:3] in 64-bit mode are used to index into BT. Each entry in BT contains lower
bound, upper bound, pointer value and a reserved field.

16.5 INTERACTIONS WITH INTEL MPX

16.5.1 Intel MPX and Operating Modes
In 64-bit Mode, all Intel MPX instructions use 64-bit operands for bounds and 64 bit addressing, i.e. REX.W & 67H
have no effect on data or address size.
XSAVE, XSAVEOPT and XRSTOR load/store 64-bit values in all modes, as these state-management instructions
are not Intel MPX instructions.
In compatibility and legacy modes (including 16-bit code segments, real and virtual 8086 modes) all Intel MPX
instructions use 32-bit operands for bounds and 32 bit addressing. The upper 32-bits of destination bound
register are cleared (consistent with behavior of integer registers)
In 32-bit and compatibility mode, the bounds are 32-bit, and are treated same as 32-bit integer registers. There-
fore, when 32-bit bound is updated in a bound register, the upper 32-bits are undefined. When switching from 64-
bit, the behavior of content of bounds register will be similar to that of general purpose registers.
Table 16-3 describes the impact of 67H prefix on memory forms of Intel MPX instructions (register-only forms
ignore 67H prefix) when Intel MPX is enabled:

16.5.2 Intel MPX Support for Pointer Operations with Branching
Intel MPX provides flexibility in supporting pointer operation across control flow changes. Intel MPX allows
• compatibility with legacy code that may perform pointer operation across control flow changes and are

unaware of Intel MPX, along with
• Intel MPX-aware code that adds bounds checking protection to pointer operation across control flow changes.
The interface to provide such flexibility consists of:
• Using a prefix, referred to as BND prefix, to relevant branch instructions: call, ret, jmp and jcc
• BNDCFGU and BNDCFGS provides the bit field, BNDPRESERVE (bit 1).
The value of BNDPRESERVE in conjunction with the presence/absence the BND prefix with those branching
instruction will determine whether the values in BND0-BND3 will be initialized or unchanged.

Table 16-3 Effective Address Size of Intel MPX Instructions with 67H Prefix

Addressing Mode 67H Prefix Effective Address Size used for Intel MPX instructions when Intel MPX is enabled

64-bit Mode Y 64 bit addressing used

64-bit Mode N 64 bit addressing used

32-bit Mode Y #UD

32-bit Mode N 32 bit addressing used

16-bit Mode Y 32 bit addressing used

16-bit Mode N #UD

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 47

16.5.3 CALL, RET, JMP and All Jcc
An application compiled to use Intel MPX will use the REPNE (0xF2) prefix (denoted by BND) for all forms of near
CALL, near RET, near JMP, short & near Jcc instructions (BND+CALL, BND+RET, BND+JMP, BND+Jcc). See Table
16-4 for specific opcodes. All far CALL, RET and JMP instructions plus short JMP (JMP rel 8, opcode EB) instructions
will never cause bound registers to be initialized.
If BNDPRESERVE bit is one, above instructions will NOT INIT the bounds registers when BND prefix is not present
for above instructions (legacy behavior). However, If BNDPRESERVE is zero, above instructions will INIT ALL
bound registers (BND0-BND3) when BND prefix is not present for above instructions. If BND prefix is present for
above instructions, the BND registers will NOT INIT any bound registers (BND0-BND3).
The legacy code will continue to use non-prefixed forms of these instructions, so if BNDPRESERVE is zero, all the
bound registers will INIT by legacy code. This allows the legacy function to execute and return to callee with all
bound registers initialized (legacy code by definition cannot make or load bounds in bound registers because it
does not have Intel MPX instructions). This will eliminate compatibility concerns when legacy function might have
changed the pointer in registers but did not update the value of the bounds registers associated with these
pointers.
If BNDCFGx.BNDPRESERVE is clear then non-prefixed forms of these instructions will initialize all the bound regis-
ters. If this bit is set then non-prefixed and prefixed forms of these instructions will preserve the contents of
bound registers as shown in Table 16-4.

16.5.4 BOUND Instruction and Intel MPX
If Intel MPX in enabled (see Section 13.5) and a #BR was caused due to a BOUND instruction, then BOUND
instruction will write zero to the BNDSTATUS register. In all other situations, BOUND instruction will not modify
BNDSTATUS. Specifically, the operation of the BOUND instruction can be described as:
IF ((BOUND instruction caused #BR) AND (CR4.OXXSAVE =1 AND XCR0.BNDREGS=1 AND XCR0.BNDCSR =1) AND

((CPL=3 AND BNDCFGU.ENABLE = 1) OR (CPL < 3 AND BNDCFGS.ENABLE = 1))) THEN
BNDSTATUS 0;

ELSE
BNDSTATUS is not modified;

FI;

Table 16-4 Bounds Register INIT Behavior Due to BND Prefix with Branch Instructions

Instruction Branch Instruction Opcodes BNDPRESERVE = 0 BNDPRESERVE = 1

CALL E8, FF/2 Init BND0-BND3 BND0-BND3 unchanged

BND + CALL F2 E8, F2 FF/2 BND0-BND3 unchanged BND0-BND3 unchanged

RET C2, C3 Init BND0-BND3 BND0-BND3 unchanged

BND + RET F2 C2, F2 C3 BND0-BND3 unchanged BND0-BND3 unchanged

JMP E9, FF/4 Init BND0-BND3 BND0-BND3 unchanged

BND + JMP F2 E9, F2 FF/4 BND0-BND3 unchanged BND0-BND3 unchanged

Jcc
70 through 7F,

0F 80 through 0F 8F
Init BND0-BND3 BND0-BND3 unchanged

BND + Jcc
F2 70 through F2 7F,

F2 0F 80 through F2 0F 8F
BND0-BND3 unchanged BND0-BND3 unchanged

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 48

16.5.5 Programming Considerations
Intel MPX instruction set does not dictate any calling convention, but allows the calling convention extensions to
be interoperable with legacy code by making use of the of the bound registers and the bound tables to convey
arguments and return values.

16.5.6 Intel MPX and System Manage Mode
Upon delivery of an SMI to a processor supporting Intel MPX, the content of IA32_BNDCFGS is saved to SMM state
save map and cleared when entering into SMM. RSM will restore IA32_BNDCFGS from the SMM state save map.
Offset 7ED0H in SMM state save map will store the content of IA32_BNDCFGS. RSM will load only bits 47:12 and
bits 1-0 from SMRAM: bits 11:2 are forced to 0 regardless of what is in SMM state save map; RSM will sign-extend
bit 47 into bits 63:48 regardless of what is in SMM state save map.
The content of IA32_BNDCFGS is cleared after entering into SMM. Thus, Intel MPX is disabled inside an SMM
handler until SMM code enables it explicitly. This will prevent the side-effect of INIT-ing bound registers by legacy
CALL/RET/JMP/Jcc in SMM code.

16.5.7 Support of Intel MPX in VMCS
A new guest-state field for IA32_BNDCFGS is added to the VMCS. In addition, two new controls are added:
• a VM-exit control called “clear BNDCFGS”
• a VM-entry control called “load BNDCFGS.”
VM exits always save IA32_BNDCFGS into BNDCFGS field of VMCS; if “clear BNDCFGS” is 1, VM exits clear
IA32_BNDCFGS. If “load BNDCFGS” is 1, VM entry loads IA32_BNDCFGS from VMCS. If loading IA32_BNDCFGS,
VM entry should check the value of that register in the guest-state area of the VMCS and cause the VM entry to
fail (late) if the value is one that would causes WRMSR to fault if executed in ring 0.

16.5.8 Support of Intel MPX in Intel TSX
For some processor implementations, the following Intel MPX instructions may always cause transactional aborts:
• An Intel TSX transaction abort will occur in case of legacy branch (that causes bounds registers INIT) when at

least one bounds register was in a NON-INIT state.
• An Intel TSX transaction abort will occur in case of a BNDLDX & BNDSTX instruction on non-flat segment.
Intel MPX Instructions (including BND prefix + branch instructions) not enumerated above as causing transac-
tional abort when used inside a transaction will typically not cause an Intel TSX transaction to abort.

6. Updates to Chapter 2, Volume 2A
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-M.

--
...

2.1.1 Instruction Prefixes
Instruction prefixes are divided into four groups, each with a set of allowable prefix codes. For each instruction, it
is only useful to include up to one prefix code from each of the four groups (Groups 1, 2, 3, 4). Groups 1 through
4 may be placed in any order relative to each other.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 49

• Group 1

— Lock and repeat prefixes:

• LOCK prefix is encoded using F0H

• REPNE/REPNZ prefix is encoded using F2H. Repeat-Not-Zero prefix applies only to string and input/
output instructions. (F2H is also used as a mandatory prefix for some instructions)

REP or REPE/REPZ is encoded using F3H. The repeat prefix applies only to string and input/output instructions.
F3H is also used as a mandatory prefix for POPCNT, LZCNT and ADOX instructions.
• Group 2

— Segment override prefixes:

• 2EH—CS segment override (use with any branch instruction is reserved)

• 36H—SS segment override prefix (use with any branch instruction is reserved)

• 3EH—DS segment override prefix (use with any branch instruction is reserved)

• 26H—ES segment override prefix (use with any branch instruction is reserved)

• 64H—FS segment override prefix (use with any branch instruction is reserved)

• 65H—GS segment override prefix (use with any branch instruction is reserved)

— Branch hints:

• 2EH—Branch not taken (used only with Jcc instructions)

• 3EH—Branch taken (used only with Jcc instructions)

— Bound prefix is encoded using F2H if the following conditions are true:

• CPUID.(EAX=07H, ECX=0):EBX.MPX[bit 14] is set,

• BNDCFGU.EN and/or IA32_BNDCFGS.EN is set,

• When the F2 prefix precedes a near CALL, a near RET, a near JMP, or a near Jcc instruction (see
Chapter 16, “Intel® MPX,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1).

• Group 3

• Operand-size override prefix is encoded using 66H (66H is also used as a mandatory prefix for some
instructions).

• Group 4

• 67H—Address-size override prefix

The LOCK prefix (F0H) forces an operation that ensures exclusive use of shared memory in a multiprocessor envi-
ronment. See “LOCK—Assert LOCK# Signal Prefix” in Chapter 3, “Instruction Set Reference, A-M,” for a descrip-
tion of this prefix.

Repeat prefixes (F2H, F3H) cause an instruction to be repeated for each element of a string. Use these prefixes
only with string and I/O instructions (MOVS, CMPS, SCAS, LODS, STOS, INS, and OUTS). Use of repeat prefixes
and/or undefined opcodes with other Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable
behavior.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 50

2.4.9 Exception Type 11 (VEX-only, mem arg no AC, floating-point exceptions)

Table 2-26 Type 11 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X VEX prefix

X X VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X If preceded by a LOCK prefix (F0H)

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix

X X X X If any corresponding CPUID feature flag is ‘0’

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1

Stack, SS(0) X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH

Page Fault #PF
(fault-code)

X X X For a page fault

SIMD Floating-Point
Exception, #XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 51

2.4.10 Exception Type 12 (VEX-only, VSIB mem arg, no AC, no floating-point exceptions)

...

7. Updates to Chapter 3, Volume 2A
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-M.

--
...

Table 2-27 Type 12 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD X X VEX prefix

X X VEX prefix:
If XCR0[2:1] ≠ ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X If preceded by a LOCK prefix (F0H)

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix

X X X NA If address size attribute is 16 bit

X X X X If ModR/M.mod = ‘11b’

X X X X If ModR/M.rm ≠ ‘100b’

X X X X If any corresponding CPUID feature flag is ‘0’

X X X X If any vector register is used more than once between the destination register,
mask register and the index register in VSIB addressing.

Device Not Available,
#NM

X X X X If CR0.TS[bit 3]=1

Stack, SS(0) X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH

Page Fault #PF (fault-
code)

X X X For a page fault

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 52

3.1.1.1 Opcode Column in the Instruction Summary Table (Instructions without VEX prefix)
The “Opcode” column in the table above shows the object code produced for each form of the instruction. When
possible, codes are given as hexadecimal bytes in the same order in which they appear in memory. Definitions of
entries other than hexadecimal bytes are as follows:
• REX.W — Indicates the use of a REX prefix that affects operand size or instruction semantics. The ordering of

the REX prefix and other optional/mandatory instruction prefixes are discussed Chapter 2. Note that REX
prefixes that promote legacy instructions to 64-bit behavior are not listed explicitly in the opcode column.

• /digit — A digit between 0 and 7 indicates that the ModR/M byte of the instruction uses only the r/m (register
or memory) operand. The reg field contains the digit that provides an extension to the instruction's opcode.

• /r — Indicates that the ModR/M byte of the instruction contains a register operand and an r/m operand.
• cb, cw, cd, cp, co, ct — A 1-byte (cb), 2-byte (cw), 4-byte (cd), 6-byte (cp), 8-byte (co) or 10-byte (ct)

value following the opcode. This value is used to specify a code offset and possibly a new value for the code
segment register.

• ib, iw, id, io — A 1-byte (ib), 2-byte (iw), 4-byte (id) or 8-byte (io) immediate operand to the instruction that
follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determines if the operand is a signed
value. All words, doublewords and quadwords are given with the low-order byte first.

• +rb, +rw, +rd, +ro — Indicated the lower 3 bits of the opcode byte is used to encode the register operand
without a modR/M byte. The instruction lists the corresponding hexadecimal value of the opcode byte with low
3 bits as 000b. In non-64-bit mode, a register code, from 0 through 7, is added to the hexadecimal value of
the opcode byte. In 64-bit mode, indicates the four bit field of REX.b and opcode[2:0] field encodes the
register operand of the instruction. “+ro” is applicable only in 64-bit mode. See Table 3-1 for the codes.

• +i — A number used in floating-point instructions when one of the operands is ST(i) from the FPU register
stack. The number i (which can range from 0 to 7) is added to the hexadecimal byte given at the left of the
plus sign to form a single opcode byte.

Table 3-1 Register Codes Associated With +rb, +rw, +rd, +ro

byte register word register dword register quadword register
(64-Bit Mode only)

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d
AL None 0 AX None 0 EAX None 0 RAX None 0

CL None 1 CX None 1 ECX None 1 RCX None 1

DL None 2 DX None 2 EDX None 2 RDX None 2

BL None 3 BX None 3 EBX None 3 RBX None 3

AH Not
encodab
le (N.E.)

4 SP None 4 ESP None 4 N/A N/A N/A

CH N.E. 5 BP None 5 EBP None 5 N/A N/A N/A

DH N.E. 6 SI None 6 ESI None 6 N/A N/A N/A

BH N.E. 7 DI None 7 EDI None 7 N/A N/A N/A

SPL Yes 4 SP None 4 ESP None 4 RSP None 4

BPL Yes 5 BP None 5 EBP None 5 RBP None 5

SIL Yes 6 SI None 6 ESI None 6 RSI None 6

DIL Yes 7 DI None 7 EDI None 7 RDI None 7

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 53

...

3.1.1.3 Instruction Column in the Opcode Summary Table
The “Instruction” column gives the syntax of the instruction statement as it would appear in an ASM386 program.
The following is a list of the symbols used to represent operands in the instruction statements:
• rel8 — A relative address in the range from 128 bytes before the end of the instruction to 127 bytes after the

end of the instruction.
• rel16, rel32 — A relative address within the same code segment as the instruction assembled. The rel16

symbol applies to instructions with an operand-size attribute of 16 bits; the rel32 symbol applies to instruc-
tions with an operand-size attribute of 32 bits.

• ptr16:16, ptr16:32 — A far pointer, typically to a code segment different from that of the instruction. The
notation 16:16 indicates that the value of the pointer has two parts. The value to the left of the colon is a 16-
bit selector or value destined for the code segment register. The value to the right corresponds to the offset
within the destination segment. The ptr16:16 symbol is used when the instruction's operand-size attribute is
16 bits; the ptr16:32 symbol is used when the operand-size attribute is 32 bits.

• r8 — One of the byte general-purpose registers: AL, CL, DL, BL, AH, CH, DH, BH, BPL, SPL, DIL and SIL; or
one of the byte registers (R8L - R15L) available when using REX.R and 64-bit mode.

• r16 — One of the word general-purpose registers: AX, CX, DX, BX, SP, BP, SI, DI; or one of the word registers
(R8-R15) available when using REX.R and 64-bit mode.

• r32 — One of the doubleword general-purpose registers: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI; or one of
the doubleword registers (R8D - R15D) available when using REX.R in 64-bit mode.

• r64 — One of the quadword general-purpose registers: RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8–R15.
These are available when using REX.R and 64-bit mode.

• imm8 — An immediate byte value. The imm8 symbol is a signed number between –128 and +127 inclusive.
For instructions in which imm8 is combined with a word or doubleword operand, the immediate value is sign-
extended to form a word or doubleword. The upper byte of the word is filled with the topmost bit of the
immediate value.

• imm16 — An immediate word value used for instructions whose operand-size attribute is 16 bits. This is a
number between –32,768 and +32,767 inclusive.

Registers R8 - R15 (see below): Available in 64-Bit Mode Only

R8L Yes 0 R8W Yes 0 R8D Yes 0 R8 Yes 0

R9L Yes 1 R9W Yes 1 R9D Yes 1 R9 Yes 1

R10L Yes 2 R10W Yes 2 R10D Yes 2 R10 Yes 2

R11L Yes 3 R11W Yes 3 R11D Yes 3 R11 Yes 3

R12L Yes 4 R12W Yes 4 R12D Yes 4 R12 Yes 4

R13L Yes 5 R13W Yes 5 R13D Yes 5 R13 Yes 5

R14L Yes 6 R14W Yes 6 R14D Yes 6 R14 Yes 6

R15L Yes 7 R15W Yes 7 R15D Yes 7 R15 Yes 7

Table 3-1 Register Codes Associated With +rb, +rw, +rd, +ro (Contd.)

byte register word register dword register quadword register
(64-Bit Mode only)

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 54

• imm32 — An immediate doubleword value used for instructions whose operand-size attribute is 32
bits. It allows the use of a number between +2,147,483,647 and –2,147,483,648 inclusive.

• imm64 — An immediate quadword value used for instructions whose operand-size attribute is 64 bits.
The value allows the use of a number between +9,223,372,036,854,775,807 and –
9,223,372,036,854,775,808 inclusive.

• r/m8 — A byte operand that is either the contents of a byte general-purpose register (AL, CL, DL, BL, AH, CH,
DH, BH, BPL, SPL, DIL and SIL) or a byte from memory. Byte registers R8L - R15L are available using REX.R
in 64-bit mode.

• r/m16 — A word general-purpose register or memory operand used for instructions whose operand-size
attribute is 16 bits. The word general-purpose registers are: AX, CX, DX, BX, SP, BP, SI, DI. The contents of
memory are found at the address provided by the effective address computation. Word registers R8W - R15W
are available using REX.R in 64-bit mode.

• r/m32 — A doubleword general-purpose register or memory operand used for instructions whose operand-
size attribute is 32 bits. The doubleword general-purpose registers are: EAX, ECX, EDX, EBX, ESP, EBP, ESI,
EDI. The contents of memory are found at the address provided by the effective address computation.
Doubleword registers R8D - R15D are available when using REX.R in 64-bit mode.

• r/m64 — A quadword general-purpose register or memory operand used for instructions whose operand-size
attribute is 64 bits when using REX.W. Quadword general-purpose registers are: RAX, RBX, RCX, RDX, RDI,
RSI, RBP, RSP, R8–R15; these are available only in 64-bit mode. The contents of memory are found at the
address provided by the effective address computation.

• m — A 16-, 32- or 64-bit operand in memory.
• m8 — A byte operand in memory, usually expressed as a variable or array name, but pointed to by the

DS:(E)SI or ES:(E)DI registers. In 64-bit mode, it is pointed to by the RSI or RDI registers.
• m16 — A word operand in memory, usually expressed as a variable or array name, but pointed to by the

DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string instructions.
• m32 — A doubleword operand in memory, usually expressed as a variable or array name, but pointed to by

the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string instructions.
• m64 — A memory quadword operand in memory.
• m128 — A memory double quadword operand in memory.
• m16:16, m16:32 & m16:64 — A memory operand containing a far pointer composed of two numbers. The

number to the left of the colon corresponds to the pointer's segment selector. The number to the right
corresponds to its offset.

• m16&32, m16&16, m32&32, m16&64 — A memory operand consisting of data item pairs whose sizes are
indicated on the left and the right side of the ampersand. All memory addressing modes are allowed. The
m16&16 and m32&32 operands are used by the BOUND instruction to provide an operand containing an upper
and lower bounds for array indices. The m16&32 operand is used by LIDT and LGDT to provide a word with
which to load the limit field, and a doubleword with which to load the base field of the corresponding GDTR and
IDTR registers. The m16&64 operand is used by LIDT and LGDT in 64-bit mode to provide a word with which
to load the limit field, and a quadword with which to load the base field of the corresponding GDTR and IDTR
registers.

• moffs8, moffs16, moffs32, moffs64 — A simple memory variable (memory offset) of type byte, word, or
doubleword used by some variants of the MOV instruction. The actual address is given by a simple offset
relative to the segment base. No ModR/M byte is used in the instruction. The number shown with moffs
indicates its size, which is determined by the address-size attribute of the instruction.

• Sreg — A segment register. The segment register bit assignments are ES = 0, CS = 1, SS = 2, DS = 3, FS =
4, and GS = 5.

• m32fp, m64fp, m80fp — A single-precision, double-precision, and double extended-precision (respectively)
floating-point operand in memory. These symbols designate floating-point values that are used as operands
for x87 FPU floating-point instructions.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 55

• m16int, m32int, m64int — A word, doubleword, and quadword integer (respectively) operand in memory.
These symbols designate integers that are used as operands for x87 FPU integer instructions.

• ST or ST(0) — The top element of the FPU register stack.
• ST(i) — The ith element from the top of the FPU register stack (i ← 0 through 7).
• mm — An MMX register. The 64-bit MMX registers are: MM0 through MM7.
• mm/m32 — The low order 32 bits of an MMX register or a 32-bit memory operand. The 64-bit MMX registers

are: MM0 through MM7. The contents of memory are found at the address provided by the effective address
computation.

• mm/m64 — An MMX register or a 64-bit memory operand. The 64-bit MMX registers are: MM0 through MM7.
The contents of memory are found at the address provided by the effective address computation.

• xmm — An XMM register. The 128-bit XMM registers are: XMM0 through XMM7; XMM8 through XMM15 are
available using REX.R in 64-bit mode.

• xmm/m32— An XMM register or a 32-bit memory operand. The 128-bit XMM registers are XMM0 through
XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at
the address provided by the effective address computation.

• xmm/m64 — An XMM register or a 64-bit memory operand. The 128-bit SIMD floating-point registers are
XMM0 through XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of
memory are found at the address provided by the effective address computation.

• xmm/m128 — An XMM register or a 128-bit memory operand. The 128-bit XMM registers are XMM0 through
XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at
the address provided by the effective address computation.

• <XMM0>— indicates implied use of the XMM0 register.
When there is ambiguity, xmm1 indicates the first source operand using an XMM register and xmm2 the
second source operand using an XMM register.
Some instructions use the XMM0 register as the third source operand, indicated by <XMM0>. The use of the
third XMM register operand is implicit in the instruction encoding and does not affect the ModR/M encoding.

• ymm — a YMM register. The 256-bit YMM registers are: YMM0 through YMM7; YMM8 through YMM15 are
available in 64-bit mode.

• m256 — A 32-byte operand in memory. This nomenclature is used only with AVX instructions.
• ymm/m256 — a YMM register or 256-bit memory operand.
• <YMM0>— indicates use of the YMM0 register as an implicit argument.
• bnd — a 128-bit bounds register. BND0 through BND3.
• mib — a memory operand using SIB addressing form, where the index register is not used in address calcu-

lation, Scale is ignored. Only the base and displacement are used in effective address calculation.
• SRC1 — Denotes the first source operand in the instruction syntax of an instruction encoded with the VEX

prefix and having two or more source operands.
• SRC2 — Denotes the second source operand in the instruction syntax of an instruction encoded with the VEX

prefix and having two or more source operands.
• SRC3 — Denotes the third source operand in the instruction syntax of an instruction encoded with the VEX

prefix and having three source operands.
• SRC — The source in a AVX single-source instruction or the source in a Legacy SSE instruction.
• DST — the destination in a AVX instruction. In Legacy SSE instructions can be either the destination, first

source, or both. This field is encoded by reg_field.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 56

ADCX — Unsigned Integer Addition of Two Operands with Carry Flag

Instruction Operand Encoding

...

ADOX — Unsigned Integer Addition of Two Operands with Overflow Flag

Instruction Operand Encoding

...

Opcode/
Instruction

Op/
En

64/32bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 F6 /r RM V/V ADX Unsigned addition of r32 with CF, r/m32 to r32, writes CF.
ADCX r32, r/m32

66 REX.w 0F 38 F6 /r RM V/NE ADX Unsigned addition of r64 with CF, r/m64 to r64, writes CF.
ADCX r64, r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

Opcode/
Instruction

Op/
En

64/32bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 38 F6 /r RM V/V ADX Unsigned addition of r32 with OF, r/m32 to r32, writes OF.
ADOX r32, r/m32

F3 REX.w 0F 38 F6 /r RM V/NE ADX Unsigned addition of r64 with OF, r/m64 to r64, writes OF.
ADOX r64, r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 57

BNDCL—Check Lower Bound

Instruction Operand Encoding

Description

Compare the address in the second operand with the lower bound in bnd. The second operand can be either a
register or memory operand. If the address is lower than the lower bound in bnd.LB, it will set BNDSTATUS to 01H
and signal a #BR exception.
This instruction does not cause any memory access, and does not read or write any flags.

Operation

BNDCL BND, reg
IF reg < BND.LB Then

BNDSTATUS 01H;
#BR;

FI;

BNDCL BND, mem
TEMP LEA(mem);
IF TEMP < BND.LB Then

BNDSTATUS 01H;
#BR;

FI;

Intel C/C++ Compiler Intrinsic Equivalent

BNDCL void _bnd_chk_ptr_lbounds(const void *q)

Flags Affected

None

Protected Mode Exceptions
#BR If lower bound check fails.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 67H prefix is not used and CS.D=0.
If 67H prefix is used and CS.D=1.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

F3 0F 1A /r RM NE/V MPX Generate a #BR if the address in r/m32 is lower than the lower
bound in bnd.LB.BNDCL bnd, r/m32

F3 0F 1A /r RM V/NE MPX Generate a #BR if the address in r/m64 is lower than the lower
bound in bnd.LB.BNDCL bnd, r/m64

Op/En Operand 1 Operand 2 Operand 3

RM ModRM:reg (w) ModRM:r/m (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 58

Real-Address Mode Exceptions
#BR If lower bound check fails.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

Virtual-8086 Mode Exceptions
#BR If lower bound check fails.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.
Same exceptions as in protected mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 59

BNDCU/BNDCN—Check Upper Bound

Instruction Operand Encoding

Description

Compare the address in the second operand with the upper bound in bnd. The second operand can be either a
register or a memory operand. If the address is higher than the upper bound in bnd.UB, it will set BNDSTATUS to
01H and signal a #BR exception.
BNDCU perform 1’s complement operation on the upper bound of bnd first before proceeding with address
comparison. BNDCN perform address comparison directly using the upper bound in bnd that is already reverted
out of 1’s complement form.
This instruction does not cause any memory access, and does not read or write any flags.
Effective address computation of m32/64 has identical behavior to LEA

Operation

BNDCU BND, reg
IF reg > NOT(BND.UB) Then

BNDSTATUS 01H;
#BR;

FI;

BNDCU BND, mem
TEMP LEA(mem);
IF TEMP > NOT(BND.UB) Then

BNDSTATUS 01H;
#BR;

FI;

BNDCN BND, reg
IF reg > BND.UB Then

BNDSTATUS 01H;
#BR;

FI;

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

F2 0F 1A /r RM NE/V MPX Generate a #BR if the address in r/m32 is higher than the upper
bound in bnd.UB (bnb.UB in 1's complement form).BNDCU bnd, r/m32

F2 0F 1A /r RM V/NE MPX Generate a #BR if the address in r/m64 is higher than the upper
bound in bnd.UB (bnb.UB in 1's complement form).BNDCU bnd, r/m64

F2 0F 1B /r RM NE/V MPX Generate a #BR if the address in r/m32 is higher than the upper
bound in bnd.UB (bnb.UB not in 1's complement form).BNDCN bnd, r/m32

F2 0F 1B /r RM V/NE MPX Generate a #BR if the address in r/m64 is higher than the upper
bound in bnd.UB (bnb.UB not in 1's complement form).BNDCN bnd, r/m64

Op/En Operand 1 Operand 2 Operand 3

RM ModRM:reg (w) ModRM:r/m (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 60

BNDCN BND, mem
TEMP LEA(mem);
IF TEMP > BND.UB Then

BNDSTATUS 01H;
#BR;

FI;

Intel C/C++ Compiler Intrinsic Equivalent

BNDCU .void _bnd_chk_ptr_ubounds(const void *q)

Flags Affected

None

Protected Mode Exceptions
#BR If upper bound check fails.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 67H prefix is not used and CS.D=0.
If 67H prefix is used and CS.D=1.

Real-Address Mode Exceptions
#BR If upper bound check fails.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

Virtual-8086 Mode Exceptions
#BR If upper bound check fails.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.
Same exceptions as in protected mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 61

BNDLDX—Load Extended Bounds Using Address Translation

Instruction Operand Encoding

Description

BNDLDX uses the linear address constructed from the base register and displacement of the SIB-addressing form
of the memory operand (mib) to perform address translation to access a bound table entry and conditionally load
the bounds in the BTE to the destination. The destination register is updated with the bounds in the BTE, if the
content of the index register of mib matches the pointer value stored in the BTE.
If the pointer value comparison fails, the destination is updated with INIT bounds (lb = 0x0, ub = 0x0) (note: as
articulated earlier, the upper bound is represented using 1's complement, therefore, the 0x0 value of upper bound
allows for access to full memory).
This instruction does not cause memory access to the linear address of mib nor the effective address referenced
by the base, and does not read or write any flags.
Segment overrides apply to the linear address computation with the base of mib, and are used during address
translation to generate the address of the bound table entry. By default, the address of the BTE is assumed to be
linear address. There are no segmentation checks performed on the base of mib.
The base of mib will not be checked for canonical address violation as it does not access memory.
Any encoding of this instruction that does not specify base or index register will treat those registers as zero
(constant). The reg-reg form of this instruction will remain a NOP.
The scale field of the SIB byte has no effect on these instructions and is ignored.
The bound register may be partially updated on memory faults. The order in which memory operands are loaded
is implementation specific.

Operation

base mib.SIB.base ? mib.SIB.base + Disp: 0;
ptr_value mib.SIB.index ? mib.SIB.index : 0;

32-bit protected mod or compatibility mode
A_BDE[31:0] (Zero_extend32(base[31:12] << 2) + (BNDCFG[31:12] <<12);
A_BT[31:0] LoadFrom(A_BDE);
IF A_BT[0] equal 0 Then

BNDSTATUS A_BDE | 02H;
#BR;

FI;
A_BTE[31:0] (Zero_extend32(base[11:2] << 4) + (A_BT[31:2] << 2);
Temp_lb[31:0] LoadFrom(A_BTE);
Temp_ub[31:0] LoadFrom(A_BTE + 4);

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

0F 1A /r RM V/V MPX Load the bounds stored in a bound table entry (BTE) into bnd with
address translation using the base of mib and conditional on the
index of mib matching the pointer value in the BTE.

BNDLDX bnd, mib

Op/En Operand 1 Operand 2 Operand 3

RM ModRM:reg (w)
SIB.base (r): Address of pointer

SIB.index(r)
NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 62

Temp_ptr[31:0] LoadFrom(A_BTE + 8);
IF Temp_ptr equal ptr_value Then

BND.LB Temp_lb;
BND.UB Temp_ub;

ELSE
BND.LB 0;
BND.UB 0;

FI;

64-bit mode
A_BDE[63:0] (Zero_extend64(base[47:20] << 3) + (BNDCFG[63:20] <<12);
A_BT[63:0] LoadFrom(A_BDE);
IF A_BT[0] equal 0 Then

BNDSTATUS A_BDE | 02H;
#BR;

FI;
A_BTE[63:0] (Zero_extend64(base[19:3] << 5) + (A_BT[63:3] << 3);
Temp_lb[63:0] LoadFrom(A_BTE);
Temp_ub[63:0] LoadFrom(A_BTE + 8);
Temp_ptr[63:0] LoadFrom(A_BTE + 16);
IF Temp_ptr equal ptr_value Then

BND.LB Temp_lb;
BND.UB Temp_ub;

ELSE
BND.LB 0;
BND.UB 0;

FI;

Intel C/C++ Compiler Intrinsic Equivalent

BNDLDX: Generated by compiler as needed.

Flags Affected

None

Protected Mode Exceptions
#BR If the bound directory entry is invalid.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 67H prefix is not used and CS.D=0.
If 67H prefix is used and CS.D=1.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.
If DS register contains a NULL segment selector.

#PF(fault code) If a page fault occurs.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 63

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.
#PF(fault code) If a page fault occurs.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#BR If the bound directory entry is invalid.
#UD If ModRM is RIP relative.

If the LOCK prefix is used.
If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.

#GP(0) If the memory address (A_BDE or A_BTE) is in a non-canonical form.
#PF(fault code) If a page fault occurs.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 64

BNDMK—Make Bounds

Instruction Operand Encoding

Description

Makes bounds from the second operand and stores the lower and upper bounds in the bound register bnd. The
second operand must be a memory operand. The content of the base register from the memory operand is stored
in the lower bound bnd.LB. The 1's complement of the effective address of m32/m64 is stored in the upper bound
b.UB. Computation of m32/m64 has identical behavior to LEA.
This instruction does not cause any memory access, and does not read or write any flags.
If the instruction did not specify base register, the lower bound will be zero. The reg-reg form of this instruction
retains legacy behavior (NOP).
RIP relative instruction in 64-bit will #UD.

Operation

BND.LB SRCMEM.base;
IF 64-bit mode Then

BND.UB NOT(LEA.64_bits(SRCMEM));
ELSE

BND.UB Zero_Extend.64_bits(NOT(LEA.32_bits(SRCMEM)));
FI;

Intel C/C++ Compiler Intrinsic Equivalent

BNDMKvoid * _bnd_set_ptr_bounds(const void * q, size_t size);

Flags Affected

None

Protected Mode Exceptions
#UD If ModRM is RIP relative.

If the LOCK prefix is used.
If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 67H prefix is not used and CS.D=0.
If 67H prefix is used and CS.D=1.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

F3 0F 1B /r RM NE/V MPX Make lower and upper bounds from m32 and store them in bnd.
BNDMK bnd, m32
F3 0F 1B /r RM V/NE MPX Make lower and upper bounds from m64 and store them in bnd.
BNDMK bnd, m64

Op/En Operand 1 Operand 2 Operand 3

RM ModRM:reg (w) ModRM:r/m (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 65

Real-Address Mode Exceptions
#UD If ModRM is RIP relative.

If the LOCK prefix is used.
If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

Virtual-8086 Mode Exceptions
#UD If ModRM is RIP relative.

If the LOCK prefix is used.
If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.
#SS(0) If the memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
Same exceptions as in protected mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 66

BNDMOV—Move Bounds

Instruction Operand Encoding

Description

BNDMOV moves a pair of lower and upper bound values from the source operand (the second operand) to the
destination (the first operand). Each operation is 128-bit move. The exceptions are same as the MOV instruction.
The memory format for loading/store bounds in 64-bit mode is shown in Figure 2-1.

This instruction does not change flags.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

66 0F 1A /r RM NE/V MPX Move lower and upper bound from bnd2/m64 to bound register
bnd1.BNDMOV bnd1, bnd2/m64

66 0F 1A /r RM V/NE MPX Move lower and upper bound from bnd2/m128 to bound register
bnd1.BNDMOV bnd1, bnd2/m128

66 0F 1B /r MR NE/V MPX Move lower and upper bound from bnd2 to bnd1/m64.
BNDMOV bnd1/m64, bnd2
66 0F 1B /r MR V/NE MPX Move lower and upper bound from bnd2 to bound register bnd1/

m128.BNDMOV bnd1/m128, bnd2

Op/En Operand 1 Operand 2 Operand 3

RM ModRM:reg (w) ModRM:r/m (r) NA

MR ModRM:r/m (w) ModRM:reg (r) NA

Figure 2-1. Memory Layout of BNDMOV to/from Memory

Upper Bound (UB) Lower Bound (LB)

8 016 Byte offset

BNDMOV to memory in 64-bit mode

Upper Bound (UB) Lower Bound (LB)

8 016 Byte offset

BNDMOV to memory in 32-bit mode

4

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 67

Operation

BNDMOV register to register
DEST.LB SRC.LB;
DEST.UB SRC.UB;

BNDMOV from memory
IF 64-bit mode THEN

DEST.LB LOAD_QWORD(SRC);
DEST.UB LOAD_QWORD(SRC+8);

ELSE
DEST.LB LOAD_DWORD_ZERO_EXT(SRC);
DEST.UB LOAD_DWORD_ZERO_EXT(SRC+4);

FI;

BNDMOV to memory
IF 64-bit mode THEN

DEST[63:0] SRC.LB;
DEST[127:64] SRC.UB;

ELSE
DEST[31:0] SRC.LB;
DEST[63:32] SRC.UB;

FI;

Intel C/C++ Compiler Intrinsic Equivalent

BNDMOV void * _bnd_copy_ptr_bounds(const void *q, const void *r)

Flags Affected

None

Protected Mode Exceptions
#UD If the LOCK prefix is used but the destination is not a memory operand.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 67H prefix is not used and CS.D=0.
If 67H prefix is used and CS.D=1.

#SS(0) If the memory operand effective address is outside the SS segment limit.
#GP(0) If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the destination operand points to a non-writable segment
If the DS, ES, FS, or GS segment register contains a NULL segment selector.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL is 3.
#PF(fault code) If a page fault occurs.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used but the destination is not a memory operand.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

#GP(0) If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If the memory operand effective address is outside the SS segment limit.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 68

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used but the destination is not a memory operand.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

#GP(0) If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If the memory operand effective address is outside the SS segment limit.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL is 3.
#PF(fault code) If a page fault occurs.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used but the destination is not a memory operand.

If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.
#SS(0) If the memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL is 3.
#PF(fault code) If a page fault occurs.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 69

BNDSTX—Store Extended Bounds Using Address Translation

Instruction Operand Encoding

Description

BNDSTX uses the linear address constructed from the displacement and base register of the SIB-addressing form
of the memory operand (mib) to perform address translation to store to a bound table entry. The bounds in the
source operand bnd are written to the lower and upper bounds in the BTE. The content of the index register of mib
is written to the pointer value field in the BTE.
This instruction does not cause memory access to the linear address of mib nor the effective address referenced
by the base, and does not read or write any flags.
Segment overrides apply to the linear address computation with the base of mib, and are used during address
translation to generate the address of the bound table entry. By default, the address of the BTE is assumed to be
linear address. There are no segmentation checks performed on the base of mib.
The base of mib will not be checked for canonical address violation as it does not access memory.
Any encoding of this instruction that does not specify base or index register will treat those registers as zero
(constant). The reg-reg form of this instruction will remain a NOP.
The scale field of the SIB byte has no effect on these instructions and is ignored.
The bound register may be partially updated on memory faults. The order in which memory operands are loaded
is implementation specific.

Operation

base mib.SIB.base ? mib.SIB.base + Disp: 0;
ptr_value mib.SIB.index ? mib.SIB.index : 0;

32-bit protected mod or compatibility mode
A_BDE[31:0] (Zero_extend32(base[31:12] << 2) + (BNDCFG[31:12] <<12);
A_BT[31:0] LoadFrom(A_BDE);
IF A_BT[0] equal 0 Then

BNDSTATUS A_BDE | 02H;
#BR;

FI;
A_DEST[31:0] (Zero_extend32(base[11:2] << 4) + (A_BT[31:2] << 2); // address of Bound table entry
A_DEST[8][31:0] ptr_value;
A_DEST[0][31:0] BND.LB;
A_DEST[4][31:0] BND.UB;

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

0F 1B /r MR V/V MPX Store the bounds in bnd and the pointer value in the index regis-
ter of mib to a bound table entry (BTE) with address translation
using the base of mib.

BNDSTX mib, bnd

Op/En Operand 1 Operand 2 Operand 3

MR
SIB.base (r): Address of pointer

SIB.index(r)
ModRM:reg (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 70

64-bit mode
A_BDE[63:0] (Zero_extend64(base[47:20] << 3) + (BNDCFG[63:20] <<12);
A_BT[63:0] LoadFrom(A_BDE);
IF A_BT[0] equal 0 Then

BNDSTATUS A_BDE | 02H;
#BR;

FI;
A_DEST[63:0] (Zero_extend64(base[19:3] << 5) + (A_BT[63:3] << 3); // address of Bound table entry
A_DEST[16][63:0] ptr_value;
A_DEST[0][63:0] BND.LB;
A_DEST[8][63:0] BND.UB;

Intel C/C++ Compiler Intrinsic Equivalent

BNDSTX: _bnd_store_ptr_bounds(const void **ptr_addr, const void *ptr_val);

Flags Affected

None

Protected Mode Exceptions
#BR If the bound directory entry is invalid.
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 67H prefix is not used and CS.D=0.
If 67H prefix is used and CS.D=1.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.
If DS register contains a NULL segment selector.
If the destination operand points to a non-writable segment

#PF(fault code) If a page fault occurs.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

If ModRM.r/m encodes BND4-BND7 when Intel MPX is enabled.
If 16-bit addressing is used.

#GP(0) If a destination effective address of the Bound Table entry is outside the DS segment limit.
#PF(fault code) If a page fault occurs.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 71

64-Bit Mode Exceptions
#BR If the bound directory entry is invalid.
#UD If ModRM is RIP relative.

If the LOCK prefix is used.
If ModRM.r/m and REX encodes BND4-BND15 when Intel MPX is enabled.

#GP(0) If the memory address (A_BDE or A_BTE) is in a non-canonical form.
If the destination operand points to a non-writable segment

#PF(fault code) If a page fault occurs.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 72

CPUID—CPU Identification

Instruction Operand Encoding

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can
set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction
operates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.1 The
instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well).
For example, the following pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value
and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Table 3-17 shows information returned, depending on the initial value loaded into the EAX register. Table 3-18
shows the maximum CPUID input value recognized for each family of IA-32 processors on which CPUID is imple-
mented.

Two types of information are returned: basic and extended function information. If a value entered for CPUID.EAX
is higher than the maximum input value for basic or extended function for that processor then the data for the
highest basic information leaf is returned. For example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *)
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *)
CPUID.EAX = 0BH (* Returns Extended Topology Enumeration leaf. *)
CPUID.EAX = 0CH (* INVALID: Returns the same information as CPUID.EAX = 0BH. *)
CPUID.EAX = 80000008H (* Returns linear/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0BH. *)

If a value entered for CPUID.EAX is less than or equal to the maximum input value and the leaf is not supported
on that processor then 0 is returned in all the registers. For example, using the Intel Core i7 processor, the
following is true:

CPUID.EAX = 07H (*Returns EAX=EBX=ECX=EDX=0. *)

When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence
on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution
guarantees that any modifications to flags, registers, and memory for previous instructions are completed before
the next instruction is fetched and executed.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F A2 CPUID NP Valid Valid Returns processor identification and feature
information to the EAX, EBX, ECX, and EDX
registers, as determined by input entered in
EAX (in some cases, ECX as well).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 73

See also:

“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A.

“Caching Translation Information” in Chapter 4, “Paging,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

Table 3-17 Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 3-18)
“Genu”
“ntel”
“ineI”

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see Figure 3-6)

Bits 07-00: Brand Index
Bits 15-08: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors in this physical package*.
Bits 31-24: Initial APIC ID

Feature Information (see Figure 3-7 and Table 3-19)
Feature Information (see Figure 3-8 and Table 3-20)

NOTES:
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the number of unique initial APIC

IDs reserved for addressing different logical processors in a physical package. This field is only valid if
CPUID.1.EDX.HTT[bit 28]= 1.

02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 3-21)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX
EBX
ECX

EDX

Reserved.
Reserved.
Bits 00-31 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value
in this register is reserved.)
Bits 32-63 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value
in this register is reserved.)

NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models, use
the PSN flag (returned using CPUID) to check for PSN support before accessing the feature.

CPUID leaves > 3 < 80000000 are visible only when IA32_MISC_ENABLE.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf

04H NOTES:
Leaf 04H output depends on the initial value in ECX.*
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters for each level on page 2-94.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 74

EAX Bits 04-00: Cache Type Field
0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Bits 07-05: Cache Level (starts at 1)
Bit 08: Self Initializing cache level (does not need SW initialization)
Bit 09: Fully Associative cache

Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache**, ***
Bits 31-26: Maximum number of addressable IDs for processor cores in the physical
package**, ****, *****

EBX Bits 11-00: L = System Coherency Line Size**
Bits 21-12: P = Physical Line partitions**
Bits 31-22: W = Ways of associativity**

ECX Bits 31-00: S = Number of Sets**

EDX Bit 0: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads sharing this
cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads sharing
this cache.

Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 2: Complex Cache Indexing
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using all address bits.

Bits 31-03: Reserved = 0

NOTES:
* If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n+1 is invalid if sub-

leaf n returns EAX[4:0] as 0.
** Add one to the return value to get the result.
***The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique ini-

tial APIC IDs reserved for addressing different logical processors sharing this cache
**** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of unique

Core_IDs reserved for addressing different processor cores in a physical package. Core ID is a subset of
bits of the initial APIC ID.

***** The returned value is constant for valid initial values in ECX. Valid ECX values start from 0.

MONITOR/MWAIT Leaf

05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor granularity)
Bits 31-16: Reserved = 0

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor granularity)
Bits 31-16: Reserved = 0

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 75

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported

Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled

Bits 31 - 02: Reserved

EDX Bits 03 - 00: Number of C0* sub C-states supported using MWAIT
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 23 - 20: Number of C5* sub C-states supported using MWAIT
Bits 27 - 24: Number of C6* sub C-states supported using MWAIT
Bits 31 - 28: Number of C7* sub C-states supported using MWAIT
NOTE:
* The definition of C0 through C7 states for MWAIT extension are processor-specific C-states, not ACPI C-

states.

Thermal and Power Management Leaf

06H EAX

EBX

Bit 00: Digital temperature sensor is supported if set
Bit 01: Intel Turbo Boost Technology Available (see description of IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bit 07: HWP. HWP base registers (IA32_PM_ENABLE[bit 0], IA32_HWP_CAPABILITIES,
IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set.
Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set.
Bit 09: HWP_Activity_Window. IA32_HWP_REQUEST[bits 41:32] is supported if set.
Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUEST[bits 31:24] is supported if set.
Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set.
Bit 12: Reserved.
Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs are
supported if set.
Bits 31 - 15: Reserved
Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The
capability to provide a measure of delivered processor performance (since last reset of the counters), as
a percentage of the expected processor performance when running at the TSC frequency.
Bits 02 - 01: Reserved = 0
Bit 03: The processor supports performance-energy bias preference if CPUID.06H:ECX.SETBH[bit 3] is set
and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H).
Bits 31 - 04: Reserved = 0

EDX Reserved = 0

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)

07H Sub-leaf 0 (Input ECX = 0). *

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 76

EAX Bits 31-00: Reports the maximum input value for supported leaf 7 sub-leaves.

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01: IA32_TSC_ADJUST MSR is supported if 1.
Bit 02: Reserved
Bit 03: BMI1
Bit 04: HLE
Bit 05: AVX2
Bit 06: Reserved
Bit 07: SMEP. Supports Supervisor-Mode Execution Prevention if 1.
Bit 08: BMI2
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software that manages process-context
identifiers.
Bit 11: RTM
Bit 12: Supports Platform Quality of Service Monitoring (PQM) capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.
Bit 14: MPX. Supports Intel® Memory Protection Extensions if 1.
Bit 15: Supports Platform Quality of Service Enforcement (PQE) capability if 1.
Bits 17:16: Reserved
Bit 18: RDSEED
Bit 19: ADX
Bit 20: SMAP. Supports Supervisor-Mode Access Prevention (and the CLAC/STAC instructions) if 1.
Bits 24:21: Reserved
Bit 25: Intel Processor Trace
Bits 31:26: Reserved

ECX Bit 00: PREFETCHWT1
Bits 02:01: Reserved
Bit 03: PKU. Supports protection keys for user-mode pages if 1.
Bit 04: OSPKE. If 1, OS has set CR4.PKE to enable protection keys (and the RDPKRU/WRPKRU instructions)
Bits 31:05: Reserved

EDX Reserved

NOTE:
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n

exceeds the value that sub-leaf 0 returns in EAX.

Direct Cache Access Information Leaf

09H EAX

EBX

ECX

EDX

Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H)

Reserved

Reserved

Reserved

Architectural Performance Monitoring Leaf

0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring counter
Bits 31 - 24: Length of EBX bit vector to enumerate architectural performance monitoring events

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 77

EBX Bit 00: Core cycle event not available if 1
Bit 01: Instruction retired event not available if 1
Bit 02: Reference cycles event not available if 1
Bit 03: Last-level cache reference event not available if 1
Bit 04: Last-level cache misses event not available if 1
Bit 05: Branch instruction retired event not available if 1
Bit 06: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

ECX Reserved = 0

EDX Bits 04 - 00: Number of fixed-function performance counters (if Version ID > 1)
Bits 12- 05: Bit width of fixed-function performance counters (if Version ID > 1)
Reserved = 0

Extended Topology Enumeration Leaf

0BH NOTES:
Most of Leaf 0BH output depends on the initial value in ECX.
The EDX output of leaf 0BH is always valid and does not vary with input value in ECX.
Output value in ECX[7:0] always equals input value in ECX[7:0].
For sub-leaves that return an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0.

 If an input value n in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with ECX >
n also return 0 in ECX[15:8].

EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type*.
All logical processors with the same next level ID share current level.
Bits 31-05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as shipped
by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input
Bits 15 - 08: Level type***.
Bits 31 - 16:: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in this
field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical processors
available to BIOS/OS/Applications may be different from the value of EBX[15:0], depending on software
and platform hardware configurations.

*** The value of the “level type” field is not related to level numbers in any way, higher “level type” val-
ues do not mean higher levels. Level type field has the following encoding:
0: invalid
1: SMT
2: Core
3-255: Reserved

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 78

Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0).

EAX Bits 31-00: Reports the supported bits of the lower 32 bits of XCR0. XCR0[n] can be set to 1 only if
EAX[n] is 1.
Bit 00: x87 state
Bit 01: SSE state
Bit 02: AVX state
Bits 04 - 03: MPX state
Bit 07 - 05: AVX-512 state
Bit 08: Used for IA32_XSS
Bit 09: PKRU state
Bits 31-10: Reserved

EBX Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by
enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save area
are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the XSAVE/
XRSTOR save area required by all supported features in the processor, i.e all the valid bit fields in XCR0.

EDX Bit 31-00: Reports the supported bits of the upper 32 bits of XCR0. XCR0[n+32] can be set to 1 only if
EDX[n] is 1.
Bits 31- 00: Reserved

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

0DH EAX Bit 00: XSAVEOPT is available
Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set
Bit 02: Supports XGETBV with ECX = 1 if set
Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set
Bits 31-04: Reserved

EBX Bits 31-00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.

ECX Bits 31-00: Reports the supported bits of the lower 32 bits of the IA32_XSS MSR. IA32_XSS[n] can be
set to 1 only if ECX[n] is 1.
Bits 07-00: Used for XCR0
Bit 08: PT state
Bit 09: Used for XCR0
Bits 31-10: Reserved

EDX Bits 31-00: Reports the supported bits of the upper 32 bits of the IA32_XSS MSR. IA32_XSS[n+32] can
be set to 1 only if EDX[n] is 1.
Bits 31-00: Reserved

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 79

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX.
Each sub-leaf index (starting at position 2) is supported if it corresponds to a supported bit in either the
XCR0 register or the IA32_XSS MSR.
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf n (0 ≤ n ≤ 31) is invalid

if sub-leaf 0 returns 0 in EAX[n] and sub-leaf 1 returns 0 in ECX[n]. Sub-leaf n (32 ≤ n ≤ 63) is invalid if
sub-leaf 0 returns 0 in EDX[n-32] and sub-leaf 1 returns 0 in EDX[n-32].

EAX Bits 31-0: The size in bytes (from the offset specified in EBX) of the save area for an extended state fea-
ture associated with a valid sub-leaf index, n.

EBX Bits 31-0: The offset in bytes of this extended state component’s save area from the beginning of the
XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, does not map to a valid bit in the XCR0 register*.

ECX Bit 0 is set if the bit n (corresponding to the sub-leaf index) is supported in the IA32_XSS MSR; it is clear
if bit n is instead supported in XCR0.
Bit 1 is set if, when the compacted format of an XSAVE area is used, this extended state component
located on the next 64-byte boundary following the preceding state component (otherwise, it is located
immediately following the preceding state component).
Bits 31:02 are reserved.
This field reports 0 if the sub-leaf index, n, is invalid*.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Platform QoS Monitoring Enumeration Sub-leaf (EAX = 0FH, ECX = 0)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX.
Sub-leaf index 0 reports valid resource type starting at bit position 1 of EDX

EAX Reserved.

EBX Bits 31-0: Maximum range (zero-based) of RMID within this physical processor of all types.

ECX Reserved.

EDX Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS Monitoring if 1.
Bits 31:02: Reserved

L3 Cache QoS Monitoring Capability Enumeration Sub-leaf (EAX = 0FH, ECX = 1)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX.

EAX Reserved.

EBX Bits 31-0: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes).

ECX Maximum range (zero-based) of RMID of this resource type.

EDX Bit 00: Supports L3 occupancy monitoring if 1.
Bits 31:01: Reserved

Platform QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = 0)

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 80

10H NOTES:
Leaf 10H output depends on the initial value in ECX.
Sub-leaf index 0 reports valid resource identification (ResID) starting at bit position 1 of EDX

EAX Reserved.

EBX Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS Enforcement if 1.
Bits 31:02: Reserved

ECX Reserved.

EDX Reserved.

L3 Cache QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = ResID =1)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.

EAX Bits 4:0: Length of the capacity bit mask for the corresponding ResID.
Bits 31:05: Reserved

EBX Bits 31-0: Bit-granular map of isolation/contention of allocation units.

ECX Bit 00: Reserved.
Bit 01: Updates of COS should be infrequent if 1.
Bit 02: Code and Data Prioritization Technology supported if 1.
Bits 31:03: Reserved

EDX Bits 15:0: Highest COS number supported for this ResID.
Bits 31:16: Reserved

Intel Processor Trace Enumeration Main Leaf (EAX = 14H, ECX = 0)

14H NOTES:
Leaf 14H main leaf (ECX = 0).

EAX Bits 31:0: Reports the maximum number sub-leaves that are supported in leaf 14H.

EBX Bit 00: If 1, Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that IA32_RTIT_CR3_MATCH
MSR can be accessed.
Bits 01: If 1, Indicates support of Configurable PSB and Cycle-Accurate Mode.
Bits 02: If 1, Indicates support of IP Filtering, TraceStop filtering, and preservation of Intel PT MSRs across
warm reset.
Bits 03: If 1, Indicates support of MTC timing packet and suppression of COFI-based packets.
Bits 31: 04: Reserved

ECX Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output
scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
Bit 01: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the Mas-
kOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.
Bits 02: If 1, Indicates support of Single-Range Output scheme.
Bits 03: If 1, Indicates support of output to Trace Transport subsystem.
Bit 30:04: Reserved
Bit 31: If 1, Generated packets which contain IP payloads have LIP values, which include the CS base com-
ponent.

EDX Bits 31- 00: Reserved

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 81

Intel Processor Trace Enumeration Sub-leaf (EAX = 14H, ECX = 1)

14H EAX Bits 2:0: Number of configurable Address Ranges for filtering.
Bits 15-03: Reserved
Bit 31:16: Bitmap of supported MTC period encodings

EBX Bits 15-0: Bitmap of supported Cycle Threshold value encodings
Bit 31:16: Bitmap of supported Configurable PSB frequency encodings

ECX Bits 31-00: Reserved

EDX Bits 31- 00: Reserved

Time Stamp Counter/Core Crystal Clock Information-leaf

15H NOTES:
If EBX[31:0] is 0, the TSC/”core crystal clock” ratio is not enumerated.
EBX[31:0]/EAX[31:0] indicates the ratio of the TSC frequency and the core crystal clock frequency.
“TSC frequency” = “core crystal clock frequency” * EBX/EAX.
The core crystal clock may differ from the reference clock, bus clock, or core clock frequencies.

EAX Bits 31:0: An unsigned integer which is the denominator of the TSC/”core crystal clock” ratio.

EBX Bits 31-0: An unsigned integer which is the numerator of the TSC/”core crystal clock” ratio.

ECX Bits 31:0: Reserved = 0.

EDX Bits 31:0: Reserved = 0.

Processor Frequency Information Leaf

16H EAX

EBX

ECX

EDX

Bits 15:0: Processor Base Frequency (in MHz).
Bits 31:16: Reserved =0
Bits 15:0: Maximum Frequency (in MHz).
Bits 31:16: Reserved = 0
Bits 15:0: Bus (Reference) Frequency (in MHz).
Bits 31:16: Reserved = 0
Reserved
NOTES:
* Data is returned from this interface in accordance with the processor's specification and does not reflect
actual values. Suitable use of this data includes the display of processor information in like manner to the
processor brand string and for determining the appropriate range to use when displaying processor
information e.g. frequency history graphs. The returned information should not be used for any other
purpose as the returned information does not accurately correlate to information / counters returned by
other processor interfaces.

While a processor may support the Processor Frequency Information leaf, fields that return a value of
zero are not supported.

Unimplemented CPUID Leaf Functions

40000000H
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or feature information if the initial
EAX value is in the range 40000000H to 4FFFFFFFH.

Extended Function CPUID Information

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 82

80000000H EAX Maximum Input Value for Extended Function CPUID Information (see
Table 3-18).

EBX
ECX
EDX

Reserved
Reserved
Reserved

80000001H EAX

EBX

ECX

Extended Processor Signature and Feature Bits.

Reserved

Bit 00: LAHF/SAHF available in 64-bit mode
Bits 04-01 Reserved
Bit 05: LZCNT
Bits 07-06 Reserved
Bit 08: PREFETCHW
Bits 31-09 Reserved

EDX Bits 10-00: Reserved
Bit 11: SYSCALL/SYSRET available in 64-bit mode
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 25-21: Reserved = 0
Bit 26: 1-GByte pages are available if 1
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1
Bits 28: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H EAX
EBX

Reserved = 0
Reserved = 0

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 83

INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and the Vendor Identification
String

When CPUID executes with EAX set to 0, the processor returns the highest value the CPUID recognizes for
returning basic processor information. The value is returned in the EAX register (see Table 3-18) and is processor
specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the string is “Genui-
neIntel” and is expressed:

EBX ← 756e6547h (* "Genu", with G in the low eight bits of BL *)
EDX ← 49656e69h (* "ineI", with i in the low eight bits of DL *)
ECX ← 6c65746eh (* "ntel", with n in the low eight bits of CL *)

ECX

EDX

Bits 07-00: Cache Line size in bytes
Bits 11-08: Reserved
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0

NOTES:
* L2 associativity field encodings:

00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Bits 07-00: Reserved = 0
Bit 08: Invariant TSC available if 1
Bits 31-09: Reserved = 0

80000008H EAX Linear/Physical Address size
Bits 07-00: #Physical Address Bits*
Bits 15-8: #Linear Address Bits
Bits 31-16: Reserved = 0

EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported should

come from this field.

Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 84

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Information

When CPUID executes with EAX set to 80000000H, the processor returns the highest value the processor recog-
nizes for returning extended processor information. The value is returned in the EAX register and is processor
specific.

IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is loaded with the
update signature whenever CPUID executes. The signature is returned in the upper DWORD. For details, see
Chapter 9 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

INPUT EAX = 01H: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 01H, version information is returned in EAX (see Figure 3-6). For example:
model, family, and processor type for the Intel Xeon processor 5100 series is as follows:
• Model — 1111B
• Family — 0101B
• Processor Type — 00B

See Table 3-18 for available processor type values. Stepping IDs are provided as needed.

Figure 3-6 Version Information Returned by CPUID in EAX

OM16525

Processor Type

034781112131415161920272831

EAX

Family (0FH for the Pentium 4 Processor Family)

Model

Extended
Family ID

Extended
Model ID

Family
ID

Model
Stepping

ID

Extended Family ID (0)

Extended Model ID (0)

Reserved

Table 3-18 Processor Type Field
Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor (not applicable to Intel486 processors) 10B

Intel reserved 11B

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 85

NOTE
See Chapter 17 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for information on identifying earlier IA-32 processors.

The Extended Family ID needs to be examined only when the Family ID is 0FH. Integrate the fields into a display
using the following rule:

IF Family_ID ≠ 0FH
THEN DisplayFamily = Family_ID;
ELSE DisplayFamily = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

FI;
(* Show DisplayFamily as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH. Integrate the field into a
display using the following rule:

IF (Family_ID = 06H or Family_ID = 0FH)
THEN DisplayModel = (Extended_Model_ID « 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE DisplayModel = Model_ID;

FI;
(* Show DisplayModel as HEX field. *)

INPUT EAX = 01H: Returns Additional Information in EBX

When CPUID executes with EAX set to 01H, additional information is returned to the EBX register:
• Brand index (low byte of EBX) — this number provides an entry into a brand string table that contains brand

strings for IA-32 processors. More information about this field is provided later in this section.
• CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the size of the cache line

flushed with CLFLUSH instruction in 8-byte increments. This field was introduced in the Pentium 4 processor.
• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the local APIC on the

processor during power up. This field was introduced in the Pentium 4 processor.

INPUT EAX = 01H: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 01H, feature information is returned in ECX and EDX.
• Figure 3-7 and Table 3-19 show encodings for ECX.
• Figure 3-8 and Table 3-20 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret feature flags.

NOTE
Software must confirm that a processor feature is present using feature flags returned by CPUID
prior to using the feature. Software should not depend on future offerings retaining all features.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 86

Figure 3-7 Feature Information Returned in the ECX Register

OM16524b

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EIST — Enhanced Intel SpeedStep® Technology

DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT

PCLMULQDQ — Carryless Multiplication

Reserved

CMPXCHG16B

SMX — Safer Mode Extensions

xTPR Update Control

SSSE3 — SSSE3 Extensions

PDCM — Perf/Debug Capability MSR

VMX — Virtual Machine Extensions

SSE4_1 — SSE4.1

OSXSAVE

SSE4_2 — SSE4.2

DCA — Direct Cache Access

x2APIC

POPCNT

XSAVE

AVX

AES

FMA — Fused Multiply Add

SSE3 — SSE3 Extensions

PCID — Process-context Identifiers

0

DTES64 — 64-bit DS Area

MOVBE

TSC-Deadline

F16C
RDRAND

SDBG

Table 3-19 Feature Information Returned in the ECX Register

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor supports this
technology.

1 PCLMULQDQ PCLMULQDQ. A value of 1 indicates the processor supports the PCLMULQDQ instruction.

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout.

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the
Debug Store feature to allow for branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology.

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See
Chapter 5, “Safer Mode Extensions Reference”.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 87

7 EIST Enhanced Intel SpeedStep® technology. A value of 1 indicates that the processor supports this
technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology.

9 SSSE3 A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A
value of 0 indicates the instruction extensions are not present in the processor.

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode
or shared mode. A value of 0 indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.

11 SDBG A value of 1 indicates the processor supports IA32_DEBUG_INTERFACE MSR for silicon debug.

12 FMA A value of 1 indicates the processor supports FMA extensions using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is available. See the
“CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes” section in this chapter for a
description.

14 xTPR Update
Control

xTPR Update Control. A value of 1 indicates that the processor supports changing
IA32_MISC_ENABLE[bit 23].

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the processor supports the performance
and debug feature indication MSR IA32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that
software may set CR4.PCIDE to 1.

18 DCA A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped
device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1.

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2.

21 x2APIC A value of 1 indicates that the processor supports x2APIC feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT instruction.

24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer supports one-shot operation using a
TSC deadline value.

25 AESNI A value of 1 indicates that the processor supports the AESNI instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the XSAVE/XRSTOR processor extended states
feature, the XSETBV/XGETBV instructions, and XCR0.

27 OSXSAVE A value of 1 indicates that the OS has set CR4.OSXSAVE[bit 18] to enable XSETBV/XGETBV
instructions to access XCR0 and to support processor extended state management using XSAVE/
XRSTOR.

28 AVX A value of 1 indicates the processor supports the AVX instruction extensions.

29 F16C A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.

30 RDRAND A value of 1 indicates that processor supports RDRAND instruction.

31 Not Used Always returns 0.

Table 3-19 Feature Information Returned in the ECX Register (Contd.)

Bit # Mnemonic Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 88

Figure 3-8 Feature Information Returned in the EDX Register

OM16523

PBE–Pend. Brk. EN.

012345678910111213141516171819202122232425262728293031

EDX

TM–Therm. Monitor
HTT–Multi-threading
SS–Self Snoop
SSE2–SSE2 Extensions
SSE–SSE Extensions
FXSR–FXSAVE/FXRSTOR
MMX–MMX Technology
ACPI–Thermal Monitor and Clock Ctrl
DS–Debug Store
CLFSH–CLFLUSH instruction
PSN–Processor Serial Number
PSE-36 – Page Size Extension
PAT–Page Attribute Table
CMOV–Conditional Move/Compare Instruction
MCA–Machine Check Architecture
PGE–PTE Global Bit
MTRR–Memory Type Range Registers
SEP–SYSENTER and SYSEXIT
APIC–APIC on Chip
CX8–CMPXCHG8B Inst.
MCE–Machine Check Exception
PAE–Physical Address Extensions
MSR–RDMSR and WRMSR Support
TSC–Time Stamp Counter
PSE–Page Size Extensions
DE–Debugging Extensions
VME–Virtual-8086 Mode Enhancement
FPU–x87 FPU on Chip

Reserved

Table 3-20 More on Feature Information Returned in the EDX Register

Bit # Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling the
feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the TSS
with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for controlling the feature, and optional
trapping of accesses to DR4 and DR5.

3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the
feature, the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs, and
PTEs.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 89

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are
supported. Some of the MSRs are implementation dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table
entry formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead of
4 Mbyte pages if PAE bit is 1.

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling the
feature. This feature does not define the model-specific implementations of machine-check error logging,
reporting, and processor shutdowns. Machine Check exception handlers may have to depend on processor
version to do model specific processing of the exception, or test for the presence of the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly
locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding to
memory mapped commands in the physical address range FFFE0000H to FFFE0FFFH (by default - some
processors permit the APIC to be relocated).

10 Reserved Reserved

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported.

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that describe
what memory types are supported, how many variable MTRRs are supported, and whether fixed MTRRs are
supported.

13 PGE Page Global Bit. The global bit is supported in paging-structure entries that map a page, indicating TLB entries
that are common to different processes and need not be flushed. The CR4.PGE bit controls this feature.

14 MCA Machine Check Architecture. The Machine Check Architecture, which provides a compatible mechanism for
error reporting in P6 family, Pentium 4, Intel Xeon processors, and future processors, is supported. The
MCG_CAP MSR contains feature bits describing how many banks of error reporting MSRs are supported.

15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is supported. In addition, if x87 FPU is
present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range
Registers (MTRRs), allowing an operating system to specify attributes of memory accessed through a linear
address on a 4KB granularity.

17 PSE-36 36-Bit Page Size Extension. 4-MByte pages addressing physical memory beyond 4 GBytes are supported with
32-bit paging. This feature indicates that upper bits of the physical address of a 4-MByte page are encoded in
bits 20:13 of the page-directory entry. Such physical addresses are limited by MAXPHYADDR and may be up to
40 bits in size.

18 PSN Processor Serial Number. The processor supports the 96-bit processor identification number feature and the
feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved

21 DS Debug Store. The processor supports the ability to write debug information into a memory resident buffer.
This feature is used by the branch trace store (BTS) and precise event-based sampling (PEBS) facilities (see
Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C).

Table 3-20 More on Feature Information Returned in the EDX Register (Contd.)

Bit # Mnemonic Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 90

INPUT EAX = 02H: TLB/Cache/Prefetch Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 02H, the processor returns information about the processor’s internal TLBs,
cache and prefetch hardware in the EAX, EBX, ECX, and EDX registers. The information is reported in encoded
form and fall into the following categories:
• The least-significant byte in register EAX (register AL) will always return 01H. Software should ignore this

value and not interpret it as an informational descriptor.
• The most significant bit (bit 31) of each register indicates whether the register contains valid information (set

to 0) or is reserved (set to 1).
• If a register contains valid information, the information is contained in 1 byte descriptors. There are four types

of encoding values for the byte descriptor, the encoding type is noted in the second column of Table 3-21.
Table 3-21 lists the encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, ECX, and
EDX registers is not defined; that is, specific bytes are not designated to contain descriptors for specific cache,
prefetch, or TLB types. The descriptors may appear in any order. Note also a processor may report a general
descriptor type (FFH) and not report any byte descriptor of “cache type” via CPUID leaf 2.

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that
allow processor temperature to be monitored and processor performance to be modulated in predefined duty
cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save and
restore of the floating point context. Presence of this bit also indicates that CR4.OSFXSR is available for an
operating system to indicate that it supports the FXSAVE and FXRSTOR instructions.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting memory types by performing a snoop of its
own cache structure for transactions issued to the bus.

28 HTT Max APIC IDs reserved field is Valid. A value of 0 for HTT indicates there is only a single logical processor in
the package and software should assume only a single APIC ID is reserved. A value of 1 for HTT indicates the
value in CPUID.1.EBX[23:16] (the Maximum number of addressable IDs for logical processors in this package) is
valid for the package.

29 TM Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC).

30 Reserved Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in the
stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the
processor should return to normal operation to handle the interrupt. Bit 10 (PBE enable) in the
IA32_MISC_ENABLE MSR enables this capability.

Table 3-20 More on Feature Information Returned in the EDX Register (Contd.)

Bit # Mnemonic Description

Table 3-21 Encoding of CPUID Leaf 2 Descriptors
 Value Type Description

00H General Null descriptor, this byte contains no information

01H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H TLB Instruction TLB: 4 MByte pages, fully associative, 2 entries

03H TLB Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H TLB Data TLB: 4 MByte pages, 4-way set associative, 8 entries

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 91

05H TLB Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H Cache 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H Cache 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

09H Cache 1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size

0AH Cache 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH TLB Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

0CH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

0DH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size

0EH Cache 1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size

1DH Cache 2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size

21H Cache 2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size

22H Cache 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector

23H Cache 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

24H Cache 2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size

25H Cache 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

29H Cache 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

2CH Cache 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H Cache 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size

40H Cache No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache

41H Cache 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H Cache 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H Cache 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H Cache 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H Cache 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H Cache 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H Cache 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

48H Cache 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size

49H Cache 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model
06H);

2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH Cache 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH Cache 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH Cache 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

4DH Cache 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

4EH Cache 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

4FH TLB Instruction TLB: 4 KByte pages, 32 entries

50H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

Table 3-21 Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 92

52H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

55H TLB Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries

56H TLB Data TLB0: 4 MByte pages, 4-way set associative, 16 entries

57H TLB Data TLB0: 4 KByte pages, 4-way associative, 16 entries

59H TLB Data TLB0: 4 KByte pages, fully associative, 16 entries

5AH TLB Data TLB0: 2-MByte or 4 MByte pages, 4-way set associative, 32 entries

5BH TLB Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH TLB Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH TLB Data TLB: 4 KByte and 4 MByte pages,256 entries

60H Cache 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

61H TLB Instruction TLB: 4 KByte pages, fully associative, 48 entries

63H TLB Data TLB: 1 GByte pages, 4-way set associative, 4 entries

66H Cache 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H Cache 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H Cache 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Cache Trace cache: 12 K-μop, 8-way set associative

71H Cache Trace cache: 16 K-μop, 8-way set associative

72H Cache Trace cache: 32 K-μop, 8-way set associative

76H TLB Instruction TLB: 2M/4M pages, fully associative, 8 entries

78H Cache 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H Cache 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7AH Cache 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7BH Cache 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7CH Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector

7DH Cache 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH Cache 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

80H Cache 2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size

82H Cache 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H Cache 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H Cache 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H Cache 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H Cache 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

A0H DTLB DTLB: 4k pages, fully associative, 32 entries

B0H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B1H TLB Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B2H TLB Instruction TLB: 4KByte pages, 4-way set associative, 64 entries

B3H TLB Data TLB: 4 KByte pages, 4-way set associative, 128 entries

Table 3-21 Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 93

Example 3-1 Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following information about caches and TLBs
when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

Which means:
• The least-significant byte (byte 0) of register EAX is set to 01H. This value should be ignored.

B4H TLB Data TLB1: 4 KByte pages, 4-way associative, 256 entries

B5H TLB Instruction TLB: 4KByte pages, 8-way set associative, 64 entries

B6H TLB Instruction TLB: 4KByte pages, 8-way set associative, 128 entries

BAH TLB Data TLB1: 4 KByte pages, 4-way associative, 64 entries

C0H TLB Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries

C1H STLB Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries

C2H DTLB DTLB: 4 KByte/2 MByte pages, 4-way associative, 16 entries

C3H STLB Shared 2nd-Level TLB: 4 KByte /2 MByte pages, 6-way associative, 1536 entries. Also 1GBbyte pages, 4-way,
16 entries.

CAH STLB Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries

D0H Cache 3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size

D1H Cache 3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size

D2H Cache 3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size

D6H Cache 3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size

D7H Cache 3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size

D8H Cache 3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size

DCH Cache 3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size

DDH Cache 3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size

DEH Cache 3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size

E2H Cache 3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size

E3H Cache 3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size

E4H Cache 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size

EAH Cache 3rd-level cache: 12MByte, 24-way set associative, 64 byte line size

EBH Cache 3rd-level cache: 18MByte, 24-way set associative, 64 byte line size

ECH Cache 3rd-level cache: 24MByte, 24-way set associative, 64 byte line size

F0H Prefetch 64-Byte prefetching

F1H Prefetch 128-Byte prefetching

FFH General CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters

Table 3-21 Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 94

• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, indicating that each register
contains valid 1-byte descriptors.

• Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte pages.

— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache line size.
• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— 00H - NULL descriptor.

— 70H - Trace cache: 12 K-μop, 8-way set associative.

— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte cache line size.

— 00H - NULL descriptor.

INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 04H and ECX contains an index value, the processor returns encoded data
that describe a set of deterministic cache parameters (for the cache level associated with the input in ECX). Valid
index values start from 0.

Software can enumerate the deterministic cache parameters for each level of the cache hierarchy starting with an
index value of 0, until the parameters report the value associated with the cache type field is 0. The architecturally
defined fields reported by deterministic cache parameters are documented in Table 3-17.

This Cache Size in Bytes

= (Ways + 1) * (Partitions + 1) * (Line_Size + 1) * (Sets + 1)

= (EBX[31:22] + 1) * (EBX[21:12] + 1) * (EBX[11:0] + 1) * (ECX + 1)

The CPUID leaf 04H also reports data that can be used to derive the topology of processor cores in a physical
package. This information is constant for all valid index values. Software can query the raw data reported by
executing CPUID with EAX=04H and ECX=0 and use it as part of the topology enumeration algorithm described in
Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

INPUT EAX = 05H: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 05H, the processor returns information about features available to
MONITOR/MWAIT instructions. The MONITOR instruction is used for address-range monitoring in conjunction with
MWAIT instruction. The MWAIT instruction optionally provides additional extensions for advanced power manage-
ment. See Table 3-17.

INPUT EAX = 06H: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 06H, the processor returns information about thermal and power manage-
ment features. See Table 3-17.

INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 07H and ECX = 0, the processor returns information about the maximum
input value for sub-leaves that contain extended feature flags. See Table 3-17.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 95

When CPUID executes with EAX set to 07H and the input value of ECX is invalid (see leaf 07H entry in Table 3-
17), the processor returns 0 in EAX/EBX/ECX/EDX. In subleaf 0, EAX returns the maximum input value of the
highest leaf 7 sub-leaf, and EBX, ECX & EDX contain information of extended feature flags.

INPUT EAX = 09H: Returns Direct Cache Access Information

When CPUID executes with EAX set to 09H, the processor returns information about Direct Cache Access capabil-
ities. See Table 3-17.

INPUT EAX = 0AH: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 0AH, the processor returns information about support for architectural
performance monitoring capabilities. Architectural performance monitoring is supported if the version ID (see
Table 3-17) is greater than Pn 0. See Table 3-17.

For each version of architectural performance monitoring capability, software must enumerate this leaf to
discover the programming facilities and the architectural performance events available in the processor. The
details are described in Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3C.

INPUT EAX = 0BH: Returns Extended Topology Information

When CPUID executes with EAX set to 0BH, the processor returns information about extended topology enumer-
ation data. Software must detect the presence of CPUID leaf 0BH by verifying (a) the highest leaf index supported
by CPUID is >= 0BH, and (b) CPUID.0BH:EBX[15:0] reports a non-zero value. See Table 3-17.

INPUT EAX = 0DH: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 0DH and ECX = 0, the processor returns information about the bit-vector
representation of all processor state extensions that are supported in the processor and storage size require-
ments of the XSAVE/XRSTOR area. See Table 3-17.

When CPUID executes with EAX set to 0DH and ECX = n (n > 1, and is a valid sub-leaf index), the processor
returns information about the size and offset of each processor extended state save area within the XSAVE/
XRSTOR area. See Table 3-17. Software can use the forward-extendable technique depicted below to query the
valid sub-leaves and obtain size and offset information for each processor extended state save area:

For i = 2 to 62 // sub-leaf 1 is reserved
IF (CPUID.(EAX=0DH, ECX=0):VECTOR[i] = 1) // VECTOR is the 64-bit value of EDX:EAX

Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i;
FI;

INPUT EAX = 0FH: Returns Platform Quality of Service (PQoS) Monitoring Enumeration Information

When CPUID executes with EAX set to 0FH and ECX = 0, the processor returns information about the bit-vector
representation of QoS monitoring resource types that are supported in the processor and maximum range of
RMID values the processor can use to monitor of any supported resource types. Each bit, starting from bit 1,
corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or
ResID) that software must use to query QoS monitoring capability available for that type. See Table 3-17.

When CPUID executes with EAX set to 0FH and ECX = n (n >= 1, and is a valid ResID), the processor returns
information software can use to program IA32_PQR_ASSOC, IA32_QM_EVTSEL MSRs before reading QoS data
from the IA32_QM_CTR MSR.

INPUT EAX = 10H: Returns Platform Quality of Service (PQoS) Enforcement Enumeration Information

When CPUID executes with EAX set to 10H and ECX = 0, the processor returns information about the bit-vector
representation of QoS Enforcement resource types that are supported in the processor. Each bit, starting from bit

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 96

1, corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or
ResID) that software must use to query QoS enforcement capability available for that type. See Table 3-17.

When CPUID executes with EAX set to 10H and ECX = n (n >= 1, and is a valid ResID), the processor returns
information about available classes of service and range of QoS mask MSRs that software can use to configure
each class of services using capability bit masks in the QoS Mask registers, IA32_resourceType_Mask_n.

INPUT EAX = 14H: Returns Intel Processor Trace Enumeration Information

When CPUID executes with EAX set to 14H and ECX = 0H, the processor returns information about Intel Processor
Trace extensions. See Table 3-17.

When CPUID executes with EAX set to 14H and ECX = n (n > 1and less than the number of non-zero bits in
CPUID.(EAX=14H, ECX= 0H).EAX and CPUID.(EAX=0DH, ECX= 0H).EDX), the processor returns information
about packet generation in Intel Processor Trace. See Table 3-17.

INPUT EAX = 15H: Returns Time Stamp Counter/Core Crystal Clock Information

When CPUID executes with EAX set to 15H and ECX = 0H, the processor returns information about Time Stamp
Counter/Core Crystal Clock. See Table 3-17.

INPUT EAX = 16H: Returns Processor Frequency Information

When CPUID executes with EAX set to 16H, the processor returns information about Processor Frequency Infor-
mation. See Table 3-17.

METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method.

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are available in early processors, see
Section: “Identification of Earlier IA-32 Processors” in Chapter 17 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

The Processor Brand String Method

Figure 3-9 describes the algorithm used for detection of the brand string. Processor brand identification software
should execute this algorithm on all Intel 64 and IA-32 processors.

This method (introduced with Pentium 4 processors) returns an ASCII brand identification string and the
Processor Base frequency of the processor to the EAX, EBX, ECX, and EDX registers.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 97

How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through 80000004H. For each input
value, CPUID returns 16 ASCII characters using EAX, EBX, ECX, and EDX. The returned string will be NULL-termi-
nated.

Table 3-22 shows the brand string that is returned by the first processor in the Pentium 4 processor family.

Figure 3-9 Determination of Support for the Processor Brand String

OM15194

IF (EAX & 0x80000000)

CPUID

IF (EAX Return Value
≥ 0x80000004)

CPUID
Function

Supported

True ≥
Extended

EAX Return Value =
Max. Extended CPUID

Function Index

Input: EAX=
0x80000000

Processor Brand
String Not
Supported

False

Processor Brand
String Supported

True

Table 3-22 Processor Brand String Returned with Pentium 4 Processor

EAX Input Value Return Values ASCII Equivalent

80000002H EAX = 20202020H

EBX = 20202020H

ECX = 20202020H

EDX = 6E492020H

“ ”

“ ”

“ ”

“nI ”

80000003H EAX = 286C6574H

EBX = 50202952H

ECX = 69746E65H

EDX = 52286D75H

“(let”

“P)R”

“itne”

“R(mu”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 98

Extracting the Processor Frequency from Brand Strings

Figure 3-10 provides an algorithm which software can use to extract the Processor Base frequency from the
processor brand string.

The Processor Brand Index Method

The brand index method (introduced with Pentium® III Xeon® processors) provides an entry point into a brand
identification table that is maintained in memory by system software and is accessible from system- and user-

80000004H EAX = 20342029H

EBX = 20555043H

ECX = 30303531H

EDX = 007A484DH

“ 4)”

“ UPC”

“0051”

“\0zHM”

Table 3-22 Processor Brand String Returned with Pentium 4 Processor (Contd.)

EAX Input Value Return Values ASCII Equivalent

Figure 3-10 Algorithm for Extracting Processor Frequency

OM15195

IF Substring Matched

"zHM", or
"zHG", or

"zHT"

Determine "Freq"
and "Multiplier"

True

Determine "Multiplier"

Scan "Brand String" in
Reverse Byte Order

Report Error
False

Scan Digits
Until Blank

Match
Substring

Determine "Freq"
Reverse Digits

To Decimal Value

Processor Base
Frequency =

"Freq" x "Multiplier" "Freq" = X.YZ if
Digits = "ZY.X"

In Reverse Order

If "zHM"

If "zHG"

If "zHT"
Multiplier = 1 x 1012

Multiplier = 1 x 109

Multiplier = 1 x 106

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 99

level code. In this table, each brand index is associate with an ASCII brand identification string that identifies the
official Intel family and model number of a processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the low byte in EBX. Software can
then use this index to locate the brand identification string for the processor in the brand identification table. The
first entry (brand index 0) in this table is reserved, allowing for backward compatibility with processors that do not
support the brand identification feature. Starting with processor signature family ID = 0FH, model = 03H, brand
index method is no longer supported. Use brand string method instead.

Table 3-23 shows brand indices that have identification strings associated with them.

IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor earlier than the
Intel486 processor.

Table 3-23 Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String

00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) III processor1

03H Intel(R) Pentium(R) III Xeon(R) processor; If processor signature = 000006B1h, then Intel(R) Celeron(R)
processor

04H Intel(R) Pentium(R) III processor

06H Mobile Intel(R) Pentium(R) III processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

0AH Intel(R) Celeron(R) processor1

0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor MP

0CH Intel(R) Xeon(R) processor MP

0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor

0FH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H – 0FFH RESERVED

NOTES:
1. Indicates versions of these processors that were introduced after the Pentium III

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 100

Operation

IA32_BIOS_SIGN_ID MSR ← Update with installed microcode revision number;

CASE (EAX) OF
EAX = 0:

EAX ← Highest basic function input value understood by CPUID;
EBX ← Vendor identification string;
EDX ← Vendor identification string;
ECX ← Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] ← Stepping ID;
EAX[7:4] ← Model;
EAX[11:8] ← Family;
EAX[13:12] ← Processor type;
EAX[15:14] ← Reserved;
EAX[19:16] ← Extended Model;
EAX[27:20] ← Extended Family;
EAX[31:28] ← Reserved;
EBX[7:0] ← Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] ← CLFLUSH Line Size;
EBX[16:23] ← Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] ← Initial APIC ID;
ECX ← Feature flags; (* See Figure 3-7. *)
EDX ← Feature flags; (* See Figure 3-8. *)

BREAK;
EAX = 2H:

EAX ← Cache and TLB information;
 EBX ← Cache and TLB information;
 ECX ← Cache and TLB information;

EDX ← Cache and TLB information;
BREAK;
EAX = 3H:

EAX ← Reserved;
 EBX ← Reserved;
 ECX ← ProcessorSerialNumber[31:0];

(* Pentium III processors only, otherwise reserved. *)
EDX ← ProcessorSerialNumber[63:32];
(* Pentium III processors only, otherwise reserved. *

BREAK
EAX = 4H:

EAX ← Deterministic Cache Parameters Leaf; (* See Table 3-17. *)
EBX ← Deterministic Cache Parameters Leaf;

 ECX ← Deterministic Cache Parameters Leaf;
EDX ← Deterministic Cache Parameters Leaf;

BREAK;
EAX = 5H:

EAX ← MONITOR/MWAIT Leaf; (* See Table 3-17. *)
 EBX ← MONITOR/MWAIT Leaf;
 ECX ← MONITOR/MWAIT Leaf;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 101

EDX ← MONITOR/MWAIT Leaf;
BREAK;
EAX = 6H:

EAX ← Thermal and Power Management Leaf; (* See Table 3-17. *)
 EBX ← Thermal and Power Management Leaf;
 ECX ← Thermal and Power Management Leaf;

EDX ← Thermal and Power Management Leaf;
BREAK;
EAX = 7H:

EAX ← Structured Extended Feature Flags Enumeration Leaf; (* See Table 3-17. *)
EBX ← Structured Extended Feature Flags Enumeration Leaf;

 ECX ← Structured Extended Feature Flags Enumeration Leaf;
EDX ← Structured Extended Feature Flags Enumeration Leaf;

BREAK;
EAX = 8H:

EAX ← Reserved = 0;
 EBX ← Reserved = 0;
 ECX ← Reserved = 0;

EDX ← Reserved = 0;
BREAK;
EAX = 9H:

EAX ← Direct Cache Access Information Leaf; (* See Table 3-17. *)
 EBX ← Direct Cache Access Information Leaf;
 ECX ← Direct Cache Access Information Leaf;

EDX ← Direct Cache Access Information Leaf;
BREAK;
EAX = AH:

EAX ← Architectural Performance Monitoring Leaf; (* See Table 3-17. *)
 EBX ← Architectural Performance Monitoring Leaf;
 ECX ← Architectural Performance Monitoring Leaf;

EDX ← Architectural Performance Monitoring Leaf;
BREAK

EAX = BH:
EAX ← Extended Topology Enumeration Leaf; (* See Table 3-17. *)
EBX ← Extended Topology Enumeration Leaf;

 ECX ← Extended Topology Enumeration Leaf;
EDX ← Extended Topology Enumeration Leaf;

BREAK;
EAX = CH:

EAX ← Reserved = 0;
 EBX ← Reserved = 0;
 ECX ← Reserved = 0;

EDX ← Reserved = 0;
BREAK;
EAX = DH:

EAX ← Processor Extended State Enumeration Leaf; (* See Table 3-17. *)
 EBX ← Processor Extended State Enumeration Leaf;
 ECX ← Processor Extended State Enumeration Leaf;

EDX ← Processor Extended State Enumeration Leaf;
BREAK;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 102

EAX = EH:
EAX ← Reserved = 0;

 EBX ← Reserved = 0;
 ECX ← Reserved = 0;

EDX ← Reserved = 0;
BREAK;
EAX = FH:

EAX ← Platform Quality of Service Monitoring Enumeration Leaf; (* See Table 3-17. *)
 EBX ← Platform Quality of Service Monitoring Enumeration Leaf;
 ECX ← Platform Quality of Service Monitoring Enumeration Leaf;

EDX ← Platform Quality of Service Monitoring Enumeration Leaf;
BREAK;
EAX = 10H:

EAX ← Platform Quality of Service Enforcement Enumeration Leaf; (* See Table 3-17. *)
 EBX ← Platform Quality of Service Enforcement Enumeration Leaf;
 ECX ← Platform Quality of Service Enforcement Enumeration Leaf;

EDX ← Platform Quality of Service Enforcement Enumeration Leaf;
BREAK;

EAX = 14H:
EAX ← Intel Processor Trace Enumeration Leaf; (* See Table 3-17. *)

 EBX ← Intel Processor Trace Enumeration Leaf;
 ECX ← Intel Processor Trace Enumeration Leaf;

EDX ← Intel Processor Trace Enumeration Leaf;
BREAK;

EAX = 15H:
EAX ← Time Stamp Counter/Core Crystal Clock Information Leaf; (* See Table 3-17. *)

 EBX ← Time Stamp Counter/Core Crystal Clock Information Leaf;
 ECX ← Time Stamp Counter/Core Crystal Clock Information Leaf;

EDX ← Time Stamp Counter/Core Crystal Clock Information Leaf;
BREAK;
EAX = 16H:

EAX ← Processor Frequency Information Enumeration Leaf; (* See Table 3-17. *)
 EBX ← Processor Frequency Information Enumeration Leaf;
 ECX ← Processor Frequency Information Enumeration Leaf;

EDX ← Processor Frequency Information Enumeration Leaf;
BREAK;

BREAK;
EAX = 80000000H:

EAX ← Highest extended function input value understood by CPUID;
EBX ← Reserved;
ECX ← Reserved;
EDX ← Reserved;

BREAK;
EAX = 80000001H:

EAX ← Reserved;
EBX ← Reserved;
ECX ← Extended Feature Bits (* See Table 3-17.*);
EDX ← Extended Feature Bits (* See Table 3-17. *);

BREAK;
EAX = 80000002H:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 103

EAX ← Processor Brand String;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000003H:

EAX ← Processor Brand String, continued;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000004H:

EAX ← Processor Brand String, continued;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000005H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Reserved = 0;
EDX ← Reserved = 0;

BREAK;
EAX = 80000006H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Cache information;
EDX ← Reserved = 0;

BREAK;
EAX = 80000007H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Reserved = 0;
EDX ← Reserved = Misc Feature Flags;

BREAK;
EAX = 80000008H:

EAX ← Reserved = Physical Address Size Information;
EBX ← Reserved = Virtual Address Size Information;
ECX ← Reserved = 0;
EDX ← Reserved = 0;

BREAK;
EAX >= 40000000H and EAX <= 4FFFFFFFH:
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)

(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX ← Reserved; (* Information returned for highest basic information leaf. *)
EBX ← Reserved; (* Information returned for highest basic information leaf. *)
ECX ← Reserved; (* Information returned for highest basic information leaf. *)
EDX ← Reserved; (* Information returned for highest basic information leaf. *)

BREAK;
ESAC;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 104

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

In earlier IA-32 processors that do not support the CPUID instruction, execution of the
instruction results in an invalid opcode (#UD) exception being generated.

...

ENTER—Make Stack Frame for Procedure Parameters

Instruction Operand Encoding

Description

Creates a stack frame (comprising of space for dynamic storage and 1-32 frame pointer storage) for a procedure.
The first operand (imm16) specifies the size of the dynamic storage in the stack frame (that is, the number of
bytes of dynamically allocated on the stack for the procedure). The second operand (imm8) gives the lexical
nesting level (0 to 31) of the procedure. The nesting level (imm8 mod 32) and the OperandSize attribute deter-
mine the size in bytes of the storage space for frame pointers.

The nesting level determines the number of frame pointers that are copied into the "display area" of the new stack
frame from the preceding frame. The default size of the frame pointer is the StackAddrSize attribute, but can be
overridden using the 66H prefix. Thus, the OperadSize attribute determines the size of each frame pointer that
will be copied into the stack frame and the data being transferred from SP/ESP/RSP register into the BP/EBP/RBP
register.

The ENTER and companion LEAVE instructions are provided to support block structured languages. The ENTER
instruction (when used) is typically the first instruction in a procedure and is used to set up a new stack frame for
a procedure. The LEAVE instruction is then used at the end of the procedure (just before the RET instruction) to
release the stack frame.

If the nesting level is 0, the processor pushes the frame pointer from the BP/EBP/RBP register onto the stack,
copies the current stack pointer from the SP/ESP/RSP register into the BP/EBP/RBP register, and loads the SP/
ESP/RSP register with the current stack-pointer value minus the value in the size operand. For nesting levels of 1
or greater, the processor pushes additional frame pointers on the stack before adjusting the stack pointer. These
additional frame pointers provide the called procedure with access points to other nested frames on the stack. See
“Procedure Calls for Block-Structured Languages” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for more information about the actions of the ENTER instruction.

The ENTER instruction causes a page fault whenever a write using the final value of the stack pointer (within the
current stack segment) would do so.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

C8 iw 00 ENTER imm16, 0 II Valid Valid Create a stack frame for a procedure.

C8 iw 01 ENTER imm16,1 II Valid Valid Create a stack frame with a nested pointer for
a procedure.

C8 iw ib ENTER imm16, imm8 II Valid Valid Create a stack frame with nested pointers for
a procedure.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

II iw imm8 NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 105

In 64-bit mode, default operation size is 64 bits; 32-bit operation size cannot be encoded. Use of 66H prefix
changes frame pointer operand size to 16 bits.

When the 66H prefix is used and causing the OperandSize attribute to be less than the StackAddrSize, software is
responsible for the following:
• The companion LEAVE instruction must also use the 66H prefix,
• The value in the RBP/EBP register prior to executing “66H ENTER” must be within the same 16KByte region of

the current stack pointer (RSP/ESP), such that the value of RBP/EBP after “66H ENTER” remains a valid
address in the stack. This ensures “66H LEAVE” can restore 16-bits of data from the stack.

Operation
AllocSize ← imm16;
NestingLevel ← imm8 MOD 32;
IF (OperandSize = 64)

THEN
Push(RBP); (* RSP decrements by 8 *)
FrameTemp ← RSP;

ELSE IF OperandSize = 32
THEN

Push(EBP); (* (E)SP decrements by 4 *)
FrameTemp ← ESP; FI;

ELSE (* OperandSize = 16 *)
Push(BP); (* RSP or (E)SP decrements by 2 *)
FrameTemp ← SP;

FI;

IF NestingLevel = 0
THEN GOTO CONTINUE;

FI;

IF (NestingLevel > 1)
THEN FOR i ← 1 to (NestingLevel - 1)

DO
IF (OperandSize = 64)

THEN
RBP ← RBP - 8;
Push([RBP]); (* Quadword push *)

ELSE IF OperandSize = 32
THEN

IF StackSize = 32
EBP ← EBP - 4;
Push([EBP]); (* Doubleword push *)

ELSE (* StackSize = 16 *)
BP ← BP - 4;
Push([BP]); (* Doubleword push *)

FI;
FI;

ELSE (* OperandSize = 16 *)
IF StackSize = 32

THEN
EBP ← EBP - 2;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 106

Push([EBP]); (* Word push *)
ELSE (* StackSize = 16 *)

BP ← BP - 2;
Push([BP]); (* Word push *)

FI;
FI;

OD;
FI;

IF (OperandSize = 64) (* nestinglevel 1 *)
THEN

Push(FrameTemp); (* Quadword push and RSP decrements by 8 *)
ELSE IF OperandSize = 32

THEN
Push(FrameTemp); FI; (* Doubleword push and (E)SP decrements by 4 *)

ELSE (* OperandSize = 16 *)
Push(FrameTemp); (* Word push and RSP|ESP|SP decrements by 2 *)

FI;

CONTINUE:
IF 64-Bit Mode (StackSize = 64)

THEN
RBP ← FrameTemp;
RSP ← RSP − AllocSize;

ELSE IF OperandSize = 32
THEN

EBP ← FrameTemp;
ESP ← ESP − AllocSize; FI;

ELSE (* OperandSize = 16 *)
BP ← FrameTemp[15:1]; (* Bits 16 and above of applicable RBP/EBP are unmodified *)
SP ← SP − AllocSize;

FI;

END;

Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the new value of the SP or ESP register is outside the stack segment limit.
#PF(fault-code) If a page fault occurs or if a write using the final value of the stack pointer (within the current

stack segment) would cause a page fault.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#SS If the new value of the SP or ESP register is outside the stack segment limit.
#UD If the LOCK prefix is used.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 107

Virtual-8086 Mode Exceptions
#SS(0) If the new value of the SP or ESP register is outside the stack segment limit.
#PF(fault-code) If a page fault occurs or if a write using the final value of the stack pointer (within the current

stack segment) would cause a page fault.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs or if a write using the final value of the stack pointer (within the current

stack segment) would cause a page fault.
#UD If the LOCK prefix is used.

...

LZCNT— Count the Number of Leading Zero Bits

Instruction Operand Encoding

...

Opcode/
Instruction

Op/
En

64/
32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F BD /r RM V/V LZCNT Count the number of leading zero bits in r/m16, return result in r16.
LZCNT r16, r/m16

F3 0F BD /r RM V/V LZCNT Count the number of leading zero bits in r/m32, return result in r32.
LZCNT r32, r/m32

F3 REX.W 0F BD /r RM V/N.E. LZCNT Count the number of leading zero bits in r/m64, return result in r64.
LZCNT r64, r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 108

8. Updates to Chapter 4, Volume 2B
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B: Instruction Set Reference, N-Z.

--
...

PADDB/PADDW/PADDD—Add Packed Integers

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F FC /r1

PADDB mm, mm/m64

RM V/V MMX Add packed byte integers from mm/m64 and
mm.

66 0F FC /r

PADDB xmm1, xmm2/m128

RM V/V SSE2 Add packed byte integers from xmm2/m128
and xmm1.

0F FD /r1

PADDW mm, mm/m64

RM V/V MMX Add packed word integers from mm/m64 and
mm.

66 0F FD /r

PADDW xmm1, xmm2/m128

RM V/V SSE2 Add packed word integers from xmm2/m128
and xmm1.

0F FE /r1

PADDD mm, mm/m64

RM V/V MMX Add packed doubleword integers from mm/
m64 and mm.

66 0F FE /r

PADDD xmm1, xmm2/m128

RM V/V SSE2 Add packed doubleword integers from xmm2/
m128 and xmm1.

VEX.NDS.128.66.0F.WIG FC /r

VPADDB xmm1, xmm2, xmm3/m128

RVM V/V AVX Add packed byte integers from xmm3/m128
and xmm2.

VEX.NDS.128.66.0F.WIG FD /r

VPADDW xmm1, xmm2, xmm3/m128

RVM V/V AVX Add packed word integers from xmm3/m128
and xmm2.

VEX.NDS.128.66.0F.WIG FE /r

VPADDD xmm1, xmm2, xmm3/m128

RVM V/V AVX Add packed doubleword integers from xmm3/
m128 and xmm2.

VEX.NDS.256.66.0F.WIG FC /r

VPADDB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Add packed byte integers from ymm2, and
ymm3/m256 and store in ymm1.

VEX.NDS.256.66.0F.WIG FD /r

VPADDW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Add packed word integers from ymm2, ymm3/
m256 and store in ymm1.

VEX.NDS.256.66.0F.WIG FE /r

VPADDD ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Add packed doubleword integers from ymm2,
ymm3/m256 and store in ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 109

Instruction Operand Encoding

Description

Performs a SIMD add of the packed integers from the source operand (second operand) and the destination
operand (first operand), and stores the packed integer results in the destination operand. See Figure 9-4 in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD operation.
Overflow is handled with wraparound, as described in the following paragraphs.
Adds the packed byte, word, doubleword, or quadword integers in the first source operand to the second source
operand and stores the result in the destination operand. When a result is too large to be represented in the 8/16/
32 integer (overflow), the result is wrapped around and the low bits are written to the destination element (that
is, the carry is ignored).

Note that these instructions can operate on either unsigned or signed (two’s complement notation) integers;
however, it does not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent undetected
overflow conditions, software must control the ranges of the values operated on.

These instructions can operate on either 64-bit, 128-bit or 256-bit operands. When operating on 64-bit operands,
the destination operand must be an MMX technology register and the source operand can be either an MMX tech-
nology register or a 64-bit memory location. In 64-bit mode, using a REX prefix in the form of REX.R permits this
instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM
register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the
upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128)
of the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM
register or a 256-bit memory location. The destination operand is a YMM register.

Operation

PADDB (with 64-bit operands)
DEST[7:0] ← DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 7th byte *)
DEST[63:56] ← DEST[63:56] + SRC[63:56];

PADDB (with 128-bit operands)
DEST[7:0] ← DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 14th byte *)
DEST[127:120] ← DEST[111:120] + SRC[127:120];

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 110

VPADDB (VEX.128 encoded version)
DEST[7:0] SRC1[7:0]+SRC2[7:0]
DEST[15:8] SRC1[15:8]+SRC2[15:8]
DEST[23:16] SRC1[23:16]+SRC2[23:16]
DEST[31:24] SRC1[31:24]+SRC2[31:24]
DEST[39:32] SRC1[39:32]+SRC2[39:32]
DEST[47:40] SRC1[47:40]+SRC2[47:40]
DEST[55:48] SRC1[55:48]+SRC2[55:48]
DEST[63:56] SRC1[63:56]+SRC2[63:56]
DEST[71:64] SRC1[71:64]+SRC2[71:64]
DEST[79:72] SRC1[79:72]+SRC2[79:72]
DEST[87:80] SRC1[87:80]+SRC2[87:80]
DEST[95:88] SRC1[95:88]+SRC2[95:88]
DEST[103:96] SRC1[103:96]+SRC2[103:96]
DEST[111:104] SRC1[111:104]+SRC2[111:104]
DEST[119:112] SRC1[119:112]+SRC2[119:112]
DEST[127:120] SRC1[127:120]+SRC2[127:120]
DEST[VLMAX-1:128] 0

VPADDB (VEX.256 encoded instruction)
DEST[7:0] SRC1[7:0] + SRC2[7:0];
(* Repeat add operation for 2nd through 31th byte *)
DEST[255:248] SRC1[255:248] + SRC2[255:248];

PADDW (with 64-bit operands)
DEST[15:0] ← DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd and 3th word *)
DEST[63:48] ← DEST[63:48] + SRC[63:48];

PADDW (with 128-bit operands)
DEST[15:0] ← DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112] ← DEST[127:112] + SRC[127:112];

VPADDW (VEX.128 encoded version)
DEST[15:0] SRC1[15:0]+SRC2[15:0]
DEST[31:16] SRC1[31:16]+SRC2[31:16]
DEST[47:32] SRC1[47:32]+SRC2[47:32]
DEST[63:48] SRC1[63:48]+SRC2[63:48]
DEST[79:64] SRC1[79:64]+SRC2[79:64]
DEST[95:80] SRC1[95:80]+SRC2[95:80]
DEST[111:96] SRC1[111:96]+SRC2[111:96]
DEST[127:112] SRC1[127:112]+SRC2[127:112]
DEST[VLMAX-1:128] 0

VPADDW (VEX.256 encoded instruction)
DEST[15:0] SRC1[15:0] + SRC2[15:0];
(* Repeat add operation for 2nd through 15th word *)
DEST[255:240] SRC1[255:240] + SRC2[255:240];

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 111

PADDD (with 64-bit operands)
DEST[31:0] ← DEST[31:0] + SRC[31:0];
DEST[63:32] ← DEST[63:32] + SRC[63:32];

PADDD (with 128-bit operands)
DEST[31:0] ← DEST[31:0] + SRC[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96] ← DEST[127:96] + SRC[127:96];

VPADDD (VEX.128 encoded version)
DEST[31:0] SRC1[31:0]+SRC2[31:0]
DEST[63:32] SRC1[63:32]+SRC2[63:32]
DEST[95:64] SRC1[95:64]+SRC2[95:64]
DEST[127:96] SRC1[127:96]+SRC2[127:96]
DEST[VLMAX-1:128] 0

VPADDD (VEX.256 encoded instruction)
DEST[31:0] SRC1[31:0] + SRC2[31:0];
(* Repeat add operation for 2nd and 7th doubleword *)
DEST[255:224] SRC1[255:224] + SRC2[255:224];

Intel C/C++ Compiler Intrinsic Equivalents

PADDB: __m64 _mm_add_pi8(__m64 m1, __m64 m2)

(V)PADDB: __m128i _mm_add_epi8 (__m128ia,__m128ib)

VPADDB: __m256i _mm256_add_epi8 (__m256ia,__m256i b)

PADDW: __m64 _mm_add_pi16(__m64 m1, __m64 m2)

(V)PADDW: __m128i _mm_add_epi16 (__m128i a, __m128i b)

VPADDW: __m256i _mm256_add_epi16 (__m256i a, __m256i b)

PADDD: __m64 _mm_add_pi32(__m64 m1, __m64 m2)

(V)PADDD: __m128i _mm_add_epi32 (__m128i a, __m128i b)

VPADDD: __m256i _mm256_add_epi32 (__m256i a, __m256i b)

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 112

PCLMULQDQ - Carry-Less Multiplication Quadword

Instruction Operand Encoding

Description

Performs a carry-less multiplication of two quadwords, selected from the first source and second source operand
according to the value of the immediate byte. Bits 4 and 0 are used to select which 64-bit half of each operand to
use according to Table 4-10, other bits of the immediate byte are ignored.

 The first source operand and the destination operand are the same and must be an XMM register. The second
source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding
YMM destination register remain unchanged.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 3A 44 /r ib
PCLMULQDQ xmm1, xmm2/m128, imm8

RMI V/V PCLMUL-
QDQ

Carry-less multiplication of one quadword of
xmm1 by one quadword of xmm2/m128,
stores the 128-bit result in xmm1. The imme-
diate is used to determine which quadwords
of xmm1 and xmm2/m128 should be used.

VEX.NDS.128.66.0F3A.WIG 44 /r ib
VPCLMULQDQ xmm1, xmm2, xmm3/m128, imm8

RVMI V/V Both PCL-
MULQDQ
and AVX
flags

Carry-less multiplication of one quadword of
xmm2 by one quadword of xmm3/m128,
stores the 128-bit result in xmm1. The imme-
diate is used to determine which quadwords
of xmm2 and xmm3/m128 should be used.

Op/En Operand 1 Operand2 Operand3 Operand4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

Table 4-10 PCLMULQDQ Quadword Selection of Immediate Byte

Imm[4] Imm[0] PCLMULQDQ Operation

0 0 CL_MUL(SRC21[63:0], SRC1[63:0])

0 1 CL_MUL(SRC2[63:0], SRC1[127:64])

1 0 CL_MUL(SRC2[127:64], SRC1[63:0])

1 1 CL_MUL(SRC2[127:64], SRC1[127:64])
NOTES:

1. SRC2 denotes the second source operand, which can be a register or memory; SRC1 denotes the first source and destination oper-
and.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 113

Compilers and assemblers may implement the following pseudo-op syntax to simply programming and emit the
required encoding for Imm8.

Operation

PCLMULQDQ
IF (Imm8[0] = 0)

THEN
TEMP1 SRC1 [63:0];

ELSE
TEMP1 SRC1 [127:64];

FI
IF (Imm8[4] = 0)

THEN
TEMP2 SRC2 [63:0];

ELSE
TEMP2 SRC2 [127:64];

FI
For i = 0 to 63 {

TmpB [i] (TEMP1[0] and TEMP2[i]);
For j = 1 to i {

TmpB [i] TmpB [i] xor (TEMP1[j] and TEMP2[i - j])
}
DEST[i] TmpB[i];

}
For i = 64 to 126 {

TmpB [i] 0;
For j = i - 63 to 63 {

TmpB [i] TmpB [i] xor (TEMP1[j] and TEMP2[i - j])
}
DEST[i] TmpB[i];

}
DEST[127] 0;
DEST[VLMAX-1:128] (Unmodified)

Table 4-11 Pseudo-Op and PCLMULQDQ Implementation

Pseudo-Op Imm8 Encoding

PCLMULLQLQDQ xmm1, xmm2 0000_0000B

PCLMULHQLQDQ xmm1, xmm2 0000_0001B

PCLMULLQHQDQ xmm1, xmm2 0001_0000B

PCLMULHQHQDQ xmm1, xmm2 0001_0001B

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 114

VPCLMULQDQ
IF (Imm8[0] = 0)

THEN
TEMP1 SRC1 [63:0];

ELSE
TEMP1 SRC1 [127:64];

FI
IF (Imm8[4] = 0)

THEN
TEMP2 SRC2 [63:0];

ELSE
TEMP2 SRC2 [127:64];

FI
For i = 0 to 63 {

TmpB [i] (TEMP1[0] and TEMP2[i]);
For j = 1 to i {

TmpB [i] TmpB [i] xor (TEMP1[j] and TEMP2[i - j])
}
DEST[i] TmpB[i];

}
For i = 64 to 126 {

TmpB [i] 0;
For j = i - 63 to 63 {

TmpB [i] TmpB [i] xor (TEMP1[j] and TEMP2[i - j])
}
DEST[i] TmpB[i];

}
DEST[VLMAX-1:127] 0;

Intel C/C++ Compiler Intrinsic Equivalent

(V)PCLMULQDQ: __m128i _mm_clmulepi64_si128 (__m128i, __m128i, const int)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 115

PMULHRSW — Packed Multiply High with Round and Scale

Instruction Operand Encoding

Description

PMULHRSW multiplies vertically each signed 16-bit integer from the destination operand (first operand) with the
corresponding signed 16-bit integer of the source operand (second operand), producing intermediate, signed 32-
bit integers. Each intermediate 32-bit integer is truncated to the 18 most significant bits. Rounding is always
performed by adding 1 to the least significant bit of the 18-bit intermediate result. The final result is obtained by
selecting the 16 bits immediately to the right of the most significant bit of each 18-bit intermediate result and
packed to the destination operand.

When the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a
general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.
Legacy SSE version: Both operands can be MMX registers. The second source operand is an MMX register or a 64-
bit memory location.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are
zeroed.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 38 0B /r1

PMULHRSW mm1, mm2/m64

RM V/V SSSE3 Multiply 16-bit signed words, scale and round
signed doublewords, pack high 16 bits to
mm1.

66 0F 38 0B /r

PMULHRSW xmm1, xmm2/m128

RM V/V SSSE3 Multiply 16-bit signed words, scale and round
signed doublewords, pack high 16 bits to
xmm1.

VEX.NDS.128.66.0F38.WIG 0B /r

VPMULHRSW xmm1, xmm2, xmm3/m128

RVM V/V AVX Multiply 16-bit signed words, scale and round
signed doublewords, pack high 16 bits to
xmm1.

VEX.NDS.256.66.0F38.WIG 0B /r

VPMULHRSW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Multiply 16-bit signed words, scale and round
signed doublewords, pack high 16 bits to
ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 116

Operation

PMULHRSW (with 64-bit operands)
temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >> 14) + 1;
temp3[31:0] = INT32 ((DEST[63:48] * SRc[63:48]) >> 14) + 1;
DEST[15:0] = temp0[16:1];
DEST[31:16] = temp1[16:1];
DEST[47:32] = temp2[16:1];
DEST[63:48] = temp3[16:1];

PMULHRSW (with 128-bit operand)
temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >>14) + 1;
temp3[31:0] = INT32 ((DEST[63:48] * SRC[63:48]) >>14) + 1;
temp4[31:0] = INT32 ((DEST[79:64] * SRC[79:64]) >>14) + 1;
temp5[31:0] = INT32 ((DEST[95:80] * SRC[95:80]) >>14) + 1;
temp6[31:0] = INT32 ((DEST[111:96] * SRC[111:96]) >>14) + 1;
temp7[31:0] = INT32 ((DEST[127:112] * SRC[127:112) >>14) + 1;
DEST[15:0] = temp0[16:1];
DEST[31:16] = temp1[16:1];
DEST[47:32] = temp2[16:1];
DEST[63:48] = temp3[16:1];
DEST[79:64] = temp4[16:1];
DEST[95:80] = temp5[16:1];
DEST[111:96] = temp6[16:1];
DEST[127:112] = temp7[16:1];

VPMULHRSW (VEX.128 encoded version)
temp0[31:0] INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1
temp1[31:0] INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1
temp2[31:0] INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1
temp3[31:0] INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1
temp4[31:0] INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1
temp5[31:0] INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1
temp6[31:0] INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1
temp7[31:0] INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1
DEST[15:0] temp0[16:1]
DEST[31:16] temp1[16:1]
DEST[47:32] temp2[16:1]
DEST[63:48] temp3[16:1]
DEST[79:64] temp4[16:1]
DEST[95:80] temp5[16:1]
DEST[111:96] temp6[16:1]
DEST[127:112] temp7[16:1]
DEST[VLMAX-1:128] 0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 117

VPMULHRSW (VEX.256 encoded version)
temp0[31:0] INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1
temp1[31:0] INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1
temp2[31:0] INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1
temp3[31:0] INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1
temp4[31:0] INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1
temp5[31:0] INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1
temp6[31:0] INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1
temp7[31:0] INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1
temp8[31:0] INT32 ((SRC1[143:128] * SRC2[143:128]) >>14) + 1
temp9[31:0] INT32 ((SRC1[159:144] * SRC2[159:144]) >>14) + 1
temp10[31:0] INT32 ((SRC1[75:160] * SRC2[175:160]) >>14) + 1
temp11[31:0] INT32 ((SRC1[191:176] * SRC2[191:176]) >>14) + 1
temp12[31:0] INT32 ((SRC1[207:192] * SRC2[207:192]) >>14) + 1
temp13[31:0] INT32 ((SRC1[223:208] * SRC2[223:208]) >>14) + 1
temp14[31:0] INT32 ((SRC1[239:224] * SRC2[239:224]) >>14) + 1
temp15[31:0] INT32 ((SRC1[255:240] * SRC2[255:240) >>14) + 1

Intel C/C++ Compiler Intrinsic Equivalents

PMULHRSW: __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b)

(V)PMULHRSW: __m128i _mm_mulhrs_epi16 (__m128i a, __m128i b)

VPMULHRSW: __m256i _mm256_mulhrs_epi16 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type 4.
...

RDFSBASE/RDGSBASE—Read FS/GS Segment Base
Opcode/
Instruction

Op/
En

64/32-
bit
Mode

CPUID Fea-
ture Flag

Description

F3 0F AE /0
RDFSBASE r32

M V/I FSGSBASE Load the 32-bit destination register with the FS
base address.

F3 REX.W 0F AE /0
RDFSBASE r64

M V/I FSGSBASE Load the 64-bit destination register with the FS
base address.

F3 0F AE /1
RDGSBASE r32

M V/I FSGSBASE Load the 32-bit destination register with the GS
base address.

F3 REX.W 0F AE /1
RDGSBASE r64

M V/I FSGSBASE Load the 64-bit destination register with the GS
base address.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 118

Instruction Operand Encoding

...

TZCNT — Count the Number of Trailing Zero Bits

Instruction Operand Encoding

...

WRFSBASE/WRGSBASE—Write FS/GS Segment Base

Instruction Operand Encoding

...

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

Opcode/
Instruction

Op/
En

64/
32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F BC /r RM V/V BMI1 Count the number of trailing zero bits in r/m16, return result in r16.
TZCNT r16, r/m16

F3 0F BC /r RM V/V BMI1 Count the number of trailing zero bits in r/m32, return result in r32.
TZCNT r32, r/m32

F3 REX.W 0F BC /r RM V/N.E. BMI1 Count the number of trailing zero bits in r/m64, return result in r64.
TZCNT r64, r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (w) ModRM:r/m (r) NA NA

Opcode/
Instruction

Op/
En

64/32-
bit
Mode

CPUID Fea-
ture Flag

Description

F3 0F AE /2
WRFSBASE r32

M V/I FSGSBASE Load the FS base address with the 32-bit value in
the source register.

F3 REX.W 0F AE /2
WRFSBASE r64

M V/I FSGSBASE Load the FS base address with the 64-bit value in
the source register.

F3 0F AE /3
WRGSBASE r32

M V/I FSGSBASE Load the GS base address with the 32-bit value in
the source register.

F3 REX.W 0F AE /3
WRGSBASE r64

M V/I FSGSBASE Load the GS base address with the 64-bit value in
the source register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 119

9. Updates to Chapter 2, Volume 3A
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

2.1.6 System Registers
To assist in initializing the processor and controlling system operations, the system architecture provides system
flags in the EFLAGS register and several system registers:
• The system flags and IOPL field in the EFLAGS register control task and mode switching, interrupt handling,

instruction tracing, and access rights. See also: Section 2.3, “System Flags and Fields in the EFLAGS Register.”
• The control registers (CR0, CR2, CR3, and CR4) contain a variety of flags and data fields for controlling

system-level operations. Other flags in these registers are used to indicate support for specific processor
capabilities within the operating system or executive. See also: Section 2.5, “Control Registers” and Section
2.6, “Extended Control Registers (Including XCR0).”

• The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for use in debugging programs
and systems software. See also: Chapter 17, “Debug, Branch Profile, TSC, and Resource Monitoring
Features.”

• The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes (limits) of their respective tables.
See also: Section 2.4, “Memory-Management Registers.”

• The task register contains the linear address and size of the TSS for the current task. See also: Section 2.4,
“Memory-Management Registers.”

• Model-specific registers (not shown in Figure 2-1).

The model-specific registers (MSRs) are a group of registers available primarily to operating-system or executive
procedures (that is, code running at privilege level 0). These registers control items such as the debug exten-
sions, the performance-monitoring counters, the machine- check architecture, and the memory type ranges
(MTRRs).

The number and function of these registers varies among different members of the Intel 64 and IA-32 processor
families. See also: Section 9.4, “Model-Specific Registers (MSRs),” and Chapter 35, “Model-Specific Registers
(MSRs).”

Most systems restrict access to system registers (other than the EFLAGS register) by application programs.
Systems can be designed, however, where all programs and procedures run at the most privileged level (privilege
level 0). In such a case, application programs would be allowed to modify the system registers.

...

2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCR0)
If CPUID.01H:ECX.XSAVE[bit 26] is 1, the processor supports one or more extended control registers (XCRs).
Currently, the only such register defined is XCR0. This register specifies the set of processor state components for
which the operating system provides context management, e.g. x87 FPU state, SSE state, AVX state. The OS
programs XCR0 to reflect the features for which it provides context management.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 120

Software can access XCR0 only if CR4.OSXSAVE[bit 18] = 1. (This bit is also readable as
CPUID.01H:ECX.OSXSAVE[bit 27].) Software can use CPUID leaf function 0DH to enumerate the bits in XCR0 that
the processor supports (see CPUID instruction in Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A). Each supported state component is represented by a bit in XCR0. System software enables state
components by loading an appropriate bit mask value into XCR0 using the XSETBV instruction.
As each bit in XCR0 (except bit 63) corresponds to a processor state component, XCR0 thus provides support for
up to 63 sets of processor state components. Bit 63 of XCR0 is reserved for future expansion and will not repre-
sent a processor state component.

Currently, XCR0 defines support for the following state components:
• XCR0.X87 (bit 0): This bit 0 must be 1. An attempt to write 0 to this bit causes a #GP exception.
• XCR0.SSE (bit 1): If 1, the XSAVE feature set can be used to manage MXCSR and the XMM registers (XMM0-

XMM15 in 64-bit mode; otherwise XMM0-XMM7).
• XCR0.AVX (bit 2): If 1, AVX instructions can be executed and the XSAVE feature set can be used to manage

the upper halves of the YMM registers (YMM0-YMM15 in 64-bit mode; otherwise YMM0-YMM7).
• XCR0.BNDREG (bit 3): If 1, MPX instructions can be executed and the XSAVE feature set can be used to

manage the bounds registers BND0–BND3.
• XCR0.BNDCSR (bit 4): If 1, MPX instructions can be executed and the XSAVE feature set can be used to

manage the BNDCFGU and BNDSTATUS registers
• XCR0.opmask (bit 5): If 1, AVX-512 instructions can be executed and the XSAVE feature set can be used to

manage the opmask registers k0–k7.
• XCR0.ZMM_Hi256 (bit 6): If 1, AVX-512 instructions can be executed and the XSAVE feature set can be used

to manage the upper halves of the lower ZMM registers (ZMM0-ZMM15 in 64-bit mode; otherwise ZMM0-
ZMM7).

• XCR0.Hi16_ZMM (bit 7): If 1, AVX-512 instructions can be executed and the XSAVE feature set can be used
to manage the upper ZMM registers (ZMM16-ZMM31, only in 64-bit mode).

• XCR0.PKRU (bit 9): If 1, the XSAVE feature set can be used to manage the PKRU register (see Section 2.7).

An attempt to use XSETBV to write to XCR0 results in general-protection exceptions (#GP) if it would do any of
the following:

Figure 2-8 XCR0

63

Reserved for XCR0 bit vector expansion
Reserved / Future processor extended states

2 1 0

AVX state

1Reserved (must be 0)

x87 FPU/MMX state (must be 1)
SSE state

9

PKRU state

567

Hi16_ZMM state
ZMM_Hi256 state
Opmask state

4 3

BNDCSR state
BNDREG state

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 121

• set a bit reserved in XCR0 for a given processor (as determined by the contents of EAX and EDX after
executing CPUID with EAX=0DH, ECX= 0H);

• clear XCR0.x87;
• clear XCR0.SSE and set XCR0.AVX;
• clear XCR0.AVX and set any of XCR0.opmask, XCR0.ZMM_Hi256, and XCR0.Hi16_ZMM;
• set either XCR0.BNDREG and XCR0.BNDCSR while not setting the other; or
• set any of XCR0.opmask, XCR0.ZMM_Hi256, and XCR0.Hi16_ZMM while not setting all of them.
After reset, all bits (except bit 0) in XCR0 are cleared to zero; XCR0[0] is set to 1.

...

10. Updates to Chapter 9, Volume 3A
Change bars show changes to Chapter 9 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

9.11 MICROCODE UPDATE FACILITIES
The P6 family and later processors have the capability to correct errata by loading an Intel-supplied data block
into the processor. The data block is called a microcode update. This section describes the mechanisms the BIOS
needs to provide in order to use this feature during system initialization. It also describes a specification that
permits the incorporation of future updates into a system BIOS.

Intel considers the release of a microcode update for a silicon revision to be the equivalent of a processor stepping
and completes a full-stepping level validation for releases of microcode updates.

A microcode update is used to correct errata in the processor. The BIOS, which has an update loader, is respon-
sible for loading the update on processors during system initialization (Figure 9-7). There are two steps to this
process: the first is to incorporate the necessary update data blocks into the BIOS; the second is to load update
data blocks into the processor.

...

9.11.6 Microcode Update Loader
This section describes an update loader used to load an update into a P6 family or later processors. It also
discusses the requirements placed on the BIOS to ensure proper loading. The update loader described contains
the minimal instructions needed to load an update. The specific instruction sequence that is required to load an
update is dependent upon the loader revision field contained within the update header. This revision is expected
to change infrequently (potentially, only when new processor models are introduced).

Example 9--8 below represents the update loader with a loader revision of 00000001H. Note that the microcode
update must be aligned on a 16-byte boundary and the size of the microcode update must be 1-KByte granular.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 122

Example 9--8 Assembly Code Example of Simple Microcode Update Loader

mov ecx,79h ; MSR to read in ECX

xor eax,eax ; clear EAX

xor ebx,ebx ; clear EBX

mov ax,cs ; Segment of microcode update

shl eax,4

mov bx,offset Update ; Offset of microcode update

add eax,ebx ; Linear Address of Update in EAX

add eax,48d ; Offset of the Update Data within the Update

xor edx,edx ; Zero in EDX

WRMSR ; microcode update trigger

The loader shown in Example 9--8 assumes that update is the address of a microcode update (header and data)
embedded within the code segment of the BIOS. It also assumes that the processor is operating in real mode. The
data may reside anywhere in memory, aligned on a 16-byte boundary, that is accessible by the processor within
its current operating mode.

Before the BIOS executes the microcode update trigger (WRMSR) instruction, the following must be true:
• In 64-bit mode, EAX contains the lower 32-bits of the microcode update linear address. In protected mode,

EAX contains the full 32-bit linear address of the microcode update.
• In 64-bit mode, EDX contains the upper 32-bits of the microcode update linear address. In protected mode,

EDX equals zero.
• ECX contains 79H (address of IA32_BIOS_UPDT_TRIG).

Other requirements are:
• If the update is loaded while the processor is in real mode, then the update data may not cross a segment

boundary.
• If the update is loaded while the processor is in real mode, then the update data may not exceed a segment

limit.
• If paging is enabled, pages that are currently present must map the update data.
• The microcode update data requires a 16-byte boundary alignment.

...

9.11.7 Update Signature and Verification
The P6 family and later processors provide capabilities to verify the authenticity of a particular update and to iden-
tify the current update revision. This section describes the model-specific extensions of processors that support
this feature. The update verification method below assumes that the BIOS will only verify an update that is more
recent than the revision currently loaded in the processor.

CPUID returns a value in a model specific register in addition to its usual register return values. The semantics of
CPUID cause it to deposit an update ID value in the 64-bit model-specific register at address 08BH
(IA32_BIOS_SIGN_ID). If no update is present in the processor, the value in the MSR remains unmodified. The
BIOS must pre-load a zero into the MSR before executing CPUID. If a read of the MSR at 8BH still returns zero
after executing CPUID, this indicates that no update is present.

The update ID value returned in the EDX register after RDMSR executes indicates the revision of the update
loaded in the processor. This value, in combination with the CPUID value returned in the EAX register, uniquely
identifies a particular update. The signature ID can be directly compared with the update revision field in a micro-
code update header for verification of a correct load. No consecutive updates released for a given stepping of a

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 123

processor may share the same signature. The processor signature returned by CPUID differentiates updates for
different steppings.

...

9.11.8 Optional Processor Microcode Update Specifications
This section an interface that an OEM-BIOS may provide to its client system software to manage processor micro-
code updates. System software may choose to build its own facility to manage microcode updates (e.g. similar to
the facility described in Section 9.11.6) or rely on a facility provided by the BIOS to perform microcode updates.

Sections 9.11.8.1-9.11.8.9 describes an extension (Function 0D042H) to the real mode INT 15H service. INT 15H
0D042H function is one of several alternatives that a BIOS may choose to implement microcode update facility
and offer to its client application (e.g. an OS). Other alternative microcode update facility that BIOS can choose
are dependent on platform-specific capabilities, including the Capsule Update mechanism from the UEFI specifi-
cation (www.uefi.org). In this discussion, the application is referred to as the calling program or caller.

The real mode INT15 call specification described here is an Intel extension to an OEM BIOS. This extension allows
an application to read and modify the contents of the microcode update data in NVRAM. The update loader, which
is part of the system BIOS, cannot be updated by the interface. All of the functions defined in the specification
must be implemented for a system to be considered compliant with the specification. The INT15 functions are
accessible only from real mode.

...

9.11.8.3 Microcode Update Functions
Table 9-12 defines the processor microcode update functions that implementations of INT 15H 0D042H must
support.

9.11.8.4 INT 15H-based Interface
If an OEM-BIOS is implementing INT 15H 0D042H interface and offer to its client, the BIOS should allow addi-
tional microcode updates to be added to system flash.

The program that calls this interface is responsible for providing three 64-kilobyte RAM areas for BIOS use during
calls to the read and write functions. These RAM scratch pads can be used by the BIOS for any purpose, but only
for the duration of the function call. The calling routine places real mode segments pointing to the RAM blocks in
the CX, DX and SI registers. Calls to functions in this interface must be made with a minimum of 32 kilobytes of
stack available to the BIOS.

In general, each function returns with CF cleared and AH contains the returned status. The general return codes
and other constant definitions are listed in Section 9.11.8.9, “Return Codes.”

The OEM error field (AL) is provided for the OEM to return additional error information specific to the platform. If
the BIOS provides no additional information about the error, OEM error must be set to SUCCESS. The OEM error

Table 9-12 Microcode Update Functions
Microcode Update Function Function

Number
Description Required/Optional

Presence test 00H Returns information about the supported functions. Required

Write update data 01H Writes one of the update data areas (slots). Required

Update control 02H Globally controls the loading of updates. Required

Read update data 03H Reads one of the update data areas (slots). Required

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 124

field is undefined if AH contains either SUCCESS (00H) or NOT_IMPLEMENTED (86H). In all other cases, it must
be set with either SUCCESS or a value meaningful to the OEM.

The following sections describe functions provided by the INT15H-based interface.

...

11. Updates to Chapter 16, Volume 3B
Change bars show changes to Chapter 16 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

16.1 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY 06H
MACHINE ERROR CODES FOR MACHINE CHECK

Section 16.1 provides information for interpreting additional model-specific fields for external bus errors relating
to processor family 06H. The references to processor family 06H refers to only IA-32 processors with CPUID
signatures listed in Table 16-1.

These errors are reported in the IA32_MCi_STATUS MSRs. They are reported architecturally as compound errors
with a general form of 0000 1PPT RRRR IILL in the MCA error code field. See Chapter 15 for information on the
interpretation of compound error codes. Incremental decoding information is listed in Table 16-2.

Table 16-1 CPUID DisplayFamily_DisplayModel Signatures for Processor Family 06H
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_09H Intel Pentium M processor

06_7H, 06_08H, 06_0AH, 06_0BH Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor

06_01H Intel Pentium Pro Processor

Table 16-2 Incremental Decoding Information: Processor Family 06H Machine Error Codes For Machine Check

Type Bit No. Bit Function Bit Description

MCA error
codes1

0-15

Model specific
errors

16-18 Reserved Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 125

Model specific
errors

19-24 Bus queue request
type

000000 for BQ_DCU_READ_TYPE error

000010 for BQ_IFU_DEMAND_TYPE error

000011 for BQ_IFU_DEMAND_NC_TYPE error

000100 for BQ_DCU_RFO_TYPE error

000101 for BQ_DCU_RFO_LOCK_TYPE error

000110 for BQ_DCU_ITOM_TYPE error

001000 for BQ_DCU_WB_TYPE error

001010 for BQ_DCU_WCEVICT_TYPE error

001011 for BQ_DCU_WCLINE_TYPE error

001100 for BQ_DCU_BTM_TYPE error

001101 for BQ_DCU_INTACK_TYPE error

001110 for BQ_DCU_INVALL2_TYPE error

001111 for BQ_DCU_FLUSHL2_TYPE error

010000 for BQ_DCU_PART_RD_TYPE error

010010 for BQ_DCU_PART_WR_TYPE error

010100 for BQ_DCU_SPEC_CYC_TYPE error

011000 for BQ_DCU_IO_RD_TYPE error

011001 for BQ_DCU_IO_WR_TYPE error

011100 for BQ_DCU_LOCK_RD_TYPE error

011110 for BQ_DCU_SPLOCK_RD_TYPE error

011101 for BQ_DCU_LOCK_WR_TYPE error

Model specific
errors

27-25 Bus queue error type 000 for BQ_ERR_HARD_TYPE error

001 for BQ_ERR_DOUBLE_TYPE error

010 for BQ_ERR_AERR2_TYPE error

100 for BQ_ERR_SINGLE_TYPE error

101 for BQ_ERR_AERR1_TYPE error

Model specific
errors

28 FRC error 1 if FRC error active

29 BERR 1 if BERR is driven

30 Internal BINIT 1 if BINIT driven for this processor

31 Reserved Reserved

Other
information

32-34 Reserved Reserved

35 External BINIT 1 if BINIT is received from external bus.

36 Response parity error This bit is asserted in IA32_MCi_STATUS if this component has received a parity
error on the RS[2:0]# pins for a response transaction. The RS signals are checked
by the RSP# external pin.

37 Bus BINIT This bit is asserted in IA32_MCi_STATUS if this component has received a hard
error response on a split transaction one access that has needed to be split across
the 64-bit external bus interface into two accesses).

Table 16-2 Incremental Decoding Information: Processor Family 06H Machine Error Codes For Machine Check

Type Bit No. Bit Function Bit Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 126

...

38 Timeout BINIT This bit is asserted in IA32_MCi_STATUS if this component has experienced a ROB
time-out, which indicates that no micro-instruction has been retired for a
predetermined period of time.

A ROB time-out occurs when the 15-bit ROB time-out counter carries a 1 out of its
high order bit. 2 The timer is cleared when a micro-instruction retires, an exception
is detected by the core processor, RESET is asserted, or when a ROB BINIT occurs.

The ROB time-out counter is prescaled by the 8-bit PIC timer which is a divide by
128 of the bus clock the bus clock is 1:2, 1:3, 1:4 of the core clock). When a carry
out of the 8-bit PIC timer occurs, the ROB counter counts up by one. While this bit
is asserted, it cannot be overwritten by another error.

39-41 Reserved Reserved

42 Hard error This bit is asserted in IA32_MCi_STATUS if this component has initiated a bus
transactions which has received a hard error response. While this bit is asserted, it
cannot be overwritten.

43 IERR This bit is asserted in IA32_MCi_STATUS if this component has experienced a
failure that causes the IERR pin to be asserted. While this bit is asserted, it cannot
be overwritten.

44 AERR This bit is asserted in IA32_MCi_STATUS if this component has initiated 2 failing
bus transactions which have failed due to Address Parity Errors AERR asserted).
While this bit is asserted, it cannot be overwritten.

45 UECC The Uncorrectable ECC error bit is asserted in IA32_MCi_STATUS for uncorrected
ECC errors. While this bit is asserted, the ECC syndrome field will not be
overwritten.

46 CECC The correctable ECC error bit is asserted in IA32_MCi_STATUS for corrected ECC
errors.

47-54 ECC syndrome The ECC syndrome field in IA32_MCi_STATUS contains the 8-bit ECC syndrome only
if the error was a correctable/uncorrectable ECC error and there wasn't a previous
valid ECC error syndrome logged in IA32_MCi_STATUS.

A previous valid ECC error in IA32_MCi_STATUS is indicated by
IA32_MCi_STATUS.bit45 uncorrectable error occurred) being asserted. After
processing an ECC error, machine-check handling software should clear
IA32_MCi_STATUS.bit45 so that future ECC error syndromes can be logged.

55-56 Reserved Reserved.

Status register
validity
indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.
2. For processors with a CPUID signature of 06_0EH, a ROB time-out occurs when the 23-bit ROB time-out counter carries a 1 out of its

high order bit.

Table 16-2 Incremental Decoding Information: Processor Family 06H Machine Error Codes For Machine Check

Type Bit No. Bit Function Bit Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 127

12. Updates to Chapter 17, Volume 3B
Change bars show changes to Chapter 17 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

17.15.8 Monitoring Programming Considerations
Figure 17-23 illustrates how system software can program IA32_QOSEVTSEL and IA32_QM_CTR to perform
resource monitoring.

...

17.16 PLATFORM SHARED RESOURCE CONTROL: CACHE ALLOCATION
TECHNOLOGY

Future generations of the Intel Xeon processor offer capabilities to configure and make use of the Cache Allocation
Technology (CAT) mechanisms. The programming interface for Cache Allocation Technology and for the more
general allocation capabilities are described in the rest of this chapter.

Cache Allocation Technology enables an Operating System (OS), Hypervisor /Virtual Machine Manager (VMM) or
similar system service management agent to specify the amount of cache space into which an application can fill
(as a hint to hardware - certain features such as power management may override CAT settings). User-level
implementations with minimal OS support are also possible, though not recommended (see Section 3.5 for exam-
ples and discussion). The initial implementation focuses on L3 cache allocation, but the technology is designed to
scale across multiple cache levels and technology generations.

The CAT mechanisms defined in this document provide the following key features:
• A mechanism to enumerate platform Cache Allocation Technology capabilities and available resource types

that provides CAT control capabilities. For implementations that support Cache Allocation Technology, CPUID
provides enumeration support to query more specific CAT capabilities, such as the max allocation bitmask
size,

• A mechanism for the OS or Hypervisor to configure the amount of a resource available to a particular Class of
Service via a list of allocation bitmasks,

Figure 17-25 Software Usage of Cache Monitoring Resources

RMID

063

Monitoring Data

IA32_QM_CTR MSR

62

Availability
Error

763

Reserved

41

RMID

Resource Monitoring ID

0

EvtID

32

Reserved

Event ID

IA32_QOSEVTSEL MSR

System Software

Event ID Counter Data

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 128

• Mechanisms for the OS or Hypervisor to signal the Class of Service to which an application belongs, and
• Hardware mechanisms to guide the LLC fill policy when an application has been designated to belong to a

specific Class of Service.

Note that an OS or Hypervisor should not expose Cache Allocation Technology mechanisms to Ring3 software or
virtualized guests.

The Cache Allocation Technology feature enables more cache resources (i.e. cache space) to be made available
for high priority applications based on guidance from the execution environment as shown in Figure 17-26. The
architecture also allows dynamic resource reassignment during runtime to further optimize the performance of
the high priority application with minimal degradation to the low priority app. Additionally, resources can be rebal-
anced for system throughput benefit. This section describes the hardware and software support required in the
platform including what is required of the execution environment (i.e. OS/VMM) to support such resource control.
Note that in Figure 17-26 the L3 Cache is shown as an example resource.

17.16.1 Cache Allocation Technology Architecture
The fundamental goal of Cache Allocation Technology is to enable resource allocation based on application priority
or Class of Service (COS or CLOS). The processor exposes a set of Classes of Service into which applications (or
individual threads) can be assigned. Cache allocation for the respective applications or threads is then restricted
based on the class with which they are associated. Each Class of Service can be configured using bitmasks which
represent capacity and indicate the degree of overlap and isolation between classes. For each logical processor
there is a register exposed (referred to here as the IA32_PQR_ASSOC MSR or PQR) to allow the OS/VMM to
specify a COS when an application, thread or VM is scheduled. Cache allocation for the indicated application/
thread/VM is then controlled automatically by the hardware based on the class and the bitmask associated with
that class. Bitmasks are configured via the IA32_resourceType_MASK_n MSRs, where resourceType indicates a
resource type (e.g. “L3” for the L3 cache) and n indicates a COS number.

The basic ingredients of Cache Allocation Technology are as follows:
• An architecturally exposed mechanism using CPUID to indicate whether CAT is supported, and what resource

types are available which can be controlled,
• For each available resourceType, CPUID also enumerates the total number of Classes of Services and the

length of the capacity bitmasks that can be used to enforce cache allocation to applications on the platform,
• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to configure the

behavior of different classes of service using the bitmasks available,
• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to assign a COS to an

executing software thread (i.e. associating the active CR3 of a logical processor with the COS in
IA32_PQR_ASSOC),

Figure 17-26 Cache Allocation Technology Allocates More Resource to High Priority Applications

Without CAT

Core 0

Shared LLC, Low priority got more resource

Lo Pri AppHi Pri App

Core 1 Core 0

Shared LLC, High priority got more resource

Lo Pri AppHi Pri App

Core 1

With CAT

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 129

• Implementation-dependent mechanisms to indicate which COS is associated with a memory access and to
enforce the cache allocation on a per COS basis.

A capacity bitmask (CBM) provides a hint to the hardware indicating the cache space an application should be
limited to as well as providing an indication of overlap and isolation in the CAT-capable cache from other applica-
tions contending for the cache. The bitlength of the capacity mask available generally depends on the configura-
tion of the cache and is specified in the enumeration process for CAT in CPUID (this may vary between models in
a processor family as well).

Sample cache capacity bitmasks for a bitlength of 8 are shown in Figure 17-27. Please note that all (and only)
contiguous '1' combinations are allowed (e.g. FFFFH, 0FF0H, 003CH, etc.). It is generally expected that in way-
based implementations, one capacity mask bit corresponds to some number of ways in cache, but the specific
mapping is implementation-dependent. In all cases, a mask bit set to '1' specifies that a particular Class of
Service can allocate into the cache subset represented by that bit. A value of '0' in a mask bit specifies that a Class
of Service cannot allocate into the given cache subset. In general, allocating more cache to a given application is
usually beneficial to its performance.

Figure 17-27 also shows three examples of sets of Cache Capacity Bitmasks. For simplicity these are represented
as 8-bit vectors, though this may vary depending on the implementation and how the mask is mapped to the
available cache capacity. The first example shows the default case where all 4 Classes of Service (the total
number of COS are implementation-dependent) have full access to the cache. The second case shows an over-
lapped case, which would allow some lower-priority threads share cache space with the highest priority threads.
The third case shows various non-overlapped partitioning schemes. As a matter of software policy for extensibility

Figure 17-27 Examples of Cache Capacity Bitmasks

M7 M6 M5 M4 M3 M2 M1 M0

A A A A A A A A

A A A A A A A A

A A A A A A A A

A A A A A A A A

COS0

COS1

COS2

COS3

Default Bitmask

M7 M6 M5 M4 M3 M2 M1 M0

A A A A

A A

A

A

COS0

COS1

COS2

COS3

Isolated Bitmask

M7 M6 M5 M4 M3 M2 M1 M0

A A A A A A A A

A A A A

A A

A

COS0

COS1

COS2

COS3

Overlapped Bitmask

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 130

COS0 should typically be considered and configured as the highest priority COS, followed by COS1, and so on,
though there is no hardware restriction enforcing this mapping. When the system boots all threads are initialized
to COS0, which has full access to the cache by default.

Though the representation of the CBMs looks similar to a way-based mapping they are independent of any specific
enforcement implementation (e.g. way partitioning.) Rather, this is a convenient manner to represent capacity,
overlap and isolation of cache space. For example, executing a POPCNT instruction (population count of set bits)
on the capacity bitmask can provide the fraction of cache space that a class of service can allocate into. In addition
to the fraction, the exact location of the bits also shows whether the class of service overlaps with other classes
of service or is entirely isolated in terms of cache space used.

Figure 17-28 shows how the Cache Capacity Bitmasks and the per-logical-processor Class of Service are logically
used to enable Cache Allocation Technology. All (and only) contiguous 1's in the CBM are permitted. The length of
CBM may vary from resource to resource or between processor generations and can be enumerated using CPUID.
From the available mask set and based on the goals of the OS/VMM (shared or isolated cache, etc.) bitmasks are
selected and associated with different classes of service. For the available Classes of Service the associated CBMs
can be programmed via the global set of CAT configuration registers (in the case of L3 CAT, via the
IA32_L3_MASK_n MSRs, where “n” is the Class of Service, starting from zero). In all architectural implementa-
tions supporting CPUID it is possible to change the CBMs dynamically, during program execution, unless stated
otherwise by Intel.

The currently running application's Class of Service is communicated to the hardware through the per-logical-
processor PQR MSR (IA32_PQR_ASSOC MSR). When the OS schedules an application thread on a logical
processor, the application thread is associated with a specific COS (i.e. the corresponding COS in the PQR) and all
requests to the CAT-capable resource from that logical processor are tagged with that COS (in other words, the
application thread is configured to belong to a specific COS). The cache subsystem uses this tagged request infor-
mation to enforce QoS. The capacity bitmask may be mapped into a way bitmask (or a similar enforcement entity

Figure 17-28 Class of Service and Cache Capacity Bitmasks

Set 1

Set 2

....

Cache Subsystem

Config

Tag with Cache

Enforcement

Set n

way 1

......

way 16

Enforce Mask

Capacity bitmask 3COS 3

Capacity bitmask 3COS 2

Capacity bitmask 3COS 1

Capacity bitmask 3COS 0

Cache Allocation

TransactionCOS

COS = 2 Mem Request

Class of Service

Application

Memory Request

Set Class of Service

Association

in IA32_PQR

OS Context

Switch

Configure CBM for

Enum/Confg

each Class of Service

Enumerate

Enforcement

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 131

based on the implementation) at the cache before it is applied to the allocation policy. For example, the capacity
bitmask can be an 8-bit mask and the enforcement may be accomplished using a 16-way bitmask for a cache
enforcement implementation based on way partitioning.

17.16.2 Code and Data Prioritization (CDP) Technology
Code and Data Prioritization Technology is an extension of CAT. CDP enables isolation and separate prioritization
of code and data fetches to the L3 cache in a software configurable manner, which can enable workload prioritiza-
tion and tuning of cache capacity to the characteristics of the workload. CDP extends Cache Allocation Technology
(CAT) by providing separate code and data masks per Class of Service (COS).

By default, CDP is disabled on the processor. If the CAT MSRs are used without enabling CDP, the processor oper-
ates in a traditional CAT-only mode. When CDP is enabled,
• the CAT mask MSRs are re-mapped into interleaved pairs of mask MSRs for data or code fetches (see Figure

17-29),
• the range of COS for CAT is re-indexed, with the lower-half of the COS range available for CDP.

Using the CDP feature, virtual isolation between code and data can be configured on the L3 cache if desired,
similar to how some processor cache levels provide separate L1 data and L1 instruction caches.

Like the CAT feature, CDP may be dynamically configured by privileged software at any point during normal
system operation, including dynamically enabling or disabling the feature provided that certain software configu-
ration requirements are met (see Section 17.16.4).

An example of the operating mode of CDP is shown in Figure 17-29. Shown at the top are traditional CAT usage
models where capacity masks map 1:1 with a COS number to enable control over the cache space which a given
COS (and thus applications, threads or VMs) may occupy. Shown at the bottom are example mask configurations
where CDP is enabled, and each COS number maps 1:2 to two masks, one for code and one for data. This enables
code and data to be either overlapped or isolated to varying degrees either globally or on a per-COS basis,
depending on application and system needs.

Figure 17-29 Code and Data Capacity Bitmasks of CDP

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

COS0.Data

COS0.Code

COS1.Data

COS1.Code

CAT with

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

COS0

COS1

COS2

COS3

Traditional
CAT

CDP

Other COS.Data

Example of Code/Data Prioritization Usage - 16 bit Capacity Masks

Example of CAT-Only Usage - 16 bit Capacity Masks

Other COS.Code

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 132

When CDP is enabled, the existing mask space for CAT-only operation is split. As an example if the system
supports 16 CAT-only COS, when CDP is enabled the same MSR interfaces are used, however half of the masks
correspond to code, half correspond to data, and the effective number of COS is reduced by half. Code/Data
masks are defined per-COS and interleaved in the MSR space as described in subsequent sections.

17.16.3 Enabling Cache Allocation Technology Usage Flow
Figure 17-30 illustrates the key steps for OS/VMM to detect support of Cache Allocation Technology and enable
priority-based resource allocation for a CAT-capable resource.

17.16.3.1 Enumeration and Detection Support of Cache Allocation Technology
Availability of Cache Allocation Technology can be detected by calling CPUID leaf 7 and sub leaf 0 (Set EAX=07H,
Set ECX=00H, call CPUID). This function is used to enumerate the extended feature flags supported by the
processor. It loads feature flags in EAX, ECX, EBX and EDX registers. Bit position 15 in the EBX (EBX[15]) register
indicates support for shared resource allocation control in general on the platform. If the value of this bit is set to
1 then it implies that the processor supports control over shared platform resources.

Software can query processor support of CAT capabilities by executing CPUID instruction with EAX = 07H, ECX =
0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQE[bit 15] reports 1, the processor supports Cache Allocation.
Software must use CPUID leaf 10H to enumerate additional details of available resource types, classes of services
and capability bitmasks. The programming interfaces provided by Cache Allocation Technology include:
• CPUID leaf function 10H (Cache Allocation Technology Enumeration leaf) and its sub-functions provide

information on available resource types, and CAT capability for each resource type (see Section 17.16.3.2).
• IA32_L3_MASK_n: A range of MSRs is provided for each resource type, each MSR within that range specifying

a software-configured capacity bitmask for each class of service. For L3 with Cache Allocation support, the
CBM is specified using one of the IA32_L3_QOS_MASK_n MSR, where 'n' corresponds to a number within the
supported range of COS, i.e. the range between 0 and CPUID.(EAX=10H, ECX=ResID):EDX[15:0], inclusive.
See Section 17.16.3.3 for details.

• IA32_PQR_ASSOC.CLOS: The IA32_PQR_ASSOC MSR provides a COS field that OS/VMM can use to assign a
logical processor to an available COS. See Section 17.16.3.4 for details.

17.16.3.2 Cache Allocation Technology: Resource Type and Capability Enumeration
CPUID leaf function 10H (Cache Allocation Technology Enumeration leaf) provides two or more sub-functions:

Figure 17-30 Cache Allocation Technology Usage Flow

CPUID.(7,0):EBX.15

On OS/VMM Initialization

CPUID.(10H,0):EBX[31:1]

CQE Capability

Enumeration

IA32_L3_QOS_MASK_0

Cache Allocation Configuration

...

Configure CBM

per COS

On Context Switch

IA32_PQR_ASSOC

Set COS for scheduled

thread context

A32_L3_QOS_MASK_n

CPUID.(10H,1):EAX[4:0]
CPUID.(10H,1):EDX[15:0]
CPUID.(10H,1):EBX[

CPUID[WRMSR WRMSR

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 133

• CAT Enumeration leaf sub-function 0 enumerates available resource types that support allocation control, i.e.
by executing CPUID with EAX=10H and ECX=0H. In the initial implementation, L3 CAT is the only resource
type available. Each supported resource type is represented by a bit field in CPUID.(EAX=10H,
ECX=0):EBX[31:1]. The bit position of each set bit corresponds to a Resource ID (ResID). The ResID is also
the sub-leaf index that software must use to query details of the CAT capability of that resource type (see
Figure 17-31).

• Sub-functions of CPUID.EAX=10H with a non-zero ECX input matching a supported ResID enumerate the
specific enforcement details of the corresponding ResID. The capabilities enumerated include the length of the
capacity bitmasks and the number of Classes of Service for a given ResID. Software must query the capability
of each available ResID that supports CAT from a sub-leaf of leaf 10H using the sub-leaf index reported by the
corresponding non-zero bit in CPUID.(EAX=10H, ECX=0):EBX[31:1]. CAT capability for L3 is enumerated by
CPUID.(EAX=10H, ECX=1H), see Figure 17-32. The specific CAT capabilities reported by CPUID.(EAX=10H,
ECX=1) are:

— CPUID.(EAX=10H, ECX=ResID=1):EAX[4:0] reports the length of the capacity bitmask length using
minus-one notation, i.e. a value of 15 corresponds to the capability bitmask having length of 16 bits. Bits
31:5 of EAX are reserved.

— CPUID.(EAX=10H, ECX=1):EBX[31:0] reports a bit mask. Each set bit within the length of the CBM
indicates the corresponding unit of the L3 allocation may be used by other entities in the platform (e.g. an

Figure 17-31 CPUID.(EAX=10H, ECX=0H) Available Resource Type Identification

Figure 17-32 L3 Cache Allocation Technology and CDP Enumeration

0231

CPUID.(EAX=10H, ECX=0H) Output: (EAX: Reserved; ECX: Reserved; EDX: Reserved)

EBX L
3

1

Reserved

01631

CPUID.(EAX=10H, ECX=ResID=1) Output:

EDX

ECX
031

Reserved

15

EBX
031

Bitmask of Shareable Resource with Other executing entities

Reserved COS_MAX

0531

EAX
4

Reserved CBM_LEN

12

CDP

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 134

integrated graphics engine or hardware units outside the processor core and have direct access to L3).
Each cleared bit within the length of the CBM indicates the corresponding allocation unit can be configured
to implement a priority-based allocation scheme chosen by an OS/VMM without interference with other
hardware agents in the system. Bits outside the length of the CBM are reserved.

— CPUID.(EAX=10H, ECX=1):ECX.CDP[bit 2]: If 1, indicates Code and Data Prioritization Technology is
supported (see Section 17.16.4). Other bits of CPUID.(EAX=10H, ECX=1):ECX are reserved.

— CPUID.(EAX=10H, ECX=1):EDX[15:0] reports the maximum COS supported for the resource (COS are
zero-referenced, meaning a reported value of '15' would indicate 16 total supported COS). Bits 31:16 are
reserved.

A note on migration of Classes of Service (COS): Software should minimize migrations of COS across logical
processors (across threads or cores), as a reduction in the performance of the Cache Allocation Technology
feature may result if COS are migrated frequently. This is aligned with the industry-standard practice of mini-
mizing unnecessary thread migrations across processor cores in order to avoid excessive time spent warming up
processor caches after a migration. In general, for best performance, minimize thread migration and COS migra-
tion across processor logical threads and processor cores.

17.16.3.3 Cache Mask Configuration
After determining the length of the capacity bitmasks (CBM) and number of COS supported using CPUID (see
Section 17.16.3.2), each COS needs to be programmed with a CBM to dictate its available cache via a write to the
corresponding IA32_resourceType_MASK_n register, where 'n' corresponds to a number within the supported
range of COS, i.e. the range between 0 and CPUID.(EAX=10H, ECX=ResID):EDX[15:0], inclusive, and
'resourceType' corresponds to a specific resource as enumerated by the set bits of CPUID.(EAX=10H,
ECX=0):EAX[31:1].

A range of MSRs is reserved for Cache Allocation Technology registers of the form IA32_resourceType_MASK_n,
from 0C90H through 0D8FH (inclusive), providing support for up to 256 Classes of Service or multiple resource
types. In the first implementation the only supported resourceType is 'L3', corresponding to the L3 cache in a
platform. All CAT configuration registers can be accessed using the standard RDMSR / WRMSR instructions.

...

17.16.3.4 Cache Mask Association
After configuring the available classes of service with the preferred set of capacity bitmasks, the OS/VMM can set
the IA32_PQR_ASSOC.COS of a logical processor to the class of service with the desired CBM when a thread
context switch occurs. This allows the OS/VMM to indicate which class of service an executing thread/VM belongs
to. Each logical processor contains an instance of the IA32_PQR_ASSOC register at MSR location 0C8FH, and
Figure 17-33 shows the bit field layout for this register. Bits[63:32] contain the COS field for each logical
processor.

Specifying a COS value in IA32_PQR_ASSOC.COS greater than MAX_COS_ResID =(CPUID.(EAX=10H,
ECX=ResID):EDX[15:0]) will cause a #GP(0). The value of IA32_PQR_ASSOC.COS after power-on is 0.

When CDP is enabled, Specifying a COS value in IA32_PQR_ASSOC.COS greater than MAX_COS_CDP =(
CPUID.(EAX=10H, ECX=1):EDX[15:0] >> 1) will cause undefined performance impact to code and data fetches.

Note that if the IA32_PQR_ASSOC.COS is never written then the CAT capability defaults to using COS 0, which in
turn is set to the default mask in IA32_L3_MASK_0 - which is all “1”s (on reset). This essentially disables the
enforcement feature by default or for legacy operating systems and software.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 135

17.16.4 Enumerating and Enabling CDP Technology
CDP is an extension of CAT. The presence of the CDP feature is enumerated via CPUID.(EAX=10H,
ECX=1):ECX.CDP[bit 2] (see Figure 17-32). Most of the CPUID.(EAX=10H, ECX=1) sub-leaf data that applies to
CAT also apply to CDP. However, CPUID.(EAX=10H, ECX=1):EDX.COS_MAX_CAT specifies the maximum COS
applicable to CAT-only operation. For CDP operations, COS_MAX_CDP is equal to (CPUID.(EAX=10H,
ECX=1):EDX.COS_MAX_CAT >>1).

If CPUID.(EAX=10H, ECX=1):ECX.CDP[bit 2] =1, the processor supports CDP and provides a new MSR
IA32_L3_QOS_CFG at address 0C81H. The layout of IA32_L3_QOS_CFG is shown in Figure 17-34. The bit field
definition of IA32_L3_QOS_CFG are:
• Bit 0: L3 CDP Enable. If set, enables CDP, maps CAT mask MSRs into pairs of Data Mask and Code Mask MSRs.

The maximum allowed value to write into IA32_PQR_ASSOC.COS is COS_MAX_CDP.
• Bits 63:1: Reserved. Attempts to write to reserved bits result in a #GP(0).

IA32_L3_QOS_CFG default values are all 0s at RESET, the mask MSRs are all 1s. Hence. all logical processors are
initialized in COS0 allocated with the entire L3 with CDP disabled, until software programs CAT and CDP.

Before enabling or disabling CDP, software should write all 1's to all of the CAT/CDP masks to ensure proper
behavior (e.g., the IA32_L3_QOS_Mask_n set of MSRs). When enabling CDP, software should also ensure that
only COS number which are valid in CDP operation is used, otherwise undefined behavior may result. For instance
in a case with 16 CAT COS, since COS are reduced by half when CDP is enabled, software should ensure that only
COS 0-7 are in use before enabling CDP (along with writing 1's to all mask bits before enabling or disabling CDP).

Software should also account for the fact that mask interpretations change when CDP is enabled or disabled,
meaning for instance that a CAT mask for a given COS may become a code mask for a different Class of Service
when CDP is enabled. In order to simplify this behavior and prevent unintended remapping software should
consider resetting all threads to COS[0] before enabling or disabling CDP.

17.16.4.1 Mapping Between CDP Masks and CAT Masks
When CDP is enabled, the existing CAT mask MSR space is re-mapped to provide a code mask and a data mask
per COS. The re-mapping is shown in

Figure 17-34 Layout of IA32_L3_QOS_CFG

0263 1

Reserved

IA32_L3_QOS_CFG
3

L3 CDP Enable

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 136

Table 17-19 Re-indexing of COS Numbers and Mapping to CAT/CDP Mask MSRs

One can derive the MSR address for the data mask or code mask for a given COS number ‘n’ by:
• data_mask_address (n) = base + (n <<1), where base is the address of IA32_L3_QOS_MASK_0.
• code_mask_address (n) = base + (n <<1) +1.

When CDP is enabled, each COS is mapped 1:2 with mask MSRs, with one mask enabling programmatic control
over data fill location and one mask enabling control over data placement. A variety of overlapped and isolated
mask configurations are possible (see the example in Figure 17-29).

Mask MSR field definitions remain the same. Capacity masks must be formed of contiguous set bits, with a length
of 1 bit or longer and should not exceed the maximum mask length specified in CPUID. As examples, valid masks
on a cache with max bitmask length of 16b (from CPUID) include 0xFFFF, 0xFF00, 0x00FF, 0x00F0, 0x0001,
0x0003 and so on. Maximum valid mask lengths are unchanged whether CDP is enabled or disabled, and writes
of invalid mask values may lead to undefined behavior. Writes to reserved bits will generate #GP(0).

17.16.4.2 Disabling CDP
Before enabling or disabling CDP, software should write all 1's to all of the CAT/CDP masks to ensure proper
behavior (e.g., the IA32_L3_QOS_Mask_n set of MSRs).

Software should also account for the fact that mask interpretations change when CDP is enabled or disabled,
meaning for instance that a CAT mask for a given COS may become a code mask for a different Class of Service
when CDP is enabled. In order to simplify this behavior and prevent unintended remapping software should
consider resetting all threads to COS[0] before enabling or disabling CDP.

17.16.5 Cache Allocation Technology Programming Considerations

17.16.5.1 Cache Allocation Technology Dynamic Configuration
Both the CAT masks and CQM registers are accessible and modifiable at any time during execution using RDMSR/
WRMSR unless otherwise noted. When writing to these MSRs a #GP(0) will be generated if any of the following
conditions occur:
• A reserved bit is modified,
• Accessing a QOS mask register outside the supported COS (the max COS number is specified in

CPUID.(EAX=10H, ECX=ResID):EDX[15:0]), or

Mask MSR CAT-only Operation CDP Operation

IA32_L3_QOS_Mask_0 COS0 COS0.Data
IA32_L3_QOS_Mask_1 COS1 COS0.Code
IA32_L3_QOS_Mask_2 COS2 COS1.Data
IA32_L3_QOS_Mask_3 COS3 COS1.Code
IA32_L3_QOS_Mask_4 COS4 COS2.Data
IA32_L3_QOS_Mask_5 COS5 COS2.Code
....

IA32_L3_QOS_Mask_’2n’ COS’2n’ COS’n’.Data
IA32_L3_QOS_Mask_’2n+1’ COS’2n+1’ COS’n’.Code

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 137

• Writing a COS greater than the supported maximum (specified as the maximum value of CPUID.(EAX=10H,
ECX=ResID):EDX[15:0] for all valid ResID values) is written to the IA32_PQR_ASSOC.CLOS field.

When reading the IA32_PQR_ASSOC register the currently programmed COS on the core will be returned.

When reading an IA32_resourceType_MASK_n register the current capacity bit mask for COS 'n' will be returned.

As noted previously, software should minimize migrations of COS across logical processors (across threads or
cores), as a reduction in the accuracy of the Cache Allocation feature may result if COS are migrated frequently.
This is aligned with the industry standard practice of minimizing unnecessary thread migrations across processor
cores in order to avoid excessive time spent warming up processor caches after a migration. In general, for best
performance, minimize thread migration and COS migration across processor logical threads and processor cores.

...

17.16.5.4 Associating Threads with CAT/CDP Classes of Service
Threads are associated with Classes of Service (CLOS) via the per-logical-processor IA32_PQR_ASSOC MSR. The
same COS concept applies to both CAT and CDP (for instance, COS[5] means the same thing whether CAT or CDP
is in use, and the COS has associated resource usage constraint attributes including cache capacity masks). The
mapping of COS to mask MSRs does change when CDP is enabled, according to the following guidelines:
• In CAT-only Mode - one set of bitmasks in one mask MSR control both code and data.

— Each COS number map 1:1 with a capacity mask on the applicable resource (e.g., L3 cache).
• When CDP is enabled,

— Two mask sets exist for each COS number, one for code, one for data.

— Masks for code/data are interleaved in the MSR address space (see Table 17-19).

...

13. Updates to Chapter 18, Volume 3B
Change bars show changes to Chapter 18 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

18.10.3 PEBS Data Address Profiling
The Data Linear Address facility is also abbreviated as DataLA. The facility is a replacement or extension of the
precise store facility in previous processor generations. The DataLA facility complements the load latency facility
by providing a means to profile load and store memory references in the system, leverages the PEBS facility, and
provides additional information about sampled loads and stores. Having precise memory reference events with
linear address information for both loads and stores provides information to improve data structure layout, elim-
inate remote node references, and identify cache-line conflicts in NUMA systems.

The DataLA facility in the 4th generation processor supports the following events configured to use PEBS:

Table 18-40 Precise Events That Supports Data Linear Address Profiling
Event Name Event Name

MEM_UOPS_RETIRED.STLB_MISS_LOADS MEM_UOPS_RETIRED.STLB_MISS_STORES

MEM_UOPS_RETIRED.LOCK_LOADS MEM_UOPS_RETIRED.SPLIT_STORES

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 138

DataLA can use any one of the IA32_PMC0-IA32_PMC3 counters. Counter overflows will initiate the generation of
PEBS records. Upon counter overflow, hardware captures the linear address and possible other status information
of the retiring memory uop. This information is then written to the PEBS record that is subsequently generated.

To enable the DataLA facility, software must complete the following steps. Please note that the DataLA facility
relies on the PEBS facility, so the PEBS configuration requirements must be completed before attempting to
capture DataLA information.
• Complete the PEBS configuration steps.
• Program the an event listed in Table 18-40 using any one of IA32_PERFEVTSEL0-IA32_PERFEVTSEL3.
• Set the corresponding IA32_PEBS_ENABLE.PEBS_EN_CTRx bit. This enables the corresponding IA32_PMCx

as a PEBS counter and enables the DataLA facility.

When the DataLA facility is enabled, the relevant information written into a PEBS record affects entries at offsets
98H, A0H and A8H, as shown in Table 18-41.

...

18.12 NEXT GENERATION INTEL® CORE™ PROCESSOR PERFORMANCE
MONITORING FACILITY

The next generation Intel® Core™ processor is based on the Skylake microarchitecture. The core PMU supports
architectural performance monitoring capability with version ID 4 (see Section 18.2.4) and a host of non-archi-
tectural monitoring capabilities.

MEM_UOPS_RETIRED.SPLIT_LOADS MEM_UOPS_RETIRED.ALL_STORES

MEM_UOPS_RETIRED.ALL_LOADS MEM_LOAD_UOPS_LLC_MISS_RETIRED.LOCAL_DRAM

MEM_LOAD_UOPS_RETIRED.L1_HIT MEM_LOAD_UOPS_RETIRED.L2_HIT

MEM_LOAD_UOPS_RETIRED.L3_HIT MEM_LOAD_UOPS_RETIRED.L1_MISS

MEM_LOAD_UOPS_RETIRED.L2_MISS MEM_LOAD_UOPS_RETIRED.L3_MISS

MEM_LOAD_UOPS_RETIRED.HIT_LFB MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS

MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM

UOPS_RETIRED.ALL (if load or store is tagged) MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_NONE

Table 18-40 Precise Events That Supports Data Linear Address Profiling (Contd.)
Event Name Event Name

Table 18-41 Layout of Data Linear Address Information In PEBS Record

Field Offset Description

Data Linear
Address

98H The linear address of the load or the destination of the store.

Store Status A0H • DCU Hit (Bit 0): The store hit the data cache closest to the core (L1 cache) if this bit is set, otherwise
the store missed the data cache. This information is valid only for the following store events:
UOPS_RETIRED.ALL (if store is tagged),
MEM_UOPS_RETIRED.STLB_MISS_STORES,
MEM_UOPS_RETIRED.SPLIT_STORES, MEM_UOPS_RETIRED.ALL_STORES

• Other bits are zero, The STLB_MISS, LOCK bit information can be obtained by programming the
corresponding store event in Table 18-40.

Reserved A8H Always zero.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 139

Architectural performance monitoring events and non-architectural monitoring events are programmed using
fixed counters and programmable counters/event select MSRS as described in Section 18.2.3.

The core PMU’s capability is similar to those described in Section 18.8 through Section 18.8.5, with some differ-
ences and enhancements summarized in Table 18-37. Additionally, the core PMU provides some enhancement to
support performance monitoring when the target workload contains instruction streams using Intel® Transac-
tional Synchronization Extensions (TSX), see Section 18.10.5. For details of Intel TSX, see Chapter 15, “Program-
ming with Intel® Transactional Synchronization Extensions” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.

Performance monitoring result may be affected by side-band activity on processors that support Intel SGX, details
are described in Chapter 7 of the “Intel® Software Guard Extensions Programming Reference”.

Table 18-48 Core PMU Comparison

Box
Intel® microarchitecture code name
Skylake

Intel® microarchitecture code
name Haswell and Broadwell Comment

of Fixed counters per thread 3 3

of general-purpose counters
per core

8 8

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 See Section 18.2.4.

of programmable counters
per thread

4 or (8 if a core not shared by two
threads)

4 or (8 if a core not shared by two
threads)

CPUID enumerates
of counters.

Architectural Perfmon version 4 3 See Section 18.2.4

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with
streamlined semantics.

• Freeze_on_LBR with streamlined
semantics.

• Freeze_while_SMM.

• Freeze_Perfmon_on_PMI with
legacy semantics.

• Freeze_on_LBR with legacy
semantics for branch profiling.

• Freeze_while_SMM.

See Section 17.4.7.

Legacy semantics
not supported with
version 4 or higher.

Counter and Buffer Overflow
Status Management

• Query via
IA32_PERF_GLOBAL_STATUS

• Reset via
IA32_PERF_GLOBAL_STATUS_RESET

• Set via
IA32_PERF_GLOBAL_STATUS_SET

• Query via
IA32_PERF_GLOBAL_STATUS

• Reset via
IA32_PERF_GLOBAL_OVF_CTRL

See Section 18.2.4.

IA32_PERF_GLOBAL_STATUS
Indicators of
Overflow/Overhead/Interferen
ce

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow
• CTR_Frz, LBR_Frz, ASCI

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow (applicable

to Broadwell microarchitecture)

See Section 18.2.4.

Enable control in
IA32_PERF_GLOBAL_STATUS

• CTR_Frz,
• LBR_Frz

NA See Section
18.2.4.1.

Perfmon Counter In-Use
Indicator

Query IA32_PERF_GLOBAL_INUSE NA See Section
18.2.4.3.

Precise Event Based Sampling
(PEBS) Events

See Table 18-51. See Table 18-27. IA32_PMC4-PMC7
do not support
PEBS.

PEBS for front end events See Section 18.12.1.4; no

LBR Record Format Encoding 000101b 000100b Section 17.4.8.1

LBR Size 32 entries 16 entries

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 140

18.12.1 Precise Event Based Sampling (PEBS) Facility
The PEBS facility in the Next Generation Intel Core processor provides a number enhancement relative to PEBS in
processors based on Haswell/Broadwell microarchitectures. The key components and differences of PEBS facility
relative to Haswell/Broadwell microarchitecture is summarized in Table 18-49.

...

LBR Entry From_IP/To_IP/LBR_Info triplet From_IP/To_IP pair Section 17.9

LBR Timing yes no Section 17.9.1

Call Stack Profiling yes, see Section 17.8 yes, see Section 17.8 Use LBR facility

Off-core Response Event MSR 1A6H and 1A7H; Extended request
and response types

MSR 1A6H and 1A7H; Extended
request and response types

Intel TSX support for Perfmon See Section 18.10.5; See Section 18.10.5;

Table 18-48 Core PMU Comparison (Contd.)

Box
Intel® microarchitecture code name
Skylake

Intel® microarchitecture code
name Haswell and Broadwell Comment

Table 18-49 PEBS Facility Comparison

Box
Intel® microarchitecture code
name Skylake

Intel® microarchitecture code
name Haswell and Broadwell Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7.

PEBS Buffer Programming Section 18.7.1.1 Section 18.7.1.1 Unchanged

IA32_PEBS_ENABLE Layout Figure 18-21 Figure 18-21

PEBS-EventingIP yes yes

PEBS record format encoding 0011b 0010b

PEBS record layout Table 18-50; enhanced fields
at offsets 98H- B8H; and TSC
record field at C0H.

Table 18-39; enhanced fields at
offsets 98H, A0H, A8H, B0H.

Multi-counter PEBS
resolution

PEBS record 90H resolves the
eventing counter overflow.

PEBS record 90H reflects
IA32_PERF_GLOBAL_STATUS.

PEBS Events See Table 18-51. See Table 18-27. IA32_PMC4-IA32_PMC7 do not
support PEBS.

PEBS-PDIR yes yes IA32_PMC1 only.

PEBS-Load Latency See Section 18.8.4.2. See Section 18.8.4.2.

Data Address Profiling yes yes

FrontEnd event support FrontEnd_Retried event and
MSR_PEBS_FRONTEND

no IA32_PMC0-PMC3 only

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 141

18.12.1.2 PEBS Events
The list of PEBS events supported for processors based on the Intel® microarchitecture code name Skylake is
shown in Table 18-51.

Table 18-51 PEBS Performance Events for the Skylake Microarchitecture
Event Name Event Select Sub-event UMask

INST_RETIRED C0H PREC_DIST 01H

ALL_CYCLES1 01H

OTHER_ASSISTS C1H ANY 3FH

BR_INST_RETIRED C4H CONDITIONAL 01H

NEAR_CALL 02H

ALL_BRANCHES 04H

NEAR_RETURN 08H

NEAR_TAKEN 20H

FAR_BRACHES 40H

BR_MISP_RETIRED C5H CONDITIONAL 01H

ALL_BRANCHES 04H

NEAR_TAKEN 20H

FRONTEND_RETIRED2 C6H CONDITIONAL 01H

HLE_RETIRED C8H ABORTED 04H

RTM_RETIRED C9H ABORTED 04H

MEM_INST_RETIRED2 D0H LOCK_LOADS 21H

SPLIT_LOADS 41H

SPLIT_STORES 42H

ALL_LOADS 81H

ALL_STORES 82H

MEM_LOAD_RETIRED3 D1H L1_HIT 01H

L2_HIT 02H

L3_HIT 04H

L1_MISS 08H

L2_MISS 10H

L3_MISS 20H

HIT_LFB 40H

MEM_LOAD_L3_HIT_RETIRED2 D2H XSNP_MISS 01H

XSNP_HIT 02H

XSNP_HITM 04H

XSNP_NONE 08H

NOTES:
1. INST_RETIRED.ALL_CYCLES is configured with additional parameters of cmask = 10 and INV = 1
2. Subevents are specified using MSR_PEBS_FRONTEND, see Section 18.12.2
3. Instruction with at least one load uop experiencing the condition specified in the UMask.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 142

...

18.12.1.4 PEBS Facility for Front End Events
In the next generation Intel Core processor, the PEBS facility has been extended to allow capturing PEBS data for
some microarchitectural conditions related to front end events. The frontend microarchitectural conditions
supported by PEBS requires the following interfaces:
• The IA32_PERFEVTSELx MSR must select “FrontEnd_Retired” (C6H) in the EventSelect field (bits 7:0) and

umask = 01H,
• The “FRONTEND_RETIRED” event employs a new MSR, MSR_PEBS_FRONTEND, to specify the supported

frontend event details, see Table 18-53.
• Program the PEBS_EN_PMCx field of IA32_PEBS_ENABLE MSR as required.

Note the AnyThread field of IA32_PERFEVTSELx is ignored by the processor for the “FRONTEND_RETIRED” event.

The sub-event encodings supported by MSR_PEBS_FRONTEND.EVTSEL is given in Table 18-53.

The layout of MSR_PEBS_FRONTEND is given in Table 18-54.

Table 18-53 FrontEnd_Retired Sub-Event Encodings Supported by MSR_PEBS_FRONTEND.EVTSEL

Sub-Event Name EVTSEL Description

DSB_MISS 11H Retired Instructions which experienced decode stream buffer (DSB) miss.

L1I_MISS 12H The fetch of retired Instructions which experienced Instruction L1 Cache true miss1. Additional
requests to the same cache line as an in-flight L1I cache miss will not be counted.

L2_MISS 13H The fetch of retired Instructions which experienced L2 Cache true miss. Additional requests to the
same cache line as an in-flight MLC cache miss will not be counted.

ITLB_MISS 14H The fetch of retired Instructions which experienced ITLB true miss. Additional requests to the same
cache line as an in-flight ITLB miss will not be counted.

STLB_MISS 15H The fetch of retired Instructions which experienced STLB true miss. Additional requests to the
same cache line as an in-flight STLB miss will not be counted.

IDQ_READ_BUBBLES 6H An IDQ read bubble is defined as any one of the 4 allocation slots of IDQ that is not filled by the
front-end on any cycle where there is no back end stall. Using the threshold and latency fields in
MSR_PEBS_FRONTEND allows counting of IDQ read bubbles of various magnitude and duration.

Latency controls the number of cycles and Threshold controls the number of allocation slots that
contain bubbles.

The event counts if and only if a sequence of at least FE_LATENCY consecutive cycles contain at
least FE_TRESHOLD number of bubbles each.

NOTES:
1. A true miss is the first miss for a cacheline/page (excluding secondary misses that fall into same cacheline/page).

Table 18-54 MSR_PEBS_FRONTEND Layout

Bit Name Offset Description

EVTSEL 7:0 Encodes the sub-event within FrontEnd_Retired that can use PEBS facility, see Table 18-53

IDQ_Bubble_Length 19:8 Specifies the threshold of continuously elapsed cycles for the specified width of bubbles when
counting IDQ_READ_BUBBLES event

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 143

18.12.1.5 FRONTEND_RETIRED
The FRONTEND_RETIRED event is designed to help software developers identify exact instructions that caused
front-end issues. There are some instances in which the event will, by design, the under-counting scenarios
include the following:
• The event counts only retired (non-speculative) Frontend events, i.e. events from just true program execution

path are counted.
• The event will count once per cacheline (at most). If a cacheline contains multiple instructions which caused

front-end misses, the count will be only 1 for that line.
• If the multibyte sequence of an instruction spans across two cachelines and causes a miss it will be recorded

once. If there were additional misses in the second cacheline, they will not be counted separately.
• If a multi-uop instruction exceeds the allocation width of one cycle, the bubbles associated with these uops

will be counted once per that instruction.
• If 2 instructions are fused (macro-fusion), and either of them or both cause front-end misses, it will be

counted once for the fused instruction.
• If a frontend (miss) event occurs outside instruction boundary (e.g. due to processor handling of architectural

event), it may be reported for the next instruction to retire.

...

14. Updates to Chapter 19, Volume 3B
Change bars show changes to Chapter 19 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...
This chapter lists the performance-monitoring events that can be monitored with the Intel 64 or IA-32 processors.
The ability to monitor performance events and the events that can be monitored in these processors are mostly
model-specific, except for architectural performance events, described in Section 19.1.

Non-architectural performance events (i.e. model-specific events) are listed for each generation of microarchitec-
ture:
• Section 19.2 - Processors based on Skylake microarchitecture
• Section 19.3 - Processors based on Broadwell microarchitecture
• Section 19.4 - Processors based on Haswell microarchitecture
• Section 19.4.1 - Processors based on Haswell-E microarchitecture
• Section 19.5 - Processors based on Ivy Bridge microarchitecture
• Section 19.5.1 - Processors based on Ivy Bridge-E microarchitecture
• Section 19.6 - Processors based on Sandy Bridge microarchitecture
• Section 19.7 - Processors based on Intel® microarchitecture code name Nehalem
• Section 19.8 - Processors based on Intel® microarchitecture code name Westmere

IDQ_Bubble_Width 22:20 Specifies the threshold of simultaneous bubbles when counting IDQ_READ_BUBBLES event

Reserved 63:23 Reserved

Table 18-54 MSR_PEBS_FRONTEND Layout

Bit Name Offset Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 144

• Section 19.9 - Processors based on Enhanced Intel® Core™ microarchitecture
• Section 19.10 - Processors based on Intel® Core™ microarchitecture
• Section 19.11 - Processors based on the Silvermont microarchitecture
• Section 19.12 - Processors based on Intel® Atom™ microarchitecture
• Section 19.13 - Intel® Core™ Solo and Intel® Core™ Duo processors
• Section 19.14 - Processors based on Intel NetBurst® microarchitecture
• Section 19.15 - Pentium® M family processors
• Section 19.16 - P6 family processors
• Section 19.17 - Pentium® processors

...

19.1 ARCHITECTURAL PERFORMANCE-MONITORING EVENTS
Architectural performance events are introduced in Intel Core Solo and Intel Core Duo processors. They are also
supported on processors based on Intel Core microarchitecture. Table 19-1 lists pre-defined architectural perfor-
mance events that can be configured using general-purpose performance counters and associated event-select
registers.

Fixed-function performance counters count only events defined in Table 19-2.

Table 19-1 Architectural Performance Events
Event
Num. Event Mask Mnemonic

Umask
Value Description Comment

3CH UnHalted Core Cycles 00H Unhalted core cycles

3CH UnHalted Reference Cycles 01H Unhalted reference cycles Measures bus
cycle1

C0H Instruction Retired 00H Instruction retired

2EH LLC Reference 4FH Longest latency cache references

2EH LLC Misses 41H Longest latency cache misses

C4H Branch Instruction Retired 00H Branch instruction at retirement

C5H Branch Misses Retired 00H Mispredicted Branch Instruction at retirement

NOTES:
1. Implementation of this event in Intel Core 2 processor family, Intel Core Duo, and Intel Core Solo processors measures bus clocks.

Table 19-2 Fixed-Function Performance Counter and Pre-defined Performance Events
Fixed-Function Performance
Counter Address Event Mask Mnemonic Description

IA32_PERF_FIXED_CTR0 309H Inst_Retired.Any This event counts the number of instructions that retire
execution. For instructions that consist of multiple micro-
ops, this event counts the retirement of the last micro-op
of the instruction. The counter continue counting during
hardware interrupts, traps, and inside interrupt handlers.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 145

19.2 PERFORMANCE MONITORING EVENTS FOR NEXT GENERATION INTEL
CORE PROCESSOR

The next generation Intel Core processors are based on the Skylake microarchitecture. They support the architec-
tural performance-monitoring events listed in Table 19-1. Fixed counters in the core PMU support the architecture
events defined in Table 19-2. Non-architectural performance-monitoring events in the processor core are listed in
Table 19-3. The events in Table 19-3 apply to processors with CPUID signature of DisplayFamily_DisplayModel
encoding with the following values: 06_4EH and 06_5EH. Table 19-7 lists performance events supporting Intel
TSX (see Section 18.10.5) and are applicable to processors based on Skylake microarchitecture. Where Skylake
microarchitecture implements TSX-related event semantics that differ from Table 19-7, they are listed inTable
19-4.

The comment column in Table 19-3 uses abbreviated letters to indicate additional conditions applicable to the
Event Mask Mnemonic. For event umasks listed in Table 19-3 that do not show “AnyT”, users should refrain from
programming “AnyThread =1” in IA32_PERF_EVTSELx.

IA32_PERF_FIXED_CTR1 30AH CPU_CLK_UNHALTED.THRE
AD/CPU_CLK_UNHALTED.C
ORE/CPU_CLK_UNHALTED.
THREAD_ANY

The CPU_CLK_UNHALTED.THREAD event counts the
number of core cycles while the logical processor is not in a
halt state.

If there is only one logical processor in a processor core,
CPU_CLK_UNHALTED.CORE counts the unhalted cycles of
the processor core.

If there are more than one logical processor in a processor
core, CPU_CLK_UNHALTED.THREAD_ANY is supported by
programming IA32_FIXED_CTR_CTRL[bit 6]AnyThread = 1.

The core frequency may change from time to time due to
transitions associated with Enhanced Intel SpeedStep
Technology or TM2. For this reason this event may have a
changing ratio with regards to time.

IA32_PERF_FIXED_CTR2 30BH CPU_CLK_UNHALTED.REF This event counts the number of reference cycles when the
core is not in a halt state and not in a TM stop-clock state.
The core enters the halt state when it is running the HLT
instruction or the MWAIT instruction.

This event is not affected by core frequency changes (e.g.,
P states) but counts at the same frequency as the time
stamp counter. This event can approximate elapsed time
while the core was not in halt state and not in a TM stop-
clock state.

Table 19-2 Fixed-Function Performance Counter and Pre-defined Performance Events (Contd.)
Fixed-Function Performance
Counter Address Event Mask Mnemonic Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 146

Table 19-3 Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD Loads blocked by overlapping with store buffer that
cannot be forwarded.

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are
temporarily blocked because all resources for handling
the split accesses are in use.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS
_ALIAS

False dependencies in MOB due to partial compare on
address.

08H 01H DTLB_LOAD_MISSES.MISS_CAUS
ES_A_WALK

Load misses in all TLB levels that cause a page walk of
any page size.

08H 0EH DTLB_LOAD_MISSES.WALK_COM
PLETED

Load miss in all TLB levels causes a page walk that
completes. (All page sizes)

08H 10H DTLB_LOAD_MISSES.WALK_PEN
DING

Counts 1 per cycle for each PMH that is busy with a
page walk for a load.

08H 10H DTLB_LOAD_MISSES.WALK_ACTI
VE

Cycles when at least one PMH is busy with a walk for a
load.

CMSK1

08H 20H DTLB_LOAD_MISSES.STLB_HIT Loads that miss the DTLB but hit STLB.

0DH 01H INT_MISC.RECOVERY_CYCLES Core cycles the allocator was stalled due to recovery
from earlier machine clear event for this thread (e.g.
misprediction or memory order conflict)

0DH 01H INT_MISC.RECOVERY_CYCLES_A
NY

Core cycles the allocator was stalled due to recovery
from earlier machine clear event for any logical thread
in this processor core.

AnyT

0DH 80H INT_MISC.CLEAR_RESTEER_CYC
LES

Cycles the issue-stage is waiting for front-end to fetch
from resteered path following branch misprediction or
machine clear events.

0EH 01H UOPS_ISSUED.ANY The number of Uops issued by the RAT to RS.

0EH 01H UOPS_ISSUED.STALL_CYCLES Cycles when the RAT does not issue uops to RS for the
thread.

CMSK1, INV

0EH 02H UOPS_ISSUED.VECTOR_WIDTH_
MISMATCH

Uops inserted at issue-stage in order to preserve upper
bits of vector registers.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such uop
has 3 sources (e.g. 2 sources + immediate) regardless if
as a result of LEA instruction or not.

14H 01H ARITH.FPU_DIVIDER_ACTIVE Cycles when divider is busy executing divide or square
root operations. Accounts for FP operations including
integer divides.

24H 21H L2_RQSTS.DEMAND_DATA_RD_
MISS

Demand Data Read requests that missed L2, no rejects.

24H 22H L2_RQSTS.RFO_MISS RFO requests that missed L2,

24H 24H L2_RQSTS.CODE_RD_MISS L2 cache misses when fetching instructions,

24H 27H L2_RQSTS.ALL_DEMAND_MISS Demand requests that missed L2,

24H 38H L2_RQSTS.PF_MISS Requests from the L1/L2/L3 hardware prefetchers or
Load software prefetches that miss L2 cache

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 147

24H 3FH L2_RQSTS.MISS All requests that missed L2,

24H 41H L2_RQSTS.DEMAND_DATA_RD_
HIT

Demand Data Read requests that hit L2 cache.

24H 42H L2_RQSTS.RFO_HIT RFO requests that hit L2 cache.

24H 44H L2_RQSTS.CODE_RD_HIT L2 cache hits when fetching instructions,

24H D8H L2_RQSTS.PF_HIT Prefetches that hit L2.

24H E1H L2_RQSTS.ALL_DEMAND_DATA
_RD

All demand data read requests to L2.

24H E2H L2_RQSTS.ALL_RFO All L RFO requests to L2.

24H E4H L2_RQSTS.ALL_CODE_RD All L2 code requests.

24H E7H L2_RQSTS.ALL_DEMAND_REFE
RENCES

All demand requests to L2.

24H F8H L2_RQSTS.ALL_PF All requests from the L1/L2/L3 hardware prefetchers
or Load software prefetches

24H EFH L2_RQSTS.REFERENCES All requests to L2.

2EH 4FH LONGEST_LAT_CACHE.REFEREN
CE

This event counts requests originating from the core
that reference a cache line in the L3 cache.

See Table 19-1.

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the L3 cache.

See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD_
P

Cycles while the logical processor is not in a halt state. See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD_
P_ANY

Cycles while at least one logical processor is not in a
halt state.

AnyT

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK

Reference cycles when the logical processor is
unhalted (counts at 100 MHz rate)

See Table 19-1.

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK_ANY

Reference cycles when at least one logical processor in
the processor core is unhalted (counts at 100 MHz rate)

AnyT

3CH 02H CPU_CLK_THREAD_UNHALTED.
ONE_THREAD_ACTIVE

Count XClk pulses when this thread is unhalted and the
other thread is halted.

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle.

48H 01H L1D_PEND_MISS.PENDING_CYCL
ES

Cycles with at least one outstanding L1D misses from
this logical processor

CMSK1

48H 01H L1D_PEND_MISS.PENDING_CYCL
ES_ANY

Cycles with at least one outstanding L1D misses from
any logical processor in this core.

CMSK1, AnyT

48H 02H L1D_PEND_MISS.FB_FULL Number of times a request needed a FB entry but there
was no entry available for it. That is the FB
unavailability was dominant reason for blocking the
request. A request includes cacheable/uncacheable
demands that is load, store or SW prefetch. HWP are
excluded.

49H 01H DTLB_STORE_MISSES.MISS_CAU
SES_A_WALK

Store misses in all TLB levels that cause page walks

Table 19-3 Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 148

49H 0EH DTLB_STORE_MISSES.WALK_CO
MPLETED

Counts completed page walks in any TLB levels due to
store misses (All page sizes).

49H 10H DTLB_STORE_MISSES.WALK_PE
NDING

Counts 1 per cycle for each PMH that is busy with a
page walk for a store.

49H 10H DTLB_STORE_MISSES.WALK_AC
TIVE

Cycles when at least one PMH is busy with a page walk
for a store.

CMSK1

49H 20H DTLB_STORE_MISSES.STLB_HIT Store misses that missed DTLB but hit STLB.

4CH 01H LOAD_HIT_PRE.HW_PF Demand load dispatches that hit fill buffer allocated for
software prefetch.

4FH 10H EPT.WALK_PENDING Counts 1 per cycle for each PMH that is busy with a EPT
walk for any request type.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

5EH 01H RS_EVENTS.EMPTY_END Counts end of periods where the Reservation Station
(RS) was empty. Could be useful to precisely locate
Frontend Latency Bound issues.

CMSK1, INV

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Increment each cycle of the number of offcore
outstanding Demand Data Read transactions in SQ to
uncore.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_DEMAND_D
ATA_RD

Cycles with at least one offcore outstanding Demand
Data Read transactions in SQ to uncore.

CMSK1

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD_GE_6

Cycles with at least 6 offcore outstanding Demand Data
Read transactions in SQ to uncore.

CMSK6

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Increment each cycle of the number of Offcore
outstanding Demand code Read transactions in SQ to
uncore.

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_DEMAND_C
ODE_RD

Cycles with at least one offcore outstanding Demand
code Read transactions in SQ to uncore.

CMSK1

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Increment each cycle of the number of Offcore
outstanding RFO store transactions in SQ to uncore. Set
Cmask=1 to count cycles.

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_DEMAND_R
FO

Cycles with at least one offcore outstanding RFO
transactions in SQ to uncore.

CMSK1

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Increment each cycle of the number of Offcore
outstanding cacheable data read transactions in SQ to
uncore. Set Cmask=1 to count cycles.

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_DATA_RD

Cycles with at least one offcore outstanding data read
transactions in SQ to uncore.

CMSK1

Table 19-3 Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 149

60H 10H OFFCORE_REQUESTS_OUTSTAN
DING.L3_MISS_DEMAND_DATA_
RD

Increment each cycle of the number of Offcore
outstanding demand data read requests from SQ that
missed L3.

60H 10H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_L3_MISS_D
EMAND_DATA_RD

Cycles with at least one offcore outstanding Demand
Data Read requests from SQ that missed L3.

CMSK1

60H 10H OFFCORE_REQUESTS_OUTSTAN
DING.L3_MISS_DEMAND_DATA_
RD_GE_6

Cycles with at least one offcore outstanding Demand
Data Read requests from SQ that missed L3.

CMSK6

63H 02H LOCK_CYCLES.CACHE_LOCK_DU
RATION

Cycles in which the L1D is locked.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ from
MITE path.

79H 04H IDQ.MITE_CYCLES Cycles when uops are being delivered to IDQ from MITE
path

CMSK1

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ from
DSB path.

79H 08H IDQ.DSB_CYCLES Cycles when uops are being delivered to IDQ from DSB
path

CMSK1

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ by DSB
when MS_busy.

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UO
PS

Cycles DSB is delivered at least one uops. CMSK1

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Cycles DSB is delivered four uops. CMSK4

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ by
MITE when MS_busy.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UO
PS

Counts cycles MITE is delivered at least one uops. CMSK1

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. CMSK4

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ while
MS is busy.

79H 30H IDQ.MS_SWITCHES Number of switches from DSB or MITE to MS. EDG

79H 30H IDQ.MS_CYCLES Cycles MS is delivered at least one uops. CMSK1

80H 04H ICACHE_16B.IFDATA_STALL Cycles where a code fetch is stalled due to L1
instruction cache miss.

80H 04H ICACHE_64B.IFDATA_STALL Cycles where a code fetch is stalled due to L1
instruction cache tag miss.

83H 01H ICACHE_64B.IFTAG_HIT Instruction fetch tag lookups that hit in the instruction
cache (L1I). Counts at 64-byte cache-line granularity.

83H 02H ICACHE_64B.IFTAG_MISS Instruction fetch tag lookups that miss in the
instruction cache (L1I). Counts at 64-byte cache-line
granularity.

Table 19-3 Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 150

85H 01H ITLB_MISSES.MISS_CAUSES_A_
WALK

Misses at all ITLB levels that cause page walks

85H 0EH ITLB_MISSES.WALK_COMPLETE
D

Counts completed page walks in any TLB levels due to
code fetch misses (All page sizes).

85H 10H ITLB_MISSES.WALK_PENDING Counts 1 per cycle for each PMH that is busy with a
page walk for an instruction fetch request.

85H 20H ITLB_MISSES.STLB_HIT ITLB misses that hit STLB.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

9CH 01H IDQ_UOPS_NOT_DELIVERED.CO
RE

Count issue pipeline slots where no uop was delivered
from the frontend to the backend when there is no
backend stall.

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_0_UOP_DELIV.CORE

Cycles which 4 issue pipeline slots had no uop delivered
from the frontend to the backend when there is no
backend stall.

CMSK4

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_LE_n_UOP_DELIV.CORE

Cycles which “4-n” issue pipeline slots had no uop
delivered from the frontend to the backend when there
is no backend stall.

Set CMSK = 4-n, n = 1,
2, 3

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_FE_WAS_OK

Cycles which frontend delivered 4 uops or the RAT was
stalling FE.

CMSK, INV

A1H 01H UOPS_DISPATCHED_PORT.PORT
_0

Counts the number of cycles in which a uop is
dispatched to port 0.

A1H 02H UOPS_DISPATCHED_PORT.PORT
_1

Counts the number of cycles in which a uop is
dispatched to port 1.

A1H 04H UOPS_DISPATCHED_PORT.PORT
_2

Counts the number of cycles in which a uop is
dispatched to port 2.

A1H 08H UOPS_DISPATCHED_PORT.PORT
_3

Counts the number of cycles in which a uop is
dispatched to port 3.

A1H 10H UOPS_DISPATCHED_PORT.PORT
_4

Counts the number of cycles in which a uop is
dispatched to port 4.

A1H 20H UOPS_DISPATCHED_PORT.PORT
_5

Counts the number of cycles in which a uop is
dispatched to port 5.

A1H 40H UOPS_DISPATCHED_PORT.PORT
_6

Counts the number of cycles in which a uop is
dispatched to port 6.

A1H 80H UOPS_DISPATCHED_PORT.PORT
_7

Counts the number of cycles in which a uop is
dispatched to port 7.

A2H 01H RESOURCE_STALLS.ANY Resource-related stall cycles

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_MI
SS

Cycles while L2 cache miss demand load is outstanding. CMSK1

A3H 02H CYCLE_ACTIVITY.CYCLES_L3_MI
SS

Cycles while L3 cache miss demand load is outstanding. CMSK2

Table 19-3 Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 151

A3H 04H CYCLE_ACTIVITY.STALLS_TOTAL Total execution stalls CMSK4

A3H 05H CYCLE_ACTIVITY.STALLS_L2_MI
SS

Execution stalls while L2 cache miss demand load is
outstanding.

CMSK5

A3H 06H CYCLE_ACTIVITY.STALLS_L3_MI
SS

Execution stalls while L3 cache miss demand load is
outstanding.

CMSK6

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_M
ISS

Cycles while L1 data cache miss demand load is
outstanding.

CMSK8

A3H 0CH CYCLE_ACTIVITY.STALLS_L1D_M
ISS

Execution stalls while L1 data cache miss demand load
is outstanding.

CMSK12

A3H 10H CYCLE_ACTIVITY.CYCLES_MEM_
ANY

Cycles while memory subsystem has an outstanding
load.

CMSK16

A3H 14H CYCLE_ACTIVITY.STALLS_MEM_
ANY

Execution stalls while memory subsystem has an
outstanding load.

CMSK20

A6H 01H EXE_ACTIVITY.EXE_BOUND_0_P
ORTS

Cycles for which no uops began execution, the
Reservation Station was not empty, the Store Buffer
was full and there was no outstanding load.

A6H 02H EXE_ACTIVITY.1_PORTS_UTIL Cycles for which one uop began execution on any port,
and the Reservation Station was not empty.

A6H 04H EXE_ACTIVITY.2_PORTS_UTIL Cycles for which two uops began execution, and the
Reservation Station was not empty.

A6H 08H EXE_ACTIVITY.3_PORTS_UTIL Cycles for which three uops began execution, and the
Reservation Station was not empty.

A6H 04H EXE_ACTIVITY.4_PORTS_UTIL Cycles for which four uops began execution, and the
Reservation Station was not empty.

A8H 01H LSD.UOPS Number of uops delivered by the LSD.

A8H 01H LSD.CYCLES_ACTIVE Cycles with at least one uop delivered by the LSD and
none from the decoder.

CMSK1

A8H 01H LSD.CYCLES_4_UOPS Cycles with 4 uops delivered by the LSD and none from
the decoder.

CMSK4

ABH 02H DSB2MITE_SWITCHES.PENALTY
_CYCLES

DSB-to-MITE switch true penalty cycles.

AEH 01H ITLB.ITLB_FLUSH Flushing of the Instruction TLB (ITLB) pages, includes
4k/2M/4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_
DATA_RD

Demand data read requests sent to uncore.

B0H 02H OFFCORE_REQUESTS.DEMAND_
CODE_RD

Demand code read requests sent to uncore.

B0H 04H OFFCORE_REQUESTS.DEMAND_
RFO

Demand RFO read requests sent to uncore, including
regular RFOs, locks, ItoM.

B0H 08H OFFCORE_REQUESTS.ALL_DATA
_RD

Data read requests sent to uncore (demand and
prefetch).

B0H 10H OFFCORE_REQUESTS.L3_MISS_
DEMAND_DATA_RD

Demand data read requests that missed L3

Table 19-3 Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 152

B0H 80H OFFCORE_REQUESTS.ALL_REQU
ESTS

Any memory transaction that reached the SQ.

B1H 01H UOPS_EXECUTED.THREAD Counts the number of uops that begin execution across
all ports.

B1H 01H UOPS_EXECUTED.STALL_CYCLE
S

Cycles which there were no uops began execution. CMSK, INV

B1H 01H UOPS_EXECUTED.CYCLES_GE_1
_UOP_EXEC

Cycles which there was al least one uop began
execution.

CMSK1

B1H 01H UOPS_EXECUTED.CYCLES_GE_2
_UOP_EXEC

Cycles which there were at least two uop began
execution.

CMSK2

B1H 01H UOPS_EXECUTED.CYCLES_GE_3
_UOP_EXEC

Cycles which there were at least three uop began
execution.

CMSK3

B1H 01H UOPS_EXECUTED.CYCLES_GE_4
_UOP_EXEC

Cycles which there were at least four uop began
execution.

CMSK4

B1H 02H UOPS_EXECUTED.CORE Counts the number of uops from any logical processor
in this core that begin execution.

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_1

Cycles which there was al least one uop, from any
logical processor in this core, began execution.

CMSK1

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_2

Cycles which there were al least two uops, from any
logical processor in this core, began execution.

CMSK2

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_3

Cycles which there were al least three uops, from any
logical processor in this core, began execution.

CMSK3

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_4

Cycles which there were al least four uops, from any
logical processor in this core, began execution.

CMSK4

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_NONE

Cycles which there were no uops from any logical
processor in this core that began execution.

CMSK1, INV

B1H 10H UOPS_EXECUTED.X87 Counts the number of X87 uops that begin execution. CMSK1, INV

B2H 01H OFF_CORE_REQUEST_BUFFER.S
Q_FULL

Offcore requests buffer cannot take more entries for
this core.

B7H 01H OFF_CORE_RESPONSE_0 see Section 18.8.5, “Off-core Response Performance
Monitoring”.

Requires MSR 01A6H

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.8.5, “Off-core Response Performance
Monitoring”.

Requires MSR 01A7H

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries

BDH 01H TLB_FLUSH.STLB_ANY STLB flush attempts

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1.

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only;

C0H 01H INST_RETIRED.TOTAL_CYCLES Number of cycles using always true condition applied to
PEBS instructions retired event.

CMSK10, PS

C1H 3FH OTHER_ASSISTS.ANY Number of times a microcode assist is invoked by HW
other than FP-assist. Examples include AD (page Access
Dirty) and AVX* related assists.

Table 19-3 Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 153

C2H 01H UOPS_RETIRED.STALL_CYCLES Cycles without actually retired uops. CMSK1, INV

C2H 01H UOPS_RETIRED.TOTAL_CYCLES Cycles with less than 10 actually retired uops. CMSK10, INV

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Retirement slots used.

C3H 01H MACHINE_CLEARS.COUNT Number of machine clears of any type. CMSK1

C3H 02H MACHINE_CLEARS.MEMORY_OR
DERING

Counts the number of machine clears due to memory
order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears
detected.

C4H 01H BR_INST_RETIRED.CONDITIONA
L

Counts the number of conditional branch instructions
retired.

PS

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. PS

C4H 04H BR_INST_RETIRED.ALL_BRANC
HES

Counts the number of branch instructions retired. PS

C4H 08H BR_INST_RETIRED.NEAR_RETU
RN

Counts the number of near return instructions retired. PS

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions
retired.

C4H 20H BR_INST_RETIRED.NEAR_TAKE
N

Number of near taken branches retired. PS

C4H 40H BR_INST_RETIRED.FAR_BRANC
H

Number of far branches retired. PS

C5H 00H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted branch instructions at retirement See Table 19-1.

C5H 01H BR_MISP_RETIRED.CONDITIONA
L

Mispredicted conditional branch instructions retired. PS

C5H 04H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted macro branch instructions retired. PS

C5H 20H BR_MISP_RETIRED.NEAR_TAKE
N

Number of near branch instructions retired that were
mispredicted and taken.

PS

C6H 01H FRONTEND_RETIRED.DSB_MISS Retired Instructions which experienced DSB miss.
Specify MSR_PEBS_FRONTEND.EVTSEL=11H

PS

C6H 01H FRONTEND_RETIRED.L1I_MISS Retired Instructions which experienced Instruction L1
cache true miss. Specify
MSR_PEBS_FRONTEND.EVTSEL=12H

PS

C6H 01H FRONTEND_RETIRED.L2_MISS Retired Instructions which experienced L2 cache true
miss. Specify
MSR_PEBS_FRONTEND.EVTSEL=13H

PS

C6H 01H FRONTEND_RETIRED.ITLB_MISS Retired Instructions which experienced ITLB true miss.
Specify MSR_PEBS_FRONTEND.EVTSEL=14H

PS

C6H 01H FRONTEND_RETIRED.STLB_MIS
S

Retired Instructions which experienced STLB true miss.
Specify MSR_PEBS_FRONTEND.EVTSEL=15H

PS

Table 19-3 Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 154

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_16

Retired Instructions that are fetched after an interval
where the front end delivered no uops for at least 16
cycles. Specify the following fields in
MSR_PEBS_FRONTEND: EVTSEL=16H,
IDQ_Bubble_Length =16, IDQ_Bubble_Width = 4.

PS

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_2_BUBBLES_GE_m

Retired Instructions that are fetched after an interval
where the front end had ‘m’ IDQ slots delivered no uops
for at least 2 cycles. Specify the following fields in
MSR_PEBS_FRONTEND: EVTSEL=16H,
IDQ_Bubble_Length =2, IDQ_Bubble_Width = m

PS, m = 1, 2, 3

C7H 01H FP_ARITH_INST_RETIRED.SCAL
AR_DOUBLE

Number of double-precision, floating-point, scalar
SSE/AVX computational instructions that are retired.
Each scalar FMA instruction count as 2.

Software may treat
each count as one DP
FLOP.

C7H 02H FP_ARITH_INST_RETIRED.SCAL
AR_SINGLE

Number of single-precision, floating-point, scalar
SSE/AVX computational instructions that are retired.
Each scalar FMA instruction count as 2.

Software may treat
each count as one SP
FLOP.

C7H 04H FP_ARITH_INST_RETIRED.128B
_PACKED_DOUBLE

Number of double-precision, floating-point, 128-bit
SSE/AVX computational instructions that are retired.
Each 128-bit FMA or (V)DPPD instruction count as 2.

Software may treat
each count as two DP
FLOPs.

C7H 08H FP_ARITH_INST_RETIRED.128B
_PACKED_SINGLE

Number of single-precision, floating-point, 128-bit
SSE/AVX computational instructions that are retired.
Each 128-bit FMA or (V)DPPS instruction count as 2.

Software may treat
each count as four SP
FLOPs.

C7H 10H FP_ARITH_INST_RETIRED.256B
_PACKED_DOUBLE

Number of double-precision, floating-point, 256-bit
SSE/AVX computational instructions that are retired.
Each 256-bit FMA instruction count as 2.

Software may treat
each count as four DP
FLOPs.

C7H 20H FP_ARITH_INST_RETIRED.256B
_PACKED_SINGLE

Number of single-precision, floating-point, 256-bit
SSE/AVX computational instructions that are retired.
Each 256-bit FMA or VDPPS instruction count as 2.

Software may treat
each count as eight SP
FLOPs.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists. CMSK1

CBH 01H HW_INTERRUPTS.RECEIVED Cycles with any input/output SSE* or FP assists.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY

Randomly sampled loads whose latency is above a user
defined threshold. A small fraction of the overall loads
are sampled due to randomization.

Specify threshold in
MSR 3F6H.

PSDLA

D0H 11H MEM_INST_RETIRED.STLB_MISS
_LOADS

Retired load instructions that miss the STLB. PSDLA

D0H 12H MEM_INST_RETIRED.STLB_MISS
_STORES

Retired store instructions that miss the STLB. PSDLA

D0H 21H MEM_INST_RETIRED.LOCK_LOA
DS

Retired load instructions with locked access. PSDLA

D0H 41H MEM_INST_RETIRED.SPLIT_LOA
DS

Number of load instructions retired with cache-line
splits that may impact performance.

PSDLA

D0H 42H MEM_INST_RETIRED.SPLIT_STO
RES

Number of store instructions retired with line-split. PSDLA

D0H 81H MEM_INST_RETIRED.ALL_LOAD
S

All retired load instructions. PSDLA

Table 19-3 Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 155

D0H 82H MEM_INST_RETIRED.ALL_STOR
ES

All retired store instructions. PSDLA

D1H 01H MEM_LOAD_RETIRED.L1_HIT Retired load Instructions with L1 cache hits as data
sources.

PSDLA

D1H 02H MEM_LOAD_RETIRED.L2_HIT Retired load Instructions with L2 cache hits as data
sources.

PSDLA

D1H 04H MEM_LOAD_RETIRED.L3_HIT Retired load Instructions with L3 cache hits as data
sources.

PSDLA

D1H 08H MEM_LOAD_RETIRED.L1_MISS Retired load Instructions missed L1 cache as data
sources.

PSDLA

D1H 10H MEM_LOAD_RETIRED.L2_MISS Retired load Instructions missed L2. Unknown data
source excluded.

PSDLA

D1H 20H MEM_LOAD_RETIRED.L3_MISS Retired load Instructions missed L3. Excludes unknown
data source.

PSDLA

D1H 40H MEM_LOAD_RETIRED.HIT_LFB Retired load Instructions which data sources were load
uops missed L1 but hit FB due to preceding miss to the
same cache line with data not ready.

PSDLA

D2H 01H MEM_LOAD_L3_HIT_RETIRED.X
SNP_MISS

Retired load Instructions which data sources were L3
hit and cross-core snoop missed in on-pkg core cache.

PSDLA

D2H 02H MEM_LOAD_L3_HIT_RETIRED.X
SNP_HIT

Retired load Instructions which data sources were L3
and cross-core snoop hits in on-pkg core cache.

PSDLA

D2H 04H MEM_LOAD_L3_HIT_RETIRED.X
SNP_HITM

Retired load Instructions which data sources were HitM
responses from shared L3.

PSDLA

D2H 08H MEM_LOAD_L3_HIT_RETIRED.X
SNP_NONE

Retired load Instructions which data sources were hits
in L3 without snoops required.

PSDLA

E6H 1FH BACLEARS.ANY Number of front end re-steers due to BPU
misprediction.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2.

CMSK1: Counter Mask = 1 required; CMSK4: CounterMask = 4 required; CMSK6: CounterMask = 6 required; CMSK8: CounterMask = 8
required; CMSK10: CounterMask = 10 required; CMSK12: CounterMask = 12 required; CMSK16: CounterMask = 16 required; CMSK20:
CounterMask = 20 required.

AnyT: AnyThread = 1 required.

INV: Invert = 1 required.

EDG: EDGE = 1 required.

PSDLA: Also supports PEBS and DataLA.

PS: Also supports PEBS.

Table 19-3 Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 156

Table 19-4 Intel TSX Performance Event Addendum in Processors based on Skylake Microarchitecture

19.3 PERFORMANCE MONITORING EVENTS FOR THE INTEL® CORE™ M AND
FIFTH GENERATION INTEL CORE PROCESSORS

The Intel® Core™ M processors, the 5th generation Intel Core processors and the Intel Xeon processor E3 1200
v4 product family are based on the Broadwell microarchitecture. They support the architectural performance-
monitoring events listed in Table 19-1. Non-architectural performance-monitoring events in the processor core
are listed in Table 19-5. The events in Table 19-5 apply to processors with CPUID signature of
DisplayFamily_DisplayModel encoding with the following values: 06_3DH and 06_47H. Table 19-7 lists perfor-
mance events supporting Intel TSX (see Section 18.10.5) and are available on processors based on Broadwell
microarchitecture. Fixed counters in the core PMU support the architecture events defined in Table 19-2.

Non-architectural performance monitoring events that are located in the uncore sub-system are implementation
specific between different platforms using processors based on Broadwell microarchitecture and with different
DisplayFamily_DisplayModel signatures. Processors with CPUID signature of DisplayFamily_DisplayModel 06_3DH
and 06_47H support uncore performance events listed in Table 19-8.

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

54H 02H TX_MEM.ABORT_CAPACITY Number of times a transactional abort was signaled due
to a data capacity limitation for transactional reads or
writes

Table 19-5 Non-Architectural Performance Events of the Processor Core Supported by Broadwell
microarchitecture

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD loads blocked by overlapping with store buffer that
cannot be forwarded.

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are
temporarily blocked because all resources for
handling the split accesses are in use.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS
_ALIAS

False dependencies in MOB due to partial compare
on address.

08H 01H DTLB_LOAD_MISSES.MISS_CAUS
ES_A_WALK

Load misses in all TLB levels that cause a page walk
of any page size.

08H 02H DTLB_LOAD_MISSES.WALK_COM
PLETED_4K

Completed page walks due to demand load misses
that caused 4K page walks in any TLB levels.

08H 10H DTLB_LOAD_MISSES.WALK_DUR
ATION

Cycle PMH is busy with a walk.

08H 20H DTLB_LOAD_MISSES.STLB_HIT_
4K

Load misses that missed DTLB but hit STLB (4K).

0DH 03H INT_MISC.RECOVERY_CYCLES Cycles waiting to recover after Machine Clears
except JEClear. Set Cmask= 1.

Set Edge to count
occurrences.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 157

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the
RAT to RS.

Set Cmask = 1, Inv = 1, Any= 1to count stalled cycles
of this core.

Set Cmask = 1, Inv = 1to
count stalled cycles.

0EH 10H UOPS_ISSUED.FLAGS_MERGE Number of flags-merge uops allocated. Such uops
adds delay.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such
uop has 3 sources (e.g. 2 sources + immediate)
regardless if as a result of LEA instruction or not.

0EH 40H UOPS_ISSUED.SiNGLE_MUL Number of multiply packed/scalar single precision
uops allocated.

14H 01H ARITH.FPU_DIV_ACTIVE Cycles when divider is busy executing divide
operations

24H 21H L2_RQSTS.DEMAND_DATA_RD_
MISS

Demand Data Read requests that missed L2, no
rejects.

24H 41H L2_RQSTS.DEMAND_DATA_RD_
HIT

Demand Data Read requests that hit L2 cache.

24H 50H L2_RQSTS.L2_PF_HIT Counts all L2 HW prefetcher requests that hit L2.

24H 30H L2_RQSTS.L2_PF_MISS Counts all L2 HW prefetcher requests that missed
L2.

24H E1H L2_RQSTS.ALL_DEMAND_DATA
_RD

Counts any demand and L1 HW prefetch data load
requests to L2.

24H E2H L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H E4H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H F8H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher requests.

27H 50H L2_DEMAND_RQSTS.WB_HIT Not rejected writebacks that hit L2 cache

2EH 4FH LONGEST_LAT_CACHE.REFEREN
CE

This event counts requests originating from the core
that reference a cache line in the last level cache.

See Table 19-1.

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache.

See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD_
P

Counts the number of thread cycles while the thread
is not in a halt state. The thread enters the halt state
when it is running the HLT instruction. The core
frequency may change from time to time due to
power or thermal throttling.

See Table 19-1.

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK

Increments at the frequency of XCLK (100 MHz)
when not halted.

See Table 19-1.

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmask = 1 and Edge =1 to count
occurrences.

Counter 2 only;

Set Cmask = 1 to count
cycles.

49H 01H DTLB_STORE_MISSES.MISS_CAU
SES_A_WALK

Miss in all TLB levels causes an page walk of any
page size (4K/2M/4M/1G).

Table 19-5 Non-Architectural Performance Events of the Processor Core Supported by Broadwell
microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 158

49H 02H DTLB_STORE_MISSES.WALK_CO
MPLETED_4K

Completed page walks due to store misses in one or
more TLB levels of 4K page structure.

49H 10H DTLB_STORE_MISSES.WALK_DU
RATION

Cycles PMH is busy with this walk.

49H 20H DTLB_STORE_MISSES.STLB_HIT
_4K

Store misses that missed DTLB but hit STLB (4K).

4CH 02H LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for H/W prefetch.

4FH 10H EPT.WALK_CYCLES Cycles of Extended Page Table walks

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

58H 04H MOVE_ELIMINATION.INT_NOT_E
LIMINATED

Number of integer Move Elimination candidate uops
that were not eliminated.

58H 08H MOVE_ELIMINATION.SIMD_NOT_
ELIMINATED

Number of SIMD Move Elimination candidate uops
that were not eliminated.

58H 01H MOVE_ELIMINATION.INT_ELIMIN
ATED

Number of integer Move Elimination candidate uops
that were eliminated.

58H 02H MOVE_ELIMINATION.SIMD_ELIMI
NATED

Number of SIMD Move Elimination candidate uops
that were eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count
transition.

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring 0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read transactions
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is
off.

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Offcore outstanding Demand code Read transactions
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is
off.

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to
uncore. Set Cmask=1 to count cycles.

Use only when HTT is
off.

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Offcore outstanding cacheable data read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

Use only when HTT is
off.

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC_
LOCK_DURATION

Cycles in which the L1D and L2 are locked, due to a
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_DU
RATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ from
MITE path.

Set Cmask = 1 to count cycles.

Can combine Umask 04H
and 20H.

Table 19-5 Non-Architectural Performance Events of the Processor Core Supported by Broadwell
microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 159

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ
from DSB path.

Set Cmask = 1 to count cycles.

Can combine Umask 08H
and 10H.

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by DSB. Set Cmask = 1 to count
cycles. Add Edge=1 to count # of delivery.

Can combine Umask 04H,
08H.

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H.

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ from
MS by either DSB or MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H.

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UO
PS

Counts cycles DSB is delivered at least one uops. Set
Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Counts cycles DSB is delivered four uops. Set Cmask
= 4.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UO
PS

Counts cycles MITE is delivered at least one uops. Set
Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. Set Cmask
= 4.

79H 3CH IDQ.MITE_ALL_UOPS # of uops delivered to IDQ from any path.

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A_
WALK

Misses in ITLB that causes a page walk of any page
size.

85H 02H ITLB_MISSES.WALK_COMPLETE
D_4K

Completed page walks due to misses in ITLB 4K page
entries.

85H 10H ITLB_MISSES.WALK_DURATION Cycle PMH is busy with a walk.

85H 20H ITLB_MISSES.STLB_HIT_4K ITLB misses that hit STLB (4K).

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions
executed, but not necessarily retired.

Must combine with
umask 40H, 80H.

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions
excluding calls and indirect branches.

Must combine with
umask 80H.

88H 04H BR_INST_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify executed indirect near branch instructions
that are not calls nor returns.

Must combine with
umask 80H.

88H 08H BR_INST_EXEC.RETURN_NEAR Qualify indirect near branches that have a return
mnemonic.

Must combine with
umask 80H.

88H 10H BR_INST_EXEC.DIRECT_NEAR_C
ALL

Qualify unconditional near call branch instructions,
excluding non call branch, executed.

Must combine with
umask 80H.

Table 19-5 Non-Architectural Performance Events of the Processor Core Supported by Broadwell
microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 160

88H 20H BR_INST_EXEC.INDIRECT_NEAR
_CALL

Qualify indirect near calls, including both register and
memory indirect, executed.

Must combine with
umask 80H.

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H
only.

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must combine
with 01H,02H, 04H, 08H, 10H, 20H.

88H FFH BR_INST_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions
mispredicted.

Must combine with
umask 40H, 80H.

89H 04H BR_MISP_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify mispredicted indirect near branch
instructions that are not calls nor returns.

Must combine with
umask 80H.

89H 08H BR_MISP_EXEC.RETURN_NEAR Qualify mispredicted indirect near branches that
have a return mnemonic.

Must combine with
umask 80H.

89H 10H BR_MISP_EXEC.DIRECT_NEAR_C
ALL

Qualify mispredicted unconditional near call branch
instructions, excluding non call branch, executed.

Must combine with
umask 80H.

89H 20H BR_MISP_EXEC.INDIRECT_NEAR
_CALL

Qualify mispredicted indirect near calls, including
both register and memory indirect, executed.

Must combine with
umask 80H.

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches
executed.

Applicable to umask 01H
only.

89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed.
Must combine with 01H,02H, 04H, 08H, 10H, 20H.

89H FFH BR_MISP_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

9CH 01H IDQ_UOPS_NOT_DELIVERED.CO
RE

Count issue pipeline slots where no uop was
delivered from the frontend to the backend when
there is no backend stall.

Use Cmask to qualify uop
b/w.

A1H 01H UOPS_DISPATCHED_PORT.PORT
_0

Counts the number of cycles in which a uop is
dispatched to port 0.

Set AnyThread to count
per core.

A1H 02H UOPS_DISPATCHED_PORT.PORT
_1

Counts the number of cycles in which a uop is
dispatched to port 1.

Set AnyThread to count
per core.

A1H 04H UOPS_DISPATCHED_PORT.PORT
_2

Counts the number of cycles in which a uop is
dispatched to port 2.

Set AnyThread to count
per core.

A1H 08H UOPS_DISPATCHED_PORT.PORT
_3

Counts the number of cycles in which a uop is
dispatched to port 3.

Set AnyThread to count
per core.

A1H 10H UOPS_DISPATCHED_PORT.PORT
_4

Counts the number of cycles in which a uop is
dispatched to port 4.

Set AnyThread to count
per core.

A1H 20H UOPS_DISPATCHED_PORT.PORT
_5

Counts the number of cycles in which a uop is
dispatched to port 5.

Set AnyThread to count
per core.

A1H 40H UOPS_DISPATCHED_PORT.PORT
_6

Counts the number of cycles in which a uop is
dispatched to port 6.

Set AnyThread to count
per core.

Table 19-5 Non-Architectural Performance Events of the Processor Core Supported by Broadwell
microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 161

A1H 80H UOPS_DISPATCHED_PORT.PORT
_7

Counts the number of cycles in which a uop is
dispatched to port 7.

Set AnyThread to count
per core.

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related
reason.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A8H 01H LSD.UOPS Number of Uops delivered by the LSD.

ABH 02H DSB2MITE_SWITCHES.PENALTY
_CYCLES

Cycles of delay due to Decode Stream Buffer to MITE
switches

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes
4k/2M/4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_
DATA_RD

Demand data read requests sent to uncore. Use only when HTT is
off.

B0H 02H OFFCORE_REQUESTS.DEMAND_
CODE_RD

Demand code read requests sent to uncore. Use only when HTT is
off.

B0H 04H OFFCORE_REQUESTS.DEMAND_
RFO

Demand RFO read requests sent to uncore, including
regular RFOs, locks, ItoM.

Use only when HTT is
off.

B0H 08H OFFCORE_REQUESTS.ALL_DATA
_RD

Data read requests sent to uncore (demand and
prefetch).

Use only when HTT is
off.

B1H 01H UOPS_EXECUTED.THREAD Counts total number of uops to be executed per-
logical-processor each cycle.

Use Cmask to count stall
cycles.

B1H 02H UOPS_EXECUTED.CORE Counts total number of uops to be executed per-core
each cycle.

Do not need to set ANY.

B7H 01H OFF_CORE_RESPONSE_0 see Section 18.8.5, “Off-core Response Performance
Monitoring”.

Requires MSR 01A6H.

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.8.5, “Off-core Response Performance
Monitoring”.

Requires MSR 01A7H.

BCH 11H PAGE_WALKER_LOADS.DTLB_L1 Number of DTLB page walker loads that hit in the
L1+FB.

BCH 21H PAGE_WALKER_LOADS.ITLB_L1 Number of ITLB page walker loads that hit in the
L1+FB.

BCH 12H PAGE_WALKER_LOADS.DTLB_L2 Number of DTLB page walker loads that hit in the L2.

BCH 22H PAGE_WALKER_LOADS.ITLB_L2 Number of ITLB page walker loads that hit in the L2.

BCH 14H PAGE_WALKER_LOADS.DTLB_L3 Number of DTLB page walker loads that hit in the L3.

BCH 24H PAGE_WALKER_LOADS.ITLB_L3 Number of ITLB page walker loads that hit in the L3.

BCH 18H PAGE_WALKER_LOADS.DTLB_M
EMORY

Number of DTLB page walker loads from memory.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1.

Table 19-5 Non-Architectural Performance Events of the Processor Core Supported by Broadwell
microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 162

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only.

C0H 02H INST_RETIRED.X87 FP operations retired. X87 FP operations that have
no exceptions

C1H 08H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE
when penalty applicable.

C1H 10H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when
penalty applicable.

C1H 40H OTHER_ASSISTS.ANY_WB_ASSI
ST

Number of microcode assists invoked by HW upon
uop writeback.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use
cmask=1 and invert to count active cycles or stalled
cycles.

Supports PEBS and
DataLA, use Any=1 for
core granular.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

Supports PEBS.

C3H 01H MACHINE_CLEARS.CYCLES Counts cycles while a machine clears. stalled forward
progress of a logical processor or a processor core.

C3H 02H MACHINE_CLEARS.MEMORY_OR
DERING

Counts the number of machine clears due to memory
order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears
detected.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load
operations that refer to an illegal address range with
the mask bits set to 0.

C4H 00H BR_INST_RETIRED.ALL_BRANC
HES

Branch instructions at retirement. See Table 19-1.

C4H 01H BR_INST_RETIRED.CONDITIONA
L

Counts the number of conditional branch instructions
retired.

Supports PEBS.

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS.

C4H 04H BR_INST_RETIRED.ALL_BRANC
HES

Counts the number of branch instructions retired. Supports PEBS.

C4H 08H BR_INST_RETIRED.NEAR_RETU
RN

Counts the number of near return instructions
retired.

Supports PEBS.

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions
retired.

C4H 20H BR_INST_RETIRED.NEAR_TAKE
N

Number of near taken branches retired. Supports PEBS.

C4H 40H BR_INST_RETIRED.FAR_BRANC
H

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted branch instructions at retirement See Table 19-1.

Table 19-5 Non-Architectural Performance Events of the Processor Core Supported by Broadwell
microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 163

C5H 01H BR_MISP_RETIRED.CONDITIONA
L

Mispredicted conditional branch instructions retired. Supports PEBS.

C5H 04H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted macro branch instructions retired. Supports PEBS.

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 FP assists due to Output values.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 FP assists due to input values.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to Output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSER
TS

Count cases of saving new LBR records by hardware.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY

Randomly sampled loads whose latency is above a
user defined threshold. A small fraction of the overall
loads are sampled due to randomization.

Specify threshold in MSR
3F6H.

D0H 11H MEM_UOPS_RETIRED.STLB_MIS
S_LOADS

Retired load uops that miss the STLB. Supports PEBS and
DataLA.

D0H 12H MEM_UOPS_RETIRED.STLB_MIS
S_STORES

Retired store uops that miss the STLB. Supports PEBS and
DataLA.

D0H 21H MEM_UOPS_RETIRED.LOCK_LOA
DS

Retired load uops with locked access. Supports PEBS and
DataLA.

D0H 41H MEM_UOPS_RETIRED.SPLIT_LO
ADS

Retired load uops that split across a cacheline
boundary.

Supports PEBS and
DataLA.

D0H 42H MEM_UOPS_RETIRED.SPLIT_ST
ORES

Retired store uops that split across a cacheline
boundary.

Supports PEBS and
DataLA.

D0H 81H MEM_UOPS_RETIRED.ALL_LOAD
S

All retired load uops. Supports PEBS and
DataLA.

D0H 82H MEM_UOPS_RETIRED.ALL_STOR
ES

All retired store uops. Supports PEBS and
DataLA.

D1H 01H MEM_LOAD_UOPS_RETIRED.L1_
HIT

Retired load uops with L1 cache hits as data sources. Supports PEBS and
DataLA.

D1H 02H MEM_LOAD_UOPS_RETIRED.L2_
HIT

Retired load uops with L2 cache hits as data sources. Supports PEBS and
DataLA.

D1H 04H MEM_LOAD_UOPS_RETIRED.L3_
HIT

Retired load uops with L3 cache hits as data sources. Supports PEBS and
DataLA.

D1H 08H MEM_LOAD_UOPS_RETIRED.L1_
MISS

Retired load uops missed L1 cache as data sources. Supports PEBS and
DataLA.

D1H 10H MEM_LOAD_UOPS_RETIRED.L2_
MISS

Retired load uops missed L2. Unknown data source
excluded.

Supports PEBS and
DataLA.

D1H 20H MEM_LOAD_UOPS_RETIRED.L3_
MISS

Retired load uops missed L3. Excludes unknown data
source .

Supports PEBS and
DataLA.

Table 19-5 Non-Architectural Performance Events of the Processor Core Supported by Broadwell
microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 164

19.4 PERFORMANCE MONITORING EVENTS FOR THE 4TH GENERATION
INTEL® CORE™ PROCESSORS

4th generation Intel® Core™ processors and Intel Xeon processor E3-1200 v3 product family are based on the
Haswell microarchitecture. They support the architectural performance-monitoring events listed in Table 19-1.
Non-architectural performance-monitoring events in the processor core are listed in Table 19-6. The events in
Table 19-6 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following
values: 06_3CH, 06_45H and 06_46H. Table 19-7 lists performance events focused on supporting Intel TSX (see
Section 18.10.5). Fixed counters in the core PMU support the architecture events defined in Table 19-2.

D1H 40H MEM_LOAD_UOPS_RETIRED.HIT
_LFB

Retired load uops which data sources were load uops
missed L1 but hit FB due to preceding miss to the
same cache line with data not ready.

Supports PEBS and
DataLA.

D2H 01H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_MISS

Retired load uops which data sources were L3 hit
and cross-core snoop missed in on-pkg core cache.

Supports PEBS and
DataLA.

D2H 02H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HIT

Retired load uops which data sources were L3 and
cross-core snoop hits in on-pkg core cache.

Supports PEBS and
DataLA.

D2H 04H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HITM

Retired load uops which data sources were HitM
responses from shared L3.

Supports PEBS and
DataLA.

D2H 08H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_NONE

Retired load uops which data sources were hits in L3
without snoops required.

Supports PEBS and
DataLA.

D3H 01H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.LOCAL_DRAM

Retired load uops which data sources missed L3 but
serviced from local dram.

Supports PEBS and
DataLA.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF Any MLC or L3 HW prefetch accessing L2, including
rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover
rejects.

F2H 05H L2_LINES_OUT.DEMAND_CLEAN Clean L2 cache lines evicted by demand.

Table 19-5 Non-Architectural Performance Events of the Processor Core Supported by Broadwell
microarchitecture (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 165

Additional information on event specifics (e.g. derivative events using specific IA32_PERFEVTSELx modifiers,
limitations, special notes and recommendations) can be found at http://software.intel.com/en-us/forums/soft-
ware-tuning-performance-optimization-platform-monitoring.

Table 19-6 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD loads blocked by overlapping with store buffer that
cannot be forwarded.

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are
temporarily blocked because all resources for
handling the split accesses are in use.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS
_ALIAS

False dependencies in MOB due to partial compare
on address.

08H 01H DTLB_LOAD_MISSES.MISS_CAUS
ES_A_WALK

Misses in all TLB levels that cause a page walk of any
page size.

08H 02H DTLB_LOAD_MISSES.WALK_COM
PLETED_4K

Completed page walks due to demand load misses
that caused 4K page walks in any TLB levels.

08H 04H DTLB_LOAD_MISSES.WALK_COM
PLETED_2M_4M

Completed page walks due to demand load misses
that caused 2M/4M page walks in any TLB levels.

08H 0EH DTLB_LOAD_MISSES.WALK_COM
PLETED

Completed page walks in any TLB of any page size
due to demand load misses.

08H 10H DTLB_LOAD_MISSES.WALK_DUR
ATION

Cycle PMH is busy with a walk.

08H 20H DTLB_LOAD_MISSES.STLB_HIT_
4K

Load misses that missed DTLB but hit STLB (4K).

08H 40H DTLB_LOAD_MISSES.STLB_HIT_
2M

Load misses that missed DTLB but hit STLB (2M).

08H 60H DTLB_LOAD_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

08H 80H DTLB_LOAD_MISSES.PDE_CACH
E_MISS

DTLB demand load misses with low part of linear-to-
physical address translation missed.

0DH 03H INT_MISC.RECOVERY_CYCLES Cycles waiting to recover after Machine Clears
except JEClear. Set Cmask= 1.

Set Edge to count
occurrences.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the
RAT to RS.

Set Cmask = 1, Inv = 1, Any= 1to count stalled cycles
of this core.

Set Cmask = 1, Inv = 1to
count stalled cycles.

0EH 10H UOPS_ISSUED.FLAGS_MERGE Number of flags-merge uops allocated. Such uops
adds delay.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such
uop has 3 sources (e.g. 2 sources + immediate)
regardless if as a result of LEA instruction or not.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 166

0EH 40H UOPS_ISSUED.SiNGLE_MUL Number of multiply packed/scalar single precision
uops allocated.

24H 21H L2_RQSTS.DEMAND_DATA_RD_
MISS

Demand Data Read requests that missed L2, no
rejects.

24H 41H L2_RQSTS.DEMAND_DATA_RD_
HIT

Demand Data Read requests that hit L2 cache.

24H E1H L2_RQSTS.ALL_DEMAND_DATA
_RD

Counts any demand and L1 HW prefetch data load
requests to L2.

24H 42H L2_RQSTS.RFO_HIT Counts the number of store RFO requests that hit
the L2 cache.

24H 22H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache.

24H E2H L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 44H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache.

24H 24H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2
cache.

24H 27H L2_RQSTS.ALL_DEMAND_MISS Demand requests that miss L2 cache.

24H E7H L2_RQSTS.ALL_DEMAND_REFE
RENCES

Demand requests to L2 cache.

24H E4H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 50H L2_RQSTS.L2_PF_HIT Counts all L2 HW prefetcher requests that hit L2.

24H 30H L2_RQSTS.L2_PF_MISS Counts all L2 HW prefetcher requests that missed
L2.

24H F8H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher requests.

24H 3FH L2_RQSTS.MISS All requests that missed L2.

24H FFH L2_RQSTS.REFERENCES All requests to L2 cache.

27H 50H L2_DEMAND_RQSTS.WB_HIT Not rejected writebacks that hit L2 cache.

2EH 4FH LONGEST_LAT_CACHE.REFEREN
CE

This event counts requests originating from the core
that reference a cache line in the last level cache.

See Table 19-1.

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache.

See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD_
P

Counts the number of thread cycles while the thread
is not in a halt state. The thread enters the halt state
when it is running the HLT instruction. The core
frequency may change from time to time due to
power or thermal throttling.

See Table 19-1.

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK

Increments at the frequency of XCLK (100 MHz)
when not halted.

See Table 19-1.

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmask = 1 and Edge =1 to count
occurrences.

Counter 2 only;

Set Cmask = 1 to count
cycles.

Table 19-6 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 167

49H 01H DTLB_STORE_MISSES.MISS_CAU
SES_A_WALK

Miss in all TLB levels causes an page walk of any
page size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_CO
MPLETED_4K

Completed page walks due to store misses in one or
more TLB levels of 4K page structure.

49H 04H DTLB_STORE_MISSES.WALK_CO
MPLETED_2M_4M

Completed page walks due to store misses in one or
more TLB levels of 2M/4M page structure.

49H 0EH DTLB_STORE_MISSES.WALK_CO
MPLETED

Completed page walks due to store miss in any TLB
levels of any page size (4K/2M/4M/1G).

49H 10H DTLB_STORE_MISSES.WALK_DU
RATION

Cycles PMH is busy with this walk.

49H 20H DTLB_STORE_MISSES.STLB_HIT
_4K

Store misses that missed DTLB but hit STLB (4K).

49H 40H DTLB_STORE_MISSES.STLB_HIT
_2M

Store misses that missed DTLB but hit STLB (2M).

49H 60H DTLB_STORE_MISSES.STLB_HIT Store operations that miss the first TLB level but hit
the second and do not cause page walks.

49H 80H DTLB_STORE_MISSES.PDE_CAC
HE_MISS

DTLB store misses with low part of linear-to-physical
address translation missed.

4CH 01H LOAD_HIT_PRE.SW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for H/W prefetch.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

58H 04H MOVE_ELIMINATION.INT_NOT_E
LIMINATED

Number of integer Move Elimination candidate uops
that were not eliminated.

58H 08H MOVE_ELIMINATION.SIMD_NOT_
ELIMINATED

Number of SIMD Move Elimination candidate uops
that were not eliminated.

58H 01H MOVE_ELIMINATION.INT_ELIMIN
ATED

Number of integer Move Elimination candidate uops
that were eliminated.

58H 02H MOVE_ELIMINATION.SIMD_ELIMI
NATED

Number of SIMD Move Elimination candidate uops
that were eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count
transition.

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring 0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read transactions
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is
off.

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Offcore outstanding Demand code Read transactions
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is
off.

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to
uncore. Set Cmask=1 to count cycles.

Use only when HTT is
off.

Table 19-6 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 168

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Offcore outstanding cacheable data read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

Use only when HTT is
off.

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC_
LOCK_DURATION

Cycles in which the L1D and L2 are locked, due to a
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_DU
RATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ from
MITE path.

Set Cmask = 1 to count cycles.

Can combine Umask 04H
and 20H.

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ
from DSB path.

Set Cmask = 1 to count cycles.

Can combine Umask 08H
and 10H.

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by DSB. Set Cmask = 1 to count
cycles. Add Edge=1 to count # of delivery.

Can combine Umask 04H,
08H.

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H.

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ from
MS by either DSB or MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H.

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UO
PS

Counts cycles DSB is delivered at least one uops. Set
Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Counts cycles DSB is delivered four uops. Set Cmask
= 4.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UO
PS

Counts cycles MITE is delivered at least one uops. Set
Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. Set Cmask
= 4.

79H 3CH IDQ.MITE_ALL_UOPS # of uops delivered to IDQ from any path.

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A_
WALK

Misses in ITLB that causes a page walk of any page
size.

85H 02H ITLB_MISSES.WALK_COMPLETE
D_4K

Completed page walks due to misses in ITLB 4K page
entries.

85H 04H ITLB_MISSES.WALK_COMPLETE
D_2M_4M

Completed page walks due to misses in ITLB 2M/4M
page entries.

85H 0EH ITLB_MISSES.WALK_COMPLETE
D

Completed page walks in ITLB of any page size.

Table 19-6 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 169

85H 10H ITLB_MISSES.WALK_DURATION Cycle PMH is busy with a walk.

85H 20H ITLB_MISSES.STLB_HIT_4K ITLB misses that hit STLB (4K).

85H 40H ITLB_MISSES.STLB_HIT_2M ITLB misses that hit STLB (2M).

85H 60H ITLB_MISSES.STLB_HIT ITLB misses that hit STLB. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions
executed, but not necessarily retired.

Must combine with
umask 40H, 80H.

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions
excluding calls and indirect branches.

Must combine with
umask 80H.

88H 04H BR_INST_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify executed indirect near branch instructions
that are not calls nor returns.

Must combine with
umask 80H.

88H 08H BR_INST_EXEC.RETURN_NEAR Qualify indirect near branches that have a return
mnemonic.

Must combine with
umask 80H.

88H 10H BR_INST_EXEC.DIRECT_NEAR_C
ALL

Qualify unconditional near call branch instructions,
excluding non call branch, executed.

Must combine with
umask 80H.

88H 20H BR_INST_EXEC.INDIRECT_NEAR
_CALL

Qualify indirect near calls, including both register and
memory indirect, executed.

Must combine with
umask 80H.

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H
only.

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must combine
with 01H,02H, 04H, 08H, 10H, 20H.

88H FFH BR_INST_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions
mispredicted.

Must combine with
umask 40H, 80H.

89H 04H BR_MISP_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify mispredicted indirect near branch
instructions that are not calls nor returns.

Must combine with
umask 80H.

89H 08H BR_MISP_EXEC.RETURN_NEAR Qualify mispredicted indirect near branches that
have a return mnemonic.

Must combine with
umask 80H.

89H 10H BR_MISP_EXEC.DIRECT_NEAR_C
ALL

Qualify mispredicted unconditional near call branch
instructions, excluding non call branch, executed.

Must combine with
umask 80H.

89H 20H BR_MISP_EXEC.INDIRECT_NEAR
_CALL

Qualify mispredicted indirect near calls, including
both register and memory indirect, executed.

Must combine with
umask 80H.

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches
executed.

Applicable to umask 01H
only.

89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed.
Must combine with 01H,02H, 04H, 08H, 10H, 20H.

89H FFH BR_MISP_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

Table 19-6 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 170

9CH 01H IDQ_UOPS_NOT_DELIVERED.CO
RE

Count issue pipeline slots where no uop was
delivered from the frontend to the backend when
there is no backend stall.

Use Cmask to qualify uop
b/w.

A1H 01H UOPS_EXECUTED_PORT.PORT_
0

Cycles which a Uop is dispatched on port 0 in this
thread.

Set AnyThread to count
per core.

A1H 02H UOPS_EXECUTED_PORT.PORT_
1

Cycles which a Uop is dispatched on port 1 in this
thread.

Set AnyThread to count
per core.

A1H 04H UOPS_EXECUTED_PORT.PORT_
2

Cycles which a uop is dispatched on port 2 in this
thread.

Set AnyThread to count
per core.

A1H 08H UOPS_EXECUTED_PORT.PORT_
3

Cycles which a uop is dispatched on port 3 in this
thread.

Set AnyThread to count
per core.

A1H 10H UOPS_EXECUTED_PORT.PORT_
4

Cycles which a uop is dispatched on port 4 in this
thread.

Set AnyThread to count
per core.

A1H 20H UOPS_EXECUTED_PORT.PORT_
5

Cycles which a uop is dispatched on port 5 in this
thread.

Set AnyThread to count
per core.

A1H 40H UOPS_EXECUTED_PORT.PORT_
6

Cycles which a Uop is dispatched on port 6 in this
thread.

Set AnyThread to count
per core.

A1H 80H UOPS_EXECUTED_PORT.PORT_
7

Cycles which a Uop is dispatched on port 7 in this
thread

Set AnyThread to count
per core.

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related
reason.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_PE
NDING

Cycles with pending L2 miss loads. Set Cmask=2 to
count cycle.

Use only when HTT is
off.

A3H 02H CYCLE_ACTIVITY.CYCLES_LDM_
PENDING

Cycles with pending memory loads. Set Cmask=2 to
count cycle.

A3H 05H CYCLE_ACTIVITY.STALLS_L2_PE
NDING

Number of loads missed L2. Use only when HTT is
off.

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_P
ENDING

Cycles with pending L1 data cache miss loads. Set
Cmask=8 to count cycle.

PMC2 only.

A3H 0CH CYCLE_ACTIVITY.STALLS_L1D_P
ENDING

Execution stalls due to L1 data cache miss loads. Set
Cmask=0CH.

PMC2 only.

A8H 01H LSD.UOPS Number of Uops delivered by the LSD.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes
4k/2M/4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_
DATA_RD

Demand data read requests sent to uncore. Use only when HTT is
off.

B0H 02H OFFCORE_REQUESTS.DEMAND_
CODE_RD

Demand code read requests sent to uncore. Use only when HTT is
off.

Table 19-6 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 171

B0H 04H OFFCORE_REQUESTS.DEMAND_
RFO

Demand RFO read requests sent to uncore, including
regular RFOs, locks, ItoM.

Use only when HTT is
off.

B0H 08H OFFCORE_REQUESTS.ALL_DATA
_RD

Data read requests sent to uncore (demand and
prefetch).

Use only when HTT is
off.

B1H 02H UOPS_EXECUTED.CORE Counts total number of uops to be executed per-core
each cycle.

Do not need to set ANY.

B7H 01H OFF_CORE_RESPONSE_0 see Table 18-43 or Table 18-44. Requires MSR 01A6H.

BBH 01H OFF_CORE_RESPONSE_1 See Table 18-43 or Table 18-44. Requires MSR 01A7H.

BCH 11H PAGE_WALKER_LOADS.DTLB_L1 Number of DTLB page walker loads that hit in the
L1+FB.

BCH 21H PAGE_WALKER_LOADS.ITLB_L1 Number of ITLB page walker loads that hit in the
L1+FB.

BCH 12H PAGE_WALKER_LOADS.DTLB_L2 Number of DTLB page walker loads that hit in the L2.

BCH 22H PAGE_WALKER_LOADS.ITLB_L2 Number of ITLB page walker loads that hit in the L2.

BCH 14H PAGE_WALKER_LOADS.DTLB_L3 Number of DTLB page walker loads that hit in the L3.

BCH 24H PAGE_WALKER_LOADS.ITLB_L3 Number of ITLB page walker loads that hit in the L3.

BCH 18H PAGE_WALKER_LOADS.DTLB_M
EMORY

Number of DTLB page walker loads from memory.

BCH 28H PAGE_WALKER_LOADS.ITLB_ME
MORY

Number of ITLB page walker loads from memory.

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1.

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only.

C1H 08H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE
when penalty applicable.

C1H 10H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when
penalty applicable.

C1H 40H OTHER_ASSISTS.ANY_WB_ASSI
ST

Number of microcode assists invoked by HW upon
uop writeback.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use
cmask=1 and invert to count active cycles or stalled
cycles.

Supports PEBS and
DataLA, use Any=1 for
core granular.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

Supports PEBS.

C3H 02H MACHINE_CLEARS.MEMORY_OR
DERING

Counts the number of machine clears due to memory
order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears
detected.

Table 19-6 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 172

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load
operations that refer to an illegal address range with
the mask bits set to 0.

C4H 00H BR_INST_RETIRED.ALL_BRANC
HES

Branch instructions at retirement. See Table 19-1.

C4H 01H BR_INST_RETIRED.CONDITIONA
L

Counts the number of conditional branch instructions
retired.

Supports PEBS.

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS.

C4H 04H BR_INST_RETIRED.ALL_BRANC
HES

Counts the number of branch instructions retired. Supports PEBS.

C4H 08H BR_INST_RETIRED.NEAR_RETU
RN

Counts the number of near return instructions
retired.

Supports PEBS.

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions
retired.

C4H 20H BR_INST_RETIRED.NEAR_TAKE
N

Number of near taken branches retired. Supports PEBS.

C4H 40H BR_INST_RETIRED.FAR_BRANC
H

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted branch instructions at retirement See Table 19-1.

C5H 01H BR_MISP_RETIRED.CONDITIONA
L

Mispredicted conditional branch instructions retired. Supports PEBS.

C5H 04H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted macro branch instructions retired. Supports PEBS.

C5H 20H BR_MISP_RETIRED.NEAR_TAKE
N

Number of near branch instructions retired that
were taken but mispredicted.

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 FP assists due to Output values.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 FP assists due to input values.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to Output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSER
TS

Count cases of saving new LBR records by hardware.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY

Randomly sampled loads whose latency is above a
user defined threshold. A small fraction of the overall
loads are sampled due to randomization.

Specify threshold in MSR
3F6H.

D0H 11H MEM_UOPS_RETIRED.STLB_MIS
S_LOADS

Retired load uops that miss the STLB. Supports PEBS and
DataLA.

D0H 12H MEM_UOPS_RETIRED.STLB_MIS
S_STORES

Retired store uops that miss the STLB. Supports PEBS and
DataLA.

D0H 21H MEM_UOPS_RETIRED.LOCK_LOA
DS

Retired load uops with locked access. Supports PEBS and
DataLA.

Table 19-6 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 173

D0H 41H MEM_UOPS_RETIRED.SPLIT_LO
ADS

Retired load uops that split across a cacheline
boundary.

Supports PEBS and
DataLA.

D0H 42H MEM_UOPS_RETIRED.SPLIT_ST
ORES

Retired store uops that split across a cacheline
boundary.

Supports PEBS and
DataLA.

D0H 81H MEM_UOPS_RETIRED.ALL_LOAD
S

All retired load uops. Supports PEBS and
DataLA.

D0H 82H MEM_UOPS_RETIRED.ALL_STOR
ES

All retired store uops. Supports PEBS and
DataLA.

D1H 01H MEM_LOAD_UOPS_RETIRED.L1_
HIT

Retired load uops with L1 cache hits as data sources. Supports PEBS and
DataLA.

D1H 02H MEM_LOAD_UOPS_RETIRED.L2_
HIT

Retired load uops with L2 cache hits as data sources. Supports PEBS and
DataLA.

D1H 04H MEM_LOAD_UOPS_RETIRED.L3_
HIT

Retired load uops with L3 cache hits as data sources. Supports PEBS and
DataLA.

D1H 08H MEM_LOAD_UOPS_RETIRED.L1_
MISS

Retired load uops missed L1 cache as data sources. Supports PEBS and
DataLA.

D1H 10H MEM_LOAD_UOPS_RETIRED.L2_
MISS

Retired load uops missed L2. Unknown data source
excluded.

Supports PEBS and
DataLA.

D1H 20H MEM_LOAD_UOPS_RETIRED.L3_
MISS

Retired load uops missed L3. Excludes unknown data
source .

Supports PEBS and
DataLA.

D1H 40H MEM_LOAD_UOPS_RETIRED.HIT
_LFB

Retired load uops which data sources were load uops
missed L1 but hit FB due to preceding miss to the
same cache line with data not ready.

Supports PEBS and
DataLA.

D2H 01H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_MISS

Retired load uops which data sources were L3 hit
and cross-core snoop missed in on-pkg core cache.

Supports PEBS and
DataLA.

D2H 02H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HIT

Retired load uops which data sources were L3 and
cross-core snoop hits in on-pkg core cache.

Supports PEBS and
DataLA.

D2H 04H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HITM

Retired load uops which data sources were HitM
responses from shared L3.

Supports PEBS and
DataLA.

D2H 08H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_NONE

Retired load uops which data sources were hits in L3
without snoops required.

Supports PEBS and
DataLA.

D3H 01H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.LOCAL_DRAM

Retired load uops which data sources missed L3 but
serviced from local dram.

Supports PEBS and
DataLA.

E6H 1FH BACLEARS.ANY Number of front end re-steers due to BPU
misprediction.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF Any MLC or L3 HW prefetch accessing L2, including
rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

Table 19-6 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 174

Table 19-7 Intel TSX Performance Events in processors based on Haswell Microarchitecture

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover
rejects.

F2H 05H L2_LINES_OUT.DEMAND_CLEAN Clean L2 cache lines evicted by demand.

F2H 06H L2_LINES_OUT.DEMAND_DIRTY Dirty L2 cache lines evicted by demand.

Table 19-6 Non-Architectural Performance Events In the Processor Core of
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

54H 01H TX_MEM.ABORT_CONFLICT Number of times a transactional abort was signaled due
to a data conflict on a transactionally accessed address

54H 02H TX_MEM.ABORT_CAPACITY_W
RITE

Number of times a transactional abort was signaled due
to a data capacity limitation for transactional writes

54H 04H TX_MEM.ABORT_HLE_STORE_
TO_ELIDED_LOCK

Number of times a HLE transactional region aborted due
to a non XRELEASE prefixed instruction writing to an
elided lock in the elision buffer

54H 08H TX_MEM.ABORT_HLE_ELISION
_BUFFER_NOT_EMPTY

Number of times an HLE transactional execution aborted
due to NoAllocatedElisionBuffer being non-zero.

54H 10H TX_MEM.ABORT_HLE_ELISION
_BUFFER_MISMATCH

Number of times an HLE transactional execution aborted
due to XRELEASE lock not satisfying the address and
value requirements in the elision buffer.

54H 20H TX_MEM.ABORT_HLE_ELISION
_BUFFER_UNSUPPORTED_ALI
GNMENT

Number of times an HLE transactional execution aborted
due to an unsupported read alignment from the elision
buffer.

54H 40H TX_MEM.HLE_ELISION_BUFFE
R_FULL

Number of times HLE lock could not be elided due to
ElisionBufferAvailable being zero.

5DH 01H TX_EXEC.MISC1 Counts the number of times a class of instructions that
may cause a transactional abort was executed. Since this
is the count of execution, it may not always cause a
transactional abort.

5DH 02H TX_EXEC.MISC2 Counts the number of times a class of instructions (e.g.
vzeroupper) that may cause a transactional abort was
executed inside a transactional region.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 175

...

5DH 04H TX_EXEC.MISC3 Counts the number of times an instruction execution
caused the transactional nest count supported to be
exceeded.

5DH 08H TX_EXEC.MISC4 Counts the number of times an XBEGIN instruction was
executed inside an HLE transactional region.

5DH 10H TX_EXEC.MISC5 Counts the number of times an instruction with HLE-
XACQUIRE semantic was executed inside an RTM
transactional region.

C8H 01H HLE_RETIRED.START Number of times an HLE execution started. IF HLE is supported.

C8H 02H HLE_RETIRED.COMMIT Number of times an HLE execution successfully
committed.

C8H 04H HLE_RETIRED.ABORTED Number of times an HLE execution aborted due to any
reasons (multiple categories may count as one). Supports
PEBS.

C8H 08H HLE_RETIRED.ABORTED_MEM Number of times an HLE execution aborted due to
various memory events (e.g. read/write capacity and
conflicts).

C8H 10H HLE_RETIRED.ABORTED_TIME
R

Number of times an HLE execution aborted due to
uncommon conditions.

C8H 20H HLE_RETIRED.ABORTED_UNFR
IENDLY

Number of times an HLE execution aborted due to HLE-
unfriendly instructions.

C8H 40H HLE_RETIRED.ABORTED_MEM
TYPE

Number of times an HLE execution aborted due to
incompatible memory type.

C8H 80H HLE_RETIRED.ABORTED_EVEN
TS

Number of times an HLE execution aborted due to none
of the previous 4 categories (e.g. interrupts)

C9H 01H RTM_RETIRED.START Number of times an RTM execution started. IF RTM is supported.

C9H 02H RTM_RETIRED.COMMIT Number of times an RTM execution successfully
committed.

C9H 04H RTM_RETIRED.ABORTED Number of times an RTM execution aborted due to any
reasons (multiple categories may count as one). Supports
PEBS.

C9H 08H RTM_RETIRED.ABORTED_MEM Number of times an RTM execution aborted due to
various memory events (e.g. read/write capacity and
conflicts).

IF RTM is supported.

C9H 10H RTM_RETIRED.ABORTED_TIME
R

Number of times an RTM execution aborted due to
uncommon conditions.

C9H 20H RTM_RETIRED.ABORTED_UNF
RIENDLY

Number of times an RTM execution aborted due to HLE-
unfriendly instructions.

C9H 40H RTM_RETIRED.ABORTED_MEM
TYPE

Number of times an RTM execution aborted due to
incompatible memory type.

C9H 80H RTM_RETIRED.ABORTED_EVE
NTS

Number of times an RTM execution aborted due to none
of the previous 4 categories (e.g. interrupt).

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 176

19.5 PERFORMANCE MONITORING EVENTS FOR 3RD GENERATION
INTEL® CORE™ PROCESSORS

3rd generation Intel® Core™ processors and Intel Xeon processor E3-1200 v2 product family are based on Intel
microarchitecture code name Ivy Bridge. They support architectural performance-monitoring events listed in
Table 19-1. Non-architectural performance-monitoring events in the processor core are listed in Table 19-10. The
events in Table 19-10 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the
following values: 06_3AH. Fixed counters in the core PMU support the architecture events defined in Table 19-21.

Additional information on event specifics (e.g. derivative events using specific IA32_PERFEVTSELx modifiers,
limitations, special notes and recommendations) can be found at http://software.intel.com/en-us/forums/soft-
ware-tuning-performance-optimization-platform-monitoring.

Table 19-10 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD loads blocked by overlapping with store buffer that
cannot be forwarded.

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are
temporarily blocked because all resources for
handling the split accesses are in use.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS_
ALIAS

False dependencies in MOB due to partial compare
on address.

08H 81H DTLB_LOAD_MISSES.MISS_CAUSE
S_A_WALK

Misses in all TLB levels that cause a page walk of
any page size from demand loads.

08H 82H DTLB_LOAD_MISSES.WALK_COM
PLETED

Misses in all TLB levels that caused page walk
completed of any size by demand loads.

08H 84H DTLB_LOAD_MISSES.WALK_DUR
ATION

Cycle PMH is busy with a walk due to demand loads.

08H 88H DTLB_LOAD_MISSES.LARGE_PAG
E_WALK_DURATION

Page walk for a large page completed for Demand
load.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the
RAT to RS.

Set Cmask = 1, Inv = 1, Any= 1to count stalled
cycles of this core.

Set Cmask = 1, Inv = 1to
count stalled cycles.

0EH 10H UOPS_ISSUED.FLAGS_MERGE Number of flags-merge uops allocated. Such uops
adds delay.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such
uop has 3 sources (e.g. 2 sources + immediate)
regardless if as a result of LEA instruction or not.

0EH 40H UOPS_ISSUED.SiNGLE_MUL Number of multiply packed/scalar single precision
uops allocated.

10H 01H FP_COMP_OPS_EXE.X87 Counts number of X87 uops executed.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 177

10H 10H FP_COMP_OPS_EXE.SSE_FP_PAC
KED_DOUBLE

Counts number of SSE* or AVX-128 double
precision FP packed uops executed.

10H 20H FP_COMP_OPS_EXE.SSE_FP_SCA
LAR_SINGLE

Counts number of SSE* or AVX-128 single precision
FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_PACKED
SINGLE

Counts number of SSE* or AVX-128 single precision
FP packed uops executed.

10H 80H FP_COMP_OPS_EXE.SSE_SCALAR
_DOUBLE

Counts number of SSE* or AVX-128 double
precision FP scalar uops executed.

11H 01H SIMD_FP_256.PACKED_SINGLE Counts 256-bit packed single-precision floating-
point instructions.

11H 02H SIMD_FP_256.PACKED_DOUBLE Counts 256-bit packed double-precision floating-
point instructions.

14H 01H ARITH.FPU_DIV_ACTIVE Cycles that the divider is active, includes INT and FP.
Set 'edge =1, cmask=1' to count the number of
divides.

24H 01H L2_RQSTS.DEMAND_DATA_RD_H
IT

Demand Data Read requests that hit L2 cache.

24H 03H L2_RQSTS.ALL_DEMAND_DATA_
RD

Counts any demand and L1 HW prefetch data load
requests to L2.

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO requests that hit
the L2 cache.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache.

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 10H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache.

24H 20H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2
cache.

24H 30H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Counts all L2 HW prefetcher requests that hit L2.

24H 80H L2_RQSTS.PF_MISS Counts all L2 HW prefetcher requests that missed
L2.

24H C0H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher requests.

27H 01H L2_STORE_LOCK_RQSTS.MISS RFOs that miss cache lines.

27H 08H L2_STORE_LOCK_RQSTS.HIT_M RFOs that hit cache lines in M state.

27H 0FH L2_STORE_LOCK_RQSTS.ALL RFOs that access cache lines in any state.

28H 01H L2_L1D_WB_RQSTS.MISS Not rejected writebacks that missed LLC.

28H 04H L2_L1D_WB_RQSTS.HIT_E Not rejected writebacks from L1D to L2 cache lines
in E state.

28H 08H L2_L1D_WB_RQSTS.HIT_M Not rejected writebacks from L1D to L2 cache lines
in M state.

Table 19-10 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 178

28H 0FH L2_L1D_WB_RQSTS.ALL Not rejected writebacks from L1D to L2 cache lines
in any state.

2EH 4FH LONGEST_LAT_CACHE.REFERENC
E

This event counts requests originating from the
core that reference a cache line in the last level
cache.

See Table 19-1

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache.

See Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD_P Counts the number of thread cycles while the
thread is not in a halt state. The thread enters the
halt state when it is running the HLT instruction.
The core frequency may change from time to time
due to power or thermal throttling.

See Table 19-1.

3CH 01H CPU_CLK_THREAD_UNHALTED.R
EF_XCLK

Increments at the frequency of XCLK (100 MHz)
when not halted.

See Table 19-1.

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmask = 1 and Edge =1 to count
occurrences.

PMC2 only;

Set Cmask = 1 to count
cycles.

49H 01H DTLB_STORE_MISSES.MISS_CAUS
ES_A_WALK

Miss in all TLB levels causes an page walk of any
page size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_CO
MPLETED

Miss in all TLB levels causes a page walk that
completes of any page size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSES.WALK_DUR
ATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSES.STLB_HIT Store operations that miss the first TLB level but hit
the second and do not cause page walks

4CH 01H LOAD_HIT_PRE.SW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches that hit fill buffer
allocated for H/W prefetch.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

58H 04H MOVE_ELIMINATION.INT_NOT_EL
IMINATED

Number of integer Move Elimination candidate uops
that were not eliminated.

58H 08H MOVE_ELIMINATION.SIMD_NOT_E
LIMINATED

Number of SIMD Move Elimination candidate uops
that were not eliminated.

58H 01H MOVE_ELIMINATION.INT_ELIMINA
TED

Number of integer Move Elimination candidate uops
that were eliminated.

58H 02H MOVE_ELIMINATION.SIMD_ELIMIN
ATED

Number of SIMD Move Elimination candidate uops
that were eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count
transition.

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring
0.

Table 19-10 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 179

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

5FH 04H DTLB_LOAD_MISSES.STLB_HIT Counts load operations that missed 1st level DTLB
but hit the 2nd level.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Offcore outstanding Demand Code Read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to
uncore. Set Cmask=1 to count cycles.

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Offcore outstanding cacheable data read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC_L
OCK_DURATION

Cycles in which the L1D and L2 are locked, due to a
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_DUR
ATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ
from MITE path.

Set Cmask = 1 to count cycles.

Can combine Umask 04H
and 20H.

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ
from DSB path.

Set Cmask = 1 to count cycles.

Can combine Umask 08H
and 10H.

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by DSB. Set Cmask = 1 to count
cycles. Add Edge=1 to count # of delivery.

Can combine Umask 04H,
08H.

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ
when MS_busy by MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H,
08H.

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ
from MS by either DSB or MITE. Set Cmask = 1 to
count cycles.

Can combine Umask 04H,
08H.

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UOP
S

Counts cycles DSB is delivered at least one uops.
Set Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Counts cycles DSB is delivered four uops. Set Cmask
= 4.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UOP
S

Counts cycles MITE is delivered at least one uops.
Set Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. Set
Cmask = 4.

79H 3CH IDQ.MITE_ALL_UOPS # of uops delivered to IDQ from any path.

Table 19-10 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 180

80H 04H ICACHE.IFETCH_STALL Cycles where a code-fetch stalled due to L1
instruction-cache miss or an iTLB miss

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A_W
ALK

Misses in all ITLB levels that cause page walks

85H 02H ITLB_MISSES.WALK_COMPLETED Misses in all ITLB levels that cause completed page
walks

85H 04H ITLB_MISSES.WALK_DURATION Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions
executed, but not necessarily retired.

Must combine with
umask 40H, 80H.

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions
excluding calls and indirect branches.

Must combine with
umask 80H.

88H 04H BR_INST_EXEC.INDIRECT_JMP_N
ON_CALL_RET

Qualify executed indirect near branch instructions
that are not calls nor returns.

Must combine with
umask 80H.

88H 08H BR_INST_EXEC.RETURN_NEAR Qualify indirect near branches that have a return
mnemonic.

Must combine with
umask 80H.

88H 10H BR_INST_EXEC.DIRECT_NEAR_C
ALL

Qualify unconditional near call branch instructions,
excluding non call branch, executed.

Must combine with
umask 80H.

88H 20H BR_INST_EXEC.INDIRECT_NEAR_
CALL

Qualify indirect near calls, including both register
and memory indirect, executed.

Must combine with
umask 80H.

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H
only.

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must
combine with 01H,02H, 04H, 08H, 10H, 20H.

88H FFH BR_INST_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions
mispredicted.

Must combine with
umask 40H, 80H.

89H 04H BR_MISP_EXEC.INDIRECT_JMP_N
ON_CALL_RET

Qualify mispredicted indirect near branch
instructions that are not calls nor returns.

Must combine with
umask 80H.

89H 08H BR_MISP_EXEC.RETURN_NEAR Qualify mispredicted indirect near branches that
have a return mnemonic.

Must combine with
umask 80H.

89H 10H BR_MISP_EXEC.DIRECT_NEAR_C
ALL

Qualify mispredicted unconditional near call branch
instructions, excluding non call branch, executed.

Must combine with
umask 80H.

89H 20H BR_MISP_EXEC.INDIRECT_NEAR_
CALL

Qualify mispredicted indirect near calls, including
both register and memory indirect, executed.

Must combine with
umask 80H.

Table 19-10 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 181

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches
executed.

Applicable to umask 01H
only.

89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed.
Must combine with 01H,02H, 04H, 08H, 10H, 20H.

89H FFH BR_MISP_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily
retired).

9CH 01H IDQ_UOPS_NOT_DELIVERED.COR
E

Count issue pipeline slots where no uop was
delivered from the frontend to the backend when
there is no backend stall.

Use Cmask to qualify uop
b/w.

A1H 01H UOPS_DISPATCHED_PORT.PORT_
0

Cycles which a Uop is dispatched on port 0.

A1H 02H UOPS_DISPATCHED_PORT.PORT_
1

Cycles which a Uop is dispatched on port 1

A1H 0CH UOPS_DISPATCHED_PORT.PORT_
2

Cycles which a Uop is dispatched on port 2.

A1H 30H UOPS_DISPATCHED_PORT.PORT_
3

Cycles which a Uop is dispatched on port 3.

A1H 40H UOPS_DISPATCHED_PORT.PORT_
4

Cycles which a Uop is dispatched on port 4.

A1H 80H UOPS_DISPATCHED_PORT.PORT_
5

Cycles which a Uop is dispatched on port 5.

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related
reason.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_PEN
DING

Cycles with pending L2 miss loads. Set AnyThread
to count per core.

A3H 02H CYCLE_ACTIVITY.CYCLES_LDM_P
ENDING

Cycles with pending memory loads. Set AnyThread
to count per core.

Restricted to counters 0-
3 when HTT is disabled.

A3H 04H CYCLE_ACTIVITY.CYCLES_NO_EX
ECUTE

Cycles of dispatch stalls. Set AnyThread to count
per core.

Restricted to counters 0-
3 when HTT is disabled.

A3H 05H CYCLE_ACTIVITY.STALLS_L2_PEN
DING

Number of loads missed L2. Restricted to counters 0-
3 when HTT is disabled.

A3H 06H CYCLE_ACTIVITY.STALLS_LDM_P
ENDING

Restricted to counters 0-
3 when HTT is disabled.

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_PE
NDING

Cycles with pending L1 cache miss loads. Set
AnyThread to count per core.

PMC2 only.

A3H 0CH CYCLE_ACTIVITY.STALLS_L1D_PE
NDING

Execution stalls due to L1 data cache miss loads.
Set Cmask=0CH.

PMC2 only.

A8H 01H LSD.UOPS Number of Uops delivered by the LSD.

Table 19-10 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 182

ABH 01H DSB2MITE_SWITCHES.COUNT Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHES.PENALTY_
CYCLES

Cycles DSB to MITE switches caused delay.

ACH 08H DSB_FILL.EXCEED_DSB_LINES DSB Fill encountered > 3 DSB lines.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes
4k/2M/4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_D
ATA_RD

Demand data read requests sent to uncore.

B0H 02H OFFCORE_REQUESTS.DEMAND_C
ODE_RD

Demand code read requests sent to uncore.

B0H 04H OFFCORE_REQUESTS.DEMAND_R
FO

Demand RFO read requests sent to uncore,
including regular RFOs, locks, ItoM

B0H 08H OFFCORE_REQUESTS.ALL_DATA_
RD

Data read requests sent to uncore (demand and
prefetch).

B1H 01H UOPS_EXECUTED.THREAD Counts total number of uops to be executed per-
thread each cycle. Set Cmask = 1, INV =1 to count
stall cycles.

B1H 02H UOPS_EXECUTED.CORE Counts total number of uops to be executed per-
core each cycle.

Do not need to set ANY.

B7H 01H OFFCORE_RESPONSE_0 See Section 18.8.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A6H.

BBH 01H OFFCORE_RESPONSE_1 See Section 18.8.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A7H.

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1.

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only.

C1H 08H OTHER_ASSISTS.AVX_STORE Number of assists associated with 256-bit AVX
store operations.

C1H 10H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE
when penalty applicable.

C1H 20H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when
penalty applicable.

C1H 80H OTHER_ASSISTS.WB Number of times microcode assist is invoked by
hardware upon uop writeback

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use
cmask=1 and invert to count active cycles or stalled
cycles.

Supports PEBS, use
Any=1 for core granular.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

Supports PEBS.

Table 19-10 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 183

C3H 02H MACHINE_CLEARS.MEMORY_ORD
ERING

Counts the number of machine clears due to
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears
detected.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load
operations that refer to an illegal address range
with the mask bits set to 0.

C4H 00H BR_INST_RETIRED.ALL_BRANCH
ES

Branch instructions at retirement. See Table 19-1.

C4H 01H BR_INST_RETIRED.CONDITIONAL Counts the number of conditional branch
instructions retired.

Supports PEBS.

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS.

C4H 04H BR_INST_RETIRED.ALL_BRANCH
ES

Counts the number of branch instructions retired. Supports PEBS.

C4H 08H BR_INST_RETIRED.NEAR_RETUR
N

Counts the number of near return instructions
retired.

Supports PEBS.

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions
retired.

Supports PEBS.

C4H 20H BR_INST_RETIRED.NEAR_TAKEN Number of near taken branches retired. Supports PEBS.

C4H 40H BR_INST_RETIRED.FAR_BRANCH Number of far branches retired. Supports PEBS.

C5H 00H BR_MISP_RETIRED.ALL_BRANCH
ES

Mispredicted branch instructions at retirement. See Table 19-1.

C5H 01H BR_MISP_RETIRED.CONDITIONAL Mispredicted conditional branch instructions retired. Supports PEBS.

C5H 04H BR_MISP_RETIRED.ALL_BRANCH
ES

Mispredicted macro branch instructions retired. Supports PEBS.

C5H 20H BR_MISP_RETIRED.NEAR_TAKEN Mispredicted taken branch instructions retired. Supports PEBS.

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 FP assists due to Output values. Supports PEBS.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 FP assists due to input values. Supports PEBS.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to Output values. Supports PEBS.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSERT
S

Count cases of saving new LBR records by
hardware.

CDH 01H MEM_TRANS_RETIRED.LOAD_LA
TENCY

Randomly sampled loads whose latency is above a
user defined threshold. A small fraction of the
overall loads are sampled due to randomization.

Specify threshold in MSR
3F6H. PMC 3 only.

CDH 02H MEM_TRANS_RETIRED.PRECISE_
STORE

Sample stores and collect precise store operation
via PEBS record. PMC3 only.

See Section 18.8.4.3.

D0H 11H MEM_UOPS_RETIRED.STLB_MISS
_LOADS

Retired load uops that miss the STLB. Supports PEBS.

Table 19-10 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 184

D0H 12H MEM_UOPS_RETIRED.STLB_MISS
_STORES

Retired store uops that miss the STLB. Supports PEBS.

D0H 21H MEM_UOPS_RETIRED.LOCK_LOA
DS

Retired load uops with locked access. Supports PEBS.

D0H 41H MEM_UOPS_RETIRED.SPLIT_LOA
DS

Retired load uops that split across a cacheline
boundary.

Supports PEBS.

D0H 42H MEM_UOPS_RETIRED.SPLIT_STO
RES

Retired store uops that split across a cacheline
boundary.

Supports PEBS.

D0H 81H MEM_UOPS_RETIRED.ALL_LOADS All retired load uops. Supports PEBS.

D0H 82H MEM_UOPS_RETIRED.ALL_STORE
S

All retired store uops. Supports PEBS.

D1H 01H MEM_LOAD_UOPS_RETIRED.L1_
HIT

Retired load uops with L1 cache hits as data
sources.

Supports PEBS.

D1H 02H MEM_LOAD_UOPS_RETIRED.L2_
HIT

Retired load uops with L2 cache hits as data
sources.

Supports PEBS.

D1H 04H MEM_LOAD_UOPS_RETIRED.LLC_
HIT

Retired load uops whose data source was LLC hit
with no snoop required.

Supports PEBS.

D1H 08H MEM_LOAD_UOPS_RETIRED.L1_
MISS

Retired load uops whose data source followed an
L1 miss.

Supports PEBS.

D1H 10H MEM_LOAD_UOPS_RETIRED.L2_
MISS

Retired load uops that missed L2, excluding
unknown sources.

Supports PEBS.

D1H 20H MEM_LOAD_UOPS_RETIRED.LLC_
MISS

Retired load uops whose data source is LLC miss. Supports PEBS.
Restricted to counters 0-
3 when HTT is disabled.

D1H 40H MEM_LOAD_UOPS_RETIRED.HIT_
LFB

Retired load uops which data sources were load
uops missed L1 but hit FB due to preceding miss to
the same cache line with data not ready.

Supports PEBS.

D2H 01H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_MISS

Retired load uops whose data source was an on-
package core cache LLC hit and cross-core snoop
missed.

Supports PEBS.

D2H 02H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_HIT

Retired load uops whose data source was an on-
package LLC hit and cross-core snoop hits.

Supports PEBS.

D2H 04H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_HITM

Retired load uops whose data source was an on-
package core cache with HitM responses.

Supports PEBS.

D2H 08H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_NONE

Retired load uops whose data source was LLC hit
with no snoop required.

Supports PEBS.

D3H 01H MEM_LOAD_UOPS_LLC_MISS_RE
TIRED.LOCAL_DRAM

Retired load uops whose data source was local
memory (cross-socket snoop not needed or missed).

Supports PEBS.

E6H 1FH BACLEARS.ANY Number of front end re-steers due to BPU
misprediction.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

Table 19-10 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 185

...

19.6 PERFORMANCE MONITORING EVENTS FOR 2ND GENERATION
INTEL® CORE™ I7-2XXX, INTEL® CORE™ I5-2XXX, INTEL® CORE™ I3-2XXX
PROCESSOR SERIES

2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series, and Intel
Xeon processor E3-1200 product family are based on the Intel microarchitecture code name Sandy Bridge. They
support architectural performance-monitoring events listed in Table 19-1. Non-architectural performance-moni-
toring events in the processor core are listed in Table 19-12, Table 19-13, and Table 19-14. The events in Table
19-12 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following
values: 06_2AH and 06_2DH. The events in Table 19-13 apply to processors with CPUID signature 06_2AH. The
events in Table 19-14 apply to processors with CPUID signature 06_2DH. Fixed counters in the core PMU support
the architecture events defined in Table 19-2.

Additional informations on event specifics (e.g. derivative events using specific IA32_PERFEVTSELx modifiers,
limitations, special notes and recommendations) can be found at http://software.intel.com/en-us/forums/soft-
ware-tuning-performance-optimization-platform-monitoring.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF Any MLC or LLC HW prefetch accessing L2, including
rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover
rejects.

F2H 01H L2_LINES_OUT.DEMAND_CLEAN Clean L2 cache lines evicted by demand.

F2H 02H L2_LINES_OUT.DEMAND_DIRTY Dirty L2 cache lines evicted by demand.

F2H 04H L2_LINES_OUT.PF_CLEAN Clean L2 cache lines evicted by the MLC prefetcher.

F2H 08H L2_LINES_OUT.PF_DIRTY Dirty L2 cache lines evicted by the MLC prefetcher.

F2H 0AH L2_LINES_OUT.DIRTY_ALL Dirty L2 cache lines filling the L2. Counting does not cover
rejects.

Table 19-10 Non-Architectural Performance Events In the Processor Core of
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 186

Table 19-12 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™
i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 01H LD_BLOCKS.DATA_UNKNOWN blocked loads due to store buffer blocks with
unknown data.

03H 02H LD_BLOCKS.STORE_FORWARD loads blocked by overlapping with store buffer that
cannot be forwarded.

03H 08H LD_BLOCKS.NO_SR # of Split loads blocked due to resource not
available.

03H 10H LD_BLOCKS.ALL_BLOCK Number of cases where any load is blocked but has
no DCU miss.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRES
S_ALIAS

False dependencies in MOB due to partial compare
on address.

07H 08H LD_BLOCKS_PARTIAL.ALL_STA
_BLOCK

The number of times that load operations are
temporarily blocked because of older stores, with
addresses that are not yet known. A load operation
may incur more than one block of this type.

08H 01H DTLB_LOAD_MISSES.MISS_CA
USES_A_WALK

Misses in all TLB levels that cause a page walk of
any page size.

08H 02H DTLB_LOAD_MISSES.WALK_CO
MPLETED

Misses in all TLB levels that caused page walk
completed of any size.

08H 04H DTLB_LOAD_MISSES.WALK_DU
RATION

Cycle PMH is busy with a walk.

08H 10H DTLB_LOAD_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

0DH 03H INT_MISC.RECOVERY_CYCLES Cycles waiting to recover after Machine Clears or
JEClear. Set Cmask= 1.

Set Edge to count
occurrences.

0DH 40H INT_MISC.RAT_STALL_CYCLES Cycles RAT external stall is sent to IDQ for this
thread.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the
RAT to RS.

Set Cmask = 1, Inv = 1, Any= 1to count stalled cycles
of this core.

Set Cmask = 1, Inv = 1to
count stalled cycles.

10H 01H FP_COMP_OPS_EXE.X87 Counts number of X87 uops executed.

10H 10H FP_COMP_OPS_EXE.SSE_FP_P
ACKED_DOUBLE

Counts number of SSE* double precision FP packed
uops executed.

10H 20H FP_COMP_OPS_EXE.SSE_FP_S
CALAR_SINGLE

Counts number of SSE* single precision FP scalar
uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_PACK
ED SINGLE

Counts number of SSE* single precision FP packed
uops executed.

10H 80H FP_COMP_OPS_EXE.SSE_SCAL
AR_DOUBLE

Counts number of SSE* double precision FP scalar
uops executed.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 187

11H 01H SIMD_FP_256.PACKED_SINGLE Counts 256-bit packed single-precision floating-
point instructions.

11H 02H SIMD_FP_256.PACKED_DOUBL
E

Counts 256-bit packed double-precision floating-
point instructions.

14H 01H ARITH.FPU_DIV_ACTIVE Cycles that the divider is active, includes INT and FP.
Set 'edge =1, cmask=1' to count the number of
divides.

17H 01H INSTS_WRITTEN_TO_IQ.INSTS Counts the number of instructions written into the
IQ every cycle.

24H 01H L2_RQSTS.DEMAND_DATA_RD
_HIT

Demand Data Read requests that hit L2 cache.

24H 03H L2_RQSTS.ALL_DEMAND_DAT
A_RD

Counts any demand and L1 HW prefetch data load
requests to L2.

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO requests that hit
the L2 cache.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss
the L2 cache.

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 10H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache.

24H 20H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2
cache.

24H 30H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Requests from L2 Hardware prefetcher that hit L2.

24H 80H L2_RQSTS.PF_MISS Requests from L2 Hardware prefetcher that missed
L2.

24H C0H L2_RQSTS.ALL_PF Any requests from L2 Hardware prefetchers.

27H 01H L2_STORE_LOCK_RQSTS.MISS RFOs that miss cache lines.

27H 04H L2_STORE_LOCK_RQSTS.HIT_
E

RFOs that hit cache lines in E state.

27H 08H L2_STORE_LOCK_RQSTS.HIT_
M

RFOs that hit cache lines in M state.

27H 0FH L2_STORE_LOCK_RQSTS.ALL RFOs that access cache lines in any state.

28H 01H L2_L1D_WB_RQSTS.MISS Not rejected writebacks from L1D to L2 cache lines
that missed L2.

28H 02H L2_L1D_WB_RQSTS.HIT_S Not rejected writebacks from L1D to L2 cache lines
in S state.

28H 04H L2_L1D_WB_RQSTS.HIT_E Not rejected writebacks from L1D to L2 cache lines
in E state.

28H 08H L2_L1D_WB_RQSTS.HIT_M Not rejected writebacks from L1D to L2 cache lines
in M state.

28H 0FH L2_L1D_WB_RQSTS.ALL Not rejected writebacks from L1D to L2 cache.

Table 19-12 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™
i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 188

2EH 4FH LONGEST_LAT_CACHE.REFERE
NCE

This event counts requests originating from the
core that reference a cache line in the last level
cache.

See Table 19-1.

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the last level cache.

See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD
_P

Counts the number of thread cycles while the
thread is not in a halt state. The thread enters the
halt state when it is running the HLT instruction.
The core frequency may change from time to time
due to power or thermal throttling.

See Table 19-1.

3CH 01H CPU_CLK_THREAD_UNHALTED
.REF_XCLK

Increments at the frequency of XCLK (100 MHz)
when not halted.

See Table 19-1.

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle. Set Cmask = 1 and Edge =1 to count
occurrences.

PMC2 only;

Set Cmask = 1 to count
cycles.

49H 01H DTLB_STORE_MISSES.MISS_CA
USES_A_WALK

Miss in all TLB levels causes an page walk of any
page size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_C
OMPLETED

Miss in all TLB levels causes a page walk that
completes of any page size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSES.WALK_D
URATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSES.STLB_HI
T

Store operations that miss the first TLB level but hit
the second and do not cause page walks.

4CH 01H LOAD_HIT_PRE.SW_PF Not SW-prefetch load dispatches that hit fill buffer
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Not SW-prefetch load dispatches that hit fill buffer
allocated for H/W prefetch.

4EH 02H HW_PRE_REQ.DL1_MISS Hardware Prefetch requests that miss the L1D
cache. A request is being counted each time it
access the cache & miss it, including if a block is
applicable or if hit the Fill Buffer for example.

This accounts for both L1
streamer and IP-based
(IPP) HW prefetchers.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

51H 02H L1D.ALLOCATED_IN_M Counts the number of allocations of modified L1D
cache lines.

51H 04H L1D.EVICTION Counts the number of modified lines evicted from
the L1 data cache due to replacement.

51H 08H L1D.ALL_M_REPLACEMENT Cache lines in M state evicted out of L1D due to
Snoop HitM or dirty line replacement.

59H 20H PARTIAL_RAT_STALLS.FLAGS_
MERGE_UOP

Increments the number of flags-merge uops in flight
each cycle.

Set Cmask = 1 to count cycles.

Table 19-12 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™
i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 189

59H 40H PARTIAL_RAT_STALLS.SLOW_
LEA_WINDOW

Cycles with at least one slow LEA uop allocated.

59H 80H PARTIAL_RAT_STALLS.MUL_SI
NGLE_UOP

Number of Multiply packed/scalar single precision
uops allocated.

5BH 0CH RESOURCE_STALLS2.ALL_FL_
EMPTY

Cycles stalled due to free list empty. PMC0-3 only regardless
HTT.

5BH 0FH RESOURCE_STALLS2.ALL_PRF
_CONTROL

Cycles stalled due to control structures full for
physical registers.

5BH 40H RESOURCE_STALLS2.BOB_FUL
L

Cycles Allocator is stalled due Branch Order Buffer.

5BH 4FH RESOURCE_STALLS2.OOO_RS
RC

Cycles stalled due to out of order resources full.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count
transition.

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring
0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

60H 01H OFFCORE_REQUESTS_OUTSTA
NDING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

60H 04H OFFCORE_REQUESTS_OUTSTA
NDING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to
uncore. Set Cmask=1 to count cycles.

60H 08H OFFCORE_REQUESTS_OUTSTA
NDING.ALL_DATA_RD

Offcore outstanding cacheable data read
transactions in SQ to uncore. Set Cmask=1 to count
cycles.

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC
_LOCK_DURATION

Cycles in which the L1D and L2 are locked, due to a
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_D
URATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ
from MITE path.

Set Cmask = 1 to count cycles.

Can combine Umask 04H
and 20H.

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ
from DSB path.

Set Cmask = 1 to count cycles.

Can combine Umask 08H
and 10H.

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ
when MS busy by DSB. Set Cmask = 1 to count
cycles MS is busy. Set Cmask=1 and Edge =1 to
count MS activations.

Can combine Umask 08H
and 10H.

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ
when MS is busy by MITE. Set Cmask = 1 to count
cycles.

Can combine Umask 04H
and 20H.

Table 19-12 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™
i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 190

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ
from MS by either DSB or MITE. Set Cmask = 1 to
count cycles.

Can combine Umask 04H,
08H and 30H.

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A
_WALK

Misses in all ITLB levels that cause page walks.

85H 02H ITLB_MISSES.WALK_COMPLET
ED

Misses in all ITLB levels that cause completed page
walks.

85H 04H ITLB_MISSES.WALK_DURATIO
N

Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 41H BR_INST_EXEC.NONTAKEN_CO
NDITIONAL

Not-taken macro conditional branches.

88H 81H BR_INST_EXEC.TAKEN_CONDI
TIONAL

Taken speculative and retired conditional branches.

88H 82H BR_INST_EXEC.TAKEN_DIRECT
_JUMP

Taken speculative and retired conditional branches
excluding calls and indirects.

88H 84H BR_INST_EXEC.TAKEN_INDIRE
CT_JUMP_NON_CALL_RET

Taken speculative and retired indirect branches
excluding calls and returns.

88H 88H BR_INST_EXEC.TAKEN_INDIRE
CT_NEAR_RETURN

Taken speculative and retired indirect branches that
are returns.

88H 90H BR_INST_EXEC.TAKEN_DIRECT
_NEAR_CALL

Taken speculative and retired direct near calls.

88H A0H BR_INST_EXEC.TAKEN_INDIRE
CT_NEAR_CALL

Taken speculative and retired indirect near calls.

88H C1H BR_INST_EXEC.ALL_CONDITIO
NAL

Speculative and retired conditional branches.

88H C2H BR_INST_EXEC.ALL_DIRECT_J
UMP

Speculative and retired conditional branches
excluding calls and indirects.

88H C4H BR_INST_EXEC.ALL_INDIRECT
_JUMP_NON_CALL_RET

Speculative and retired indirect branches excluding
calls and returns.

88H C8H BR_INST_EXEC.ALL_INDIRECT
_NEAR_RETURN

Speculative and retired indirect branches that are
returns.

88H D0H BR_INST_EXEC.ALL_NEAR_CA
LL

Speculative and retired direct near calls.

88H FFH BR_INST_EXEC.ALL_BRANCHE
S

Speculative and retired branches.

Table 19-12 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™
i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 191

89H 41H BR_MISP_EXEC.NONTAKEN_CO
NDITIONAL

Not-taken mispredicted macro conditional branches.

89H 81H BR_MISP_EXEC.TAKEN_CONDI
TIONAL

Taken speculative and retired mispredicted
conditional branches.

89H 84H BR_MISP_EXEC.TAKEN_INDIRE
CT_JUMP_NON_CALL_RET

Taken speculative and retired mispredicted indirect
branches excluding calls and returns.

89H 88H BR_MISP_EXEC.TAKEN_RETUR
N_NEAR

Taken speculative and retired mispredicted indirect
branches that are returns.

89H 90H BR_MISP_EXEC.TAKEN_DIRECT
_NEAR_CALL

Taken speculative and retired mispredicted direct
near calls.

89H A0H BR_MISP_EXEC.TAKEN_INDIRE
CT_NEAR_CALL

Taken speculative and retired mispredicted indirect
near calls.

89H C1H BR_MISP_EXEC.ALL_CONDITIO
NAL

Speculative and retired mispredicted conditional
branches.

89H C4H BR_MISP_EXEC.ALL_INDIRECT
_JUMP_NON_CALL_RET

Speculative and retired mispredicted indirect
branches excluding calls and returns.

89H D0H BR_MISP_EXEC.ALL_NEAR_CA
LL

Speculative and retired mispredicted direct near
calls.

89H FFH BR_MISP_EXEC.ALL_BRANCHE
S

Speculative and retired mispredicted branches.

9CH 01H IDQ_UOPS_NOT_DELIVERED.C
ORE

Count issue pipeline slots where no uop was
delivered from the frontend to the backend when
there is no backend stall.

Use Cmask to qualify uop
b/w.

A1H 01H UOPS_DISPATCHED_PORT.POR
T_0

Cycles which a Uop is dispatched on port 0.

A1H 02H UOPS_DISPATCHED_PORT.POR
T_1

Cycles which a Uop is dispatched on port 1.

A1H 0CH UOPS_DISPATCHED_PORT.POR
T_2

Cycles which a Uop is dispatched on port 2.

A1H 30H UOPS_DISPATCHED_PORT.POR
T_3

Cycles which a Uop is dispatched on port 3.

A1H 40H UOPS_DISPATCHED_PORT.POR
T_4

Cycles which a Uop is dispatched on port 4.

A1H 80H UOPS_DISPATCHED_PORT.POR
T_5

Cycles which a Uop is dispatched on port 5.

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related
reason.

A2H 02H RESOURCE_STALLS.LB Counts the cycles of stall due to lack of load buffers.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available.

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

Table 19-12 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™
i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 192

A2H 20H RESOURCE_STALLS.FCSW Cycles stalled due to writing the FPU control word.

A3H 02H CYCLE_ACTIVITY.CYCLES_L1D_
PENDING

Cycles with pending L1 cache miss loads.Set
AnyThread to count per core.

PMC2 only.

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_P
ENDING

Cycles with pending L2 miss loads. Set AnyThread
to count per core.

A3H 04H CYCLE_ACTIVITY.CYCLES_NO_
DISPATCH

Cycles of dispatch stalls. Set AnyThread to count per
core.

PMC0-3 only.

A8H 01H LSD.UOPS Number of Uops delivered by the LSD.

ABH 01H DSB2MITE_SWITCHES.COUNT Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHES.PENALT
Y_CYCLES

Cycles DSB to MITE switches caused delay.

ACH 02H DSB_FILL.OTHER_CANCEL Cases of cancelling valid DSB fill not because of
exceeding way limit.

ACH 08H DSB_FILL.EXCEED_DSB_LINES DSB Fill encountered > 3 DSB lines.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes
4k/2M/4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND
_DATA_RD

Demand data read requests sent to uncore.

B0H 04H OFFCORE_REQUESTS.DEMAND
_RFO

Demand RFO read requests sent to uncore, including
regular RFOs, locks, ItoM.

B0H 08H OFFCORE_REQUESTS.ALL_DAT
A_RD

Data read requests sent to uncore (demand and
prefetch).

B1H 01H UOPS_DISPATCHED.THREAD Counts total number of uops to be dispatched per-
thread each cycle. Set Cmask = 1, INV =1 to count
stall cycles.

PMC0-3 only regardless
HTT.

B1H 02H UOPS_DISPATCHED.CORE Counts total number of uops to be dispatched per-
core each cycle.

Do not need to set ANY.

B2H 01H OFFCORE_REQUESTS_BUFFER
.SQ_FULL

Offcore requests buffer cannot take more entries
for this thread core.

B6H 01H AGU_BYPASS_CANCEL.COUNT Counts executed load operations with all the
following traits: 1. addressing of the format [base +
offset], 2. the offset is between 1 and 2047, 3. the
address specified in the base register is in one page
and the address [base+offset] is in another page.

B7H 01H OFF_CORE_RESPONSE_0 see Section 18.8.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A6H.

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.8.5, “Off-core Response
Performance Monitoring”.

Requires MSR 01A7H.

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

BFH 05H L1D_BLOCKS.BANK_CONFLICT
_CYCLES

Cycles when dispatched loads are cancelled due to
L1D bank conflicts with other load ports.

cmask=1.

Table 19-12 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™
i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 193

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1.

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only; Must quiesce
other PMCs.

C1H 02H OTHER_ASSISTS.ITLB_MISS_R
ETIRED

Instructions that experienced an ITLB miss.

C1H 08H OTHER_ASSISTS.AVX_STORE Number of assists associated with 256-bit AVX
store operations.

C1H 10H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE
when penalty applicable.

C1H 20H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when
penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use
cmask=1 and invert to count active cycles or stalled
cycles.

Supports PEBS.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each
cycle.

Supports PEBS.

C3H 02H MACHINE_CLEARS.MEMORY_O
RDERING

Counts the number of machine clears due to
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Counts the number of times that a program writes
to a code section.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load
operations that refer to an illegal address range
with the mask bits set to 0.

C4H 00H BR_INST_RETIRED.ALL_BRAN
CHES

Branch instructions at retirement. See Table 19-1.

C4H 01H BR_INST_RETIRED.CONDITION
AL

Counts the number of conditional branch
instructions retired.

Supports PEBS.

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS.

C4H 04H BR_INST_RETIRED.ALL_BRAN
CHES

Counts the number of branch instructions retired. Supports PEBS.

C4H 08H BR_INST_RETIRED.NEAR_RET
URN

Counts the number of near return instructions
retired.

Supports PEBS.

C4H 10H BR_INST_RETIRED.NOT_TAKE
N

Counts the number of not taken branch instructions
retired.

C4H 20H BR_INST_RETIRED.NEAR_TAK
EN

Number of near taken branches retired. Supports PEBS.

C4H 40H BR_INST_RETIRED.FAR_BRAN
CH

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted branch instructions at retirement. See Table 19-1.

C5H 01H BR_MISP_RETIRED.CONDITION
AL

Mispredicted conditional branch instructions retired. Supports PEBS.

Table 19-12 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™
i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 194

C5H 02H BR_MISP_RETIRED.NEAR_CAL
L

Direct and indirect mispredicted near call
instructions retired.

Supports PEBS.

C5H 04H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted macro branch instructions retired. Supports PEBS.

C5H 10H BR_MISP_RETIRED.NOT_TAKE
N

Mispredicted not taken branch instructions retired. Supports PEBS.

C5H 20H BR_MISP_RETIRED.TAKEN Mispredicted taken branch instructions retired. Supports PEBS.

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 assists due to output value.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 assists due to input value.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSE
RTS

Count cases of saving new LBR records by
hardware.

CDH 01H MEM_TRANS_RETIRED.LOAD_
LATENCY

Randomly sampled loads whose latency is above a
user defined threshold. A small fraction of the
overall loads are sampled due to randomization.
PMC3 only.

Specify threshold in MSR
3F6H.

CDH 02H MEM_TRANS_RETIRED.PRECIS
E_STORE

Sample stores and collect precise store operation
via PEBS record. PMC3 only.

See Section 18.8.4.3.

D0H 11H MEM_UOPS_RETIRED.STLB_MI
SS_LOADS

Retired load uops that miss the STLB. Supports PEBS. PMC0-3
only regardless HTT.

D0H 12H MEM_UOPS_RETIRED.STLB_MI
SS_STORES

Retired store uops that miss the STLB. Supports PEBS. PMC0-3
only regardless HTT.

D0H 21H MEM_UOPS_RETIRED.LOCK_LO
ADS

Retired load uops with locked access. Supports PEBS. PMC0-3
only regardless HTT.

D0H 41H MEM_UOPS_RETIRED.SPLIT_L
OADS

Retired load uops that split across a cacheline
boundary.

Supports PEBS. PMC0-3
only regardless HTT.

D0H 42H MEM_UOPS_RETIRED.SPLIT_S
TORES

Retired store uops that split across a cacheline
boundary.

Supports PEBS. PMC0-3
only regardless HTT.

D0H 81H MEM_UOPS_RETIRED.ALL_LOA
DS

All retired load uops. Supports PEBS. PMC0-3
only regardless HTT.

D0H 82H MEM_UOPS_RETIRED.ALL_STO
RES

All retired store uops. Supports PEBS. PMC0-3
only regardless HTT.

D1H 01H MEM_LOAD_UOPS_RETIRED.L
1_HIT

Retired load uops with L1 cache hits as data
sources.

Supports PEBS. PMC0-3
only regardless HTT.

D1H 02H MEM_LOAD_UOPS_RETIRED.L
2_HIT

Retired load uops with L2 cache hits as data
sources.

Supports PEBS.

D1H 04H MEM_LOAD_UOPS_RETIRED.LL
C_HIT

Retired load uops which data sources were data hits
in LLC without snoops required.

Supports PEBS.

D1H 20H MEM_LOAD_UOPS_RETIRED.LL
C_MISS

Retired load uops which data sources were data
missed LLC (excluding unknown data source).

Supports PEBS.

Table 19-12 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™
i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 195

D1H 40H MEM_LOAD_UOPS_RETIRED.HI
T_LFB

Retired load uops which data sources were load
uops missed L1 but hit FB due to preceding miss to
the same cache line with data not ready.

Supports PEBS.

D2H 01H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_MISS

Retired load uops whose data source was an on-
package core cache LLC hit and cross-core snoop
missed.

Supports PEBS.

D2H 02H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HIT

Retired load uops whose data source was an on-
package LLC hit and cross-core snoop hits.

Supports PEBS.

D2H 04H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HITM

Retired load uops whose data source was an on-
package core cache with HitM responses.

Supports PEBS.

D2H 08H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_NONE

Retired load uops whose data source was LLC hit
with no snoop required.

Supports PEBS.

E6H 01H BACLEARS.ANY Counts the number of times the front end is re-
steered, mainly when the BPU cannot provide a
correct prediction and this is corrected by other
branch handling mechanisms at the front end.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF L2 or LLC HW prefetches that access L2 cache. Including rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover
rejects.

F2H 01H L2_LINES_OUT.DEMAND_CLEA
N

Clean L2 cache lines evicted by demand.

F2H 02H L2_LINES_OUT.DEMAND_DIRT
Y

Dirty L2 cache lines evicted by demand.

F2H 04H L2_LINES_OUT.PF_CLEAN Clean L2 cache lines evicted by L2 prefetch.

F2H 08H L2_LINES_OUT.PF_DIRTY Dirty L2 cache lines evicted by L2 prefetch.

F2H 0AH L2_LINES_OUT.DIRTY_ALL Dirty L2 cache lines filling the L2. Counting does not cover
rejects.

F4H 10H SQ_MISC.SPLIT_LOCK Split locks in SQ.

Table 19-12 Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™
i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 196

...

15. Updates to Chapter 20, Volume 3B
Change bars show changes to Chapter 20 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

20.1.4 Interrupt and Exception Handling
When operating in real-address mode, software must provide interrupt and exception-handling facilities that are
separate from those provided in protected mode. Even during the early stages of processor initialization when the
processor is still in real-address mode, elementary real-address mode interrupt and exception-handling facilities
must be provided to insure reliable operation of the processor, or the initialization code must insure that no inter-
rupts or exceptions will occur.

The IA-32 processors handle interrupts and exceptions in real-address mode similar to the way they handle them
in protected mode. When a processor receives an interrupt or generates an exception, it uses the vector number
of the interrupt or exception as an index into the interrupt table. (In protected mode, the interrupt table is called
the interrupt descriptor table (IDT), but in real-address mode, the table is usually called the interrupt
vector table, or simply the interrupt table.) The entry in the interrupt vector table provides a pointer to an
interrupt- or exception-handler procedure. (The pointer consists of a segment selector for a code segment and a
16-bit offset into the segment.) The processor performs the following actions to make an implicit call to the
selected handler:

1. Pushes the current values of the CS and EIP registers onto the stack. (Only the 16 least-significant bits of the
EIP register are pushed.)

2. Pushes the low-order 16 bits of the EFLAGS register onto the stack.

3. Clears the IF flag in the EFLAGS register to disable interrupts.

4. Clears the TF, RF, and AC flags, in the EFLAGS register.

5. Transfers program control to the location specified in the interrupt vector table.

An IRET instruction at the end of the handler procedure reverses these steps to return program control to the
interrupted program. Exceptions do not return error codes in real-address mode.

The interrupt vector table is an array of 4-byte entries (see Figure 20-2). Each entry consists of a far pointer to a
handler procedure, made up of a segment selector and an offset. The processor scales the interrupt or exception
vector by 4 to obtain an offset into the interrupt table. Following reset, the base of the interrupt vector table is
located at physical address 0 and its limit is set to 3FFH. In the Intel 8086 processor, the base address and limit
of the interrupt vector table cannot be changed. In the later IA-32 processors, the base address and limit of the
interrupt vector table are contained in the IDTR register and can be changed using the LIDT instruction.

(For backward compatibility to Intel 8086 processors, the default base address and limit of the interrupt vector
table should not be changed.)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 197

Table 20-1 shows the interrupt and exception vectors that can be generated in real-address mode and virtual-
8086 mode, and in the Intel 8086 processor. See Chapter 6, “Interrupt and Exception Handling”, for a description
of the exception conditions.

...

16. Updates to Chapter 24, Volume 3B
Change bars show changes to Chapter 24 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

24.8.1 VM-Entry Controls
The VM-entry controls constitute a 32-bit vector that governs the basic operation of VM entries. Table 24-12
lists the controls supported. See Chapter 24 for how these controls affect VM entries.

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs
IA32_VMX_ENTRY_CTLS and IA32_VMX_TRUE_ENTRY_CTLS (see Appendix A.5) to determine how it should set
the reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section
26.2.1.3).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 0–8 and 12.
The VMX capability MSR IA32_VMX_ENTRY_CTLS always reports that these bits must be 1. Logical processors
that support the 0-settings of any of these bits will support the VMX capability MSR

Figure 20-2 Interrupt Vector Table in Real-Address Mode

0

2

4

8

12

015

Segment Selector

Offset

* Interrupt vector number 0 selects entry 0

Interrupt Vector 0*

Entry 1

Entry 2

Entry 3

Up to Entry 255

IDTR(called “interrupt vector 0”) in the interrupt
vector table. Interrupt vector 0 in turn
points to the start of the interrupt handler
for interrupt 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 198

IA32_VMX_TRUE_ENTRY_CTLS MSR, and software should consult this MSR to discover support for the 0-settings
of these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

...

17. Updates to Chapter 26, Volume 3C
Change bars show changes to Chapter 26 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

26.2.1.1 VM-Execution Control Fields
VM entries perform the following checks on the VM-execution control fields:1

• Reserved bits in the pin-based VM-execution controls must be set properly. Software may consult the VMX
capability MSRs to determine the proper settings (see Appendix A.3.1).

• Reserved bits in the primary processor-based VM-execution controls must be set properly. Software may
consult the VMX capability MSRs to determine the proper settings (see Appendix A.3.2).

• If the “activate secondary controls” primary processor-based VM-execution control is 1, reserved bits in the
secondary processor-based VM-execution controls must be cleared. Software may consult the VMX capability
MSRs to determine which bits are reserved (see Appendix A.3.3).

Table 24-12 Definitions of VM-Entry Controls
Bit Position(s) Name Description

2 Load debug
controls

This control determines whether DR7 and the IA32_DEBUGCTL MSR are loaded on VM entry.

The first processors to support the virtual-machine extensions supported only the 1-setting of
this control.

9 IA-32e mode guest On processors that support Intel 64 architecture, this control determines whether the logical
processor is in IA-32e mode after VM entry. Its value is loaded into IA32_EFER.LMA as part of
VM entry.1

This control must be 0 on processors that do not support Intel 64 architecture.

10 Entry to SMM This control determines whether the logical processor is in system-management mode (SMM)
after VM entry. This control must be 0 for any VM entry from outside SMM.

11 Deactivate dual-
monitor treatment

If set to 1, the default treatment of SMIs and SMM is in effect after the VM entry (see Section
34.15.7). This control must be 0 for any VM entry from outside SMM.

13 Load
IA32_PERF_GLOBA
L_CTRL

This control determines whether the IA32_PERF_GLOBAL_CTRL MSR is loaded on VM entry.

14 Load IA32_PAT This control determines whether the IA32_PAT MSR is loaded on VM entry.

15 Load IA32_EFER This control determines whether the IA32_EFER MSR is loaded on VM entry.

NOTES:
1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting of the “unrestricted guest” VM-

execution control. If it is read as 1, every VM exit stores the value of IA32_EFER.LMA into the “IA-32e mode guest” VM-entry control
(see Section 27.2).

1. If the “activate secondary controls” primary processor-based VM-execution control is 0, VM entry operates as if each secondary
processor-based VM-execution control were 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 199

If the “activate secondary controls” primary processor-based VM-execution control is 0 (or if the processor
does not support the 1-setting of that control), no checks are performed on the secondary processor-based
VM-execution controls. The logical processor operates as if all the secondary processor-based VM-execution
controls were 0.

• The CR3-target count must not be greater than 4. Future processors may support a different number of CR3-
target values. Software should read the VMX capability MSR IA32_VMX_MISC to determine the number of
values supported (see Appendix A.6).

• If the “use I/O bitmaps” VM-execution control is 1, bits 11:0 of each I/O-bitmap address must be 0. Neither
address should set any bits beyond the processor’s physical-address width.1,2

• If the “use MSR bitmaps” VM-execution control is 1, bits 11:0 of the MSR-bitmap address must be 0. The
address should not set any bits beyond the processor’s physical-address width.3

• If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address width.4

If all of the above checks are satisfied and the “use TPR shadow” VM-execution control is 1, bytes 3:1 of
VTPR (see Section 29.1.1) may be cleared (behavior may be implementation-specific).
The clearing of these bytes may occur even if the VM entry fails. This is true either if the failure causes
control to pass to the instruction following the VM-entry instruction or if it causes processor state to be
loaded from the host-state area of the VMCS.

• If the “use TPR shadow” VM-execution control is 1 and the “virtual-interrupt delivery” VM-execution control is
0, bits 31:4 of the TPR threshold VM-execution control field must be 0.5

• The following check is performed if the “use TPR shadow” VM-execution control is 1 and the “virtualize APIC
accesses” and “virtual-interrupt delivery” VM-execution controls are both 0: the value of bits 3:0 of the TPR
threshold VM-execution control field should not be greater than the value of bits 7:4 of VTPR (see Section
29.1.1).

• If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” VM-execution control must be 0.
• If the “virtual NMIs” VM-execution control is 0, the “NMI-window exiting” VM-execution control must be 0.
• If the “virtualize APIC-accesses” VM-execution control is 1, the APIC-access address must satisfy the following

checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address width.6

• If the “use TPR shadow” VM-execution control is 0, the following VM-execution controls must also be 0:
“virtualize x2APIC mode”, “APIC-register virtualization”, and “virtual-interrupt delivery”.7

• If the “virtualize x2APIC mode” VM-execution control is 1, the “virtualize APIC accesses” VM-execution control
must be 0.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, these addresses must not set any bits in the range 63:32; see Appendix A.1.

3. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

4. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

5. “Virtual-interrupt delivery” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-exe-
cution controls is 0, VM entry functions as if the “virtual-interrupt delivery” VM-execution control were 0. See Section 24.6.2.

6. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

7. “Virtualize x2APIC mode” and “APIC-register virtualization” are secondary processor-based VM-execution controls. If bit 31 of the
primary processor-based VM-execution controls is 0, VM entry functions as if these controls were 0. See Section 24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 200

• If the “virtual-interrupt delivery” VM-execution control is 1, the “external-interrupt exiting” VM-execution
control must be 1.

• If the “process posted interrupts” VM-execution control is 1, the following must be true:1

— The “virtual-interrupt delivery” VM-execution control is 1.

— The “acknowledge interrupt on exit” VM-exit control is 1.

— The posted-interrupt notification vector has a value in the range 0–255 (bits 15:8 are all 0).

— Bits 5:0 of the posted-interrupt descriptor address are all 0.

— The posted-interrupt descriptor address does not set any bits beyond the processor's physical-address
width.2

• If the “enable VPID” VM-execution control is 1, the value of the VPID VM-execution control field must not be
0000H.3

• If the “enable EPT” VM-execution control is 1, the EPTP VM-execution control field (see Table 24-8 in Section
24.6.11) must satisfy the following checks:4

— The EPT memory type (bits 2:0) must be a value supported by the processor as indicated in the
IA32_VMX_EPT_VPID_CAP MSR (see Appendix A.10).

— Bits 5:3 (1 less than the EPT page-walk length) must be 3, indicating an EPT page-walk length of 4; see
Section 28.2.2.

— Bit 6 (enable bit for accessed and dirty flags for EPT) must be 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP
MSR (see Appendix A.10) is read as 0, indicating that the processor does not support accessed and dirty
flags for EPT.

— Reserved bits 11:7 and 63:N (where N is the processor’s physical-address width) must all be 0.
• If the “unrestricted guest” VM-execution control is 1, the “enable EPT” VM-execution control must also be 1.5

• If the “enable VM functions” processor-based VM-execution control is 1, reserved bits in the VM-function
controls must be clear.6 Software may consult the VMX capability MSRs to determine which bits are reserved
(see Appendix A.11). In addition, the following check is performed based on the setting of bits in the VM-
function controls (see Section 24.6.14):

— If “EPTP switching” VM-function control is 1, the “enable EPT” VM-execution control must also 1. In
addition, the EPTP-list address must satisfy the following checks:

• Bits 11:0 of the address must be 0.

• The address must not set any bits beyond the processor’s physical-address width.
If the “enable VM functions” processor-based VM-execution control is 0, no checks are performed on the VM-
function controls.

1. “Process posted interrupts” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-
execution controls is 0, VM entry functions as if the “process posted interrupts” VM-execution control were 0. See Section 24.6.2.

2. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

3. “Enable VPID” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution con-
trols is 0, VM entry functions as if the “enable VPID” VM-execution control were 0. See Section 24.6.2.

4. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls
is 0, VM entry functions as if the “enable EPT” VM-execution control were 0. See Section 24.6.2.

5. “Unrestricted guest” and “enable EPT” are both secondary processor-based VM-execution controls. If bit 31 of the primary proces-
sor-based VM-execution controls is 0, VM entry functions as if both these controls were 0. See Section 24.6.2.

6. “Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execu-
tion controls is 0, VM entry functions as if the “enable VM functions” VM-execution control were 0. See Section 24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 201

• If the “VMCS shadowing” VM-execution control is 1, the VMREAD-bitmap and VMWRITE-bitmap addresses
must each satisfy the following checks:1

— Bits 11:0 of the address must be 0.

— The address must not set any bits beyond the processor’s physical-address width.
• If the “EPT-violation #VE” VM-execution control is 1, the virtualization-exception information address must

satisfy the following checks:2

— Bits 11:0 of the address must be 0.

— The address must not set any bits beyond the processor’s physical-address width.

...

26.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs
The following checks are performed on fields in the guest-state area corresponding to control registers, debug
registers, and MSRs:
• The CR0 field must not set any bit to a value not supported in VMX operation (see Section 23.8). The

following are exceptions:

— Bit 0 (corresponding to CR0.PE) and bit 31 (PG) are not checked if the “unrestricted guest” VM-execution
control is 1.3

— Bit 29 (corresponding to CR0.NW) and bit 30 (CD) are never checked because the values of these bits are
not changed by VM entry; see Section 26.3.2.1.

• If bit 31 in the CR0 field (corresponding to PG) is 1, bit 0 in that field (PE) must also be 1.4

• The CR4 field must not set any bit to a value not supported in VMX operation (see Section 23.8).
• If the “load debug controls” VM-entry control is 1, bits reserved in the IA32_DEBUGCTL MSR must be 0 in the

field for that register. The first processors to support the virtual-machine extensions supported only the 1-
setting of this control and thus performed this check unconditionally.

• The following checks are performed on processors that support Intel 64 architecture:

— If the “IA-32e mode guest” VM-entry control is 1, bit 31 in the CR0 field (corresponding to CR0.PG) and
bit 5 in the CR4 field (corresponding to CR4.PAE) must each be 1.5

— If the “IA-32e mode guest” VM-entry control is 0, bit 17 in the CR4 field (corresponding to CR4.PCIDE)
must each be 0.

— The CR3 field must be such that bits 63:52 and bits in the range 51:32 beyond the processor’s physical-
address width are 0.6,7

1. “VMCS shadowing” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “VMCS shadowing” VM-execution control were 0. See Section 24.6.2.

2. “EPT-violation #VE” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “EPT-violation #VE” VM-execution control were 0. See Section 24.6.2.

3. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.

4. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, bit 0 in the CR0 field must be 1
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

5. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, bit 31 in the CR0 field must be 1
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

6. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 202

— If the “load debug controls” VM-entry control is 1, bits 63:32 in the DR7 field must be 0. The first
processors to support the virtual-machine extensions supported only the 1-setting of this control and thus
performed this check unconditionally (if they supported Intel 64 architecture).

— The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field must each contain a canonical address.
• If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, bits reserved in the IA32_PERF_GLOBAL_CTRL

MSR must be 0 in the field for that register (see Figure 18-3).
• If the “load IA32_PAT” VM-entry control is 1, the value of the field for the IA32_PAT MSR must be one that

could be written by WRMSR without fault at CPL 0. Specifically, each of the 8 bytes in the field must have one
of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

• If the “load IA32_EFER” VM-entry control is 1, the following checks are performed on the field for the
IA32_EFER MSR :

— Bits reserved in the IA32_EFER MSR must be 0.

— Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of the “IA-32e mode guest” VM-entry
control. It must also be identical to bit 8 (LME) if bit 31 in the CR0 field (corresponding to CR0.PG) is 1.1

...

18. Updates to Chapter 35, Volume 3C
Change bars show changes to Chapter 35 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...
This chapter list MSRs across Intel processor families. All MSRs listed can be read with the RDMSR and written
with the WRMSR instructions.

Register addresses are given in both hexadecimal and decimal. The register name is the mnemonic register name
and the bit description describes individual bits in registers.

Model specific registers and its bit-fields may be supported for a finite range of processor families/models. To
distinguish between different processor family and/or models, software must use CPUID.01H leaf function to
query the combination of DisplayFamily and DisplayModel to determine model-specific availability of MSRs (see
CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A). Table 16-1 lists the signature values of DisplayFamily and DisplayModel for
various processor families or processor number series.

7. Bit 63 of the CR3 field in the guest-state area must be 0. This is true even though, If CR4.PCIDE = 1, bit 63 of the source operand
to MOV to CR3 is used to determine whether cached translation information is invalidated.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, bit 31 in the CR0 field must be 1
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

Table 35-1 CPUID Signature Values of DisplayFamily_DisplayModel
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_57H Next Generation Intel® Xeon Phi™ Processor Family

06_4EH, 06_5EH Next Generation Intel Core Processor based on Skylake microarchitecture

06_56H Next Generation Intel Xeon Processor D Product Family based on Broadwell microarchitecture

06_4FH Future Generation Intel Xeon processor based on Broadwell microarchitecture

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 203

06_47H 5th generation Intel Core processors, Intel Xeon processor E3-1200 v4 product family based on
Broadwell microarchitecture

06_3DH Intel Core M-5xxx Processor, 5th generation Intel Core processors based on Broadwell
microarchitecture

06_3FH Intel Xeon processor E5-4600/2600/1600 v3 product families, Intel Xeon processor E7 v3 product
families based on Haswell-E microarchitecture, Intel Core i7-59xx Processor Extreme Edition

06_3CH, 06_45H, 06_46H 4th Generation Intel Core processor and Intel Xeon processor E3-1200 v3 product family based on
Haswell microarchitecture

06_3EH Intel Xeon processor E7-8800/4800/2800 v2 product families based on Ivy Bridge-E
microarchitecture

06_3EH Intel Xeon processor E5-2600/1600 v2 product families and Intel Xeon processor E5-2400 v2
product family based on Ivy Bridge-E microarchitecture, Intel Core i7-49xx Processor Extreme Edition

06_3AH 3rd Generation Intel Core Processor and Intel Xeon processor E3-1200 v2 product family based on Ivy
Bridge microarchitecture

06_2DH Intel Xeon processor E5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core
i7-39xx Processor Extreme Edition

06_2FH Intel Xeon Processor E7 Family

06_2AH Intel Xeon processor E3-1200 product family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx
Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series

06_1DH Intel Xeon processor MP 7400 series

06_17H Intel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000
series

06_0FH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series,
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel
Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_4CH Intel® Atom™ processor X7-Z8000 and X5-Z8000 series based on Airmont Microarchitecture

06_5DH Intel® Atom™ processor X3-C3000 based on Silvermont Microarchitecture

06_5AH Intel Atom processor Z3500 series

06_4AH Intel Atom processor Z3400 series

06_37H Intel Atom processor E3000 series, Z3600 series, Z3700 series

06_4DH Intel Atom processor C2000 series

06_36H Intel Atom processor S1000 Series

06_1CH, 06_26H, 06_27H,
06_35H, 06_36H

Intel Atom processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D
processors

Table 35-1 CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 204

06_47H 5th generation Intel Core processors, Intel Xeon processor E3-1200 v4 product family based on
Broadwell microarchitecture

06_3DH Intel Core M-5xxx Processor, 5th generation Intel Core processors based on Broadwell
microarchitecture

06_3FH Intel Xeon processor E5-4600/2600/1600 v3 product families, Intel Xeon processor E7 v3 product
families based on Haswell-E microarchitecture, Intel Core i7-59xx Processor Extreme Edition

06_3CH, 06_45H, 06_46H 4th Generation Intel Core processor and Intel Xeon processor E3-1200 v3 product family based on
Haswell microarchitecture

06_3EH Intel Xeon processor E7-8800/4800/2800 v2 product families based on Ivy Bridge-E
microarchitecture

06_3EH Intel Xeon processor E5-2600/1600 v2 product families and Intel Xeon processor E5-2400 v2
product family based on Ivy Bridge-E microarchitecture, Intel Core i7-49xx Processor Extreme Edition

06_3AH 3rd Generation Intel Core Processor and Intel Xeon processor E3-1200 v2 product family based on Ivy
Bridge microarchitecture

06_2DH Intel Xeon processor E5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core
i7-39xx Processor Extreme Edition

06_2FH Intel Xeon Processor E7 Family

06_2AH Intel Xeon processor E3-1200 product family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx
Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series

06_1DH Intel Xeon processor MP 7400 series

06_17H Intel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000
series

06_0FH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series,
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel
Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_4CH Intel® Atom™ processor X7-Z8000 and X5-Z8000 series based on Airmont Microarchitecture

06_5DH Intel® Atom™ processor X3-C3000 based on Silvermont Microarchitecture

06_5AH Intel Atom processor Z3500 series

06_4AH Intel Atom processor Z3400 series

06_37H Intel Atom processor E3000 series, Z3600 series, Z3700 series

06_4DH Intel Atom processor C2000 series

06_36H Intel Atom processor S1000 Series

06_1CH, 06_26H, 06_27H,
06_35H, 06_36H

Intel Atom processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D
processors

Table 35-1 CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 205

35.1 ARCHITECTURAL MSRS
Many MSRs have carried over from one generation of IA-32 processors to the next and to Intel 64 processors. A
subset of MSRs and associated bit fields, which do not change on future processor generations, are now consid-
ered architectural MSRs. For historical reasons (beginning with the Pentium 4 processor), these “architectural
MSRs” were given the prefix “IA32_”. Table 35-2 lists the architectural MSRs, their addresses, their current
names, their names in previous IA-32 processors, and bit fields that are considered architectural. MSR addresses
outside Table 35-2 and certain bit fields in an MSR address that may overlap with architectural MSR addresses are
model-specific. Code that accesses a machine specified MSR and that is executed on a processor that does not
support that MSR will generate an exception.

Architectural MSR or individual bit fields in an architectural MSR may be introduced or transitioned at the granu-
larity of certain processor family/model or the presence of certain CPUID feature flags. The right-most column of
Table 35-2 provides information on the introduction of each architectural MSR or its individual fields. This informa-
tion is expressed either as signature values of “DF_DM” (see Table 16-1) or via CPUID flags.

Certain bit field position may be related to the maximum physical address width, the value of which is expressed
as “MAXPHYADDR” in Table 35-2. “MAXPHYADDR” is reported by CPUID.8000_0008H leaf.

MSR address range between 40000000H - 400000FFH is marked as a specially reserved range. All existing and
future processors will not implement any features using any MSR in this range.

0F_03H, 0F_04H Intel Xeon processor, Intel Xeon processor MP, Intel Pentium 4, Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium III Xeon processor, Intel Pentium III processor

06_03H, 06_05H Intel Pentium II Xeon processor, Intel Pentium II processor

06_01H Intel Pentium Pro processor

05_01H, 05_02H, 05_04H Intel Pentium processor, Intel Pentium processor with MMX Technology

Table 35-1 CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series

Table 35-2 IA-32 Architectural MSRs

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

0H 0 IA32_P5_MC_ADDR (P5_MC_ADDR) See Section 35.20, “MSRs in Pentium
Processors.”

Pentium Processor
(05_01H)

1H 1 IA32_P5_MC_TYPE (P5_MC_TYPE) See Section 35.20, “MSRs in Pentium
Processors.”

DF_DM = 05_01H

6H 6 IA32_MONITOR_FILTER_SIZE See Section 8.10.5, “Monitor/Mwait
Address Range Determination.”

0F_03H

10H 16 IA32_TIME_STAMP_
COUNTER (TSC)

See Section 17.14, “Time-Stamp Counter.” 05_01H

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 206

17H 23 IA32_PLATFORM_ID
(MSR_PLATFORM_ID)

Platform ID (RO)
The operating system can use this MSR to
determine “slot” information for the
processor and the proper microcode update
to load.

06_01H

49:0 Reserved.

52:50 Platform Id (RO)

Contains information concerning the
intended platform for the processor.

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

1BH 27 IA32_APIC_BASE (APIC_BASE) 06_01H

7:0 Reserved

8 BSP flag (R/W)

9 Reserved

10 Enable x2APIC mode 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYADDR - 1):12 APIC Base (R/W)

63: MAXPHYADDR Reserved

3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64 Processor
(R/W)

If any one enumeration
condition for defined bit
field holds

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 207

0 Lock bit (R/WO): (1 = locked). When set,
locks this MSR from being written, writes
to this bit will result in GP(0).

Note: Once the Lock bit is set, the contents
of this register cannot be modified.
Therefore the lock bit must be set after
configuring support for Intel Virtualization
Technology and prior to transferring control
to an option ROM or the OS. Hence, once
the Lock bit is set, the entire
IA32_FEATURE_CONTROL contents are
preserved across RESET when PWRGOOD is
not deasserted.

If any one enumeration
condition for defined bit
field position greater than
bit 0 holds

1 Enable VMX inside SMX operation (R/WL):
This bit enables a system executive to use
VMX in conjunction with SMX to support
Intel® Trusted Execution Technology.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag and
SMX feature flag set (ECX bits 5 and 6
respectively).

If CPUID.01H:ECX[5] = 1
&& CPUID.01H:ECX[6] = 1

2 Enable VMX outside SMX operation (R/WL):
This bit enables VMX for system executive
that do not require SMX.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag set
(ECX bit 5).

If CPUID.01H:ECX[5] = 1

7:3 Reserved

14:8 SENTER Local Function Enables (R/WL):
When set, each bit in the field represents
an enable control for a corresponding
SENTER function. This bit is supported only
if CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[6] = 1

15 SENTER Global Enable (R/WL): This bit must
be set to enable SENTER leaf functions.
This bit is supported only if
CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[6] = 1

19:16 Reserved

20 LMCE On (R/WL): When set, system
software can program the MSRs associated
with LMCE to configure delivery of some
machine check exceptions to a single logical
processor.

If IA32_MCG_CAP[27] = 1

63:21 Reserved

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 208

3BH 59 IA32_TSC_ADJUST Per Logical Processor TSC Adjust (R/Write
to clear)

If CPUID.(EAX=07H,
ECX=0H): EBX[1] = 1

63:0 THREAD_ADJUST:

Local offset value of the IA32_TSC for a
logical processor. Reset value is Zero. A
write to IA32_TSC will modify the local
offset in IA32_TSC_ADJUST and the
content of IA32_TSC, but does not affect
the internal invariant TSC hardware.

79H 121 IA32_BIOS_UPDT_TRIG
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR instruction to this MSR
causes a microcode update to be loaded
into the processor. See Section 9.11.6,
“Microcode Update Loader.”

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

8BH 139 IA32_BIOS_SIGN_ID
(BIOS_SIGN/BBL_CR_D3)

BIOS Update Signature (RO)

Returns the microcode update signature
following the execution of CPUID.01H.

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

31:0 Reserved

63:32 It is recommended that this field be pre-
loaded with 0 prior to executing CPUID.

If the field remains 0 following the
execution of CPUID; this indicates that no
microcode update is loaded. Any non-zero
value is the microcode update signature.

9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration (R/W) If CPUID.01H: ECX[5]=1 ||
CPUID.01H: ECX[6] = 1

0 Valid (R/W)

1 Reserved

2 Controls SMI unblocking by VMXOFF (see
Section 34.14.4)

If IA32_VMX_MISC[28]

11:3 Reserved

31:12 MSEG Base (R/W)

63:32 Reserved

9EH 158 IA32_SMBASE Base address of the logical processor’s
SMRAM image (RO, SMM only)

If IA32_VMX_MISC[15]

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 209

C1H 193 IA32_PMC0 (PERFCTR0) General Performance Counter 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

C2H 194 IA32_PMC1 (PERFCTR1) General Performance Counter 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

C3H 195 IA32_PMC2 General Performance Counter 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

C4H 196 IA32_PMC3 General Performance Counter 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

C5H 197 IA32_PMC4 General Performance Counter 4 (R/W) If CPUID.0AH: EAX[15:8] >
4

C6H 198 IA32_PMC5 General Performance Counter 5 (R/W) If CPUID.0AH: EAX[15:8] >
5

C7H 199 IA32_PMC6 General Performance Counter 6 (R/W) If CPUID.0AH: EAX[15:8] >
6

C8H 200 IA32_PMC7 General Performance Counter 7 (R/W) If CPUID.0AH: EAX[15:8] >
7

E7H 231 IA32_MPERF TSC Frequency Clock Counter (R/Write to
clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_MCNT: C0 TSC Frequency Clock Count

Increments at fixed interval (relative to TSC
freq.) when the logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_APERF.

E8H 232 IA32_APERF Actual Performance Clock Counter (R/Write
to clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_ACNT: C0 Actual Frequency Clock
Count

Accumulates core clock counts at the
coordinated clock frequency, when the
logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_MPERF.

FEH 254 IA32_MTRRCAP (MTRRcap) MTRR Capability (RO) Section 11.11.2.1,
“IA32_MTRR_DEF_TYPE MSR.”

06_01H

7:0 VCNT: The number of variable memory
type ranges in the processor.

8 Fixed range MTRRs are supported when
set.

9 Reserved.

10 WC Supported when set.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 210

11 SMRR Supported when set.

63:12 Reserved.

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector

63:16 Reserved.

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H

179H 377 IA32_MCG_CAP (MCG_CAP) Global Machine Check Capability (RO) 06_01H

7:0 Count: Number of reporting banks.

8 MCG_CTL_P: IA32_MCG_CTL is present if
this bit is set

9 MCG_EXT_P: Extended machine check
state registers are present if this bit is set

10 MCP_CMCI_P: Support for corrected MC
error event is present.

06_01H

11 MCG_TES_P: Threshold-based error status
register are present if this bit is set.

15:12 Reserved

23:16 MCG_EXT_CNT: Number of extended
machine check state registers present.

24 MCG_SER_P: The processor supports
software error recovery if this bit is set.

25 Reserved.

26 MCG_ELOG_P: Indicates that the processor
allows platform firmware to be invoked
when an error is detected so that it may
provide additional platform specific
information in an ACPI format “Generic
Error Data Entry” that augments the data
included in machine check bank registers.

06_3EH

27 MCG_LMCE_P: Indicates that the processor
support extended state in
IA32_MCG_STATUS and associated
MSR necessary to configure Local
Machine Check Exception (LMCE).

06_3EH

63:28 Reserved.

17AH 378 IA32_MCG_STATUS (MCG_STATUS) Global Machine Check Status (R/W0) 06_01H

0 RIPV. Restart IP valid 06_01H

1 EIPV. Error IP valid 06_01H

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 211

2 MCIP. Machine check in progress 06_01H

3 LMCE_S. If
IA32_MCG_CAP.LMCE_P[2
7] =1

63:4 Reserved.

17BH 379 IA32_MCG_CTL (MCG_CTL) Global Machine Check Control (R/W) If IA32_MCG_CAP.CTL_P[8]
=1

180H-
185H

384-
389

Reserved 06_0EH1

186H 390 IA32_PERFEVTSEL0 (PERFEVTSEL0) Performance Event Select Register 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

7:0 Event Select: Selects a performance event
logic unit.

15:8 UMask: Qualifies the microarchitectural
condition to detect on the selected event
logic.

16 USR: Counts while in privilege level is not
ring 0.

17 OS: Counts while in privilege level is ring 0.

18 Edge: Enables edge detection if set.

19 PC: enables pin control.

20 INT: enables interrupt on counter overflow.

21 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

22 EN: enables the corresponding performance
counter to commence counting when this
bit is set.

23 INV: invert the CMASK.

31:24 CMASK: When CMASK is not zero, the
corresponding performance counter
increments each cycle if the event count is
greater than or equal to the CMASK.

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 (PERFEVTSEL1) Performance Event Select Register 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 212

188H 392 IA32_PERFEVTSEL2 Performance Event Select Register 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

189H 393 IA32_PERFEVTSEL3 Performance Event Select Register 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

18AH-
197H

394-
407

Reserved 06_0EH2

198H 408 IA32_PERF_STATUS (RO) 0F_03H

15:0 Current performance State Value

63:16 Reserved.

199H 409 IA32_PERF_CTL (R/W) 0F_03H

15:0 Target performance State Value

31:16 Reserved.

32 IDA Engage. (R/W)

When set to 1: disengages IDA

06_0FH (Mobile only)

63:33 Reserved.

19AH 410 IA32_CLOCK_MODULATION Clock Modulation Control (R/W)

See Section 14.7.3, “Software Controlled
Clock Modulation.”

0F_0H

0 Extended On-Demand Clock Modulation
Duty Cycle:

If CPUID.06H:EAX[5] = 1

3:1 On-Demand Clock Modulation Duty Cycle:
Specific encoded values for target duty
cycle modulation.

4 On-Demand Clock Modulation Enable: Set 1
to enable modulation.

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the processor’s thermal
sensors and thermal monitor.

See Section 14.7.2, “Thermal Monitor.”

0F_0H

0 High-Temperature Interrupt Enable

1 Low-Temperature Interrupt Enable

2 PROCHOT# Interrupt Enable

3 FORCEPR# Interrupt Enable

4 Critical Temperature Interrupt Enable

7:5 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 213

14:8 Threshold #1 Value

15 Threshold #1 Interrupt Enable

22:16 Threshold #2 Value

23 Threshold #2 Interrupt Enable

24 Power Limit Notification Enable If CPUID.06H:EAX[4] = 1

63:25 Reserved.

19CH 412 IA32_THERM_STATUS Thermal Status Information (RO)

Contains status information about the
processor’s thermal sensor and automatic
thermal monitoring facilities.

See Section 14.7.2, “Thermal Monitor”

0F_0H

0 Thermal Status (RO):

1 Thermal Status Log (R/W):

2 PROCHOT # or FORCEPR# event (RO)

3 PROCHOT # or FORCEPR# log (R/WC0)

4 Critical Temperature Status (RO)

5 Critical Temperature Status log (R/WC0)

6 Thermal Threshold #1 Status (RO) If CPUID.01H:ECX[8] = 1

7 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1

8 Thermal Threshold #2 Status (RO) If CPUID.01H:ECX[8] = 1

9 Thermal Threshold #2 log (R/WC0) If CPUID.01H:ECX[8] = 1

10 Power Limitation Status (RO) If CPUID.06H:EAX[4] = 1

11 Power Limitation log (R/WC0) If CPUID.06H:EAX[4] = 1

12 Current Limit Status (RO) If CPUID.06H:EAX[7] = 1

13 Current Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

14 Cross Domain Limit Status (RO) If CPUID.06H:EAX[7] = 1

15 Cross Domain Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

22:16 Digital Readout (RO) If CPUID.06H:EAX[0] = 1

26:23 Reserved.

30:27 Resolution in Degrees Celsius (RO) If CPUID.06H:EAX[0] = 1

31 Reading Valid (RO) If CPUID.06H:EAX[0] = 1

63:32 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 214

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to
be enabled and disabled.

0 Fast-Strings Enable

When set, the fast-strings feature (for REP
MOVS and REP STORS) is enabled (default);
when clear, fast-strings are disabled.

0F_0H

2:1 Reserved.

3 Automatic Thermal Control Circuit Enable
(R/W)

1 = Setting this bit enables the thermal
control circuit (TCC) portion of the
Intel Thermal Monitor feature. This
allows the processor to automatically
reduce power consumption in
response to TCC activation.

0 = Disabled (default).
Note: In some products clearing this bit
might be ignored in critical thermal
conditions, and TM1, TM2 and adaptive
thermal throttling will still be activated.

0F_0H

6:4 Reserved

7 Performance Monitoring Available (R)

1 = Performance monitoring enabled
0 = Performance monitoring disabled

0F_0H

10:8 Reserved.

11 Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch
trace storage (BTS)

0 = BTS is supported

0F_0H

12 Precise Event Based Sampling (PEBS)
Unavailable (RO)

1 = PEBS is not supported;
0 = PEBS is supported.

06_0FH

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology
Enable (R/W)

0= Enhanced Intel SpeedStep
Technology disabled

1 = Enhanced Intel SpeedStep
Technology enabled

If CPUID.01H: ECX[7] =1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 215

17 Reserved.

18 ENABLE MONITOR FSM (R/W)

When this bit is set to 0, the MONITOR
feature flag is not set (CPUID.01H:ECX[bit
3] = 0). This indicates that
MONITOR/MWAIT are not supported.

Software attempts to execute
MONITOR/MWAIT will cause #UD when this
bit is 0.

When this bit is set to 1 (default),
MONITOR/MWAIT are supported
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag ECX[0] is not set
(CPUID.01H:ECX[bit 0] = 0), the OS must
not attempt to alter this bit. BIOS must
leave it in the default state. Writing this bit
when the SSE3 feature flag is set to 0 may
generate a #GP exception.

0F_03H

21:19 Reserved.

22 Limit CPUID Maxval (R/W)

When this bit is set to 1, CPUID.00H returns
a maximum value in EAX[7:0] of 3.

BIOS should contain a setup question that
allows users to specify when the installed
OS does not support CPUID functions
greater than 3.

Before setting this bit, BIOS must execute
the CPUID.0H and examine the maximum
value returned in EAX[7:0]. If the maximum
value is greater than 3, the bit is supported.

Otherwise, the bit is not supported. Writing
to this bit when the maximum value is
greater than 3 may generate a #GP
exception.

Setting this bit may cause unexpected
behavior in software that depends on the
availability of CPUID leaves greater than 3.

0F_03H

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are
disabled. xTPR messages are optional
messages that allow the processor to
inform the chipset of its priority.

if CPUID.01H:ECX[14] = 1

33:24 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 216

34 XD Bit Disable (R/W)

When set to 1, the Execute Disable Bit
feature (XD Bit) is disabled and the XD Bit
extended feature flag will be clear
(CPUID.80000001H: EDX[20]=0).

When set to a 0 (default), the Execute
Disable Bit feature (if available) allows the
OS to enable PAE paging and take
advantage of data only pages.

BIOS must not alter the contents of this bit
location, if XD bit is not supported. Writing
this bit to 1 when the XD Bit extended
feature flag is set to 0 may generate a #GP
exception.

if
CPUID.80000001H:EDX[2
0] = 1

63:35 Reserved.

1B0H 432 IA32_ENERGY_PERF_BIAS Performance Energy Bias Hint (R/W) if CPUID.6H:ECX[3] = 1

3:0 Power Policy Preference:

0 indicates preference to highest
performance.

15 indicates preference to maximize
energy saving.

63:4 Reserved.

1B1H 433 IA32_PACKAGE_THERM_STATUS Package Thermal Status Information (RO)

Contains status information about the
package’s thermal sensor.

See Section 14.8, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg Thermal Status (RO):

1 Pkg Thermal Status Log (R/W):

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature Status (RO)

5 Pkg Critical Temperature Status log
(R/WC0)

6 Pkg Thermal Threshold #1 Status (RO)

7 Pkg Thermal Threshold #1 log (R/WC0)

8 Pkg Thermal Threshold #2 Status (RO)

9 Pkg Thermal Threshold #1 log (R/WC0)

10 Pkg Power Limitation Status (RO)

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 217

11 Pkg Power Limitation log (R/WC0)

15:12 Reserved.

22:16 Pkg Digital Readout (RO)

63:23 Reserved.

1B2H 434 IA32_PACKAGE_THERM_INTERRUPT Pkg Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the package’s thermal
sensor.

See Section 14.8, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg High-Temperature Interrupt Enable

1 Pkg Low-Temperature Interrupt Enable

2 Pkg PROCHOT# Interrupt Enable

3 Reserved.

4 Pkg Overheat Interrupt Enable

7:5 Reserved.

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt Enable

22:16 Pkg Threshold #2 Value

23 Pkg Threshold #2 Interrupt Enable

24 Pkg Power Limit Notification Enable

63:25 Reserved.

1D9H 473 IA32_DEBUGCTL (MSR_DEBUGCTLA,
MSR_DEBUGCTLB)

Trace/Profile Resource Control (R/W) 06_0EH

0 LBR: Setting this bit to 1 enables the
processor to record a running trace of the
most recent branches taken by the
processor in the LBR stack.

06_01H

1 BTF: Setting this bit to 1 enables the
processor to treat EFLAGS.TF as single-step
on branches instead of single-step on
instructions.

06_01H

5:2 Reserved.

6 TR: Setting this bit to 1 enables branch
trace messages to be sent.

06_0EH

7 BTS: Setting this bit enables branch trace
messages (BTMs) to be logged in a BTS
buffer.

06_0EH

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 218

8 BTINT: When clear, BTMs are logged in a
BTS buffer in circular fashion. When this bit
is set, an interrupt is generated by the BTS
facility when the BTS buffer is full.

06_0EH

9 1: BTS_OFF_OS: When set, BTS or BTM is
skipped if CPL = 0.

06_0FH

10 BTS_OFF_USR: When set, BTS or BTM is
skipped if CPL > 0.

06_0FH

11 FREEZE_LBRS_ON_PMI: When set, the LBR
stack is frozen on a PMI request.

If CPUID.01H: ECX[15] = 1
&& CPUID.0AH: EAX[7:0] >
1

12 FREEZE_PERFMON_ON_PMI: When set,
each ENABLE bit of the global counter
control MSR are frozen (address 38FH) on a
PMI request

If CPUID.01H: ECX[15] = 1
&& CPUID.0AH: EAX[7:0] >
1

13 ENABLE_UNCORE_PMI: When set, enables
the logical processor to receive and
generate PMI on behalf of the uncore.

06_1AH

14 FREEZE_WHILE_SMM: When set, freezes
perfmon and trace messages while in SMM.

If
IA32_PERF_CAPABILITIES[
12] = 1

15 RTM_DEBUG: When set, enables DR7 debug
bit on XBEGIN

If (CPUID.(EAX=07H,
ECX=0):EBX[11] = 1)

63:16 Reserved.

1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address (Writeable only in
SMM)

Base address of SMM memory range.

If
IA32_MTRRCAP.SMRR[11]
= 1

7:0 Type. Specifies memory type of the range.

11:8 Reserved.

31:12 PhysBase.

SMRR physical Base Address.

63:32 Reserved.

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask. (Writeable only in
SMM)

Range Mask of SMM memory range.

If IA32_MTRRCAP[SMRR]
= 1

10:0 Reserved.

11 Valid

Enable range mask.

31:12 PhysMask

SMRR address range mask.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 219

63:32 Reserved.

1F8H 504 IA32_PLATFORM_DCA_CAP DCA Capability (R) If CPUID.01H: ECX[18] = 1

1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-Hint type. If CPUID.01H: ECX[18] = 1

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and Control register. If CPUID.01H: ECX[18] = 1

0 DCA_ACTIVE: Set by HW when DCA is fuse-
enabled and no defeatures are set.

2:1 TRANSACTION

6:3 DCA_TYPE

10:7 DCA_QUEUE_SIZE

12:11 Reserved.

16:13 DCA_DELAY: Writes will update the register
but have no HW side-effect.

23:17 Reserved.

24 SW_BLOCK: SW can request DCA block by
setting this bit.

25 Reserved.

26 HW_BLOCK: Set when DCA is blocked by
HW (e.g. CR0.CD = 1).

31:27 Reserved.

200H 512 IA32_MTRR_PHYSBASE0
(MTRRphysBase0)

See Section 11.11.2.3, “Variable Range
MTRRs.”

If CPUID.01H:
EDX.MTRR[12] =1

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 If CPUID.01H:
EDX.MTRR[12] =1

202H 514 IA32_MTRR_PHYSBASE1 MTRRphysBase1 If CPUID.01H:
EDX.MTRR[12] =1

203H 515 IA32_MTRR_PHYSMASK1 MTRRphysMask1 If CPUID.01H:
EDX.MTRR[12] =1

204H 516 IA32_MTRR_PHYSBASE2 MTRRphysBase2 If CPUID.01H:
EDX.MTRR[12] =1

205H 517 IA32_MTRR_PHYSMASK2 MTRRphysMask2 If CPUID.01H:
EDX.MTRR[12] =1

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 If CPUID.01H:
EDX.MTRR[12] =1

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 If CPUID.01H:
EDX.MTRR[12] =1

208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 If CPUID.01H:
EDX.MTRR[12] =1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 220

209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 If CPUID.01H:
EDX.MTRR[12] =1

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 If CPUID.01H:
EDX.MTRR[12] =1

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 If CPUID.01H:
EDX.MTRR[12] =1

20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 If CPUID.01H:
EDX.MTRR[12] =1

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 If CPUID.01H:
EDX.MTRR[12] =1

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 If CPUID.01H:
EDX.MTRR[12] =1

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 If CPUID.01H:
EDX.MTRR[12] =1

210H 528 IA32_MTRR_PHYSBASE8 MTRRphysBase8 if IA32_MTRRCAP[7:0] > 8

211H 529 IA32_MTRR_PHYSMASK8 MTRRphysMask8 if IA32_MTRRCAP[7:0] > 8

212H 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 if IA32_MTRRCAP[7:0] > 9

213H 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 if IA32_MTRRCAP[7:0] > 9

250H 592 IA32_MTRR_FIX64K_00000 MTRRfix64K_00000 If CPUID.01H:
EDX.MTRR[12] =1

258H 600 IA32_MTRR_FIX16K_80000 MTRRfix16K_80000 If CPUID.01H:
EDX.MTRR[12] =1

259H 601 IA32_MTRR_FIX16K_A0000 MTRRfix16K_A0000 If CPUID.01H:
EDX.MTRR[12] =1

268H 616 IA32_MTRR_FIX4K_C0000
(MTRRfix4K_C0000)

See Section 11.11.2.2, “Fixed Range
MTRRs.”

If CPUID.01H:
EDX.MTRR[12] =1

269H 617 IA32_MTRR_FIX4K_C8000 MTRRfix4K_C8000 If CPUID.01H:
EDX.MTRR[12] =1

26AH 618 IA32_MTRR_FIX4K_D0000 MTRRfix4K_D0000 If CPUID.01H:
EDX.MTRR[12] =1

26BH 619 IA32_MTRR_FIX4K_D8000 MTRRfix4K_D8000 If CPUID.01H:
EDX.MTRR[12] =1

26CH 620 IA32_MTRR_FIX4K_E0000 MTRRfix4K_E0000 If CPUID.01H:
EDX.MTRR[12] =1

26DH 621 IA32_MTRR_FIX4K_E8000 MTRRfix4K_E8000 If CPUID.01H:
EDX.MTRR[12] =1

26EH 622 IA32_MTRR_FIX4K_F0000 MTRRfix4K_F0000 If CPUID.01H:
EDX.MTRR[12] =1

26FH 623 IA32_MTRR_FIX4K_F8000 MTRRfix4K_F8000 If CPUID.01H:
EDX.MTRR[12] =1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 221

277H 631 IA32_PAT IA32_PAT (R/W) If CPUID.01H:
EDX.MTRR[16] =1

2:0 PA0

7:3 Reserved.

10:8 PA1

15:11 Reserved.

18:16 PA2

23:19 Reserved.

26:24 PA3

31:27 Reserved.

34:32 PA4

39:35 Reserved.

42:40 PA5

47:43 Reserved.

50:48 PA6

55:51 Reserved.

58:56 PA7

63:59 Reserved.

280H 640 IA32_MC0_CTL2 (R/W) If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
0

14:0 Corrected error count threshold.

29:15 Reserved.

30 CMCI_EN

63:31 Reserved.

281H 641 IA32_MC1_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
1

282H 642 IA32_MC2_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
2

283H 643 IA32_MC3_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
3

284H 644 IA32_MC4_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
4

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 222

285H 645 IA32_MC5_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
5

286H 646 IA32_MC6_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
6

287H 647 IA32_MC7_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
7

288H 648 IA32_MC8_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
8

289H 649 IA32_MC9_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
9

28AH 650 IA32_MC10_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
10

28BH 651 IA32_MC11_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
11

28CH 652 IA32_MC12_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
12

28DH 653 IA32_MC13_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
13

28EH 654 IA32_MC14_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
14

28FH 655 IA32_MC15_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
15

290H 656 IA32_MC16_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
16

291H 657 IA32_MC17_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
17

292H 658 IA32_MC18_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
18

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 223

293H 659 IA32_MC19_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
19

294H 660 IA32_MC20_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
20

295H 661 IA32_MC21_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
21

296H 662 IA32_MC22_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
22

297H 663 IA32_MC23_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
23

298H 664 IA32_MC24_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
24

299H 665 IA32_MC25_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
25

29AH 666 IA32_MC26_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
26

29BH 667 IA32_MC27_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
27

29CH 668 IA32_MC28_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
28

29DH 669 IA32_MC29_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
29

29EH 670 IA32_MC30_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
30

29FH 671 IA32_MC31_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
31

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType (R/W) If CPUID.01H:
EDX.MTRR[12] =1

2:0 Default Memory Type

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 224

9:3 Reserved.

10 Fixed Range MTRR Enable

11 MTRR Enable

63:12 Reserved.

309H 777 IA32_FIXED_CTR0
(MSR_PERF_FIXED_CTR0)

Fixed-Function Performance Counter 0
(R/W): Counts Instr_Retired.Any.

If CPUID.0AH: EDX[4:0] > 0

30AH 778 IA32_FIXED_CTR1
(MSR_PERF_FIXED_CTR1)

Fixed-Function Performance Counter 1 0
(R/W): Counts CPU_CLK_Unhalted.Core

If CPUID.0AH: EDX[4:0] > 1

30BH 779 IA32_FIXED_CTR2
(MSR_PERF_FIXED_CTR2)

Fixed-Function Performance Counter 0 0
(R/W): Counts CPU_CLK_Unhalted.Ref

If CPUID.0AH: EDX[4:0] > 2

345H 837 IA32_PERF_CAPABILITIES RO If CPUID.01H: ECX[15] = 1

5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is supported.

13 1: Full width of counter writable via
IA32_A_PMCx.

63:14 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Fixed-Function Performance Counter
Control (R/W)

Counter increments while the results of
ANDing respective enable bit in
IA32_PERF_GLOBAL_CTRL with the
corresponding OS or USR bits in this MSR is
true.

If CPUID.0AH: EAX[7:0] > 1

0 EN0_OS: Enable Fixed Counter 0 to count
while CPL = 0.

1 EN0_Usr: Enable Fixed Counter 0 to count
while CPL > 0.

2 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

3 EN0_PMI: Enable PMI when fixed counter 0
overflows.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 225

4 EN1_OS: Enable Fixed Counter 1to count
while CPL = 0.

5 EN1_Usr: Enable Fixed Counter 1to count
while CPL > 0.

6 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

7 EN1_PMI: Enable PMI when fixed counter 1
overflows.

8 EN2_OS: Enable Fixed Counter 2 to count
while CPL = 0.

9 EN2_Usr: Enable Fixed Counter 2 to count
while CPL > 0.

10 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

11 EN2_PMI: Enable PMI when fixed counter 2
overflows.

63:12 Reserved.

38EH 910 IA32_PERF_GLOBAL_STATUS Global Performance Counter Status (RO) If CPUID.0AH: EAX[7:0] > 0

0 Ovf_PMC0: Overflow status of IA32_PMC0. If CPUID.0AH: EAX[15:8] >
0

1 Ovf_PMC1: Overflow status of IA32_PMC1. If CPUID.0AH: EAX[15:8] >
1

2 Ovf_PMC2: Overflow status of IA32_PMC2. If CPUID.0AH: EAX[15:8] >
2

3 Ovf_PMC3: Overflow status of IA32_PMC3. If CPUID.0AH: EAX[15:8] >
3

31:4 Reserved.

32 Ovf_FixedCtr0: Overflow status of
IA32_FIXED_CTR0.

If CPUID.0AH: EAX[7:0] > 1

33 Ovf_FixedCtr1: Overflow status of
IA32_FIXED_CTR1.

If CPUID.0AH: EAX[7:0] > 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 226

34 Ovf_FixedCtr2: Overflow status of
IA32_FIXED_CTR2.

If CPUID.0AH: EAX[7:0] > 1

54:35 Reserved.

55 Trace_ToPA_PMI: A PMI occurred due to a
ToPA entry memory buffer was completely
filled.

If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) &&
IA32_RTIT_CTL.ToPA = 1

57:56 Reserved.

58 LBR_Frz: LBRs are frozen due to

• IA32_DEBUGCTL.FREEZE_LBR_ON_PMI=1,
• The LBR stack overflowed

If CPUID.0AH: EAX[7:0] > 3

59 CTR_Frz: Performance counters in the core
PMU are frozen due to

• IA32_DEBUGCTL.FREEZE_PERFMON_ON_
PMI=1,

• one or more core PMU counters
overflowed.

If CPUID.0AH: EAX[7:0] > 3

60 ASCI: Data in the performance counters in
the core PMU may include contributions
from the direct or indirect operation intel
SGX to protect an enclave.

If CPUID.(EAX=07H,
ECX=0):EBX[2] = 1

61 Ovf_Uncore: Uncore counter overflow
status.

If CPUID.0AH: EAX[7:0] > 2

62 OvfBuf: DS SAVE area Buffer overflow
status.

If CPUID.0AH: EAX[7:0] > 0

63 CondChgd: status bits of this register has
changed.

If CPUID.0AH: EAX[7:0] > 0

38FH 911 IA32_PERF_GLOBAL_CTRL Global Performance Counter Control (R/W)

Counter increments while the result of
ANDing respective enable bit in this MSR
with the corresponding OS or USR bits in
the general-purpose or fixed counter
control MSR is true.

If CPUID.0AH: EAX[7:0] > 0

0 EN_PMC0 If CPUID.0AH: EAX[15:8] >
0

1 EN_PMC1 If CPUID.0AH: EAX[15:8] >
1

2 EN_PMC2 If CPUID.0AH: EAX[15:8] >
2

n EN_PMCn If CPUID.0AH: EAX[15:8] >
n

31:n+1 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 227

32 EN_FIXED_CTR0 If CPUID.0AH: EDX[4:0] > 0

33 EN_FIXED_CTR1 If CPUID.0AH: EDX[4:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH: EDX[4:0] > 2

63:35 Reserved.

390H 912 IA32_PERF_GLOBAL_OVF_CTRL Global Performance Counter Overflow
Control (R/W)

If CPUID.0AH: EAX[7:0] > 0
&& CPUID.0AH: EAX[7:0]
<= 3

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[15:8] >
0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[15:8] >
1

2 Set 1 to Clear Ovf_PMC2 bit. If CPUID.0AH: EAX[15:8] >
2

n Set 1 to Clear Ovf_PMCn bit. If CPUID.0AH: EAX[15:8] >
n

31:n Reserved.

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EDX[4:0] > 0

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EDX[4:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EDX[4:0] > 2

54:35 Reserved.

55 Set 1 to Clear Trace_ToPA_PMI bit. If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) &&
IA32_RTIT_CTL.ToPA = 1

60:56 Reserved.

61 Set 1 to Clear Ovf_Uncore bit. 06_2EH

62 Set 1 to Clear OvfBuf: bit. If CPUID.0AH: EAX[7:0] > 0

63 Set to 1to clear CondChgd: bit. If CPUID.0AH: EAX[7:0] > 0

390H 912 IA32_PERF_GLOBAL_STATUS_RESET Global Performance Counter Overflow
Reset Control (R/W)

If CPUID.0AH: EAX[7:0] > 3

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[15:8] >
0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[15:8] >
1

2 Set 1 to Clear Ovf_PMC2 bit. If CPUID.0AH: EAX[15:8] >
2

n Set 1 to Clear Ovf_PMCn bit. If CPUID.0AH: EAX[15:8] >
n

31:n Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 228

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EDX[4:0] > 0

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EDX[4:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EDX[4:0] > 2

54:35 Reserved.

55 Set 1 to Clear Trace_ToPA_PMI bit. If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) &&
IA32_RTIT_CTL.ToPA[8] =
1

57:56 Reserved.

58 Set 1 to Clear LBR_Frz bit. If CPUID.0AH: EAX[7:0] > 3

59 Set 1 to Clear CTR_Frz bit. If CPUID.0AH: EAX[7:0] > 3

58 Set 1 to Clear ASCI bit. If CPUID.0AH: EAX[7:0] > 3

61 Set 1 to Clear Ovf_Uncore bit. 06_2EH

62 Set 1 to Clear OvfBuf: bit. If CPUID.0AH: EAX[7:0] > 0

63 Set to 1to clear CondChgd: bit. If CPUID.0AH: EAX[7:0] > 0

391H 913 IA32_PERF_GLOBAL_STATUS_SET Global Performance Counter Overflow Set
Control (R/W)

If CPUID.0AH: EAX[7:0] > 3

0 Set 1 to cause Ovf_PMC0 = 1. If CPUID.0AH: EAX[7:0] > 3

1 Set 1 to cause Ovf_PMC1 = 1 If CPUID.0AH: EAX[15:8] >
1

2 Set 1 to cause Ovf_PMC2 = 1 If CPUID.0AH: EAX[15:8] >
2

n Set 1 to cause Ovf_PMCn = 1 If CPUID.0AH: EAX[15:8] >
n

31:n Reserved.

32 Set 1 to cause Ovf_FIXED_CTR0 = 1. If CPUID.0AH: EAX[7:0] > 3

33 Set 1 to cause Ovf_FIXED_CTR1 = 1. If CPUID.0AH: EAX[7:0] > 3

34 Set 1 to cause Ovf_FIXED_CTR2 = 1. If CPUID.0AH: EAX[7:0] > 3

54:35 Reserved.

55 Set 1 to cause Trace_ToPA_PMI = 1. If CPUID.0AH: EAX[7:0] > 3

57:56 Reserved.

58 Set 1 to cause LBR_Frz = 1. If CPUID.0AH: EAX[7:0] > 3

59 Set 1 to cause CTR_Frz = 1. If CPUID.0AH: EAX[7:0] > 3

58 Set 1 to cause ASCI = 1. If CPUID.0AH: EAX[7:0] > 3

61 Set 1 to cause Ovf_Uncore = 1. If CPUID.0AH: EAX[7:0] > 3

62 Set 1 to cause OvfBuf = 1. If CPUID.0AH: EAX[7:0] > 3

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 229

63 Reserved

392H 914 IA32_PERF_GLOBAL_INUSE Indicator of core perfmon interface is in use
(RO)

If CPUID.0AH: EAX[7:0] > 3

0 IA32_PERFEVTSEL0 in use

1 IA32_PERFEVTSEL1 in use If CPUID.0AH: EAX[15:8] >
1

2 IA32_PERFEVTSEL2 in use If CPUID.0AH: EAX[15:8] >
2

n IA32_PERFEVTSELn in use If CPUID.0AH: EAX[15:8] >
n

31:n Reserved.

32 IA32_FIXED_CTR0 in use

33 IA32_FIXED_CTR1 in use

34 IA32_FIXED_CTR2 in use

62:35 Reserved or Model specific.

63 PMI in use.

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0. 06_0FH

3:1 Reserved or Model specific.

31:4 Reserved.

35:32 Reserved or Model specific.

63:36 Reserved.

400H 1024 IA32_MC0_CTL MC0_CTL If IA32_MCG_CAP.CNT >0

401H 1025 IA32_MC0_STATUS MC0_STATUS If IA32_MCG_CAP.CNT >0

402H 1026 IA32_MC0_ADDR1 MC0_ADDR If IA32_MCG_CAP.CNT >0

403H 1027 IA32_MC0_MISC MC0_MISC If IA32_MCG_CAP.CNT >0

404H 1028 IA32_MC1_CTL MC1_CTL If IA32_MCG_CAP.CNT >1

405H 1029 IA32_MC1_STATUS MC1_STATUS If IA32_MCG_CAP.CNT >1

406H 1030 IA32_MC1_ADDR2 MC1_ADDR If IA32_MCG_CAP.CNT >1

407H 1031 IA32_MC1_MISC MC1_MISC If IA32_MCG_CAP.CNT >1

408H 1032 IA32_MC2_CTL MC2_CTL If IA32_MCG_CAP.CNT >2

409H 1033 IA32_MC2_STATUS MC2_STATUS If IA32_MCG_CAP.CNT >2

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR If IA32_MCG_CAP.CNT >2

40BH 1035 IA32_MC2_MISC MC2_MISC If IA32_MCG_CAP.CNT >2

40CH 1036 IA32_MC3_CTL MC3_CTL If IA32_MCG_CAP.CNT >3

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 230

40DH 1037 IA32_MC3_STATUS MC3_STATUS If IA32_MCG_CAP.CNT >3

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR If IA32_MCG_CAP.CNT >3

40FH 1039 IA32_MC3_MISC MC3_MISC If IA32_MCG_CAP.CNT >3

410H 1040 IA32_MC4_CTL MC4_CTL If IA32_MCG_CAP.CNT >4

411H 1041 IA32_MC4_STATUS MC4_STATUS If IA32_MCG_CAP.CNT >4

412H 1042 IA32_MC4_ADDR1 MC4_ADDR If IA32_MCG_CAP.CNT >4

413H 1043 IA32_MC4_MISC MC4_MISC If IA32_MCG_CAP.CNT >4

414H 1044 IA32_MC5_CTL MC5_CTL If IA32_MCG_CAP.CNT >5

415H 1045 IA32_MC5_STATUS MC5_STATUS If IA32_MCG_CAP.CNT >5

416H 1046 IA32_MC5_ADDR1 MC5_ADDR If IA32_MCG_CAP.CNT >5

417H 1047 IA32_MC5_MISC MC5_MISC If IA32_MCG_CAP.CNT >5

418H 1048 IA32_MC6_CTL MC6_CTL If IA32_MCG_CAP.CNT >6

419H 1049 IA32_MC6_STATUS MC6_STATUS If IA32_MCG_CAP.CNT >6

41AH 1050 IA32_MC6_ADDR1 MC6_ADDR If IA32_MCG_CAP.CNT >6

41BH 1051 IA32_MC6_MISC MC6_MISC If IA32_MCG_CAP.CNT >6

41CH 1052 IA32_MC7_CTL MC7_CTL If IA32_MCG_CAP.CNT >7

41DH 1053 IA32_MC7_STATUS MC7_STATUS If IA32_MCG_CAP.CNT >7

41EH 1054 IA32_MC7_ADDR1 MC7_ADDR If IA32_MCG_CAP.CNT >7

41FH 1055 IA32_MC7_MISC MC7_MISC If IA32_MCG_CAP.CNT >7

420H 1056 IA32_MC8_CTL MC8_CTL If IA32_MCG_CAP.CNT >8

421H 1057 IA32_MC8_STATUS MC8_STATUS If IA32_MCG_CAP.CNT >8

422H 1058 IA32_MC8_ADDR1 MC8_ADDR If IA32_MCG_CAP.CNT >8

423H 1059 IA32_MC8_MISC MC8_MISC If IA32_MCG_CAP.CNT >8

424H 1060 IA32_MC9_CTL MC9_CTL If IA32_MCG_CAP.CNT >9

425H 1061 IA32_MC9_STATUS MC9_STATUS If IA32_MCG_CAP.CNT >9

426H 1062 IA32_MC9_ADDR1 MC9_ADDR If IA32_MCG_CAP.CNT >9

427H 1063 IA32_MC9_MISC MC9_MISC If IA32_MCG_CAP.CNT >9

428H 1064 IA32_MC10_CTL MC10_CTL If IA32_MCG_CAP.CNT >10

429H 1065 IA32_MC10_STATUS MC10_STATUS If IA32_MCG_CAP.CNT >10

42AH 1066 IA32_MC10_ADDR1 MC10_ADDR If IA32_MCG_CAP.CNT >10

42BH 1067 IA32_MC10_MISC MC10_MISC If IA32_MCG_CAP.CNT >10

42CH 1068 IA32_MC11_CTL MC11_CTL If IA32_MCG_CAP.CNT >11

42DH 1069 IA32_MC11_STATUS MC11_STATUS If IA32_MCG_CAP.CNT >11

42EH 1070 IA32_MC11_ADDR1 MC11_ADDR If IA32_MCG_CAP.CNT >11

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 231

42FH 1071 IA32_MC11_MISC MC11_MISC If IA32_MCG_CAP.CNT >11

430H 1072 IA32_MC12_CTL MC12_CTL If IA32_MCG_CAP.CNT >12

431H 1073 IA32_MC12_STATUS MC12_STATUS If IA32_MCG_CAP.CNT >12

432H 1074 IA32_MC12_ADDR1 MC12_ADDR If IA32_MCG_CAP.CNT >12

433H 1075 IA32_MC12_MISC MC12_MISC If IA32_MCG_CAP.CNT >12

434H 1076 IA32_MC13_CTL MC13_CTL If IA32_MCG_CAP.CNT >13

435H 1077 IA32_MC13_STATUS MC13_STATUS If IA32_MCG_CAP.CNT >13

436H 1078 IA32_MC13_ADDR1 MC13_ADDR If IA32_MCG_CAP.CNT >13

437H 1079 IA32_MC13_MISC MC13_MISC If IA32_MCG_CAP.CNT >13

438H 1080 IA32_MC14_CTL MC14_CTL If IA32_MCG_CAP.CNT >14

439H 1081 IA32_MC14_STATUS MC14_STATUS If IA32_MCG_CAP.CNT >14

43AH 1082 IA32_MC14_ADDR1 MC14_ADDR If IA32_MCG_CAP.CNT >14

43BH 1083 IA32_MC14_MISC MC14_MISC If IA32_MCG_CAP.CNT >14

43CH 1084 IA32_MC15_CTL MC15_CTL If IA32_MCG_CAP.CNT >15

43DH 1085 IA32_MC15_STATUS MC15_STATUS If IA32_MCG_CAP.CNT >15

43EH 1086 IA32_MC15_ADDR1 MC15_ADDR If IA32_MCG_CAP.CNT >15

43FH 1087 IA32_MC15_MISC MC15_MISC If IA32_MCG_CAP.CNT >15

440H 1088 IA32_MC16_CTL MC16_CTL If IA32_MCG_CAP.CNT >16

441H 1089 IA32_MC16_STATUS MC16_STATUS If IA32_MCG_CAP.CNT >16

442H 1090 IA32_MC16_ADDR1 MC16_ADDR If IA32_MCG_CAP.CNT >16

443H 1091 IA32_MC16_MISC MC16_MISC If IA32_MCG_CAP.CNT >16

444H 1092 IA32_MC17_CTL MC17_CTL If IA32_MCG_CAP.CNT >17

445H 1093 IA32_MC17_STATUS MC17_STATUS If IA32_MCG_CAP.CNT >17

446H 1094 IA32_MC17_ADDR1 MC17_ADDR If IA32_MCG_CAP.CNT >17

447H 1095 IA32_MC17_MISC MC17_MISC If IA32_MCG_CAP.CNT >17

448H 1096 IA32_MC18_CTL MC18_CTL If IA32_MCG_CAP.CNT >18

449H 1097 IA32_MC18_STATUS MC18_STATUS If IA32_MCG_CAP.CNT >18

44AH 1098 IA32_MC18_ADDR1 MC18_ADDR If IA32_MCG_CAP.CNT >18

44BH 1099 IA32_MC18_MISC MC18_MISC If IA32_MCG_CAP.CNT >18

44CH 1100 IA32_MC19_CTL MC19_CTL If IA32_MCG_CAP.CNT >19

44DH 1101 IA32_MC19_STATUS MC19_STATUS If IA32_MCG_CAP.CNT >19

44EH 1102 IA32_MC19_ADDR1 MC19_ADDR If IA32_MCG_CAP.CNT >19

44FH 1103 IA32_MC19_MISC MC19_MISC If IA32_MCG_CAP.CNT >19

450H 1104 IA32_MC20_CTL MC20_CTL If IA32_MCG_CAP.CNT >20

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 232

451H 1105 IA32_MC20_STATUS MC20_STATUS If IA32_MCG_CAP.CNT >20

452H 1106 IA32_MC20_ADDR1 MC20_ADDR If IA32_MCG_CAP.CNT >20

453H 1107 IA32_MC20_MISC MC20_MISC If IA32_MCG_CAP.CNT >20

454H 1108 IA32_MC21_CTL MC21_CTL If IA32_MCG_CAP.CNT >21

455H 1109 IA32_MC21_STATUS MC21_STATUS If IA32_MCG_CAP.CNT >21

456H 1110 IA32_MC21_ADDR1 MC21_ADDR If IA32_MCG_CAP.CNT >21

457H 1111 IA32_MC21_MISC MC21_MISC If IA32_MCG_CAP.CNT >21

458H IA32_MC22_CTL MC22_CTL If IA32_MCG_CAP.CNT >22

459H IA32_MC22_STATUS MC22_STATUS If IA32_MCG_CAP.CNT >22

45AH IA32_MC22_ADDR1 MC22_ADDR If IA32_MCG_CAP.CNT >22

45BH IA32_MC22_MISC MC22_MISC If IA32_MCG_CAP.CNT >22

45CH IA32_MC23_CTL MC23_CTL If IA32_MCG_CAP.CNT >23

45DH IA32_MC23_STATUS MC23_STATUS If IA32_MCG_CAP.CNT >23

45EH IA32_MC23_ADDR1 MC23_ADDR If IA32_MCG_CAP.CNT >23

45FH IA32_MC23_MISC MC23_MISC If IA32_MCG_CAP.CNT >23

460H IA32_MC24_CTL MC24_CTL If IA32_MCG_CAP.CNT >24

461H IA32_MC24_STATUS MC24_STATUS If IA32_MCG_CAP.CNT >24

462H IA32_MC24_ADDR1 MC24_ADDR If IA32_MCG_CAP.CNT >24

463H IA32_MC24_MISC MC24_MISC If IA32_MCG_CAP.CNT >24

464H IA32_MC25_CTL MC25_CTL If IA32_MCG_CAP.CNT >25

465H IA32_MC25_STATUS MC25_STATUS If IA32_MCG_CAP.CNT >25

466H IA32_MC25_ADDR1 MC25_ADDR If IA32_MCG_CAP.CNT >25

467H IA32_MC25_MISC MC25_MISC If IA32_MCG_CAP.CNT >25

468H IA32_MC26_CTL MC26_CTL If IA32_MCG_CAP.CNT >26

469H IA32_MC26_STATUS MC26_STATUS If IA32_MCG_CAP.CNT >26

46AH IA32_MC26_ADDR1 MC26_ADDR If IA32_MCG_CAP.CNT >26

46BH IA32_MC26_MISC MC26_MISC If IA32_MCG_CAP.CNT >26

46CH IA32_MC27_CTL MC27_CTL If IA32_MCG_CAP.CNT >27

46DH IA32_MC27_STATUS MC27_STATUS If IA32_MCG_CAP.CNT >27

46EH IA32_MC27_ADDR1 MC27_ADDR If IA32_MCG_CAP.CNT >27

46FH IA32_MC27_MISC MC27_MISC If IA32_MCG_CAP.CNT >27

470H IA32_MC28_CTL MC28_CTL If IA32_MCG_CAP.CNT >28

471H IA32_MC28_STATUS MC28_STATUS If IA32_MCG_CAP.CNT >28

472H IA32_MC28_ADDR1 MC28_ADDR If IA32_MCG_CAP.CNT >28

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 233

473H IA32_MC28_MISC MC28_MISC If IA32_MCG_CAP.CNT >28

480H 1152 IA32_VMX_BASIC Reporting Register of Basic VMX
Capabilities (R/O)

See Appendix A.1, “Basic VMX Information.”

If CPUID.01H:ECX.[5] = 1

481H 1153 IA32_VMX_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If CPUID.01H:ECX.[5] = 1

482H 1154 IA32_VMX_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-based VM-execution Controls
(R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If CPUID.01H:ECX.[5] = 1

483H 1155 IA32_VMX_EXIT_CTLS Capability Reporting Register of VM-exit
Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If CPUID.01H:ECX.[5] = 1

484H 1156 IA32_VMX_ENTRY_CTLS Capability Reporting Register of VM-
entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If CPUID.01H:ECX.[5] = 1

485H 1157 IA32_VMX_MISC Reporting Register of Miscellaneous
VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data.”

If CPUID.01H:ECX.[5] = 1

486H 1158 IA32_VMX_CR0_FIXED0 Capability Reporting Register of CR0 Bits
Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[5] = 1

487H 1159 IA32_VMX_CR0_FIXED1 Capability Reporting Register of CR0 Bits
Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[5] = 1

488H 1160 IA32_VMX_CR4_FIXED0 Capability Reporting Register of CR4 Bits
Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[5] = 1

489H 1161 IA32_VMX_CR4_FIXED1 Capability Reporting Register of CR4 Bits
Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[5] = 1

48AH 1162 IA32_VMX_VMCS_ENUM Capability Reporting Register of VMCS
Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration.”

If CPUID.01H:ECX.[5] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 234

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Capability Reporting Register of
Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3.3, “Secondary Processor-
Based VM-Execution Controls.”

If (CPUID.01H:ECX.[5] &&
IA32_VMX_PROCBASED_C
TLS[63])

48CH 1164 IA32_VMX_EPT_VPID_CAP Capability Reporting Register of EPT and
VPID (R/O)

See Appendix A.10, “VPID and EPT
Capabilities.”

If (CPUID.01H:ECX.[5] &&
IA32_VMX_PROCBASED_C
TLS[63] && (
IA32_VMX_PROCBASED_C
TLS2[33] ||
IA32_VMX_PROCBASED_C
TLS2[37]))

48DH 1165 IA32_VMX_TRUE_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Flex Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If (CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-based VM-execution Flex
Controls (R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If(CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Capability Reporting Register of VM-exit
Flex Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If(CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Capability Reporting Register of VM-
entry Flex Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If(CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

491H 1169 IA32_VMX_VMFUNC Capability Reporting Register of VM-
function Controls (R/O)

If(CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

4C1H 1217 IA32_A_PMC0 Full Width Writable IA32_PMC0 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
0) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C2H 1218 IA32_A_PMC1 Full Width Writable IA32_PMC1 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
1) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C3H 1219 IA32_A_PMC2 Full Width Writable IA32_PMC2 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
2) &&

IA32_PERF_CAPABILITIES[
13] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 235

4C4H 1220 IA32_A_PMC3 Full Width Writable IA32_PMC3 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
3) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C5H 1221 IA32_A_PMC4 Full Width Writable IA32_PMC4 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
4) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C6H 1222 IA32_A_PMC5 Full Width Writable IA32_PMC5 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
5) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C7H 1223 IA32_A_PMC6 Full Width Writable IA32_PMC6 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
6) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C8H 1224 IA32_A_PMC7 Full Width Writable IA32_PMC7 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
7) &&

IA32_PERF_CAPABILITIES[
13] = 1

4D0H 1232 IA32_MCG_EXT_CTL (R/W) If IA32_MCG_CAP.LMCE_P
=1

0 LMCE_EN.

63:1 Reserved.

560H 1376 IA32_RTIT_OUTPUT_BASE Trace Output Base Register (R/W) If ((CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) && (
(CPUID.(EAX=14H,ECX=0):
ECX[0] = 1) ||
(CPUID.(EAX=14H,ECX=0):
ECX[2] = 1)))

6:0 Reserved

MAXPHYADDR3-1:7 Base physical address

63:MAXPHYADDR Reserved.

561H 1377 IA32_RTIT_OUTPUT_MASK_PTRS Trace Output Mask Pointers Register
(R/W)

If ((CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) && (
(CPUID.(EAX=14H,ECX=0):
ECX[0] = 1) ||
(CPUID.(EAX=14H,ECX=0):
ECX[2] = 1)))

6:0 Reserved

31:7 MaskOrTableOffset

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 236

63:32 Output Offset.

570H 1392 IA32_RTIT_CTL Trace Control Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1)

0 TraceEn

1 CYCEn If (CPUID.(EAX=07H,
ECX=0):EBX[1] = 1)

2 OS

3 User

5:4 Reserved,

6 FabricEn If (CPUID.(EAX=07H,
ECX=0):ECX[3] = 1)

7 CR3 filter

8 ToPA

9 MTCEn If (CPUID.(EAX=07H,
ECX=0):EBX[3] = 1)

10 TSCEn

11 DisRETC

12 Reserved, MBZ

13 BranchEn

17:14 MTCFreq If (CPUID.(EAX=07H,
ECX=0):EBX[3] = 1)

18 Reserved, MBZ

22:19 CYCThresh If (CPUID.(EAX=07H,
ECX=0):EBX[1] = 1)

23 Reserved, MBZ

27:24 PSBFreq If (CPUID.(EAX=07H,
ECX=0):EBX[1] = 1)

31:28 Reserved, MBZ

35:32 ADDR0_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 0)

39:36 ADDR1_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 1)

43:40 ADDR2_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 2)

47:44 ADDR3_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 3)

63:48 Reserved, MBZ.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 237

571H 1393 IA32_RTIT_STATUS Tracing Status Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1)

0 FilterEn, (writes ignored) If (CPUID.(EAX=07H,
ECX=0):EBX[2] = 1)

1 ContexEn, (writes ignored)

2 TriggerEn, (writes ignored)

3 Reserved

4 Error

5 Stopped

31:6 Reserved, MBZ

48:32 PacketByteCnt If (CPUID.(EAX=07H,
ECX=0):EBX[1] > 3)

63:49 Reserved.

572H 1394 IA32_RTIT_CR3_MATCH Trace Filter CR3 Match Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1)

4:0 Reserved

63:5 CR3[63:5] value to match

580H 1408 IA32_RTIT_ADDR0_A Region 0 Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 0)

47:0 Virtual Address

63:48 SignExt_VA

581H 1409 IA32_RTIT_ADDR0_B Region 0 End Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 0)

47:0 Virtual Address

63:48 SignExt_VA

582H 1410 IA32_RTIT_ADDR1_A Region 1 Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 1)

47:0 Virtual Address

63:48 SignExt_VA

583H 1411 IA32_RTIT_ADDR1_B Region 1 End Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 1)

47:0 Virtual Address

63:48 SignExt_VA

584H 1412 IA32_RTIT_ADDR2_A Region 2 Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 2)

47:0 Virtual Address

63:48 SignExt_VA

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 238

585H 1413 IA32_RTIT_ADDR2_B Region 2 End Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 2)

47:0 Virtual Address

63:48 SignExt_VA

586H 1414 IA32_RTIT_ADDR3_A Region 3 Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 3)

47:0 Virtual Address

63:48 SignExt_VA

587H 1415 IA32_RTIT_ADDR3_B Region 3 End Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 3)

47:0 Virtual Address

63:48 SignExt_VA

600H 1536 IA32_DS_AREA DS Save Area (R/W)

Points to the linear address of the first
byte of the DS buffer management area,
which is used to manage the BTS and PEBS
buffers.

See Section 18.13.4, “Debug Store (DS)
Mechanism.”

If(CPUID.01H:EDX.DS[21]
= 1

63:0 The linear address of the first byte of the
DS buffer management area, if IA-32e
mode is active.

31:0 The linear address of the first byte of the
DS buffer management area, if not in IA-
32e mode.

63:32 Reserved if not in IA-32e mode.

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s TSC Deadline
Mode (R/W)

If CPUID.01H:ECX.[24] = 1

770H 1904 IA32_PM_ENABLE Enable/disable HWP (R/W) If CPUID.06H:EAX.[7] = 1

0 HWP_ENABLE (R/W1-Once).

See Section 14.4.2, “Enabling HWP”

If CPUID.06H:EAX.[7] = 1

63:1 Reserved.

771H 1905 IA32_HWP_CAPABILITIES HWP Performance Range Enumeration
(RO)

If CPUID.06H:EAX.[7] = 1

7:0 Highest_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If CPUID.06H:EAX.[7] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 239

15:8 Guaranteed_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If CPUID.06H:EAX.[7] = 1

23:16 Most_Efficient_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If CPUID.06H:EAX.[7] = 1

31:24 Lowest_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If CPUID.06H:EAX.[7] = 1

63:32 Reserved.

772H 1906 IA32_HWP_REQUEST_PKG Power Management Control Hints for All
Logical Processors in a Package (R/W)

If CPUID.06H:EAX.[11] = 1

7:0 Minimum_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1

15:8 Maximum_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1

23:16 Desired_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1

31:24 Energy_Performance_Preference

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1
&&

CPUID.06H:EAX.[10] = 1

41:32 Activity_Window

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1
&&

CPUID.06H:EAX.[9] = 1

63:42 Reserved.

773H 1907 IA32_HWP_INTERRUPT Control HWP Native Interrupts (R/W) If CPUID.06H:EAX.[8] = 1

0 EN_Guaranteed_Performance_Change.

See Section 14.4.6, “HWP Notifications”

If CPUID.06H:EAX.[8] = 1

1 EN_Excursion_Minimum.

See Section 14.4.6, “HWP Notifications”

If CPUID.06H:EAX.[8] = 1

63:2 Reserved.

774H 1908 IA32_HWP_REQUEST Power Management Control Hints to a
Logical Processor (R/W)

If CPUID.06H:EAX.[7] = 1

7:0 Minimum_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1

15:8 Maximum_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 240

23:16 Desired_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1

31:24 Energy_Performance_Preference

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1
&& CPUID.06H:EAX.[10] =
1

41:32 Activity_Window

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1
&& CPUID.06H:EAX.[9] = 1

42 Package_Control

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1
&& CPUID.06H:EAX.[11] =
1

63:43 Reserved.

777H 1911 IA32_HWP_STATUS Log bits indicating changes to
Guaranteed & excursions to Minimum
(R/W)

If CPUID.06H:EAX.[7] = 1

0 Guaranteed_Performance_Change
(R/WC0).

See Section 14.4.5, “HWP Feedback”

If CPUID.06H:EAX.[7] = 1

1 Reserved.

2 Excursion_To_Minimum (R/WC0).

See Section 14.4.5, “HWP Feedback”

If CPUID.06H:EAX.[7] = 1

63:3 Reserved.

802H 2050 IA32_X2APIC_APICID x2APIC ID Register (R/O)

See x2APIC Specification

If CPUID.01H:ECX[21] = 1
&& IA32_APIC_BASE.[10]
= 1

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register (R/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

808H 2056 IA32_X2APIC_TPR x2APIC Task Priority Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority Register (R/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register (W/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination Register
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 241

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt Vector
Register (R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register Bits 31:0
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register Bits 63:32
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register Bits 95:64
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register Bits 127:96
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register Bits 159:128
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register Bits 191:160
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register Bits 223:192
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register Bits 255:224
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode Register Bits 31:0
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode Register Bits 63:32
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode Register Bits 95:64
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode Register Bits
127:96 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode Register Bits
159:128 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 242

81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode Register Bits
191:160 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode Register Bits
223:192 (R/O)

If (CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1)

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode Register Bits
255:224 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request Register Bits
31:0 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request Register Bits
63:32 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request Register Bits
95:64 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request Register Bits
127:96 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request Register Bits
159:128 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request Register Bits
191:160 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request Register Bits
223:192 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request Register Bits
255:224 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

828H 2088 IA32_X2APIC_ESR x2APIC Error Status Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected Machine Check
Interrupt Register (R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command Register
(R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 243

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer Interrupt Register
(R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

833H 2099 IA32_X2APIC_LVT_THERMAL x2APIC LVT Thermal Sensor Interrupt
Register (R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance Monitor
Interrupt Register (R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0 Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1 Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

837H 2103 IA32_X2APIC_LVT_ERROR x2APIC LVT Error Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

838H 2104 IA32_X2APIC_INIT_COUNT x2APIC Initial Count Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

839H 2105 IA32_X2APIC_CUR_COUNT x2APIC Current Count Register (R/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide Configuration Register
(R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register (W/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

C80H 3200 IA32_DEBUG_INTERFACE Silicon Debug Feature Control (R/W) If CPUID.01H:ECX.[11] = 1

0 Enable (R/W)

BIOS set 1 to enable Silicon debug features.
Default is 0

If CPUID.01H:ECX.[11] = 1

29:1 Reserved.

30 Lock (R/W): If 1, locks any further change
to the MSR. The lock bit is set automatically
on the first SMI assertion even if not
explicitly set by BIOS. Default is 0.

If CPUID.01H:ECX.[11] = 1

31 Debug Occurred (R/O): This “sticky bit” is
set by hardware to indicate the status of
bit 0. Default is 0.

If CPUID.01H:ECX.[11] = 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 244

63:32 Reserved.

C81H 3201 IA32_L3_QOS_CFG L3 QOS Configuration (R/W) If (CPUID.(EAX=07H,
ECX=1):ECX.[2] = 1)

0 Enable (R/W)

Set 1 to enable L3 CAT masks and COS to
operate in Code and Data Prioritization
(CDP) mode

63:1 Reserved.

C8DH 3213 IA32_QM_EVTSEL Monitoring Event Select Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX.[12] = 1)

7:0 Event ID: ID of a supported monitoring
event to report via IA32_QM_CTR.

31: 8 Reserved.

N+31:32 Resource Monitoring ID: ID for monitoring
hardware to report monitored data via
IA32_QM_CTR.

N = Ceil (Log2 (
CPUID.(EAX= 0FH,
ECX=0H).EBX[31:0] +1))

63:N+32 Reserved.

C8EH 3214 IA32_QM_CTR Monitoring Counter Register (R/O) If (CPUID.(EAX=07H,
ECX=0):EBX.[12] = 1)

61:0 Resource Monitored Data

62 Unavailable: If 1, indicates data for this
RMID is not available or not monitored for
this resource or RMID.

63 Error: If 1, indicates and unsupported RMID
or event type was written to
IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC Resource Association Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX.[12] = 1)

N-1:0 Resource Monitoring ID (R/W): ID for
monitoring hardware to track internal
operation, e.g. memory access.

N = Ceil (Log2 (
CPUID.(EAX= 0FH,
ECX=0H).EBX[31:0] +1))

31:N Reserved

63:32 COS (R/W). The class of service
(COS) to enforce (on writes);
returns the current COS when
read.

If (CPUID.(EAX=07H,
ECX=0):EBX.[15] = 1)

C90H -
D8FH

Reserved MSR Address Space for
Platform Enforcement Mask Registers

See Section 17.16.3.1, “Enumeration and
Detection Support of Cache Allocation
Technology”

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 245

C90H 3216 IA32_L3_MASK_0 L3 CQE Mask for COS0 (R/W) If (CPUID.(EAX=10H,
ECX=0H):EBX[1] != 0)

31:0 Capacity Bit Mask (R/W)

63:32 Reserved.

C90H+
n

3216+n IA32_L3_MASK_n L3 CQE Mask for COSn (R/W) n = CPUID.(EAX=10H,
ECX=1H):EDX[15:0]

31:0 Capacity Bit Mask (R/W)

63:32 Reserved.

D90H 3472 IA32_BNDCFGS Supervisor State of MPX Configuration.
(R/W)

If (CPUID.(EAX=07H,
ECX=0H):EBX[14] = 1)

0 EN: Enable Intel MPX in supervisor mode

1 BNDPRESERVE: Preserve the bounds
registers for near branch instructions in the
absence of the BND prefix

11:2 Reserved, must be 0

63:12 Base Address of Bound Directory.

DA0H 3488 IA32_XSS Extended Supervisor State Mask (R/W) If(CPUID.(0DH, 1):EAX.[3]
= 1

7:0 Reserved

8 Trace Packet Configuration State (R/W)

63:9 Reserved.

DB0H 3504 IA32_PKG_HDC_CTL Package Level Enable/disable HDC (R/W) If CPUID.06H:EAX.[13] = 1

0 HDC_Pkg_Enable (R/W)

Force HDC idling or wake up HDC-idled
logical processors in the package. See
Section 14.5.2, “Package level Enabling
HDC”

If CPUID.06H:EAX.[13] = 1

63:1 Reserved.

DB1H 3505 IA32_PM_CTL1 Enable/disable HWP (R/W) If CPUID.06H:EAX.[13] = 1

0 HDC_Allow_Block (R/W)

Allow/Block this logical processor for
package level HDC control. See Section
14.5.3

If CPUID.06H:EAX.[13] = 1

63:1 Reserved.

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 246

DB2H 3506 IA32_THREAD_STALL Per-Logical_Processor HDC Idle
Residency (R/0)

If CPUID.06H:EAX.[13] = 1

63:0 Stall_Cycle_Cnt (R/W)

Stalled cycles due to HDC forced idle on this
logical processor. See Section 14.5.4.1

If CPUID.06H:EAX.[13] = 1

4000_
0000H
-
4000_
00FFH

Reserved MSR Address Space All existing and future processors will
not implement MSR in this range.

C000_
0080H

IA32_EFER Extended Feature Enables If (
CPUID.80000001H:EDX.[2
0] ||
CPUID.80000001H:EDX.[2
9])

0 SYSCALL Enable: IA32_EFER.SCE (R/W)

Enables SYSCALL/SYSRET instructions in
64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable: IA32_EFER.LME
(R/W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active: IA32_EFER.LMA (R)

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable:
IA32_EFER.NXE (R/W)

63:12 Reserved.

C000_
0081H

IA32_STAR System Call Target Address (R/W) If
CPUID.80000001:EDX.[29]
= 1

C000_
0082H

IA32_LSTAR IA-32e Mode System Call Target Address
(R/W)

If
CPUID.80000001:EDX.[29]
= 1

C000_
0084H

IA32_FMASK System Call Flag Mask (R/W) If
CPUID.80000001:EDX.[29]
= 1

C000_
0100H

IA32_FS_BASE Map of BASE Address of FS (R/W) If
CPUID.80000001:EDX.[29]
= 1

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 247

35.2 MSRS IN THE INTEL® CORE™ 2 PROCESSOR FAMILY
Table 35-3 lists model-specific registers (MSRs) for Intel Core 2 processor family and for Intel Xeon processors
based on Intel Core microarchitecture, architectural MSR addresses are also included in Table 35-3. These proces-
sors have a CPUID signature with DisplayFamily_DisplayModel of 06_0FH, see Table 16-1.

MSRs listed in Table 35-2 and Table 35-3 are also supported by processors based on the Enhanced Intel Core
microarchitecture. Processors based on the Enhanced Intel Core microarchitecture have the CPUID signature
DisplayFamily_DisplayModel of 06_17H.

The column “Shared/Unique” applies to multi-core processors based on Intel Core microarchitecture. “Unique”
means each processor core has a separate MSR, or a bit field in an MSR governs only a core independently.
“Shared” means the MSR or the bit field in an MSR address governs the operation of both processor cores.

C000_
0101H

IA32_GS_BASE Map of BASE Address of GS (R/W) If
CPUID.80000001:EDX.[29]
= 1

C000_
0102H

IA32_KERNEL_GS_BASE Swap Target of BASE Address of GS
(R/W)

If
CPUID.80000001:EDX.[29]
= 1

C000_
0103H

IA32_TSC_AUX Auxiliary TSC (RW) If CPUID.80000001H:
EDX[27] = 1

31:0 AUX: Auxiliary signature of TSC

63:32 Reserved.
NOTES:

1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are supported, software must treat them as
model-specific. Starting with Intel Core Duo processors, MSR addresses 180H-185H, 188H-197H are reserved.

2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. See Section 15.3.2.3 and Section
15.3.2.4 for more information.

3. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

Table 35-2 IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Unique See Section 35.20, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Unique See Section 35.20, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_SIZ
E

Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
andTable 35-2.

10H 16 IA32_TIME_STAMP_COUNT
ER

Unique See Section 17.14, “Time-Stamp Counter,” and see Table 35-2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 248

17H 23 IA32_PLATFORM_ID Shared Platform ID (R)
See Table 35-2.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R)

7:0 Reserved.

12:8 Maximum Qualified Ratio (R)

The maximum allowed bus ratio.

49:13 Reserved.

52:50 See Table 35-2.

63:53 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location.” and Table 35-
2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W)

Enables and disables processor features; (R) indicates current
processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

3 MCERR# Drive Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

4 Address Parity Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 249

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

11 Intel TXT Capable Chipset. (R/O)

1 = Present; 0 = Not Present

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved.

17:16 APIC Cluster ID (R/O)

18 N/2 Non-Integer Bus Ratio (R/O)

0 = Integer ratio; 1 = Non-integer ratio

19 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

26:22 Integer Bus Frequency Ratio (R/O)

3AH 58 MSR_FEATURE_CONTROL Unique Control Features in Intel 64Processor (R/W)

See Table 35-2.

3 Unique SMRR Enable (R/WL)

When this bit is set and the lock bit is set makes the
SMRR_PHYS_BASE and SMRR_PHYS_MASK registers read visible
and writeable while in SMM.

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Unique Last Branch Record 0 From IP (R/W)

One of four pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the source
instruction for one of the last four branches, exceptions, or
interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.12, “Last Branch, Interrupt, and Exception Recording

(Pentium M Processors).”

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Unique Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Unique Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 250

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Unique Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_TO_IP

Unique Last Branch Record 0 To IP (R/W)

One of four pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the
destination instruction for one of the last four branches,
exceptions, or interrupts taken by the processor.

61H 97 MSR_
LASTBRANCH_1_TO_IP

Unique Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

62H 98 MSR_
LASTBRANCH_2_TO_IP

Unique Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

63H 99 MSR_
LASTBRANCH_3_TO_IP

Unique Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

79H 121 IA32_BIOS_UPDT_TRIG Unique BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 35-2.

A0H 160 MSR_SMRR_PHYSBASE Unique System Management Mode Base Address register (WO in SMM)

Model-specific implementation of SMRR-like interface, read visible
and write only in SMM.

11:0 Reserved.

31:12 PhysBase. SMRR physical Base Address.

63:32 Reserved.

A1H 161 MSR_SMRR_PHYSMASK Unique System Management Mode Physical Address Mask register
(WO in SMM)

Model-specific implementation of SMRR-like interface, read visible
and write only in SMM.

10:0 Reserved.

11 Valid. Physical address base and range mask are valid.

31:12 PhysMask. SMRR physical address range mask.

63:32 Reserved.

C1H 193 IA32_PMC0 Unique Performance Counter Register

See Table 35-2.

C2H 194 IA32_PMC1 Unique Performance Counter Register

See Table 35-2.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 251

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Intel Core microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)

133.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 001B.

166.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 011B.

266.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 000B.

333.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 100B.

63:3 Reserved.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Enhanced Intel Core microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)
• 110B: 400 MHz (FSB 1600)

133.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 001B.

166.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 011B.

266.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 110B.

333.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 111B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW)

See Table 35-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count (RW)

See Table 35-2.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 252

FEH 254 IA32_MTRRCAP Unique See Table 35-2.

11 Unique SMRR Capability Using MSR 0A0H and 0A1H (R)

11EH 281 MSR_BBL_CR_CTL3 Shared

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Unique See Table 35-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 35-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 35-2.

179H 377 IA32_MCG_CAP Unique See Table 35-2.

17AH 378 IA32_MCG_STATUS Unique

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 253

186H 390 IA32_PERFEVTSEL0 Unique See Table 35-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 35-2.

198H 408 IA32_PERF_STATUS Shared See Table 35-2.

198H 408 MSR_PERF_STATUS Shared

15:0 Current Performance State Value.

30:16 Reserved.

31 XE Operation (R/O).

If set, XE operation is enabled. Default is cleared.

39:32 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for the processor.

45 Reserved.

46 Non-Integer Bus Ratio (R/O)

Indicates non-integer bus ratio is enabled. Applies processors
based on Enhanced Intel Core microarchitecture.

63:47 Reserved.

199H 409 IA32_PERF_CTL Unique See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Unique Clock Modulation (R/W)

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Unique Thermal Interrupt Control (R/W)

See Table 35-2.

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W)

See Table 35-2.

19DH 413 MSR_THERM2_CTL Unique

15:0 Reserved.

16 TM_SELECT (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of
the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT
has no effect. Neither TM1 nor TM2 are enabled.

63:16 Reserved.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 254

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable (R/W)

See Table 35-2.

6:4 Reserved.

7 Shared Performance Monitoring Available (R)

See Table 35-2.

8 Reserved.

9 Hardware Prefetcher Disable (R/W)

When set, disables the hardware prefetcher operation on streams
of data. When clear (default), enables the prefetch queue.

Disabling of the hardware prefetcher may impact processor
performance.

10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break
event within the processor

0 = Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

11 Shared Branch Trace Storage Unavailable (RO)

See Table 35-2.

12 Shared Precise Event Based Sampling Unavailable (RO)

See Table 35-2.

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the
die temperature is at the pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core
ratio and voltage according to the value last written to
MSR_THERM2_CTL bits 15:0.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 255

When this bit is clear (0, default), the processor does not change
the VID signals or the bus to core ratio when the processor enters
a thermally managed state.

The BIOS must enable this feature if the TM2 feature flag
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, this
feature is not supported and BIOS must not alter the contents of
the TM2 bit location.

The processor is operating out of specification if both this bit and
the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-2.

18 Shared ENABLE MONITOR FSM (R/W)

See Table 35-2.

19 Shared Adjacent Cache Line Prefetch Disable (R/W)

When set to 1, the processor fetches the cache line that contains
data currently required by the processor. When set to 0, the
processor fetches cache lines that comprise a cache line pair (128
bytes).

Single processor platforms should not set this bit. Server platforms
should set or clear this bit based on platform performance
observed in validation and testing.

BIOS may contain a setup option that controls the setting of this
bit.

20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WO)

When set, this bit causes the following bits to become read-only:

• Enhanced Intel SpeedStep Technology Select Lock (this bit),
• Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep
Technology transition is requested. This bit is cleared on reset.

21 Reserved.

22 Shared Limit CPUID Maxval (R/W)

See Table 35-2.

23 Shared xTPR Message Disable (R/W)

See Table 35-2.

33:24 Reserved.

34 Unique XD Bit Disable (R/W)

See Table 35-2.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 256

36:35 Reserved.

37 Unique DCU Prefetcher Disable (R/W)

When set to 1, The DCU L1 data cache prefetcher is disabled. The
default value after reset is 0. BIOS may write ‘1’ to disable this
feature.

The DCU prefetcher is an L1 data cache prefetcher. When the DCU
prefetcher detects multiple loads from the same line done within a
time limit, the DCU prefetcher assumes the next line will be
required. The next line is prefetched in to the L1 data cache from
memory or L2.

38 Shared IDA Disable (R/W)

When set to 1 on processors that support IDA, the Intel Dynamic
Acceleration feature (IDA) is disabled and the IDA_Enable feature
flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of IDA is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of IDA. If power-on default value is 1, IDA is
available in the processor. If power-on default value is 0, IDA is not
available.

39 Unique IP Prefetcher Disable (R/W)

When set to 1, The IP prefetcher is disabled. The default value
after reset is 0. BIOS may write ‘1’ to disable this feature.

The IP prefetcher is an L1 data cache prefetcher. The IP prefetcher
looks for sequential load history to determine whether to prefetch
the next expected data into the L1 cache from memory or L2.

63:40 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W)

See Table 35-2

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 257

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

200H 512 IA32_MTRR_PHYSBASE0 Unique See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Unique See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Unique See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Unique See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Unique See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Unique See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Unique See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Unique See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Unique See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Unique See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Unique See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Unique See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Unique See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Unique See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Unique See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Unique See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Unique See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Unique See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Unique See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Unique See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Unique See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Unique See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Unique See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Unique See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Unique See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Unique See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Unique See Table 35-2.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 258

277H 631 IA32_PAT Unique See Table 35-2.

2FFH 767 IA32_MTRR_DEF_TYPE Unique Default Memory Types (R/W)

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

309H 777 MSR_PERF_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W)

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-2.

30AH 778 MSR_PERF_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W)

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-2.

30BH 779 MSR_PERF_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W)

345H 837 IA32_PERF_CAPABILITIES Unique See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

345H 837 MSR_PERF_CAPABILITIES Unique RO. This applies to processors that do not support architectural
perfmon version 2.

5:0 LBR Format. See Table 35-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 35-2.

63:8 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Unique Fixed-Function-Counter Control Register (R/W)

See Table 35-2.

38DH 909 MSR_PERF_FIXED_CTR_
CTRL

Unique Fixed-Function-Counter Control Register (R/W)

38EH 910 IA32_PERF_GLOBAL_
STAUS

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

38EH 910 MSR_PERF_GLOBAL_STAUS Unique See Section 18.4.2, “Global Counter Control Facilities.”

38FH 911 IA32_PERF_GLOBAL_CTRL Unique See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

38FH 911 MSR_PERF_GLOBAL_CTRL Unique See Section 18.4.2, “Global Counter Control Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 MSR_PERF_GLOBAL_OVF_
CTRL

Unique See Section 18.4.2, “Global Counter Control Facilities.”

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 259

3F1H 1009 MSR_PEBS_ENABLE Unique See Table 35-2. See Section 18.4.4, “Precise Event Based Sampling
(PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC1_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 260

412H 1042 MSR_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

413H 1043 MSR_MC3_MISC Unique

414H 1044 MSR_MC5_CTL Unique

415H 1045 MSR_MC5_STATUS Unique

416H 1046 MSR_MC5_ADDR Unique

417H 1047 MSR_MC5_MISC Unique

419H 1045 MSR_MC6_STATUS Unique Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.” and
Chapter 23.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Unique Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Unique Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 261

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Unique Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 35-2.

See Section 18.13.4, “Debug Store (DS) Mechanism.”

107CC
H

MSR_EMON_L3_CTR_CTL0 Unique GBUSQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107CD
H

MSR_EMON_L3_CTR_CTL1 Unique GBUSQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107CE
H

MSR_EMON_L3_CTR_CTL2 Unique GSNPQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107CF
H

MSR_EMON_L3_CTR_CTL3 Unique GSNPQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107D0
H

MSR_EMON_L3_CTR_CTL4 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107D1
H

MSR_EMON_L3_CTR_CTL5 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 262

35.3 MSRS IN THE INTEL® ATOM™ PROCESSOR FAMILY
Table 35-4 lists model-specific registers (MSRs) for Intel Atom processor family, architectural MSR addresses are
also included in Table 35-4. These processors have a CPUID signature with DisplayFamily_DisplayModel of
06_1CH, 06_26H, 06_27H, 06_35H and 06_36H, see Table 16-1.

The column “Shared/Unique” applies to logical processors sharing the same core in processors based on the Intel
Atom microarchitecture. “Unique” means each logical processor has a separate MSR, or a bit field in an MSR
governs only a logical processor. “Shared” means the MSR or the bit field in an MSR address governs the operation
of both logical processors in the same core.

107D2
H

MSR_EMON_L3_CTR_CTL6 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107D3
H

MSR_EMON_L3_CTR_CTL7 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

107D8
H

MSR_EMON_L3_GL_CTL Unique L3/FSB Common Control Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2

C000_
0080H

IA32_EFER Unique Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Unique System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Unique Swap Target of BASE Address of GS (R/W) See Table 35-2.

Table 35-3 MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 263

Table 35-4 MSRs in Intel® Atom™ Processor Family

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Shared See Section 35.20, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Shared See Section 35.20, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
andTable 35-2

10H 16 IA32_TIME_STAMP_
COUNTER

Unique See Section 17.14, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R)
See Table 35-2.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R)

7:0 Reserved.

12:8 Maximum Qualified Ratio (R)

The maximum allowed bus ratio.

63:13 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W) Enables and
disables processor features;

(R) indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

3 AERR# Drive Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

4 BERR# Enable for initiator bus requests (R/W)

1 = Enabled; 0 = Disabled
Always 0.

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 264

8 Reserved.

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

10 AERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

11 Reserved.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

Always 00B.

19: 18 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio (R/O)

3AH 58 IA32_FEATURE_CONTROL Unique Control Features in Intel 64Processor (R/W)

See Table 35-2.

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Unique Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the source
instruction for one of the last eight branches, exceptions, or
interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.12, “Last Branch, Interrupt, and Exception Recording

(Pentium M Processors).”

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Unique Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Unique Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Unique Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_
LASTBRANCH_4_FROM_IP

Unique Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 265

45H 69 MSR_
LASTBRANCH_5_FROM_IP

Unique Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_FROM_IP

Unique Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_FROM_IP

Unique Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_TO_IP

Unique Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the
destination instruction for one of the last eight branches,
exceptions, or interrupts taken by the processor.

61H 97 MSR_
LASTBRANCH_1_TO_IP

Unique Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

62H 98 MSR_
LASTBRANCH_2_TO_IP

Unique Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

63H 99 MSR_
LASTBRANCH_3_TO_IP

Unique Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

64H 100 MSR_
LASTBRANCH_4_TO_IP

Unique Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

65H 101 MSR_
LASTBRANCH_5_TO_IP

Unique Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

66H 102 MSR_
LASTBRANCH_6_TO_IP

Unique Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

67H 103 MSR_
LASTBRANCH_7_TO_IP

Unique Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

79H 121 IA32_BIOS_UPDT_TRIG Shared BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Unique Performance counter register

See Table 35-2.

C2H 194 IA32_PMC1 Unique Performance Counter Register

See Table 35-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Intel Atom microarchitecture:

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 266

2:0 • 111B: 083 MHz (FSB 333)
• 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 001B.

166.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 011B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW)

See Table 35-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Shared Memory Type Range Register (R)

See Table 35-2.

11EH 281 MSR_BBL_CR_CTL3 Shared

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Unique See Table 35-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 35-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 35-2.

179H 377 IA32_MCG_CAP Unique See Table 35-2.

17AH 378 IA32_MCG_STATUS Unique

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 267

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Unique See Table 35-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 35-2.

198H 408 IA32_PERF_STATUS Shared See Table 35-2.

198H 408 MSR_PERF_STATUS Shared

15:0 Current Performance State Value.

39:16 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for the processor.

63:45 Reserved.

199H 409 IA32_PERF_CTL Unique See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Unique Clock Modulation (R/W)

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Unique Thermal Interrupt Control (R/W)

See Table 35-2.

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W)

See Table 35-2.

19DH 413 MSR_THERM2_CTL Shared

15:0 Reserved.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 268

16 TM_SELECT (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of
the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT
has no effect. Neither TM1 nor TM2 are enabled.

63:17 Reserved.

1A0H 416 IA32_MISC_ENABLE Unique Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable (R/W)

See Table 35-2.

6:4 Reserved.

7 Shared Performance Monitoring Available (R)

See Table 35-2.

8 Reserved.

9 Reserved.

10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break
event within the processor

0 = Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

11 Shared Branch Trace Storage Unavailable (RO)

See Table 35-2.

12 Shared Precise Event Based Sampling Unavailable (RO)

See Table 35-2.

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the
die temperature is at the pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core
ratio and voltage according to the value last written to
MSR_THERM2_CTL bits 15:0.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 269

When this bit is clear (0, default), the processor does not change
the VID signals or the bus to core ratio when the processor enters
a thermally managed state.

The BIOS must enable this feature if the TM2 feature flag
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, this
feature is not supported and BIOS must not alter the contents of
the TM2 bit location.

The processor is operating out of specification if both this bit and
the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-2.

18 Shared ENABLE MONITOR FSM (R/W)

See Table 35-2.

19 Reserved.

20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WO)

When set, this bit causes the following bits to become read-only:

• Enhanced Intel SpeedStep Technology Select Lock (this bit),
• Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep
Technology transition is requested. This bit is cleared on reset.

21 Reserved.

22 Unique Limit CPUID Maxval (R/W)

See Table 35-2.

23 Shared xTPR Message Disable (R/W)

See Table 35-2.

33:24 Reserved.

34 Unique XD Bit Disable (R/W)

See Table 35-2.

63:35 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-2) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W)

See Table 35-2.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 270

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

200H 512 IA32_MTRR_PHYSBASE0 Shared See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Shared See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Shared See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Shared See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Shared See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Shared See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Shared See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Shared See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Shared See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Shared See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Shared See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Shared See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Shared See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Shared See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Shared See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Shared See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Shared See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Shared See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Shared See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Shared See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Shared See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Shared See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Shared See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Shared See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Shared See Table 35-2.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 271

26EH 622 IA32_MTRR_FIX4K_F0000 Shared See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Shared See Table 35-2.

277H 631 IA32_PAT Unique See Table 35-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Shared See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Unique Fixed-Function-Counter Control Register (R/W)

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

38FH 911 IA32_PERF_GLOBAL_CTRL Unique See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Unique See Table 35-2. See Section 18.4.4, “Precise Event Based Sampling
(PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 272

40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40CH 1036 MSR_MC3_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC3_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

410H 1040 MSR_MC4_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC4_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Unique Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Unique Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 273

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Unique Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 35-2.

See Section 18.13.4, “Debug Store (DS) Mechanism.”

C000_
0080H

IA32_EFER Unique Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Unique System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS (R/W)

See Table 35-2.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 274

...

35.4 MSRS IN THE PROCESSORS BASED ON SILVERMONT
MICROARCHITECTURE

Table 35-6 lists model-specific registers (MSRs) for Intel processors based on the Silvermont microarchitecture
These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_37H, 06_4AH, 06_4DH,
06_5AH, and 06_5DH, see Table 16-1.

The column “Scope” lists the core/shared/package granularity of sharing in the Silvermont microarchitecture.
“Core” means each processor core has a separate MSR, or a bit field not shared with another processor core.
“Shared” means the MSR or the bit field is shared by more than one processor cores in the physical package.
“Package” means all processor cores in the physical package share the same MSR or bit interface.

C000_
0102H

IA32_KERNEL_GSBASE Unique Swap Target of BASE Address of GS (R/W) See Table 35-2.

Table 35-4 MSRs in Intel® Atom™ Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

0H 0 IA32_P5_MC_ADDR Shared See Section 35.20, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Shared See Section 35.20, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Core See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
andTable 35-2

10H 16 IA32_TIME_STAMP_
COUNTER

Core See Section 17.14, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R)
See Table 35-2.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R)

7:0 Reserved.

12:8 Maximum Qualified Ratio (R)

The maximum allowed bus ratio.

49:13 Reserved.

52:50 See Table 35-2

63:33 Reserved.

1BH 27 IA32_APIC_BASE Core See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 275

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W) Enables and
disables processor features;

(R) indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

3 AERR# Drive Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

4 BERR# Enable for initiator bus requests (R/W)

1 = Enabled; 0 = Disabled
Always 0.

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

8 Reserved.

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

10 AERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

11 Reserved.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

Always 00B.

19: 18 Reserved.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 276

21: 20 Symmetric Arbitration ID (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio (R/O)

34H 52 MSR_SMI_COUNT Core SMI Counter (R/O)

31:0 SMI Count (R/O)

Running count of SMI events since last RESET.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Core Control Features in Intel 64Processor (R/W)

See Table 35-2.

0 Lock (R/WL)

1 Reserved

2 Enable VMX outside SMX operation (R/WL)

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Core Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the source
instruction for one of the last eight branches, exceptions, or
interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.12, “Last Branch, Interrupt, and Exception Recording

(Pentium M Processors).”

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Core Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Core Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Core Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_
LASTBRANCH_4_FROM_IP

Core Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_FROM_IP

Core Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_FROM_IP

Core Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_FROM_IP

Core Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 277

60H 96 MSR_
LASTBRANCH_0_TO_IP

Core Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the
destination instruction for one of the last eight branches,
exceptions, or interrupts taken by the processor.

61H 97 MSR_
LASTBRANCH_1_TO_IP

Core Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

62H 98 MSR_
LASTBRANCH_2_TO_IP

Core Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

63H 99 MSR_
LASTBRANCH_3_TO_IP

Core Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

64H 100 MSR_
LASTBRANCH_4_TO_IP

Core Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

65H 101 MSR_
LASTBRANCH_5_TO_IP

Core Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

66H 102 MSR_
LASTBRANCH_6_TO_IP

Core Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

67H 103 MSR_
LASTBRANCH_7_TO_IP

Core Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Core BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Core Performance counter register

See Table 35-2.

C2H 194 IA32_PMC1 Core Performance Counter Register

See Table 35-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Silvermont microarchitecture:

2:0 • 100B: 080.0 MHz
• 000B: 083.3 MHz
• 001B: 100.0 MHz
• 010B: 133.3 MHz
• 011B: 116.7 MHz

63:3 Reserved.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 278

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Shared C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

100b: C4

110b: C6

111b: C7 (Silvermont only).

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Shared Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to
be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

100b - C4 is the max C-State to include

110b - C6 is the max C-State to include

111b - C7 is the max C-State to include

63:19 Reserved.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 279

E7H 231 IA32_MPERF Core Maximum Performance Frequency Clock Count (RW)

See Table 35-2.

E8H 232 IA32_APERF Core Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Core Memory Type Range Register (R)

See Table 35-2.

11EH 281 MSR_BBL_CR_CTL3 Shared

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Core See Table 35-2.

175H 373 IA32_SYSENTER_ESP Core See Table 35-2.

176H 374 IA32_SYSENTER_EIP Core See Table 35-2.

179H 377 IA32_MCG_CAP Core See Table 35-2.

17AH 378 IA32_MCG_STATUS Core

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 280

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Core See Table 35-2.

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 Reserved

22 EN

23 INV

31:24 CMASK

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 Core See Table 35-2.

198H 408 IA32_PERF_STATUS Shared See Table 35-2.

199H 409 IA32_PERF_CTL Core See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Core Clock Modulation (R/W)

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-2.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Core Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Shared Automatic Thermal Control Circuit Enable (R/W)

See Table 35-2.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 281

6:4 Reserved.

7 Core Performance Monitoring Available (R)

See Table 35-2.

10:8 Reserved.

11 Core Branch Trace Storage Unavailable (RO)

See Table 35-2.

12 Core Precise Event Based Sampling Unavailable (RO)

See Table 35-2.

15:13 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-2.

18 Core ENABLE MONITOR FSM (R/W)

See Table 35-2.

21:19 Reserved.

22 Core Limit CPUID Maxval (R/W)

See Table 35-2.

23 Shared xTPR Message Disable (R/W)

See Table 35-2.

33:24 Reserved.

34 Core XD Bit Disable (R/W)

See Table 35-2.

37:35 Reserved.

38 Shared Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Package

15:0 Reserved.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 282

23:16 Temperature Target (R)

The default thermal throttling or PROCHOT# activation
temperature in degree C, The effective temperature for thermal
throttling or PROCHOT# activation is “Temperature Target” +
“Target Offset”

29:24 Target Offset (R/W)

Specifies an offset in degrees C to adjust the throttling and
PROCHOT# activation temperature from the default target
specified in TEMPERATURE_TARGET (bits 23:16).

63:30 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Shared Offcore Response Event Select Register (R/W)

1A7H 423 MSR_OFFCORE_RSP_1 Shared Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode (RW)

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved

1B0H 432 IA32_ENERGY_PERF_BIAS Core See Table 35-2.

1C9H 457 MSR_LASTBRANCH_TOS Core Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-2) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Core Debug Control (R/W)

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Core Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Core Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 283

200H 512 IA32_MTRR_PHYSBASE0 Core See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Core See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Core See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Core See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Core See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Core See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Core See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Core See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Core See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Core See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Core See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Core See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Core See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Core See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Core See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Core See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Core See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Core See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Core See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Core See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Core See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Core See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Core See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Core See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Core See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Core See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Core See Table 35-2.

277H 631 IA32_PAT Core See Table 35-2.

2FFH 767 IA32_MTRR_DEF_TYPE Core Default Memory Types (R/W)

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Core Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 284

30AH 778 IA32_FIXED_CTR1 Core Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Core Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Core See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Core Fixed-Function-Counter Control Register (R/W)

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Core See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

38FH 911 IA32_PERF_GLOBAL_CTRL Core See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Core See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Core See Table 35-2. See Section 18.4.4, “Precise Event Based Sampling
(PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

3FAH 1018 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Counts at the TSC Frequency.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Counts at the TSC Frequency.

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 285

40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40CH 1036 MSR_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

480H 1152 IA32_VMX_BASIC Core Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Core Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Core Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 286

483H 1155 IA32_VMX_EXIT_CTLS Core Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Core Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Core Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Core Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Core Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Core Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Core Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Core Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Core Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Core Capability Reporting Register of EPT and VPID (R/O)

See Table 35-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Core Capability Reporting Register of Pin-based VM-execution Flex
Controls (R/O)

See Table 35-2

48EH 1166 IA32_VMX_TRUE_PROCBA
SED_CTLS

Core Capability Reporting Register of Primary Processor-based
VM-execution Flex Controls (R/O)

See Table 35-2

48FH 1167 IA32_VMX_TRUE_EXIT_CT
LS

Core Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 35-2

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 287

...

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Core Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 35-2

491H 1169 IA32_VMX_FMFUNC Core Capability Reporting Register of VM-function Controls (R/O)

See Table 35-2

4C1H 1217 IA32_A_PMC0 Core See Table 35-2.

4C2H 1218 IA32_A_PMC1 Core See Table 35-2.

600H 1536 IA32_DS_AREA Core DS Save Area (R/W)

See Table 35-2.

See Section 18.13.4, “Debug Store (DS) Mechanism.”

660H 1632 MSR_CORE_C1_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C1 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C1
states. Counts at the TSC frequency.

6E0H 1760 IA32_TSC_DEADLINE Core TSC Target of Local APIC’s TSC Deadline Mode (R/W)

See Table 35-2

C000_
0080H

IA32_EFER Core Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Core System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Core IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Core System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Core Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Core Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Core Swap Target of BASE Address of GS (R/W) See Table 35-2.

C000_
0103H

IA32_TSC_AUX Core AUXILIARY TSC Signature. (R/W) See Table 35-2

Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 288

35.4.1 MSRs In Intel Atom Processors Based on Airmont Microarchitecture
Intel Atom processor X7-Z8000 and X5-Z8000 series are based on the Airmont microarchitecture. They support
MSRs listed in Table 35-6, Table 35-7, and Table 35-10. These processors have a CPUID signature with
DisplayFamily_DisplayModel including 06_4CH, see Table 16-1.

Table 35-10 MSRs in Intel Atom Processors Based on the Airmont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Airmont microarchitecture:

3:0 • 0000B: 083.3 MHz
• 0001B: 100.0 MHz
• 0010B: 133.3 MHz
• 0011B: 116.7 MHz
• 0100B: 080.0 MHz
• 0101B: 093.3 MHz
• 0110B: 090.0 MHz
• 0111B: 088.9 MHz
• 10sure00B: 087.5 MHz

63:5 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Shared C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: No limit

001b: C1

010b: C2

110b: C6

111b: C7

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 289

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Shared Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to
be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - Deep Power Down Technology is the max C-State

010b - C7 is the max C-State to include

63:19 Reserved.

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

14:0 PP0 Power Limit #1. (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.” and
MSR_RAPL_POWER_UNIT in Table 35-7.

15 Enable Power Limit #1. (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

16 Reserved

23:17 Time Window for Power Limit #1. (R/W)

Specifies the time duration over which the average power must
remain below PP0_POWER_LIMIT #1(14:0). Supported Encodings:

0x0: 1 second time duration.

0x1: 5 second time duration (Default).

0x2: 10 second time duration.

0x3: 15 second time duration.

0x4: 20 second time duration.

0x5: 25 second time duration.

0x6: 30 second time duration.

0x7: 35 second time duration.

0x8: 40 second time duration.

0x9: 45 second time duration.

0xA: 50 second time duration.

0xB-0x7F - reserved.

63:24 Reserved

Table 35-10 MSRs in Intel Atom Processors Based on the Airmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 290

...

35.5 MSRS IN THE INTEL® MICROARCHITECTURE CODE NAME NEHALEM
Table 35-11 lists model-specific registers (MSRs) that are common for Intel® microarchitecture code name
Nehalem. These include Intel Core i7 and i5 processor family. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_1AH, 06_1EH, 06_1FH, 06_2EH, see Table 16-1. Additional MSRs specific to
06_1AH, 06_1EH, 06_1FH are listed in Table 35-12. Some MSRs listed in these tables are used by BIOS. More
information about these MSR can be found at http://biosbits.org.

The column “Scope” represents the package/core/thread scope of individual bit field of an MSR. “Thread” means
this bit field must be programmed on each logical processor independently. “Core” means the bit field must be
programmed on each processor core independently, logical processors in the same core will be affected by
change of this bit on the other logical processor in the same core. “Package” means the bit field must be
programmed once for each physical package. Change of a bit filed with a package scope will affect all logical
processors in that physical package.

...

35.5.2 Additional MSRs in the Intel® Xeon® Processor 7500 Series

Intel Xeon Processor 7500 series support MSRs listed in Table 35-11 (except MSR address 1ADH) and additional
model-specific registers listed in Table 35-13. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_2EH.

...

35.6 MSRS IN THE INTEL® XEON® PROCESSOR 5600 SERIES (BASED ON
INTEL® MICROARCHITECTURE CODE NAME WESTMERE)

Intel® Xeon® Processor 5600 Series (based on Intel® microarchitecture code name Westmere) supports the
MSR interfaces listed in Table 35-11, Table 35-12, plus additional MSR listed in Table 35-14. These MSRs apply
to Intel Core i7, i5 and i3 processor family with CPUID signature DisplayFamily_DisplayModel of 06_25H and
06_2CH, see Table 16-1.

...

35.7 MSRS IN THE INTEL® XEON® PROCESSOR E7 FAMILY (BASED ON INTEL®
MICROARCHITECTURE CODE NAME WESTMERE)

Intel® Xeon® Processor E7 Family (based on Intel® microarchitecture code name Westmere) supports the MSR
interfaces listed in Table 35-11 (except MSR address 1ADH), Table 35-12, plus additional MSR listed in Table
35-15. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_2FH.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 291

35.8 MSRS IN INTEL® PROCESSOR FAMILY BASED ON INTEL®
MICROARCHITECTURE CODE NAME SANDY BRIDGE

Table 35-16 lists model-specific registers (MSRs) that are common to Intel® processor family based on Intel
microarchitecture code name Sandy Bridge. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_2AH, 06_2DH, see Table 16-1. Additional MSRs specific to 06_2AH are listed in
Table 35-17.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge

Register
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 35.20, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 35.20, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,”
and Table 35-2.

10H 16 IA32_TIME_STAMP_
COUNTER

Thread See Section 17.14, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 35-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

Count SMIs.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 35-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Thread BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register

See Table 35-2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 292

C2H 194 IA32_PMC1 Thread Performance Counter Register

See Table 35-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register

See Table 35-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register

See Table 35-2.

C5H 197 IA32_PMC4 Core Performance Counter Register (if core not shared by threads)

C6H 198 IA32_PMC5 Core Performance Counter Register (if core not shared by threads)

C7H 199 IA32_PMC6 Core Performance Counter Register (if core not shared by threads)

C8H 200 IA32_PMC7 Core Performance Counter Register (if core not shared by threads)

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 293

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

24:16 Reserved.

25 C3 state auto demotion enable (R/W)

When set, the processor will conditionally demote C6/C7 requests
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W)

When set, the processor will conditionally demote C3/C6/C7
requests to C1 based on uncore auto-demote information.

27 Enable C3 undemotion (R/W)

When set, enables undemotion from demoted C3.

28 Enable C1 undemotion (R/W)

When set, enables undemotion from demoted C1.

63:29 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 294

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is
the IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name
to be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 35-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Thread See Table 35-2.

174H 372 IA32_SYSENTER_CS Thread See Table 35-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 35-2.

179H 377 IA32_MCG_CAP Thread See Table 35-2.

17AH 378 IA32_MCG_STATUS Thread

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 295

186H 390 IA32_
PERFEVTSEL0

Thread See Table 35-2.

187H 391 IA32_
PERFEVTSEL1

Thread See Table 35-2.

188H 392 IA32_
PERFEVTSEL2

Thread See Table 35-2.

189H 393 IA32_
PERFEVTSEL3

Thread See Table 35-2.

18AH 394 IA32_
PERFEVTSEL4

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18BH 395 IA32_
PERFEVTSEL5

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18CH 396 IA32_
PERFEVTSEL6

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18DH 397 IA32_
PERFEVTSEL7

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

198H 408 IA32_PERF_STATUS Package See Table 35-2.

15:0 Current Performance State Value.

63:16 Reserved.

198H 408 MSR_PERF_STATUS Package

47:32 Core Voltage (R/O)

P-state core voltage can be computed by

MSR_PERF_STATUS[37:32] * (float) 1/(2^13).

199H 409 IA32_PERF_CTL Thread See Table 35-2.

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation (R/W)

See Table 35-2

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

3:0 On demand Clock Modulation Duty Cycle (R/W)

In 6.25% increment

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-2.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 296

0 Thermal status (RO)

See Table 35-2.

1 Thermal status log (R/WC0)

See Table 35-2.

2 PROTCHOT # or FORCEPR# status (RO)

See Table 35-2.

3 PROTCHOT # or FORCEPR# log (R/WC0)

See Table 35-2.

4 Critical Temperature status (RO)

See Table 35-2.

5 Critical Temperature status log (R/WC0)

See Table 35-2.

6 Thermal threshold #1 status (RO)

See Table 35-2.

7 Thermal threshold #1 log (R/WC0)

See Table 35-2.

8 Thermal threshold #2 status (RO)

See Table 35-2.

9 Thermal threshold #2 log (R/WC0)

See Table 35-2.

10 Power Limitation status (RO)

See Table 35-2.

11 Power Limitation log (R/WC0)

See Table 35-2.

15:12 Reserved.

22:16 Digital Readout (RO)

See Table 35-2.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

See Table 35-2.

31 Reading Valid (RO)

See Table 35-2.

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 297

0 Thread Fast-Strings Enable

See Table 35-2

6:1 Reserved.

7 Thread Performance Monitoring Available (R)

See Table 35-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable (RO)

See Table 35-2.

12 Thread Precise Event Based Sampling Unavailable (RO)

See Table 35-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 35-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval (R/W)

See Table 35-2.

23 Thread xTPR Message Disable (R/W)

See Table 35-2.

33:24 Reserved.

34 Thread XD Bit Disable (R/W)

See Table 35-2.

37:35 Reserved.

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Unique

15:0 Reserved.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 298

23:16 Temperature Target (R)

The minimum temperature at which PROCHOT# will be asserted.
The value is degree C.

63:24 Reserved.

1A4H 420 MSR_MISC_FEATURE_
CONTROL

Miscellaneous Feature Control (R/W)

0 Core L2 Hardware Prefetcher Disable (R/W)

If 1, disables the L2 hardware prefetcher, which fetches additional
lines of code or data into the L2 cache.

1 Core L2 Adjacent Cache Line Prefetcher Disable (R/W)

If 1, disables the adjacent cache line prefetcher, which fetches the
cache line that comprises a cache line pair (128 bytes).

2 Core DCU Hardware Prefetcher Disable (R/W)

If 1, disables the L1 data cache prefetcher, which fetches the next
cache line into L1 data cache.

3 Core DCU IP Prefetcher Disable (R/W)

If 1, disables the L1 data cache IP prefetcher, which uses
sequential load history (based on instruction Pointer of previous
loads) to determine whether to prefetch additional lines.

63:4 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1A7H 422 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT See http://biosbits.org.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 35-2.

1B1H 433 IA32_PACKAGE_THERM_
STATUS

Package See Table 35-2.

1B2H 434 IA32_PACKAGE_THERM_
INTERRUPT

Package See Table 35-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

See Section 17.6.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 299

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 35-2.

0 LBR: Last Branch Record

1 BTF

5:2 Reserved.

6 TR: Branch Trace

7 BTS: Log Branch Trace Message to BTS buffer

8 BTINT

9 BTS_OFF_OS

10 BTS_OFF_USER

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

63:15 Reserved.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

1FCH 508 MSR_POWER_CTL Core See http://biosbits.org.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 35-2.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 300

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 35-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 35-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 35-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 35-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 35-2.

277H 631 IA32_PAT Thread See Table 35-2.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 301

280H 640 IA32_MC0_CTL2 Core See Table 35-2.

281H 641 IA32_MC1_CTL2 Core See Table 35-2.

282H 642 IA32_MC2_CTL2 Core See Table 35-2.

283H 643 IA32_MC3_CTL2 Core See Table 35-2.

284H 644 MSR_MC4_CTL2 Package Always 0 (CMCI not supported).

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W)

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 35-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 35-2.

11:8 PEBS_REC_FORMAT. See Table 35-2.

12 SMM_FREEZE. See Table 35-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Thread Ovf_PMC0

1 Thread Ovf_PMC1

2 Thread Ovf_PMC2

3 Thread Ovf_PMC3

4 Core Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Core Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Core Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Core Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 302

32 Thread Ovf_FixedCtr0

33 Thread Ovf_FixedCtr1

34 Thread Ovf_FixedCtr2

60:35 Reserved.

61 Thread Ovf_Uncore

62 Thread Ovf_BufDSSAVE

63 Thread CondChgd

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Thread Set 1 to enable PMC0 to count

1 Thread Set 1 to enable PMC1 to count

2 Thread Set 1 to enable PMC2 to count

3 Thread Set 1 to enable PMC3 to count

4 Core Set 1 to enable PMC4 to count (if CPUID.0AH:EAX[15:8] > 4)

5 Core Set 1 to enable PMC5 to count (if CPUID.0AH:EAX[15:8] > 5)

6 Core Set 1 to enable PMC6 to count (if CPUID.0AH:EAX[15:8] > 6)

7 Core Set 1 to enable PMC7 to count (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to enable FixedCtr0 to count

33 Thread Set 1 to enable FixedCtr1 to count

34 Thread Set 1 to enable FixedCtr2 to count

63:35 Reserved.

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Thread Set 1 to clear Ovf_PMC0

1 Thread Set 1 to clear Ovf_PMC1

2 Thread Set 1 to clear Ovf_PMC2

3 Thread Set 1 to clear Ovf_PMC3

4 Core Set 1 to clear Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Core Set 1 to clear Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Core Set 1 to clear Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Core Set 1 to clear Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to clear Ovf_FixedCtr0

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 303

33 Thread Set 1 to clear Ovf_FixedCtr1

34 Thread Set 1 to clear Ovf_FixedCtr2

60:35 Reserved.

61 Thread Set 1 to clear Ovf_Uncore

62 Thread Set 1 to clear Ovf_BufDSSAVE

63 Thread Set 1 to clear CondChgd

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.7.1.1, “Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

62:36 Reserved.

63 Enable Precise Store. (R/W)

3F6H 1014 MSR_PEBS_LD_LAT Thread see See Section 18.7.1.2, “Load Latency Performance Monitoring
Facility.”

15:0 Minimum threshold latency value of tagged load operation that will
be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Count at the same frequency as the TSC.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 304

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Count at the same frequency as the TSC.

3FEH 1022 MSR_CORE_C7_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C7 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C7
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

403H 1027 IA32_MC0_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

406H 1030 IA32_MC1_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

407H 1031 IA32_MC1_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 305

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

0 PCU Hardware Error (R/W)

When set, enables signaling of PCU hardware detected errors.

1 PCU Controller Error (R/W)

When set, enables signaling of PCU controller detected errors

2 PCU Firmware Error (R/W)

When set, enables signaling of PCU firmware detected errors

63:2 Reserved.

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 306

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Thread Capability Reporting Register of EPT and VPID (R/O)

See Table 35-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Thread Capability Reporting Register of Pin-based VM-execution Flex
Controls (R/O)

See Table 35-2

48EH 1166 IA32_VMX_TRUE_PROCBAS
ED_CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Flex Controls (R/O)

See Table 35-2

48FH 1167 IA32_VMX_TRUE_EXIT_CTL
S

Thread Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 35-2

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Thread Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 35-2

4C1H 1217 IA32_A_PMC0 Thread See Table 35-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 35-2.

4C3H 1219 IA32_A_PMC2 Thread See Table 35-2.

4C4H 1220 IA32_A_PMC3 Thread See Table 35-2.

4C5H 1221 IA32_A_PMC4 Core See Table 35-2.

4C6H 1222 IA32_A_PMC5 Core See Table 35-2.

4C7H 1223 IA32_A_PMC6 Core See Table 35-2.

4C8H 1224 IA32_A_PMC7 Core See Table 35-2.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 307

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-2.

See Section 18.13.4, “Debug Store (DS) Mechanism.”

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.9.1, “RAPL Interfaces.”

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C3 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60BH 1547 MSR_PKGC6_IRTL Package Package C6 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the package to exit from
C6 to a C0 state, where interrupt request can be delivered to the
core and serviced. Additional core-exit latency amy be applicable
depending on the actual C-state the core is in.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C6 state.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 308

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C2 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C2
states. Count at the same frequency as the TSC.

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.9.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) See Section 14.9.3, “Package RAPL
Domain.”

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
source instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 309

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_FROM_IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_FROM_IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
destination instruction.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 310

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6E0H 1760 IA32_TSC_DEADLINE Thread See Table 35-2.

802H-
83FH

X2APIC MSRs Thread See Table 35-2.

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 311

...

35.8.2 MSRs In Intel® Xeon® Processor E5 Family (Based on Intel® Microarchitecture Code
Name Sandy Bridge)

Table 35-18 lists additional model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5
Family (based on Intel® microarchitecture code name Sandy Bridge). These processors have a CPUID signature
with DisplayFamily_DisplayModel of 06_2DH, and also supports MSRs listed in Table 35-16 and Table 35-19.

...

35.9 MSRS IN THE 3RD GENERATION INTEL® CORE™ PROCESSOR FAMILY
(BASED ON INTEL® MICROARCHITECTURE CODE NAME IVY BRIDGE)

The 3rd generation Intel® Core™ processor family and Intel® Xeon® processor E3-1200v2 product family
(based on Intel microarchitecture code name Ivy Bridge) supports the MSR interfaces listed in Table 35-16,
Table 35-17 and Table 35-20. These processors have a CPUID signature with DisplayFamily_DisplayModel of
06_3AH.

...

35.10 MSRS IN THE 4TH GENERATION INTEL® CORE™ PROCESSORS (BASED ON
HASWELL MICROARCHITECTURE)

The 4th generation Intel® Core™ processor family and Intel® Xeon® processor E3-1200v3 product family (based
on Haswell microarchitecture), with CPUID DisplayFamily_DisplayModel signature 06_3CH/06_45H/06_46H,
support the MSR interfaces listed in Table 35-16, Table 35-17, and Table 35-24. For an MSR listed in Table 35-16
that also appears in Table 35-24, Table 35-24 supercede Table 35-16.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W)

See Table 35-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature (R/W)

See Table 35-2 and Section 17.14.2, “IA32_TSC_AUX Register and
RDTSCP Support.”

Table 35-16 MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 312

The MSRs listed in Table 35-24 also apply to processors based on Haswell-E microarchitecture (see Section
35.11).

Table 35-24 Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3BH 59 IA32_TSC_ADJUST THREAD Per-Logical-Processor TSC ADJUST (R/W)

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

31:30 Reserved.

32 Package Low Power Mode Support (LPM) (R/O)

When set to 1, indicates that LPM is supported, and when set to 0,
indicates LPM is not supported.

34:33 Package Number of ConfigTDP Levels (R/O)

00: Only Base TDP level available.

01: One additional TDP level available.

02: Two additional TDP level available.

11: Reserved

39:35 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

55:48 Package Minimum Operating Ratio (R/O)

Contains the minimum supported

operating ratio in units of 100 MHz.

63:56 Reserved.

186H 390 IA32_PERFEVTSEL0 THREAD Performance Event Select for Counter 0 (R/W)

Supports all fields described inTable 35-2 and the fields below.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 313

32 IN_TX: see Section 18.10.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

187H 391 IA32_PERFEVTSEL1 THREAD Performance Event Select for Counter 1 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.10.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

188H 392 IA32_PERFEVTSEL2 THREAD Performance Event Select for Counter 2 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.10.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

33 IN_TXCP: see Section 18.10.5.1

When IN_TXCP=1 & IN_TX=1 and in sampling, spurious PMI may
occur and transactions may continuously abort near overflow
conditions. Software should favor using IN_TXCP for counting over
sampling. If sampling, software should use large “sample-after”
value after clearing the counter configured to use IN_TXCP and
also always reset the counter even when no overflow condition
was reported.

189H 393 IA32_PERFEVTSEL3 THREAD Performance Event Select for Counter 3 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.10.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to
prevent incorrect results

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 35-2.

0 LBR: Last Branch Record

1 BTF

5:2 Reserved.

6 TR: Branch Trace

7 BTS: Log Branch Trace Message to BTS buffer

8 BTINT

9 BTS_OFF_OS

10 BTS_OFF_USER

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

Table 35-24 Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 314

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

15 RTM_DEBUG

63:15 Reserved.

491H 1169 IA32_VMX_VMFUNC THREAD Capability Reporting Register of VM-function Controls (R/O)

See Table 35-2

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSRDDRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Base TDP Ratio (R/O)

7:0 Config_TDP_Base

Base TDP level ratio to be used for this specific processor (in units
of 100 MHz).

63:8 Reserved.

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O)

14:0 PKG_TDP_LVL1. Power setting for ConfigTDP Level 1.

15 Reserved

23:16 Config_TDP_LVL1_Ratio. ConfigTDP level 1 ratio to be used for this
specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL1. Max Power setting allowed for ConfigTDP
Level 1.

62:47 PKG_MIN_PWR_LVL1. MIN Power setting allowed for ConfigTDP
Level 1.

63 Reserved.

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O)

14:0 PKG_TDP_LVL2. Power setting for ConfigTDP Level 2.

15 Reserved

23:16 Config_TDP_LVL2_Ratio. ConfigTDP level 2 ratio to be used for this
specific processor.

31:24 Reserved

46:32 PKG_MAX_PWR_LVL2. Max Power setting allowed for ConfigTDP
Level 2.

62:47 PKG_MIN_PWR_LVL2. MIN Power setting allowed for ConfigTDP
Level 2.

Table 35-24 Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 315

35.10.1 MSRs in 4th Generation Intel® Core™ Processor Family (based on Haswell
Microarchitecture)

Table 35-25 lists model-specific registers (MSRs) that are specific to 4th generation Intel® Core™ processor
family and Intel® Xeon® processor E3-1200 v3 product family (based on Haswell microarchitecture). These
processors have a CPUID signature with DisplayFamily_DisplayModel of 06_3CH/06_45H/06_46H, see Table 16-
1.

63 Reserved.

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

1:0 TDP_LEVEL (RW/L)

System BIOS can program this field.

30:2 Reserved.

31 Config_TDP_Lock (RW/L)

When this bit is set, the content of this register is locked until a
reset.

63:32 Reserved.

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field.

30:8 Reserved.

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is locked until a
reset.

63:32 Reserved.

C80H 3200 IA32_DEBUG_FEATURE Package Silicon Debug Feature Control (R/W)

See Table 35-2.

Table 35-24 Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

http://biosbits.org

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 316

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

63:29 Reserved

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is
supported and the MSR_SMM_FEATURE_CONTROL is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and the MSR_SMM_DELAYED is supported.

63:60 Reserved

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 317

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

9 EN_CALL_STACK

63:9 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

392H 914 MSR_UNC_PERF_GLOBAL_
STATUS

Package Uncore PMU main status

0 Fixed counter overflowed

1 An ARB counter overflowed

2 Reserved

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 318

3 A CBox counter overflowed (on any slice)

63:4 Reserved.

394H 916 MSR_UNC_PERF_FIXED_
CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow propagation

21 Reserved

22 Enable counting

63:23 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box configuration information (R/O)

3:0 Encoded number of C-Box, derive value by “-1“

63:4 Reserved.

3B0H 946 MSR_UNC_ARB_PER_CTR0 Package Uncore Arb unit, performance counter 0

3B1H 947 MSR_UNC_ARB_PER_CTR1 Package Uncore Arb unit, performance counter 1

3B2H 944 MSR_UNC_ARB_
PERFEVTSEL0

Package Uncore Arb unit, counter 0 event select MSR

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 319

47:0 Current count

63:48 Reserved.

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

4E0H 1248 MSR_SMM_FEATURE_CONT
ROL

Package Enhanced SMM Feature Control (SMM-RW)

Reports SMM capability Enhancement. Accessible only while in
SMM.

0 Lock (SMM-RWO)

When set to ‘1’ locks this register from further changes

1 Reserved

2 SMM_Code_Chk_En (SMM-RW)

This control bit is available only if MSR_SMM_MCA_CAP[58] == 1.
When set to ‘0’ (default) none of the logical processors are
prevented from executing SMM code outside the ranges defined by
the SMRR.

When set to ‘1’ any logical processor in the package that attempts
to execute SMM code not within the ranges defined by the SMRR
will assert an unrecoverable MCE.

63:3 Reserved

4E2H 1250 MSR_SMM_DELAYED Package SMM Delayed (SMM-RO)

Reports the interruptible state of all logical processors in the
package. Available only while in SMM and
MSR_SMM_MCA_CAP[LONG_FLOW_INDICATION] == 1.

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its state in a long flow of
internal operation which delays servicing an interrupt. The
corresponding bit will be set at the start of long events such as:
Microcode Update Load, C6, WBINVD, Ratio Change, Throttle.

The bit is automatically cleared at the end of each long event. The
reset value of this field is 0.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

4E3H 1251 MSR_SMM_BLOCKED Package SMM Blocked (SMM-RO)

Reports the blocked state of all logical processors in the package.
Available only while in SMM.

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 320

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its blocked state to
service an SMI. The corresponding bit will be set if the logical
processor is in one of the following states: Wait For SIPI or SENTER
Sleep.

The reset value of this field is 0FFFH.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

640H 1600 MSR_PP1_POWER_LIMIT Package PP1 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATU
S

Package PP1 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating
system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system
request due to Processor Graphics driver override.

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system
request because the processor has detected that utilization is low.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 321

9 Core Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

12 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating system
request due to multi-core turbo limits.

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating system
request due to Turbo transition attenuation. This prevents
performance degradation due to frequent operating ratio changes.

15:14 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the Graphics Driver Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the Autonomous Utilization-Based
Frequency Control Status bit has asserted since the log bit was last
cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 322

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Core Power Limiting Log

When set, indicates that the Core Power Limiting Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the Package Level PL1 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:30 Reserved.

6B0H 1712 MSR_GRAPHICS_PERF_LIMI
T_REASONS

Package Indicator of Frequency Clipping in the Processor Graphics (R/W)

(frequency refers to processor graphics frequency)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system
request due to Processor Graphics driver override.

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 323

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system
request because the processor has detected that utilization is low

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Graphics Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

15:12 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the Graphics Driver Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the Autonomous Utilization-Based
Frequency Control Status bit has asserted since the log bit was last
cleared.

This log bit will remain set until cleared by software writing 0.

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 324

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Core Power Limiting Log

When set, indicates that the Core Power Limiting Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the Package Level PL1 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:30 Reserved.

6B1H 1713 MSR_RING_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in the Ring Interconnect (R/W)

(frequency refers to ring interconnect in the uncore)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

5:2 Reserved.

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 325

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Reserved.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

15:12 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

18:19 Reserved.

20 Graphics Driver Log

When set, indicates that the Graphics Driver Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the Autonomous Utilization-Based
Frequency Control Status bit has asserted since the log bit was last
cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 326

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Core Power Limiting Log

When set, indicates that the Core Power Limiting Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the Package Level PL1 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:30 Reserved.

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

706H 1798 MSR_UNC_CBO_0_PER_
CTR0

Package Uncore C-Box 0, performance counter 0

707H 1799 MSR_UNC_CBO_0_PER_
CTR1

Package Uncore C-Box 0, performance counter 1

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

716H 1814 MSR_UNC_CBO_1_PER_
CTR0

Package Uncore C-Box 1, performance counter 0

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 327

...

35.11 MSRS IN INTEL® XEON® PROCESSOR E5 V3 AND E7 V3 PRODUCT FAMILY
Intel® Xeon® processor E5 v3 family and Intel® Xeon® processor E7 v3 family are based on Haswell-E microar-
chitecture (CPUID DisplayFamily_DisplayModel = 06_3F). These processors supports the MSR interfaces listed in
Table 35-16, Table 35-21, Table 35-24, and Table 35-27.

717H 1815 MSR_UNC_CBO_1_PER_
CTR1

Package Uncore C-Box 1, performance counter 1

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

721H 1824 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

726H 1830 MSR_UNC_CBO_2_PER_
CTR0

Package Uncore C-Box 2, performance counter 0

727H 1831 MSR_UNC_CBO_2_PER_
CTR1

Package Uncore C-Box 2, performance counter 1

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR.

736H 1846 MSR_UNC_CBO_3_PER_
CTR0

Package Uncore C-Box 3, performance counter 0.

737H 1847 MSR_UNC_CBO_3_PER_
CTR1

Package Uncore C-Box 3, performance counter 1.

See Table 35-16, Table 35-17, Table 35-20, Table 35-24 for other MSR definitions applicable to processors with CPUID
signatures 063CH, 06_46H

Table 35-25 MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

http://biosbits.org

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 328

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

63:29 Reserved

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is
supported and a host-space interface available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and a host-space interface available to SMM handler.

63:60 Reserved

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W)

When set, enables IMC status bank to log additional info in bits
36:32.

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 329

63:2 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active.

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10 core active.

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

39:32 Package Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

47:40 Package Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 330

55:48 Package Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

63:56 Package Maximum Ratio Limit for16C

Maximum turbo ratio limit of 16 core active.

1AFH 431 MSR_TURBO_RATIO_LIMIT2 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 17C

Maximum turbo ratio limit of 17 core active.

15:8 Package Maximum Ratio Limit for 18C

Maximum turbo ratio limit of 18 core active.

62:16 Package Reserved

63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 specified in
MSR_TURBO_RATIO_LIMIT, MSR_TURBO_RATIO_LIMIT1 and
MSR_TURBO_RATIO_LIMIT2.

If 0, the processor uses factory-set configuration (Default).

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC error from the Intel QPI 0 module.
415H 1045 MSR_MC5_STATUS Package

416H 1046 MSR_MC5_ADDR Package

417H 1047 MSR_MC5_MISC Package

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC error from the integrated I/O module.
419H 1049 MSR_MC6_STATUS Package

41AH 1050 MSR_MC6_ADDR Package

41BH 1051 MSR_MC6_MISC Package

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC error from the home agent HA 0.
41DH 1053 MSR_MC7_STATUS Package

41EH 1054 MSR_MC7_ADDR Package

41FH 1055 MSR_MC7_MISC Package

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC8 reports MC error from the home agent HA 1.
421H 1057 MSR_MC8_STATUS Package

422H 1058 MSR_MC8_ADDR Package

423H 1059 MSR_MC8_MISC Package

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 331

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

425H 1061 MSR_MC9_STATUS Package

426H 1062 MSR_MC9_ADDR Package

427H 1063 MSR_MC9_MISC Package

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

429H 1065 MSR_MC10_STATUS Package

42AH 1066 MSR_MC10_ADDR Package

42BH 1067 MSR_MC10_MISC Package

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

42DH 1069 MSR_MC11_STATUS Package

42EH 1070 MSR_MC11_ADDR Package

42FH 1071 MSR_MC11_MISC Package

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

431H 1073 MSR_MC12_STATUS Package

432H 1074 MSR_MC12_ADDR Package

433H 1075 MSR_MC12_MISC Package

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

435H 1077 MSR_MC13_STATUS Package

436H 1078 MSR_MC13_ADDR Package

437H 1079 MSR_MC13_MISC Package

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

439H 1081 MSR_MC14_STATUS Package

43AH 1082 MSR_MC14_ADDR Package

43BH 1083 MSR_MC14_MISC Package

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

43DH 1085 MSR_MC15_STATUS Package

43EH 1086 MSR_MC15_ADDR Package

43FH 1087 MSR_MC15_MISC Package

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of
the integrated memory controllers.

441H 1089 MSR_MC16_STATUS Package

442H 1090 MSR_MC16_ADDR Package

443H 1091 MSR_MC16_MISC Package

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 332

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, CBo12,
CBo15.

445H 1093 MSR_MC17_STATUS Package

446H 1094 MSR_MC17_ADDR Package

447H 1095 MSR_MC17_MISC Package

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo1, CBo4, CBo7, CBo10, CBo13,
CBo16.

449H 1097 MSR_MC18_STATUS Package

44AH 1098 MSR_MC18_ADDR Package

44BH 1099 MSR_MC18_MISC Package

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC error from the following pair of CBo/L3
Slices (if the pair is present): CBo2, CBo5, CBo8, CBo11, CBo14,
CBo17.

44DH 1101 MSR_MC19_STATUS Package

44EH 1102 MSR_MC19_ADDR Package

44FH 1103 MSR_MC19_MISC Package

450H 1104 MSR_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC20 reports MC error from the Intel QPI 1 module.
451H 1105 MSR_MC20_STATUS Package

452H 1106 MSR_MC20_ADDR Package

453H 1107 MSR_MC20_MISC Package

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.9.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the multiplier, 1/
2^ESU; where ESU is an unsigned integer represented by bits 12:8.
Default value is 0EH (or 61 micro-joules)

15:13 Package Reserved

19:16 Package Time Units

See Section 14.9.1, “RAPL Interfaces.”

63:20 Reserved

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating
system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 333

2 Power Budget Management Status (R0)

When set, frequency is reduced below the operating system
request due to PBM limit

3 Platform Configuration Services Status (R0)

When set, frequency is reduced below the operating system
request due to PCS limit

4 Reserved.

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system
request because the processor has detected that utilization is low

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Reserved.

10 Multi-Core Turbo Status (R0)

When set, frequency is reduced below the operating system
request due to Multi-Core Turbo limits

12:11 Reserved.

13 Core Frequency P1 Status (R0)

When set, frequency is reduced below max non-turbo P1

14 Core Max n-core Turbo Frequency Limiting Status (R0)

When set, frequency is reduced below max n-core turbo frequency

15 Core Frequency Limiting Status (R0)

When set, frequency is reduced below the operating system
request.

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 334

18 Power Budget Management Log

When set, indicates that the PBM Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19 Platform Configuration Services Log

When set, indicates that the PCS Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

20 Reserved.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the AUBFC Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Reserved.

26 Multi-Core Turbo Log

When set, indicates that the Multi-Core Turbo Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28:27 Reserved.

29 Core Frequency P1 Log

When set, indicates that the Core Frequency P1 Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

30 Core Max n-core Turbo Frequency Limiting Log

When set, indicates that the Core Max n-core Turbo Frequency
Limiting Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 335

35.11.1 Additional Uncore PMU MSRs in the Intel® Xeon® Processor E5 v3 Family

Intel Xeon Processor E5 v3 and E7 v3 family are based on the Haswell-E microarchitecture. The MSR-based
uncore PMU interfaces are listed in Table 35-28. For complete detail of the uncore PMU, refer to Intel Xeon
Processor E5 v3 Product Family Uncore Performance Monitoring Guide. These processors have a CPUID
signature with DisplayFamily_DisplayModel of 06_3FH.

...

31 Core Frequency Limiting Log

When set, indicates that the Core Frequency Limiting Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:32 Reserved.

C8DH 3213 IA32_QM_EVTSEL THREAD Monitoring Event Select Register (R/W).

if CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1

7:0 EventID (RW)

Event encoding:

0x0: no monitoring

0x1: L3 occupancy monitoring

all other encoding reserved.

31:8 Reserved.

41:32 RMID (RW)

63:42 Reserved.

C8EH 3214 IA32_QM_CTR THREAD Monitoring Counter Register (R/O).

if CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1

61:0 Resource Monitored Data

62 Unavailable: If 1, indicates data for this RMID is not available or not
monitored for this resource or RMID.

63 Error: If 1, indicates and unsupported RMID or event type was
written to IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC THREAD Resource Association Register (R/W).

9:0 RMID

63: 10 Reserved

See Table 35-16, Table 35-21, Table 35-24 for other MSR definitions applicable to processors with CPUID signature
06_3FH

NOTES:
1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the

factory-set configuration is dependent on features specific to the processor and the platform.

Table 35-27 Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 336

35.12 MSRS IN INTEL® CORE™ M PROCESSORS AND 5TH GENERATION INTEL
CORE PROCESSORS

The Intel® Core™ M-5xxx processors and 5th generation Intel® Core™ Processors, and Intel® Xeon® Processor
E3-1200 v4 family are based on the Broadwell microarchitecture. The Intel® Core™ M-5xxx processors and 5th
generation Intel® Core™ Processors have CPUID DisplayFamily_DisplayModel signature 06_3DH. Intel® Xeon®
Processor E3-1200 v4 family and the 5th generation Intel® Core™ Processors have CPUID
DisplayFamily_DisplayModel signature 06_47H. Processors with signatures 06_3DH and 06_47H support the MSR
interfaces listed in Table 35-16, Table 35-17, Table 35-20, Table 35-24, Table 35-25, Table 35-29, and Table 35-
30. For an MSR listed in Table 35-30 that also appears in the model-specific tables of prior generations, Table 35-
30 supercede prior generation tables.

Table 35-29 lists MSRs that are common to processors based on the Broadwell microarchitectures (including
CPUID signatures 06_3DH, 06_47H, 06_4FH, and 06_56H).

Table 35-29 Additional MSRs Supported by Processors Based the Broadwell Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

63:29 Reserved

http://biosbits.org

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 337

38EH 910 IA32_PERF_GLOBAL_
STAUS

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Ovf_PMC0

1 Ovf_PMC1

2 Ovf_PMC2

3 Ovf_PMC3

31:4 Reserved.

32 Ovf_FixedCtr0

33 Ovf_FixedCtr1

34 Ovf_FixedCtr2

54:35 Reserved.

55 Trace_ToPA_PMI. See Section 36.2.4.2, “Table of Physical
Addresses (ToPA).”

60:56 Reserved.

61 Ovf_Uncore

62 Ovf_BufDSSAVE

63 CondChgd

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Set 1 to clear Ovf_PMC0

1 Set 1 to clear Ovf_PMC1

2 Set 1 to clear Ovf_PMC2

3 Set 1 to clear Ovf_PMC3

31:4 Reserved.

32 Set 1 to clear Ovf_FixedCtr0

33 Set 1 to clear Ovf_FixedCtr1

34 Set 1 to clear Ovf_FixedCtr2

54:35 Reserved.

55 Set 1 to clear Trace_ToPA_PMI. See Section 36.2.4.2, “Table of
Physical Addresses (ToPA).”

60:56 Reserved.

61 Set 1 to clear Ovf_Uncore

62 Set 1 to clear Ovf_BufDSSAVE

63 Set 1 to clear CondChgd

560H 1376 IA32_RTIT_OUTPUT_BASE THREAD Trace Output Base Register (R/W)

Table 35-29 Additional MSRs Supported by Processors Based the Broadwell Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 338

6:0 Reserved.

MAXPHYADDR1-1:7 Base physical address.

63:MAXPHYADDR Reserved.

561H 1377 IA32_RTIT_OUTPUT_MASK
_PTRS

THREAD Trace Output Mask Pointers Register (R/W)

6:0 Reserved.

31:7 MaskOrTableOffset

63:32 Output Offset.

570H 1392 IA32_RTIT_CTL Thread Trace Control Register (R/W)

0 TraceEn

1 Reserved, MBZ.

2 OS

3 User

6:4 Reserved, MBZ

7 CR3 filter

8 ToPA; writing 0 will #GP if also setting TraceEn

9 Reserved, MBZ

10 TSCEn

11 DisRETC

12 Reserved, MBZ

13 Reserved; writing 0 will #GP if also setting TraceEn

63:14 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Thread Tracing Status Register (R/W)

0 Reserved, writes ignored.

1 ContexEn, writes ignored.

2 TriggerEn, writes ignored.

3 Reserved

4 Error (R/W)

5 Stopped

63:6 Reserved, MBZ.

572H 1394 IA32_RTIT_CR3_MATCH THREAD Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match
NOTES:

1. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

Table 35-29 Additional MSRs Supported by Processors Based the Broadwell Microarchitectures

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 339

Table 35-30 lists MSRs that are specific to Intel Core M processors and 5th Generation Intel Core Processors.

Table 35-30 Additional MSRs Supported by Intel® Core™ M Processors and 5th Generation Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

0110b: C8

0111b: C9

1000b: C10

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Enable Package C-State Auto-demotion (R/W)

30 Enable Package C-State Undemotion (R/W)

63:31 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

http://biosbits.org

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 340

...

35.13 MSRS IN FUTURE GENERATION INTEL® XEON® PROCESSORS
The MSRs listed in Table 35-31 are available in future generation of Intel® Xeon® Processor D Product Family
(CPUID DisplayFamily_DisplayModel = 06_56H). It is based on the Broadwell microarchitecture.

Table 35-31 also applies to future Intel Xeon processors based on the Broadwell microarchitecture (CPUID
DisplayFamily_DisplayModel = 06_4FH).

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6core active.

63:48 Reserved.

See Table 35-16, Table 35-17, Table 35-20, Table 35-24, Table 35-25, Table 35-29 for other MSR definitions applicable
to processors with CPUID signature 06_3DH

Table 35-30 Additional MSRs Supported by Intel® Core™ M Processors and 5th Generation Intel® Core™ Processors

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-31 Additional MSRs Supported by Intel® Xeon® Processors D Family and Future Intel Xeon Processors
Based on the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-2.

0 Thermal status (RO)

See Table 35-2.

1 Thermal status log (R/WC0)

See Table 35-2.

2 PROTCHOT # or FORCEPR# status (RO)

See Table 35-2.

3 PROTCHOT # or FORCEPR# log (R/WC0)

See Table 35-2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 341

4 Critical Temperature status (RO)

See Table 35-2.

5 Critical Temperature status log (R/WC0)

See Table 35-2.

6 Thermal threshold #1 status (RO)

See Table 35-2.

7 Thermal threshold #1 log (R/WC0)

See Table 35-2.

8 Thermal threshold #2 status (RO)

See Table 35-2.

9 Thermal threshold #2 log (R/WC0)

See Table 35-2.

10 Power Limitation status (RO)

See Table 35-2.

11 Power Limitation log (R/WC0)

See Table 35-2.

12 Current Limit status (RO)

See Table 35-2.

13 Current Limit log (R/WC0)

See Table 35-2.

14 Cross Domain Limit status (RO)

See Table 35-2.

15 Cross Domain Limit log (R/WC0)

See Table 35-2.

22:16 Digital Readout (RO)

See Table 35-2.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

See Table 35-2.

31 Reading Valid (RO)

See Table 35-2.

63:32 Reserved.

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

Table 35-31 Additional MSRs Supported by Intel® Xeon® Processors D Family and Future Intel Xeon Processors
Based on the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 342

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating
system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

2 Power Budget Management Status (R0)

When set, frequency is reduced below the operating system
request due to PBM limit

3 Platform Configuration Services Status (R0)

When set, frequency is reduced below the operating system
request due to PCS limit

4 Reserved.

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system
request because the processor has detected that utilization is low

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Reserved.

10 Multi-Core Turbo Status (R0)

When set, frequency is reduced below the operating system
request due to Multi-Core Turbo limits

12:11 Reserved.

13 Core Frequency P1 Status (R0)

When set, frequency is reduced below max non-turbo P1

14 Core Max n-core Turbo Frequency Limiting Status (R0)

When set, frequency is reduced below max n-core turbo frequency

15 Core Frequency Limiting Status (R0)

When set, frequency is reduced below the operating system
request.

Table 35-31 Additional MSRs Supported by Intel® Xeon® Processors D Family and Future Intel Xeon Processors
Based on the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 343

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

18 Power Budget Management Log

When set, indicates that the PBM Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19 Platform Configuration Services Log

When set, indicates that the PCS Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

20 Reserved.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the AUBFC Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Reserved.

26 Multi-Core Turbo Log

When set, indicates that the Multi-Core Turbo Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28:27 Reserved.

Table 35-31 Additional MSRs Supported by Intel® Xeon® Processors D Family and Future Intel Xeon Processors
Based on the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 344

29 Core Frequency P1 Log

When set, indicates that the Core Frequency P1 Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

30 Core Max n-core Turbo Frequency Limiting Log

When set, indicates that the Core Max n-core Turbo Frequency
Limiting Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

31 Core Frequency Limiting Log

When set, indicates that the Core Frequency Limiting Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:32 Reserved.

770H 1904 IA32_PM_ENABLE Package See Section 14.4.2, “Enabling HWP”

771H 1905 IA32_HWP_CAPABILITIES Thread See Section 14.4.3, “HWP Performance Range and Dynamic
Capabilities”

774H 1908 IA32_HWP_REQUEST Thread See Section 14.4.4, “Managing HWP”

7:0 Minimum Performance (R/W)

15:8 Maximum Performance (R/W)

23:16 Desired Performance (R/W)

63:24 Reserved.

777H 1911 IA32_HWP_STATUS Thread See Section 14.4.5, “HWP Feedback”

C8DH 3213 IA32_QM_EVTSEL THREAD Monitoring Event Select Register (R/W)

if CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1

7:0 EventID (RW)

Event encoding:

0x00: no monitoring

0x01: L3 occupancy monitoring

0x02: Total memory bandwidth monitoring

0x03: Local memory bandwidth monitoring

All other encoding reserved

31:8 Reserved.

41:32 RMID (RW)

63:42 Reserved.

C8FH 3215 IA32_PQR_ASSOC THREAD Resource Association Register (R/W)

9:0 RMID

Table 35-31 Additional MSRs Supported by Intel® Xeon® Processors D Family and Future Intel Xeon Processors
Based on the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 345

31:10 Reserved

51:32 COS (R/W).

63: 52 Reserved

C90H 3216 IA32_L3_QOS_MASK_0 Package L3 Class Of Service Mask - COS 0 (R/W)

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=0

0:19 CBM: Bit vector of available L3 ways for COS 0 enforcement

63:20 Reserved

C91H 3217 IA32_L3_QOS_MASK_1 Package L3 Class Of Service Mask - COS 1 (R/W)

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=1

0:19 CBM: Bit vector of available L3 ways for COS 1 enforcement

63:20 Reserved

C92H 3218 IA32_L3_QOS_MASK_2 Package L3 Class Of Service Mask - COS 2 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=2

0:19 CBM: Bit vector of available L3 ways for COS 2 enforcement

63:20 Reserved

C93H 3219 IA32_L3_QOS_MASK_3 Package L3 Class Of Service Mask - COS 3 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=3

0:19 CBM: Bit vector of available L3 ways for COS 3 enforcement

63:20 Reserved

C94H 3220 IA32_L3_QOS_MASK_4 Package L3 Class Of Service Mask - COS 4 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=4

0:19 CBM: Bit vector of available L3 ways for COS 4 enforcement

63:20 Reserved

C95H 3221 IA32_L3_QOS_MASK_5 Package L3 Class Of Service Mask - COS 5 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=5

0:19 CBM: Bit vector of available L3 ways for COS 5 enforcement

63:20 Reserved

C96H 3222 IA32_L3_QOS_MASK_6 Package L3 Class Of Service Mask - COS 6 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=6

0:19 CBM: Bit vector of available L3 ways for COS 6 enforcement

63:20 Reserved

C97H 3223 IA32_L3_QOS_MASK_7 Package L3 Class Of Service Mask - COS 7 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=7

0:19 CBM: Bit vector of available L3 ways for COS 7 enforcement

Table 35-31 Additional MSRs Supported by Intel® Xeon® Processors D Family and Future Intel Xeon Processors
Based on the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 346

63:20 Reserved

C98H 3224 IA32_L3_QOS_MASK_8 Package L3 Class Of Service Mask - COS 8 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=8

0:19 CBM: Bit vector of available L3 ways for COS 8 enforcement

63:20 Reserved

C99H 3225 IA32_L3_QOS_MASK_9 Package L3 Class Of Service Mask - COS 9 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=9

0:19 CBM: Bit vector of available L3 ways for COS 9 enforcement

63:20 Reserved

C9AH 3226 IA32_L3_QOS_MASK_10 Package L3 Class Of Service Mask - COS 10 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=10

0:19 CBM: Bit vector of available L3 ways for COS 10 enforcement

63:20 Reserved

C9BH 3227 IA32_L3_QOS_MASK_11 Package L3 Class Of Service Mask - COS 11 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=11

0:19 CBM: Bit vector of available L3 ways for COS 11 enforcement

63:20 Reserved

C9CH 3228 IA32_L3_QOS_MASK_12 Package L3 Class Of Service Mask - COS 12 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=12

0:19 CBM: Bit vector of available L3 ways for COS 12 enforcement

63:20 Reserved

C9DH 3229 IA32_L3_QOS_MASK_13 Package L3 Class Of Service Mask - COS 13 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=13

0:19 CBM: Bit vector of available L3 ways for COS 13 enforcement

63:20 Reserved

C9EH 3230 IA32_L3_QOS_MASK_14 Package L3 Class Of Service Mask - COS 14 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=14

0:19 CBM: Bit vector of available L3 ways for COS 14 enforcement

63:20 Reserved

Table 35-31 Additional MSRs Supported by Intel® Xeon® Processors D Family and Future Intel Xeon Processors
Based on the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 347

35.14 MSRS IN NEXT GENERATION INTEL® CORE™ PROCESSORS
The next generation Intel® Core™ processor family is based on the Skylake microarchitecture. They have CPUID
DisplayFamily_DisplayModel signatures of 06_4EH and 06_5EH, supports the MSR interfaces listed in Table 35-
16, Table 35-17, Table 35-20, Table 35-24, Table 35-30, and Table 35-32. For an MSR listed in Table 35-32 that
also appears in the model-specific tables of prior generations, Table 35-32 supercede prior generation tables.

C9FH 3231 IA32_L3_QOS_MASK_15 Package L3 Class Of Service Mask - COS 15 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0]
>=15

0:19 CBM: Bit vector of available L3 ways for COS 15 enforcement

63:20 Reserved

Table 35-31 Additional MSRs Supported by Intel® Xeon® Processors D Family and Future Intel Xeon Processors
Based on the Broadwell Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-2.

0 Thermal status (RO)

See Table 35-2.

1 Thermal status log (R/WC0)

See Table 35-2.

2 PROTCHOT # or FORCEPR# status (RO)

See Table 35-2.

3 PROTCHOT # or FORCEPR# log (R/WC0)

See Table 35-2.

4 Critical Temperature status (RO)

See Table 35-2.

5 Critical Temperature status log (R/WC0)

See Table 35-2.

6 Thermal threshold #1 status (RO)

See Table 35-2.

7 Thermal threshold #1 log (R/WC0)

See Table 35-2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 348

8 Thermal threshold #2 status (RO)

See Table 35-2.

9 Thermal threshold #2 log (R/WC0)

See Table 35-2.

10 Power Limitation status (RO)

See Table 35-2.

11 Power Limitation log (R/WC0)

See Table 35-2.

12 Current Limit status (RO)

See Table 35-2.

13 Current Limit log (R/WC0)

See Table 35-2.

14 Cross Domain Limit status (RO)

See Table 35-2.

15 Cross Domain Limit log (R/WC0)

See Table 35-2.

22:16 Digital Readout (RO)

See Table 35-2.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

See Table 35-2.

31 Reading Valid (RO)

See Table 35-2.

63:32 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-4) that points to the MSR containing the
most recent branch record.

38EH 910 IA32_PERF_GLOBAL_
STAUS

See Table 35-2. See Section 18.2.4, “Architectural Performance
Monitoring Version 4.”

0 Thread Ovf_PMC0

1 Thread Ovf_PMC1

2 Thread Ovf_PMC2

3 Thread Ovf_PMC3

4 Thread Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Thread Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 349

6 Thread Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Thread Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Ovf_FixedCtr0

33 Thread Ovf_FixedCtr1

34 Thread Ovf_FixedCtr2

54:35 Reserved.

55 Thread Trace_ToPA_PMI.

57:56 Reserved.

58 Thread LBR_Frz.

59 Thread CTR_Frz.

60 Thread ASCI.

61 Thread Ovf_Uncore

62 Thread Ovf_BufDSSAVE

63 Thread CondChgd

390H 912 IA32_PERF_GLOBAL_STAT
US_RESET

See Table 35-2. See Section 18.2.4, “Architectural Performance
Monitoring Version 4.”

0 Thread Set 1 to clear Ovf_PMC0

1 Thread Set 1 to clear Ovf_PMC1

2 Thread Set 1 to clear Ovf_PMC2

3 Thread Set 1 to clear Ovf_PMC3

4 Thread Set 1 to clear Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Thread Set 1 to clear Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Thread Set 1 to clear Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Thread Set 1 to clear Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to clear Ovf_FixedCtr0

33 Thread Set 1 to clear Ovf_FixedCtr1

34 Thread Set 1 to clear Ovf_FixedCtr2

54:35 Reserved.

55 Thread Set 1 to clear Trace_ToPA_PMI.

57:56 Reserved.

58 Thread Set 1 to clear LBR_Frz.

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 350

59 Thread Set 1 to clear CTR_Frz.

60 Thread Set 1 to clear ASCI.

61 Thread Set 1 to clear Ovf_Uncore

62 Thread Set 1 to clear Ovf_BufDSSAVE

63 Thread Set 1 to clear CondChgd

391H 913 IA32_PERF_GLOBAL_STAT
US_SET

See Table 35-2. See Section 18.2.4, “Architectural Performance
Monitoring Version 4.”

0 Thread Set 1 to cause Ovf_PMC0 = 1

1 Thread Set 1 to cause Ovf_PMC1 = 1

2 Thread Set 1 to cause Ovf_PMC2 = 1

3 Thread Set 1 to cause Ovf_PMC3 = 1

4 Thread Set 1 to cause Ovf_PMC4=1 (if CPUID.0AH:EAX[15:8] > 4)

5 Thread Set 1 to cause Ovf_PMC5=1 (if CPUID.0AH:EAX[15:8] > 5)

6 Thread Set 1 to cause Ovf_PMC6=1 (if CPUID.0AH:EAX[15:8] > 6)

7 Thread Set 1 to cause Ovf_PMC7=1 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to cause Ovf_FixedCtr0 = 1

33 Thread Set 1 to cause Ovf_FixedCtr1 = 1

34 Thread Set 1 to cause Ovf_FixedCtr2 = 1

54:35 Reserved.

55 Thread Set 1 to cause Trace_ToPA_PMI = 1

57:56 Reserved.

58 Thread Set 1 to cause LBR_Frz = 1

59 Thread Set 1 to cause CTR_Frz = 1

60 Thread Set 1 to cause ASCI = 1

61 Thread Set 1 to cause Ovf_Uncore

62 Thread Set 1 to cause Ovf_BufDSSAVE

63 Reserved

392H 913 IA32_PERF_GLOBAL_INUSE See Table 35-2.

3F7H 1015 MSR_PEBS_FRONTEND Thread FrontEnd Precise Event Condition Select (R/W)

7:0 Event Code Select

19:8 IDQ_Bubble_Length Specifier

22:20 IDQ_Bubble_Width Specifier

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 351

63:23 Reserved

560H 1376 IA32_RTIT_OUTPUT_BASE Thread Trace Output Base Register (R/W). See Table 35-2.

561H 1377 IA32_RTIT_OUTPUT_MASK
_PTRS

Thread Trace Output Mask Pointers Register (R/W). See Table 35-2.

570H 1392 IA32_RTIT_CTL Thread Trace Control Register (R/W)

0 TraceEn

1 CYCEn

2 OS

3 User

6:4 Reserved, MBZ

7 CR3 filter

8 ToPA; writing 0 will #GP if also setting TraceEn

9 MTCEn

10 TSCEn

11 DisRETC

12 Reserved, MBZ

13 BranchEn

17:14 MTCFreq

18 Reserved, MBZ

22:19 CYCThresh

23 Reserved, MBZ

27:24 PSBFreq

31:28 Reserved, MBZ

35:32 ADDR0_CFG

39:36 ADDR1_CFG

63:40 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Thread Tracing Status Register (R/W)

0 FilterEn, writes ignored.

1 ContexEn, writes ignored.

2 TriggerEn, writes ignored.

3 Reserved

4 Error (R/W)

5 Stopped

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 352

31:6 Reserved. MBZ

48:32 PacketByteCnt

63:49 Reserved, MBZ.

572H 1394 IA32_RTIT_CR3_MATCH THREAD Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match

64EH 1615 MSR_PPERF THREAD Productive Performance Count. (R/O).

63:0 Hardware’s view of workload scalability. See Section 14.4.5.1

652H 1614 MSR_PKG_HDC_CONFIG Package HDC Configuration (R/W).

2:0 PKG_Cx_Monitor.

Configures Package Cx state threshold for
MSR_PKG_HDC_DEEP_RESIDENCY

63: 3 Reserved

653H 1615 MSR_CORE_HDC_

RESIDENCY

Core Core HDC Idle Residency. (R/O).

63:0 Core_Cx_Duty_Cycle_Cnt.

655H 1617 MSR_PKG_HDC_SHALLOW_
RESIDENCY

Package Accumulate the cycles the package was in C2 state and at least one
logical processor was in forced idle. (R/O).

63:0 Pkg_C2_Duty_Cycle_Cnt.

656H 1618 MSR_PKG_HDC_DEEP_

RESIDENCY

Package Package Cx HDC Idle Residency. (R/O).

63:0 Pkg_Cx_Duty_Cycle_Cnt.

658H 1620 MSR_WEIGHTED_CORE_C0 Package Core-count Weighted C0 Residency. (R/O).

63:0 Increment at the same rate as the TSC. The increment each cycle is
weighted by the number of processor cores in the package that
reside in C0. If N cores are simultaneously in C0, then each cycle the
counter increments by N.

659H 1621 MSR_ANY_CORE_C0 Package Any Core C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is
one if any processor core in the package is in C0.

65AH 1622 MSR_ANY_GFXE_C0 Package Any Graphics Engine C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is
one if any processor graphic device’s compute engines are in C0.

65BH 1623 MSR_CORE_GFXE_OVERLA
P_C0

Package Core and Graphics Engine Overlapped C0 Residency. (R/O)

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 353

63:0 Increment at the same rate as the TSC. The increment each cycle is
one if at least one compute engine of the processor graphics is in
C0 and at least one processor core in the package is also in C0.

690H 1680 MSR_
LASTBRANCH_16_FROM_IP

Thread Last Branch Record 16 From IP (R/W)

One of 32 triplets of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the source
instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.9

691H 1681 MSR_
LASTBRANCH_17_FROM_IP

Thread Last Branch Record 17 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

692H 1682 MSR_
LASTBRANCH_18_FROM_IP

Thread Last Branch Record 18 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

693H 1683 MSR_
LASTBRANCH_19_FROM_IP

Thread Last Branch Record 19From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

694H 1684 MSR_
LASTBRANCH_20_FROM_IP

Thread Last Branch Record 20 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

695H 1685 MSR_
LASTBRANCH_21_FROM_IP

Thread Last Branch Record 21 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

696H 1686 MSR_
LASTBRANCH_22_FROM_IP

Thread Last Branch Record 22 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

697H 1687 MSR_
LASTBRANCH_23_FROM_IP

Thread Last Branch Record 23 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

698H 1688 MSR_
LASTBRANCH_24_FROM_IP

Thread Last Branch Record 24 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

699H 1689 MSR_
LASTBRANCH_25_FROM_IP

Thread Last Branch Record 25 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69AH 1690 MSR_
LASTBRANCH_26_FROM_IP

Thread Last Branch Record 26 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69BH 1691 MSR_
LASTBRANCH_27_FROM_IP

Thread Last Branch Record 27 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69CH 1692 MSR_
LASTBRANCH_28_FROM_IP

Thread Last Branch Record 28 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69DH 1693 MSR_
LASTBRANCH_29_FROM_IP

Thread Last Branch Record 29 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69EH 1694 MSR_
LASTBRANCH_30_FROM_IP

Thread Last Branch Record 30 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 354

69FH 1695 MSR_
LASTBRANCH_31_FROM_IP

Thread Last Branch Record 31 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6D0H 1744 MSR_
LASTBRANCH_16_TO_IP

Thread Last Branch Record 16 To IP (R/W)

One of 32 triplets of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the
destination instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.9

6D1H 1745 MSR_
LASTBRANCH_17_TO_IP

Thread Last Branch Record 17 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D2H 1746 MSR_
LASTBRANCH_18_TO_IP

Thread Last Branch Record 18 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D3H 1747 MSR_
LASTBRANCH_19_TO_IP

Thread Last Branch Record 19To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D4H 1748 MSR_
LASTBRANCH_20_TO_IP

Thread Last Branch Record 20 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D5H 1749 MSR_
LASTBRANCH_21_TO_IP

Thread Last Branch Record 21 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D6H 1750 MSR_
LASTBRANCH_22_TO_IP

Thread Last Branch Record 22 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D7H 1751 MSR_
LASTBRANCH_23_TO_IP

Thread Last Branch Record 23 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D8H 1752 MSR_
LASTBRANCH_24_TO_IP

Thread Last Branch Record 24 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D9H 1753 MSR_
LASTBRANCH_25_TO_IP

Thread Last Branch Record 25 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DAH 1754 MSR_
LASTBRANCH_26_TO_IP

Thread Last Branch Record 26 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DBH 1755 MSR_
LASTBRANCH_27_TO_IP

Thread Last Branch Record 27 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DCH 1756 MSR_
LASTBRANCH_28_TO_IP

Thread Last Branch Record 28 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DDH 1757 MSR_
LASTBRANCH_29_TO_IP

Thread Last Branch Record 29 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DEH 1758 MSR_
LASTBRANCH_30_TO_IP

Thread Last Branch Record 30 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 355

6DFH 1759 MSR_
LASTBRANCH_31_TO_IP

Thread Last Branch Record 31 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

770H 1904 IA32_PM_ENABLE Package See Section 14.4.2, “Enabling HWP”

771H 1905 IA32_HWP_CAPABILITIES Thread See Section 14.4.3, “HWP Performance Range and Dynamic
Capabilities”

772H 1906 IA32_HWP_REQUEST_PKG Package See Section 14.4.4, “Managing HWP”

773H 1907 IA32_HWP_INTERRUPT Thread See Section 14.4.6, “HWP Notifications”

774H 1908 IA32_HWP_REQUEST Thread See Section 14.4.4, “Managing HWP”

7:0 Minimum Performance (R/W).

15:8 Maximum Performance (R/W).

23:16 Desired Performance (R/W).

31:24 Energy/Performance Preference (R/W).

41:32 Activity Window (R/W).

42 Package Control (R/W).

63:43 Reserved.

777H 1911 IA32_HWP_STATUS Thread See Section 14.4.5, “HWP Feedback”

DB0H 3504 IA32_PKG_HDC_CTL Package See Section 14.5.2, “Package level Enabling HDC”

DB1H 3505 IA32_PM_CTL1 Thread See Section 14.5.3, “Logical-Processor Level HDC Control”

DB2H 3506 IA32_THREAD_STALL Thread See Section 14.5.4.1, “IA32_THREAD_STALL”

DC0H 3520 MSR_LBR_INFO_0 Thread Last Branch Record 0 Additional Information (R/W)

One of 32 triplet of last branch record registers on the last branch
record stack. This part of the stack contains flag, TSX-related and
elapsed cycle information. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

DC1H 3521 MSR_LBR_INFO_1 Thread Last Branch Record 1 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC2H 3522 MSR_LBR_INFO_2 Thread Last Branch Record 2 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC3H 3523 MSR_LBR_INFO_3 Thread Last Branch Record 3 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC4H 3524 MSR_LBR_INFO_4 Thread Last Branch Record 4 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC5H 3525 MSR_LBR_INFO_5 Thread Last Branch Record 5 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 356

DC6H 3526 MSR_LBR_INFO_6 Thread Last Branch Record 6 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC7H 3527 MSR_LBR_INFO_7 Thread Last Branch Record 7 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC8H 3528 MSR_LBR_INFO_8 Thread Last Branch Record 8 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC9H 3529 MSR_LBR_INFO_9 Thread Last Branch Record 9 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCAH 3530 MSR_LBR_INFO_10 Thread Last Branch Record 10 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCBH 3531 MSR_LBR_INFO_11 Thread Last Branch Record 11 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCCH 3532 MSR_LBR_INFO_12 Thread Last Branch Record 12 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCDH 3533 MSR_LBR_INFO_13 Thread Last Branch Record 13 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCEH 3534 MSR_LBR_INFO_14 Thread Last Branch Record 14 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCFH 3535 MSR_LBR_INFO_15 Thread Last Branch Record 15 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD0H 3536 MSR_LBR_INFO_16 Thread Last Branch Record 16 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD1H 3537 MSR_LBR_INFO_17 Thread Last Branch Record 17 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD2H 3538 MSR_LBR_INFO_18 Thread Last Branch Record 18 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD3H 3539 MSR_LBR_INFO_19 Thread Last Branch Record 19 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD4H 3520 MSR_LBR_INFO_20 Thread Last Branch Record 20 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD5H 3521 MSR_LBR_INFO_21 Thread Last Branch Record 21 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD6H 3522 MSR_LBR_INFO_22 Thread Last Branch Record 22 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 357

...

35.15 MSRS IN THE NEXT GENERATION INTEL® XEON PHI™ PROCESSORS
The next generation Intel® Xeon Phi™ processor family, with CPUID DisplayFamily_DisplayModel signature
06_57H, supports the MSR interfaces listed in Table 35-33. These processors are based on the Knights Landing
microarchitecture. Some MSRs are shared between a pair of processor cores, the scope is marked as module.

DD7H 3523 MSR_LBR_INFO_23 Thread Last Branch Record 23 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD8H 3524 MSR_LBR_INFO_24 Thread Last Branch Record 24 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD9H 3525 MSR_LBR_INFO_25 Thread Last Branch Record 25 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDAH 3526 MSR_LBR_INFO_26 Thread Last Branch Record 26 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDBH 3527 MSR_LBR_INFO_27 Thread Last Branch Record 27 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDCH 3528 MSR_LBR_INFO_28 Thread Last Branch Record 28 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDDH 3529 MSR_LBR_INFO_29 Thread Last Branch Record 29 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDEH 3530 MSR_LBR_INFO_30 Thread Last Branch Record 30 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDFH 3531 MSR_LBR_INFO_31 Thread Last Branch Record 31 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Table 35-32 Additional MSRs Supported by Future Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

0H 0 IA32_P5_MC_ADDR Module See Section 35.20, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Module See Section 35.20, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
and Table 35-2

10H 16 IA32_TIME_STAMP_
COUNTER

Thread See Section 17.14, “Time-Stamp Counter,” and see Table 35-2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 358

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 35-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 35-2.

0 Lock (R/WL)

1 Reserved

2 Enable VMX outside SMX operation (R/WL)

3BH 59 IA32_TSC_ADJUST THREAD Per-Logical-Processor TSC ADJUST (R/W)

See Table 35-2.

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID THREAD BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 THREAD Performance counter register

See Table 35-2.

C2H 194 IA32_PMC1 THREAD Performance Counter Register

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

39:30 Reserved.

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 359

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Module C-State Configuration Control (R/W)

2:0 Package C-State Limit (R/W)

The following C-state code name encodings are supported:

000b: C0/C1

001b: C2

010b: C6 No Retention

011b: C6 Retention

111b: No limit

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved.

15 CFG Lock (R/WO)

63:16 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Module Power Management IO Redirection in C-state (R/W)

15:0 LVL_2 Base Address (R/W)

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to
be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

100b - C4 is the max C-State to include

110b - C6 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 35-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Core Memory Type Range Register (R)

See Table 35-2.

174H 372 IA32_SYSENTER_CS Thread See Table 35-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 35-2.

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 360

179H 377 IA32_MCG_CAP Thread See Table 35-2.

17AH 378 IA32_MCG_STATUS Thread See Table 35-2.

186H 390 IA32_PERFEVTSEL0 Thread Performance Monitoring Event Select Register (R/W)

See Table 35-2.

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 AnyThread

22 EN

23 INV

31:24 CMASK

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 Thread See Table 35-2.

198H 408 IA32_PERF_STATUS Package See Table 35-2.

199H 409 IA32_PERF_CTL Thread See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Thread Clock Modulation (R/W)

See Table 35-2.

19BH 411 IA32_THERM_INTERRUPT Module Thermal Interrupt Control (R/W)

See Table 35-2.

19CH 412 IA32_THERM_STATUS Module Thermal Monitor Status (R/W)

See Table 35-2.

0 Thermal status (RO)

1 Thermal status log (R/WC0)

2 PROTCHOT # or FORCEPR# status (RO)

3 PROTCHOT # or FORCEPR# log (R/WC0)

4 Critical Temperature status (RO)

5 Critical Temperature status log (R/WC0)

6 Thermal threshold #1 status (RO)

7 Thermal threshold #1 log (R/WC0)

8 Thermal threshold #2 status (RO)

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 361

9 Thermal threshold #2 log (R/WC0)

10 Power Limitation status (RO)

11 Power Limitation log (R/WC0)

15:12 Reserved.

22:16 Digital Readout (RO)

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

31 Reading Valid (RO)

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Thread Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

2:1 Reserved.

3 Automatic Thermal Control Circuit Enable (R/W)

6:4 Reserved.

7 Performance Monitoring Available (R)

10:8 Reserved.

11 Branch Trace Storage Unavailable (RO)

12 Precise Event Based Sampling Unavailable (RO)

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable (R/W)

18 ENABLE MONITOR FSM (R/W)

21:19 Reserved.

22 Limit CPUID Maxval (R/W)

23 xTPR Message Disable (R/W)

33:24 Reserved.

34 XD Bit Disable (R/W)

37:35 Reserved.

38 Turbo Mode Disable (R/W)

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Package

15:0 Reserved.

23:16 Temperature Target (R)

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 362

29:24 Target Offset (R/W)

63:30 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Shared Offcore Response Event Select Register (R/W)

1A7H 423 MSR_OFFCORE_RSP_1 Shared Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode for Groups of Cores (RW)

0 Reserved

7:1 Package Maximum Number of Cores in Group 0

Number active processor cores which operates under the maximum
ratio limit for group 0.

15:8 Package Maximum Ratio Limit for Group 0

Maximum turbo ratio limit when the number of active cores are not
more than the group 0 maximum core count.

20:16 Package Number of Incremental Cores Added to Group 1

Group 1, which includes the specified number of additional cores
plus the cores in group 0, operates under the group 1 turbo max
ratio limit = “group 0 Max ratio limit” - “group ratio delta for group
1”.

23:21 Package Group Ratio Delta for Group 1

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit to Group 0.

28:24 Package Number of Incremental Cores Added to Group 2

Group 2, which includes the specified number of additional cores
plus all the cores in group 1, operates under the group 2 turbo max
ratio limit = “group 1 Max ratio limit” - “group ratio delta for group
2”.

31:29 Package Group Ratio Delta for Group 2

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 1.

36:32 Package Number of Incremental Cores Added to Group 3

Group 3, which includes the specified number of additional cores
plus all the cores in group 2, operates under the group 3 turbo max
ratio limit = “group 2 Max ratio limit” - “group ratio delta for group
3”.

39:37 Package Group Ratio Delta for Group 3

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 2.

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 363

44:40 Package Number of Incremental Cores Added to Group 4

Group 4, which includes the specified number of additional cores
plus all the cores in group 3, operates under the group 4 turbo max
ratio limit = “group 3 Max ratio limit” - “group ratio delta for group
4”.

47:45 Package Group Ratio Delta for Group 4

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 3.

52:48 Package Number of Incremental Cores Added to Group 5

Group 5, which includes the specified number of additional cores
plus all the cores in group 4, operates under the group 5 turbo max
ratio limit = “group 4 Max ratio limit” - “group ratio delta for group
5”.

55:53 Package Group Ratio Delta for Group 5

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 4.

60:56 Package Number of Incremental Cores Added to Group 6

Group 6, which includes the specified number of additional cores
plus all the cores in group 5, operates under the group 6 turbo max
ratio limit = “group 5 Max ratio limit” - “group ratio delta for group
6”.

63:61 Package Group Ratio Delta for Group 6

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 5.

1B0H 432 IA32_ENERGY_PERF_BIAS Thread See Table 35-2.

1B1H 433 IA32_PACKAGE_THERM_
STATUS

Package See Table 35-2.

1B2H 434 IA32_PACKAGE_THERM_
INTERRUPT

Package See Table 35-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R)

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R)

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

200H 512 IA32_MTRR_PHYSBASE0 Core See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Core See Table 35-2.

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 364

202H 514 IA32_MTRR_PHYSBASE1 Core See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Core See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Core See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Core See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Core See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Core See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Core See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Core See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Core See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Core See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Core See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Core See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Core See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Core See Table 35-2.

250H 592 IA32_MTRR_FIX64K_00000 Core See Table 35-2.

258H 600 IA32_MTRR_FIX16K_80000 Core See Table 35-2.

259H 601 IA32_MTRR_FIX16K_A000
0

Core See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Core See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Core See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Core See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Core See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Core See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Core See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Core See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Core See Table 35-2.

277H 631 IA32_PAT Core See Table 35-2.

2FFH 767 IA32_MTRR_DEF_TYPE Core Default Memory Types (R/W)

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-2.

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 365

345H 837 IA32_PERF_CAPABILITIES Core See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_STAUS Thread See Table 35-2.

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-2.

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-2.

3F1H 1009 MSR_PEBS_ENABLE Thread See Table 35-2.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 Package C3 Residency Counter. (R/O)

3F9H 1017 MSR_PKG_C6_RESIDENCY Package

63:0 Package C6 Residency Counter. (R/O)

3FAH 1018 MSR_PKG_C7_RESIDENCY Package

63:0 Package C7 Residency Counter. (R/O)

3FCH 1020 MSR_MC0_RESIDENCY Module Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 Module C0 Residency Counter. (R/O)

3FDH 1021 MSR_MC6_RESIDENCY Module

63:0 Module C6 Residency Counter. (R/O)

3FFH 1023 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 CORE C6 Residency Counter. (R/O)

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40CH 1036 MSR_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 366

411H 1041 MSR_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

480H 1152 IA32_VMX_BASIC Core Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

481H 1153 IA32_VMX_PINBASED_
CTLS

Core Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-2.

482H 1154 IA32_VMX_PROCBASED_
CTLS

Core Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

483H 1155 IA32_VMX_EXIT_CTLS Core Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-2.

484H 1156 IA32_VMX_ENTRY_CTLS Core Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-2.

485H 1157 IA32_VMX_MISC Core Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-2.

486H 1158 IA32_VMX_CR0_FIXED0 Core Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-2.

487H 1159 IA32_VMX_CR0_FIXED1 Core Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-2.

488H 1160 IA32_VMX_CR4_FIXED0 Core Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-2.

489H 1161 IA32_VMX_CR4_FIXED1 Core Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-2.

48AH 1162 IA32_VMX_VMCS_ENUM Core Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Core Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Table 35-2

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 367

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Core Capability Reporting Register of EPT and VPID (R/O)

See Table 35-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Core Capability Reporting Register of Pin-based VM-execution Flex
Controls (R/O)

See Table 35-2

48EH 1166 IA32_VMX_TRUE_PROCBAS
ED_CTLS

Core Capability Reporting Register of Primary Processor-based
VM-execution Flex Controls (R/O)

See Table 35-2

48FH 1167 IA32_VMX_TRUE_EXIT_CTL
S

Core Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 35-2

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Core Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 35-2

491H 1169 IA32_VMX_FMFUNC Core Capability Reporting Register of VM-function Controls (R/O)

See Table 35-2

4C1H 1217 IA32_A_PMC0 Thread See Table 35-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 35-2.

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-2.

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.9.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the multiplier,
1/2^ESU; where ESU is an unsigned integer represented by bits
12:8. Default value is 0EH (or 61 micro-joules)

15:13 Package Reserved

19:16 Package Time Units

See Section 14.9.1, “RAPL Interfaces.”

63:20 Reserved

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 Package C2 Residency Counter. (R/O)

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.9.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 368

613H 1555 MSR_PKG_PERF_STATUS Package PKG Perf Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) See Section 14.9.3, “Package RAPL
Domain.”

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Base TDP Ratio (R/O)

See Table 35-20

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O). See Table 35-20

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O). See Table 35-20

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

See Table 35-20

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

See Table 35-20

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

1 Thermal Status (R0)

5:2 Reserved.

6 VR Therm Alert Status (R0)

7 Reserved.

8 Electrical Design Point Status (R0)

63:9 Reserved.

6E0H 1760 IA32_TSC_DEADLINE Core TSC Target of Local APIC’s TSC Deadline Mode (R/W)

See Table 35-2

802H 2050 IA32_X2APIC_APICID Thread x2APIC ID register (R/O) See x2APIC Specification.

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 369

803H 2051 IA32_X2APIC_VERSION Thread x2APIC Version register (R/O)

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority register (R/W)

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority register (R/O)

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI register (W/O)

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination register (R/O)

80FH 2063 IA32_X2APIC_SIVR Thread x2APIC Spurious Interrupt Vector register (R/W)

810H 2064 IA32_X2APIC_ISR0 Thread x2APIC In-Service register bits [31:0] (R/O)

811H 2065 IA32_X2APIC_ISR1 Thread x2APIC In-Service register bits [63:32] (R/O)

812H 2066 IA32_X2APIC_ISR2 Thread x2APIC In-Service register bits [95:64] (R/O)

813H 2067 IA32_X2APIC_ISR3 Thread x2APIC In-Service register bits [127:96] (R/O)

814H 2068 IA32_X2APIC_ISR4 Thread x2APIC In-Service register bits [159:128] (R/O)

815H 2069 IA32_X2APIC_ISR5 Thread x2APIC In-Service register bits [191:160] (R/O)

816H 2070 IA32_X2APIC_ISR6 Thread x2APIC In-Service register bits [223:192] (R/O)

817H 2071 IA32_X2APIC_ISR7 Thread x2APIC In-Service register bits [255:224] (R/O)

818H 2072 IA32_X2APIC_TMR0 Thread x2APIC Trigger Mode register bits [31:0] (R/O)

819H 2073 IA32_X2APIC_TMR1 Thread x2APIC Trigger Mode register bits [63:32] (R/O)

81AH 2074 IA32_X2APIC_TMR2 Thread x2APIC Trigger Mode register bits [95:64] (R/O)

81BH 2075 IA32_X2APIC_TMR3 Thread x2APIC Trigger Mode register bits [127:96] (R/O)

81CH 2076 IA32_X2APIC_TMR4 Thread x2APIC Trigger Mode register bits [159:128] (R/O)

81DH 2077 IA32_X2APIC_TMR5 Thread x2APIC Trigger Mode register bits [191:160] (R/O)

81EH 2078 IA32_X2APIC_TMR6 Thread x2APIC Trigger Mode register bits [223:192] (R/O)

81FH 2079 IA32_X2APIC_TMR7 Thread x2APIC Trigger Mode register bits [255:224] (R/O)

820H 2080 IA32_X2APIC_IRR0 Thread x2APIC Interrupt Request register bits [31:0] (R/O)

821H 2081 IA32_X2APIC_IRR1 Thread x2APIC Interrupt Request register bits [63:32] (R/O)

822H 2082 IA32_X2APIC_IRR2 Thread x2APIC Interrupt Request register bits [95:64] (R/O)

823H 2083 IA32_X2APIC_IRR3 Thread x2APIC Interrupt Request register bits [127:96] (R/O)

824H 2084 IA32_X2APIC_IRR4 Thread x2APIC Interrupt Request register bits [159:128] (R/O)

825H 2085 IA32_X2APIC_IRR5 Thread x2APIC Interrupt Request register bits [191:160] (R/O)

826H 2086 IA32_X2APIC_IRR6 Thread x2APIC Interrupt Request register bits [223:192] (R/O)

827H 2087 IA32_X2APIC_IRR7 Thread x2APIC Interrupt Request register bits [255:224] (R/O)

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status register (R/W)

82FH 2095 IA32_X2APIC_LVT_CMCI Thread x2APIC LVT Corrected Machine Check Interrupt register (R/W)

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command register (R/W)

832H 2098 IA32_X2APIC_LVT_TIMER Thread x2APIC LVT Timer Interrupt register (R/W)

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 370

35.16 MSRS IN THE PENTIUM® 4 AND INTEL® XEON® PROCESSORS
Table 35-44 lists MSRs (architectural and model-specific) that are defined across processor generations based on
Intel NetBurst microarchitecture. The processor can be identified by its CPUID signatures of DisplayFamily
encoding of 0FH, see Table 16-1.
• MSRs with an “IA32_” prefix are designated as “architectural.” This means that the functions of these MSRs

and their addresses remain the same for succeeding families of IA-32 processors.
• MSRs with an “MSR_” prefix are model specific with respect to address functionalities. The column “Model

Availability” lists the model encoding value(s) within the Pentium 4 and Intel Xeon processor family at the
specified register address. The model encoding value of a processor can be queried using CPUID. See

833H 2099 IA32_X2APIC_LVT_THERMA
L

Thread x2APIC LVT Thermal Sensor Interrupt register (R/W)

834H 2100 IA32_X2APIC_LVT_PMI Thread x2APIC LVT Performance Monitor register (R/W)

835H 2101 IA32_X2APIC_LVT_LINT0 Thread x2APIC LVT LINT0 register (R/W)

836H 2102 IA32_X2APIC_LVT_LINT1 Thread x2APIC LVT LINT1 register (R/W)

837H 2103 IA32_X2APIC_LVT_ERROR Thread x2APIC LVT Error register (R/W)

838H 2104 IA32_X2APIC_INIT_COUNT Thread x2APIC Initial Count register (R/W)

839H 2105 IA32_X2APIC_CUR_COUNT Thread x2APIC Current Count register (R/O)

83EH 2110 IA32_X2APIC_DIV_CONF Thread x2APIC Divide Configuration register (R/W)

83FH 2111 IA32_X2APIC_SELF_IPI Thread x2APIC Self IPI register (W/O)

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W) See Table 35-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W) See Table 35-2

Table 35-33 Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 371

“CPUID—CPU Identification” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR 0, 1, 2, 3,
4, 6

Shared See Section 35.20, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE 0, 1, 2, 3,
4, 6

Shared See Section 35.20, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_LINE_
SIZE

3, 4, 6 Shared See Section 8.10.5, “Monitor/Mwait Address
Range Determination.”

10H 16 IA32_TIME_STAMP_COUNTER 0, 1, 2, 3,
4, 6

Unique Time Stamp Counter

See Table 35-2.

On earlier processors, only the lower 32 bits are
writable. On any write to the lower 32 bits, the
upper 32 bits are cleared. For processor family
0FH, models 3 and 4: all 64 bits are writable.

17H 23 IA32_PLATFORM_ID 0, 1, 2, 3,
4, 6

Shared Platform ID (R)

See Table 35-2.

The operating system can use this MSR to
determine “slot” information for the processor and
the proper microcode update to load.

1BH 27 IA32_APIC_BASE 0, 1, 2, 3,
4, 6

Unique APIC Location and Status (R/W)

See Table 35-2. See Section 10.4.4, “Local APIC
Status and Location.”

2AH 42 MSR_EBC_HARD_POWERON 0, 1, 2, 3,
4, 6

Shared Processor Hard Power-On Configuration

(R/W) Enables and disables processor features;

(R) indicates current processor configuration.

0 Output Tri-state Enabled (R)

Indicates whether tri-state output is enabled (1)
or disabled (0) as set by the strapping of SMI#.
The value in this bit is written on the deassertion
of RESET#; the bit is set to 1 when the address
bus signal is asserted.

1 Execute BIST (R)

Indicates whether the execution of the BIST is
enabled (1) or disabled (0) as set by the strapping
of INIT#. The value in this bit is written on the
deassertion of RESET#; the bit is set to 1 when
the address bus signal is asserted.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 372

2 In Order Queue Depth (R)

Indicates whether the in order queue depth for
the system bus is 1 (1) or up to 12 (0) as set by
the strapping of A7#. The value in this bit is
written on the deassertion of RESET#; the bit is
set to 1 when the address bus signal is asserted.

3 MCERR# Observation Disabled (R)

Indicates whether MCERR# observation is enabled
(0) or disabled (1) as determined by the strapping
of A9#. The value in this bit is written on the
deassertion of RESET#; the bit is set to 1 when
the address bus signal is asserted.

4 BINIT# Observation Enabled (R)

Indicates whether BINIT# observation is enabled
(0) or disabled (1) as determined by the strapping
of A10#. The value in this bit is written on the
deassertion of RESET#; the bit is set to 1 when
the address bus signal is asserted.

6:5 APIC Cluster ID (R)

Contains the logical APIC cluster ID value as set by
the strapping of A12# and A11#. The logical
cluster ID value is written into the field on the
deassertion of RESET#; the field is set to 1 when
the address bus signal is asserted.

7 Bus Park Disable (R)

Indicates whether bus park is enabled (0) or
disabled (1) as set by the strapping of A15#. The
value in this bit is written on the deassertion of
RESET#; the bit is set to 1 when the address bus
signal is asserted.

11:8 Reserved.

13:12 Agent ID (R)

Contains the logical agent ID value as set by the
strapping of BR[3:0]. The logical ID value is
written into the field on the deassertion of
RESET#; the field is set to 1 when the address bus
signal is asserted.

63:14 Reserved.

2BH 43 MSR_EBC_SOFT_POWERON 0, 1, 2, 3,
4, 6

Shared Processor Soft Power-On Configuration (R/W)

Enables and disables processor features.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 373

0 RCNT/SCNT On Request Encoding Enable (R/W)

Controls the driving of RCNT/SCNT on the request
encoding. Set to enable (1); clear to disabled (0,
default).

1 Data Error Checking Disable (R/W)

Set to disable system data bus parity checking;
clear to enable parity checking.

2 Response Error Checking Disable (R/W)

Set to disable (default); clear to enable.

3 Address/Request Error Checking Disable (R/W)

Set to disable (default); clear to enable.

4 Initiator MCERR# Disable (R/W)

Set to disable MCERR# driving for initiator bus
requests (default); clear to enable.

5 Internal MCERR# Disable (R/W)

Set to disable MCERR# driving for initiator internal
errors (default); clear to enable.

6 BINIT# Driver Disable (R/W)

Set to disable BINIT# driver (default); clear to
enable driver.

63:7 Reserved.

2CH 44 MSR_EBC_FREQUENCY_ID 2,3, 4, 6 Shared Processor Frequency Configuration

The bit field layout of this MSR varies according to
the MODEL value in the CPUID version
information. The following bit field layout applies
to Pentium 4 and Xeon Processors with MODEL
encoding equal or greater than 2.

(R) The field Indicates the current processor
frequency configuration.

15:0 Reserved.

18:16 Scalable Bus Speed (R/W)

Indicates the intended scalable bus speed:

EncodingScalable Bus Speed
000B 100 MHz (Model 2)
000B 266 MHz (Model 3 or 4)
001B 133 MHz
010B 200 MHz
011B 166 MHz
100B 333 MHz (Model 6)

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 374

133.33 MHz should be utilized if performing
calculation with System Bus Speed when encoding
is 001B.

166.67 MHz should be utilized if performing
calculation with System Bus Speed when encoding
is 011B.

266.67 MHz should be utilized if performing
calculation with System Bus Speed when encoding
is 000B and model encoding = 3 or 4.

333.33 MHz should be utilized if performing
calculation with System Bus Speed when encoding
is 100B and model encoding = 6.

All other values are reserved.

23:19 Reserved.

31:24 Core Clock Frequency to System Bus
Frequency Ratio (R)

The processor core clock frequency to system bus
frequency ratio observed at the de-assertion of
the reset pin.

63:25 Reserved.

2CH 44 MSR_EBC_FREQUENCY_ID 0, 1 Shared Processor Frequency Configuration (R)

The bit field layout of this MSR varies according to
the MODEL value of the CPUID version
information. This bit field layout applies to
Pentium 4 and Xeon Processors with MODEL
encoding less than 2.

Indicates current processor frequency
configuration.

20:0 Reserved.

23:21 Scalable Bus Speed (R/W)

Indicates the intended scalable bus speed:

Encoding Scalable Bus Speed
000B 100 MHz

All others values reserved.

63:24 Reserved.

3AH 58 IA32_FEATURE_CONTROL 3, 4, 6 Unique Control Features in IA-32 Processor (R/W)

See Table 35-2

(If CPUID.01H:ECX.[bit 5])

79H 121 IA32_BIOS_UPDT_TRIG 0, 1, 2, 3,
4, 6

Shared BIOS Update Trigger Register (W)

See Table 35-2.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 375

8BH 139 IA32_BIOS_SIGN_ID 0, 1, 2, 3,
4, 6

Unique BIOS Update Signature ID (R/W)

See Table 35-2.

9BH 155 IA32_SMM_MONITOR_CTL 3, 4, 6 Unique SMM Monitor Configuration (R/W)

See Table 35-2.

FEH 254 IA32_MTRRCAP 0, 1, 2, 3,
4, 6

Unique MTRR Information

See Section 11.11.1, “MTRR Feature
Identification.”.

174H 372 IA32_SYSENTER_CS 0, 1, 2, 3,
4, 6

Unique CS register target for CPL 0 code (R/W)

See Table 35-2.

See Section 5.8.7, “Performing Fast Calls to
System Procedures with the SYSENTER and
SYSEXIT Instructions.”

175H 373 IA32_SYSENTER_ESP 0, 1, 2, 3,
4, 6

Unique Stack pointer for CPL 0 stack (R/W)

See Table 35-2.

See Section 5.8.7, “Performing Fast Calls to
System Procedures with the SYSENTER and
SYSEXIT Instructions.”

176H 374 IA32_SYSENTER_EIP 0, 1, 2, 3,
4, 6

Unique CPL 0 code entry point (R/W)

See Table 35-2. See Section 5.8.7, “Performing
Fast Calls to System Procedures with the
SYSENTER and SYSEXIT Instructions.”

179H 377 IA32_MCG_CAP 0, 1, 2, 3,
4, 6

Unique Machine Check Capabilities (R)

See Table 35-2. See Section 15.3.1.1,
“IA32_MCG_CAP MSR.”

17AH 378 IA32_MCG_STATUS 0, 1, 2, 3,
4, 6

Unique Machine Check Status. (R)

See Table 35-2. See Section 15.3.1.2,
“IA32_MCG_STATUS MSR.”

17BH 379 IA32_MCG_CTL Machine Check Feature Enable (R/W)

See Table 35-2.

See Section 15.3.1.3, “IA32_MCG_CTL MSR.”

180H 384 MSR_MCG_RAX 0, 1, 2, 3,
4, 6

Unique Machine Check EAX/RAX Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

181H 385 MSR_MCG_RBX 0, 1, 2, 3,
4, 6

Unique Machine Check EBX/RBX Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 376

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

182H 386 MSR_MCG_RCX 0, 1, 2, 3,
4, 6

Unique Machine Check ECX/RCX Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

183H 387 MSR_MCG_RDX 0, 1, 2, 3,
4, 6

Unique Machine Check EDX/RDX Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

184H 388 MSR_MCG_RSI 0, 1, 2, 3,
4, 6

Unique Machine Check ESI/RSI Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

185H 389 MSR_MCG_RDI 0, 1, 2, 3,
4, 6

Unique Machine Check EDI/RDI Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

186H 390 MSR_MCG_RBP 0, 1, 2, 3,
4, 6

Unique Machine Check EBP/RBP Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

187H 391 MSR_MCG_RSP 0, 1, 2, 3,
4, 6

Unique Machine Check ESP/RSP Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 377

188H 392 MSR_MCG_RFLAGS 0, 1, 2, 3,
4, 6

Unique Machine Check EFLAGS/RFLAG Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

189H 393 MSR_MCG_RIP 0, 1, 2, 3,
4, 6

Unique Machine Check EIP/RIP Save State

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Contains register state at time of machine check
error. When in non-64-bit modes at the time of
the error, bits 63-32 do not contain valid data.

18AH 394 MSR_MCG_MISC 0, 1, 2, 3,
4, 6

Unique Machine Check Miscellaneous

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

0 DS

When set, the bit indicates that a page assist or
page fault occurred during DS normal operation.
The processors response is to shut down.

The bit is used as an aid for debugging DS
handling code. It is the responsibility of the user
(BIOS or operating system) to clear this bit for
normal operation.

63:1 Reserved.

18BH -
18FH

395 MSR_MCG_RESERVED1 -
MSR_MCG_RESERVED5

Reserved.

190H 400 MSR_MCG_R8 0, 1, 2, 3,
4, 6

Unique Machine Check R8

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

191H 401 MSR_MCG_R9 0, 1, 2, 3,
4, 6

Unique Machine Check R9D/R9

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 378

192H 402 MSR_MCG_R10 0, 1, 2, 3,
4, 6

Unique Machine Check R10

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

193H 403 MSR_MCG_R11 0, 1, 2, 3,
4, 6

Unique Machine Check R11

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

194H 404 MSR_MCG_R12 0, 1, 2, 3,
4, 6

Unique Machine Check R12

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

195H 405 MSR_MCG_R13 0, 1, 2, 3,
4, 6

Unique Machine Check R13

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

196H 406 MSR_MCG_R14 0, 1, 2, 3,
4, 6

Unique Machine Check R14

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

197H 407 MSR_MCG_R15 0, 1, 2, 3,
4, 6

Unique Machine Check R15

See Section 15.3.2.6, “IA32_MCG Extended
Machine Check State MSRs.”

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 379

63:0 Registers R8-15 (and the associated state-save
MSRs) exist only in Intel 64 processors. These
registers contain valid information only when the
processor is operating in 64-bit mode at the time
of the error.

198H 408 IA32_PERF_STATUS 3, 4, 6 Unique See Table 35-2. See Section 14.1, “Enhanced Intel
Speedstep® Technology.”

199H 409 IA32_PERF_CTL 3, 4, 6 Unique See Table 35-2. See Section 14.1, “Enhanced Intel
Speedstep® Technology.”

19AH 410 IA32_CLOCK_MODULATION 0, 1, 2, 3,
4, 6

Unique Thermal Monitor Control (R/W)

See Table 35-2.

See Section 14.7.3, “Software Controlled Clock
Modulation.”

19BH 411 IA32_THERM_INTERRUPT 0, 1, 2, 3,
4, 6

Unique Thermal Interrupt Control (R/W)

See Section 14.7.2, “Thermal Monitor,” and see
Table 35-2.

19CH 412 IA32_THERM_STATUS 0, 1, 2, 3,
4, 6

Shared Thermal Monitor Status (R/W)

See Section 14.7.2, “Thermal Monitor,” and see
Table 35-2.

19DH 413 MSR_THERM2_CTL Thermal Monitor 2 Control.

3, Shared For Family F, Model 3 processors: When read,
specifies the value of the target TM2 transition
last written. When set, it sets the next target
value for TM2 transition.

4, 6 Shared For Family F, Model 4 and Model 6 processors:
When read, specifies the value of the target TM2
transition last written. Writes may cause #GP
exceptions.

1A0H 416 IA32_MISC_ENABLE 0, 1, 2, 3,
4, 6

Shared Enable Miscellaneous Processor Features (R/W)

0 Fast-Strings Enable. See Table 35-2.

1 Reserved.

2 x87 FPU Fopcode Compatibility Mode Enable

3 Thermal Monitor 1 Enable

See Section 14.7.2, “Thermal Monitor,” and see
Table 35-2.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 380

4 Split-Lock Disable

When set, the bit causes an #AC exception to be
issued instead of a split-lock cycle. Operating
systems that set this bit must align system
structures to avoid split-lock scenarios.

When the bit is clear (default), normal split-locks
are issued to the bus.

This debug feature is specific to the Pentium 4
processor.

5 Reserved.

6 Third-Level Cache Disable (R/W)

When set, the third-level cache is disabled; when
clear (default) the third-level cache is enabled.
This flag is reserved for processors that do not
have a third-level cache.

Note that the bit controls only the third-level
cache; and only if overall caching is enabled
through the CD flag of control register CR0, the
page-level cache controls, and/or the MTRRs.

See Section 11.5.4, “Disabling and Enabling the L3
Cache.”

7 Performance Monitoring Available (R)

See Table 35-2.

8 Suppress Lock Enable

When set, assertion of LOCK on the bus is
suppressed during a Split Lock access. When clear
(default), LOCK is not suppressed.

9 Prefetch Queue Disable

When set, disables the prefetch queue. When clear
(default), enables the prefetch queue.

10 FERR# Interrupt Reporting Enable (R/W)

When set, interrupt reporting through the FERR#
pin is enabled; when clear, this interrupt reporting
function is disabled.

When this flag is set and the processor is in the
stop-clock state (STPCLK# is asserted), asserting
the FERR# pin signals to the processor that an
interrupt (such as, INIT#, BINIT#, INTR, NMI, SMI#,
or RESET#) is pending and that the processor
should return to normal operation to handle the
interrupt.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 381

This flag does not affect the normal operation of
the FERR# pin (to indicate an unmasked floating-
point error) when the STPCLK# pin is not
asserted.

11 Branch Trace Storage Unavailable
(BTS_UNAVILABLE) (R)

See Table 35-2.

When set, the processor does not support branch
trace storage (BTS); when clear, BTS is supported.

12 PEBS_UNAVILABLE: Precise Event Based
Sampling Unavailable (R)

See Table 35-2.

When set, the processor does not support precise
event-based sampling (PEBS); when clear, PEBS is
supported.

13 3 TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor
indicates that the die temperature is at the pre-
determined threshold, the Thermal Monitor 2
mechanism is engaged. TM2 will reduce the bus to
core ratio and voltage according to the value last
written to MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor
does not change the VID signals or the bus to core
ratio when the processor enters a thermal
managed state.

If the TM2 feature flag (ECX[8]) is not set to 1
after executing CPUID with EAX = 1, then this
feature is not supported and BIOS must not alter
the contents of this bit location. The processor is
operating out of spec if both this bit and the TM1
bit are set to disabled states.

17:14 Reserved.

18 3, 4, 6 ENABLE MONITOR FSM (R/W)

See Table 35-2.

19 Adjacent Cache Line Prefetch Disable (R/W)

When set to 1, the processor fetches the cache
line of the 128-byte sector containing currently
required data. When set to 0, the processor
fetches both cache lines in the sector.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 382

Single processor platforms should not set this bit.
Server platforms should set or clear this bit based
on platform performance observed in validation
and testing.

BIOS may contain a setup option that controls the
setting of this bit.

21:20 Reserved.

22 3, 4, 6 Limit CPUID MAXVAL (R/W)

See Table 35-2.

Setting this can cause unexpected behavior to
software that depends on the availability of CPUID
leaves greater than 3.

23 Shared xTPR Message Disable (R/W)

See Table 35-2.

24 L1 Data Cache Context Mode (R/W)

When set, the L1 data cache is placed in shared
mode; when clear (default), the cache is placed in
adaptive mode. This bit is only enabled for IA-32
processors that support Intel Hyper-Threading
Technology. See Section 11.5.6, “L1 Data Cache
Context Mode.”

When L1 is running in adaptive mode and CR3s
are identical, data in L1 is shared across logical
processors. Otherwise, L1 is not shared and cache
use is competitive.

If the Context ID feature flag (ECX[10]) is set to 0
after executing CPUID with EAX = 1, the ability to
switch modes is not supported. BIOS must not
alter the contents of IA32_MISC_ENABLE[24].

33:25 Reserved.

34 Unique XD Bit Disable (R/W)

See Table 35-2.

63:35 Reserved.

1A1H 417 MSR_PLATFORM_BRV 3, 4, 6 Shared Platform Feature Requirements (R)

17:0 Reserved.

18 PLATFORM Requirements

When set to 1, indicates the processor has specific
platform requirements. The details of the platform
requirements are listed in the respective data
sheets of the processor.

63:19 Reserved.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 383

1D7H 471 MSR_LER_FROM_LIP 0, 1, 2, 3,
4, 6

Unique Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction
that the processor executed prior to the last
exception that was generated or the last interrupt
that was handled.

See Section 17.10.3, “Last Exception Records.”

31:0 From Linear IP

Linear address of the last branch instruction.

63:32 Reserved.

1D7H 471 63:0 Unique From Linear IP

Linear address of the last branch instruction (If IA-
32e mode is active).

1D8H 472 MSR_LER_TO_LIP 0, 1, 2, 3,
4, 6

Unique Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the
last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was handled.

See Section 17.10.3, “Last Exception Records.”

31:0 From Linear IP

Linear address of the target of the last branch
instruction.

63:32 Reserved.

1D8H 472 63:0 Unique From Linear IP

Linear address of the target of the last branch
instruction (If IA-32e mode is active).

1D9H 473 MSR_DEBUGCTLA 0, 1, 2, 3,
4, 6

Unique Debug Control (R/W)

Controls how several debug features are used. Bit
definitions are discussed in the referenced
section.

See Section 17.10.1, “MSR_DEBUGCTLA MSR.”

1DAH 474 MSR_LASTBRANCH
_TOS

0, 1, 2, 3,
4, 6

Unique Last Branch Record Stack TOS (R/W)

Contains an index (0-3 or 0-15) that points to the
top of the last branch record stack (that is, that
points the index of the MSR containing the most
recent branch record).

See Section 17.10.2, “LBR Stack for Processors
Based on Intel NetBurst® Microarchitecture”; and
addresses 1DBH-1DEH and 680H-68FH.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 384

1DBH 475 MSR_LASTBRANCH_0 0, 1, 2 Unique Last Branch Record 0 (R/W)

One of four last branch record registers on the last
branch record stack. It contains pointers to the
source and destination instruction for one of the
last four branches, exceptions, or interrupts that
the processor took.

MSR_LASTBRANCH_0 through
MSR_LASTBRANCH_3 at 1DBH-1DEH are
available only on family 0FH, models 0H-02H.
They have been replaced by the MSRs at 680H-
68FH and 6C0H-6CFH.

See Section 17.9, “Last Branch, Call Stack,
Interrupt, and Exception Recording for Processors
based on Skylake Microarchitecture.”

1DDH 477 MSR_LASTBRANCH_2 0, 1, 2 Unique Last Branch Record 2

See description of the MSR_LASTBRANCH_0 MSR
at 1DBH.

1DEH 478 MSR_LASTBRANCH_3 0, 1, 2 Unique Last Branch Record 3

See description of the MSR_LASTBRANCH_0 MSR
at 1DBH.

200H 512 IA32_MTRR_PHYSBASE0 0, 1, 2, 3,
4, 6

Shared Variable Range Base MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

201H 513 IA32_MTRR_PHYSMASK0 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

202H 514 IA32_MTRR_PHYSBASE1 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

203H 515 IA32_MTRR_PHYSMASK1 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

204H 516 IA32_MTRR_PHYSBASE2 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

205H 517 IA32_MTRR_PHYSMASK2 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs”.

206H 518 IA32_MTRR_PHYSBASE3 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

207H 519 IA32_MTRR_PHYSMASK3 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

208H 520 IA32_MTRR_PHYSBASE4 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 385

209H 521 IA32_MTRR_PHYSMASK4 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20AH 522 IA32_MTRR_PHYSBASE5 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20BH 523 IA32_MTRR_PHYSMASK5 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20CH 524 IA32_MTRR_PHYSBASE6 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20DH 525 IA32_MTRR_PHYSMASK6 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20EH 526 IA32_MTRR_PHYSBASE7 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20FH 527 IA32_MTRR_PHYSMASK7 0, 1, 2, 3,
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

250H 592 IA32_MTRR_FIX64K_00000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

258H 600 IA32_MTRR_FIX16K_80000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

259H 601 IA32_MTRR_FIX16K_A0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

268H 616 IA32_MTRR_FIX4K_C0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

269H 617 IA32_MTRR_FIX4K_C8000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs”.

26AH 618 IA32_MTRR_FIX4K_D0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs”.

26BH 619 IA32_MTRR_FIX4K_D8000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26CH 620 IA32_MTRR_FIX4K_E0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26DH 621 IA32_MTRR_FIX4K_E8000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26EH 622 IA32_MTRR_FIX4K_F0000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26FH 623 IA32_MTRR_FIX4K_F8000 0, 1, 2, 3,
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 386

277H 631 IA32_PAT 0, 1, 2, 3,
4, 6

Unique Page Attribute Table

See Section 11.11.2.2, “Fixed Range MTRRs.”

2FFH 767 IA32_MTRR_DEF_TYPE 0, 1, 2, 3,
4, 6

Shared Default Memory Types (R/W)

See Table 35-2.

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE
MSR.”

300H 768 MSR_BPU_COUNTER0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.2, “Performance Counters.”

301H 769 MSR_BPU_COUNTER1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.2, “Performance Counters.”

302H 770 MSR_BPU_COUNTER2 0, 1, 2, 3,
4, 6

Shared See Section 18.13.2, “Performance Counters.”

303H 771 MSR_BPU_COUNTER3 0, 1, 2, 3,
4, 6

Shared See Section 18.13.2, “Performance Counters.”

304H 772 MSR_MS_COUNTER0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.2, “Performance Counters.”

305H 773 MSR_MS_COUNTER1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.2, “Performance Counters.”

306H 774 MSR_MS_COUNTER2 0, 1, 2, 3,
4, 6

Shared See Section 18.13.2, “Performance Counters.”

307H 775 MSR_MS_COUNTER3 0, 1, 2, 3,
4, 6

Shared See Section 18.13.2, “Performance Counters.”

308H 776 MSR_FLAME_COUNTER0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.2, “Performance Counters.”

309H 777 MSR_FLAME_COUNTER1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.2, “Performance Counters.”

30AH 778 MSR_FLAME_COUNTER2 0, 1, 2, 3,
4, 6

Shared See Section 18.13.2, “Performance Counters.”

30BH 779 MSR_FLAME_COUNTER3 0, 1, 2, 3,
4, 6

Shared See Section 18.13.2, “Performance Counters.”

30CH 780 MSR_IQ_COUNTER0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.2, “Performance Counters.”

30DH 781 MSR_IQ_COUNTER1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.2, “Performance Counters.”

30EH 782 MSR_IQ_COUNTER2 0, 1, 2, 3,
4, 6

Shared See Section 18.13.2, “Performance Counters.”

30FH 783 MSR_IQ_COUNTER3 0, 1, 2, 3,
4, 6

Shared See Section 18.13.2, “Performance Counters.”

310H 784 MSR_IQ_COUNTER4 0, 1, 2, 3,
4, 6

Shared See Section 18.13.2, “Performance Counters.”

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 387

311H 785 MSR_IQ_COUNTER5 0, 1, 2, 3,
4, 6

Shared See Section 18.13.2, “Performance Counters.”

360H 864 MSR_BPU_CCCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.3, “CCCR MSRs.”

361H 865 MSR_BPU_CCCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.3, “CCCR MSRs.”

362H 866 MSR_BPU_CCCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.13.3, “CCCR MSRs.”

363H 867 MSR_BPU_CCCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.13.3, “CCCR MSRs.”

364H 868 MSR_MS_CCCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.3, “CCCR MSRs.”

365H 869 MSR_MS_CCCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.3, “CCCR MSRs.”

366H 870 MSR_MS_CCCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.13.3, “CCCR MSRs.”

367H 871 MSR_MS_CCCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.13.3, “CCCR MSRs.”

368H 872 MSR_FLAME_CCCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.3, “CCCR MSRs.”

369H 873 MSR_FLAME_CCCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.3, “CCCR MSRs.”

36AH 874 MSR_FLAME_CCCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.13.3, “CCCR MSRs.”

36BH 875 MSR_FLAME_CCCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.13.3, “CCCR MSRs.”

36CH 876 MSR_IQ_CCCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.3, “CCCR MSRs.”

36DH 877 MSR_IQ_CCCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.3, “CCCR MSRs.”

36EH 878 MSR_IQ_CCCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.13.3, “CCCR MSRs.”

36FH 879 MSR_IQ_CCCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.13.3, “CCCR MSRs.”

370H 880 MSR_IQ_CCCR4 0, 1, 2, 3,
4, 6

Shared See Section 18.13.3, “CCCR MSRs.”

371H 881 MSR_IQ_CCCR5 0, 1, 2, 3,
4, 6

Shared See Section 18.13.3, “CCCR MSRs.”

3A0H 928 MSR_BSU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 388

3A1H 929 MSR_BSU_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3A2H 930 MSR_FSB_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3A3H 931 MSR_FSB_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3A4H 932 MSR_FIRM_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3A5H 933 MSR_FIRM_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3A6H 934 MSR_FLAME_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3A7H 935 MSR_FLAME_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3A8H 936 MSR_DAC_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3A9H 937 MSR_DAC_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3AAH 938 MSR_MOB_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3ABH 939 MSR_MOB_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3ACH 940 MSR_PMH_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3ADH 941 MSR_PMH_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3AEH 942 MSR_SAAT_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3AFH 943 MSR_SAAT_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3B0H 944 MSR_U2L_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3B1H 945 MSR_U2L_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3B2H 946 MSR_BPU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3B3H 947 MSR_BPU_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3B4H 948 MSR_IS_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 389

3B5H 949 MSR_IS_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3B6H 950 MSR_ITLB_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3B7H 951 MSR_ITLB_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3B8H 952 MSR_CRU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3B9H 953 MSR_CRU_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3BAH 954 MSR_IQ_ESCR0 0, 1, 2 Shared See Section 18.13.1, “ESCR MSRs.”

This MSR is not available on later processors. It is
only available on processor family 0FH, models
01H-02H.

3BBH 955 MSR_IQ_ESCR1 0, 1, 2 Shared See Section 18.13.1, “ESCR MSRs.”

This MSR is not available on later processors. It is
only available on processor family 0FH, models
01H-02H.

3BCH 956 MSR_RAT_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3BDH 957 MSR_RAT_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3BEH 958 MSR_SSU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3C0H 960 MSR_MS_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3C1H 961 MSR_MS_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3C2H 962 MSR_TBPU_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3C3H 963 MSR_TBPU_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3C4H 964 MSR_TC_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3C5H 965 MSR_TC_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3C8H 968 MSR_IX_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3C9H 969 MSR_IX_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 390

3CAH 970 MSR_ALF_ESCR0 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3CBH 971 MSR_ALF_ESCR1 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3CCH 972 MSR_CRU_ESCR2 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3CDH 973 MSR_CRU_ESCR3 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3E0H 992 MSR_CRU_ESCR4 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3E1H 993 MSR_CRU_ESCR5 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3F0H 1008 MSR_TC_PRECISE_EVENT 0, 1, 2, 3,
4, 6

Shared See Section 18.13.1, “ESCR MSRs.”

3F1H 1009 MSR_PEBS_ENABLE 0, 1, 2, 3,
4, 6

Shared Precise Event-Based Sampling (PEBS) (R/W)

Controls the enabling of precise event sampling
and replay tagging.

12:0 See Table 19-31.

23:13 Reserved.

24 UOP Tag

Enables replay tagging when set.

25 ENABLE_PEBS_MY_THR (R/W)

Enables PEBS for the target logical processor
when set; disables PEBS when clear (default).

See Section 18.14.3, “IA32_PEBS_ENABLE MSR,”
for an explanation of the target logical processor.

This bit is called ENABLE_PEBS in IA-32
processors that do not support Intel Hyper-
Threading Technology.

26 ENABLE_PEBS_OTH_THR (R/W)

Enables PEBS for the target logical processor
when set; disables PEBS when clear (default).

See Section 18.14.3, “IA32_PEBS_ENABLE MSR,”
for an explanation of the target logical processor.

This bit is reserved for IA-32 processors that do
not support Intel Hyper-Threading Technology.

63:27 Reserved.

3F2H 1010 MSR_PEBS_MATRIX_VERT 0, 1, 2, 3,
4, 6

Shared See Table 19-31.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 391

400H 1024 IA32_MC0_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC0_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

403H 1027 IA32_MC0_MISC 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC0_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC0_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

404H 1028 IA32_MC1_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC1_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

407H 1031 IA32_MC1_MISC Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC1_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC1_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

408H 1032 IA32_MC2_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 392

40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC2_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

40BH 1035 IA32_MC2_MISC See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC2_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

40CH 1036 IA32_MC3_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC3_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC3_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

40FH 1039 IA32_MC3_MISC 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC3_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC3_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

410H 1040 IA32_MC4_CTL 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS 0, 1, 2, 3,
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 393

412H 1042 IA32_MC4_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC4_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

413H 1043 IA32_MC4_MISC See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either not
implemented or does not contain additional
information if the MISCV flag in the
IA32_MC4_STATUS register is clear.

When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

480H 1152 IA32_VMX_BASIC 3, 4, 6 Unique Reporting Register of Basic VMX Capabilities
(R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_CTLS 3, 4, 6 Unique Capability Reporting Register of Pin-based
VM-execution Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_CTLS 3, 4, 6 Unique Capability Reporting Register of Primary
Processor-based VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls,” and
see Table 35-2.

483H 1155 IA32_VMX_EXIT_CTLS 3, 4, 6 Unique Capability Reporting Register of VM-exit
Controls (R/O)

See Appendix A.4, “VM-Exit Controls,” and see
Table 35-2.

484H 1156 IA32_VMX_ENTRY_CTLS 3, 4, 6 Unique Capability Reporting Register of VM-entry
Controls (R/O)

See Appendix A.5, “VM-Entry Controls,” and see
Table 35-2.

485H 1157 IA32_VMX_MISC 3, 4, 6 Unique Reporting Register of Miscellaneous VMX
Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data,” and see
Table 35-2.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 394

486H 1158 IA32_VMX_CR0_FIXED0 3, 4, 6 Unique Capability Reporting Register of CR0 Bits Fixed
to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0,” and
see Table 35-2.

487H 1159 IA32_VMX_CR0_FIXED1 3, 4, 6 Unique Capability Reporting Register of CR0 Bits Fixed
to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0,” and
see Table 35-2.

488H 1160 IA32_VMX_CR4_FIXED0 3, 4, 6 Unique Capability Reporting Register of CR4 Bits Fixed
to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4,” and
see Table 35-2.

489H 1161 IA32_VMX_CR4_FIXED1 3, 4, 6 Unique Capability Reporting Register of CR4 Bits Fixed
to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4,” and
see Table 35-2.

48AH 1162 IA32_VMX_VMCS_ENUM 3, 4, 6 Unique Capability Reporting Register of VMCS Field
Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration,” and see
Table 35-2.

48BH 1163 IA32_VMX_PROCBASED_CTLS2 3, 4, 6 Unique Capability Reporting Register of Secondary
Processor-based VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls,” and
see Table 35-2.

600H 1536 IA32_DS_AREA 0, 1, 2, 3,
4, 6

Unique DS Save Area (R/W)

See Table 35-2.

See Section 18.13.4, “Debug Store (DS)
Mechanism.”

680H 1664 MSR_LASTBRANCH_0_FROM_IP 3, 4, 6 Unique Last Branch Record 0 (R/W)

One of 16 pairs of last branch record registers on
the last branch record stack (680H-68FH). This
part of the stack contains pointers to the source
instruction for one of the last 16 branches,
exceptions, or interrupts taken by the processor.

The MSRs at 680H-68FH, 6C0H-6CfH are not
available in processor releases before family 0FH,
model 03H. These MSRs replace MSRs previously
located at 1DBH-1DEH.which performed the same
function for early releases.

See Section 17.9, “Last Branch, Call Stack,
Interrupt, and Exception Recording for Processors
based on Skylake Microarchitecture.”

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 395

681H 1665 MSR_LASTBRANCH_1_FROM_IP 3, 4, 6 Unique Last Branch Record 1

See description of MSR_LASTBRANCH_0 at 680H.

682H 1666 MSR_LASTBRANCH_2_FROM_IP 3, 4, 6 Unique Last Branch Record 2

See description of MSR_LASTBRANCH_0 at 680H.

683H 1667 MSR_LASTBRANCH_3_FROM_IP 3, 4, 6 Unique Last Branch Record 3

See description of MSR_LASTBRANCH_0 at 680H.

684H 1668 MSR_LASTBRANCH_4_FROM_IP 3, 4, 6 Unique Last Branch Record 4

See description of MSR_LASTBRANCH_0 at 680H.

685H 1669 MSR_LASTBRANCH_5_FROM_IP 3, 4, 6 Unique Last Branch Record 5

See description of MSR_LASTBRANCH_0 at 680H.

686H 1670 MSR_LASTBRANCH_6_FROM_IP 3, 4, 6 Unique Last Branch Record 6

See description of MSR_LASTBRANCH_0 at 680H.

687H 1671 MSR_LASTBRANCH_7_FROM_IP 3, 4, 6 Unique Last Branch Record 7

See description of MSR_LASTBRANCH_0 at 680H.

688H 1672 MSR_LASTBRANCH_8_FROM_IP 3, 4, 6 Unique Last Branch Record 8

See description of MSR_LASTBRANCH_0 at 680H.

689H 1673 MSR_LASTBRANCH_9_FROM_IP 3, 4, 6 Unique Last Branch Record 9

See description of MSR_LASTBRANCH_0 at 680H.

68AH 1674 MSR_LASTBRANCH_10_FROM_IP 3, 4, 6 Unique Last Branch Record 10

See description of MSR_LASTBRANCH_0 at 680H.

68BH 1675 MSR_LASTBRANCH_11_FROM_IP 3, 4, 6 Unique Last Branch Record 11

See description of MSR_LASTBRANCH_0 at 680H.

68CH 1676 MSR_LASTBRANCH_12_FROM_IP 3, 4, 6 Unique Last Branch Record 12

See description of MSR_LASTBRANCH_0 at 680H.

68DH 1677 MSR_LASTBRANCH_13_FROM_IP 3, 4, 6 Unique Last Branch Record 13

See description of MSR_LASTBRANCH_0 at 680H.

68EH 1678 MSR_LASTBRANCH_14_FROM_IP 3, 4, 6 Unique Last Branch Record 14

See description of MSR_LASTBRANCH_0 at 680H.

68FH 1679 MSR_LASTBRANCH_15_FROM_IP 3, 4, 6 Unique Last Branch Record 15

See description of MSR_LASTBRANCH_0 at 680H.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 396

6C0H 1728 MSR_LASTBRANCH_0_TO_IP 3, 4, 6 Unique Last Branch Record 0 (R/W)

One of 16 pairs of last branch record registers on
the last branch record stack (6C0H-6CFH). This
part of the stack contains pointers to the
destination instruction for one of the last 16
branches, exceptions, or interrupts that the
processor took.

See Section 17.9, “Last Branch, Call Stack,
Interrupt, and Exception Recording for Processors
based on Skylake Microarchitecture.”

6C1H 1729 MSR_LASTBRANCH_1_TO_IP 3, 4, 6 Unique Last Branch Record 1

See description of MSR_LASTBRANCH_0 at 6C0H.

6C2H 1730 MSR_LASTBRANCH_2_TO_IP 3, 4, 6 Unique Last Branch Record 2

See description of MSR_LASTBRANCH_0 at 6C0H.

6C3H 1731 MSR_LASTBRANCH_3_TO_IP 3, 4, 6 Unique Last Branch Record 3

See description of MSR_LASTBRANCH_0 at 6C0H.

6C4H 1732 MSR_LASTBRANCH_4_TO_IP 3, 4, 6 Unique Last Branch Record 4

See description of MSR_LASTBRANCH_0 at 6C0H.

6C5H 1733 MSR_LASTBRANCH_5_TO_IP 3, 4, 6 Unique Last Branch Record 5

See description of MSR_LASTBRANCH_0 at 6C0H.

6C6H 1734 MSR_LASTBRANCH_6_TO_IP 3, 4, 6 Unique Last Branch Record 6

See description of MSR_LASTBRANCH_0 at 6C0H.

6C7H 1735 MSR_LASTBRANCH_7_TO_IP 3, 4, 6 Unique Last Branch Record 7

See description of MSR_LASTBRANCH_0 at 6C0H.

6C8H 1736 MSR_LASTBRANCH_8_TO_IP 3, 4, 6 Unique Last Branch Record 8

See description of MSR_LASTBRANCH_0 at 6C0H.

6C9H 1737 MSR_LASTBRANCH_9_TO_IP 3, 4, 6 Unique Last Branch Record 9

See description of MSR_LASTBRANCH_0 at 6C0H.

6CAH 1738 MSR_LASTBRANCH_10_TO_IP 3, 4, 6 Unique Last Branch Record 10

See description of MSR_LASTBRANCH_0 at 6C0H.

6CBH 1739 MSR_LASTBRANCH_11_TO_IP 3, 4, 6 Unique Last Branch Record 11

See description of MSR_LASTBRANCH_0 at 6C0H.

6CCH 1740 MSR_LASTBRANCH_12_TO_IP 3, 4, 6 Unique Last Branch Record 12

See description of MSR_LASTBRANCH_0 at 6C0H.

6CDH 1741 MSR_LASTBRANCH_13_TO_IP 3, 4, 6 Unique Last Branch Record 13

See description of MSR_LASTBRANCH_0 at 6C0H.

6CEH 1742 MSR_LASTBRANCH_14_TO_IP 3, 4, 6 Unique Last Branch Record 14

See description of MSR_LASTBRANCH_0 at 6C0H.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 397

...

35.19 MSRS IN THE P6 FAMILY PROCESSORS
The following MSRs are defined for the P6 family processors. The MSRs in this table that are shaded are available
only in the Pentium II and Pentium III processors. Beginning with the Pentium 4 processor, some of the MSRs in
this list have been designated as “architectural” and have had their names changed. See Table 35-2 for a list of the
architectural MSRs.

6CFH 1743 MSR_LASTBRANCH_15_TO_IP 3, 4, 6 Unique Last Branch Record 15

See description of MSR_LASTBRANCH_0 at 6C0H.

C000_
0080H

IA32_EFER 3, 4, 6 Unique Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR 3, 4, 6 Unique System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR 3, 4, 6 Unique IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK 3, 4, 6 Unique System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE 3, 4, 6 Unique Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE 3, 4, 6 Unique Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE 3, 4, 6 Unique Swap Target of BASE Address of GS (R/W)

See Table 35-2.

NOTES
1. For HT-enabled processors, there may be more than one logical processors per physical unit. If an MSR is Shared, this means that

one MSR is shared between logical processors. If an MSR is unique, this means that each logical processor has its own MSR.

Table 35-44 MSRs in the Pentium® 4 and Intel® Xeon® Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

Table 35-39 MSRs in the P6 Family Processors

Register
Address

Register Name Bit Description

 Hex Dec

0H 0 P5_MC_ADDR See Section 35.20, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Section 35.20, “MSRs in Pentium Processors.”

10H 16 TSC See Section 17.14, “Time-Stamp Counter.”

17H 23 IA32_PLATFORM_ID Platform ID (R)

The operating system can use this MSR to determine “slot” information for
the processor and the proper microcode update to load.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 398

49:0 Reserved.

52:50 Platform Id (R)

Contains information concerning the intended platform for the processor.
52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

56:53 L2 Cache Latency Read.

59:57 Reserved.

60 Clock Frequency Ratio Read.

63:61 Reserved.

1BH 27 APIC_BASE Section 10.4.4, “Local APIC Status and Location.”

7:0 Reserved.

8 Boot Strap Processor indicator Bit

1 = BSP

10:9 Reserved.

11 APIC Global Enable Bit - Permanent till reset

1 = Enabled
0 = Disabled

31:12 APIC Base Address.

63:32 Reserved.

2AH 42 EBL_CR_POWERON Processor Hard Power-On Configuration

(R/W) Enables and disables processor features;

(R) indicates current processor configuration.

0 Reserved.1

1 Data Error Checking Enable (R/W)

1 = Enabled
0 = Disabled

2 Response Error Checking Enable FRCERR Observation Enable (R/W)

1 = Enabled
0 = Disabled

3 AERR# Drive Enable (R/W)

1 = Enabled
0 = Disabled

Table 35-39 MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 399

4 BERR# Enable for Initiator Bus Requests (R/W)

1 = Enabled
0 = Disabled

5 Reserved.

6 BERR# Driver Enable for Initiator Internal Errors (R/W)

1 = Enabled
0 = Disabled

7 BINIT# Driver Enable (R/W)

1 = Enabled
0 = Disabled

8 Output Tri-state Enabled (R)

1 = Enabled
0 = Disabled

9 Execute BIST (R)

1 = Enabled
0 = Disabled

10 AERR# Observation Enabled (R)

1 = Enabled
0 = Disabled

11 Reserved.

12 BINIT# Observation Enabled (R)

1 = Enabled
0 = Disabled

13 In Order Queue Depth (R)

1 = 1
0 = 8

14 1-MByte Power on Reset Vector (R)

1 = 1MByte
0 = 4GBytes

 15 FRC Mode Enable (R)

1 = Enabled
0 = Disabled

 17:16 APIC Cluster ID (R)

19:18 System Bus Frequency (R)

00 = 66MHz
10 = 100Mhz
01 = 133MHz
11 = Reserved

Table 35-39 MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 400

21: 20 Symmetric Arbitration ID (R)

25:22 Clock Frequency Ratio (R)

26 Low Power Mode Enable (R/W)

27 Clock Frequency Ratio

 63:28 Reserved.1

33H 51 TEST_CTL Test Control Register

29:0 Reserved.

30 Streaming Buffer Disable

31 Disable LOCK#

Assertion for split locked access.

79H 121 BIOS_UPDT_TRIG BIOS Update Trigger Register.

 88H 136 BBL_CR_D0[63:0] Chunk 0 data register D[63:0]: used to write to and read from the L2

 89H 137 BBL_CR_D1[63:0] Chunk 1 data register D[63:0]: used to write to and read from the L2

 8AH 138 BBL_CR_D2[63:0] Chunk 2 data register D[63:0]: used to write to and read from the L2

8BH 139 BIOS_SIGN/BBL_CR_D3[63:0] BIOS Update Signature Register or Chunk 3 data register D[63:0]

Used to write to and read from the L2 depending on the usage model.

C1H 193 PerfCtr0 (PERFCTR0)

C2H 194 PerfCtr1 (PERFCTR1)

FEH 254 MTRRcap

 116H 278 BBL_CR_ADDR [63:0]

BBL_CR_ADDR [63:32]

BBL_CR_ADDR [31:3]

BBL_CR_ADDR [2:0]

Address register: used to send specified address (A31-A3) to L2 during
cache initialization accesses.

Reserved,

Address bits [35:3]

Reserved Set to 0.

 118H 280 BBL_CR_DECC[63:0] Data ECC register D[7:0]: used to write ECC and read ECC to/from L2

 119H 281 BBL_CR_CTL

BL_CR_CTL[63:22]

BBL_CR_CTL[21]

Control register: used to program L2 commands to be issued via cache
configuration accesses mechanism. Also receives L2 lookup response

Reserved

Processor number2

Disable = 1
Enable = 0
Reserved

Table 35-39 MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 401

BBL_CR_CTL[20:19]

BBL_CR_CTL[18]

BBL_CR_CTL[17]

BBL_CR_CTL[16]

BBL_CR_CTL[15:14]

BBL_CR_CTL[13:12]

BBL_CR_CTL[11:10]

BBL_CR_CTL[9:8]

BBL_CR_CTL[7]

BBL_CR_CTL[6:5]

User supplied ECC

Reserved

L2 Hit

Reserved

State from L2

Modified - 11,Exclusive - 10, Shared - 01, Invalid - 00

Way from L2

Way 0 - 00, Way 1 - 01, Way 2 - 10, Way 3 - 11

Way to L2

Reserved

State to L2

BBL_CR_CTL[4:0]

01100
01110
01111
00010
00011
010 + MESI encode
111 + MESI encode
100 + MESI encode

L2 Command

Data Read w/ LRU update (RLU)
Tag Read w/ Data Read (TRR)
Tag Inquire (TI)
L2 Control Register Read (CR)
L2 Control Register Write (CW)
Tag Write w/ Data Read (TWR)
Tag Write w/ Data Write (TWW)
Tag Write (TW)

 11AH 282 BBL_CR_TRIG Trigger register: used to initiate a cache configuration accesses access,
Write only with Data = 0.

 11BH 283 BBL_CR_BUSY Busy register: indicates when a cache configuration accesses L2 command
is in progress. D[0] = 1 = BUSY

11EH 286 BBL_CR_CTL3

BBL_CR_CTL3[63:26]

BBL_CR_CTL3[25]

BBL_CR_CTL3[24]

BBL_CR_CTL3[23]

Control register 3: used to configure the L2 Cache

Reserved

Cache bus fraction (read only)

Reserved

L2 Hardware Disable (read only)

Table 35-39 MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 402

BBL_CR_CTL3[22:20]

111
110
101
100
011
010
001
000

BBL_CR_CTL3[19]

BBL_CR_CTL3[18]

L2 Physical Address Range support

64GBytes
32GBytes
16GBytes
8GBytes
4GBytes
2GBytes
1GBytes
512MBytes

Reserved

Cache State error checking enable (read/write)

 BBL_CR_CTL3[17:13

00001
00010
00100
01000
10000

BBL_CR_CTL3[12:11]

BBL_CR_CTL3[10:9]

00
01
10
11

BBL_CR_CTL3[8]

BBL_CR_CTL3[7]

BBL_CR_CTL3[6]

BBL_CR_CTL3[5]

BBL_CR_CTL3[4:1]

BBL_CR_CTL3[0]

Cache size per bank (read/write)

256KBytes
512KBytes
1MByte
2MByte
4MBytes

Number of L2 banks (read only)

L2 Associativity (read only)

Direct Mapped
2 Way
4 Way
Reserved

L2 Enabled (read/write)

CRTN Parity Check Enable (read/write)

Address Parity Check Enable (read/write)

ECC Check Enable (read/write)

L2 Cache Latency (read/write)

L2 Configured (read/write

)

174H 372 SYSENTER_CS_MSR CS register target for CPL 0 code

175H 373 SYSENTER_ESP_MSR Stack pointer for CPL 0 stack

176H 374 SYSENTER_EIP_MSR CPL 0 code entry point

179H 377 MCG_CAP

17AH 378 MCG_STATUS

17BH 379 MCG_CTL

186H 390 PerfEvtSel0 (EVNTSEL0)

7:0 Event Select

Refer to Performance Counter section for a list of event encodings.

Table 35-39 MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 403

15:8 UMASK (Unit Mask)

Unit mask register set to 0 to enable all count options.

16 USER

Controls the counting of events at Privilege levels of 1, 2, and 3.

17 OS

Controls the counting of events at Privilege level of 0.

18 E

Occurrence/Duration Mode Select

1 = Occurrence
0 = Duration

19 PC

Enabled the signaling of performance counter overflow via BP0 pin

20 INT

Enables the signaling of counter overflow via input to APIC

1 = Enable
0 = Disable

22 ENABLE

Enables the counting of performance events in both counters

1 = Enable
0 = Disable

23 INV

Inverts the result of the CMASK condition

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask).

187H 391 PerfEvtSel1 (EVNTSEL1)

7:0 Event Select

Refer to Performance Counter section for a list of event encodings.

15:8 UMASK (Unit Mask)

Unit mask register set to 0 to enable all count options.

16 USER

Controls the counting of events at Privilege levels of 1, 2, and 3.

Table 35-39 MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 404

17 OS

Controls the counting of events at Privilege level of 0

18 E

Occurrence/Duration Mode Select

1 = Occurrence
0 = Duration

19 PC

Enabled the signaling of performance counter overflow via BP0 pin.

20 INT

Enables the signaling of counter overflow via input to APIC

1 = Enable
0 = Disable

23 INV

Inverts the result of the CMASK condition

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask)

1D9H 473 DEBUGCTLMSR

0 Enable/Disable Last Branch Records

1 Branch Trap Flag

2 Performance Monitoring/Break Point Pins

3 Performance Monitoring/Break Point Pins

4 Performance Monitoring/Break Point Pins

5 Performance Monitoring/Break Point Pins

6 Enable/Disable Execution Trace Messages

31:7 Reserved

1DBH 475 LASTBRANCHFROMIP

1DCH 476 LASTBRANCHTOIP

1DDH 477 LASTINTFROMIP

1DEH 478 LASTINTTOIP

1E0H 480 ROB_CR_BKUPTMPDR6

1:0 Reserved

2 Fast String Enable bit. Default is enabled

200H 512 MTRRphysBase0

201H 513 MTRRphysMask0

Table 35-39 MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 405

202H 514 MTRRphysBase1

203H 515 MTRRphysMask1

204H 516 MTRRphysBase2

205H 517 MTRRphysMask2

206H 518 MTRRphysBase3

207H 519 MTRRphysMask3

208H 520 MTRRphysBase4

209H 521 MTRRphysMask4

20AH 522 MTRRphysBase5

20BH 523 MTRRphysMask5

20CH 524 MTRRphysBase6

20DH 525 MTRRphysMask6

20EH 526 MTRRphysBase7

20FH 527 MTRRphysMask7

250H 592 MTRRfix64K_00000

258H 600 MTRRfix16K_80000

259H 601 MTRRfix16K_A0000

268H 616 MTRRfix4K_C0000

269H 617 MTRRfix4K_C8000

26AH 618 MTRRfix4K_D0000

26BH 619 MTRRfix4K_D8000

26CH 620 MTRRfix4K_E0000

26DH 621 MTRRfix4K_E8000

26EH 622 MTRRfix4K_F0000

26FH 623 MTRRfix4K_F8000

2FFH 767 MTRRdefType

2:0 Default memory type

10 Fixed MTRR enable

11 MTRR Enable

400H 1024 MC0_CTL

401H 1025 MC0_STATUS

15:0 MC_STATUS_MCACOD

31:16 MC_STATUS_MSCOD

57 MC_STATUS_DAM

Table 35-39 MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 406

58 MC_STATUS_ADDRV

59 MC_STATUS_MISCV

60 MC_STATUS_EN. (Note: For MC0_STATUS only, this bit is hardcoded to 1.)

61 MC_STATUS_UC

62 MC_STATUS_O

63 MC_STATUS_V

402H 1026 MC0_ADDR

403H 1027 MC0_MISC Defined in MCA architecture but not implemented in the P6 family
processors.

404H 1028 MC1_CTL

405H 1029 MC1_STATUS Bit definitions same as MC0_STATUS.

406H 1030 MC1_ADDR

407H 1031 MC1_MISC Defined in MCA architecture but not implemented in the P6 family
processors.

408H 1032 MC2_CTL

409H 1033 MC2_STATUS Bit definitions same as MC0_STATUS.

40AH 1034 MC2_ADDR

40BH 1035 MC2_MISC Defined in MCA architecture but not implemented in the P6 family
processors.

40CH 1036 MC4_CTL

40DH 1037 MC4_STATUS Bit definitions same as MC0_STATUS, except bits 0, 4, 57, and 61 are
hardcoded to 1.

40EH 1038 MC4_ADDR Defined in MCA architecture but not implemented in P6 Family processors.

40FH 1039 MC4_MISC Defined in MCA architecture but not implemented in the P6 family
processors.

410H 1040 MC3_CTL

411H 1041 MC3_STATUS Bit definitions same as MC0_STATUS.

412H 1042 MC3_ADDR

413H 1043 MC3_MISC Defined in MCA architecture but not implemented in the P6 family
processors.

Table 35-39 MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 407

...

19. Updates to Chapter 36, Volume 3C
Change bars show changes to Chapter 36 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

36.1 OVERVIEW
Intel® Processor Trace (Intel PT) is an extension of Intel® Architecture that captures information about software
execution using dedicated hardware facilities that cause only minimal performance perturbation to the software
being traced. This information is collected in data packets. The initial implementations of Intel PT offer control
flow tracing, which generates a variety of packets to be processed by a software decoder. The packets include
timing, program flow information (e.g. branch targets, branch taken/not taken indications) and program-induced
mode related information (e.g. Intel TSX state transitions, CR3 changes). These packets may be buffered inter-
nally before being sent to the memory subsystem or other output mechanism available in the platform. Debug
software can process the trace data and reconstruct the program flow.

36.1.1 Features and Capabilities
Intel PT’s control flow trace generates a variety of packets that, when combined with the binaries of a program by
a post-processing tool, can be used to produce an exact execution trace. The packets record flow information such
as instruction pointers (IP), indirect branch targets, and directions of conditional branches within contiguous code
regions (basic blocks).
In addition, the packets record other contextual, timing, and bookkeeping information that enables both func-
tional and performance debugging of applications. Intel PT has several control and filtering capabilities available
to customize the tracing information collected and to append other processor state and timing information to
enable debugging. For example, there are modes that allow packets to be filtered based on the current privilege
level (CPL) or the value of CR3.
Configuration of the packet generation and filtering capabilities are programmed via a set of MSRs. The MSRs
generally follow the naming convention of IA32_RTIT_*. The capability provided by these configuration MSRs are
enumerated by CPUID, see Section 36.3. Details of the MSRs for configuring Intel PT are described in Section
36.2.5.

NOTES
1. Bit 0 of this register has been redefined several times, and is no longer used in P6 family processors.
2. The processor number feature may be disabled by setting bit 21 of the BBL_CR_CTL MSR (model-specific register address 119h) to

“1”. Once set, bit 21 of the BBL_CR_CTL may not be cleared. This bit is write-once. The processor number feature will be disabled
until the processor is reset.

3. The Pentium III processor will prevent FSB frequency overclocking with a new shutdown mechanism. If the FSB frequency selected
is greater than the internal FSB frequency the processor will shutdown. If the FSB selected is less than the internal FSB frequency
the BIOS may choose to use bit 11 to implement its own shutdown policy.

Table 35-39 MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 408

36.1.1.1 Packet Summary
After a tracing tool has enabled and configured the appropriate MSRs, the processor will collect and generate
trace information in the following categories of packets (for more details on the packets, see Section 36.4):
• Packets about basic information on program execution: These include:

— Packet Stream Boundary (PSB) packets: PSB packets act as ‘heartbeats’ that are generated at regular
intervals (e.g., every 4K trace packet bytes). These packets allow the packet decoder to find the packet
boundaries within the output data stream; a PSB packet should be the first packet that a decoder looks for
when beginning to decode a trace.

— Paging Information Packet (PIP): PIPs record modifications made to the CR3 register. This information,
along with information from the operating system on the CR3 value of each process, allows the debugger
to attribute linear addresses to their correct application source.

— Time-Stamp Counter (TSC) packets: TSC packets aid in tracking wall-clock time, and contain some
portion of the software-visible time-stamp counter.

— Core Bus Ratio (CBR) packets: CBR packets contain the core:bus clock ratio.

— Overflow (OVF) packets: OVF packets are sent when the processor experiences an internal buffer
overflow, resulting in packets being dropped. This packet notifies the decoder of the loss and can help the
decoder to respond to this situation.

• Packets about control flow information:

— Taken Not-Taken (TNT) packets: TNT packets track the “direction” of direct conditional branches (taken or
not taken).

— Target IP (TIP) packets: TIP packets record the target IP of indirect branches, exceptions, interrupts, and
other branches or events. These packets can contain the IP, although that IP value may be compressed by
eliminating upper bytes that match the last IP. There are various types of TIP packets; they are covered in
more detail in Section 36.4.2.2.

— Flow Update Packets (FUP): FUPs provide the source IP addresses for asynchronous events (interrupt and
exceptions), as well as other cases where the source address cannot be determined from the binary.

— MODE packets: These packets provide the decoder with important processor execution information so
that it can properly interpret the dis-assembled binary and trace log. MODE packets have a variety of
formats that indicate details such as the execution mode (16-bit, 32-bit, or 64-bit).

36.2 INTEL® PROCESSOR TRACE OPERATIONAL MODEL
This section describes the overall Intel Processor Trace mechanism and the essential concepts relevant to how it
operates.

36.2.1 Change of Flow Instruction (COFI) Tracing
A basic program block is a section of code where no jumps or branches occur. The instruction pointers (IPs) in this
block of code need not be traced, as the processor will execute them from start to end without redirecting code
flow. Instructions such as branches, and events such as exceptions or interrupts, can change the program flow.
These instructions and events that change program flow are called Change of Flow Instructions (COFI). There are
three categories of COFI:
• Direct transfer COFI.
• Indirect transfer COFI.
• Far transfer COFI.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 409

The following subsections describe the COFI events that result in trace packet generation. Table 36-1 lists branch
instruction by COFI types. For detailed description of specific instructions, see Intel® 64 and IA-32 Architectures
Software Developer’s Manual.

36.2.1.1 Direct Transfer COFI
Direct Transfer COFI are relative branches. This means that their target is an IP whose offset from the current IP
is embedded in the instruction bytes. It is not necessary to indicate target of these instructions in the trace output
since it can be obtained through the source disassembly. Conditional branches need to indicate only whether the
branch is taken or not. Unconditional branches do not need any recording in the trace output. There are two sub-
categories:
• Conditional Branch (Jcc, J*CXZ) and LOOP

To track this type of instruction, the processor encodes a single bit (taken or not taken — TNT) to indicate the
program flow after the instruction.

Jcc, J*CXZ, and LOOP can be traced with TNT bits. To improve the trace packet output efficiency, the
processor will compact several TNT bits into a single packet.

• Unconditional Direct Jumps

There is no trace output required for direct unconditional jumps (like JMP near relative or CALL near relative)
since they can be directly inferred from the application assembly. Direct unconditional jumps do not generate
a TNT bit or a Target IP packet, though TIP.PGD and TIP.PGE packets can be generated by unconditional direct
jumps that toggle Intel PT enables (see Section 36.2.3).

36.2.1.2 Indirect Transfer COFI
Indirect transfer instructions involve updating the IP from a register or memory location. Since the register or
memory contents can vary at any time during execution, there is no way to know the target of the indirect
transfer until the register or memory contents are read. As a result, the disassembled code is not sufficient to
determine the target of this type of COFI. Therefore, tracing hardware must send out the destination IP in the
trace packet for debug software to determine the target address of the COFI. Note that this IP may be a linear or
effective address (see Section 36.3.1.1)
An indirect transfer instruction generates a Target IP Packet (TIP) that contains the target address of the branch.
There are two sub-categories:
• Near JMP Indirect and Near Call Indirect

As previously mentioned, the target of an indirect COFI resides in the contents of either a register or
memory location. Therefore, the processor must generate a packet that includes this target address to allow
the decoder to determine the program flow.

• Near RET

Table 36-1 COFI Type for Branch Instructions

COFI Type Instructions

Conditional Branch JA, JAE, JB, JBE, JC, JCXZ< JECXZ, JRCXZ, JE, JG, JGE, JL, JLE, JNA, JNAE, JNB, JNBE, JNC, JNE, JNG, JNGE,
JNL, JNLE, JNO, JNP, JNS, JNZ, JO, JP, JPE, JPO, JS, JZ, LOOP, LOOPE, LOOPNE, LOOPNZ, LOOPZ

Unconditional Direct Branch JMP (E9 xx, EB xx), CALL (E8 xx)

Indirect Branch JMP (FF /4), CALL (FF /2)

Near Ret RET (C3, C2 xx)

Far Transfers INT3, INTn, INTO, IRET, IRETD, IRETQ, JMP (EA xx, FF /5), CALL (9A xx, FF /3), RET (CB, CA xx), SYS-
CALL, SYSRET, SYSENTER, SYSEXIT, VMLAUNCH, VMRESUME

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 410

When a CALL instruction executes, it pushes onto the stack the address of the next instruction following the
CALL. Upon completion of the call procedure, the RET instruction is often used to pop the return address off
of the call stack and redirect code flow back to the instruction following the CALL.
A RET instruction simply transfers program flow to the address it popped off the stack. Because a called
procedure may change the return address on the stack before executing the RET instruction, debug software
can be misled if it assumes that code flow will return to the instruction following the last CALL. Therefore,
even for near RET, a Target IP Packet may be sent.

— RET Compression

A special case is applied if the target of the RET is consistent with what would be expected from tracking
the CALL stack. If it is assured that the decoder has seen the corresponding CALL (with “corresponding”
defined as the CALL with matching stack depth), and the RET target is the instruction after that CALL, the
RET target may be “compressed”. In this case, only a single TNT bit of “taken” is generated instead of a
Target IP Packet. To ensure that the decoder will not be confused in cases of RET compression, only RETs
that correspond to CALLs which have been seen since the last PSB packet may be compressed in a given
logical processor. For details, see “Indirect Transfer Compression for Returns (RET)” in Section 36.4.2.2.

36.2.1.3 Far Transfer COFI
All operations that change the instruction pointer and are not near jumps are “far transfers”. This includes excep-
tions, interrupts, traps, TSX aborts, and instructions that do far transfers.
All far transfers will produce a Target IP (TIP) packet, which provides the destination IP address. For those far
transfers that cannot be inferred from the binary source (e.g., asynchronous events such as exceptions and inter-
rupts), the TIP will be preceded by a Flow Update packet (FUP), which provides the source IP address at which the
event was taken. Table 36-24 indicates exactly which IP will be included in the FUP generated by a far transfer.

36.2.2 Trace Filtering
Intel Processor Trace provides filtering capabilities, by which the debug/profile tool can control what code is
traced.

...

36.2.2.2 Filtering by CR3
Intel PT supports a CR3-filtering mechanism by which the generation of packets containing architectural states
can be enabled or disabled based on the value of CR3. A debugger can use CR3 filtering to trace only a single
application without context switching the state of the RTIT MSRs. For the reconstruction of traces from software
with multiple threads, debug software may wish to context-switch for the state of the RTIT MSRs (if the operating
system does not provide context-switch support) to separate the output for the different threads (see Section
36.3.5, “Context Switch Consideration”).
To trace for only a single CR3 value, software can write that value to the IA32_RTIT_CR3_MATCH MSR, and set
IA32_RTIT_CTL.CR3Filter. When CR3 value does not match IA32_RTIT_CR3_MATCH and
IA32_RTIT_CTL.CR3Filter is 1, ContextEn is forced to 0, and packets containing architectural states will not be
generated. Some other packets can be generated when ContextEn is 0; see Section 36.2.3.3 for details. When
CR3 does match IA32_RTIT_CR3_MATCH (or when IA32_RTIT_CTL.CR3Filter is 0), CR3 filtering does not force
ContextEn to 0 (although it could be 0 due to other filters or modes).
CR3 matches IA32_RTIT_CR3_MATCH if the two registers are identical for bits 63:12, or 63:5 when in PAE paging
mode; the lower 5 bits of CR3 and IA32_RTIT_CR3_MATCH are ignored. CR3 filtering is independent of the value
of CR0.PG.
When CR3 filtering is in use, PIP packets may still be seen in the log if the processor is configured to trace when
CPL = 0 (IA32_RTIT_CTL.OS = 1). If not, no PIP packets will be seen.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 411

36.2.2.3 Filtering by IP
Trace packet generation with configurable filtering by IP is supported if CPUID.(EAX=14H, ECX=0):EBX[bit 2] =
1. Intel PT can be configured to enable the generation of packets containing architectural states only when the
processor is executing code within certain IP ranges. If the IP is outside of these ranges, generation of some
packets is blocked.
IP filtering is enabled using the ADDRn_CFG fields in the IA32_RTIT_CTL MSR (Section 36.2.5.2), where the digit
'n' is a zero-based number that selects which address range is being configured. Each ADDRn_CFG field config-
ures the use of the register pair IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B (Section 36.2.5.5).
IA32_RTIT_ADDRn_A defines the base and IA32_RTIT_ADDRn_B specifies the limit of the range in which tracing
is enabled. Thus each range, referred to as the ADDRn range, is defined by [IA32_RTIT_ADDRn_A.
IA32_RTIT_ADDRn_B]. There can be multiple such ranges, software can query CPUID (Section 36.3.1) for the
number of ranges supported on a processor.
Default behavior (ADDRn_CFG=0) defines no IP filter range, meaning FilterEn is always set. In this case code at
any IP can be traced, though other filters, such as CR3 or CPL, could limit tracing. When ADDRn_CFG is set to
enable IP filtering (see Section 36.3.1), tracing will commence when a taken branch or event is seen whose target
address is in the ADDRn range.
While inside a tracing region and with FilterEn is set, leaving the tracing region may only be detected once a taken
branch or event with a target outside the range is retired. If an ADDRn range is entered or exited by executing the
next sequential instruction, rather than by a control flow transfer, FilterEn may not toggle immediately. See
Section 36.2.3.5 for more details on FilterEn.
Note that these address range base and limit values are inclusive, such that the range includes the first and last
instruction whose first instruction byte is in the ADDRn range.
Depending upon processor implementation, IP filtering may be based on linear or effective address. This can
cause different behavior between implementations if CSbase is not equal to zero or in real mode. See Section
36.3.1.1 for details. Software can query CPUID to determine filters are based on linear or effective address
(Section 36.3.1).
Note that some packets, such as MTC (Section 36.3.7) and other timing packets, do not depend on FilterEn. For
details on which packets depend on FilterEn, and hence are impacted by IP filtering, see Section 36.4.1.

TraceStop

The ADDRn ranges can also be configured to cause tracing to be disabled upon entry to the specified region. This
is intended for cases where unexpected code is executed, and the user wishes to immediately stop generating
packets in order to avoid overwriting previously written packets.
The TraceStop mechanism works much the same way that IP filtering does, and uses the same address compar-
ison logic. The TraceStop region base and limit values are programmed into one or more ADDRn ranges, but
IA32_RTIT_CTL.ADDRn_CFG is configured with the TraceStop encoding. Like FilterEn, TraceStop is detected when
a taken branch or event lands in a TraceStop region.
Further, TraceStop requires that TriggerEn=1 at the beginning of the branch/event, and ContextEn=1 upon
completion of the branch/event. When this happens, the CPU will set IA32_RTIT_STATUS.Stopped, thereby
clearing TriggerEn and hence disabling packet generation. This may generate a TIP.PGD packet with the target IP
of the branch or event that entered the TraceStop region. Finally, a TraceStop packet will be inserted, to indicate
that the condition was hit.
If a TraceStop condition is encountered during buffer overflow (Section 36.3.8), it will not be dropped, but will
instead be signaled once the overflow has resolved.
Note that a TraceStop event does not guarantee that all internally buffered packets are flushed out of internal
buffers. To ensure that this has occurred, the user should clear TraceEn.
To resume tracing after a TraceStop event, the user must first disable Intel PT by clearing IA32_RTIT_CTL.TraceEn
before the IA32_RTIT_STATUS.Stopped bit can be cleared. At this point Intel PT can be reconfigured, and tracing
resumed.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 412

Note that the IA32_RTIT_STATUS.Stopped bit can also be set using the ToPA STOP bit. See Section 36.2.4.2.

IP Filtering Example

The following table gives an example of IP filtering behavior. Assume that IA32_RTIT_ADDRn_A = the IP of
RangeBase, and that IA32_RTIT_ADDRn_B = the IP of RangeLimit, while IA32_RTIT_CTL.ADDRn_CFG = 0x1
(enable ADDRn range as a FilterEn range).

IP Filtering and TraceStop

It is possible for the user to configure IP filter range(s) and TraceStop range(s) that overlap. In this case, code
executing in the non-overlapping portion of either range will behave as would be expected from that range. Code
executing in the overlapping range will get TraceStop behavior.

36.2.3 Packet Generation Enable Controls
Intel Processor Trace includes a variety of controls that determine whether a packet is generated. In general,
most packets are sent only if Packet Enable (PacketEn) is set. PacketEn is an internal state maintained in hard-
ware in response to software configurable enable controls, PacketEn is not visible to software directly. The rela-
tionship of PacketEn to the software-visible controls in the configuration MSRs is described in this section.

36.2.3.1 Packet Enable (PacketEn)
When PacketEn is set, the processor is in the mode that Intel PT is monitoring and all packets can be generated to
log what is being executed. PacketEn is composed of other states according to this relationship:

PacketEn TriggerEn AND ContextEn AND FilterEn AND BranchEn

These constituent controls are detailed in the following subsections.
PacketEn ultimately determines when the processor is tracing. When PacketEn is set, all control flow packets are
enabled. When PacketEn is clear, no control flow packets are generated, though other packets (timing and book-
keeping packets) may still be sent. See Section 36.2.4 for details of PacketEn and packet generation.
Note that, on processors that do not support IP filtering (i.e., CPUID.(EAX=14H, ECX=0):EBX.IPFILT[bit 2] = 0),
FilterEn is treated as always set.

36.2.3.2 Trigger Enable (TriggerEn)
Trigger Enable (TriggerEn) is the primary indicator that trace packet generation is active. TriggerEn is set when
IA32_RTIT_CTL.TraceEn is set, and cleared by any of the following conditions:

Table 36-2 IP Filtering Packet Example

Code Flow Packets

Bar:

jmp RangeBase // jump into filter range

RangeBase:

jcc Foo // not taken

add eax, 1

Foo:

jmp RangeLimit+1 // jump out of filter range

RangeLimit:

nop

jcc Bar

TIP.PGE(RangeBase)

TNT(0)

TIP.PGD(RangeLimit+1)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 413

• TraceEn is cleared by software,
• A TraceStop condition is encountered and IA32_RTIT_STATUS.Stopped is set,
• IA32_RTIT_STATUS.Error is set due to an operational error (see Section 36.3.9).
Software can discover the current TriggerEn value by reading the IA32_RTIT_STATUS.TriggerEn bit. When Trig-
gerEn is clear, tracing is inactive and no packets are generated.

36.2.3.3 Context Enable (ContextEn)
Context Enable (ContextEn) indicates whether the processor is in the state or mode that software configured
hardware to trace. For example, if execution with CPL = 0 code is not being traced (IA32_RTIT_CTL.OS = 0), then
ContextEn will be 0 when the processor is in CPL0.
Software can discover the current ContextEn value by reading the IA32_RTIT_STATUS.ContextEn bit. ContextEn
is defined as follows:

ContextEn = !((IA32_RTIT_CTL.OS = 0 AND CPL = 0) OR
(IA32_RTIT_CTL.USER = 0 AND CPL > 0) OR (IS_IN_A_PRODUCTION_ENCLAVE1) OR
(IA32_RTIT_CTL.CR3Filter = 1 AND IA32_RTIT_CR3_MATCH does not match CR3)

If the clearing of ContextEn causes PacketEn to be cleared, a Packet Generation Disable (TIP.PGD) packet is
generated, but its IP payload is suppressed. If the setting of ContextEn causes PacketEn to be set, a Packet
Generation Enable (TIP.PGE) packet is generated.
When ContextEn is 0, control flow packets (TNT, FUP, TIP.*, MODE.*) are not generated, and no LIPs are exposed.
However, some packets, such as MTC and PSB (see Section 36.4.2.16 and Section 36.4.2.17), may still be gener-
ated while ContextEn is 0. For details of which packets are generated only when ContextEn is set, see Section
36.4.1.
The processor does not update ContextEn when TriggerEn = 0.
The value of ContextEn will toggle only when TriggerEn = 1.

36.2.3.4 Branch Enable (BranchEn)
This value is based purely on the IA32_RTIT_CTL.BranchEn value. If BranchEn is not set, then relevant COFI
packets (TNT, TIP*, FUP, MODE.*) are suppressed. Other packets related to timing (TSC, TMA, MTC, CYC), as well
as PSB, will be generated normally regardless. Further, PIP and VMCS continue to be generated, as indicators of
what software is running.

36.2.3.5 Filter Enable (FilterEn)
Filter Enable indicates that the Instruction Pointer (IP) is within the range of IPs that Intel PT is configured to
watch. Software can get the state of Filter Enable by a RDMSR of IA32_RTIT_STATUS.FilterEn. For details on
configuration and use of IP filtering, see Section 36.2.2.3.
On clearing of FilterEn that also clears PacketEn, a Packet Generation Disable (TIP.PGD) will be generated, but
unlike the ContextEn case, the IP payload may not be suppressed. For direct, unconditional branches, as well as
for indirect branches (including RETs), the PGD generated by leaving the tracing region and clearing FilterEn will
contain the target IP. This means that IPs from outside the configured range can be exposed in the trace, as long
as they are within context.
When FilterEn is 0, control flow packets are not generated (e.g., TNT, TIP). However, some packets, such as PIP,
MTC, and PSB, may still be generated while FilterEn is clear. For details on packet enable dependencies, see
Section 36.4.1.

1. Trace packets generation is disabled in a production enclave, see Section 36.2.6.3. See Intel® Software Guard Extensions Pro-
gramming Reference about differences between a production enclave and a debug enclave.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 414

After TraceEn is set, FilterEn is set to 1 at all times if there is no IP filter range configured by software
(IA32_RTIT_CTL.ADDRn_CFG != 1, for all n), or if the processor does not support IP filtering (i.e.,
CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0). FilterEn will toggle only when TraceEn=1 and
ContextEn=1, and when at least one range is configured for IP filtering.

36.2.4 Trace Output
Intel PT output should be viewed independently from trace content and filtering mechanisms. The options avail-
able for trace output can vary across processor generations and platforms.
Trace output is written out using one of the following output schemes, as configured by the ToPA and FabricEn bit
fields of IA32_RTIT_CTL (see Section 36.2.5.2):
• A single, contiguous region of physical address space.
• A collection of variable-sized regions of physical memory. These regions are linked together by tables of

pointers to those regions, referred to as Table of Physical Addresses (ToPA). The trace output stores bypass
the caches and the TLBs, but are not serializing. This is intended to minimize the performance impact of the
output.

• A platform-specific trace transport subsystem.
Regardless of the output scheme chosen, Intel PT stores bypass the processor caches by default. This ensures
that they don't consume precious cache space, but they do not have the serializing aspects associated with un-
cacheable (UC) stores. Software should avoid using MTRRs to mark any portion of the Intel PT output region as
UC, as this may override the behavior described above and force Intel PT stores to UC, thereby incurring severe
performance impact.
There is no guarantee that a packet will be written to memory or other trace endpoint after some fixed number of
cycles after a packet-producing instruction executes. The only way to assure that all packets generated have
reached their endpoint is to clear TraceEn and follow that with a store, fence, or serializing instruction; doing so
ensures that all buffered packets are flushed out of the processor.

36.2.4.1 Single Range Output
When IA32_RTIT_CTL.ToPA and IA32_RTIT_CTL.FabricEn bits are clear, trace packet output is sent to a single,
contiguous memory (or MMIO if DRAM is not available) range defined by a base address in
IA32_RTIT_OUTPUT_BASE (Section 36.2.5.7) and mask value in IA32_RTIT_OUTPUT_MASK_PTRS (Section
36.2.5.8). The current write pointer in this range is also stored in IA32_RTIT_OUTPUT_MASK_PTRS. This output
range is circular, meaning that when the writes wrap around the end of the buffer they begin again at the base
address.
This output method is best suited for cases where Intel PT output is either:
• Configured to be directed to a sufficiently large contiguous region of DRAM.
• Configured to go to an MMIO debug port, in order to route Intel PT output to a platform-specific trace endpoint

(e.g., JTAG). In this scenario, a specific range of addresses is written in a circular manner, and SoC will
intercept these writes and direct them to the proper device. Repeated writes to the same address do not
overwrite each other, but are accumulated by the debugger, and hence no data is lost by the circular nature of
the buffer.

The processor will determine the address to which to write the next trace packet output byte as follows:

OutputBase[63:0] IA32_RTIT_OUTPUT_BASE[63:0]

OutputMask[63:0] ZeroExtend64(IA32_RTIT_OUTPUT_MASK_PTRS[31:0])

OutputOffset[63:0] ZeroExtend64(IA32_RTIT_OUTPUT_MASK_PTRS[63:32])

trace_store_phys_addr (OutputBase & ~OutputMask) + (OutputOffset & OutputMask)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 415

Single-Range Output Errors

If the output base and mask are not properly configured by software, an operational error (see Section 36.3.9)
will be signaled, and tracing disabled. Error scenarios with single-range output are:
• Mask value is non-contiguous.

IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTablePointer value has a 0 in a less significant bit position than the
most significant bit containing a 1.

• Base address and Mask are mis-aligned, and have overlapping bits set.
IA32_RTIT_OUTPUT_BASE && IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset > 0.

• Illegal Output Offset
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset is greater than the mask value
(IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset).

Also note that errors can be signaled due to trace packet output overlapping with restricted memory, see Section
36.2.4.4.

36.2.4.2 Table of Physical Addresses (ToPA)
When IA32_RTIT_CTL.ToPA is set and IA32_RTIT_CTL.FabricEn is clear, the ToPA output mechanism is utilized.
The ToPA mechanism uses a linked list of tables; see Figure 36-1 for an illustrative example. Each entry in the
table contains some attribute bits, a pointer to an output region, and the size of the region. The last entry in the
table may hold a pointer to the next table. This pointer can either point to the top of the current table (for circular
array) or to the base of another table. The table size is not fixed, since the link to the next table can exist at any
entry.
The processor treats the various output regions referenced by the ToPA table(s) as a unified buffer. This means
that a single packet may span the boundary between one output region and the next.
The ToPA mechanism is controlled by three values maintained by the processor:
• proc_trace_table_base.

This is the physical address of the base of the current ToPA table. When tracing is enabled, the processor loads
this value from the IA32_RTIT_OUTPUT_BASE MSR. While tracing is enabled, the processor updates the
IA32_RTIT_OUTPUT_BASE MSR with changes to proc_trace_table_base, but these updates may not be
synchronous to software execution. When tracing is disabled, the processor ensures that the MSR contains
the latest value of proc_trace_table_base.

• proc_trace_table_offset.
This indicates the entry of the current table that is currently in use. (This entry contains the address of the
current output region.) When tracing is enabled, the processor loads this value from bits 31:7 (MaskOrT-
ableOffset) of the IA32_RTIT_OUTPUT_MASK_PTRS. While tracing is enabled, the processor updates
IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset with changes to proc_trace_table_offset, but these
updates may not be synchronous to software execution. When tracing is disabled, the processor ensures that
the MSR contains the latest value of proc_trace_table_offset.

• proc_trace_output_offset.
This a pointer into the current output region and indicates the location of the next write. When tracing is
enabled, the processor loads this value from bits 63:32 (OutputOffset) of the
IA32_RTIT_OUTPUT_MASK_PTRS. While tracing is enabled, the processor updates
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset with changes to proc_trace_output_offset, but these updates
may not be synchronous to software execution. When tracing is disabled, the processor ensures that the MSR
contains the latest value of proc_trace_output_offset.

Figure 36-1 provides an illustration (not to scale) of the table and associated pointers.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 416

With the ToPA mechanism, the processor writes packets to the current output region (identified by
proc_trace_table_base and the proc_trace_table_offset). The offset within that region to which the next byte will
be written is identified by proc_trace_output_offset. When that region is filled with packet output (thus
proc_trace_output_offset = RegionSize–1), proc_trace_table_offset is moved to the next ToPA entry,
proc_trace_output_offset is set to 0, and packet writes begin filling the new output region specified by
proc_trace_table_offset.
As packets are written out, each store derives its physical address as follows:

trace_store_phys_addr Base address from current ToPA table entry +
proc_trace_output_offset

Eventually, the regions represented by all entries in the table may become full, and the final entry of the table is
reached. An entry can be identified as the final entry because it has either the END or STOP attribute. The END
attribute indicates that the address in the entry does not point to another output region, but rather to another
ToPA table. The STOP attribute indicates that tracing will be disabled once the corresponding region is filled. See
Section 36.2.4.2 for details on STOP.
When an END entry is reached, the processor loads proc_trace_table_base with the base address held in this END
entry, thereby moving the current table pointer to this new table. The proc_trace_table_offset is reset to 0, as is
the proc_trace_output_offset, and packet writes will resume at the base address indicated in the first entry.
If the table has no STOP or END entry, and trace-packet generation remains enabled, eventually the maximum
table size will be reached (proc_trace_table_offset = FFFFFFFFH). In this case, the proc_trace_table_offset and
proc_trace_output_offset are reset to 0 (wrapping back to the beginning of the current table) once the last output
region is filled.
It is important to note that processor updates to the IA32_RTIT_OUTPUT_BASE and
IA32_RTIT_OUTPUT_MASK_PTRS MSRs are asynchronous to instruction execution. Thus, reads of these MSRs
while Intel PT is enabled may return stale values. Like all IA32_RTIT_* MSRs, the values of these MSRs should not

Figure 36-1 ToPA Memory Illustration

0FF_FFFF _FFFFH

STOP=1

proc_trace_output_offset: IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset

proc_trace_table_offset: IA32_RTIT_OUTPUT_MASK_PTRS.TableOffset

proc_trace_table_base: IA32_RTIT_OUTPUT_BASE

0

ToPA Table B

Physical Memory

64K OutputBaseX

4K OutputBaseY

END=1 TableBaseB

ToPA Table A

OutputRegionY

OutputRegionX

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 417

be trusted or saved unless trace packet generation is first disabled by clearing IA32_RTIT_CTL.TraceEn. This
ensures that he output MSR values account for all packets generated to that point, after which the output MSR
values will be frozen until tracing resumes. 1

The processor may cache internally any number of entries from the current table or from tables that it references
(directly or indirectly). If tracing is enabled, the processor may ignore or delay detection of modifications to these
tables. To ensure that table changes are detected by the processor in a predictable manner, software should clear
TraceEn before modifying the current table (or tables that it references) and only then re-enable packet genera-
tion.

Single Output Region ToPA Implementation

The first processor generation to implement Intel PT supports only ToPA configurations with a single ToPA entry
followed by an END entry that points back to the first entry (creating one circular output buffer). Such processors
enumerate CPUID.(EAX=14H,ECX=0):ECX.MENTRY[bit 1] = 0 and CPUID.(EAX=14H,ECX=0):ECX.TOPAOUT[bit
0] = 1.
If CPUID.(EAX=14H,ECX=0):ECX.MENTRY[bit 1] = 0, ToPA tables can hold only one output entry, which must be
followed by an END=1 entry which points back to the base of the table. Hence only one contiguous block can be
used as output.
The lone output entry can have INT or STOP set, but nonetheless must be followed by an END entry as described
above. Note that, if INT=1, the PMI will actually be delivered before the region is filled.

ToPA Table Entry Format

The format of ToPA table entries is shown in Figure 36-2. The size of the address field is determined by the
processor’s physical-address width (MAXPHYADDR) in bits, as reported in CPUID.80000008H:EAX[7:0].

Table 36-3 describes the details of the ToPA table entry fields. If reserved bits are set to 1, an error is signaled.

1. Although WRMSR is a serializing instruction, the execution of WRMSR that forces packet writes by clearing TraceEn does not itself
cause these writes to be globally observed.

Figure 36-2 Layout of ToPA Table Entry

11 91012MAXPHYADDR–1

9:6 Size

6 5 0

4 : STOP
2 : INT
0 : END

Output Region Base Physical Address

4 13 2

Reserved

63

Table 36-3 ToPA Table Entry Fields

ToPA Entry Field Description

Output Region
Base Physical
Address

If END=0, this is the base physical address of the output region specified by this entry. Note that all regions
must be aligned based on their size. Thus a 2M region must have bits 20:12 clear. If the region is not properly
aligned, an operational error will be signaled when the entry is reached.
If END=1, this is the 4K-aligned base physical address of the next ToPA table (which may be the base of the cur-
rent table, or the first table in the linked list if a circular buffer is desired). If the processor supports only a single
ToPA output region (see above), this address must be the value currently in the IA32_RTIT_OUTPUT_BASE
MSR.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 418

ToPA STOP

Each ToPA entry has a STOP bit. If this bit is set, the processor will set the IA32_RTIT_STATUS.Stopped bit when
the corresponding trace output region is filled. This will clear TriggerEn and thereby cease packet generation. See
Section 36.2.5.4 for details on IA32_RTIT_STATUS.Stopped. This sequence is known as “ToPA Stop”
No TIP.PGD packet will be seen in the output when the ToPA stop occurs, since the disable happens only when the
region is already full. When this occurs, output ceases after the last byte of the region is filled, which may mean
that a packet is cut off in the middle. Any packets remaining in internal buffers are lost and cannot be recovered.
When ToPA stop occurs, the IA32_RTIT_OUTPUT_BASE MSR will hold the base address of the table whose entry
had STOP=1. IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset will hold the index value for that entry, and
the IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset should be set to the size of the region.
Note that this means the offset pointer is pointing to the next byte after the end of the region, a configuration that
would produce an operational error if the configuration remained when tracing is re-enabled with
IA32_RTIT_STATUS.Stopped cleared.

ToPA PMI

Each ToPA entry has an INT bit. If this bit is set, the processor will signal a performance-monitoring interrupt
(PMI) when the corresponding trace output region is filled. This interrupt is not precise, and it is thus likely that
writes to the next region will occur by the time the interrupt is taken.
The following steps should be taken to configure this interrupt:

1. Enable PMI via the LVT Performance Monitor register (at MMIO offset 340H in xAPIC mode; via MSR 834H in
x2APIC mode). See Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B for more
details on this register. For ToPA PMI, set all fields to 0, save for the interrupt vector, which can be selected by
software.

2. Set up an interrupt handler to service the interrupt vector that a ToPA PMI can raise.

3. Set the interrupt flag by executing STI.

4. Set the INT bit in the ToPA entry of interest and enable packet generation, using the ToPA output option. Thus,
TraceEn=ToPA=1 in the IA32_RTIT_CTL MSR.

Size Indicates the size of the associated output region. Encodings are:
0: 4K, 1: 8K, 2: 16K, 3: 32K, 4: 64K, 5: 128K, 6: 256K, 7: 512K,
8: 1M, 9: 2M, 10: 4M, 11: 8M, 12: 16M, 13: 32M, 14: 64M, 15: 128M
This field is ignored if END=1.

STOP When the output region indicated by this entry is filled, software should disable packet generation. This will be
accomplished by setting IA32_RTIT_STATUS.Stopped, which clears TriggerEn. This bit must be 0 if END=1; oth-
erwise it is treated as reserved bit violation (see ToPA Errors).

INT When the output region indicated by this entry is filled, signal Perfmon LVT interrupt.
Note that if both INT and STOP are set in the same entry, the STOP will happen before the INT. Thus the inter-
rupt handler should expect that the IA32_RTIT_STATUS.Stopped bit will be set, and will need to be reset before
tracing can be resumed.
This bit must be 0 if END=1; otherwise it is treated as reserved bit violation (see ToPA Errors).

END If set, indicates that this is an END entry, and thus the address field points to a table base rather than an output
region base.
If END=1, INT and STOP must be set to 0; otherwise it is treated as reserved bit violation (see ToPA Errors). The
Size field is ignored in this case.
If the processor supports only a single ToPA output region (see above), END must be set in the second table
entry.

Table 36-3 ToPA Table Entry Fields

ToPA Entry Field Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 419

Once the INT region has been filled with packet output data, the interrupt will be signaled. This PMI can be distin-
guished from others by checking bit 55 (Trace_ToPA_PMI) of the IA32_PERF_GLOBAL_STATUS MSR (MSR 38EH).
Once the ToPA PMI handler has serviced the relevant buffer, writing 1 to bit 55 of the MSR at 390H
(IA32_GLOBAL_STATUS_RESET) clears IA32_PERF_GLOBAL_STATUS.Trace_ToPA_PMI.
Intel PT is not frozen on PMI, and thus the interrupt handler will be traced (though filtering can prevent this). The
IA32_DEBUGCTL.Freeze_Perfmon_on_PMI setting will be applied on ToPA PMI just as on other PMIs, and hence
Perfmon counters are frozen.
Assuming the PMI handler wishes to read any buffered packets for persistent output, software should first disable
packet generation by clearing TraceEn. This ensures that all buffered packets are written to memory and avoids
tracing of the PMI handler. The configuration MSRs can then be used to determine where tracing has stopped. If
packet generation is disabled by the handler, it should then be manually re-enabled before the IRET if continued
tracing is desired.

ToPA PMI and Single Output Region ToPA Implementation

A processor that supports only a single ToPA output region implementation (such that only one output region is
supported; see above) will attempt to signal a ToPA PMI interrupt before the output wraps and overwrites the top
of the buffer. To support this functionality, the PMI handler should disable packet generation as soon as possible.
Due to PMI skid, it is possible, in rare cases, that the wrap will have occurred before the PMI is delivered. Software
can avoid this by setting the STOP bit in the ToPA entry (see Table 36-3); this will disable tracing once the region
is filled, and no wrap will occur. This approach has the downside of disabling packet generation so that some of the
instructions that led up to the PMI will not be traced. If the PMI skid is significant enough to cause the region to
fill and tracing to be disabled, the PMI handler will need to clear the IA32_RTIT_STATUS.Stopped indication before
tracing can resume.

ToPA Errors

When a malformed ToPA entry is found, an operation error results (see Section 36.3.9). A malformed entry can
be any of the following:

1. ToPA entry reserved bit violation.
This describes cases where a bit marked as reserved in Section 36.2.4.2 above is set to 1.

2. ToPA alignment violation.
This includes cases where illegal ToPA entry base address bits are set to 1:

a. ToPA table base address is not 4KB-aligned. The table base can be from a WRMSR to
IA32_RTIT_OUTPUT_BASE, or from a ToPA entry with END=1.

b. ToPA entry base address is not aligned to the ToPA entry size (e.g., a 2MB region with base address[20:12]
not equal to 0).

c. ToPA entry base address sets upper physical address bits not supported by the processor.

3. Illegal ToPA Output Offset (if IA32_RTIT_STATUS.Stopped=0).
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset is greater than or equal to the size of the current ToPA output
region size.

4. ToPA rules violations.
These are similar to ToPA entry reserved bit violations; they are cases when a ToPA entry is encountered with
illegal field combinations. They include the following:

a. Setting the STOP or INT bit on an entry with END=1.

b. Setting the END bit in entry 0 of a ToPA table.

c. On processors that support only a single ToPA entry (see above), two additional illegal settings apply:

i) ToPA table entry 1 with END=0.

ii) ToPA table entry 1 with base address not matching the table base.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 420

In all cases, the error will be logged by setting IA32_RTIT_STATUS.Error, thereby disabling tracing when the prob-
lematic ToPA entry is reached (when proc_trace_table_offset points to the entry containing the error). Any packet
bytes that are internally buffered when the error is detected may be lost.
Note that operational errors may also be signaled due to attempts to access restricted memory. See Section
36.2.4.4 for details.
A tracing software have a range of flexibility using ToPA to manage the interaction of Intel PT with application
buffers, see Section 36.5.

36.2.4.3 Trace Transport Subsystem
When IA32_RTIT_CTL.FabricEn is set, the IA32_RTIT_CTL.ToPA bit is ignored, and trace output is written to the
trace transport subsystem. The endpoints of this transport are platform-specific, and details of configuration
options should refer to the specific platform documentation. The FabricEn bit is available to be set if
CPUID(EAX=20H,ECX=0):EBX[bit 3] = 1.

36.2.4.4 Restricted Memory Access
Packet output cannot be directed to any regions of memory that are restricted by the platform. In particular, all
memory accesses on behalf of packet output are checked against the SMRR (and PRMRR, if supported in the plat-
form, see Intel® Software Guard Extensions Programming Reference) regions. If there is any overlap with these
regions, trace data collection will not function properly. Exact processor behavior is implementation-dependent;
Table 36-4 summarizes several scenarios.

It should also be noted that packet output should not be routed to the 4KB APIC MMIO region, as defined by the
IA32_APIC_BASE MSR. For details about the APIC, refer to Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A. No error is signaled for this case.

Modifications to Restricted Memory Regions

It is recommended that software disable packet generation before modifying the SMRRs to change the scope of
the SMRR regions. This is because the processor reserves the right to cache any number of ToPA table entries
internally, after checking them against restricted memory ranges. Once cached, the entries will not be checked
again, meaning one could potentially route packet output to a newly restricted region. Software can ensure that
any cached entries are written to memory by clearing IA32_RTIT_CTL.TraceEn.

36.2.5 Enabling and Configuration MSRs

36.2.5.1 General Considerations
Trace packet generation is enabled and configured by a collection of model-specific registers (MSRs), which are
detailed below. Some notes on the configuration MSR behavior:

Table 36-4 Behavior on Restricted Memory Access

Scenario Description

ToPA output region
overlaps with
SMRR/PRMRR

Stores to the restricted memory region will be dropped, and that packet data will be lost. Any attempt to read
from that restricted region will return all 1s. The processor also may signal an error (Section 36.3.9) and disable
tracing when the output pointer reaches the restricted region. If packet generation remains enabled, then
packet output may continue once stores are no longer directed to restricted memory (on wrap, or if the output
region is larger than the restricted memory region).

ToPA table overlaps
with SMRR

The processor will signal an error (Section 36.3.9) and disable tracing when the ToPA read pointer
(IA32_RTIT_OUTPUT_BASE + (proc_trace_table_offset « 3)) enters the restricted region.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 421

• If Intel Processor Trace is not supported by the processor (see Section 36.3.1), RDMSR or WRMSR of the
IA32_RTIT_* MSRs will cause #GP.

• A WRMSR to any of these configuration MSRs that begins and ends with IA32_RTIT_CTL.TraceEn set will #GP
fault. Packet generation must be disabled before the configuration MSRs can be changed.

Note: Software may write the same value back to IA32_RTIT_CTL without #GP, even if TraceEn=1.
• All configuration MSRs for Intel PT are duplicated per logical processor
• For each configuration MSR, any MSR write that attempts to change bits marked reserved, or utilize encodings

marked reserved, will cause a #GP fault.
• All configuration MSRs for Intel PT are cleared on a cold RESET.

— If CPUID.(EAX=14H, ECX=0):EBX.WRSTPRSV[bit 3] = 1, only the TraceEn bit is cleared on warm RESET;
though this may have the impact of clearing other bits in IA32_RTIT_STATUS. Other MSR values of the
trace configuration MSRs are preserved on warm RESET.

• The semantics of MSR writes to trace configuration MSRs in this chapter generally apply to explicit WRMSR to
these registers, using VM-exit or VM-entry MSR load list to these MSRs, XRSTORS with requested feature bit
map including XSAVE map component of state_8 (corresponding to IA32_XSS[bit 8]), and the write to
IA32_RTIT_CTL.TraceEn by XSAVES (Section 36.3.5.2).

36.2.5.2 IA32_RTIT_CTL MSR
IA32_RTIT_CTL, at address 570H, is the primary enable and control MSR for trace packet generation. Bit positions
are listed in Table 36-5.

Table 36-5 IA32_RTIT_CTL MSR

Position Bit Name At Reset Bit Description

0 TraceEn 0 If 1, enables tracing; else tracing is disabled if 0

When this bit transitions from 1 to 0, all buffered packets are flushed out of internal buffers.
A further store, fence, or architecturally serializing instruction may be required to ensure that
packet data can be observed at the trace endpoint. See Section 36.2.5.3 for details of
enabling and disabling packet generation.

Note that the processor will clear this bit on #SMI (Section) and warm reset. Other MSR bits
of IA32_RTIT_CTL (and other trace configuration MSRs) are not impacted by these events.

1 CYCEn 0 0: Disables CYC Packet (see Section 36.4.2.14)

1: Enables CYC Packet.

This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX.CPSB_CAM[bit 1] = 0.

2 OS 0 0: Packet generation is disabled when CPL = 0.

1: Packet generation may be enabled when CPL = 0.

3 User 0 0: Packet generation is disabled when CPL > 0.

1: Packet generation may be enabled when CPL > 0.

5:4 Reserved 0 Must be 0.

6 FabricEn 0 0: Trace output is directed to the memory subsystem, mechanism depends on
IA32_RTIT_CTL.ToPA.

1: Trace output is directed to the trace transport subsystem, IA32_RTIT_CTL.ToPA is ignored.
This bit is reserved if CPUID.(EAX=14H, ECX=0):ECX[bit 3] = 0.

7 CR3Filter 0 0: Disables CR3 filtering.

1: Enables CR3 filtering.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 422

8 ToPA 0 0: Single-range output scheme enabled if CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2]
= 1 and IA32_RTIT_CTL.FabricEn=0.

1: ToPA output scheme enabled (see Section 36.2.4.2) if CPUID.(EAX=14H, ECX=0):ECX.TOPA[
bit 0] = 1, and IA32_RTIT_CTL.FabricEn=0.

Note: WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit and FabricEn would
cause #GP, if CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0.

WRMSR to IA32_RTIT_CTL that sets this bit causes #GP, if CPUID.(EAX=14H,
ECX=0):ECX.TOPA[bit 0] = 0.

9 MTCEn 0 0: Disables MTC Packet (see Section 36.4.2.16).

1: Enables MTC Packet.

This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0.

10 TSCEn 0 0: Disable TSC packets.

1: Enable TSC packets (see Section 36.4.2.11).

11 DisRETC 0 0: Enable RET compression.

1: Disable RET compression (see Section 36.2.1.2).

12 Reserved 0 Must be 0.

13 BranchEn 0 0: Disable COFI-based packets.

1: Enable COFI-based packets: FUP, TIP, TIP.PGE, TIP.PGD, TNT, MODE.Exec, MODE.TSX (see
Section 36.2.4 for details on BranchEn).

17:14 MTCFreq 0 Defines MTC packet Frequency, which is based on the hardware Crystal Clock (CTC). MTC will
be sent each time the selected CTC bit toggles. The following Encodings are defined:

0: CTC(0), 1: CTC(1), 2: CTC(2), 3: CTC(3),, 4: CTC(4), 5: CTC(5), 6: CTC(6), 7: CTC(7),
8: CTC(8), 9: CTC(9), 10: CTC(10), 11: CTC(11), 12: CTC(12), 132: CTC(13), 14: CTC(14), 15:

CTC(15)
Software must use CPUID to query the supported encodings in the processor, see Section
36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if
CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 0.

18 Reserved 0 Must be 0.

22:19 CycThresh 0 CYC packet threshold, see Section 36.3.6 for details. CYC packets will be sent with the first
eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then
N=0, otherwise N is defined as 2(CycThresh-1). The following Encodings are defined:

0: 0, 1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64,
8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384
Software must use CPUID to query the supported encodings in the processor, see Section
36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if
CPUID.(EAX=14H, ECX=0):EBX.CPSB_CAM[bit 1] = 0.

23 Reserved 0 Must be 0.

Table 36-5 IA32_RTIT_CTL MSR

Position Bit Name At Reset Bit Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 423

27:24 PSBFreq 0 Indicates the frequency of PSB packets. PSB packet frequency is based on the number of Intel
PT packet bytes output, so this field allows the user to determine the increment of
IA32_IA32_RTIT_STATUS.PacketByteCnt that should cause a PSB to be generated. Note that
PSB insertion is not precise, but the average output bytes per PSB should approximate the
SW selected period. The following Encodings are defined:

0: 2K, 1: 4K, 2: 8K, 3: 16K, 4: 32K, 5: 64K, 6: 128K, 7: 256K,
8: 512K, 9: 1M, 10: 2M, 11: 4M, 12: 8M, 13: 16M, 14: 32M, 15: 64M
Software must use CPUID to query the supported encodings in the processor, see Section
36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if
CPUID.(EAX=14H, ECX=0):EBX.CPSB_CAM[bit 1] = 0.

31:28 Reserved 0 Must be 0.

35:32 ADDR0_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR0_A/B based on the following
encodings:

0: ADDR0 range unused.

1: The [IA32_RTIT_ADDR0_A..IA32_RTIT_ADDR0_B] range defines a FilterEn range. FilterEn
will only be set when the IP is within this range, though other FilterEn ranges can additionally
be used. See Section 36.2.2.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR0_A..IA32_RTIT_ADDR0_B] range defines a TraceStop range.
TraceStop will be asserted if code branches into this range. See 4.2.8 for details on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] >= 0.

39:36 ADDR1_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR1_A/B based on the following
encodings:

0: ADDR1 range unused.

1: The [IA32_RTIT_ADDR1_A..IA32_RTIT_ADDR1_B] range defines a FilterEn range. FilterEn
will only be set when the IP is within this range, though other FilterEn ranges can additionally
be used. See Section 36.2.2.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR1_A..IA32_RTIT_ADDR1_B] range defines a TraceStop range.
TraceStop will be asserted if code branches into this range. See Section 36.4.2.10 for details
on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 2.

43:40 ADDR2_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR2_A/B based on the following
encodings:

0: ADDR2 range unused.

1: The [IA32_RTIT_ADDR2_A..IA32_RTIT_ADDR2_B] range defines a FilterEn range. FilterEn
will only be set when the IP is within this range, though other FilterEn ranges can additionally
be used. See Section 36.2.2.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR2_A..IA32_RTIT_ADDR2_B] range defines a TraceStop range.
TraceStop will be asserted if code branches into this range. See Section 36.4.2.10 for details
on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 3.

Table 36-5 IA32_RTIT_CTL MSR

Position Bit Name At Reset Bit Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 424

36.2.5.3 Enabling and Disabling Packet Generation with TraceEn
When TraceEn transitions from 0 to 1, Intel Processor Trace is enabled, and a series of packets may be generated.
These packets help ensure that the decoder is aware of the state of the processor when the trace begins, and that
it can keep track of any timing or state changes that may have occurred while packet generation was disabled. A
full PSB+ (see Section 36.4.2.17) will be generated if IA32_RTIT_STATUS.PacketByteCnt=0, and may be gener-
ated in other cases as well. Otherwise, timing packets will be generated, including TSC, TMA, and CBR (see
Section 36.4.2).
In addition to the packets discussed above, if and when PacketEn (Section 36.2.3.1) transitions from 0 to 1 (which
may happen immediately, depending on filtering settings), a TIP.PGE packet (Section 36.4.2.3) will be generated.
When TraceEn is set, the processor may read ToPA entries from memory and cache them internally. For this
reason, software should disable packet generation before making modifications to the ToPA tables (or changing
the configuration of restricted memory regions). See Section 36.7 for more details of packets that may be gener-
ated with modifications to TraceEn.

Disabling Packet Generation

Clearing TraceEn causes any packet data buffered within the logical processor to be flushed out, after which the
output MSRs (IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS) will have stable values. When
output is directed to memory, a store, fence, or architecturally serializing instruction may be required to ensure
that the packet data is globally observed. No special packets are generated by disabling packet generation,
though a TIP.PGD may result if PacketEn=1 at the time of disable.

Other Writes to IA32_RTIT_CTL

Any attempt to modify IA32_RTIT_CTL while TraceEn is set will result in a general-protection fault (#GP) unless
the same write also clears TraceEn. However, writes to IA32_RTIT_CTL that do not modify any bits will not cause
a #GP, even if TraceEn remains set.

36.2.5.4 IA32_RTIT_STATUS MSR
The IA32_RTIT_STATUS MSR is readable and writable by software, but some bits (ContextEn, TriggerEn) are
read-only and cannot be directly modified. The WRMSR instruction ignores these bits in the source operand
(attempts to modify these bits are ignored and do not cause WRMSR to fault).

47:44 ADDR3_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR3_A/B based on the following
encodings:

0: ADDR3 range unused.

1: The [IA32_RTIT_ADDR3_A..IA32_RTIT_ADDR3_B] range defines a FilterEn range. FilterEn
will only be set when the IP is within this range, though other FilterEn ranges can additionally
be used. See Section 36.2.2.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR3_A..IA32_RTIT_ADDR3_B] range defines a TraceStop range.
TraceStop will be asserted if code branches into this range. See Section 36.4.2.10 for details
on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 4.

59:48 Reserved 0 Reserved only for future trace content enables, or address filtering configuration enables.
Must be 0.

63:60 Reserved 0 Must be 0.

Table 36-5 IA32_RTIT_CTL MSR

Position Bit Name At Reset Bit Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 425

This MSR can only be written when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection
fault (#GP). The processor does not modify the value of this MSR while TraceEn is 0 (software can modify it with
WRMSR).

36.2.5.5 IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B MSRs
The role of the IA32_RTIT_ADDRn_A/B register pairs, for each n, is determined by the corresponding
ADDRn_CFG fields in IA32_RTIT_CTL (see Section 36.2.5.2). The number of these register pairs is enumerated
by CPUID.(EAX=14H, ECX=1):EAX.RANGECNT[2:0].
• Processors that enumerate support for 1 range support:

IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B
• Processors that enumerate support for 2 ranges support:

IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B
IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B

• Processors that enumerate support for 3 ranges support:

IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B
IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B

Table 36-6 IA32_RTIT_STATUS MSR

Position Bit Name At Reset Bit Description

0 FilterEn 0 This bit is written by the processor, and indicates that tracing is allowed for the current IP,
see Section 36.2.3.5. Writes are ignored.

1 ContextEn 0 The processor sets this bit to indicate that tracing is allowed for the current context. See
Section 36.2.3.3. Writes are ignored.

2 TriggerEn 0 The processor sets this bit to indicate that tracing is enabled. See Section 36.2.3.2. Writes are
ignored.

3 Reserved 0 Must be 0.

4 Error 0 The processor sets this bit to indicate that an operational error has been encountered. When
this bit is set, TriggerEn is cleared to 0 and packet generation is disabled. For details, see
“ToPA Errors” in Section 36.2.4.2.

When TraceEn is cleared, software can write this bit. Once it is set, only software can clear it.
It is not recommended that software ever set this bit, except in cases where it is restoring a
prior saved state.

5 Stopped 0 The processor sets this bit to indicate that a ToPA Stop condition has been encountered.
When this bit is set, TriggerEn is cleared to 0 and packet generation is disabled. For details,
see “ToPA STOP” in Section 36.2.4.2.

When TraceEn is cleared, software can write this bit. Once it is set, only software can clear it.
It is not recommended that software ever set this bit, except in cases where it is restoring a
prior saved state.

31:6 Reserved 0 Must be 0.

48:32 PacketByteCnt 0 This field is written by the processor, and holds a count of packet bytes that have been sent
out. The processor also uses this field to determine when the next PSB packet should be
inserted. Note that the processor may clear or modify this field at any time while
IA32_RTIT_CTL.TraceEn=1. It will have a stable value when IA32_RTIT_CTL.TraceEn=0.

See Section 36.4.2.17 for details.

63:49 Reserved 0 Must be 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 426

IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B
• Processors that enumerate support for 4 ranges support:

IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B
IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B
IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B
IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B

Each register has a single 64-bit field that holds a linear address value. Writes must ensure that the address is
properly sign-extended, otherwise a #GP fault will result.

36.2.5.6 IA32_RTIT_CR3_MATCH MSR
The IA32_RTIT_CR3_MATCH register is compared against CR3 when IA32_RTIT_CTL.CR3Filter is 1. Bits 63:5 hold
the CR3 address value to match, bits 4:0 are reserved to 0. For more details on CR3 filtering and the treatment of
this register, see Section 36.2.2.2.
This MSR can be written only when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection
fault (#GP). IA32_RTIT_CR3_MATCH[4:0] are reserved and must be 0; an attempt to set those bits using WRMSR
causes a #GP.

36.2.5.7 IA32_RTIT_OUTPUT_BASE MSR
This MSR is used to configure the trace output destination, when output is directed to memory
(IA32_RTIT_CTL.FabricEn = 0). The size of the address field is determined by the maximum physical address
width (MAXPHYADDR), as reported by CPUID.80000008H:EAX[7:0].
When the ToPA output scheme is used, the processor may update this MSR when packet generation is enabled,
and those updates are asynchronous to instruction execution. Therefore, the values in this MSR should be consid-
ered unreliable unless packet generation is disabled (IA32_RTIT_CTL.TraceEn = 0).
Accesses to this MSR are supported only if Intel PT output to memory is supported, hence when either
CPUID.(EAX=14H, ECX=0):ECX[bit 0] or CPUID.(EAX=14H, ECX=0):ECX[bit 2] are set. Otherwise WRMSR or
RDMSR cause a general-protection fault (#GP). If supported, this MSR can be written only when
IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection fault (#GP).

Table 36-7 IA32_RTIT_OUTPUT_BASE MSR

Position Bit Name At Reset Bit Description

6:0 Reserved 0 Must be 0.

MAXPHYADDR-1:7 BasePhysAddr 0 The base physical address. How this address is used depends on the value of
IA32_RTIT_CTL.ToPA:

0: This is the base physical address of a single, contiguous physical output region.
This could be mapped to DRAM or to MMIO, depending on the value.

The base address should be aligned with the size of the region, such that none of
the 1s in the mask value(Section 36.2.5.8) overlap with 1s in the base address. If
the base is not aligned, an operational error will result (see Section 36.3.9).

1: The base physical address of the current ToPA table. The address must be 4K
aligned. Writing an address in which bits 11:7 are non-zero will not cause a #GP, but
an operational error will be signaled once TraceEn is set. See “ToPA Errors” in
Section 36.2.4.2 as well as Section 36.3.9.

63:MAXPHYADDR Reserved 0 Must be 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 427

36.2.5.8 IA32_RTIT_OUTPUT_MASK_PTRS MSR
This MSR holds any mask or pointer values needed to indicate where the next byte of trace output should be
written. The meaning of the values held in this MSR depend on whether the ToPA output mechanism is in use. See
Section 36.2.4.2 for details.
The processor updates this MSR while when packet generation is enabled, and those updates are asynchronous to
instruction execution. Therefore, the values in this MSR should be considered unreliable unless packet generation
is disabled (IA32_RTIT_CTL.TraceEn = 0).
Accesses to this MSR are supported only if Intel PT output to memory is supported, hence when either
CPUID.(EAX=14H, ECX=0):ECX[bit 0] or CPUID.(EAX=14H, ECX=0):ECX[bit 2] are set. Otherwise WRMSR or
RDMSR cause a general-protection fault (#GP). If supported, this MSR can be written only when
IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection fault (#GP).

36.2.6 Interaction of Intel® Processor Trace and Other Processor Features

36.2.6.1 Intel® Transactional Synchronization Extensions (Intel® TSX)
The operation of Intel TSX is described in Chapter 14 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1. For tracing purpose, packet generation does not distinguish between hardware lock
elision (HLE) and restricted transactional memory (RTM), but speculative execution does have impacts on the
trace output. Specifically, packets are generated as instructions complete, even for instructions in a transactional
region that is later aborted. For this reason, debugging software will need indication of the beginning and end of
a transactional region; this will allow software to understand when instructions are part of a transactional region
and whether that region has been committed.

Table 36-8 IA32_RTIT_OUTPUT_MASK_PTRS MSR

Position Bit Name At Reset Bit Description

6:0 LowerMask 7FH Forced to 1, writes are ignored.

31:7 MaskOrTableO
ffset

0 The use of this field depends on the value of IA32_RTIT_CTL.ToPA:

0: This field holds bits 31:7 of the mask value for the single, contiguous physical output
region. The size of this field indicates that regions can be of size 128B up to 4GB. This value
(combined with the lower 7 bits, which are reserved to 1) will be ANDed with the
OutputOffset field to determine the next write address. All 1s in this field should be
consecutive and starting at bit 7, otherwise the region will not be contiguous, and an
operational error (Section 36.3.9) will be signaled when TraceEn is set.

1: This field holds bits 27:3 of the offset pointer into the current ToPA table. This value can
be added to the IA32_RTIT_OUTPUT_BASE value to produce a pointer to the current ToPA
table entry, which itself is a pointer to the current output region. In this scenario, the lower 7
reserved bits are ignored. This field supports tables up to 256 MBytes in size.

63:32 OutputOffset 0 The use of this field depends on the value of IA32_RTIT_CTL.ToPA:

0: This is bits 31:0 of the offset pointer into the single, contiguous physical output region.
This value will be added to the IA32_RTIT_OUTPUT_BASE value to form the physical address
at which the next byte of packet output data will be written. This value must be less than or
equal to the MaskOrTableOffset field, otherwise an operational error (Section 36.3.9) will be
signaled when TraceEn is set.

1: This field holds bits 31:0 of the offset pointer into the current ToPA output region. This
value will be added to the output region base field, found in the current ToPA table entry, to
form the physical address at which the next byte of trace output data will be written.

This value must be less than the ToPA entry size, otherwise an operational error (Section
36.3.9) will be signaled when TraceEn is set.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 428

To enable this, TSX information is included in a MODE packet leaf. The mode bits in the leaf are:
• InTX: Set to 1 on an TSX transaction begin, and cleared on transaction commit or abort.
• TXAbort: Set to 1 only when InTX transitions from 1 to 0 on an abort. Cleared otherwise.
If BranchEn=1, this MODE packet will be sent each time the transaction status changes. See Table 36-9 for
details.

The CurrentIP listed above is the IP of the associated instruction. The TargetIP is the IP of the next instruction to
be executed; for HLE, this is the XACQUIRE lock; for RTM, this is the fallback handler.
Intel PT stores are non-transactional, and thus packet writes are not rolled back on TSX abort.

TSX and IP Filtering

A complication with tracking transactions is handling transactions that start or end outside of the tracing region.
Transactions can’t span across a change in ContextEn, because CPL changes and CR3 changes each cause aborts.
But a transaction can start within the IP filter region and end outside it.
To assist the decoder handling this situation, MODE.TSX packets can be sent even if FilterEn=0, though there will
be no FUP attached. Instead, they will merely serve to indicate to the decoder when transactions are active and
when they are not. When tracing resumes (due to PacketEn=1), the last MODE.TSX preceding the TIP.PGE will
indicate the current transaction status.

System Management Mode (SMM)
SMM code has special privileges that non-SMM code does not have. Intel Processor Trace can be used to trace
SMM code, but special care is taken to ensure that SMM handler context is not exposed in any non-SMM trace
collection. Additionally, packet output from tracing non-SMM code cannot be written into memory space that is
either protected by SMRR or used by the SMM handler.
SMM is entered via a system management interrupt (SMI). SMI delivery saves the value of
IA32_RTIT_CTL.TraceEn into SMRAM and then clears it, thereby disabling packet generation.
The saving and clearing of IA32_RTIT_CTL.TraceEn ensures two things:

1. All internally buffered packet data is flushed before entering SMM (see Section 36.2.5.2).

2. Packet generation ceases before entering SMM, so any tracing that was configured outside SMM does not
continue into SMM. No SMM instruction pointers or other state will be exposed in the non-SMM trace.

When the RSM instruction is executed to return from SMM, the TraceEn value that was saved by SMI delivery is
restored, allowing tracing to be resumed. As is done any time packet generation is enabled, ContextEn is re-eval-
uated, based on the values of CPL, CR3, etc., established by RSM.

Table 36-9 TSX Packet Scenarios

TSX Event Instruction Packets

Transaction Begin Either XBEGIN or XACQUIRE lock (the latter if executed
transactionally).

MODE(TXAbort=0, InTX=1), FUP(CurrentIP).

Transaction
Commit

Either XEND or XRELEASE lock, if transactional execution
ends. This happens only on the outermost commit.

MODE(TXAbort=0, InTX=0), FUP(CurrentIP)

Transaction Abort XABORT or other transactional abort. MODE(TXAbort=1, InTX=0), FUP(CurrentIP),
TIP(TargetIP)

Other One of the following:
• Nested XBEGIN or XACQUIRE lock.
• An outer XACQUIRE lock that doesn’t begin a transaction

(InTX not set).
• Non-outermost XEND or XRELEASE lock.

None. No change to TSX mode bits for these
cases.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 429

Like other interrupts, delivery of an SMI produces a FUP containing the IP of the next instruction to execute. By
toggling TraceEn, SMI and RSM can produce TIP.PGD and TIP.PGE packets, respectively, indicating that tracing
was disabled or re-enabled. See Table 36.7 for more information about packets entering and leaving SMM.
Although #SMI and RSM change CR3, PIP packets are not generated in these cases. With #SMI tracing is disabled
before the CR3 change; with RSM TraceEn is restored after CR3 is written.
TraceEn must be cleared before executing RSM, otherwise it will cause a shutdown. Further, on processors that
restrict use of Intel PT with LBRs (see Section 36.3.1.2), any RSM that results in enabling of both will cause a
shutdown.
Intel PT can support tracing of System Transfer Monitor operating in SMM, see Section 36.6.

36.2.6.2 Virtual-Machine Extensions (VMX)
Initial implementations of Intel Processor Trace do not support tracing in VMX operation. This is indicated by
IA32_VMX_MISC[bit 14] returns 0. Execution of the VMXON instruction clears TraceEn. An attempt to set
IA32_RTIT_CTL.TraceEn using WRMSR in VMX operation causes a general-protection fault (#GP).
For processors that Intel Processor Trace supports tracing in VMX operation, IA32_VMX_MISC[bit 14] reports 1 if
TraceEn can be set post-VMXON. Details of tracing post-VMXON is described in Section 36.5.

36.2.6.3 Intel Software Guard Extensions (SGX)
SGX provides an application with ability to instantiate a protective container (an enclave) with confidentiality and
integrity (see Intel® Software Guard Extensions Programming Reference). On a processor with both Intel PT and
SGX enabled, when executing code within a production enclave, no control flow packets are produced by Intel PT.
Enclave entry will clear ContextEn, thereby blocking control flow packet generation. A TIP.PGD packet will be
generated if PacketEn=1 at the time of the entry.
Upon enclave exit, ContextEn will no longer be forced to 0. If other enables are set at the time, a TIP.PGE may be
generated to indicate that tracing is resumed.
During the enclave execution, Intel PT remains enabled, and periodic or timing packets such as PSB, TSC, MTC,
or CBR can still be generated. No IPs or other architectural state will be exposed.
For packet generation examples on enclave entry or exit, see Section 36.7.

Debug Enclaves

SGX allows an enclave to be configured with relaxed protection of confidentiality for debug purposes, see Intel®
Software Guard Extensions Programming Reference. In a debug enclave, Intel PT continues to function normally.
Specifically, ContextEn is not impacted by enclave entry or exit. Hence the generation of ContextEn-dependent
packets within a debug enclave is allowed.
It should be noted, however, that even when tracing a debug enclave, trace packet output cannot be directed to
the Processor Reserved Memory (i.e. physical memory configured by the PRMRR MSRs defining the range of PRM,
see Intel® Software Guard Extensions Programming Reference). This will produce an operational error, and tracing
will be disabled.

36.2.6.4 SENTER/ENTERACCS and ACM
GETSEC[SENTER] and GETSEC[ENTERACCS] instructions clear TraceEn, and it is not restored when those instruc-
tion complete. SENTER also causes TraceEn to be cleared on other logical processors when they rendezvous and
enter the SENTER sleep state. In these two cases, the disabling of packet generation is not guaranteed to flush
internally buffered packets. Some packets may be dropped.
When executing an authenticated code module (ACM), packet generation is silently disabled during ACRAM setup.
TraceEn will be cleared, but no TIP.PGD packet is generated. After completion of the module, the TraceEn value
will be restored. There will be no TIP.PGE packet, but timing packets, like TSC and CBR, may be produced.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 430

36.2.6.5 Intel® Memory Protection Extensions (Intel® MPX)
Bounds exceptions (#BR) caused by Intel MPX are treated like other exceptions, producing FUP and TIP packets
that indicate the source and destination IPs.

36.3 CONFIGURATION AND PROGRAMMING GUIDELINE

36.3.1 Detection of Intel Processor Trace and Capability Enumeration
Processor support for Intel Processor Trace is indicated by CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1. CPUID
function 14H is dedicated to enumerate the resource and capability of processors that report
CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1. Different processor generations may have architecturally-defined
variation in capabilities. Table 36-10 describes details of the enumerable capabilities that software must use
across generations of processors that support Intel Processor Trace.

Table 36-10 CPUID Leaf 14H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=0) Name Description Behavior

Register Bits

EAX 31:0 Maximum valid sub-leaf Index Specifies the index of the maximum valid sub-leaf for this CPUID leaf.

EBX

0 CR3 Filtering Support 1: Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that
IA32_RTIT_CR3_MATCH MSR can be accessed. See Section 36.2.5.

0: Indicates that writes that set IA32_RTIT_CTL.CR3Filter to 1, or any
access to IA32_RTIT_CR3_MATCH, will #GP fault.

1 Configurable PSB and Cycle-
Accurate Mode Supported

1: (a) IA32_RTIT_CTL.PSBFreq can be set to a non-zero value, in order to
select the preferred PSB frequency (see below for allowed values). (b)
IA32_RTIT_STATUS.PacketByteCnt can be set to a non-zero value, and
will be incremented by the processor when tracing to indicate progress
towards the next PSB. If trace packet generation is enabled by setting
TraceEn, a PSB will only be generated if PacketByteCnt=0. (c)
IA32_RTIT_CTL.CYCEn can be set to 1 to enable Cycle-Accurate Mode.
See Section 36.2.5.

0: (a) Any attempt to set IA32_RTIT_CTL.PSBFreq, to set
IA32_RTIT_CTL.CYCEn, or write a non-zero value to
IA32_RTIT_STATUS.PacketByteCnt any access to
IA32_RTIT_CR3_MATCH, will #GP fault. (b) If trace packet generation is
enabled by setting TraceEn, a PSB is always generated. (c) Any attempt
to set IA32_RTIT_CTL.CYCEn will #GP fault.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 431

2 IP Filtering and TraceStop
supported, and Preserve Intel
PT MSRs across warm reset

1: (a) IA32_RTIT_CTL provides at one or more ADDRn_CFG field to
configure the corresponding address range MSRs for IP Filtering or IP
TraceStop. Each ADDRn_CFG field accepts a value in the range of 0:2
inclusive. The number of ADDRn_CFG fields is reported by
CPUID.(EAX=14H, ECX=1):EAX.RANGECNT[2:0]. (b) At least one register
pair IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B are provided to
configure address ranges for IP filtering or IP TraceStop. (c) On warm
reset, all Intel PT MSRs will retain their pre-reset values, though
IA32_RTIT_CTL.TraceEn will be cleared. The Intel PT MSRs are listed in
Section 36.2.5.

0: (a) An Attempt to write IA32_RTIT_CTL.ADDRn_CFG with non-zero
encoding values will cause #GP. (b) Any access to IA32_RTIT_ADDRn_A
and IA32_RTIT_ADDRn_B, will #GP fault. (c) On warm reset, all Intel PT
MSRs will be cleared.

3 MTC Supported 1: IA32_RTIT_CTL.MTCEn can be set to 1, and MTC packets will be
generated. See Section 36.2.5.

0: An attempt to set IA32_RTIT_CTL.MTCEn or IA32_RTIT_CTL.MTCFreq
to a non-zero value will #GP fault.

31:4 Reserved

ECX

0 ToPA Output Supported 1: Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing
the ToPA output scheme (Section 36.2.4.2) IA32_RTIT_OUTPUT_BASE
and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.

0: Unless CPUID.(EAX=14H, ECX=0):ECX.SNGLRNGOUT[bit 2] = 1. writes
to IA32_RTIT_OUTPUT_BASE or IA32_RTIT_OUTPUT_MASK_PTRS.
MSRs will #GP fault.

1 ToPA Tables Allow Multiple
Output Entries

1: ToPA tables can hold any number of output entries, up to the
maximum allowed by the MaskOrTableOffset field of
IA32_RTIT_OUTPUT_MASK_PTRS.

0: ToPA tables can hold only one output entry, which must be followed
by an END=1 entry which points back to the base of the table.

Further, ToPA PMIs will be delivered before the region is filled. See ToPA
PMI in Section 36.2.4.2.

If there is more than one output entry before the END entry, or if the
END entry has the wrong base address, an operational error will be
signaled (see “ToPA Errors” in Section 36.2.4.2).

2 Single-Range Output
Supported

1: Enabling tracing (TraceEn=1) with IA32_RTIT_CTL.ToPA=0 is
supported.

0: Unless CPUID.(EAX=14H, ECX=0):ECX.TOPAOUT[bit 0] = 1. writes to
IA32_RTIT_OUTPUT_BASE or IA32_RTIT_OUTPUT_MASK_PTRS. MSRs
will #GP fault.

3 Output to Trace Transport
Subsystem Supported

1: Setting IA32_RTIT_CTL.FabricEn to 1 is supported.

0: IA32_RTIT_CTL.FabricEn is reserved. Write 1 to
IA32_RTIT_CTL.FabricEn will #GP fault.

30:4 Reserved

Table 36-10 CPUID Leaf 14H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=0) Name Description Behavior

Register Bits

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 432

If CPUID.(EAX=14H, ECX=0):EAX reports a non-zero value, additional capabilities of Intel Processor Trace are
described in the sub-leaves of CPUID leaf 14H.

31 IP Payloads are LIP 1: Generated packets which contain IP payloads have LIP values, which
include the CS base component.

0: Generated packets which contain IP payloads have RIP values, which
are the offset from CS base.

EDX 31:0 Reserved

Table 36-10 CPUID Leaf 14H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=0) Name Description Behavior

Register Bits

Table 36-11 CPUID Leaf 14H, sub-leaf 1H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=1) Name Description Behavior

Register Bits

EAX 2:0 Number of Address Ranges A non-zero value specifies the number ADDRn_CFG field supported in
IA32_RTIT_CTL and the number of register pair IA32_RTIT_ADDRn_A/
IA32_RTIT_ADDRn_B supported for IP filtering and IP TraceStop.

15:3 Reserved

31:16 Bitmap of supported MTC
Period Encodings

The non-zero bit positions indicate the map of supported encoding
values for the IA32_RTIT_CTL.MTCFreq field. This applies only if
CPUID.(EAX=14H, ECX=0):EBX.IPFILT_MTC[bit 2] = 1 (MTC Packet
generation is supported), otherwise the MTCFreq field is reserved to 0.

Each bit position in this field represents 1 encoding value in the 4-bit
MTCFreq field (ie, bit 0 is associated with encoding value 0). For each
bit:

1: MTCFreq can be assigned the associated encoding value.

0: MTCFreq cannot be assigned to the associated encoding value. A
write to IA32_RTIT_CTLMTCFreq with unsupported encoding will cause
#GP fault.

EBX 15:0 Bitmap of supported Cycle
Threshold values

The non-zero bit positions indicate the map of supported encoding for
the IA32_RTIT_CTL.CycThresh field. This applies only if
CPUID.(EAX=14H, ECX=0):EBX.CPSB_CAM[bit 1] = 1 (Cycle-Accurate
Mode is Supported), otherwise the CycThresh field is reserved to 0. See
Section 36.2.5.

Each bit position in this field represents 1 encoding value in the 4-bit
CycThresh field (ie, bit 0 is associated with encoding value 0). For each
bit:

1: CycThresh can be assigned the associated encoding value.

0: CycThresh cannot be assigned to the associated encoding value. A
write to CycThresh with unsupported encoding will cause #GP fault.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 433

36.3.1.1 Packet Decoding of RIP versus LIP
FUP, TIP, TIP.PGE, and TIP.PGE packets can contain an IP payload. On some processor generations, this payload
will be an effective address (RIP), while on others this will be a linear address (LIP). In the former case, the
payload is the offset from the current CS base address, while in the latter it is the sum of the offset and the CS
base address (Note that in real mode, the CS base address is the value of CS<<4, while in protected mode the CS
base address is the base linear address of the segment indicated by the CS register.). Which IP type is in use is
indicated by enumeration (see CPUID.(EAX=14H, ECX=0):ECX.LIP[bit 31] in Table 36-10).
For software that executes while the CS base address is 0 (including all software executing in 64-bit mode), the
difference is indistinguishable. A trace decoder must account for cases where the CS base address is not 0 and the
resolved LIP will not be evident in a trace generated on a CPU that enumerates use of RIP. This is likely to cause
problems when attempting to link the trace with the associated binaries.
Note that IP comparison logic, for IP filtering and TraceStop range calculation, is based on the same IP type as
these IP packets. For processors that output RIP, the IP comparison mechanism is also based on RIP, and hence
on those processors RIP values should be written to IA32_RTIT_ADDRn_[AB] MSRs. This can produce differing
behavior if the same trace configuration setting is run on processors reporting different IP types, i.e.
CPUID.(EAX=14H, ECX=0):ECX.LIP[bit 31]. Care should be taken to check CPUID when configuring IP filters.

36.3.1.2 Model Specific Capability Restrictions
Some processor generations impose restrictions that prevent use of LBRs/BTS/BTM/LERs when software has
enabled tracing with Intel Processor Trace. On these processors, when TraceEn is set, updates of LBR, BTS, BTM,
LERs are suspended but the states of the corresponding IA32_DEBUGCTL control fields remained unchanged as if
it were still enabled. When TraceEn is cleared, the LBR array is reset, and LBR/BTS/BTM/LERs updates will
resume. Further, reads of these registers will return 0, and writes will be dropped.
The list of MSRs whose updates/accesses are restricted follows.
• MSR_LASTBRANCH_x_TO_IP, MSR_LASTBRANCH_x_FROM_IP, MSR_LBR_INFO_x, MSR_LASTBRANCH_TOS
• MSR_LER_FROM_IP, MSR_LER_TO_IP
• MSR_LBR_SELECT
For processor with CPUID DisplayFamily_DisplayModel signature of 06_3DH, 06_47H, 06_4EH, 06_4FH, 06_56H
and 06_5EH, the use of Intel PT and LBRs are mutually exclusive.

31:16 Bitmap of supported
Configurable PSB Frequency
encoding

The non-zero bit positions indicate the map of supported encoding for
the IA32_RTIT_CTL.PSBFreq field. This applies only if
CPUID.(EAX=14H, ECX=0):EBX.CPSB_CAM[bit 1] = 1 (Configurable PSB
is supported), otherwise the PSBFreq field is reserved to 0. See
Section 36.2.5.

Each bit position in this field represents 1 encoding value in the 4-bit
PSBFreq field (ie, bit 0 is associated with encoding value 0). For each
bit:

1: PSBFreq can be assigned the associated encoding value.

0: PSBFreq cannot be assigned to the associated encoding value. A
write to PSBFreq with unsupported encoding will cause #GP fault.

ECX 31:0 Reserved

EDX 31:0 Reserved

Table 36-11 CPUID Leaf 14H, sub-leaf 1H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=1) Name Description Behavior

Register Bits

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 434

...

36.3.2.1 Enabling Packet Generation
When configuring and enabling packet generation, the IA32_RTIT_CTL MSR should be written after any other
Intel PT MSRs have been written, since writes to the other configuration MSRs cause a general-protection fault
(#GP) if TraceEn = 1. If a prior trace collection context is not being restored, then software should first clear
IA32_RTIT_STATUS. This is important since the Stopped, and Error fields are writable; clearing the MSR clears
any values that may have persisted from prior trace packet collection contexts. See Section 36.2.5.2 for details of
packets generated by setting TraceEn to 1.
If setting TraceEn to 1 causes an operational error (see Section 36.3.9), there may be a delay after the WRMSR
completes before the error is signaled in the IA32_RTIT_STATUS MSR.
While packet generation is enabled, the values of some configuration MSRs (e.g., IA32_RTIT_STATUS and
IA32_RTIT_OUTPUT_*) are transient, and reads may return values that are out of date. Only after packet gener-
ation is disabled (by clearing TraceEn) do reads of these MSRs return reliable values.

36.3.2.2 Disabling Packet Generation
After disabling packet generation by clearing IA32_RTIT_CTL, it is advisable to read the IA32_RTIT_STATUS MSR
(Section 36.2.5.4):
• If the Error bit is set, an operational error was encountered, and the trace is most likely compromised.

Software should check the source of the error (by examining the output MSR values), correct the source of the
problem, and then attempt to gather the trace again. For details on operational errors, see Section 36.3.9.
Software should clear IA32_RTIT_STATUS.Error before re-enabling packet generation.

• If the Stopped bit is set, software execution encountered an IP TraceStop (see Section 36.2.2.3) or the ToPA
Stop condition (see “ToPA STOP” in Section 36.2.4.2) before packet generation was disabled.

36.3.3 Flushing Trace Output
Packets are first buffered internally and then written out asynchronously. To collect packet output for post-
processing, a collector needs first to ensure that all packet data has been flushed from internal buffers. Software
can ensure this by stopping packet generation by clearing IA32_RTIT_CTL.TraceEn (see “Disabling Packet Gener-
ation” in Section 36.2.5.2).
When software clears IA32_RTIT_CTL.TraceEn to flush out internally buffered packets, the logical processor
issues an SFENCE operation which ensures that WC trace output stores will be ordered with respect to the next
store, or serializing operation. A subsequent read from the same logical processor will see the flushed trace data,
while a read from another logical processor should be preceded by a store, fence, or architecturally serializing
operation on the tracing logical processor.
When the flush operations complete, the IA32_RTIT_OUTPUT_* MSR values indicate where the trace ended.
While TraceEn is set, these MSRs may hold stale values.

36.3.4 Warm Reset
The MSRs software uses to program Intel Processor Trace are cleared after a power-on RESET (or cold RESET). On
a warm RESET, the contents of those MSRs can retain their values from before the warm RESET with the exception
that IA32_RTIT_CTL.TraceEn will be cleared (which may have the side effect of clearing some bits in
IA32_RTIT_STATUS).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 435

36.3.5 Context Switch Consideration
To facilitate construction of instruction execution traces at the granularity of a software process or thread context,
software can save and restore the states of the trace configuration MSRs across the process or thread context
switch boundary. The principle is the same as saving and restoring the typical architectural processor states
across context switches.

36.3.5.1 Manual Trace Configuration Context Switch
The configuration can be saved and restored through a sequence of instructions of RDMSR, management of MSR
content and WRMSR. To stop tracing and to ensure that all configuration MSRs contain stable values, software
must clear IA32_RTIT_CTL.TraceEn before reading any other trace configuration MSRs. The recommended
method for saving trace configuration context manually follows:

1. RDMSR IA32_RTIT_CTL, save value to memory.

2. WRMSR IA32_RTIT_CTL with saved value from RDMSR above and TraceEn cleared.

3. RDMSR all other configuration MSRs whose values had changed from previous saved value, save changed
values to memory.

When restoring the trace configuration context, IA32_RTIT_CTL should be restored last:

1. Read saved configuration MSR values, aside from IA32_RTIT_CTL, from memory, and restore them with
WRMSR.

2. Read saved IA32_RTIT_CTL value from memory, and restore with WRMSR.

36.3.5.2 Trace Configuration Context Switch Using XSAVES/XRSTORS
On processors whose XSAVE feature set supports XSAVES and XRSTORS, the Trace configuration state can be
saved using XSAVES and restored by XRSTORS, in conjunction the bit field associated with supervisory state
component in IA32_XSS. See Chapter 13, “Managing State Using the XSAVE Feature Set” of Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1.
CPUID leaf 0DH enumerates the capabilities of the XSAVE feature set. Within CPUID leaf 0DH, the sub-functions
related to supervisor state management of the trace configuration MSRs are shown in Table 36-12 and Table 36-
13.

Table 36-12 CPUID Leaf 0DH, sub-leaf 1H Enumeration of XSAVE Feature Set

CPUID.(EAX=0DH,ECX=1) Name Description Behavior

Register Bit(s)

ECX 8 Supervisory Trace
Configuration State support in
IA32_XSS

If 1, IA32_XSS[bit 8] is supported for supervisor state save/restor
using XSAVES/XRSTORS for trace configuration MSR states. Otherwise,
IA32_XSS[bit 8] is reserved.

EBX
31:0 Total size of the XSAVE area Total size of the XSAVE area containing all states enabled by XCR0 |

IA32_XSS.

Table 36-13 CPUID Leaf 0DH, sub-leaf 8H Enumeration of XSAVE Feature Set

CPUID.(EAX=0DH,ECX=8) Name Description Behavior

Register Bit(s)

EAX 31:0 Size of Trace Configuration
State Save Area

The size in bytes of this component’s save area in the XSAVE area
(from the offset specified in EBX).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 436

The layout of the trace configuration component state in the XSAVE area is shown in Table 36-14.

The IA32_XSS MSR is zero coming out of RESET. Once IA32_XSS[bit 8] is set, system software operating at CPL=
0 can use XSAVES/XRSTORS with the appropriate requested-feature bitmap (RFBM) to manage supervisor state
components in the XSAVE map. See Chapter 13, “Managing State Using the XSAVE Feature Set” of Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1.

36.3.6 Cycle-Accurate Mode
Intel PT can be run in a cycle-accurate mode which enables CYC packets (see Section 36.4.2.14) that provide low-
level information in the processor core clock domain. This cycle counter data in CYC packets can be used to
compute IPC (Instructions Per Cycle), or to track wall-clock time on a fine-grain level.
To enable cycle-accurate mode packet generation, software should set IA32_RTIT_CTL.CYCEn=1. It is recom-
mended that software also set TSCEn=1 anytime cycle-accurate mode is in use. With this, all CYC-eligible packets
will be preceded by a CYC packet, the payload of which indicates the number of core clock cycles since the last
CYC packet. In cases where multiple CYC-eligible packets are generated in a single cycle, only a single CYC will be
generated before the CYC-eligible packets, otherwise each CYC-eligible packet will be preceded by its own CYC.
The CYC-eligible packets are:
• TNT, TIP, TIP.PGE, TIP.PGD, MODE.EXEC, MODE.TSX, PIP, VMCS, OVF, MTC, TSC
TSC packets are generated when there is insufficient information to reconstruct wall-clock time, due to tracing
being disabled (TriggerEn=0), or power down scenarios like a transition to a deep-sleep MWAIT C-state. In this
case, the CYC that is generated along with the TSC will indicate the number of cycles actively tracing (those
powered up, with TriggerEn=1) executed between the last CYC packet and the TSC packet. And hence the amount
of time spent while tracing is inactive can be inferred from the difference in time between that expected based on
the CYC value, and the actual time indicated by the TSC.
Additional CYC packets may be sent stand-alone, so that the processor can ensure that the decoder is aware of
the number of cycles that have passed before the internal hardware counter wraps, or is reset due to other micro-

EBX 31:0 Offset of Trace Configuration
State Save Area

The offset in bytes of this component’s save area from the beginning of
the XSAVE area.

ECX
0 Valid If 1, sub leaf index is valid and maps to IA32_XSS[bit 8]. Otherwise, sub

leaf index is invalid.

Table 36-13 CPUID Leaf 0DH, sub-leaf 8H Enumeration of XSAVE Feature Set

CPUID.(EAX=0DH,ECX=8) Name Description Behavior

Register Bit(s)

Table 36-14 Memory Layout of the Trace Configuration State Component

Offset within
Component Area

Field Offset within
Component Area

Field

0H IA32_RTIT_CTL 08H IA32_RTIT_OUTPUT_BASE

10H IA32_RTIT_OUTPUT_MASK_PTRS 18H IA32_RTIT_STATUS

20H IA32_RTIT_CR3_MATCH 28H IA32_RTIT_ADDR0_A

30H IA32_RTIT_ADDR0_B 38H IA32_RTIT_ADDR1_A

40H IA32_RTIT_ADDR1_B 48H IA32_RTIT_ADDR2_A

50H IA32_RTIT_ADDR2_B 58H IA32_RTIT_ADDR3_A

60H IA32_RTIT_ADDR3_B 68H-End Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 437

architectural condition. There is no guarantee at what intervals these standalone CYC packets will be sent, except
that they will be sent before the wrap occurs. An illustration is given below.

36.3.6.1 Cycle Counter
The cycle counter is implemented in hardware (independent of the time stamp counter or performance monitoring
counters), and is a simple incrementing counter that does not saturate, but rather wraps. The size of the counter
is implementation specific.
The cycle counter is reset to zero any time that TriggerEn is cleared, and when a CYC packet is sent. The cycle
counter will continue to count when ContextEn or FilterEn are cleared, and cycle packets will still be generated. It
will not count during sleep states that result in Intel PT logic being powered-down, but will count up to the point
where clocks are disabled, and resume counting once they are re-enabled.

36.3.6.2 Cycle Packet Semantics
Cycle-accurate mode adheres to the following protocol:
• All packets that precede a CYC packet represent instructions or events that took place before the CYC time.
• All packets that follow a CYC packet represent instructions or events that took place at the same time as, or

after, the CYC time.
• The CYC-eligible packet that immediately follows a CYC packet represents an instruction or event that took

place at the same time as the CYC time.
These items above give the decoder a means to apply CYC packets to a specific instruction in the assembly
stream. Most packets represent a single instruction or event, and hence the CYC packet that precedes each of
those packets represents the retirement time of that instruction or event. In the case of TNT packets, up to 6
conditional branches and/or compressed RETs may be contained in the packet. In this case, the preceding CYC
packet provides the retirement time of the first branch in the packet. It is possible that multiple branches retired
in the same cycle as that first branch in the TNT, but the protocol will not make that obvious. Also note that a MTC
packet could be generated in the same cycle as the first JCC in the TNT packet. In this case, the CYC would
precede both the MTC and the TNT, and apply to both.
Note that there are times when the cycle counter will stop counting, though cycle-accurate mode is enabled. After
any such scenario, a CYC packet followed by TSC packet will be sent. See Section 36.8.3.2 to understand how to
interpret the payload values

Multi-packet Instructions or Events

Example 36-1 An Illustrative CYC Packet Example

Time (cycles) Instruction Snapshot Generated Packets Comment

x call %eax CYC(?), TIP ?Elapsed cycles from the previous CYC unknown

x + 2 call %ebx CYC(2), TIP 1 byte CYC packet; 2 cycles elapsed from the previous CTC

x + 8 jnz Foo (not taken) CYC(6) 1 byte CYC packet

x + 9 ret (compressed)

x + 12 jnz Bar (taken)

x + 16 ret (uncompressed) TNT, CYC(8), TIP 1 byte CYC packet

x + 4111 CYC(4095) 2 byte CYC packet

x + 12305 CYC(8194) 3 byte CYC packet

x + 16332 mov cr3, %ebx CYC(4027), PIP 2 byte CYC packet

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 438

Some operations, such as interrupts or task switches, generate multiple packets. In these cases, multiple CYC
packets may be sent for the operation, preceding each CYC-eligible packet in the operation. An example, using a
task switch on a software interrupt, is shown below.

36.3.6.3 Cycle Thresholds
Software can opt to reduce the frequency of cycle packets, a trade-off to save bandwidth and intrusion at the
expense of precision. This is done by utilizing a cycle threshold (see Section 36.2.5.2).
IA32_RTIT_CTL.CycThresh indicates to the processor the minimum number of cycles that must pass before the
next CYC packet should be sent. If this value is 0, no threshold is used, and CYC packets can be sent every cycle
in which a CYC-eligible packet is generated. If this value is greater than 0, the hardware will wait until the associ-
ated number of cycles have passed since the last CYC packet before sending another. CPUID provides the
threshold options for CycThresh, see Section 36.3.1.
Note that the cycle threshold does not dictate how frequently a CYC packet will be posted, it merely assigns the
maximum frequency. If the cycle threshold is 16, a CYC packet can be posted no more frequently than every 16
cycles. However, once that threshold of 16 cycles has passed, it still requires a new CYC-eligible packet to be
generated before a CYC will be inserted. Table 36-15 illustrates the threshold behavior.

36.3.7 Decoder Synchronization (PSB+)
The PSB packet (Section 36.4.2.17) serves as a synchronization point for a trace-packet decoder. It is a pattern
in the trace log for which the decoder can quickly scan to align packet boundaries. No legal packet combination
can result in such a byte sequence. As such, it serves as the starting point for packet decode. To decode a trace
log properly, the decoder needs more than simply to be aligned: it needs to know some state and potentially some

Example 36-2 An Example of CYC in the Presence of Multi-Packet Operations

Time (cycles) Instruction Snapshot Generated Packets

x jnz Foo (not taken) CYC(?)

x + 2 ret (compressed)

x + 8 jnz Bar (taken)

x + 9 jmp %eax TNT, CYC(9), TIP

x + 12 jnz Bar (not taken) CYC(3)

x + 32 int3 (task gate) TNT, FUP, CYC(10), PIP, CYC(20), MODE.Exec, TIP

Table 36-15 An Illustrative CYC Packet Example

Time (cycles) Instruction Snapshot
Threshold

0 16 32 64

x jmp %eax CYC, TIP CYC, TIP CYC, TIP CYC, TIP

x + 9 call %ebx CYC, TIP TIP TIP TIP

x + 15 call %ecx CYC, TIP TIP TIP TIP

x + 30 jmp %edx CYC, TIP CYC, TIP TIP TIP

x + 38 mov cr3, %eax CYC, PIP PIP CYC, PIP PIP

x + 46 jmp [%eax] CYC, TIP CYC, TIP TIP TIP

x + 64 call %edx CYC, TIP CYC, TIP TIP CYC,TIP

x + 71 jmp %edx CYC, TIP TIP CYC,TIP TIP

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 439

timing information as well. The decoder should never need to retain any information (e.g., LastIP, call stack,
compound packet event) across a PSB; all compound packet events will be completed before a PSB, and any
compression state will be reset.
When a PSB packet is generated, it is followed by a PSBEND packet (Section 36.4.2.18). One or more packets
may be generated in between those two packets, and these inform the decoder of the current state of the
processor. These packets, known collectively as PSB+, should be interpreted as “status only”, since they do not
imply any change of state at the time of the PSB, nor are they associated directly with any instruction or event.
Thus, the normal binding and ordering rules that apply to these packets outside of PSB+ can be ignored when
these packets are between a PSB and PSBEND. They inform the decoder of the state of the processor at the time
of the PSB.
PSB+ can include:
• Timestamp (TSC), if IA32_RTIT_CTL.TSCEn=1.
• Timestamp-MTC Align (TMA), if IA32_RTIT_CTL.TSCEn=1 && IA32_RTIT_CTL.MTCEn=1.
• Paging Info Packet (PIP), if ContextEn=1 and IA32_RTIT_CTL.OS=1.

— Includes non-Root (NR) field, if the “Suppress VMX Indications in Guest Traces” VMCS execution control is
cleared.

• VMCS, if post-VMXON and the “Suppress VMX Indications in Guest Traces” VMCS execution control is cleared.
• Core Bus Ratio (CBR).
• MODE.TSX, if ContextEn=1 and BranchEn = 1.
• MODE.Exec, if PacketEn=1.
• Flow Update Packet (FUP), if PacketEn=1.
PSB is generated only when TriggerEn=1; hence PSB+ has the same dependencies. The ordering of packets
within PSB+ is not fixed. Timing packets such as CYC and MTC may be generated between PSB and PSBEND, and
their meanings are the same as outside PSB+.
Note that an overflow can occur during PSB+, and this could cause the PSBEND packet to be lost. For this reason,
the OVF packet should also be viewed as terminating PSB+.

36.3.8 Internal Buffer Overflow
In the rare circumstances when new packets need to be generated but the processor’s dedicated internal buffers
are all full, an “internal buffer overflow” occurs. On such an overflow packet generation ceases (as packets would
need to enter the processor’s internal buffer) until the overflow resolves. Once resolved, packet generation
resumes.
When the buffer overflow is cleared, an OVF packet (Section 36.4.2.16) is generated, and the processor ensures
that packets which follow the OVF are not compressed (IP compression or RET compression) against packets that
were lost.
If IA32_RTIT_CTL.BranchEn = 1, the OVF packet will be followed by a FUP if the overflow resolves while Pack-
etEn=1. If the overflow resolves while PacketEn = 0 no packet is generated, but a TIP.PGE will naturally be gener-
ated later, once PacketEn = 1. The payload of the FUP or TIP.PGE will be the Current IP of the first instruction upon
which tracing resumes after the overflow is cleared. Between the OVF and following FUP or TIP.PGE, there may be
timing packets. If the overflow resolves while PacketEn=0, other packets that are not dependent on PacketEn may
come before the TIP.PGE.

36.3.8.1 Overflow Impact on Enables
The address comparisons to ADDRn ranges, for IP filtering and TraceStop (Section 36.2.2.3), continue during a
buffer overflow, and TriggerEn, ContextEn, and FilterEn may change during a buffer overflow. Like other packets,

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 440

however, any TIP.PGE or TIP.PGD packets that would have been generated will be lost. Further,
IA32_RTIT_STATUS.PacketByteCnt will not increment, since it is only incremented when packets are generated.
If a TraceStop event occurs during the buffer overflow, IA32_RTIT_STATUS.Stopped will still be set, tracing will
cease as a result. However, the TraceStop packet, and any TIP.PGD that result from the TraceStop, may be
dropped.

36.3.8.2 Overflow Impact on Timing Packets
Any timing packets that are generated during a buffer overflow will be dropped. If only a few MTC packets are
dropped, a decoder should be able to detect this by noticing that the time value in the first MTC packet after the
buffer overflow incremented by more than one. If the buffer overflow lasted long enough that 256 MTC packets
are lost (and thus the MTC packet ‘wraps’ its 8-bit CTC value), then the decoder may be unable to properly under-
stand the trace. This is not an expected scenario. No CYC packets are generated during overflow, even if the cycle
counter wraps.
Note that, if cycle-accurate mode is enabled, the OVF packet will generate a CYC packet. Because the cycle
counter counts during overflows, this CYC packet can provide the duration of the overflow. However, there is a risk
that the cycle counter wrapped during the overflow, which could render this CYC misleading.

...

36.4.1 Packet Relationships and Ordering
This section introduces the concept of packet “binding”, which involves determining the IP in a binary disassembly
at which the change indicated by a given packet applies. Some packets have the associated IP as the payload
(FUP, TIP), while for others the decoder need only search for the next instance of a particular instruction (or
instructions) to bind the packet (TNT). However, in many cases, the decoder will need to consider the relationship
between packets, and to use this packet context to determine how to bind the packet.
Section 36.4.2 below provides detailed descriptions of the packets, including how packets bind to IPs in the disas-
sembly, to other packets, or to nothing at all. Many packets listed are simple to bind, because they are generated
in only a few scenarios. Those that require more consideration are typically part of “compound packet events”,
such as interrupts, exceptions, and some instructions, where multiple packets are generated by a single operation
(instruction or event). These compound packet events frequently begin with a FUP to indicate the source address
(if it is not clear from the disassembly), and are concluded by a TIP or TIP.PGD packet that indicates the destina-
tion address (if one is provided). In this scenario, the FUP is said to be “coupled” with the TIP packet.
Other packets could be in between the coupled FUP and TIP packet. Timing packets, such as TSC, MTC, CYC, or
CBR, could arrive at any time, and hence could intercede in a compound packet event. If an operation changes
CR3 or the processor’s mode of execution, a state update packet (i.e., PIP or MODE) is generated. The state
changes indicated by these intermediate packets should be applied at the IP of the TIP* packet. A summary of
compound packet events is provided in Table 36-16; see Section 36.4.2 for more per-packet details and Section
36.7 for more detailed packet generation examples.

Table 36-16 Compound Packet Event Summary

Event Type Beginning Middle End Comment

Unconditional
,

uncompresse
d control-flow

transfer

FUP or none Any combination
of PIP, VMCS,
MODE.Exec, or
none

TIP or TIP.PGD FUP only for asynchronous events. Order of middle packets
may vary.

PIP/VMCS/MODE only if the operation modifies the state
tracked by these respective packets.

TSX Update MODE.TSX, and
(FUP or none)

None TIP, TIP.PGD, or
none

FUP.

TIP/TIP.PGD only for TSX abort cases.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 441

36.4.2 Packet Definitions
The following description of packet definitions are in tabular format. Figure 36-3 explains how to interpret them.
Packet bits listed as “RSVD” are not guaranteed to be 0.

36.4.2.1 Taken/Not-taken (TNT) Packet

Overflow OVF PSB, PSBEND, or
none

FUP or TIP.PGE FUP if overflow resolves while ContextEn=1, else TIP.PGE.

Table 36-16 Compound Packet Event Summary

Event Type Beginning Middle End Comment

Figure 36-3 Interpreting Tabular Definition of Packet Format

Name Packet name

Packet Format

Description of fields

Dependencies Depends on packet generation con-
figuration enable controls or other
bits (Section 36.2.3).

Generation Scenario Which instructions, events, or other
scenarios can cause this packet to be
generated.

Description Description of the packet, including the purpose it serves, meaning of the information or payload, etc.

Application How a decoder should apply this packet. It may bind to a specific instruction from the binary, or to
another packet in the stream, or have other implications on decode.

7 6 5 4 3 2 1 0

0 0 1 0 1 0 1 0 1

1 1 1 0 0 0 1 1 0

2 0 1 0 0 0 1 1 0

Byte Number Payload in White
Header bits
in GreenBit Number

Table 36-17 TNT Packet Definition

Name Taken/Not-taken (TNT) Packet

Packet Format

B1…BN represent the last N conditional branch or compressed RET (Section 36.4.2.2) results, such that B1 is oldest
and BN is youngest. The short TNT packet can contain from 1 to 6 TNT bits. The long TNT packet can contain up
from 1 to 47 TNT bits.

7 6 5 4 3 2 1 0

0 1 B1 B2 B3 B4 B5 B6 0 Short TNT

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 442

Irrespective of how many TNT bits is in a packet, the last valid TNT bit is followed by a trailing 1, or Stop bit, as
shown above. If the TNT packet is not full (fewer than 6 TNT bits for the Short TNT, or fewer than 47 TNT bits for
the Long TNT), the Stop bit moves up, and the trailing bits of the packet are filled with 0s. Examples of these
“partial TNTs” are shown below.

Dependencies PacketEn Generation
Scenario

On a conditional branch or compressed RET, if it fills the TNT.
Also, partial TNTs may be generated at any time, as a result of
other packets being generated, or certain micro-architectural
conditions occurring, before the TNT is full.

Description Provides the taken/not-taken results for the last 1–N conditional branches (Jcc, J*CXZ, or LOOP) or compressed RETs
(Section 36.4.2.2). The TNT payload bits should be interpreted as follows:
• 1 indicates a taken conditional branch, or a compressed RET.
• 0 indicates a not-taken conditional branch.

Application Each valid payload bit (that is, bits between the header bits and the trailing Stop bit) applies to an upcoming condi-
tional branch or RET instruction. Once a decoder consumes a TNT packet with N valid payload bits, these bits should
be applied to (and hence provide the destination for) the next N conditional branches or RETs.

Table 36-17 TNT Packet Definition

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 Long TNT

1 1 0 1 0 0 0 1 1

2 B40 B41 B42 B43 B44 B45 B46 B47

3 B32 B33 B34 B35 B36 B37 B38 B39

4 B24 B25 B26 B27 B28 B29 B30 B31

5 B16 B17 B18 B19 B20 B21 B22 B23

6 B8 B9 B10 B11 B12 B13 B14 B15

7 1 B1 B2 B3 B4 B5 B6 B7

7 6 5 4 3 2 1 0

0 0 0 1 B1 B2 B3 B4 0 Short TNT

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 Long TNT

1 1 0 1 0 0 0 1 1

2 B24 B25 B26 B27 B28 B29 B30 B31

3 B16 B17 B18 B19 B20 B21 B22 B23

4 B8 B9 B10 B11 B12 B13 B14 B15

5 1 B1 B2 B3 B4 B5 B6 B7

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 443

36.4.2.2 Target IP (TIP) Packet
T

IP Compression

The IP payload in a TIP. FUP, TIP.PGE, or TIP.PGD packet can vary in size, based on the mode of execution, and the
use of IP compression. IP compression is an optional compression technique the processor may choose to employ
to reduce bandwidth. With IP compression, the IP to be represented in the payload is compared with the last IP
sent out, via any of FUP, TIP, TIP.PGE, or TIP.PGD. If that previous IP had the same upper (most significant)
address bytes, those matching bytes may be suppressed in the current packet. The processor maintains an
internal state of the “Last IP” that was encoded in trace packets, thus the decoder will need to keep track of the
“Last IP” state in software, to match fidelity with packets generated by hardware. “Last IP” is initialized to zero,
hence if the first IP in the trace may be compressed if the upper bytes are zeroes.
The “IPBytes” field of the IP packets (FUP, TIP, TIP.PGE, TIP.PGD) serves to indicate how many bytes of payload
are provided, and how the decoder should fill in any suppressed bytes. The algorithm for reconstructing the IP for
a TIP/FUP packet is shown in the table below.

Table 36-18 IP Packet Definition

Name Target IP (TIP) Packet

Packet Format

Dependencies PacketEn Generation Sce-
nario

Indirect branch (including un-compressed RET), far branch, interrupt,
exception, INIT, SIPI, (VM exit, VM entry,)1 TSX abort, (EENTER, EEXIT,
ERESUME, AEX)2.

Description Provides the target for some control flow transfers.

Application Anytime a TIP is encountered, it indicates that control was transferred to the IP provided in the payload.

The source of this control flow change, and hence the IP or instruction to which it binds, depends on the packets
that precede the TIP. If a TIP is encountered and all preceding packets have already been bound, then the TIP will
apply to the upcoming indirect branch, far branch, or VMRESUME. However, if there was a preceding FUP that
remains unbound, it will bind to the TIP. Here, the TIP provides the target of an asynchronous event or TSX abort
that occurred at the IP given in the FUP payload. Note that there may be other packets, in addition to the FUP, which
will bind to the TIP packet. See the packet application descriptions for other packets for details.

NOTES:
1. If IA32_VMX_MISC[bit 14] reports 1.

2. In a debug enclave.

7 6 5 4 3 2 1 0

0 IPBytes 0 1 1 0 1

1 TargetIP[7:0]

2 TargetIP[15:8]

3 TargetIP[23:16]

4 TargetIP[31:24]

5 TargetIP[39:32]

6 TargetIP[47:40]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 444

The processor-internal Last IP state is guaranteed to be reset to zero when a PSB is sent out. This means that the
IP that follows the PSB with either be un-compressed (011b or 110b, see Table 36-19), or compressed against
zero.
At times, “IPbytes” will have a value of 0. As shown above, this does not mean that the IP payload matches the
full address of the last IP, but rather that the IP for this packet was suppressed. This is used for cases where the
IP that applies to the packet is out of context. An example is the TIP.PGD sent on a SYSCALL, when tracing only
USR code. In that case, no TargetIP will be included in the packet, since that would expose an instruction point at
CPL = 0. When the IP payload is suppressed in this manner, Last IP is not cleared, and instead refers to the last
IP packet with a non-zero IPBytes field.
On processors that support a maximum linear address size of 32 bits, IP payloads may never exceed 32 bits
(IPBytes <= 010b).
...

36.4.2.3 Deferred TIPs
The processor may opt to defer sending out the TNT when TIPs are generated. Thus, rather than sending a partial
TNT followed by a TIP, both packets will be deferred while the TNT accumulates more Jcc/RET results. Any number
of TIP packets may be accumulated this way, such that only once the TNT is filled, or once another packet (e.g.,
FUP) is generated, the TNT will be sent, followed by all the deferred TIP packets, and finally terminated by the
other packet(s) that forced out the TNT and TIP packets. Generation of many other packets (see list below) will
force out the TNT and any accumulated TIP packets. This is an optional optimization in hardware to reduce the
bandwidth consumption, and hence the performance impact, incurred by tracing.

Table 36-19 FUP/TIP IP Reconstruction

IPBytes Uncompressed IP Value

63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

000b None, IP is out of context

001b Last IP[63:16] IP Payload[15:0]

010b Last IP[63:32] IP Payload[31:0]

011b IP Payload[47] extended IP Payload[47:0]

100b Last IP [63:48] IP Payload[47:0]

101b Reserved

110b IP Payload[63:0]

111b Reserved

Table 36-20 TNT Examples with Deferred TIPs

Code Flow Packets, Non-Deferred TIPS Packets, Deferred TIPS

0x1000 cmp %rcx, 0

0x1004 jnz Foo // not-taken

0x1008 jmp %rdx
TNT(0b0), TIP(0x1308)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 445

36.4.2.4 Packet Generation Enable (TIP.PGE)

0x1308 cmp %rcx, 1

0x130c jnz Bar // not-taken

0x1310 cmp %rcx, 2

0x1314 jnz Baz // taken

0x1500 cmp %eax, 7

0x1504 jg Exit // not-taken

0x1508 jmp %r15

TNT(0b010), TIP(0x1100)

0x1100 cmp %rbx, 1

0x1104 jg Start // not-taken

0x1108 add %rcx, %eax

0x110c … // an asynchronous Interrupt arrives

INThandler:

0xcc00 pop %rdx

TNT(0b0), FUP(0x110c),
TIP(0xcc00)

TNT(0b00100), TIP(0x1308),
TIP(0x1100), FUP(0x110c),
TIP(0xcc00)

Table 36-20 TNT Examples with Deferred TIPs

Code Flow Packets, Non-Deferred TIPS Packets, Deferred TIPS

Table 36-21 TIP.PGE Packet Definition

Name Target IP - Packet Generation Enable (TIP.PGE)

Packet Format

Dependencies PacketEn transitions to 1 Generation
Scenario

Any branch instruction, control flow transfer, or MOV
CR3 that sets PacketEn, a WRMSR that enables
packet generation and sets PacketEn.

Description Indicates that PacketEn has transitioned to 1. It provides the IP at which the tracing begins.
This can occur due to any of the enables that comprise PacketEn transitioning from 0 to 1, as long as all the others
are asserted. Examples:
• TriggerEn: This is set on software write to set IA32_RTIT_CTL.TraceEn as long as the Stopped and Error bits in

IA32_RTIT_STATUS are clear. The IP payload will be the Next IP of the WRMSR.
• FilterEn: This is set when software jumps into the tracing region. This region is defined by enabling IP filtering in

IA32_RTIT_CTL.ADDRn_CFG, and defining the range in IA32_RTIT_ADDRn_[AB], see. Section 36.2.2.3. The
IP payload will be the target of the branch.

• ContextEn: This is set on a CPL change, a CR3 write or any other means of changing ContextEn. The IP payload
will be the Next IP of the instruction that changes context if it is not a branch, otherwise it will be the target of
the branch.

7 6 5 4 3 2 1 0

0 IPBytes 1 0 0 0 1

1 TargetIP[7:0]

2 TargetIP[15:8]

3 TargetIP[23:16]

4 TargetIP[31:24]

5 TargetIP[39:32]

6 TargetIP[47:40]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 446

36.4.2.5 Packet Generation Disable (TIP.PGD)

Application TIP.PGE packets bind to the instruction at the IP given in the payload.

Table 36-21 TIP.PGE Packet Definition

Table 36-22 TIP.PGD Packet Definition

Name Target IP - Packet Generation Disable (TIP.PGD)

Packet Format

Dependencies PacketEn transitions to
0

Generation
Scenario

Any branch instruction, control flow transfer, or MOV CR3 that clears
PacketEn, a WRMSR that disables packet generation and clears Packe-
tEn.

Description Indicates that PacketEn has transitioned to 0. It will include the IP at which the tracing ends, unless ContextEn= 0 or
TraceEn=0 at the conclusion of the instruction or event that cleared PacketEn.
PacketEn can be cleared due to any of the enables that comprise PacketEn transitioning from 1 to 0. Examples:
• TriggerEn: This is cleared on software write to clear IA32_RTIT_CTL.TraceEn, or when

IA32_RTIT_STATUS.Stopped is set, or on operational error. The IP payload will be suppressed in this case, and the
“IPBytes” field will have the value 0.

• FilterEn: This is set when software jumps out of the tracing region. This region is defined by enabling IP filtering
in IA32_RTIT_CTL.ADDRn_CFG, and defining the range in IA32_RTIT_ADDRn_[AB], see. Section 36.2.2.3.
The IP payload will depend on the type of the branch. For conditional branches, the payload is
suppressed (IPBytes = 0), and in this case the destination can be inferred from the disassembly. For any other
type of branch, the IP payload will be the target of the branch.

• ContextEn: This can happen on a CPL change, a CR3 write or any other means of changing ContextEn. See
Section 36.2.2.3 for details. In this case, when ContextEn is cleared, there will be no IP payload. The “IPBytes”
field will have value 0.

Note that, in cases where a branch that would normally produce a TIP packet (i.e., far transfer, indirect branch, inter-
rupt, etc) or TNT update (conditional branch or compressed RT) causes PacketEn to transition from 1 to 0, the TIP or
TNI bit will be replaced with TIP.PGD. The payload of the TIP.PGD will be the target of the branch, unless the result
of the instruction causes TraceEn or ContextEn to be cleared (ie, SYSCALL when IA32_RTIT_CTL.OS=0, In the case
where a conditional branch clears FilterEn and hence PacketEn, there will be no TNT bit for this branch, replaced
instead by the TIP.PGD.

7 6 5 4 3 2 1 0

0 IPBytes 0 0 0 0 1

1 TargetIP[7:0]

2 TargetIP[15:8]

3 TargetIP[23:16]

4 TargetIP[31:24]

5 TargetIP[39:32]

6 TargetIP[47:40]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 447

36.4.2.6 Flow Update (FUP) Packet

FUP IP Payload

Flow Update Packet gives the source address of an instruction when it is needed. In general, branch instructions
do not need a FUP, because the source address is clear from the disassembly. For asynchronous events, however,
the source address cannot be inferred from the source, and hence a FUP will be sent. Table 36-24 illustrates cases

Application TIP.PGD can be produced by any branch instructions, as well as some non-branch instructions, that clear PacketEn.
When produced by a branch, it replaces any TIP or TNT update that the branch would normally produce.
In cases where there is an unbound FUP preceding the TIP.PGD, then the TIP.PGD is part of compound operation (i.e.,
asynchronous event or TSX abort) which cleared PacketEn. For most such cases, the TIP.PGD is simply replacing a
TIP, and should be treated the same way. The TIP.PGD may or may not have an IP payload, depending on whether
the operation cleared ContextEn.
If there is not an associated FUP, the binding will depend on whether there is an IP payload. If there is an IP payload,
then the TIP.PGD should be applied to either the next direct branch whose target matches the TIP.PGD payload, or
the next branch that would normally generate a TIP or TNT packet. If there is no IP payload, then the TIP.PGD should
apply to the next branch or MOV CR3 instruction.

Table 36-22 TIP.PGD Packet Definition

Table 36-23 FUP Packet Definition

Name Float Update (FUP) Packet

Packet Format

Dependencies TriggerEn & ContextEn.
(Typically depends on
BranchEn and FilterEn as well,
see Section 36.2.2 for de-tails)

Generation
Scenario

Asynchronous Events (interrupts, exceptions, INIT, SIPI, SMI, VM
exit1, #MC), XBEGIN, XEND, XABORT, XACQUIRE, XRELEASE, (EEN-
TRY, EEXIT, ERESUME, EEE, AEX,)2, INT 0, INT 3, INT n, a WRMSR that
disables packet generation.

Description Provides the source address for asynchronous events, and some other instructions. Is never sent alone, always sent
with an associated TIP or MODE packet, and potentially others.

Application FUP packets provide the IP to which they bind. However, they are never standalone, but are coupled with other
packets.
In TSX cases, the FUP is immediately preceded by a MODE.TSX, which binds to the same IP. A TIP will follow only in
the case of TSX aborts, see Section 36.4.2.8 for details.
Otherwise, FUPs are part of compound packet events (see Section 36.4.1). In these compound cases, the FUP pro-
vides the source IP for an instruction or event, while a following TIP (or TIP.PGD) uop will provide any destination IP.
Other packets may be included in the compound event between the FUP and TIP.

NOTES:
1. If IA32_VMX_MISC[bit 14] reports 1.

2. If Intel Software Guard Extensions is supported.

7 6 5 4 3 2 1 0

0 IPBytes 1 1 1 0 1

1 IP[7:0]

2 IP[15:8]

3 IP[23:16]

4 IP[31:24]

5 IP[39:32]

6 IP[47:40]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 448

where FUPs are sent, and which IP can be expected in those cases.

On a canonical fault due to sequentially fetching an instruction in non-canonical space (as opposed to jumping to
non-canonical space), the IP of the fault (and thus the payload of the FUP) will be a non-canonical address. This
is consistent with what is pushed on the stack for such faulting cases.
If there are post-commit task switch faults, the IP value of the FUP will be the original IP when the task switch
started. This is the same value as would be seen in the LBR_FROM field. But it is a different value as is saved on
the stack or VMCS.

36.4.2.7 Paging Information (PIP) Packet

Table 36-24 FUP Cases and IP Payload

Event Flow Update IP Comment

External Interrupt, NMI/SMI, Traps,
Machine Check (trap-like), INIT/SIPI

Address of next instruction (Next IP) that
would have been executed

Functionally, this matches the LBR FROM field
value and also the EIP value which is saved onto
the stack.

Exceptions/Faults, Machine check
(fault-like)

Address of the instruction which took the
exception/fault (Current IP)

This matches the similar functionality of LBR
FROM field value and also the EIP value which is
saved onto the stack.

Software Interrupt Address of the software interrupt instruction
(Current IP)

This matches the similar functionality of LBR
FROM field value, but does not match the EIP
value which is saved onto the stack (NLIP).

EENTER, EEXIT, ERESUME, Enclave
Exiting Event (EEE), AEX1

Current IP of the instruction This matches the LBR FROM field value and also
the EIP value which is saved onto the stack.

XACQUIRE Address of the X* instruction

XRELEASE, XBEGIN, XEND,
XABORT, other transactional abort

Current IP

#SMI IP that is saved into SMRAM

WRMSR that clears TraceEn Current IP
NOTES:

1. Information on EENTER, EEXIT, ERESUME, EEE, Asynchronous Enclave eXit (AEX) can be found in Intel® Software Guard Extensions
Programming Reference.

Table 36-25 PIP Packet Definition

Name Paging Information (PIP) Packet

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 449

36.4.2.8 MODE Packets
MODE packets keep the decoder informed of various processor modes about which it needs to know in order to
properly manage the packet output, or to properly disassemble the associated binaries. MODE packets include a
header and a mode byte, as shown below.

Packet Format

Dependencies TriggerEn && ContextEn &&
IA32_RTIT_CTL.OS

Generation
Scenario

MOV CR3, Task switch, INIT, SIPI, PSB+;
If IA32_VMX_MISC[bit 14] reports 1: VM exit, VM entry.

Description The CR3 payload shown includes only the address portion of the CR3 value. For PAE paging, CR3[11:5] are thus
included. For other page modes (32-bit and IA-32e paging), these bits are 0.
This packet holds the CR3 address value. It will be generated on operations that modify CR3:
• MOV CR3 operation
• Task Switch
• INIT and SIPI
• VM exit and VM entry, if VMCS-based controls are clear (see Section 36.5.1)
PIPs are not generated, despite changes to CR3, on SMI and RSM. This is due to the special behavior on these oper-
ations, see Section for details. Note that, for some cases of task switch where CR3 is not modified, no PIP will be
produced.
The purpose of the PIP is to indicate to the decoder which application is running, so that it can apply the proper
binaries to the linear addresses that are being traced.
The PIP packet contains the new CR3 value when CR3 is written.
On processors that IA32_VMX_MISC[bit 14] reports 0, bit 0 of byte 2 is reserved, and no VM exits or VM entries will
be seen in the trace since these processors do not allow TraceEn to be set post-VMXON.
On processors that IA32_VMX_MISC[bit 14] reports 1, PIPs that are generated in VMX non-root operation can be
configured via the VMCS execution control to set the NR bit. The NR bit is clear for PIPs generated in VMX root
operation or if the VMCS execution control is configured to suppress VMX indications in Guest Traces.

Application The purpose of the PIP packet is to help the decoder uniquely identify what software is running at any given time.
When a PIP is encountered, a decoder should do the following:
1) If there was a prior unbound FUP (that is, a FUP not preceded by a packet such as MODE.TSX that consumes it,
and it hence pairs with a TIP that has not yet been seen), then this PIP is part of a compound packet event (Section
36.4.1). Find the ending TIP and apply the new CR3/NR values to the TIP payload IP.
2) Otherwise, look for the next MOV CR3, far branch, or VMRESUME/VMLAUNCH in the disassembly, and apply the
new CR3 to the next (or target) IP.
For examples of the packets generated by these flows, see Section 36.7.

Table 36-25 PIP Packet Definition

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 1 1

2 CR3[11:5] or 0 RSVD/NR

3 CR3[19:12]

4 CR3[27:20]

5 CR3[35:28]

6 CR3[43:36]

7 CR3[51:44]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 450

The MODE Leaf ID indicates which set of mode bits are held in the lower bits.

MODE.Exec Packet

MODE.TSX Packet

Table 36-26 General Form of MODE Packets

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1

1 Leaf ID Mode

Table 36-27 MODE.Exec Packet Definition

Name MODE.Exec Packet

Packet Format

Dependencies PacketEn Generation
Scenario

Far branch, interrupt, exception, (VM exit, VM entry,)1 if the mode changes.
PSB+, and any scenario that can generate a TIP.PGE, such that the mode may have
changed since the last MODE.Exec.

Description Indicates whether software is in 16, 32, or 64-bit mode, by providing the CS.D and (CS.L & IA32_EFER.LMA) values.
Essential for the decoder to properly disassemble the associated binary.

MODE.Exec is sent at the time of a mode change, if PacketEn=1 at the time, or when tracing resumes, if necessary.
In the former case, the MODE.Exec packet is generated along with other packets that result from the far transfer
operation that changes the mode. In cases where the mode changes while PacketEn=0, the processor will send out
a MODE.Exec along with the TIP.PGE when tracing resumes. The processor may opt to suppress the MODE.Exec
when tracing resumes if the mode matches that from the last MODE.Exec packet, if there was no PSB in between.

Application MODE.Exec always immediately precedes a TIP or TIP.PGE. The mode change applies to the IP address in the payload
of the next TIP or TIP.PGE.

NOTES:
1. If IA32_VMX_MISC[bit 14] reports 1

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1

1 0 0 0 0 0 0 CS.D (CS.L & LMA)

CS.D (CS.L & IA32_EFER.LMA) Addressing Mode

1 1 N/A

0 1 64-bit mode

1 0 32-bit mode

0 0 16-bit mode

Table 36-28 MODE.TSX Packet Definition

Name MODE.TSX Packet

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 451

36.4.2.9 TraceStop Packet

Packet Format

Dependencies TriggerEn and ContextEn Generation
Scenario

XBEGIN, XEND, XABORT, XACQUIRE, XRELEASE, if INTX
changes, Asynchronous TSX Abort, PSB+

Description Indicates when a TSX transaction (either HLE or RTM) begins, commits, or aborts. Instructions executed transaction-
ally will be “rolled back” if the transaction is aborted.

Application If PacketEn=1, MODE.TSX always immediately precedes a FUP. If the TXAbort bit is zero, then the mode change
applies to the IP address in the payload of the FUP. If TXAbort=1, then the FUP will be followed by a TIP, and the
mode change will apply to the IP address in the payload of the TIP.
MODE.TSX packets may be generated when PacketEn=0, due to FilterEn=0. In this case, only the last MODE.TSX
generated before TIP.PGE need be applied.

Table 36-28 MODE.TSX Packet Definition

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1

1 0 0 1 0 0 0 TXAbort InTX

TXAbort InTX Implication

1 1 N/A

0 1 Transaction begins, or executing transactionally

1 0 Transaction aborted

0 0 Transaction committed, or not executing transactionally

Table 36-29 TraceStop Packet Definition

Name TraceStop Packet

Packet Format

Dependencies TriggerEn && ContextEn Generation
Scenario

Taken branch with target in TraceStop IP region, MOV CR3 in TraceS-
top IP region, or WRMSR that sets TraceEn in TraceStop IP region.

Description Indicates when software has entered a user-configured TraceStop region.
When the IP matches a TraceStop range while ContextEn and TriggerEn are set, a TraceStop action occurs. This dis-
ables tracing by setting IA32_RTIT_STATUS.Stopped, thereby clearing TriggerEn, and causes a TraceStop
packet to be generated.
The TraceStop action also forces FilterEn to 0. Note that TraceStop may not force a flush of internally buffered
packets, and thus trace packet generation should still be manually disabled by clearing IA32_RTIT_CTL.TraceEn
before examining output.See Section 36.2.2.3 for more details.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 1 1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 452

36.4.2.10 Core:Bus Ratio (CBR) Packet

36.4.2.11 Timestamp Counter (TSC) Packet

Application .If TraceStop follows a TIP.PGD (before the next TIP.PGE), then it was triggered either by the instruction that cleared
PacketEn, or it was triggered by some later instruction that executed while FilterEn=0. In either case, the TraceStop
can be applied at the IP of the TIP.PGD (if any).
If TraceStop follows a TIP.PGE (before the next TIP.PGD), it should be applied at the last known IP.

Table 36-29 TraceStop Packet Definition

Table 36-30 CBR Packet Definition

Name Core:Bus Ratio (CBR) Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

After any frequency change, on C-state wake up, PSB+, and after
enabling trace packet generation.

Description Indicates the core:bus ratio of the processor core. Useful for correlating wall-clock time and cycle time.

Application All packets following the CBR represent instructions that executed with the new core:bus ratio, while all preceding
packets (aside from timing packets) represent instructions that executed with the prior ratio. There is not a precise
IP provided, to which to bind the CBR packet.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 1 1

2 Core:Bus Ratio

3 Reserved

Table 36-31 TSC Packet Definition

Name Timestamp Counter (TSC) Packet

Packet Format

7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 1

1 SW TSC[7:0]

2 SW TSC[15:8]

3 SW TSC[23:16]

4 SW TSC[31:24]

5 SW TSC[39:32]

6 SW TSC[47:40]

7 SW TSC[55:48]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 453

36.4.2.12 Mini Time Counter (MTC) Packet

Dependencies IA32_RTIT_CTL.TSCEn &&
TriggerEn

Generation
Scenario

Sent after any event that causes the processor clocks or Intel PT timing
packets (such as MTC or CYC) to stop, This may include P-state changes,
wake from C-state, or clock modulation. Also on transition of TraceEn
from 0 to 1.

Description When enabled by software, a TSC packet provides the lower 7 bytes of the current TSC value, as returned by the
RDTSC instruction. This may be useful for tracking wall-clock time, and synchronizing the packets in the log with
other timestamped logs.

Application TSC packet provides a wall-clock proxy of the event which generated it (packet generation enable, sleep state wake,
etc). In all cases, TSC does not precisely indicate the time of any control flow packets; however, all preceding packets
represent instructions that executed before the indicated TSC time, and all subsequent packets represent instruc-
tions that executed after it. There is not a precise IP to which to bind the TSC packet.

Table 36-31 TSC Packet Definition

Table 36-32 MTC Packet Definition

Name Mini time Counter (MTC) Packet

Packet Format

Dependencies IA32_RTIT_CTL.MTCEn &&
TriggerEn

Generation
Scenario

Periodic, based on the hardware crystal clock counter (CTC) of the
processor.

Description When enabled by software, an MTC packet provides a periodic indication of wall-clock time. The 8-bit value is related
to the processor’s crystal clock counter by (CTC >> N). The frequency of crystal clock is fixed and is related to the
processor’s maximum non-Turbo frequency by the ratio can be determined via CPUID.15H:EBX / CPUID.15H:EAX.
Software can select the threshold N, which determines the MTC frequency by setting the IA32_RTIT_CTL.MTCFreq
field (see Section 36.2.5.2) to a supported value using the lookup enumerated by CPUID (see Section 36.3.1).
See Section 36.8.3 for details on how to use the MTC payload to track TSC time.
MTC provides 8 bits from the CTC, starting with the bit selected by MTCFreq to dictate the frequency of the packet.
Whenever that 8-bit range being watched changes, an MTC packet will be sent out with the new value of that 8-bit
range. This allows the decoder to keep track of how much wall-clock time has elapsed since the last TSC packet was
sent, by keeping track of how many MTC packets were sent and what their value was. The decoder can infer the
truncated bits, CTC[N-1:0], are 0 at the time of the MTC packet.
There are cases in which MTC packet can be dropped, due to overflow or other micro-architectural conditions. The
decoder should be able to recover from such cases by checking the 8-bit payload of the next MTC packet, to deter-
mine how many MTC packets were dropped. It is not expected that >256 consecutive MTC packets should ever be
dropped.

Application MTC does not precisely indicate the time of any other packet, nor does it bind to any IP. However, all preceding pack-
ets represent instructions or events that executed before the indicated CTC time, and all subsequent packets repre-
sent instructions that executed after, or at the same time as, the CTC time.

7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 0 1

1 CTC[N+7:N]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 454

36.4.2.13 TSC/MTC Alignment (TMA) Packet

36.4.2.14 Cycle Count Packet (CYC) Packet

Table 36-33 TMA Packet Definition

Name TSC/MTC Alignment (TMA) Packet

Packet Format

Dependencies IA32_RTIT_CTL.MTCEn &&
IA32_RTIT_CTL.TSCEn && TriggerEn

Generation Sce-
nario

Sent with any TSC packet.

Description The TMA packet serves to provide the information needed to allow the decoder to correlate MTC packets with TSC
packets. With this packet, when a MTC packet is encountered, the decoder can determine how many timestamp
counter ticks have passed since the last TSC or MTC packet. See Section 36.8.3.2 for details on how to make this cal-
culation.

Application TMA is always sent immediately following a TSC packet, and the payload values are consistent with the TSC payload
value. Thus the application of TMA matches that of TSC.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 1 1 1 0 0 1 1

2 CTC[7:0]

3 CTC[15:8]

4 Reserved 0

5 FastCounter[7:0]

6 Reserved FC[8]

Table 36-34 Cycle Count Packet Definition

Name Cycle Count (CYC) Packet

Packet Format

Dependencies IA32_RTIT_CTL.CYCEn &&
TriggerEn

Generation Sce-
nario

Can be sent at any time, though a maximum of one CYC packet is
sent per core clock cycle. See Section 36.3.6 for CYC-eligible packets.

7 6 5 4 3 2 1 0

0 Cycle Counter[4:0] Exp 1 1

1 Cycle Counter[11:5] Exp

2 Cycle Counter[18:12] Exp

... ... (if Exp = 1 in the previous byte)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 455

36.4.2.15 VMCS Packet

Description The Cycle Counter field increments at the same rate as the processor core clock ticks, but with a variable length for-
mat (using a trailing EXP bit field) and a range-capped byte length.
If the CYC value is less than 32, a 1-byte CYC will be generated, with Exp=0. If the CYC value is between 32 and
4095 inclusive, a 2-byte CYC will be generated, with byte 0 Exp=1 and byte 1 Exp=0, and so on.
CYC provides the number of core clocks that have passed since the last CYC packet. CYC can be configured to be
sent in every cycle in which an eligible packet is generated, or software can opt to use a threshold to limit the num-
ber of CYC packets, at the expense of some precision. These settings are configured using the
IA32_RTIT_CTL.CycThresh field (see Section 36.2.5.2). For details on Cycle-Accurate Mode, IPC calculation, etc, see
Section 36.3.6.
When CycThresh=0, and hence no threshold is in use, then a CYC packet will be generated in any cycle in which any
CYC-eligible packet is generated. The CYC packet will precede the other packets generated in the cycle, and provides
the precise cycle time of the packets that follow.
In addition to these CYC packets generated with other packets, CYC packets can be sent stand-alone. These packets
serve simply to update the decoder with the number of cycles passed, and are used to ensure that a wrap of the
processor’s internal cycle counter doesn’t cause cycle information to be lost. These stand-alone CYC packets do not
indicate the cycle time of any other packet or operation, and will be followed by another CYC packet before any
other CYC-eligible packet is seen.
When CycThresh>0, CYC packets are generated only after a minimum number of cycles have passed since the last
CYC packet. Once this threshold has passed, the behavior above resumes, where CYC will either be sent in the next
cycle that produces other CYC-eligible packets, or could be sent stand-alone.
When using CYC thresholds, only the cycle time of the operation (instruction or event) that generates the CYC
packet is truly known. Other operations simply have their execution time bounded: they completed at or after the
last CYC time, and before the next CYC time.

Application CYC provides the offset cycle time (since the last CYC packet) for the CYC-eligible packet that follows. If another CYC
is encountered before the next CYC-eligible packet, the cycle values should be accumulated and applied to the next
CYC-eligible packet.
If a CYC packet is generated by a TNT, note that the cycle time provided by the CYC packet applies to the first
branch in the TNT packet.

Table 36-34 Cycle Count Packet Definition

Table 36-35 VMCS Packet Definition

Name VMCS Packet

Packet Format

Dependencies TriggerEn && ContextEn;
Also post-VMXON

Generation Scenario Generated on successful VMPTRLD, and optionally on SMM VM
exit and VM entries that return from SMM (see Section 36.5).

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 0 0 1 0 0 0

2 VMCS Base Address [19:12]

3 VMCS Base Address [27:20]

4 VMCS Base Address [35:28]

5 VMCS Base Address [43:36]

6 VMCS Base Address [51:44]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 456

36.4.2.16 Overflow (OVF) Packet

Description The VMCS packet provides an address related to a VMCS pointer for a decoder to determine the transition of code
contexts:

• On a successful VMPTRLD (i.e, a VMPTRLD that doesn’t fault, fail, or VM exit), the VMCS packet contains the
address of the current working VMCS pointer of the logical processor that will execute a VM guest context.

• On SMM VM exits, the VMCS packet provides the STM VMCS base address (SMM Transfer VMCS pointer), if VMCS-
based controls are clear (see Section 36.5.1). See Section 36.6 on tracing inside and outside STM.

• On VM entries that return from SMM, the VMCS packet provides the current working VMCS pointer of the guest
VM (see Section 36.6), if VMCS-based controls are clear (see Section 36.5.1). Root versus Non-Root operation can
be distinguished from the PIP.NR bit.

If a VMCS packet is generated before a VMCS has been loaded, or after it has been cleared, the base address value
will be all 1s.
VMCS packets will not be seen on processors with IA32_VMX_MISC[bit 14]=0, as these processors do not allow
TraceEn to be set post-VMXON.

Application The purpose of the VMCS packet is to help the decoder uniquely identify changes in the executing software context
in situations that CR3 may not be unique.
When a VMCS is encountered, a decoder should do the following:
• If there was a prior unbound FUP (that is, a FUP not preceded by a packet such as MODE.TSX that consumes it, and

it hence pairs with a TIP that has not yet been seen), then this VMCS is part of a compound packet event (Section
36.4.1). Find the ending TIP and apply the new VMCS base pointer value to the TIP payload IP.

• Otherwise, look for the next VMPTRLD, VMRESUME, or VMLAUNCH in the disassembly, and apply the new VMCS
base pointer on the next VM entry.

For examples of the packets generated by these flows, see Section 36.7.

Table 36-35 VMCS Packet Definition

Table 36-36 OVF Packet Definition

Name Overflow (OVF) Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

On resolution of internal buffer overflow.

Description OVF simply indicates to the decoder that an internal buffer overflow occurred, and packets were likely lost. If
BranchEN= 1, OVF is followed by a FUP or TIP.PGE which will provide the IP at which packet generation resumes. See
Section 36.3.8.

Application When an OVF packet is encountered, the decoder should skip to the IP given in the subsequent FUP or TIP.PGE. The
cycle counter for the CYC packet will be reset at the time the OVF packet is sent.
Software should reset its call stack depth on overflow, since no RET compression is allowed across an overflow. Sim-
ilarly, any IP compression that follows the OVF is guaranteed to use as a reference LastIP the IP payload of an IP
packet that preceded the overflow.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 1 1 0 0 1 1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 457

36.4.2.17 Packet Stream Boundary (PSB) Packet

Table 36-37 PSB Packet Definition

Name Packet Stream Boundary (PSB) Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

Periodic, based on the number of output bytes generated while tracing. PSB is sent
when IA32_RTIT_STATUS.PacketByteCnt=0, and each time it crosses the software
selected threshold after that. May be sent for other micro-architectural conditions
as well.

Description PSB is a unique pattern in the packet output log, and hence serves as a sync point for the decoder. It is a pattern
that the decoder can search for in order to get aligned on packet boundaries. This packet is periodic, based on the
number of output bytes, as indicated by IA32_RTIT_STATUS.PacketByteCnt. The period is chosen by software, via
IA32_RTIT_CTL.PSBFreq (see Section 36.2.5.2). Note, however, that the PSB period is not precise, it simply reflects
the average number of output bytes that should pass between PSBs. The processor will make a best effort to
insert PSB as quickly after the selected threshold is reached as possible. The processor also may send extra
PSB packets for some micro-architectural conditions.
PSB also serves as the leading packet for a set of “status-only” packets collectively known as PSB+ (Section 36.3.7).

Application When a PSB is seen, the decoder should interpret all following packets as “status only”, until either a PSBEND or
OVF packet is encountered. “Status only” implies that the binding and ordering rules to which these packets nor-
mally adhere are ignored, and the state they carry can instead be applied to the IP payload in the FUP packet that is
included.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 1 0

2 0 0 0 0 0 0 1 0

3 1 0 0 0 0 0 1 0

4 0 0 0 0 0 0 1 0

5 1 0 0 0 0 0 1 0

6 0 0 0 0 0 0 1 0

7 1 0 0 0 0 0 1 0

8 0 0 0 0 0 0 1 0

9 1 0 0 0 0 0 1 0

10 0 0 0 0 0 0 1 0

11 1 0 0 0 0 0 1 0

12 0 0 0 0 0 0 1 0

13 1 0 0 0 0 0 1 0

14 0 0 0 0 0 0 1 0

15 1 0 0 0 0 0 1 0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 458

36.4.2.18 PSBEND Packet

36.4.2.19 Maintenance (MNT) Packet

Table 36-38 PSBEND Packet Definition

Name PSBEND Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

Always follows PSB packet, separated by PSB+ packets.

Description PSBEND is simply a terminator for the series of “status only” (PSB+) packets that follow PSB (Section 36.3.7).

Application When a PSBEND packet is seen, the decoder should cease to treat packets as “status only”.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 0 1 0 0 0 1 1

Table 36-39 MNT Packet Definition

Name Timestamp Counter (TSC) Packet

Packet Format

Dependencies TriggerEn Generation Sce-
nario

Implementation specific.

Description This packet is generated by hardware, the payload meaning is model-specific.

Application Unless a decoder has been extended for a particular family/model/stepping to interpret MNT packet payloads, this
packet should simply be ignored. It does not bind to any IP.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 1 1

2 1 0 0 0 1 0 0 0

3 Payload[7:0]

4 Payload[15:8]

5 Payload[23:16]

6 Payload[31:24]

7 Payload[39:32]

8 Payload[47:40]

9 Payload[55:48]

10 Payload[63:56]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 459

36.4.2.20 PAD Packet

36.5 TRACING POST-VMXON
On processors that IA32_VMX_MISC[bit 14] reports 1, TraceEn can be set post-VMXON. A series of mechanisms
exist to allow the VMM to configure tracing based on the desired trace domain, and on the consumer of the trace
output. The VMM can configure specific VM execution controls in the VMCS to control what virtualization-specific
data are included within the trace packets (see Section 36.5.1 for details). MSR save and load lists can be
employed by the VMM to restrict tracing to the desired context (see Section 36.5.2 for details). These configura-
tion options are summarized in Table 36-41. Table 36-41 covers common Intel PT usages while SMIs are handled
by the default SMM treatment. Tracing with SMM Transfer Monitor is described in Section 36.6.

36.5.1 VMX-Specific Packets and VMCS Controls
In all of the usages of VMX and Intel PT, the decoder in the host or VMM context can identify the occurrences of
VMX transitions with the aid of VMX-specific packets. Packets relevant to VMX fall into the follow two kinds:
• VMCS Packet: The VMX transitions of individual VM can be distinguished by a decoder using the base address

field in a VMCS packet. The base address field stores the VMCS pointer address of a successful VMPTRLD. A
VMCS packet is sent on a successful execution of VMPTRLD. See Section 36.4.2.15 for details.

Table 36-40 PAD Packet Definition

Name PAD Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

Implementation specific.

Description PAD is simply a NOP packet. Processor implementations may choose to add pad packets to improve packet align-
ment or for implementation-specific reasons.

Application Ignore PAD packets.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0

Table 36-41 Common Usages of Intel PT and VMX

Target Domain Output
Consumer

Virtualize
Output

Configure VMCS
Controls

TraceEN Configuration Save/Restore MSR states
of Trace Configuration

System-Wide
(VMM + VMs)

Host NA Default Setting
(no suppression)

WRMSR or XRSTORS by Host NA

VMM Only Intel PT Aware
VMM

NA Enable
suppression

MSR load list to disable tracing in
VM, enable tracing on VM exits

NA

VM Only Intel PT Aware
VMM

NA Enable
suppression

MSR load list to enable tracing in
VM, disable tracing on VM exits

NA

Intel PT Aware
Guest(s)

Per Guest VMM adds
trace output
virtualization

Enable
suppression

MSR load list to enable tracing in
VM, disable tracing on VM exits

VMM Update guest state
on XRSTORS-exiting VM
exits

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 460

• NonRoot (NR) bit field in PIP packet: PIP packets are generated with each VM entry/exit. The NR bit in a PIP
packet is set when in VMX non-Root operation. Thus a transition of the NR bit from 0 to 1 indicates the
occurrence of a VM entry, and a transition of 1 to 0 indicates the occurrence of a VM exit.

Processors with IA32_VMX_MISC[bit 14]= 1 also provides VMCS controls that a VMM can configure to prevent
VMX-specific information from leaking across virtualization boundaries.

The default setting for the VMCS controls that interacts with Intel PT is to enable all VMX-specific packet informa-
tion. The scenarios that would use the default setting also do not require the VMM to use MSR load list to manage
the configuration of turning-on/off of trace packet generation across VM exits.
If IA32_VMX_MISC[bit 14] reports 0, any attempt to set the VMCS control bits in Table 36-42 will result in a
failure on guest entry.

36.5.2 Managing Trace Packet Generation Across VMX Transitions
In tracing scenarios that collect packets for both VMX root and non-root operations, a host executive can manage
the MSRs associated with trace packet generation directly. The states of these MSRs need not be modified using
MSR load list or MSR save list across VMX transitions.
For tracing scenarios that collect only packets within either VMX root or non-root operations, the VMM can use the
MSR load list and/or MSR save list to toggle IA32_RTIT_CTL.TraceEn.

36.5.2.1 System-Wide Tracing
When a host or VMM configures Intel PT to collect trace packets of the entire system, it can leave the VMCS
controls in its default setting to allow VMX-specific packets to provide information across VMX transitions. MSR
load list is not used across VM exits or VM entries, nor is VM-exit MSR save list.
The decoder will desire to identify the occurrence of VMX transitions. The packets of interests to a decoder are
shown in Table 36-43.

Table 36-42 VMCS Controls For Intel Processor Trace

Name Type Bit
Position

Value Behavior

Suppress VMX
Indications in
Guest Traces

Secondary
Processor-Based
Execution Control

19 0 PIPs generated in non-Root operation will set the PIP.NR bit.

PSB+ in non-Root operation will include the VMCS packet, to ensure that
the decoder knows which Guest is currently in use.

1 PIPs generated in non-Root operation will not set the PIP.NR bit.

PSB+ in non-Root operation will not include the VMCS packet.

Suppress VMX
packets on Exit

VM-exit Control 24 0 PIPs are generated on VM exit, with NonRoot=0.

On VM exit to SMM, VMCS packets are additionally generated.

1 No PIP is generated on VM exit, and no VMCS packet is generated on VM
exit to SMM.

Suppress VMX
packets on
Entry

VM-entry Control 17 0 PIPs are generated on VM entry, with NonRoot=1 if the destination of
the entry is non-Root operation.

On VM entry to SMM, VMCS packets are additionally generated.

1 No PIP is generated on VM entry, and no VMCS packet is generated on VM
entry to SMM.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 461

Since the packet suppression controls are cleared, the VMCS packet will be included in all PSB+ for this usage
scenario. Thus the decoder can distinguish the execution context of different VMs. Additionally, it will be gener-
ated on VMPTRLD. Thus the decoder can distinguish the execution context of different VMs.
When the host VMM configures a system to collect trace packets in this scenario, it should emulate CPUID to
report CPUID.(EAX=07H, ECX=0):EBX[bit 26] with 0 to guests, indicating to guests that Intel PT is not available.

VMX TSC Offset

The TSC packets generated while in VMX non-Root operation will include offset applied by the TSC offsetting
VMCS control. In this system-wide usage model, the decoder may need to account for the effect of per-VM offsets
in the TSC packets generated in non-Root operation and the absence of TSC offset in TSC packets generated in
VMX root operation. The VMM can supply these information to the decoder.

36.5.2.2 Host-Only Tracing
When trace packets in VMX non-root operation are not desired, the VMM can use VM-entry MSR load list with
IA32_RTIT_CTL.TraceEn=0 to disable trace packet generation in guests, set IA32_RTIT_CTL.TraceEn=1 via VM-
exit MSR load list.

When tracing only the Host, the decoder does not need information about the guests, the VMCS controls for
suppressing VMX-specific packets can be set to reduce the packets generated. VMCS packets will still be gener-
ated on successful VMPTRLD and in PSB+ generated in the Host, but these will be unused by the decoder.
The packets of interests to a decoder when trace packets are collected for host-only tracing are shown in Table 36-
44.

Table 36-43 Packets on VMX Transitions (System-Wide Tracing)

Event Packets Description

VM exit FUP(GuestIP) The FUP indicates at which point in the Guest flow the VM exit occurred. This is important,
since VM exit can be an asynchronous event. The IP will match that written into the VMCS.

PIP(HostCR3, NR=0) The PIP packet provides the new Host CR3 value, as well as indication that the logical
processor is entering VMX Root operation. This allows the decoder to identify the change of
executing context from guest to host and load the appropriate set of binaries to continue
decode.

TIP(HostIP) The TIP indicates the destination IP, the IP of the first instruction to be executed in VMX Root
operation.

Note, this packet could be preceded by a MODE.Exec packet (Section 36.4.2.8). This is
generated only in cases where CS.D or (CS.L & EFER.LMA) change during the transition.

VM entry PIP(GuestCR3, NR=1) The PIP packet provides the new Guest CR3 value, as well as indication that the logical
processor is entering VMX non-Root operation. This allows the decoder to identify the change
of executing context from host to guest and load the appropriate set of binaries to continue
decode.

TIP(GuestIP) The TIP indicates the destination IP, the IP of the first instruction to be executed in VMX no-
Root operation. This should match the IP value read out from the VMCS.

Note, this packet could be preceded by a MODE.Exec packet (Section 36.4.2.8). This is
generated only in cases where CS.D or (CS.L & EFER.LMA) change during the transition.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 462

36.5.2.3 Guest-Only Tracing
A VMM can configure trace packet generation while in non-root operation for guests executing normally. This is
accomplished by utilizing the MSR load lists across VM exit and VM entry to confine trace packet generation to
stay within the guest environment.
For this usage, the VM-entry MSR load list is programmed to turn on trace packet generation. The VM-exit MSR
load list is used to clear TraceEn=0 to disable trace packet generation in the host. Further, if it is preferred that
the Guest packet stream contain no indication of non-Root execution, the VMM should set 1 to the VMCS
controls described in Table 36-42.

36.5.2.4 Virtualization of Guest Output Packet Streams
Each Intel PT aware guest OS can produce one or more output packet streams to destination addresses specified
as guest physical address (GPA) using context-switched IA32_RTIT_OUTPUT_BASE within the guest. The
processor generates trace packets to the platform physical address specified in IA32_RTIT_OUTPUT_BASE, and
those specified in the ToPA tables. Thus, a VMM that supports Intel PT aware guest OS may wish to virtualize the
output configurations of IA32_RTIT_OUTPUT_BASE and ToPA for each trace configuration state of all the guests.

36.5.2.5 Emulation of Intel PT Traced State
If a VMM emulates an element of processor state by taking a VM exit on reads and/or writes to that piece of state,
and the state element impacts Intel PT packet generation or values, it may be incumbent upon the VMM to insert
or modify the output trace data.
If a VM exit is taken on a guest write to CR3 (including “MOV CR3” as well as task switches), the PIP packet
normally generated on the CR3 write will be missing.
To avoid decoder confusion when the guest trace is decoded, the VMM should emulate the missing PIP by writing
it into the guest output buffer. If the guest CR3 value is manipulated, the VMM may also need to manipulate the
IA32_RTIT_CR3_MATCH value, in order to ensure the trace behavior matches the guest's expectation.
Similarly, if a VMM emulates the TSC value by taking a VM exit on RDTSC, the TSC packets generated in the trace
may mismatch the TSC values returned by the VMM on RDTSC. To ensure that the trace can be properly aligned
with software logs based on RDTSC, the VMM should either make corresponding modifications to the TSC packet
values in the guest trace, or use TSC offsetting in place of exiting.

36.5.2.6 Failed VM Entry
The packets generated by a failed VMentry depend both on the VMCS configuration, as well as on the type of
failure. The results to expect are summarized in the table below. Note that packets in italics may or may not be
generated, depending on implementation choice, and the point of failure.

Table 36-44 Packets on VMX Transitions (Host-Only Tracing)

Event Packets Description

VM exit TIP.PGE(HostIP) The TIP.PGE indicates that trace packet generation is enabled and gives the IP of the first
instruction to be executed in VMX Root operation.

Note, this packet could be preceded by a MODE.Exec packet (Section 36.4.2.8). This is
generated only in cases where CS.D or (CS.L & EFER.LMA) change during the transition.

VM entry TIP.PGD() The TIP indicates that trace packet generation was disabled. This ensure that all buffered
packets are flushed out.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 463

36.5.2.7 VMX Abort
VMX Abort conditions take the processor into a shutdown state. On a VM exit that leads to VMX abort, some
packets (FUP, PIP) may be generated, but any expected TIP, TIP.PGE, or TIP.PGD may be dropped.

36.6 TRACING AND SMM TRANSFER MONITOR (STM)
SMM Transfer Monitor is a VMM that operates inside SMM while in VMX root operation. An STM operates in
conjunction with an executive monitor. The latter operates outside SMM and in VMX root operation. Transitions
from the executive monitor or its VMs to the STM are called SMM VM exits. The STM returns from SMM via a VM
entry to the VM in non-root operation or the executive monitor in VMX root operation.
Intel PT supports tracing in STM similar to tracing support for post-VMXON as described above in Section 36.7. As
a result, on a SMM VM exit resulting from #SMI, TraceEn is not saved and then cleared. Software can save the
state of the trace configuration MSRs and clear TraceEN using the MSR load/save lists.

36.7 PACKET GENERATION SCENARIOS
Table 36-46 illustrates the packets generated in various scenarios. In the heading row, PacketEn is abbreviated as
PktEn, ContextEn as CntxEn. Note that this assumes that TraceEn=1 in IA32_RTIT_CTL, while TriggerEn=1 and
Error=0 in IA32_RTIT_STATUS, unless otherwise specified. Entries that do not matter in packet generation are
marked “D.C.”

Table 36-45 Packets on a Failed VM Entry

Usage Model Entry Configuration Early Failure (fall
through to Next IP)

Late Failure (VM exit)

System-Wide No MSR load list TIP (NextIP) PIP(Guest CR3, NR=1), TraceEn 0->1 Packets (See Section
36.2.5.3), PIP(HostCR3, NR=0), TIP(HostIP)

VMM Only MSR load list
disables TraceEn

TIP (NextIP) TraceEn 0->1 Packets (See Section 36.2.5.3), TIP(HostIP)

VM Only MSR load list
Enables TraceEn

None None

Table 36-46 Packet Generation under Different Enable Conditions

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

1a Normal non-jump operation 0 0 D.C. None

1b Normal non-jump operation 1 1 1 None

2a WRMSR/XRSTORS/RSM that changes
TraceEn 0 -> 1, with PacketByteCnt >0

0 0 D.C. *TSC if TSCEn=1;
*TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR

2b WRMSR/XRSTORS/RSM that changes
TraceEn 0 -> 1, with PacketByteCnt =0

0 0 D.C. *TSC if TSCEn=1;
*TMA if TSCEn=MTCEn=1

PSB, PSBEND (see Section
36.4.2.17)

2d WRMSR/XRSTORS/RSM that changes
TraceEn 0 -> 1, with PacketByteCnt >0

0 1 1 TSC if TSCEn=1;
TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR,
MODE.Exec, TIP.PGE(NLIP)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 464

2e WRMSR/XRSTORS/RSM that changes
TraceEn 0 -> 1, with PacketByteCnt =0

0 1 1 MODE.Exec, TIP.PGE(NLIP),
PSB, PSBEND (see Section
36.4.2.8, 36.4.2.7,
36.4.2.13,36.4.2.15,
36.4.2.17)

3a WRMSR that changes TraceEn 1 -> 0 0 0 D.C. None

3b WRMSR that changes TraceEn 1 -> 0 1 0 D.C. FUP(CLIP), TIP.PGD()

5a MOV to CR3 0 0 0 None

5f MOV to CR3 0 0 1 TraceStop if executed in a
TraceStop region

PIP(NewCR3,NR?), TraceS-
top?

5b MOV to CR3 0 1 1 *PIP.NR=1 if not in root
operation, and “Suppress
VMX indications” execution
control = 0
*MODE.Exec if the mode has
changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

PIP(NewCR3, NR?),
MODE.Exec?, TIP.PGE(NLIP)

5c MOV to CR3 1 0 0 TIP.PGD()

5e MOV to CR3 1 0 1 *PIP.NR=1 if not in root
operation, and “Suppress
VMX indications” execution
control = 0
*TraceStop if executed in a
TraceStop region

PIP(NewCR3, NR?),
TIP.PGE(NLIP), TraceStop?

5d MOV to CR3 1 1 1 *PIP.NR=1 if not in root
operation, and “Suppress
VMX indications” execution
control = 0

PIP(NewCR3, NR?)

6a Unconditional direct near jump 0 0 D.C. None

6b Unconditional direct near jump 1 0 1 TraceStop if BLIP is in a
TraceStop region

TIP.PGD(BLIP), TraceStop?

6c Unconditional direct near jump 0 1 1 MODE.Exec if the mode has
changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

MODE.Exec?,
TIP.PGE(BLIP)

6d Unconditional direct near jump 1 1 1 None

7a Conditional taken jump or compressed
RET that does not fill up the internal
TNT buffer

0 0 D.C. None

7b Conditional taken jump or compressed
RET

0 1 1 MODE.Exec if the mode has
changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

MODE.Exec?,
TIP.PGE(BLIP)

Table 36-46 Packet Generation under Different Enable Conditions

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 465

7e Conditional taken jump or compressed
RET, with empty TNT buffer

1 0 1 TraceStop if BLIP is in a
TraceStop region

TIP.PGD(), TraceStop?

7f Conditional taken jump or compressed
RET, with non-empty TNT buffer

1 0 1 TraceStop if BLIP is in a
TraceStop region

TNT, TIP.PGD(), TraceStop?

7d Conditional taken jump or compressed
RET that fills up the internal TNT buf-
fer

1 1 1 TNT

8a Conditional non-taken jump 0 0 D.C. None

8d Conditional not-taken jump that fills up
the internal TNT buffer

1 1 1 TNT

9a Near indirect jump (JMP, CALL, or
uncompressed RET)

0 0 D.C. None

9b Near indirect jump (JMP, CALL, or
uncompressed RET)

0 1 1 MODE.Exec if the mode has
changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

MODE.Exec?,
TIP.PGE(BLIP)

9c Near indirect jump (JMP, CALL, or
uncompressed RET)

1 0 1 TraceStop if BLIP is in a
TraceStop region

TIP.PGD(BLIP), TraceStop?

9d Near indirect jump (JMP, CALL, or
uncompressed RET)

1 1 1 TIP(BLIP)

10a Far Branch (CALL/JMP/RET) 0 0 0 None

10f Far Branch (CALL/JMP/RET) 0 0 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is
not root operation, and
“Suppress VMX indications”
execution control = 0;
*TraceStop if BLIP is in a
TraceStop region

PIP(new CR3, NR?), TraceS-
top?

10b Far Branch (CALL/JMP/RET) 0 1 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is
not root operation, and
“Suppress VMX indications”
execution control = 0;
*MODE.Exec if the mode has
changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

PIP(new CR3, NR?),
MODE.Exec?, TIP.PGE(BLIP)

10c Far Branch (CALL/JMP/RET) 1 0 0 TIP.PGD()

Table 36-46 Packet Generation under Different Enable Conditions

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 466

10d Far Branch (CALL/JMP/RET) 1 0 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is
not root operation, and
“Suppress VMX indications”
execution control = 0;
*TraceStop if BLIP is in a
TraceStop region

PIP(new CR3, NR?),
TIP.PGD(BLIP), TraceStop?

10e Far Branch (CALL/JMP/RET) 1 1 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation, and
“Suppress VMX indications”
execution control = 0;
* MODE.Exec if the opera-
tion changes CS.L/D or
IA32_EFER.LMA

PIP(NewCR3, NR?)?,
MODE.Exec?, TIP(BLIP)

11a HW Interrupt 0 0 0 None

11f HW Interrupt 0 0 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is
not root operation, and
“Suppress VMX indications”
execution control = 0;
*TraceStop if BLIP is in a
TraceStop region

PIP(new CR3, NR?), TraceS-
top?

11b HW Interrupt 0 1 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is
not root operation, and
“Suppress VMX indications”
execution control = 0;
* MODE.Exec if the mode
has changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

PIP(new CR3, NR?),
MODE.Exec?, TIP.PGE(BLIP)

11c HW Interrupt 1 0 0 FUP(NLIP), TIP.PGD()

11d HW Interrupt 1 0 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation, and
“Suppress VMX indications”
execution control = 0;
*TraceStop if BLIP is in a
TraceStop region

FUP(NLIP), PIP(NewCR3,
NR?)?, TIP.PGD(BLIP), Trace-
Stop

Table 36-46 Packet Generation under Different Enable Conditions

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 467

11e HW Interrupt 1 1 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation, and
“Suppress VMX indications”
execution control = 0;
* MODE.Exec if the opera-
tion changes CS.L/D or
IA32_EFER.LMA

FUP(NLIP), PIP(NewCR3,
NR?)?, MODE.Exec?,
TIP(BLIP)

12a SW Interrupt 0 0 0 None

12f SW Interrupt 0 0 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation, and
“Suppress VMX indications”
execution control = 0;
*TraceStop if BLIP is in a
TraceStop region

PIP(NewCR3, NR?)?, TraceS-
top?

12b SW Interrupt 0 1 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation, and
“Suppress VMX indications”
execution control = 0;
*MODE.Exec if the mode has
changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

PIP(NewCR3, NR?)?,
MODE.Exec?, TIP.PGE(BLIP)

12c SW Interrupt 1 0 0 FUP(CLIP), TIP.PGD()

12d SW Interrupt 1 0 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation, and
“Suppress VMX indications”
execution control = 0;
*TraceStop if BLIP is in a
TraceStop region

FUP(CLIP), PIP(NewCR3,
NR?)?, TIP.PGD(BLIP), Trace-
Stop?

12e SW Interrupt 1 1 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation, and
“Suppress VMX indications”
execution control = 0;
* MODE.Exec if the opera-
tion changes CS.L/D or
IA32_EFER.LMA

FUP(CLIP), PIP(NewCR3,
NR?)?, FUP(NLIP),
MODE.Exec?, TIP(BLIP)

13a Exception/Fault 0 0 0 None

Table 36-46 Packet Generation under Different Enable Conditions

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 468

13f Exception/Fault 0 0 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation, and
“Suppress VMX indications”
execution control = 0;
*TraceStop if BLIP is in a
TraceStop region

PIP(NewCR3, NR?)?, TraceS-
top?

13b Exception/Fault 0 1 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation, and
“Suppress VMX indications”
execution control = 0;
*MODE.Exec if the mode has
changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

PIP(NewCR3, NR?)?,
MODE.Exec?, TIP.PGE(BLIP)

13c Exception/Fault 1 0 0 FUP(CLIP), TIP.PGD()

13d Exception/Fault 1 0 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation, and
“Suppress VMX indications”
execution control = 0;
*TraceStop if BLIP is in a
TraceStop region

FUP(CLIP), PIP(NewCR3,
NR?)?, TIP.PGD(BLIP), Trace-
Stop?

13e Exception/Fault 1 1 1 * PIP if CR3 is updated (i.e.,
task switch), and OS=1
*PIP.NR=1 if destination is
not root operation, and
“Suppress VMX indications”
execution control = 0;
* MODE.Exec if the opera-
tion changes CS.L/D or
IA32_EFER.LMA

FUP(CLIP), PIP(NewCR3,
NR?)?, MODE.Exec?,
TIP(BLIP)

14a SMI (TraceEn cleared) 0 0 D.C. None

14b SMI (TraceEn cleared) 1 0 0 FUP(SMRAM,LIP), TIP.PGD()

14f SMI (TraceEn cleared) 1 0 1 NA

14c SMI (TraceEn cleared) 1 1 1 NA

15a RSM, TraceEn restored to 0 0 0 0 None

15b RSM, TraceEn restored to 1 0 0 D.C. See WRMSR cases for pack-
ets on enable

15c RSM, TraceEn restored to 1 0 1 1 See WRMSR cases for pack-
ets on enable. FUP/TIP.PGE
IP is SMRAM.LIP

Table 36-46 Packet Generation under Different Enable Conditions

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 469

15e RSM (TraceEn=1, goes to shutdown) 1 0 0 None

15f RSM (TraceEn=1, goes to shutdown) 1 0 1 None

15d RSM (TraceEn=1, goes to shutdown) 1 1 1 None

16i Vmext 0 0 0 None

16a Vmext 0 0 1 *PIP if OF=1, and “Suppress
VMX packets on exit” execu-
tion control = 0;
*TraceStop if VMCSh.LIP is
in a TraceStop region

PIP(HostCR3, NR=0)?, Trace-
Stop?

16b VM exit, MSR list sets TraceEn=1 0 0 0 See WRMSR cases for pack-
ets on enable. FUP IP is
VMCSh.LIP

16c VM exit, MSR list sets TraceEn=1 0 1 1 See WRMSR cases for pack-
ets on enable. FUP/TIP.PGE
IP is VMCSh.LIP

16e VM exit 0 1 1 *PIP if OF=1, and “Suppress
VMX packets on exit” execu-
tion control = 0;
*MODE.Exec if the value is
different, since last TIP.PGD

PIP(HostCR3, NR=0)?,
MODE.Exec?,
TIP.PGE(VMCSh.LIP)

16f VM exit, MSR list clears TraceEn=0 1 0 0 *PIP if OF=1, and “Suppress
VMX packets on exit” execu-
tion control = 0;

FUP(VMCSg.LIP),
PIP(HostCR3, NR=0)?,
TIP.PGD

16j VM exit, ContextEN 1->0 1 0 0 FUP(VMCSg.LIP), TIP.PGD

16g VM exit 1 0 1 *PIP if OF=1, and “Suppress
VMX packets on exit” execu-
tion control = 0;
*TraceStop if VMCSh.LIP is
in a TraceStop region

FUP(VMCSg.LIP),
PIP(HostCR3, NR=0)?,
TIP.PGD(VMCSh.LIP), TraceS-
top?

16h VM exit 1 1 1 *PIP if OF=1, and “Suppress
VMX packets on exit” execu-
tion control = 0;
*MODE.Exec if the value is
different, since last TIP.PGD

FUP(VMCSg.LIP),
PIP(HostCR3, NR=0)?,
MODE.Exec, TIP(VMCSh.LIP)

17a Vmentry 0 0 0 None

17b VM entry 0 0 1 *PIP if OF=1, and “Suppress
VMX packets on entry” exe-
cution control = 0;
*TraceStop if VMCSg.LIP is
in a TraceStop region

PIP(GuestCR3, NR=1)?,
TraceStop?

17c VM entry, MSR load list sets TraceEn=1 0 0 1 See WRMSR cases for pack-
ets on enable. FUP IP is
VMCSg.LIP

Table 36-46 Packet Generation under Different Enable Conditions

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 470

17d VM entry, MSR load list sets TraceEn=1 0 1 1 See WRMSR cases for pack-
ets on enable. FUP/TIP.PGE
IP is VMCSg.LIP

17f VM entry, FilterEN 0->1 0 1 1 *PIP if OF=1, and “Suppress
VMX packets on entry” exe-
cution control = 0;
*MODE.Exec if the value is
different, since last TIP.PGD

PIP(GuestCR3, NR=1)?,
MODE.Exec?,
TIP.PGE(VMCSg.LIP)

17j VM entry, ContextEN 0->1 0 1 1 *MODE.Exec if the value is
different, since last TIP.PGD

MODE.Exec,
TIP.PGE(VMCSg.LIP)

17g VM entry, MSR list clears TraceEn=0 1 0 0 *PIP if OF=1, and “Suppress
VMX packets on entry” exe-
cution control = 0;

PIP(GuestCR3, NR=1)?,
TIP.PGD

17h VM entry 1 0 1 *PIP if OF=1, and “Suppress
VMX packets on entry” exe-
cution control = 0;
*TraceStop if VMCSg.LIP is
in a TraceStop region

PIP(GuestCR3, NR=1)?,
TIP.PGD(VMCSg.LIP), TraceS-
top?

17i VM entry 1 1 1 *PIP if OF=1, and “Suppress
VMX packets on entry” exe-
cution control = 0;
*MODE.Exec if the value is
different, since last TIP.PGD

PIP(GuestCR3, NR=1)?,
MODE.Exec, TIP(VMCSg.LIP)

20a EENTER/ERESUME to non-debug
enclave

0 0 0 None

20c EENTER/ERESUME to non-debug
enclave

1 0 0 FUP(CLIP), TIP.PGD()

21a EEXIT from non-debug enclave 0 0 D.C. None

21b EEXIT from non-debug enclave 0 1 1 *MODE.Exec if the value is
different, since last TIP.PGD

MODE.Exec?, TIP.PGE(BLIP)

22a AEX/EEE from non-debug enclave 0 0 D.C. None

22b AEX/EEE from non-debug enclave 0 1 1 *MODE.Exec if the value is
different, since last TIP.PGD

MODE.Exec?,
TIP.PGE(AEP.LIP)

23a EENTER/ERESUME to debug enclave 0 0 D.C. None

23b EENTER/ERESUME to debug enclave 0 1 1 *MODE.Exec if the value is
different, since last TIP.PGD

MODE.Exec?, TIP.PGE(BLIP)

23c EENTER/ERESUME to debug enclave 1 0 0 FUP(CLIP), TIP.PGD()

23d EENTER/ERESUME to debug enclave 0 0 1 *TraceStop if BLIP is in a
TraceStop region

FUP(CLIP), TIP.PGD(BLIP),
TraceStop?

23e EENTER/ERESUME to debug enclave 1 1 1 FUP(CLIP), TIP(BLIP)

24f EEXIT from debug enclave 0 0 D.C. None

Table 36-46 Packet Generation under Different Enable Conditions

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 471

24b EEXIT from debug enclave 0 1 1 *MODE.Exec if the value is
different, since last TIP.PGD

MODE.Exec?, TIP.PGE(BLIP)

24d EEXIT from debug enclave 1 0 1 *TraceStop if BLIP is in a
TraceStop region

FUP(CLIP), TIP.PGD(BLIP),
TraceStop?

24e EEXIT from debug enclave 1 1 1 FUP(CLIP), TIP(BLIP)

25a AEX/EEE from debug enclave 0 0 D.C. None

25b AEX/EEE from debug enclave 0 1 1 *MODE.Exec if the value is
different, since last TIP.PGD

 MODE.Exec?,
TIP.PGE(AEP.LIP)

25d AEX/EEE from debug enclave 1 0 1 *For AEX, FUP IP could be
NLIP, for trap-like events

FUP(CLIP), TIP.PGD(AEP.LIP)

25e AEX/EEE from debug enclave 1 1 1 *MODE.Exec if the value is
different, since last TIP.PGD
*For AEX, FUP IP could be
NLIP, for trap-like events

FUP(CLIP), MODE.Exec?,
TIP(AEP.LIP)

26a XBEGIN/XACQUIRE 0 0 D.C. None

26d XBEGIN/XACQUIRE that does not set
InTX

1 1 1 None

26e XBEGIN/XACQUIRE that sets InTX 1 1 1 MODE(InTX=1, TXAbort=0),
FUP(CLIP)

27a XEND/XRELEASE 0 0 D.C. None

27d XEND/XRELEASE that does not clear
InTX

1 1 1 None

27e XEND/XRELEASE that clears InTX 1 1 1 MODE(InTX=0, TXAbort=0),
FUP(CLIP)

28a XABORT(Async XAbort, or other) 0 0 0 None

28e XABORT(Async XAbort, or other) 0 0 1 *TraceStop if BLIP is in a
TraceStop region

MODE(InTX=0, TXAbort=1),
TraceStop?

28b XABORT(Async XAbort, or other) 0 1 1 MODE(InTX=0, TXAbort=1),
TIP.PGE(BLIP)

28c XABORT(Async XAbort, or other) 1 0 1 *TraceStop if BLIP is in a
TraceStop region

MODE(InTX=0, TXAbort=1),
TIP.PGD (BLIP), TraceStop?

28d XABORT(Async XAbort, or other) 1 1 1 MODE(InTX=0, TXAbort=1),
FUP(CLIP), TIP(BLIP)

30a INIT (BSP) 0 0 0 None

30b INIT (BSP) 0 0 1 *TraceStop if RESET.LIP is in
a TraceStop region

BIP(0), TraceStop?

30c INIT (BSP) 0 1 1 * MODE.Exec if the value is
different, since last TIP.PGD

MODE.Exec?, PIP(0),
TIP.PGE(ResetLIP)

30d INIT (BSP) 1 0 0 FUP(NLIP), TIP.PGD()

Table 36-46 Packet Generation under Different Enable Conditions

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 472

36.8 SOFTWARE CONSIDERATIONS

36.8.1 Tracing SMM Code
Nothing prevents an SMM handler from configuring and enabling packet generation for its own use. As described
in Section , SMI will always clear TraceEn, so the SMM handler would have to set TraceEn in order to enable
tracing. There are some unique aspects and guidelines involved with tracing SMM code, which follows:

1. SMM should save away the existing values of any configuration MSRs that SMM intends to modify for tracing.
This will allow the non-SMM tracing context to be restored before RSM.

2. It is recommended that SMM wait until it sets CSbase to 0 before enabling packet generation, to avoid
possible LIP vs RIP confusion.

3. Packet output cannot be directed to SMRR memory, even while tracing in SMM.

4. Before performing RSM, SMM should take care to restore modified configuration MSRs to the values they had
immediately after #SMI. This involves first disabling packet generation by clearing TraceEn, then restoring
any other configuration MSRs that were modified.

30e INIT (BSP) 1 0 1 * PIP if OS=1
*TraceStop if RESET.LIP is in
a TraceStop region

FUP(NLIP), PIP(0), TIP.PGD,
TraceStop?

30f INIT (BSP) 1 1 1 * MODE.Exec if the mode
has changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB
* PIP if OS=1

FUP(NLIP), PIP(0)?,
MODE.Exec?, TIP(ResetLIP)

31a INIT (AP, goes to wait-for-SIPI) 0 D.C. D.C. None

31b INIT (AP, goes to wait-for-SIPI) 1 D.C. D.C. * PIP if OS=1 FUP(NLIP), PIP(0)

32a SIPI 0 0 0 None

32c SIPI 0 1 1 * MODE.Exec if the mode
has changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

MODE.Exec?, TIP.PGE(SIPI-
LIP)

32d SIPI 1 0 0 TIP.PGD

32e SIPI 1 0 1 *TraceStop if SIPI LIP is in a
TraceStop region

TIP.PGD(SIPILIP); TraceStop?

32f SIPI 1 1 1 * MODE.Exec if the mode
has changed since the last
MODE.Exec, or if no
MODE.Exec since last PSB

MODE.Exec?, TIP(SIPILIP)

33a MWAIT (to C0) D.C. D.C. D.C. None

33b MWAIT (to higher-numbered C-State,
packet sent on wake)

D.C. D.C. D.C. *TSC if TSCEn=1
*TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR

Table 36-46 Packet Generation under Different Enable Conditions

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Other Dependencies Packets Output

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 473

5. RSM

— Software must ensure that TraceEn=0 at the time of RSM. Tracing RSM is not a supported usage model,
and the packets generated by RSM are undefined.

— For processors on which Intel PT and LBR use are mutually exclusive (see Section 36.3.1.2), any RSM
during which TraceEn is restored to 1 will suspend any LBR or BTS logging.

...

36.8.3 Tracking Time
This section describes the relationships of several clock counters whose update frequencies reside in different
domains that feed into the timing packets. To track time, the decoder also needs to know the regularity or irreg-
ularity of the occurrences of various timing packets that store those clock counters.
Intel PT provides time information for three different but related domains:
• Processor timestamp counter

This counter increments at the max non-turbo or P1 frequency, and its value is returned on a RDTSC. Its
frequency is fixed. The TSC packet holds the lower 7 bytes of the timestamp counter value. The TSC packet
occurs occasionally and are much less frequent than the frequency of the time stamp counter. The
timestamp counter will continue to increment when the processor is in deep C-States, with the exception of
processors reporting CPUID.80000007H:EDX.InvariantTSC[bit 8] =0.

• Core crystal clock

The ratio of the core crystal clock to timestamp counter frequency is known as P, and can calculating
CPUID.15H:EBX[31:0] / CPUID.15H:EAX[31:0]. The frequency of the core crystal clock is fixed and lower
than that of the timestamp counter. The periodic MTC packet is generated based on software-selected
multiples of the crystal clock frequency. The MTC packet is expected to occur more frequently than the TSC
packet.

• Processor core clock

The processor core clock frequency can vary due to P-state and thermal conditions. The CYC packet provides
elapsed time as measured in processor core clock cycles relative to the last CYC packet.

A decoder can use all or some combination of these packets to track time at different resolutions throughout the
trace packets.

36.8.3.1 Time Domain Relationships
The three domains are related by the following formula:

TimeStampValue = (CoreCrystalClockValue * P) + AdjustedProcessorCycles + Software_Offset;

The CoreCrystalClockValue can provide the coarse-grained component of the TSC value. P is a constant ratio
derived from CPUID leaf 15H, as described in Section 36.8.3.
The AdjustedProcessorCycles component provides the fine-grained distance from the rising edge of the last core
crystal clock. Specifically, it is a cycle count in the same frequency as the timestamp counter from the last crystal
clock rising edge. The value is adjusted based on the ratio of the processor core clock frequency to the max non-
turbo (or P1) frequency.
The Software_Offsets component includes all software offsets that are factored into the timestamp value,
including IA32_TSC_ADJUST and VMCS-based offsets.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 474

36.8.3.2 Estimating TSC within Intel PT
For many usages, it may be useful to have an estimated timestamp value for all points in the trace. The formula
provided in Section 36.8.3.1 above provides the framework for how such an estimate can be calculated from the
various timing packets present in the trace.
The TSC packet provides the precise timestamp value at the time it is generated; however, TSC packets are infre-
quent, and estimates of the current timestamp value based purely on TSC packets are likely to be very inaccurate
for this reason. In order to get more precise timing information between TSC packets, CYC packets and/or MTC
packets should be enabled.
MTC packets provide incremental updates of the CoreCrystalClockValue. On processors that support CPUID leaf
15H, the frequency of the timestamp counter and the core crystal clock is fixed, thus MTC packets provide a
means to update the running timestamp estimate. Between two MTC packets A and B, the number of crystal clock
cycles passed is calculated from the 8-bit payloads of respective MTC packets:
(CTCB - CTCA), where CTCi = MTCi[15:8] << IA32_RTIT_CTL.MTCFreq and i = A, B.
The time from a TSC packet to the subsequent MTC packet can be calculated using the TMA packet that follows
the TSC packet. The TMA packet provides both the crystal clock value (lower 16 bits, in the CTC field) and the
AdjustedProcessorCycles value (in the FastCounter field) that can be used in the calculation of the corresponding
core crystal clock value of the TSC packet.
When the next MTC after a pair of TSC/TMA is seen, the number of crystal clocks passed since the TSC packet can
be calculated by subtracting the TMA.CTC value from the time indicated by the MTCNext packet by
CTCDelta[15:0] = (CTCNext[15:0] - TMA.CTC[15:0]), where CTCNext = MTCPayload << IA32_RTIT_CTL.MTCFreq.
The TMA.FastCounter field provides the fractional component of the TSC packet into the next crystal clock cycle.
CYC packets can provide further precision of an estimated timestamp value to many non-timing packets, by
providing an indication of the time passed between other timing packets (MTCs or TSCs).
When enabled, CYC packets are sent preceding each CYC-eligible packet, and provide the number of processor
core clock cycles that have passed since the last CYC packet. Thus between MTCs and TSCs, the accumulated CYC
values can be used to estimate the adjusted_processor_cycles component of the timestamp value. The accumu-
lated CPU cycles will have to be adjusted to account for the difference in frequency between the processor core
clock and the P1 frequency. The necessary adjustment can be estimated using the core:bus ratio value given in
the CBR packet, by multiplying the accumulated cycle count value by P1/CBRpayload.
A greater level of precision may be achieved by calculating the CPU clock frequency, see Section 36.8.3.3 below
for a method to do so using Intel PT packets.
CYCs can be used to estimate time between TSCs even without MTCs, though this will likely result in a reduction
in estimated TSC precision.

36.8.3.3 Calculating Frequency with Intel PT
Because Intel PT can provide both wall-clock time and processor clock cycle time, it can be used to measure the
processor core clock frequency. Either TSC or MTC packets can be used to track the wall-clock time. By using CYC
packets to count the number of processor core cycles that pass in between a pair of wall-clock time packets, the
ratio between processor core clock frequency and TSC frequency can be derived. If the P1 frequency is known, it
can be applied to determine the CPU frequency. See Section 36.8.3.1 above for details on the relationship
between TSC, MTC, and CYC.

...

	Revision History
	Preface
	Summary Tables of Changes
	Documentation Changes
	1. Updates to Chapter 3, Volume 1
	2. Updates to Chapter 5, Volume 1
	3. Updates to Chapter 13, Volume 1
	4. Updates to Chapter 14, Volume 1
	5. New Chapter 16, Volume 1
	Chapter 16 Intel® Memory Protection Extensions
	6. Updates to Chapter 2, Volume 2A
	7. Updates to Chapter 3, Volume 2A
	8. Updates to Chapter 4, Volume 2B
	9. Updates to Chapter 2, Volume 3A
	10. Updates to Chapter 9, Volume 3A
	11. Updates to Chapter 16, Volume 3B
	12. Updates to Chapter 17, Volume 3B
	13. Updates to Chapter 18, Volume 3B
	14. Updates to Chapter 19, Volume 3B
	15. Updates to Chapter 20, Volume 3B
	16. Updates to Chapter 24, Volume 3B
	17. Updates to Chapter 26, Volume 3C
	18. Updates to Chapter 35, Volume 3C
	19. Updates to Chapter 36, Volume 3C

