
Document Number: 252046-048

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Documentation Changes

September 2015

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages
resulting from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from pub-
lished specifications. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is sub-
ject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or by visiting http://www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation
in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 1997-2015, Intel Corporation. All Rights Reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents

Revision History . 4

Preface . 7

Summary Tables of Changes . 8

Documentation Changes. 9

Revision History

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Revision Description Date

-001 • Initial release November 2002

-002
• Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual
December 2002

-003

• Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion

February 2003

-004 • Removed Documentation changes 1-17.
• Added Documentation changes 1-24. June 2003

-005 • Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007 • Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008 • Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012 • Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013
• Updated title.
• There are no Documentation Changes for this revision of the

document.
July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015 • Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017 • Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019 • Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Added Documentation Changes 20-27. May 2007

-021 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1-6

November 2007

-022 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-6

August 2008

-023 • Removed Documentation Changes 1-6
• Added Documentation Changes 1-21

March 2009

Revision History

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

-024 • Removed Documentation Changes 1-21
• Added Documentation Changes 1-16

June 2009

-025 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

September 2009

-026 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-15

December 2009

-027 • Removed Documentation Changes 1-15
• Added Documentation Changes 1-24

March 2010

-028 • Removed Documentation Changes 1-24
• Added Documentation Changes 1-29

June 2010

-029 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

September 2010

-030 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

January 2011

-031 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-29

April 2011

-032 • Removed Documentation Changes 1-29
• Added Documentation Changes 1-14

May 2011

-033 • Removed Documentation Changes 1-14
• Added Documentation Changes 1-38

October 2011

-034 • Removed Documentation Changes 1-38
• Added Documentation Changes 1-16

December 2011

-035 • Removed Documentation Changes 1-16
• Added Documentation Changes 1-18

March 2012

-036 • Removed Documentation Changes 1-18
• Added Documentation Changes 1-17

May 2012

-037 • Removed Documentation Changes 1-17
• Added Documentation Changes 1-28

August 2012

-038 • Removed Documentation Changes 1-28
• Add Documentation Changes 1-22

January 2013

-039 • Removed Documentation Changes 1-22
• Add Documentation Changes 1-17

June 2013

-040 • Removed Documentation Changes 1-17
• Add Documentation Changes 1-24

September 2013

-041 • Removed Documentation Changes 1-24
• Add Documentation Changes 1-20

February 2014

-042 • Removed Documentation Changes 1-20
• Add Documentation Changes 1-8

February 2014

-043 • Removed Documentation Changes 1-8
• Add Documentation Changes 1-43

June 2014

-044 • Removed Documentation Changes 1-43
• Add Documentation Changes 1-12

September 2014

-045 • Removed Documentation Changes 1-12
• Add Documentation Changes 1-22

January 2015

Revision Description Date

Revision History

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

§

-046 • Removed Documentation Changes 1-22
• Add Documentation Changes 1-25

April 2015

-047 • Removed Documentation Changes 1-25
• Add Documentation Changes 1-19

June 2015

-048 • Removed Documentation Changes 1-19
• Add Documentation Changes 1-33

September 2015

Revision Description Date

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Preface

This document is an update to the specifications contained in the Affected Documents table below. This
document is a compilation of device and documentation errata, specification clarifications and changes. It is
intended for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents

Nomenclature
Documentation Changes include typos, errors, or omissions from the current published specifications. These
will be incorporated in any new release of the specification.

Document Title Document Number/
Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture 253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A: Instruction Set
Reference, A-M 253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B: Instruction Set
Reference, N-Z 253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C: Instruction Set
Reference 326018

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System
Programming Guide, Part 1 253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System
Programming Guide, Part 2 253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C: System
Programming Guide, Part 3 326019

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3D: System
Programming Guide, Part 4 332831

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 8

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and IA-32 architectures. This
table uses the following notations:

Codes Used in Summary Tables
Change bar to left of table row indicates this erratum is either new or modified from the previous version of the
document.

Documentation Changes(Sheet 1 of 2)
No. DOCUMENTATION CHANGES

1 Updates to Chapter 1, Volume 1

2 Updates to Chapter 5, Volume 1

3 Updates to Chapter 8, Volume 1

4 Updates to Chapter 13, Volume 1

5 Updates to Chapter 15, Volume 1

6 Updates to Chapter 1, Volume 2A

7 Updates to Chapter 3, Volume 2A

8 Updates to Chapter 4, Volume 2B

9 Updates to Appendix B, Volume 2C

10 Updates to Chapter 1, Volume 3A

11 Updates to Chapter 2, Volume 3A

12 Updates to Chapter 4, Volume 3A

13 Updates to Chapter 6, Volume 3A

14 Updates to Chapter 8, Volume 3A

15 Updates to Chapter 11, Volume 3A

16 Updates to Chapter 15, Volume 3B

17 Updates to Chapter 18, Volume 3B

18 Updates to Chapter 19, Volume 3B

19 Updates to Chapter 24, Volume 3C

20 Updates to Chapter 25, Volume 3C

21 Updates to Chapter 26, Volume 3C

22 Updates to Chapter 27, Volume 3C

23 Updates to Chapter 29, Volume 3C

24 Updates to Chapter 35, Volume 3C

25 Updates to Chapter 36, Volume 3C

26 New Chapter 37, New Volume 3D

27 New Chapter 38, New Volume 3D

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

28 New Chapter 39, New Volume 3D

29 New Chapter 40, New Volume 3D

30 New Chapter 41, New Volume 3D

31 New Chapter 42, New Volume 3D

32 New Chapter 43, New Volume 3D

33 Updates to Appendix B, New Volume 3D

Documentation Changes(Sheet 2 of 2)
No. DOCUMENTATION CHANGES

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 10

Documentation Changes

1. Updates to Chapter 1, Volume 1
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Core™2 Extreme QX9000 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Core™ i7 processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• The Intel® Core™ M processor family
• Intel® Core™ i7-59xx Processor Extreme Edition
• Intel® Core™ i7-49xx Processor Extreme Edition
• Intel® Xeon® processor E3-1200 v3 product family
• Intel® Xeon® processor E5-2600/1600 v3 product families
• 5th generation Intel® Core™ processors
• Intel® Atom™ processor Z8000 series
• Intel® Atom™ processor Z3400 series
• Intel® Atom™ processor Z3500 series
• 6th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1500m v5 product family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on
Enhanced Intel® Core™ microarchitecture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture and supports Intel 64 archi-
tecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel®
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32nm version of
Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 12

various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These
processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2
product family and 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code name
Ivy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Intel® microarchitecture
code name Ivy Bridge-E and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

The Intel® Core™ M processor family and 5th generation Intel® Core™ processors are based on the Intel® micro-
architecture code name Broadwell and support Intel 64 architecture.

The Intel® Xeon® processor E3-1500m v5 product family and 6th generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Skylake and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Intel® microarchitecture code name Haswell-E and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Intel microarchitecture code name Airmont.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Intel
microarchitecture code name Silvermont.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors,
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel®
64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is a
superset of and compatible with IA-32 architecture.

...

2. Updates to Chapter 5, Volume 1
Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--
This chapter provides an abridged overview of Intel 64 and IA-32 instructions. Instructions are divided into the
following groups:
• General purpose
• x87 FPU
• x87 FPU and SIMD state management
• Intel® MMX technology

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

• SSE extensions
• SSE2 extensions
• SSE3 extensions
• SSSE3 extensions
• SSE4 extensions
• AESNI and PCLMULQDQ
• Intel® AVX extensions
• F16C, RDRAND, RDSEED, FS/GS base access
• FMA extensions
• Intel® AVX2 extensions
• Intel® Transactional Synchronization extensions
• System instructions
• IA-32e mode: 64-bit mode instructions
• VMX instructions
• SMX instructions
• ADCX and ADOX
• Intel® Memory Protection Extensions
• Intel® Security Guard Extensions

Table 5-1 lists the groups and IA-32 processors that support each group. More recent instruction set extensions
are listed in Table 5-2. Within these groups, most instructions are collected into functional subgroups.

Table 5-1. Instruction Groups in Intel 64 and IA-32 Processors

Instruction Set
Architecture Intel 64 and IA-32 Processor Support

General Purpose All Intel 64 and IA-32 processors

 x87 FPU Intel486, Pentium, Pentium with MMX Technology, Celeron, Pentium Pro, Pentium II, Pentium II Xeon,
Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Atom processors

x87 FPU and SIMD State
Management

Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M,
Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom processors

MMX Technology Pentium with MMX Technology, Celeron, Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, Pentium
4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom
processors

SSE Extensions Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Atom processors

SSE2 Extensions Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors,
Intel Atom processors

SSE3 Extensions Pentium 4 supporting HT Technology (built on 90nm process technology), Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Xeon processor 3xxxx, 5xxx, 7xxx Series, Intel Atom processors

SSSE3 Extensions Intel Xeon processor 3xxx, 5100, 5200, 5300, 5400, 5500, 5600, 7300, 7400, 7500 series, Intel Core 2
Extreme processors QX6000 series, Intel Core 2 Duo, Intel Core 2 Quad processors, Intel Pentium Dual-Core
processors, Intel Atom processors

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 14

The following sections list instructions in each major group and subgroup. Given for each instruction is its
mnemonic and descriptive names. When two or more mnemonics are given (for example, CMOVA/CMOVNBE),
they represent different mnemonics for the same instruction opcode. Assemblers support redundant mnemonics
for some instructions to make it easier to read code listings. For instance, CMOVA (Conditional move if above)
and CMOVNBE (Conditional move if not below or equal) represent the same condition. For detailed information
about specific instructions, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes
2A, 2B & 2C.

...

5.1.13 Miscellaneous Instructions
The miscellaneous instructions provide such functions as loading an effective address, executing a “no-operation,”
and retrieving processor identification information.
LEA Load effective address

IA-32e mode: 64-bit
mode instructions

Intel 64 processors

System Instructions Intel 64 and IA-32 processors

VMX Instructions Intel 64 and IA-32 processors supporting Intel Virtualization Technology

SMX Instructions Intel Core 2 Duo processor E6x50, E8xxx; Intel Core 2 Quad processor Q9xxx

Table 5-1. Instruction Groups in Intel 64 and IA-32 Processors (Contd.)

Instruction Set
Architecture Intel 64 and IA-32 Processor Support

Table 5-2. Recent Instruction Set Extensions Introduction in Intel 64 and IA-32 Processors

Instruction Set
Architecture Processor Generation Introduction

SSE4.1 Extensions Intel Xeon processor 3100, 3300, 5200, 5400, 7400, 7500 series, Intel Core 2 Extreme processors
QX9000 series, Intel Core 2 Quad processor Q9000 series, Intel Core 2 Duo processors 8000 series, T9000
series.

SSE4.2 Extensions,
CRC32, POPCNT

Intel Core i7 965 processor, Intel Xeon processors X3400, X3500, X5500, X6500, X7500 series.

AESNI, PCLMULQDQ InteL Xeon processor E7 series, Intel Xeon processors X3600, X5600, Intel Core i7 980X processor; Use
CPUID to verify presence of AESNI and PCLMULQDQ across Intel Core processor families.

Intel AVX Intel Xeon processor E3 and E5 families; 2nd Generation Intel Core i7, i5, i3 processor 2xxx families.

F16C, RDRAND, FS/GS
base access

3rd Generation Intel Core processors, Intel Xeon processor E3-1200 v2 product family, Next Generation
Intel Xeon processors, Intel Xeon processor E5 v2 and E7 v2 families.

FMA, AVX2, BMI1, BMI2,
INVPCID

Intel Xeon processor E3-1200 v3 product family; 4th Generation Intel Core processor family.

TSX Intel Xeon processor E7 v3 product family

ADX, RDSEED, CLAC,
STAC

Intel Core M processor family; 5th Generation Intel Core processor family.

CLFLUSHOPT, XSAVEC,
XSAVES, MPX, SGX1

6th Generation Intel Core processor family.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 15

NOP No operation
UD2 Undefined instruction
XLAT/XLATB Table lookup translation
CPUID Processor identification
MOVBE1 Move data after swapping data bytes
PREFETCHW Prefetch data into cache in anticipation of write
PREFETCHWT1 Prefetch hint T1 with intent to write
CLFLUSH Flushes and invalidates a memory operand and its associated cache line from all levels of the

processor’s cache hierarchy
CLFLUSHOPT Flushes and invalidates a memory operand and its associated cache line from all levels of the

processor’s cache hierarchy with optimized memory system throughput.

5.1.14 User Mode Extended Sate Save/Restore Instructions
XSAVE Save processor extended states to memory
XSAVEC Save processor extended states with compaction to memory
XSAVEOPT Save processor extended states to memory, optimized
XRSTOR Restore processor extended states from memory
XGETBV Reads the state of an extended control register

5.1.15 Random Number Generator Instructions
RDRAND Retrieves a random number generated from hardware
RDSEED Retrieves a random number generated from hardware

...

5.6.4 SSE2 Cacheability Control and Ordering Instructions
SSE2 cacheability control instructions provide additional operations for caching of non-temporal data when
storing data from XMM registers to memory. LFENCE and MFENCE provide additional control of instruction
ordering on store operations.
CLFLUSH See Section 5.1.13
LFENCE Serializes load operations
MFENCE Serializes load and store operations
PAUSE Improves the performance of “spin-wait loops”
MASKMOVDQU Non-temporal store of selected bytes from an XMM register into memory
MOVNTPD Non-temporal store of two packed double-precision floating-point values from an XMM

register into memory
MOVNTDQ Non-temporal store of double quadword from an XMM register into memory
MOVNTI Non-temporal store of a doubleword from a general-purpose register into memory

...

1. Processor support of MOVBE is enumerated by CPUID.01:ECX.MOVBE[bit 22] = 1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 16

5.18 SYSTEM INSTRUCTIONS
The following system instructions are used to control those functions of the processor that are provided to support
for operating systems and executives.
CLAC Clear AC Flag in EFLAGS register
STAC Set AC Flag in EFLAGS register
LGDT Load global descriptor table (GDT) register
SGDT Store global descriptor table (GDT) register
LLDT Load local descriptor table (LDT) register
SLDT Store local descriptor table (LDT) register
LTR Load task register
STR Store task register
LIDT Load interrupt descriptor table (IDT) register
SIDT Store interrupt descriptor table (IDT) register
MOV Load and store control registers
LMSW Load machine status word
SMSW Store machine status word
CLTS Clear the task-switched flag
ARPL Adjust requested privilege level
LAR Load access rights
LSL Load segment limit
VERR Verify segment for reading
VERW Verify segment for writing
MOV Load and store debug registers
INVD Invalidate cache, no writeback
WBINVD Invalidate cache, with writeback
INVLPG Invalidate TLB Entry
INVPCID Invalidate Process-Context Identifier
LOCK (prefix) Lock Bus
HLT Halt processor
RSM Return from system management mode (SMM)
RDMSR Read model-specific register
WRMSR Write model-specific register
RDPMC Read performance monitoring counters
RDTSC Read time stamp counter
RDTSCP Read time stamp counter and processor ID
SYSENTER Fast System Call, transfers to a flat protected mode kernel at CPL = 0
SYSEXIT Fast System Call, transfers to a flat protected mode kernel at CPL = 3
XSAVE Save processor extended states to memory
XSAVEC Save processor extended states with compaction to memory
XSAVEOPT Save processor extended states to memory, optimized
XSAVES Save processor supervisor-mode extended states to memory
XRSTOR Restore processor extended states from memory
XRSTORS Restore processor supervisor-mode extended states from memory

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

XGETBV Reads the state of an extended control register
XSETBV Writes the state of an extended control register
RDFSBASE Reads from FS base address at any privilege level
RDGSBASE Reads from GS base address at any privilege level
WRFSBASE Writes to FS base address at any privilege level

WRGSBASEWrites to GS base address at any privilege level

...

5.22 INTEL® MEMORY PROTECTION EXTENSIONS
Intel Memory Protection Extensions (MPX) provides a set of instructions to enable software to add robust bounds
checking capability to memory references. Details of Intel MPX are described in Chapter 16, “Intel® MPX”.
BNDMK Create a LowerBound and a UpperBound in a register.
BNDCL Check the address of a memory reference against a LowerBound.
BNDCU Check the address of a memory reference against an UpperBound in 1’s compliment form.
BNDCN Check the address of a memory reference against an UpperBound not in 1’s compliment

form.
BNDMOV Copy or load from memory of the LowerBound and UpperBound to a register.
BNDMOV Store to memory of the LowerBound and UpperBound from a register.
BNDLDX Load bounds using address translation.
BNDSTX Store bounds using address translation.

5.23 INTEL® SECURITY GUARD EXTENSIONS
Intel Security Guard Extensions (SGX) provide two sets of instruction leaf functions to enable application
software to instantiate a protected container, referred to as an enclave. The enclave instructions are organized
as leaf functions under two instruction mnemonics: ENCLS (ring 0) and ENCLU (ring 3). Details of Intel SGX are
described in CHAPTER 37 through CHAPTER 43 of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3D.
The first implementation of Intel SGX is also referred to as SGX1, it is introduced with the 6th Generation Intel
Core Processors. The leaf functions supported in SGX1 is shown in Table 5-3.

Table 5-3. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1
Supervisor Instruction Description User Instruction Description

ENCLS[EADD] Add a page ENCLU[EENTER] Enter an Enclave

ENCLS[EBLOCK] Block an EPC page ENCLU[EEXIT] Exit an Enclave

ENCLS[ECREATE] Create an enclave ENCLU[EGETKEY] Create a cryptographic key

ENCLS[EDBGRD] Read data by debugger ENCLU[EREPORT] Create a cryptographic report

ENCLS[EDBGWR] Write data by debugger ENCLU[ERESUME] Re-enter an Enclave

ENCLS[EEXTEND] Extend EPC page measurement

ENCLS[EINIT] Initialize an enclave

ENCLS[ELDB] Load an EPC page as blocked

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 18

...

3. Updates to Chapter 8, Volume 1
Change bars show changes to Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

8.1.8 x87 FPU Instruction and Data (Operand) Pointers
The x87 FPU stores pointers to the instruction and data (operand) for the last non-control instruction executed.
These are the x87 FPU instruction pointer and x87 FPU data (operand) pointers; software can save these pointers
to provide state information for exception handlers. The pointers are illustrated in Figure 8-1 (the figure illus-
trates the pointers as used outside 64-bit mode; see below).

Note that the value in the x87 FPU data pointer register is always a pointer to a memory operand. If the last non-
control instruction that was executed did not have a memory operand, the value in the data pointer register is
undefined (reserved). If CPUID.(EAX=07H,ECX=0H):EBX[bit 6] = 1, the data pointer register is updated only for
x87 non-control instructions that incur unmasked x87 exceptions.

The contents of the x87 FPU instruction and data pointer registers remain unchanged when any of the following
instructions are executed: FCLEX/FNCLEX, FLDCW, FSTCW/FNSTCW, FSTSW/FNSTSW, FSTENV/FNSTENV,
FLDENV, and WAIT/FWAIT.

For all the x87 FPUs and NPXs except the 8087, the x87 FPU instruction pointer points to any prefixes that
preceded the instruction. For the 8087, the x87 FPU instruction pointer points only to the actual opcode.

The x87 FPU instruction and data pointers each consists of an offset and a segment selector. On processors that
support IA-32e mode, each offset comprises 64 bits; on other processors, each offset comprises 32 bits. Each
segment selector comprises 16 bits.

The pointers are accessed by the FINIT/FNINIT, FLDENV, FRSTOR, FSAVE/FNSAVE, FSTENV/FNSTENV, FXRSTOR,
FXSAVE, XRSTOR, XSAVE, and XSAVEOPT instructions as follows:
• FINIT/FNINIT. Each instruction clears each 64-bit offset and 16-bit segment selector.
• FLDENV, FRSTOR. These instructions use the memory formats given in Figures 8-9 through 8-12:

— For each 64-bit offset, each instruction loads the lower 32 bits from memory and clears the upper 32 bits.

— If CR0.PE = 1, each instruction loads each 16-bit segment selector from memory; otherwise, it clears
each 16-bit segment selector.

• FSAVE/FNSAVE, FSTENV/FNSTENV. These instructions use the memory formats given in Figures 8-9 through
8-12.

ENCLS[ELDU] Load an EPC page as unblocked

ENCLS[EPA] Add version array

ENCLS[EREMOVE] Remove a page from EPC

ENCLS[ETRACK] Activate EBLOCK checks

ENCLS[EWB] Write back/invalidate an EPC page

Table 5-3. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1
Supervisor Instruction Description User Instruction Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

— Each instruction saves the lower 32 bits of each 64-bit offset into memory. the upper 32 bits are not
saved.

— If CR0.PE = 1, each instruction saves each 16-bit segment selector into memory. If
CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the processor deprecates the segment selectors of the x87
FPU instruction and data pointers; it saves each segment selector as 0000H.

— After saving these data into memory, FSAVE/FNSAVE clears each 64-bit offset and 16-bit segment
selector.

• FXRSTOR, XRSTOR. These instructions load data from a memory image whose format depend on operating
mode and the REX prefix. The memory formats are given in Tables 3-52, 3-55, and 3-56 in Chapter 3,
“Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

— Outside of 64-bit mode or if REX.W = 0, the instructions operate as follows:

• For each 64-bit offset, each instruction loads the lower 32 bits from memory and clears the upper 32
bits.

• Each instruction loads each 16-bit segment selector from memory.

— In 64-bit mode with REX.W = 1, the instructions operate as follows:

• Each instruction loads each 64-bit offset from memory.

• Each instruction clears each 16-bit segment selector.
• FXSAVE, XSAVE, and XSAVEOPT. These instructions store data into a memory image whose format depend on

operating mode and the REX prefix. The memory formats are given in Tables 3-52, 3-55, and 3-56 in Chapter
3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

— Outside of 64-bit mode or if REX.W = 0, the instructions operate as follows:

• Each instruction saves the lower 32 bits of each 64-bit offset into memory. The upper 32 bits are not
saved.

• Each instruction saves each 16-bit segment selector into memory. If
CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the processor deprecates the segment selectors of the
x87 FPU instruction and data pointers; it saves each segment selector as 0000H.

— In 64-bit mode with REX.W = 1, each instruction saves each 64-bit offset into memory. The 16-bit
segment selectors are not saved.

8.1.9 Last Instruction Opcode
The x87 FPU stores in the 11-bit x87 FPU opcode register (FOP) the opcode of the last x87 non-control instruction
executed that incurred an unmasked x87 exception. (This information provides state information for exception
handlers.) Only the first and second opcode bytes (after all prefixes) are stored in the x87 FPU opcode register.
Figure 8-8 shows the encoding of these two bytes. Since the upper 5 bits of the first opcode byte are the same for
all floating-point opcodes (11011B), only the lower 3 bits of this byte are stored in the opcode register.

8.1.9.1 Fopcode Compatibility Sub-mode
Some Pentium 4 and Intel Xeon processors provide program control over the value stored into FOP. Here, bit 2 of
the IA32_MISC_ENABLE MSR enables (set) or disables (clear) the fopcode compatibility mode.

If fopcode compatibility mode is enabled, FOP is defined as it had been in previous IA-32 implementations, as the
opcode of the last x87 non-control instruction executed (even if that instruction did not incur an unmasked x87
exception).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 20

The fopcode compatibility mode should be enabled only when x87 FPU floating-point exception handlers are
designed to use the fopcode to analyze program performance or restart a program after an exception has been
handled.

More recent Intel 64 processors do not support fopcode compatibility mode and do not allow software to set bit
2 of the IA32_MISC_ENABLE MSR.

...

4. Updates to Chapter 13, Volume 1
Change bars show changes to Chapter 13 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

13.3 ENABLING THE XSAVE FEATURE SET AND XSAVE-ENABLED FEATURES
Software enables the XSAVE feature set by setting CR4.OSXSAVE[bit 18] to 1 (e.g., with the MOV to CR4 instruc-
tion). If this bit is 0, execution of any of XGETBV, XRSTOR, XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and
XSETBV causes an invalid-opcode exception (#UD).

When CR4.OSXSAVE = 1 and CPL = 0, executing the XSETBV instruction with ECX = 0 writes the 64-bit value in
EDX:EAX to XCR0 (EAX is written to XCR0[31:0] and EDX to XCR0[63:32]). (Execution of the XSETBV instruction
causes a general-protection fault — #GP — if CPL > 0.) The following items provide details regarding individual
bits in XCR0:
• XCR0[0] is associated with x87 state (see Section 13.5.1). XCR0[0] is always 1. It has that value coming out

of RESET. Executing the XSETBV instruction causes a general-protection fault (#GP) if ECX = 0 and EAX[0] is
0.

• XCR0[1] is associated with SSE state (see Section 13.5.2). Software can use the XSAVE feature set to manage
SSE state only if XCR0[1] = 1. The value of XCR0[1] in no way determines whether software can execute SSE
instructions (these instructions can be executed even if XCR0[1] = 0).
XCR0[1] is 0 coming out of RESET. As noted in Section 13.2, every processor that supports the XSAVE feature
set allows software to set XCR0[1].

• XCR0[2] is associated with AVX state (see Section 13.5.3). Software can use the XSAVE feature set to
manage AVX state only if XCR0[2] = 1. In addition, software can execute AVX instructions only if
CR4.OSXSAVE = XCR0[2] = 1. Otherwise, any execution of an AVX instruction causes an invalid-opcode
exception (#UD).

Figure 8-1. Contents of x87 FPU Opcode Registers

0

x87 FPU Opcode Register

10

0
2nd Instruction Byte

70
1st Instruction Byte

7 2

78

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 21

XCR0[2] is 0 coming out of RESET. As noted in Section 13.2, a processor allows software to set XCR0[2] if and
only if CPUID.(EAX=0DH,ECX=0):EAX[2] = 1. In addition, executing the XSETBV instruction causes a
general-protection fault (#GP) if ECX = 0 and EAX[2:1] has the value 10b; that is, software cannot enable the
XSAVE feature set for AVX state but not for SSE state.
As noted in Section 13.1, the processor will preserve AVX state unmodified if software clears XCR0[2].
However, clearing XCR0[2] while AVX state is not in its initial configuration may cause SSE instructions to
incur a power and performance penalty. See Section 13.5.3, “Enable the Use Of XSAVE Feature Set And
XSAVE State Components” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for
how system software can avoid this penalty.

• XCR0[4:3] are associated with MPX state (see Section 13.5.4). Software can use the XSAVE feature set to
manage MPX state only if XCR0[4:3] = 11b. In addition, software can execute MPX instructions only if
CR4.OSXSAVE = 1 and XCR0[4:3] = 11b. Otherwise, any execution of an MPX instruction causes an invalid-
opcode exception (#UD).1

XCR0[4:3] have value 00b coming out of RESET. As noted in Section 13.2, a processor allows software to set
XCR0[4:3] to 11b if and only if CPUID.(EAX=0DH,ECX=0):EAX[4:3] = 11b. In addition, executing the
XSETBV instruction causes a general-protection fault (#GP) if ECX = 0, EAX[4:3] is neither 00b nor 11b; that
is, software can enable the XSAVE feature set for MPX state only if it does so for both state components.
As noted in Section 13.1, the processor will preserve MPX state unmodified if software clears XCR0[4:3].

• XCR0[7:5] are associated with AVX-512 state (see Section 13.5.5). Software can use the XSAVE feature set
to manage AVX-512 state only if XCR0[7:5] = 111b. In addition, software can execute AVX-512 instructions
only if CR4.OSXSAVE = 1 and XCR0[7:5] = 111b. Otherwise, any execution of an AVX-512 instruction causes
an invalid-opcode exception (#UD).
XCR0[7:5] have value 000b coming out of RESET. As noted in Section 13.2, a processor allows software to set
XCR0[7:5] to 111b if and only if CPUID.(EAX=0DH,ECX=0):EAX[7:5] = 111b. In addition, executing the
XSETBV instruction causes a general-protection fault (#GP) if ECX = 0, EAX[7:5] is not 000b, and any bit is
clear in EAX[2:1] or EAX[7:5]; that is, software can enable the XSAVE feature set for AVX-512 state only if it
does so for all three state components, and only if it also does so for AVX state and SSE state. This implies that
the value of XCR0[7:5] is always either 000b or 111b.
As noted in Section 13.1, the processor will preserve AVX-512 state unmodified if software clears XCR0[7:5].
However, clearing XCR0[7:5] while AVX-512 state is not in its initial configuration may cause SSE and AVX
instructions to incur a power and performance penalty. See Section 13.5.3, “Enable the Use Of XSAVE Feature
Set And XSAVE State Components” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A, for how system software can avoid this penalty.

• XCR0[9] is associated with PKRU state (see Section 13.5.7). Software can use the XSAVE feature set to
manage PKRU state only if XCR0[9] = 1. The value of XCR0[9] in no way determines whether software can
use protection keys or execute other instructions that access PKRU state (these instructions can be executed
even if XCR0[9] = 0).
XCR0[9] is 0 coming out of RESET. As noted in Section 13.2, a processor allows software to set XCR0[9] if and
only if CPUID.(EAX=0DH,ECX=0):EAX[9] = 1.

• XCR0[63:10] and XCR0[8] are reserved.2 Executing the XSETBV instruction causes a general-protection fault
(#GP) if ECX = 0 and any corresponding bit in EDX:EAX is not 0. These bits in XCR0 are all 0 coming out of
RESET.

Software operating with CPL > 0 may need to determine whether the XSAVE feature set and certain XSAVE-
enabled features have been enabled. If CPL > 0, execution of the MOV from CR4 instruction causes a general-
protection fault (#GP). The following alternative mechanisms allow software to discover the enabling of the
XSAVE feature set regardless of CPL:

1. If XCR0[3] = 0, executions of CALL, RET, JMP, and Jcc do not initialize the bounds registers.

2. Bit 8 corresponds to a supervisor state component. Since bits can be set in XCR0 only for user state components, that bit of XCR0
must be 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 22

• The value of CR4.OSXSAVE is returned in CPUID.1:ECX.OSXSAVE[bit 27]. If software determines that
CPUID.1:ECX.OSXSAVE = 1, the processor supports the XSAVE feature set and the feature set has been
enabled in CR4.

• Executing the XGETBV instruction with ECX = 0 returns the value of XCR0 in EDX:EAX. XGETBV can be
executed if CR4.OSXSAVE = 1 (if CPUID.1:ECX.OSXSAVE = 1), regardless of CPL.

Thus, software can use the following algorithm to determine the support and enabling for the XSAVE feature set:

1. Use CPUID to discover the value of CPUID.1:ECX.OSXSAVE.

— If the bit is 0, either the XSAVE feature set is not supported by the processor or has not been enabled by
software. Either way, the XSAVE feature set is not available, nor are XSAVE-enabled features such as AVX.

— If the bit is 1, the processor supports the XSAVE feature set — including the XGETBV instruction — and it
has been enabled by software. The XSAVE feature set can be used to manage x87 state (because XCR0[0]
is always 1). Software requiring more detailed information can go on to the next step.

2. Execute XGETBV with ECX = 0 to discover the value of XCR0. If XCR0[1] = 1, the XSAVE feature set can be
used to manage SSE state. If XCR0[2] = 1, the XSAVE feature set can be used to manage AVX state and
software can execute AVX instructions. If XCR0[4:3] is 11b, the XSAVE feature set can be used to manage
MPX state and software can execute MPX instructions. If XCR0[7:5] is 111b, the XSAVE feature set can be
used to manage AVX-512 state and software can execute AVX-512 instructions. If XCR0[9] = 1, the XSAVE
feature set can be used to manage PKRU state.

The IA32_XSS MSR (with MSR index DA0H) is zero coming out of RESET. If CR4.OSXSAVE = 1,
CPUID.(EAX=0DH,ECX=1):EAX[3] = 1, and CPL = 0, executing the WRMSR instruction with ECX = DA0H writes
the 64-bit value in EDX:EAX to the IA32_XSS MSR (EAX is written to IA32_XSS[31:0] and EDX to
IA32_XSS[63:32]). The following items provide details regarding individual bits in the IA32_XSS MSR:
• IA32_XSS[8] is associated with PT state (see Section 13.5.6). Software can use XSAVES and XRSTORS to

manage PT state only if IA32_XSS[8] = 1. The value of IA32_XSS[8] does not determine whether software
can use Intel Processor Trace (the feature can be used even if IA32_XSS[8] = 0).

• IA32_XSS[63:9] and IA32_XSS[7:0] are reserved.1 Executing the WRMSR instruction causes a general-
protection fault (#GP) if ECX = DA0H and any corresponding bit in EDX:EAX is not 0. These bits in XCR0 are
all 0 coming out of RESET.

The IA32_XSS MSR is 0 coming out of RESET.

There is no mechanism by which software operating with CPL > 0 can discover the value of the IA32_XSS MSR.

...

5. Updates to Chapter 15, Volume 1
Change bars show changes to Chapter 15 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

--

15.3.8.1 Instruction Based Considerations
Programmers can use any instruction safely inside a transactional region. Further, programmers can use the Intel
TSX instructions and prefixes at any privilege level. However, some instructions will always abort the transactional
execution and cause execution to seamlessly and safely transition to a non-transactional path.

1. Bit 9 and bits 7:0 correspond to user state components. Since bits can be set in the IA32_XSS MSR only for supervisor state com-
ponents, those bits of the MSR must be 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 23

Intel TSX allows for most common instructions to be used inside transactional regions without causing aborts. The
following operations inside a transactional region do not typically cause an abort.
• Operations on the instruction pointer register, general purpose registers (GPRs) and the status flags (CF, OF,

SF, PF, AF, and ZF).
• Operations on XMM and YMM registers and the MXCSR register
However, programmers must be careful when intermixing SSE and AVX operations inside a transactional region.
Intermixing SSE instructions accessing XMM registers and AVX instructions accessing YMM registers may cause
transactional regions to abort.
CLD and STD instructions when used inside transactional regions may cause aborts if they change the value of the
DF flag. However, if DF is 1, the STD instruction will not cause an abort. Similarly, if DF is 0, the CLD instruction
will not cause an abort.
Instructions not enumerated here as causing abort when used inside a transactional region will typically not cause
the execution to abort (examples include but are not limited to MFENCE, LFENCE, SFENCE, RDTSC, RDTSCP, etc.).
The following instructions will abort transactional execution on any implementation:
• XABORT
• CPUID
• PAUSE
In addition, in some implementations, the following instructions may always cause transactional aborts. These
instructions are not expected to be commonly used inside typical transactional regions. However, programmers
must not rely on these instructions to force a transactional abort, since whether they cause transactional aborts
is implementation dependent.
• Operations on X87 and MMX architecture state. This includes all MMX and X87 instructions, including the

FXRSTOR and FXSAVE instructions.
• Update to non-status portion of EFLAGS: CLI, STI, POPFD, POPFQ.
• Instructions that update segment registers, debug registers and/or control registers: MOV to DS/ES/FS/GS/

SS, POP DS/ES/FS/GS/SS, LDS, LES, LFS, LGS, LSS, SWAPGS, WRFSBASE, WRGSBASE, LGDT, SGDT, LIDT,
SIDT, LLDT, SLDT, LTR, STR, Far CALL, Far JMP, Far RET, IRET, MOV to DRx, MOV to CR0/CR2/CR3/CR4/CR8,
CLTS and LMSW.

• Ring transitions: SYSENTER, SYSCALL, SYSEXIT, and SYSRET.
• TLB and Cacheability control: CLFLUSH, CLFLUSHOPT, INVD, WBINVD, INVLPG, INVPCID, and memory

instructions with a non-temporal hint (V/MOVNTDQA, V/MOVNTDQ, V/MOVNTI, V/MOVNTPD, V/MOVNTPS, V/
MOVNTQ, V/MASKMOVQ, and V/MASKMOVDQU).

• Processor state save: XSAVE, XSAVEOPT, and XRSTOR.
• Interrupts: INTn, INTO.
• IO: IN, INS, REP INS, OUT, OUTS, REP OUTS and their variants.
• VMX: VMPTRLD, VMPTRST, VMCLEAR, VMREAD, VMWRITE, VMCALL, VMLAUNCH, VMRESUME, VMXOFF,

VMXON, INVEPT, INVVPID, and VMFUNC.
• SMX: GETSEC.
• UD2, RSM, RDMSR, WRMSR, HLT, MONITOR, MWAIT, XSETBV, VZEROUPPER, MASKMOVQ, and V/

MASKMOVDQU.

15.3.8.2 Runtime Considerations
In addition to the instruction-based considerations, runtime events may cause transactional execution to abort.
These may be due to data access patterns or micro-architectural implementation causes. Keep in mind that the
following list is not a comprehensive discussion of all abort causes.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 24

Any fault or trap in a transactional region that must be exposed to software will be suppressed. Transactional
execution will abort and execution will transition to a non-transactional execution, as if the fault or trap had never
occurred. If any exception is not masked, that will result in a transactional abort and it will be as if the exception
had never occurred.
When executed in VMX non-root operation, certain instructions may result in a VM exit. When such instructions
are executed inside a transactional region, then instead of causing a VM exit, they will cause a transactional abort
and the execution will appear as if instruction that would have caused a VM exit never executed.
Synchronous exception events (#DE, #OF, #NP, #SS, #GP, #BR, #UD, #AC, #XM, #PF, #NM, #TS, #MF, #DB,
#BP/INT3) that occur during transactional execution may cause an execution not to commit transactionally, and
require a non-transactional execution. These events are suppressed as if they had never occurred. With HLE,
since the non-transactional code path is identical to the transactional code path, these events will typically re-
appear when the instruction that caused the exception is re-executed non-transactionally, causing the associated
synchronous events to be delivered appropriately in the non-transactional execution. The same behavior also
applies to synchronous events (EPT violations, EPT misconfigurations, and accesses to the APIC-access page) that
occur in VMX non-root operation.
Asynchronous events (NMI, SMI, INTR, IPI, PMI, etc.) occurring during transactional execution may cause the
transactional execution to abort and transition to a non-transactional execution. The asynchronous events will be
pended and handled after the transactional abort is processed. The same behavior also applies to asynchronous
events (VMX-preemption timer expiry, virtual-interrupt delivery, and interrupt-window exiting) that occur in VMX
non-root operation.
Transactional execution only supports write-back cacheable memory type operations. A transactional region may
always abort if it includes operations on any other memory type. This includes instruction fetches to UC memory
type.
Memory accesses within a transactional region may require the processor to set the Accessed and Dirty flags of
the referenced page table entry. The behavior of how the processor handles this is implementation specific. Some
implementations may allow the updates to these flags to become externally visible even if the transactional
region subsequently aborts. Some Intel TSX implementations may choose to abort the transactional execution if
these flags need to be updated. Further, a processor's page-table walk may generate accesses to its own transac-
tionally written but uncommitted state. Some Intel TSX implementations may choose to abort the execution of a
transactional region in such situations. Regardless, the architecture ensures that, if the transactional region
aborts, then the transactionally written state will not be made architecturally visible through the behavior of
structures such as TLBs.
Executing self-modifying code transactionally may also cause transactional aborts. Programmers must continue
to follow the Intel recommended guidelines for writing self-modifying and cross-modifying code even when
employing Intel TSX.
While an Intel TSX implementation will typically provide sufficient resources for executing common transactional
regions, implementation constraints and excessive sizes for transactional regions may cause a transactional
execution to abort and transition to a non-transactional execution. The architecture provides no guarantee of the
amount of resources available to do transactional execution and does not guarantee that a transactional execu-
tion will ever succeed.
Conflicting requests to a cache line accessed within a transactional region may prevent the transactional region
from executing successfully. For example, if logical processor P0 reads line A in a transactional region and another
logical processor P1 writes A (either inside or outside a transactional region) then logical processor P0 may abort
if logical processor P1’s write interferes with processor P0's ability to execute transactionally. Similarly, if P0 writes
line A in a transactional region and P1reads or writes A (either inside or outside a transactional region), then P0
may abort if P1's access to A interferes with P0's ability to execute transactionally. In addition, other coherence
traffic may at times appear as conflicting requests and may cause aborts. While these false conflicts may happen,
they are expected to be uncommon. The conflict resolution policy to determine whether P0 or P1 aborts in the
above scenarios is implementation specific.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 25

...

6. Updates to Chapter 1, Volume 2A
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-M.

--
...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Core™2 Extreme QX9000 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 26

• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• The Intel® Core™ M processor family
• Intel® Core™ i7-59xx Processor Extreme Edition
• Intel® Core™ i7-49xx Processor Extreme Edition
• Intel® Xeon® processor E3-1200 v3 product family
• Intel® Xeon® processor E5-2600/1600 v3 product families
• 5th generation Intel® Core™ processors
• Intel® Atom™ processor Z8000 series
• Intel® Atom™ processor Z3400 series
• Intel® Atom™ processor Z3500 series
• 6th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1500m v5 product family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on
Enhanced Intel® Core™ microarchitecture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture and supports Intel 64 archi-
tecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel®
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32nm version of
Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and
various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These
processors support Intel 64 architecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2
product family and 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code name
Ivy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Intel® microarchitecture
code name Ivy Bridge-E and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

The Intel® Core™ M processor family and 5th generation Intel® Core™ processors are based on the Intel® micro-
architecture code name Broadwell and support Intel 64 architecture.

The Intel® Xeon® processor E3-1500m v5 product family and 6th generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Skylake and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Intel® microarchitecture code name Haswell-E and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Intel microarchitecture code name Airmont.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Intel
microarchitecture code name Silvermont.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors,
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel®
64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is a
superset of and compatible with IA-32 architecture.

...

7. Updates to Chapter 3, Volume 2A
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-M.

--
...

CLFLUSH—Flush Cache Line
Opcode Instruction Op/

En
64-bit
Mode

Compat/
Leg Mode

Description

0F AE /7 CLFLUSH m8 M Valid Valid Flushes cache line containing m8.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 28

Instruction Operand Encoding

Description

Invalidates from every level of the cache hierarchy in the cache coherence domain the cache line that contains the
linear address specified with the memory operand. If that cache line contains modified data at any level of the
cache hierarchy, that data is written back to memory. The source operand is a byte memory location.

The availability of CLFLUSH is indicated by the presence of the CPUID feature flag CLFSH
(CPUID.01H:EDX[bit 19]). The aligned cache line size affected is also indicated with the CPUID instruction (bits 8
through 15 of the EBX register when the initial value in the EAX register is 1).

The memory attribute of the page containing the affected line has no effect on the behavior of this instruction. It
should be noted that processors are free to speculatively fetch and cache data from system memory regions
assigned a memory-type allowing for speculative reads (such as, the WB, WC, and WT memory types).
PREFETCHh instructions can be used to provide the processor with hints for this speculative behavior. Because
this speculative fetching can occur at any time and is not tied to instruction execution, the CLFLUSH instruction is
not ordered with respect to PREFETCHh instructions or any of the speculative fetching mechanisms (that is, data
can be speculatively loaded into a cache line just before, during, or after the execution of a CLFLUSH instruction
that references the cache line).

Executions of the CLFLUSH instruction are ordered with respect to each other and with respect to writes, locked
read-modify-write instructions, fence instructions, and executions of CLFLUSHOPT to the same cache line.1 They
are not ordered with respect to executions of CLFLUSHOPT to different cache lines.

The CLFLUSH instruction can be used at all privilege levels and is subject to all permission checking and faults
associated with a byte load (and in addition, a CLFLUSH instruction is allowed to flush a linear address in an
execute-only segment). Like a load, the CLFLUSH instruction sets the A bit but not the D bit in the page tables.
In some implementations, the CLFLUSH instruction may always cause transactional abort with Transactional
Synchronization Extensions (TSX). The CLFLUSH instruction is not expected to be commonly used inside typical
transactional regions. However, programmers must not rely on CLFLUSH instruction to force a transactional abort,
since whether they cause transactional abort is implementation dependent.
The CLFLUSH instruction was introduced with the SSE2 extensions; however, because it has its own CPUID
feature flag, it can be implemented in IA-32 processors that do not include the SSE2 extensions. Also, detecting
the presence of the SSE2 extensions with the CPUID instruction does not guarantee that the CLFLUSH instruction
is implemented in the processor.

CLFLUSH operation is the same in non-64-bit modes and 64-bit mode.

Operation

Flush_Cache_Line(SRC);

Intel C/C++ Compiler Intrinsic Equivalents

CLFLUSH: void _mm_clflush(void const *p)

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

1. Earlier versions of this manual specified that executions of the CLFLUSH instruction were ordered only by the MFENCE instruction.
All processors implementing the CLFLUSH instruction also order it relative to the other operations enumerated above.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.
If an instruction prefix F2H or F3H is used.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.
#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.
If an instruction prefix F2H or F3H is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.
If an instruction prefix F2H or F3H is used.

...

CLFLUSHOPT—Flush Cache Line Optimized

Instruction Operand Encoding

Description

Invalidates from every level of the cache hierarchy in the cache coherence domain the cache line that contains the
linear address specified with the memory operand. If that cache line contains modified data at any level of the
cache hierarchy, that data is written back to memory. The source operand is a byte memory location.

The availability of CLFLUSHOPT is indicated by the presence of the CPUID feature flag CLFLUSHOPT
(CPUID.(EAX=7,ECX=0):EBX[bit 23]). The aligned cache line size affected is also indicated with the CPUID
instruction (bits 8 through 15 of the EBX register when the initial value in the EAX register is 1).

Opcode Instruction Op/
En

64-bit
Mode

Compat/
Leg Mode

Description

66 0F AE /7 CLFLUSHOPT m8 M Valid Valid Flushes cache line containing m8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 30

The memory attribute of the page containing the affected line has no effect on the behavior of this instruction. It
should be noted that processors are free to speculatively fetch and cache data from system memory regions
assigned a memory-type allowing for speculative reads (such as, the WB, WC, and WT memory types).
PREFETCHh instructions can be used to provide the processor with hints for this speculative behavior. Because
this speculative fetching can occur at any time and is not tied to instruction execution, the CLFLUSH instruction is
not ordered with respect to PREFETCHh instructions or any of the speculative fetching mechanisms (that is, data
can be speculatively loaded into a cache line just before, during, or after the execution of a CLFLUSH instruction
that references the cache line).

Executions of the CLFLUSHOPT instruction are ordered with respect to fence instructions and to locked read-
modify-write instructions; they are also ordered with respect to the following accesses to the cache line being
invalidated: writes, executions of CLFLUSH, and executions of CLFLUSHOPT. They are not ordered with respect to
writes, executions of CLFLUSH, or executions of CLFLUSHOPT that access other cache lines; to enforce ordering
with such an operation, software can insert an SFENCE instruction between CFLUSHOPT and that operation.

The CLFLUSHOPT instruction can be used at all privilege levels and is subject to all permission checking and faults
associated with a byte load (and in addition, a CLFLUSHOPT instruction is allowed to flush a linear address in an
execute-only segment). Like a load, the CLFLUSHOPT instruction sets the A bit but not the D bit in the page
tables.
In some implementations, the CLFLUSHOPT instruction may always cause transactional abort with Transactional
Synchronization Extensions (TSX). The CLFLUSHOPT instruction is not expected to be commonly used inside
typical transactional regions. However, programmers must not rely on CLFLUSHOPT instruction to force a trans-
actional abort, since whether they cause transactional abort is implementation dependent.

CLFLUSHOPT operation is the same in non-64-bit modes and 64-bit mode.

Operation

Flush_Cache_Line_Optimized(SRC);

Intel C/C++ Compiler Intrinsic Equivalents

CLFLUSHOPT:void _mm_clflushopt(void const *p)

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#UD If CPUID.(EAX=7,ECX=0):EBX.CLFLUSHOPT[bit 23] = 0.

If the LOCK prefix is used.
If an instruction prefix F2H or F3H is used.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.
#UD If CPUID.(EAX=7,ECX=0):EBX.CLFLUSHOPT[bit 23] = 0.

If the LOCK prefix is used.
If an instruction prefix F2H or F3H is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 31

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#UD If CPUID.(EAX=7,ECX=0):EBX.CLFLUSHOPT[bit 23] = 0.

If the LOCK prefix is used.
If an instruction prefix F2H or F3H is used.

...

CMPSS—Compare Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Compares the low single-precision floating-point values in the source operand (second operand) and the destina-
tion operand (first operand) and returns the results of the comparison to the destination operand. The comparison
predicate operand (third operand) specifies the type of comparison performed. The comparison result is a double-
word mask of all 1s (comparison true) or all 0s (comparison false). The sign of zero is ignored for comparisons, so
that –0.0 is equal to +0.0.
128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The
second source operand (second operand) can be an XMM register or 32-bit memory location. The comparison
predicate operand is an 8-bit immediate, bits 2:0 of the immediate define the type of comparison to be performed
(see Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:32) of the corresponding YMM destination
register remain unchanged.

The unordered relationship is true when at least one of the two source operands being compared is a NaN; the
ordered relationship is true when neither source operand is a NaN

A subsequent computational instruction that uses the mask result in the destination operand as an input operand
will not generate a fault, since a mask of all 0s corresponds to a floating-point value of +0.0 and a mask of all 1s
corresponds to a QNaN.

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

F3 0F C2 /r ib

CMPSS xmm1, xmm2/m32, imm8

RMI V/V SSE Compare low single-precision floating-point
value in xmm2/m32 and xmm1 using imm8 as
comparison predicate.

VEX.NDS.LIG.F3.0F.WIG C2 /r ib

VCMPSS xmm1, xmm2, xmm3/m32, imm8

RVMI V/V AVX Compare low single precision floating-point
value in xmm3/m32 and xmm2 using bits 4:0
of imm8 as comparison predicate.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 32

Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-than”, “greater-than-or-
equal”, “not-greater than”, and “not-greater-than-or-equal relations” predicates. These comparisons can be made
either by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than”
comparison) or by using software emulation. When using software emulation, the program must swap the oper-
ands (copying registers when necessary to protect the data that will now be in the destination operand), and then
perform the compare using a different predicate. The predicate to be used for these emulations is listed in Table
3-7 under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-
operand CMPSS instruction, for processors with “CPUID.1H:ECX.AVX =0”. See Table 3-15. Compiler should treat
reserved Imm8 values as illegal syntax.
...

CPUID—CPU Identification

Instruction Operand Encoding

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can
set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction
operates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.1 The
instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well).
For example, the following pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value
and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Table 3-17 shows information returned, depending on the initial value loaded into the EAX register. Table 3-18
shows the maximum CPUID input value recognized for each family of IA-32 processors on which CPUID is imple-
mented.

Two types of information are returned: basic and extended function information. If a value entered for CPUID.EAX
is higher than the maximum input value for basic or extended function for that processor then the data for the
highest basic information leaf is returned. For example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *)
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *)
CPUID.EAX = 0BH (* Returns Extended Topology Enumeration leaf. *)
CPUID.EAX = 0CH (* INVALID: Returns the same information as CPUID.EAX = 0BH. *)

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F A2 CPUID NP Valid Valid Returns processor identification and feature
information to the EAX, EBX, ECX, and EDX
registers, as determined by input entered in
EAX (in some cases, ECX as well).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 33

CPUID.EAX = 80000008H (* Returns linear/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0BH. *)

If a value entered for CPUID.EAX is less than or equal to the maximum input value and the leaf is not supported
on that processor then 0 is returned in all the registers. For example, using the Intel Core i7 processor, the
following is true:

CPUID.EAX = 07H (*Returns EAX=EBX=ECX=EDX=0. *)

When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence
on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution
guarantees that any modifications to flags, registers, and memory for previous instructions are completed before
the next instruction is fetched and executed.

See also:

“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A.

“Caching Translation Information” in Chapter 4, “Paging,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

Table 3-17. Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 3-18)
“Genu”
“ntel”
“ineI”

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see Figure 3-6)

Bits 07-00: Brand Index
Bits 15-08: CLFLUSH line size (Value ∗ 8 = cache line size in bytes; used also by CLFLUSHOPT)
Bits 23-16: Maximum number of addressable IDs for logical processors in this physical package*.
Bits 31-24: Initial APIC ID

Feature Information (see Figure 3-7 and Table 3-19)
Feature Information (see Figure 3-8 and Table 3-20)

NOTES:
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the number of unique initial APIC

IDs reserved for addressing different logical processors in a physical package. This field is only valid if
CPUID.1.EDX.HTT[bit 28]= 1.

02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 3-21)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX
EBX
ECX

EDX

Reserved.
Reserved.
Bits 00-31 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value
in this register is reserved.)
Bits 32-63 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value
in this register is reserved.)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 34

NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models, use
the PSN flag (returned using CPUID) to check for PSN support before accessing the feature.

CPUID leaves > 3 < 80000000 are visible only when IA32_MISC_ENABLE.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf

04H NOTES:
Leaf 04H output depends on the initial value in ECX.*
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters for each level on page 3-200.

EAX Bits 04-00: Cache Type Field
0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Bits 07-05: Cache Level (starts at 1)
Bit 08: Self Initializing cache level (does not need SW initialization)
Bit 09: Fully Associative cache

Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache**, ***
Bits 31-26: Maximum number of addressable IDs for processor cores in the physical
package**, ****, *****

EBX Bits 11-00: L = System Coherency Line Size**
Bits 21-12: P = Physical Line partitions**
Bits 31-22: W = Ways of associativity**

ECX Bits 31-00: S = Number of Sets**

EDX Bit 0: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads sharing this
cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads sharing
this cache.

Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 2: Complex Cache Indexing
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using all address bits.

Bits 31-03: Reserved = 0

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 35

NOTES:
* If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n+1 is invalid if sub-

leaf n returns EAX[4:0] as 0.
** Add one to the return value to get the result.
***The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique ini-

tial APIC IDs reserved for addressing different logical processors sharing this cache
**** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of unique

Core_IDs reserved for addressing different processor cores in a physical package. Core ID is a subset of
bits of the initial APIC ID.

***** The returned value is constant for valid initial values in ECX. Valid ECX values start from 0.

MONITOR/MWAIT Leaf

05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor granularity)
Bits 31-16: Reserved = 0

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor granularity)
Bits 31-16: Reserved = 0

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported

Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled

Bits 31 - 02: Reserved

EDX Bits 03 - 00: Number of C0* sub C-states supported using MWAIT
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 23 - 20: Number of C5* sub C-states supported using MWAIT
Bits 27 - 24: Number of C6* sub C-states supported using MWAIT
Bits 31 - 28: Number of C7* sub C-states supported using MWAIT
NOTE:
* The definition of C0 through C7 states for MWAIT extension are processor-specific C-states, not ACPI C-

states.

Thermal and Power Management Leaf

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 36

06H EAX

EBX

Bit 00: Digital temperature sensor is supported if set
Bit 01: Intel Turbo Boost Technology Available (see description of IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bit 07: HWP. HWP base registers (IA32_PM_ENABLE[bit 0], IA32_HWP_CAPABILITIES,
IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set.
Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set.
Bit 09: HWP_Activity_Window. IA32_HWP_REQUEST[bits 41:32] is supported if set.
Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUEST[bits 31:24] is supported if set.
Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set.
Bit 12: Reserved.
Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs are
supported if set.
Bits 31 - 15: Reserved
Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The
capability to provide a measure of delivered processor performance (since last reset of the counters), as
a percentage of the expected processor performance when running at the TSC frequency.
Bits 02 - 01: Reserved = 0
Bit 03: The processor supports performance-energy bias preference if CPUID.06H:ECX.SETBH[bit 3] is set
and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H).
Bits 31 - 04: Reserved = 0

EDX Reserved = 0

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)

07H Sub-leaf 0 (Input ECX = 0). *

EAX Bits 31-00: Reports the maximum input value for supported leaf 7 sub-leaves.

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 37

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01: IA32_TSC_ADJUST MSR is supported if 1.
Bit 02: Reserved
Bit 03: BMI1
Bit 04: HLE
Bit 05: AVX2
Bit 06: Reserved
Bit 07: SMEP. Supports Supervisor-Mode Execution Prevention if 1.
Bit 08: BMI2
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software that manages process-context
identifiers.
Bit 11: RTM
Bit 12: Supports Platform Quality of Service Monitoring (PQM) capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.
Bit 14: MPX. Supports Intel® Memory Protection Extensions if 1.
Bit 15: Supports Platform Quality of Service Enforcement (PQE) capability if 1.
Bits 17:16: Reserved
Bit 18: RDSEED
Bit 19: ADX
Bit 20: SMAP. Supports Supervisor-Mode Access Prevention (and the CLAC/STAC instructions) if 1.
Bits 22:21: Reserved
Bit 23: CLFLUSHOPT
Bit 24: Reserved
Bit 25: Intel Processor Trace
Bits 31:26: Reserved

ECX Bit 00: PREFETCHWT1
Bits 02:01: Reserved
Bit 03: PKU. Supports protection keys for user-mode pages if 1.
Bit 04: OSPKE. If 1, OS has set CR4.PKE to enable protection keys (and the RDPKRU/WRPKRU instructions)
Bits 31:05: Reserved

EDX Reserved

NOTE:
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n

exceeds the value that sub-leaf 0 returns in EAX.

Direct Cache Access Information Leaf

09H EAX

EBX

ECX

EDX

Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H)

Reserved

Reserved

Reserved

Architectural Performance Monitoring Leaf

0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring counter
Bits 31 - 24: Length of EBX bit vector to enumerate architectural performance monitoring events

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 38

EBX Bit 00: Core cycle event not available if 1
Bit 01: Instruction retired event not available if 1
Bit 02: Reference cycles event not available if 1
Bit 03: Last-level cache reference event not available if 1
Bit 04: Last-level cache misses event not available if 1
Bit 05: Branch instruction retired event not available if 1
Bit 06: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

ECX Reserved = 0

EDX Bits 04 - 00: Number of fixed-function performance counters (if Version ID > 1)
Bits 12- 05: Bit width of fixed-function performance counters (if Version ID > 1)
Reserved = 0

Extended Topology Enumeration Leaf

0BH NOTES:
Most of Leaf 0BH output depends on the initial value in ECX.
The EDX output of leaf 0BH is always valid and does not vary with input value in ECX.
Output value in ECX[7:0] always equals input value in ECX[7:0].
For sub-leaves that return an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0.

 If an input value n in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with ECX >
n also return 0 in ECX[15:8].

EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type*.
All logical processors with the same next level ID share current level.
Bits 31-05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as shipped
by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input
Bits 15 - 08: Level type***.
Bits 31 - 16:: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in this
field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical processors
available to BIOS/OS/Applications may be different from the value of EBX[15:0], depending on software
and platform hardware configurations.

*** The value of the “level type” field is not related to level numbers in any way, higher “level type” val-
ues do not mean higher levels. Level type field has the following encoding:
0: invalid
1: SMT
2: Core
3-255: Reserved

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 39

Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0).

EAX Bits 31-00: Reports the supported bits of the lower 32 bits of XCR0. XCR0[n] can be set to 1 only if
EAX[n] is 1.
Bit 00: x87 state
Bit 01: SSE state
Bit 02: AVX state
Bits 04 - 03: MPX state
Bit 07 - 05: AVX-512 state
Bit 08: Used for IA32_XSS
Bit 09: PKRU state
Bits 31-10: Reserved

EBX Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by
enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save area
are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the XSAVE/
XRSTOR save area required by all supported features in the processor, i.e all the valid bit fields in XCR0.

EDX Bit 31-00: Reports the supported bits of the upper 32 bits of XCR0. XCR0[n+32] can be set to 1 only if
EDX[n] is 1.
Bits 31- 00: Reserved

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

0DH EAX Bit 00: XSAVEOPT is available
Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set
Bit 02: Supports XGETBV with ECX = 1 if set
Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set
Bits 31-04: Reserved

EBX Bits 31-00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.

ECX Bits 31-00: Reports the supported bits of the lower 32 bits of the IA32_XSS MSR. IA32_XSS[n] can be
set to 1 only if ECX[n] is 1.
Bits 07-00: Used for XCR0
Bit 08: PT state
Bit 09: Used for XCR0
Bits 31-10: Reserved

EDX Bits 31-00: Reports the supported bits of the upper 32 bits of the IA32_XSS MSR. IA32_XSS[n+32] can
be set to 1 only if EDX[n] is 1.
Bits 31-00: Reserved

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 40

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX.
Each sub-leaf index (starting at position 2) is supported if it corresponds to a supported bit in either the
XCR0 register or the IA32_XSS MSR.
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf n (0 ≤ n ≤ 31) is invalid

if sub-leaf 0 returns 0 in EAX[n] and sub-leaf 1 returns 0 in ECX[n]. Sub-leaf n (32 ≤ n ≤ 63) is invalid if
sub-leaf 0 returns 0 in EDX[n-32] and sub-leaf 1 returns 0 in EDX[n-32].

EAX Bits 31-0: The size in bytes (from the offset specified in EBX) of the save area for an extended state fea-
ture associated with a valid sub-leaf index, n.

EBX Bits 31-0: The offset in bytes of this extended state component’s save area from the beginning of the
XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, does not map to a valid bit in the XCR0 register*.

ECX Bit 0 is set if the bit n (corresponding to the sub-leaf index) is supported in the IA32_XSS MSR; it is clear
if bit n is instead supported in XCR0.
Bit 1 is set if, when the compacted format of an XSAVE area is used, this extended state component
located on the next 64-byte boundary following the preceding state component (otherwise, it is located
immediately following the preceding state component).
Bits 31:02 are reserved.
This field reports 0 if the sub-leaf index, n, is invalid*.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Platform QoS Monitoring Enumeration Sub-leaf (EAX = 0FH, ECX = 0)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX.
Sub-leaf index 0 reports valid resource type starting at bit position 1 of EDX

EAX Reserved.

EBX Bits 31-0: Maximum range (zero-based) of RMID within this physical processor of all types.

ECX Reserved.

EDX Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS Monitoring if 1.
Bits 31:02: Reserved

L3 Cache QoS Monitoring Capability Enumeration Sub-leaf (EAX = 0FH, ECX = 1)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX.

EAX Reserved.

EBX Bits 31-0: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes).

ECX Maximum range (zero-based) of RMID of this resource type.

EDX Bit 00: Supports L3 occupancy monitoring if 1.
Bits 31:01: Reserved

Platform QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = 0)

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 41

10H NOTES:
Leaf 10H output depends on the initial value in ECX.
Sub-leaf index 0 reports valid resource identification (ResID) starting at bit position 1 of EBX

EAX Reserved.

EBX Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS Enforcement if 1.
Bits 31:02: Reserved

ECX Reserved.

EDX Reserved.

L3 Cache QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = ResID =1)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.

EAX Bits 4:0: Length of the capacity bit mask for the corresponding ResID.
Bits 31:05: Reserved

EBX Bits 31-0: Bit-granular map of isolation/contention of allocation units.

ECX Bit 00: Reserved.
Bit 01: Updates of COS should be infrequent if 1.
Bit 02: Code and Data Prioritization Technology supported if 1.
Bits 31:03: Reserved

EDX Bits 15:0: Highest COS number supported for this ResID.
Bits 31:16: Reserved

Intel Processor Trace Enumeration Main Leaf (EAX = 14H, ECX = 0)

14H NOTES:
Leaf 14H main leaf (ECX = 0).

EAX Bits 31:0: Reports the maximum number sub-leaves that are supported in leaf 14H.

EBX Bit 00: If 1, Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that IA32_RTIT_CR3_MATCH
MSR can be accessed.
Bits 01: If 1, Indicates support of Configurable PSB and Cycle-Accurate Mode.
Bits 02: If 1, Indicates support of IP Filtering, TraceStop filtering, and preservation of Intel PT MSRs across
warm reset.
Bits 03: If 1, Indicates support of MTC timing packet and suppression of COFI-based packets.
Bits 31: 04: Reserved

ECX Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output
scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
Bit 01: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the Mas-
kOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.
Bits 02: If 1, Indicates support of Single-Range Output scheme.
Bits 03: If 1, Indicates support of output to Trace Transport subsystem.
Bit 30:04: Reserved
Bit 31: If 1, Generated packets which contain IP payloads have LIP values, which include the CS base com-
ponent.

EDX Bits 31- 00: Reserved

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 42

Intel Processor Trace Enumeration Sub-leaf (EAX = 14H, ECX = 1)

14H EAX Bits 2:0: Number of configurable Address Ranges for filtering.
Bits 15-03: Reserved
Bit 31:16: Bitmap of supported MTC period encodings

EBX Bits 15-0: Bitmap of supported Cycle Threshold value encodings
Bit 31:16: Bitmap of supported Configurable PSB frequency encodings

ECX Bits 31-00: Reserved

EDX Bits 31- 00: Reserved

Time Stamp Counter/Core Crystal Clock Information-leaf

15H NOTES:
If EBX[31:0] is 0, the TSC/”core crystal clock” ratio is not enumerated.
EBX[31:0]/EAX[31:0] indicates the ratio of the TSC frequency and the core crystal clock frequency.
“TSC frequency” = “core crystal clock frequency” * EBX/EAX.
The core crystal clock may differ from the reference clock, bus clock, or core clock frequencies.

EAX Bits 31:0: An unsigned integer which is the denominator of the TSC/”core crystal clock” ratio.

EBX Bits 31-0: An unsigned integer which is the numerator of the TSC/”core crystal clock” ratio.

ECX Bits 31:0: Reserved = 0.

EDX Bits 31:0: Reserved = 0.

Processor Frequency Information Leaf

16H EAX

EBX

ECX

EDX

Bits 15:0: Processor Base Frequency (in MHz).
Bits 31:16: Reserved =0
Bits 15:0: Maximum Frequency (in MHz).
Bits 31:16: Reserved = 0
Bits 15:0: Bus (Reference) Frequency (in MHz).
Bits 31:16: Reserved = 0
Reserved
NOTES:
* Data is returned from this interface in accordance with the processor's specification and does not reflect
actual values. Suitable use of this data includes the display of processor information in like manner to the
processor brand string and for determining the appropriate range to use when displaying processor
information e.g. frequency history graphs. The returned information should not be used for any other
purpose as the returned information does not accurately correlate to information / counters returned by
other processor interfaces.

While a processor may support the Processor Frequency Information leaf, fields that return a value of
zero are not supported.

Unimplemented CPUID Leaf Functions

40000000H
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or feature information if the initial
EAX value is in the range 40000000H to 4FFFFFFFH.

Extended Function CPUID Information

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 43

80000000H EAX Maximum Input Value for Extended Function CPUID Information (see
Table 3-18).

EBX
ECX
EDX

Reserved
Reserved
Reserved

80000001H EAX

EBX

ECX

Extended Processor Signature and Feature Bits.

Reserved

Bit 00: LAHF/SAHF available in 64-bit mode
Bits 04-01 Reserved
Bit 05: LZCNT
Bits 07-06 Reserved
Bit 08: PREFETCHW
Bits 31-09 Reserved

EDX Bits 10-00: Reserved
Bit 11: SYSCALL/SYSRET available in 64-bit mode
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 25-21: Reserved = 0
Bit 26: 1-GByte pages are available if 1
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1
Bits 28: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H EAX
EBX

Reserved = 0
Reserved = 0

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 44

...

INPUT EAX = 01H: Returns Additional Information in EBX

When CPUID executes with EAX set to 01H, additional information is returned to the EBX register:
• Brand index (low byte of EBX) — this number provides an entry into a brand string table that contains brand

strings for IA-32 processors. More information about this field is provided later in this section.
• CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the size of the cache line

flushed by the CLFLUSH and CLFLUSHOPT instructions in 8-byte increments. This field was introduced in the
Pentium 4 processor.

• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the local APIC on the
processor during power up. This field was introduced in the Pentium 4 processor.

...

ECX

EDX

Bits 07-00: Cache Line size in bytes
Bits 11-08: Reserved
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0

NOTES:
* L2 associativity field encodings:

00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Bits 07-00: Reserved = 0
Bit 08: Invariant TSC available if 1
Bits 31-09: Reserved = 0

80000008H EAX Linear/Physical Address size
Bits 07-00: #Physical Address Bits*
Bits 15-8: #Linear Address Bits
Bits 31-16: Reserved = 0

EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported should

come from this field.

Table 3-17. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 45

IRET/IRETD—Interrupt Return

Instruction Operand Encoding

Description

Returns program control from an exception or interrupt handler to a program or procedure that was interrupted
by an exception, an external interrupt, or a software-generated interrupt. These instructions are also used to
perform a return from a nested task. (A nested task is created when a CALL instruction is used to initiate a task
switch or when an interrupt or exception causes a task switch to an interrupt or exception handler.) See the
section titled “Task Linking” in Chapter 7 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.

IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (interrupt return double) is intended
for use when returning from an interrupt when using the 32-bit operand size; however, most assemblers use the
IRET mnemonic interchangeably for both operand sizes.

In Real-Address Mode, the IRET instruction preforms a far return to the interrupted program or procedure. During
this operation, the processor pops the return instruction pointer, return code segment selector, and EFLAGS image
from the stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes execution of the interrupted
program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested task) and VM flags
in the EFLAGS register and the VM flag in the EFLAGS image stored on the current stack. Depending on the setting
of these flags, the processor performs the following types of interrupt returns:
• Return from virtual-8086 mode.
• Return to virtual-8086 mode.
• Intra-privilege level return.
• Inter-privilege level return.
• Return from nested task (task switch).

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return from the interrupt proce-
dure, without a task switch. The code segment being returned to must be equally or less privileged than the inter-
rupt handler routine (as indicated by the RPL field of the code segment selector popped from the stack).

As with a real-address mode interrupt return, the IRET instruction pops the return instruction pointer, return code
segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers, respectively, and then
resumes execution of the interrupted program or procedure. If the return is to another privilege level, the IRET
instruction also pops the stack pointer and SS from the stack, before resuming program execution. If the return
is to virtual-8086 mode, the processor also pops the data segment registers from the stack.

If the NT flag is set, the IRET instruction performs a task switch (return) from a nested task (a task called with a
CALL instruction, an interrupt, or an exception) back to the calling or interrupted task. The updated state of the
task executing the IRET instruction is saved in its TSS. If the task is re-entered later, the code that follows the
IRET instruction is executed.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

CF IRET NP Valid Valid Interrupt return (16-bit operand size).

CF IRETD NP Valid Valid Interrupt return (32-bit operand size).

REX.W + CF IRETQ NP Valid N.E. Interrupt return (64-bit operand size).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 46

If the NT flag is set and the processor is in IA-32e mode, the IRET instruction causes a general protection excep-
tion.

If nonmaskable interrupts (NMIs) are blocked (see Section 6.7.1, “Handling Multiple NMIs” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A), execution of the IRET instruction unblocks NMIs.
This unblocking occurs even if the instruction causes a fault. In such a case, NMIs are unmasked before the
exception handler is invoked.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.W prefix promotes operation to
64 bits (IRETQ). See the summary chart at the beginning of this section for encoding data and limits.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in
VMX non-root operation.

Operation

IF PE = 0
THEN GOTO REAL-ADDRESS-MODE;

ELSIF (IA32_EFER.LMA = 0)
THEN

IF (EFLAGS.VM = 1)
THEN GOTO RETURN-FROM-VIRTUAL-8086-MODE;
ELSE GOTO PROTECTED-MODE;

FI;
ELSE GOTO IA-32e-MODE;

FI;

REAL-ADDRESS-MODE;
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS ← Pop();
EFLAGS ← (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)
EIP ← Pop(); (* 16-bit pop; clear upper 16 bits *)
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop();

FI;
END;

RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

IF IOPL = 3 (* Virtual mode: PE = 1, VM = 1, IOPL = 3 *)
THEN IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
EFLAGS ← Pop();
(* VM, IOPL,VIP and VIF EFLAG bits not modified by pop *)
IF EIP not within CS limit

THEN #GP(0); FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 47

ELSE (* OperandSize = 16 *)
EIP ← Pop(); (* 16-bit pop; clear upper 16 bits *)
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop(); (* IOPL in EFLAGS not modified by pop *)
IF EIP not within CS limit

THEN #GP(0); FI;
FI;

ELSE
#GP(0); (* Trap to virtual-8086 monitor: PE = 1, VM = 1, IOPL < 3 *)

FI;
END;

PROTECTED-MODE:
IF NT = 1

THEN GOTO TASK-RETURN; (* PE = 1, VM = 0, NT = 1 *)
FI;
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS ← Pop();

ELSE (* OperandSize = 16 *)
EIP ← Pop(); (* 16-bit pop; clear upper bits *)
CS ← Pop(); (* 16-bit pop *)
tempEFLAGS ← Pop(); (* 16-bit pop; clear upper bits *)

FI;
IF tempEFLAGS(VM) = 1 and CPL = 0

THEN GOTO RETURN-TO-VIRTUAL-8086-MODE;
ELSE GOTO PROTECTED-MODE-RETURN;

FI;

TASK-RETURN: (* PE = 1, VM = 0, NT = 1 *)
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within CS limit

THEN #GP(0); FI;
END;

RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE = 1, CPL=0, VM = 1 in flag image *)
IF EIP not within CS limit

THEN #GP(0); FI;
EFLAGS ← tempEFLAGS;
ESP ← Pop();
SS ← Pop(); (* Pop 2 words; throw away high-order word *)
ES ← Pop(); (* Pop 2 words; throw away high-order word *)
DS ← Pop(); (* Pop 2 words; throw away high-order word *)
FS ← Pop(); (* Pop 2 words; throw away high-order word *)
GS ← Pop(); (* Pop 2 words; throw away high-order word *)
CPL ← 3;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 48

(* Resume execution in Virtual-8086 mode *)
END;

PROTECTED-MODE-RETURN: (* PE = 1 *)
IF CS(RPL) > CPL

THEN GOTO RETURN-TO-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

RETURN-TO-OUTER-PRIVILEGE-LEVEL:
IF OperandSize = 32

THEN
ESP ← Pop();
SS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE IF OperandSize = 16
THEN

ESP ← Pop(); (* 16-bit pop; clear upper bits *)
SS ← Pop(); (* 16-bit pop *)

ELSE (* OperandSize = 64 *)
RSP ← Pop();
SS ← Pop(); (* 64-bit pop, high-order 48 bits discarded *)

FI;
IF new mode ≠ 64-Bit Mode

THEN
IF EIP is not within CS limit

THEN #GP(0); FI;
ELSE (* new mode = 64-bit mode *)

IF RIP is non-canonical
THEN #GP(0); FI;

FI;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32

THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) ← tempEFLAGS; FI;
IF CPL = 0

THEN
EFLAGS(IOPL) ← tempEFLAGS;
IF OperandSize = 32

THEN EFLAGS(VM, VIF, VIP) ← tempEFLAGS; FI;
IF OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;
FI;
CPL ← CS(RPL);
FOR each SegReg in (ES, FS, GS, and DS)

DO
tempDesc ← descriptor cache for SegReg (* hidden part of segment register *)
IF tempDesc(DPL) < CPL AND tempDesc(Type) is data or non-conforming code

THEN (* Segment register invalid *)
SegReg ← NULL;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 49

FI;
OD;

END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE = 1, RPL = CPL *)
IF new mode ≠ 64-Bit Mode

THEN
IF EIP is not within CS limit

THEN #GP(0); FI;
ELSE (* new mode = 64-bit mode *)

IF RIP is non-canonical
THEN #GP(0); FI;

FI;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) ← tempEFLAGS; FI;
IF CPL = 0

 THEN (* VM = 0 in flags image *)
 EFLAGS(IOPL) ← tempEFLAGS;
 IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;
 FI;
END;

IA-32e-MODE:
IF NT = 1

THEN #GP(0);
ELSE IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop();
tempEFLAGS ← Pop();

ELSE IF OperandSize = 16
THEN

EIP ← Pop(); (* 16-bit pop; clear upper bits *)
CS ← Pop(); (* 16-bit pop *)
tempEFLAGS ← Pop(); (* 16-bit pop; clear upper bits *)

FI;
ELSE (* OperandSize = 64 *)

THEN
RIP ← Pop();
CS ← Pop(); (* 64-bit pop, high-order 48 bits discarded *)
tempRFLAGS ← Pop();

FI;
IF tempCS.RPL > CPL

THEN GOTO RETURN-TO-OUTER-PRIVILEGE-LEVEL;
ELSE

IF instruction began in 64-Bit Mode

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 50

THEN
IF OperandSize = 32

THEN
ESP ← Pop();
SS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE IF OperandSize = 16
THEN

ESP ← Pop(); (* 16-bit pop; clear upper bits *)
SS ← Pop(); (* 16-bit pop *)

ELSE (* OperandSize = 64 *)
RSP ← Pop();
SS ← Pop(); (* 64-bit pop, high-order 48 bits discarded *)

FI;
FI;
GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on the mode of operation of the
processor. If performing a return from a nested task to a previous task, the EFLAGS register will be modified
according to the EFLAGS image stored in the previous task’s TSS.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector is NULL.

If the return instruction pointer is not within the return code segment limit.
#GP(selector) If a segment selector index is outside its descriptor table limits.

If the return code segment selector RPL is less than the CPL.
If the DPL of a conforming-code segment is greater than the return code segment selector
RPL.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment
selector.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment
selector.
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.
If the segment descriptor for a code segment does not indicate it is a code segment.
If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is not busy.
If a TSS segment descriptor specifies that the TSS is not available.

#SS(0) If the top bytes of stack are not within stack limits.
#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is

enabled.
#UD If the LOCK prefix is used.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 51

Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code segment limit.
#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code segment limit.

IF IOPL not equal to 3.
#PF(fault-code) If a page fault occurs.
#SS(0) If the top bytes of stack are not within stack limits.
#AC(0) If an unaligned memory reference occurs and alignment checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#GP(0) If EFLAGS.NT[bit 14] = 1.
Other exceptions same as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If EFLAGS.NT[bit 14] = 1.

If the return code segment selector is NULL.
If the stack segment selector is NULL going back to compatibility mode.
If the stack segment selector is NULL going back to CPL3 64-bit mode.
If a NULL stack segment selector RPL is not equal to CPL going back to non-CPL3 64-bit
mode.
If the return instruction pointer is not within the return code segment limit.
If the return instruction pointer is non-canonical.

#GP(Selector) If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the segment descriptor for a code segment does not indicate it is a code segment.
If the proposed new code segment descriptor has both the D-bit and L-bit set.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment
selector.
If CPL is greater than the RPL of the code segment selector.
If the DPL of a conforming-code segment is greater than the return code segment selector
RPL.
If the stack segment is not a writable data segment.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment
selector.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.
If an attempt to pop a value off the stack causes a non-canonical address to be referenced.

#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is

enabled.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 52

#UD If the LOCK prefix is used.

...
Table 3-21. Encoding of CPUID Leaf 2 Descriptors

 Value Type Description

00H General Null descriptor, this byte contains no information

01H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H TLB Instruction TLB: 4 MByte pages, fully associative, 2 entries

03H TLB Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H TLB Data TLB: 4 MByte pages, 4-way set associative, 8 entries

05H TLB Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H Cache 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H Cache 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

09H Cache 1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size

0AH Cache 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH TLB Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

0CH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

0DH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size

0EH Cache 1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size

1DH Cache 2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size

21H Cache 2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size

22H Cache 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector

23H Cache 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

24H Cache 2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size

25H Cache 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

29H Cache 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

2CH Cache 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H Cache 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size

40H Cache No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache

41H Cache 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H Cache 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H Cache 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H Cache 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H Cache 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H Cache 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H Cache 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

48H Cache 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size

49H Cache 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model
06H);

2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH Cache 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 53

4BH Cache 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH Cache 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

4DH Cache 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

4EH Cache 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

4FH TLB Instruction TLB: 4 KByte pages, 32 entries

50H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

55H TLB Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries

56H TLB Data TLB0: 4 MByte pages, 4-way set associative, 16 entries

57H TLB Data TLB0: 4 KByte pages, 4-way associative, 16 entries

59H TLB Data TLB0: 4 KByte pages, fully associative, 16 entries

5AH TLB Data TLB0: 2-MByte or 4 MByte pages, 4-way set associative, 32 entries

5BH TLB Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH TLB Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH TLB Data TLB: 4 KByte and 4 MByte pages,256 entries

60H Cache 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

61H TLB Instruction TLB: 4 KByte pages, fully associative, 48 entries

63H TLB Data TLB: 1 GByte pages, 4-way set associative, 4 entries

66H Cache 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H Cache 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H Cache 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

6AH Cache uTLB: 4 KByte pages, 8-way set associative, 64 entries

6BH Cache DTLB: 4 KByte pages, 8-way set associative, 256 entries

6CH Cache DTLB: 2M/4M pages, 8-way set associative, 126 entries

6DH Cache DTLB: 1 GByte pages, fully associative, 16 entries

70H Cache Trace cache: 12 K-μop, 8-way set associative

71H Cache Trace cache: 16 K-μop, 8-way set associative

72H Cache Trace cache: 32 K-μop, 8-way set associative

76H TLB Instruction TLB: 2M/4M pages, fully associative, 8 entries

78H Cache 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H Cache 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7AH Cache 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7BH Cache 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7CH Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector

7DH Cache 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH Cache 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

80H Cache 2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size

Table 3-21. Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 54

82H Cache 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H Cache 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H Cache 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H Cache 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H Cache 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

A0H DTLB DTLB: 4k pages, fully associative, 32 entries

B0H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B1H TLB Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B2H TLB Instruction TLB: 4KByte pages, 4-way set associative, 64 entries

B3H TLB Data TLB: 4 KByte pages, 4-way set associative, 128 entries

B4H TLB Data TLB1: 4 KByte pages, 4-way associative, 256 entries

B5H TLB Instruction TLB: 4KByte pages, 8-way set associative, 64 entries

B6H TLB Instruction TLB: 4KByte pages, 8-way set associative, 128 entries

BAH TLB Data TLB1: 4 KByte pages, 4-way associative, 64 entries

C0H TLB Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries

C1H STLB Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries

C2H DTLB DTLB: 4 KByte/2 MByte pages, 4-way associative, 16 entries

C3H STLB Shared 2nd-Level TLB: 4 KByte /2 MByte pages, 6-way associative, 1536 entries. Also 1GBbyte pages, 4-way,
16 entries.

CAH STLB Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries

D0H Cache 3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size

D1H Cache 3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size

D2H Cache 3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size

D6H Cache 3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size

D7H Cache 3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size

D8H Cache 3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size

DCH Cache 3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size

DDH Cache 3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size

DEH Cache 3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size

E2H Cache 3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size

E3H Cache 3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size

E4H Cache 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size

EAH Cache 3rd-level cache: 12MByte, 24-way set associative, 64 byte line size

EBH Cache 3rd-level cache: 18MByte, 24-way set associative, 64 byte line size

ECH Cache 3rd-level cache: 24MByte, 24-way set associative, 64 byte line size

F0H Prefetch 64-Byte prefetching

Table 3-21. Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 55

...

8. Updates to Chapter 4, Volume 2B
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B: Instruction Set Reference, N-Z.

--
...

PREFETCHh—Prefetch Data Into Caches

Instruction Operand Encoding

Description

Fetches the line of data from memory that contains the byte specified with the source operand to a location in the
cache hierarchy specified by a locality hint:
• T0 (temporal data)—prefetch data into all levels of the cache hierarchy.

— Pentium III processor—1st- or 2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.
• T1 (temporal data with respect to first level cache)—prefetch data into level 2 cache and higher.

— Pentium III processor—2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.
• T2 (temporal data with respect to second level cache)—prefetch data into level 2 cache and higher.

— Pentium III processor—2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.

F1H Prefetch 128-Byte prefetching

FFH General CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters

Table 3-21. Encoding of CPUID Leaf 2 Descriptors (Contd.)
 Value Type Description

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 18 /1 PREFETCHT0 m8 M Valid Valid Move data from m8 closer to the processor
using T0 hint.

0F 18 /2 PREFETCHT1 m8 M Valid Valid Move data from m8 closer to the processor
using T1 hint.

0F 18 /3 PREFETCHT2 m8 M Valid Valid Move data from m8 closer to the processor
using T2 hint.

0F 18 /0 PREFETCHNTA m8 M Valid Valid Move data from m8 closer to the processor
using NTA hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 56

• NTA (non-temporal data with respect to all cache levels)—prefetch data into non-temporal cache structure
and into a location close to the processor, minimizing cache pollution.

— Pentium III processor—1st-level cache

— Pentium 4 and Intel Xeon processors—2nd-level cache

The source operand is a byte memory location. (The locality hints are encoded into the machine level instruction
using bits 3 through 5 of the ModR/M byte.)

If the line selected is already present in the cache hierarchy at a level closer to the processor, no data movement
occurs. Prefetches from uncacheable or WC memory are ignored.

The PREFETCHh instruction is merely a hint and does not affect program behavior. If executed, this instruction
moves data closer to the processor in anticipation of future use.

The implementation of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by
a processor implementation. The amount of data prefetched is also processor implementation-dependent. It will,
however, be a minimum of 32 bytes.

It should be noted that processors are free to speculatively fetch and cache data from system memory regions
that are assigned a memory-type that permits speculative reads (that is, the WB, WC, and WT memory types). A
PREFETCHh instruction is considered a hint to this speculative behavior. Because this speculative fetching can
occur at any time and is not tied to instruction execution, a PREFETCHh instruction is not ordered with respect to
the fence instructions (MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHh instruction is
also unordered with respect to CLFLUSH and CLFLUSHOPT instructions, other PREFETCHh instructions, or any
other general instruction. It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT, and
MOV CR.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FETCH (m8);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch(char *p, int i)

The argument “*p” gives the address of the byte (and corresponding cache line) to be prefetched. The value “i”
gives a constant (_MM_HINT_T0, _MM_HINT_T1, _MM_HINT_T2, or _MM_HINT_NTA) that specifies the type of
prefetch operation to be performed.

Numeric Exceptions

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 57

PREFETCHW—Prefetch Data into Caches in Anticipation of a Write

Instruction Operand Encoding

Description

Fetches the cache line of data from memory that contains the byte specified with the source operand to a location
in the 1st or 2nd level cache and invalidates all other cached instances of the line.
The source operand is a byte memory location. If the line selected is already present in the lowest level cache and
is already in an exclusively owned state, no data movement occurs. Prefetches from non-writeback memory are
ignored.
The PREFETCHW instruction is merely a hint and does not affect program behavior. If executed, this instruction
moves data closer to the processor and invalidates any other cached copy in anticipation of the line being written
to in the future.
The characteristic of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by a
processor implementation. The amount of data prefetched is also processor implementation-dependent. It will,
however, be a minimum of 32 bytes.
It should be noted that processors are free to speculatively fetch and cache data with exclusive ownership from
system memory regions that permit such accesses (that is, the WB memory type). A PREFETCHW instruction is
considered a hint to this speculative behavior. Because this speculative fetching can occur at any time and is not
tied to instruction execution, a PREFETCHW instruction is not ordered with respect to the fence instructions
(MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHW instruction is also unordered with
respect to CLFLUSH and CLFLUSHOPT instructions, other PREFETCHW instructions, or any other general instruc-
tion
It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT, and MOV CR.
This instruction's operation is the same in non-64-bit modes and 64-bit mode.

Operation

FETCH_WITH_EXCLUSIVE_OWNERSHIP (m8);

Flags Affected

All flags are affected

C/C++ Compiler Intrinsic Equivalent

void _m_prefetchw(void *);

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

0F 0D /1
PREFETCHW m8

A V/V PRFCHW Move data from m8 closer to the processor in anticipation of a
write.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 58

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.
...

PREFETCHWT1—Prefetch Vector Data Into Caches with Intent to Write and T1 Hint

Instruction Operand Encoding

Description

Fetches the line of data from memory that contains the byte specified with the source operand to a location in the
cache hierarchy specified by an intent to write hint (so that data is brought into ‘Exclusive’ state via a request for
ownership) and a locality hint:
• T1 (temporal data with respect to first level cache)—prefetch data into the second level cache.
The source operand is a byte memory location. (The locality hints are encoded into the machine level instruction
using bits 3 through 5 of the ModR/M byte. Use of any ModR/M value other than the specified ones will lead to
unpredictable behavior.)
If the line selected is already present in the cache hierarchy at a level closer to the processor, no data movement
occurs. Prefetches from uncacheable or WC memory are ignored.
The PREFETCHh instruction is merely a hint and does not affect program behavior. If executed, this instruction
moves data closer to the processor in anticipation of future use.
The implementation of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by
a processor implementation. The amount of data prefetched is also processor implementation-dependent. It will,
however, be a minimum of 32 bytes.
It should be noted that processors are free to speculatively fetch and cache data from system memory regions
that are assigned a memory-type that permits speculative reads (that is, the WB, WC, and WT memory types). A
PREFETCHh instruction is considered a hint to this speculative behavior. Because this speculative fetching can
occur at any time and is not tied to instruction execution, a PREFETCHh instruction is not ordered with respect to
the fence instructions (MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHh instruction is
also unordered with respect to CLFLUSH and CLFLUSHOPT instructions, other PREFETCHh instructions, or any

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID Feature
Flag

Description

0F 0D /2
PREFETCHWT1 m8

M V/V PREFETCHWT1 Move data from m8 closer to the processor using T1 hint
with intent to write.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 59

other general instruction. It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT, and
MOV CR.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by ‘mem’ into the cache level specified by ‘Level’; a request
for exclusive/ownership is done if ‘State’ is 1. Note that the memory location ignore cache line splits. This operation is considered a
hint for the processor and may be skipped depending on implementation.

Prefetch (m8, Level = 1, EXCLUSIVE=1);

Flags Affected

All flags are affected

C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch(char const *, int hint= _MM_HINT_ET1);

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 60

RET—Return from Procedure

Instruction Operand Encoding

Description

Transfers program control to a return address located on the top of the stack. The address is usually placed on the
stack by a CALL instruction, and the return is made to the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after the return address is
popped; the default is none. This operand can be used to release parameters from the stack that were passed to
the called procedure and are no longer needed. It must be used when the CALL instruction used to switch to a new
procedure uses a call gate with a non-zero word count to access the new procedure. Here, the source operand for
the RET instruction must specify the same number of bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:
• Near return — A return to a calling procedure within the current code segment (the segment currently

pointed to by the CS register), sometimes referred to as an intrasegment return.
• Far return — A return to a calling procedure located in a different segment than the current code segment,

sometimes referred to as an intersegment return.
• Inter-privilege-level far return — A far return to a different privilege level than that of the currently

executing program or procedure.

The inter-privilege-level return type can only be executed in protected mode. See the section titled “Calling Proce-
dures Using Call and RET” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for detailed information on near, far, and inter-privilege-level returns.

When executing a near return, the processor pops the return instruction pointer (offset) from the top of the stack
into the EIP register and begins program execution at the new instruction pointer. The CS register is unchanged.

When executing a far return, the processor pops the return instruction pointer from the top of the stack into the
EIP register, then pops the segment selector from the top of the stack into the CS register. The processor then
begins program execution in the new code segment at the new instruction pointer.

The mechanics of an inter-privilege-level far return are similar to an intersegment return, except that the
processor examines the privilege levels and access rights of the code and stack segments being returned to deter-
mine if the control transfer is allowed to be made. The DS, ES, FS, and GS segment registers are cleared by the
RET instruction during an inter-privilege-level return if they refer to segments that are not allowed to be accessed
at the new privilege level. Since a stack switch also occurs on an inter-privilege level return, the ESP and SS regis-
ters are loaded from the stack.

Opcode* Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

C3 RET NP Valid Valid Near return to calling procedure.

CB RET NP Valid Valid Far return to calling procedure.

C2 iw RET imm16 I Valid Valid Near return to calling procedure and pop
imm16 bytes from stack.

CA iw RET imm16 I Valid Valid Far return to calling procedure and pop imm16
bytes from stack.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

I imm16 NA NA NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 61

If parameters are passed to the called procedure during an inter-privilege level call, the optional source operand
must be used with the RET instruction to release the parameters on the return. Here, the parameters are released
both from the called procedure’s stack and the calling procedure’s stack (that is, the stack being returned to).

In 64-bit mode, the default operation size of this instruction is the stack-address size, i.e. 64 bits. This applies to
near returns, not far returns; the default operation size of far returns is 32 bits.

Operation

(* Near return *)
IF instruction = near return

THEN;
IF OperandSize = 32

THEN
IF top 4 bytes of stack not within stack limits

THEN #SS(0); FI;
EIP ← Pop();

ELSE
IF OperandSize = 64

THEN
IF top 8 bytes of stack not within stack limits

THEN #SS(0); FI;
RIP ← Pop();

ELSE (* OperandSize = 16 *)
IF top 2 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempEIP ← tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

FI;
FI;

IF instruction has immediate operand
THEN (* Release parameters from stack *)

IF StackAddressSize = 32
THEN

ESP ← ESP + SRC;
ELSE

IF StackAddressSize = 64
THEN

RSP ← RSP + SRC;
ELSE (* StackAddressSize = 16 *)

SP ← SP + SRC;
FI;

FI;
FI;

FI;

(* Real-address mode or virtual-8086 mode *)
IF ((PE = 0) or (PE = 1 AND VM = 1)) and instruction = far return

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 62

THEN
IF OperandSize = 32

THEN
IF top 8 bytes of stack not within stack limits

THEN #SS(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE (* OperandSize = 16 *)
IF top 4 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempEIP ← tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;
CS ← Pop(); (* 16-bit pop *)

FI;
IF instruction has immediate operand

THEN (* Release parameters from stack *)
SP ← SP + (SRC AND FFFFH);

FI;
FI;

(* Protected mode, not virtual-8086 mode *)
IF (PE = 1 and VM = 0 and IA32_EFER.LMA = 0) and instruction = far return

THEN
IF OperandSize = 32

THEN
IF second doubleword on stack is not within stack limits

THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)

IF second word on stack is not within stack limits
THEN #SS(0); FI;

FI;
IF return code segment selector is NULL

THEN #GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN #GP(selector); FI;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is non-conforming and return code
segment DPL ≠ return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 63

THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO RETURN-TO-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL;

FI;
FI;

RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE (* OperandSize = 16 *)
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)

FI;
IF instruction has immediate operand

THEN (* Release parameters from stack *)
IF StackAddressSize = 32

THEN
ESP ← ESP + SRC;

ELSE (* StackAddressSize = 16 *)
SP ← SP + SRC;

FI;
FI;

RETURN-TO-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)

THEN #SS(0); FI;
Read return segment selector;
IF stack segment selector is NULL

THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL ≠ RPL of the return code segment selector

THEN #GP(selector); FI;
IF stack segment not present

THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;
CPL ← ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32

THEN

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 64

EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded; segment descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32

THEN
ESP ← ESP + SRC;

ELSE (* StackAddressSize = 16 *)
SP ← SP + SRC;

FI;
FI;
tempESP ← Pop();
tempSS ← Pop(); (* 32-bit pop, high-order 16 bits discarded; seg. descriptor loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE (* OperandSize = 16 *)
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop; segment descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32

THEN
ESP ← ESP + SRC;

ELSE (* StackAddressSize = 16 *)
SP ← SP + SRC;

FI;
FI;
tempESP ← Pop();
tempSS ← Pop(); (* 16-bit pop; segment descriptor loaded *)
ESP ← tempESP;
SS ← tempSS;

FI;

FOR each of segment register (ES, FS, GS, and DS)
DO

IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL (* DPL in hidden part of segment register *)

THEN SegmentSelector ← 0; (* Segment selector invalid *)
FI;

OD;

IF instruction has immediate operand
THEN (* Release parameters from calling procedure’s stack *)

IF StackAddressSize = 32
THEN

ESP ← ESP + SRC;
ELSE (* StackAddressSize = 16 *)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 65

SP ← SP + SRC;
FI;

FI;

(* IA-32e Mode *)
IF (PE = 1 and VM = 0 and IA32_EFER.LMA = 1) and instruction = far return

THEN
IF OperandSize = 32

THEN
IF second doubleword on stack is not within stack limits

THEN #SS(0); FI;
IF first or second doubleword on stack is not in canonical space

THEN #SS(0); FI;
ELSE

IF OperandSize = 16
THEN

IF second word on stack is not within stack limits
THEN #SS(0); FI;

IF first or second word on stack is not in canonical space
THEN #SS(0); FI;

ELSE (* OperandSize = 64 *)
IF first or second quadword on stack is not in canonical space

THEN #SS(0); FI;
FI

FI;
IF return code segment selector is NULL

THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN GP(selector); FI;
IF return code segment selector addresses descriptor in non-canonical space

THEN GP(selector); FI;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment descriptor has L-bit = 1 and D-bit = 1

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is non-conforming
and return code segment DPL ≠ return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO IA-32E-MODE-RETURN-TO-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL;

FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 66

FI;

IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;
IF the return instruction pointer is not within canonical address space

THEN #GP(0); FI;
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE
IF OperandSize = 16

THEN
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)

ELSE (* OperandSize = 64 *)
RIP ← Pop();
CS ← Pop(); (* 64-bit pop, high-order 48 bits discarded *)

FI;
FI;
IF instruction has immediate operand

THEN (* Release parameters from stack *)
IF StackAddressSize = 32

THEN
ESP ← ESP + SRC;

ELSE
IF StackAddressSize = 16

THEN
SP ← SP + SRC;

ELSE (* StackAddressSize = 64 *)
RSP ← RSP + SRC;

FI;
FI;

FI;

IA-32E-MODE-RETURN-TO-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)

THEN #SS(0); FI;
IF top (16 + SRC) bytes of stack are not in canonical address space (OperandSize = 32)
or top (8 + SRC) bytes of stack are not in canonical address space (OperandSize = 16)
or top (32 + SRC) bytes of stack are not in canonical address space (OperandSize = 64)

THEN #SS(0); FI;
Read return stack segment selector;
IF stack segment selector is NULL

THEN
IF new CS descriptor L-bit = 0

THEN #GP(selector);

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 67

IF stack segment selector RPL = 3
THEN #GP(selector);

FI;
IF return stack segment descriptor is not within descriptor table limits

THEN #GP(selector); FI;
IF return stack segment descriptor is in non-canonical address space

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL ≠ RPL of the return code segment selector

THEN #GP(selector); FI;
IF stack segment not present

THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI:
IF the return instruction pointer is not within canonical address space

THEN #GP(0); FI;
CPL ← ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32

THEN
ESP ← ESP + SRC;

ELSE
IF StackAddressSize = 16

THEN
SP ← SP + SRC;

ELSE (* StackAddressSize = 64 *)
RSP ← RSP + SRC;

FI;
FI;

FI;
tempESP ← Pop();
tempSS ← Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE
IF OperandSize = 16

THEN
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop; segment descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 68

THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32

THEN
ESP ← ESP + SRC;

ELSE
IF StackAddressSize = 16

THEN
SP ← SP + SRC;

ELSE (* StackAddressSize = 64 *)
RSP ← RSP + SRC;

FI;
FI;

FI;
tempESP ← Pop();
tempSS ← Pop(); (* 16-bit pop; segment descriptor loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE (* OperandSize = 64 *)
RIP ← Pop();
CS ← Pop(); (* 64-bit pop; high-order 48 bits discarded; seg. descriptor loaded *)
CS(RPL) ← CPL;
IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)
RSP ← RSP + SRC;

FI;
tempESP ← Pop();
tempSS ← Pop(); (* 64-bit pop; high-order 48 bits discarded; seg. desc. loaded *)
ESP ← tempESP;
SS ← tempSS;

FI;
FI;

FOR each of segment register (ES, FS, GS, and DS)
DO

IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)

THEN SegmentSelector ← 0; (* SegmentSelector invalid *)
FI;

OD;

IF instruction has immediate operand
THEN (* Release parameters from calling procedure’s stack *)

IF StackAddressSize = 32
THEN

ESP ← ESP + SRC;
ELSE

IF StackAddressSize = 16
THEN

SP ← SP + SRC;
ELSE (* StackAddressSize = 64 *)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 69

RSP ← RSP + SRC;
FI;

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector NULL.

If the return instruction pointer is not within the return code segment limit
#GP(selector) If the RPL of the return code segment selector is less then the CPL.

If the return code or stack segment selector index is not within its descriptor table limits.
If the return code segment descriptor does not indicate a code segment.
If the return code segment is non-conforming and the segment selector’s DPL is not equal to
the RPL of the code segment’s segment selector
If the return code segment is conforming and the segment selector’s DPL greater than the
RPL of the code segment’s segment selector
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment
selector.

#SS(0) If the top bytes of stack are not within stack limits.
If the return stack segment is not present.

#NP(selector) If the return code segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when the CPL is 3 and alignment checking is enabled.

Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code segment limit
#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code segment limit
#SS(0) If the top bytes of stack are not within stack limits.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when alignment checking is enabled.

Compatibility Mode Exceptions
Same as 64-bit mode exceptions.

64-Bit Mode Exceptions
#GP(0) If the return instruction pointer is non-canonical.

If the return instruction pointer is not within the return code segment limit.
If the stack segment selector is NULL going back to compatibility mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 70

If the stack segment selector is NULL going back to CPL3 64-bit mode.
If a NULL stack segment selector RPL is not equal to CPL going back to non-CPL3 64-bit
mode.
If the return code segment selector is NULL.

#GP(selector) If the proposed segment descriptor for a code segment does not indicate it is a code
segment.
If the proposed new code segment descriptor has both the D-bit and L-bit set.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment
selector.
If CPL is greater than the RPL of the code segment selector.
If the DPL of a conforming-code segment is greater than the return code segment selector
RPL.
If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the stack segment is not a writable data segment.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment
selector.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.
If an attempt to pop a value off the stack causes a non-canonical address to be referenced.

#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the

current privilege level is 3.
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 71

VFMADD132SD/VFMADD213SD/VFMADD231SD — Fused Multiply-Add of Scalar Double-
Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD multiply-add computation on the low packed double-precision floating-point values using three
source operands and writes the multiply-add result in the destination operand. The destination operand is also the
first source operand. The second operand must be a SIMD register. The third source operand can be a SIMD
register or a memory location.
VFMADD132SD: Multiplies the low packed double-precision floating-point value from the first source operand to
the low packed double-precision floating-point value in the third source operand, adds the infinite precision inter-
mediate result to the low packed double-precision floating-point values in the second source operand, performs
rounding and stores the resulting packed double-precision floating-point value to the destination operand (first
source operand).
VFMADD213SD: Multiplies the low packed double-precision floating-point value from the second source operand
to the low packed double-precision floating-point value in the first source operand, adds the infinite precision
intermediate result to the low packed double-precision floating-point value in the third source operand, performs
rounding and stores the resulting packed double-precision floating-point value to the destination operand (first
source operand).
VFMADD231SD: Multiplies the low packed double-precision floating-point value from the second source to the low
packed double-precision floating-point value in the third source operand, adds the infinite precision intermediate
result to the low packed double-precision floating-point value in the first source operand, performs rounding and
stores the resulting packed double-precision floating-point value to the destination operand (first source
operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 64-bit memory location and encoded in rm_field. The upper bits ([VLMAX-1:128]) of the YMM
destination register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1.

Opcode/
Instruction

Op/
En

64/32-
bit Mode

CPUID
Feature
Flag

Description

VEX.DDS.LIG.66.0F38.W1 99 /r A V/V FMA Multiply scalar double-precision floating-point value
from xmm0 and xmm2/mem, add to xmm1 and put
result in xmm0.

VFMADD132SD xmm0, xmm1, xmm2/m64

VEX.DDS.LIG.66.0F38.W1 A9 /r A V/V FMA Multiply scalar double-precision floating-point value
from xmm0 and xmm1, add to xmm2/mem and put
result in xmm0.

VFMADD213SD xmm0, xmm1, xmm2/m64

VEX.DDS.LIG.66.0F38.W1 B9 /r A V/V FMA Multiply scalar double-precision floating-point value
from xmm1 and xmm2/mem, add to xmm0 and put
result in xmm0.

VFMADD231SD xmm0, xmm1, xmm2/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 72

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).

VFMADD132SD DEST, SRC2, SRC3
DEST[63:0] RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] + SRC2[63:0])
DEST[127:64] DEST[127:64]
DEST[VLMAX-1:128] 0

VFMADD213SD DEST, SRC2, SRC3
DEST[63:0] RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] + SRC3[63:0])
DEST[127:64] DEST[127:64]
DEST[VLMAX-1:128] 0

VFMADD231SD DEST, SRC2, SRC3
DEST[63:0] RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] + DEST[63:0])
DEST[127:64] DEST[127:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMADD132SD: __m128d _mm_fmadd_sd (__m128d a, __m128d b, __m128d c);

VFMADD213SD: __m128d _mm_fmadd_sd (__m128d a, __m128d b, __m128d c);

VFMADD231SD: __m128d _mm_fmadd_sd (__m128d a, __m128d b, __m128d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 73

VFMADD132SS/VFMADD213SS/VFMADD231SS — Fused Multiply-Add of Scalar Single-
Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD multiply-add computation on packed single-precision floating-point values using three source
operands and writes the multiply-add results in the destination operand. The destination operand is also the first
source operand. The second operand must be a SIMD register. The third source operand can be a SIMD register
or a memory location.
VFMADD132SS: Multiplies the low packed single-precision floating-point value from the first source operand to
the low packed single-precision floating-point value in the third source operand, adds the infinite precision inter-
mediate result to the low packed single-precision floating-point value in the second source operand, performs
rounding and stores the resulting packed single-precision floating-point value to the destination operand (first
source operand).
VFMADD213SS: Multiplies the low packed single-precision floating-point value from the second source operand to
the low packed single-precision floating-point value in the first source operand, adds the infinite precision inter-
mediate result to the low packed single-precision floating-point value in the third source operand, performs
rounding and stores the resulting packed single-precision floating-point value to the destination operand (first
source operand).
VFMADD231SS: Multiplies the low packed single-precision floating-point value from the second source operand to
the low packed single-precision floating-point value in the third source operand, adds the infinite precision inter-
mediate result to the low packed single-precision floating-point value in the first source operand, performs
rounding and stores the resulting packed single-precision floating-point value to the destination operand (first
source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 32-bit memory location and encoded in rm_field. The upper bits ([VLMAX-1:128]) of the YMM
destination register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1.

Opcode/
Instruction

Op/
En

64/
32-bit
Mode

CPUID
Feature
Flag

Description

VEX.DDS.LIG.66.0F38.W0 99 /r A V/V FMA Multiply scalar single-precision floating-point value
from xmm0 and xmm2/mem, add to xmm1 and put
result in xmm0.

VFMADD132SS xmm0, xmm1, xmm2/m32

VEX.DDS.LIG.66.0F38.W0 A9 /r A V/V FMA Multiply scalar single-precision floating-point value
from xmm0 and xmm1, add to xmm2/mem and put
result in xmm0.

VFMADD213SS xmm0, xmm1, xmm2/m32

VEX.DDS.LIG.66.0F38.W0 B9 /r A V/V FMA Multiply scalar single-precision floating-point value
from xmm1 and xmm2/mem, add to xmm0 and put
result in xmm0.

VFMADD231SS xmm0, xmm1, xmm2/m32

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 74

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).
VFMADD132SS DEST, SRC2, SRC3
DEST[31:0] RoundFPControl_MXCSR(DEST[31:0]*SRC3[31:0] + SRC2[31:0])
DEST[127:32] DEST[127:32]
DEST[VLMAX-1:128] 0

VFMADD213SS DEST, SRC2, SRC3
DEST[31:0] RoundFPControl_MXCSR(SRC2[31:0]*DEST[31:0] + SRC3[31:0])
DEST[127:32] DEST[127:32]
DEST[VLMAX-1:128] 0

VFMADD231SS DEST, SRC2, SRC3
DEST[31:0] RoundFPControl_MXCSR(SRC2[31:0]*SRC3[63:0] + DEST[31:0])
DEST[127:32] DEST[127:32]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMADD132SS: __m128 _mm_fmadd_ss (__m128 a, __m128 b, __m128 c);

VFMADD213SS: __m128 _mm_fmadd_ss (__m128 a, __m128 b, __m128 c);

VFMADD231SS: __m128 _mm_fmadd_ss (__m128 a, __m128 b, __m128 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 75

VFMSUB132SD/VFMSUB213SD/VFMSUB231SD — Fused Multiply-Subtract of Scalar Double-
Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD multiply-subtract computation on the low packed double-precision floating-point values using
three source operands and writes the multiply-add result in the destination operand. The destination operand is
also the first source operand. The second operand must be a SIMD register. The third source operand can be a
SIMD register or a memory location.
VFMSUB132SD: Multiplies the low packed double-precision floating-point value from the first source operand to
the low packed double-precision floating-point value in the third source operand. From the infinite precision inter-
mediate result, subtracts the low packed double-precision floating-point values in the second source operand,
performs rounding and stores the resulting packed double-precision floating-point value to the destination
operand (first source operand).
VFMSUB213SD: Multiplies the low packed double-precision floating-point value from the second source operand
to the low packed double-precision floating-point value in the first source operand. From the infinite precision
intermediate result, subtracts the low packed double-precision floating-point value in the third source operand,
performs rounding and stores the resulting packed double-precision floating-point value to the destination
operand (first source operand).
VFMSUB231SD: Multiplies the low packed double-precision floating-point value from the second source to the low
packed double-precision floating-point value in the third source operand. From the infinite precision intermediate
result, subtracts the low packed double-precision floating-point value in the first source operand, performs
rounding and stores the resulting packed double-precision floating-point value to the destination operand (first
source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 64-bit memory location and encoded in rm_field. The upper bits ([VLMAX-1:128]) of the YMM
destination register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1.

Opcode/
Instruction

Op/
En

64/
32-bit
Mode

CPUID
Feature
Flag

Description

VEX.DDS.LIG.66.0F38.W1 9B /r A V/V FMA Multiply scalar double-precision floating-point value
from xmm0 and xmm2/mem, subtract xmm1 and put
result in xmm0.

VFMSUB132SD xmm0, xmm1, xmm2/m64

VEX.DDS.LIG.66.0F38.W1 AB /r A V/V FMA Multiply scalar double-precision floating-point value
from xmm0 and xmm1, subtract xmm2/mem and put
result in xmm0.

VFMSUB213SD xmm0, xmm1, xmm2/m64

VEX.DDS.LIG.66.0F38.W1 BB /r A V/V FMA Multiply scalar double-precision floating-point value
from xmm1 and xmm2/mem, subtract xmm0 and put
result in xmm0.

VFMSUB231SD xmm0, xmm1, xmm2/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 76

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).
VFMSUB132SD DEST, SRC2, SRC3
DEST[63:0] RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] - SRC2[63:0])
DEST[127:64] DEST[127:64]
DEST[VLMAX-1:128] 0

VFMSUB213SD DEST, SRC2, SRC3
DEST[63:0] RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] - SRC3[63:0])
DEST[127:64] DEST[127:64]
DEST[VLMAX-1:128] 0

VFMSUB231SD DEST, SRC2, SRC3
DEST[63:0] RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] - DEST[63:0])
DEST[127:64] DEST[127:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMSUB132SD: __m128d _mm_fmsub_sd (__m128d a, __m128d b, __m128d c);

VFMSUB213SD: __m128d _mm_fmsub_sd (__m128d a, __m128d b, __m128d c);

VFMSUB231SD: __m128d _mm_fmsub_sd (__m128d a, __m128d b, __m128d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

See Exceptions Type 3

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 77

VFMSUB132SS/VFMSUB213SS/VFMSUB231SS — Fused Multiply-Subtract of Scalar Single-
Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD multiply-subtract computation on the low packed single-precision floating-point values using
three source operands and writes the multiply-add result in the destination operand. The destination operand is
also the first source operand. The second operand must be a SIMD register. The third source operand can be a
SIMD register or a memory location.
VFMSUB132SS: Multiplies the low packed single-precision floating-point value from the first source operand to
the low packed single-precision floating-point value in the third source operand. From the infinite precision inter-
mediate result, subtracts the low packed single-precision floating-point values in the second source operand,
performs rounding and stores the resulting packed single-precision floating-point value to the destination
operand (first source operand).
VFMSUB213SS: Multiplies the low packed single-precision floating-point value from the second source operand to
the low packed single-precision floating-point value in the first source operand. From the infinite precision inter-
mediate result, subtracts the low packed single-precision floating-point value in the third source operand,
performs rounding and stores the resulting packed single-precision floating-point value to the destination
operand (first source operand).
VFMSUB231SS: Multiplies the low packed single-precision floating-point value from the second source to the low
packed single-precision floating-point value in the third source operand. From the infinite precision intermediate
result, subtracts the low packed single-precision floating-point value in the first source operand, performs
rounding and stores the resulting packed single-precision floating-point value to the destination operand (first
source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 32-bit memory location and encoded in rm_field. The upper bits ([VLMAX-1:128]) of the YMM
destination register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1.

Opcode/
Instruction

Op/
En

64/
32-bit
Mode

CPUID
Feature
Flag

Description

VEX.DDS.LIG.66.0F38.W0 9B /r A V/V FMA Multiply scalar single-precision floating-point value
from xmm0 and xmm2/mem, subtract xmm1 and put
result in xmm0.

VFMSUB132SS xmm0, xmm1, xmm2/m32

VEX.DDS.LIG.66.0F38.W0 AB /r A V/V FMA Multiply scalar single-precision floating-point value
from xmm0 and xmm1, subtract xmm2/mem and put
result in xmm0.

VFMSUB213SS xmm0, xmm1, xmm2/m32

VEX.DDS.LIG.66.0F38.W0 BB /r A V/V FMA Multiply scalar single-precision floating-point value
from xmm1 and xmm2/mem, subtract xmm0 and put
result in xmm0.

VFMSUB231SS xmm0, xmm1, xmm2/m32

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 78

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).
VFMSUB132SS DEST, SRC2, SRC3
DEST[31:0] RoundFPControl_MXCSR(DEST[31:0]*SRC3[31:0] - SRC2[31:0])
DEST[127:32] DEST[127:32]
DEST[VLMAX-1:128] 0

VFMSUB213SS DEST, SRC2, SRC3
DEST[31:0] RoundFPControl_MXCSR(SRC2[31:0]*DEST[31:0] - SRC3[31:0])
DEST[127:32] DEST[127:32]
DEST[VLMAX-1:128] 0

VFMSUB231SS DEST, SRC2, SRC3
DEST[31:0] RoundFPControl_MXCSR(SRC2[31:0]*SRC3[63:0] - DEST[31:0])
DEST[127:32] DEST[127:32]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMSUB132SS: __m128 _mm_fmsub_ss (__m128 a, __m128 b, __m128 c);

VFMSUB213SS: __m128 _mm_fmsub_ss (__m128 a, __m128 b, __m128 c);

VFMSUB231SS: __m128 _mm_fmsub_ss (__m128 a, __m128 b, __m128 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 79

VFNMADD132SD/VFNMADD213SD/VFNMADD231SD — Fused Negative Multiply-Add of Scalar
Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

VFNMADD132SD: Multiplies the low packed double-precision floating-point value from the first source operand to
the low packed double-precision floating-point value in the third source operand, adds the negated infinite preci-
sion intermediate result to the low packed double-precision floating-point values in the second source operand,
performs rounding and stores the resulting packed double-precision floating-point value to the destination
operand (first source operand).
VFNMADD213SD: Multiplies the low packed double-precision floating-point value from the second source operand
to the low packed double-precision floating-point value in the first source operand, adds the negated infinite
precision intermediate result to the low packed double-precision floating-point value in the third source operand,
performs rounding and stores the resulting packed double-precision floating-point value to the destination
operand (first source operand).
VFNMADD231SD: Multiplies the low packed double-precision floating-point value from the second source to the
low packed double-precision floating-point value in the third source operand, adds the negated infinite precision
intermediate result to the low packed double-precision floating-point value in the first source operand, performs
rounding and stores the resulting packed double-precision floating-point value to the destination operand (first
source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 64-bit memory location and encoded in rm_field. The upper bits ([VLMAX-1:128]) of the YMM
destination register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1.

Opcode/
Instruction

Op/
En

64/
32-bit
Mode

CPUID
Feature
Flag

Description

VEX.DDS.LIG.66.0F38.W1 9D /r A V/V FMA Multiply scalar double-precision floating-point value
from xmm0 and xmm2/mem, negate the multiplica-
tion result and add to xmm1 and put result in xmm0.

VFNMADD132SD xmm0, xmm1, xmm2/m64

VEX.DDS.LIG.66.0F38.W1 AD /r A V/V FMA Multiply scalar double-precision floating-point value
from xmm0 and xmm1, negate the multiplication
result and add to xmm2/mem and put result in
xmm0.

VFNMADD213SD xmm0, xmm1, xmm2/m64

VEX.DDS.LIG.66.0F38.W1 BD /r A V/V FMA Multiply scalar double-precision floating-point value
from xmm1 and xmm2/mem, negate the multiplica-
tion result and add to xmm0 and put result in xmm0.

VFNMADD231SD xmm0, xmm1, xmm2/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 80

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).

VFNMADD132SD DEST, SRC2, SRC3
DEST[63:0] RoundFPControl_MXCSR(- (DEST[63:0]*SRC3[63:0]) + SRC2[63:0])
DEST[127:64] DEST[127:64]
DEST[VLMAX-1:128] 0

VFNMADD213SD DEST, SRC2, SRC3
DEST[63:0] RoundFPControl_MXCSR(- (SRC2[63:0]*DEST[63:0]) + SRC3[63:0])
DEST[127:64] DEST[127:64]
DEST[VLMAX-1:128] 0

VFNMADD231SD DEST, SRC2, SRC3
DEST[63:0] RoundFPControl_MXCSR(- (SRC2[63:0]*SRC3[63:0]) + DEST[63:0])
DEST[127:64] DEST[127:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

VFNMADD132SD: __m128d _mm_fnmadd_sd (__m128d a, __m128d b, __m128d c);

VFNMADD213SD: __m128d _mm_fnmadd_sd (__m128d a, __m128d b, __m128d c);

VFNMADD231SD: __m128d _mm_fnmadd_sd (__m128d a, __m128d b, __m128d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 81

VFNMADD132SS/VFNMADD213SS/VFNMADD231SS — Fused Negative Multiply-Add of Scalar
Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

VFNMADD132SS: Multiplies the low packed single-precision floating-point value from the first source operand to
the low packed single-precision floating-point value in the third source operand, adds the negated infinite preci-
sion intermediate result to the low packed single-precision floating-point value in the second source operand,
performs rounding and stores the resulting packed single-precision floating-point value to the destination
operand (first source operand).
VFNMADD213SS: Multiplies the low packed single-precision floating-point value from the second source operand
to the low packed single-precision floating-point value in the first source operand, adds the negated infinite preci-
sion intermediate result to the low packed single-precision floating-point value in the third source operand,
performs rounding and stores the resulting packed single-precision floating-point value to the destination
operand (first source operand).
VFNMADD231SS: Multiplies the low packed single-precision floating-point value from the second source operand
to the low packed single-precision floating-point value in the third source operand, adds the negated infinite
precision intermediate result to the low packed single-precision floating-point value in the first source operand,
performs rounding and stores the resulting packed single-precision floating-point value to the destination
operand (first source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 32-bit memory location and encoded in rm_field. The upper bits ([VLMAX-1:128]) of the YMM
destination register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).

Opcode/
Instruction

Op/
En

64/
32-bit
Mode

CPUID
Feature
Flag

Description

VEX.DDS.LIG.66.0F38.W0 9D /r A V/V FMA Multiply scalar single-precision floating-point value
from xmm0 and xmm2/mem, negate the multiplication
result and add to xmm1 and put result in xmm0.

VFNMADD132SS xmm0, xmm1, xmm2/m32

VEX.DDS.LIG.66.0F38.W0 AD /r A V/V FMA Multiply scalar single-precision floating-point value
from xmm0 and xmm1, negate the multiplication
result and add to xmm2/mem and put result in xmm0.

VFNMADD213SS xmm0, xmm1, xmm2/m32

VEX.DDS.LIG.66.0F38.W0 BD /r A V/V FMA Multiply scalar single-precision floating-point value
from xmm1 and xmm2/mem, negate the multiplication
result and add to xmm0 and put result in xmm0.

VFNMADD231SS xmm0, xmm1, xmm2/m32

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 82

VFNMADD132SS DEST, SRC2, SRC3
DEST[31:0] RoundFPControl_MXCSR(- (DEST[31:0]*SRC3[31:0]) + SRC2[31:0])
DEST[127:32] DEST[127:32]
DEST[VLMAX-1:128] 0

VFNMADD213SS DEST, SRC2, SRC3
DEST[31:0] RoundFPControl_MXCSR(- (SRC2[31:0]*DEST[31:0]) + SRC3[31:0])
DEST[127:32] DEST[127:32]
DEST[VLMAX-1:128] 0

VFNMADD231SS DEST, SRC2, SRC3
DEST[31:0] RoundFPControl_MXCSR(- (SRC2[31:0]*SRC3[63:0]) + DEST[31:0])
DEST[127:32] DEST[127:32]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

VFNMADD132SS: __m128 _mm_fnmadd_ss (__m128 a, __m128 b, __m128 c);

VFNMADD213SS: __m128 _mm_fnmadd_ss (__m128 a, __m128 b, __m128 c);

VFNMADD231SS: __m128 _mm_fnmadd_ss (__m128 a, __m128 b, __m128 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 83

VFNMSUB132SD/VFNMSUB213SD/VFNMSUB231SD — Fused Negative Multiply-Subtract of
Scalar Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

VFNMSUB132SD: Multiplies the low packed double-precision floating-point value from the first source operand to
the low packed double-precision floating-point value in the third source operand. From negated infinite precision
intermediate result, subtracts the low double-precision floating-point value in the second source operand,
performs rounding and stores the resulting packed double-precision floating-point value to the destination
operand (first source operand).
VFNMSUB213SD: Multiplies the low packed double-precision floating-point value from the second source operand
to the low packed double-precision floating-point value in the first source operand. From negated infinite precision
intermediate result, subtracts the low double-precision floating-point value in the third source operand, performs
rounding and stores the resulting packed double-precision floating-point value to the destination operand (first
source operand).
VFNMSUB231SD: Multiplies the low packed double-precision floating-point value from the second source to the
low packed double-precision floating-point value in the third source operand. From negated infinite precision
intermediate result, subtracts the low double-precision floating-point value in the first source operand, performs
rounding and stores the resulting packed double-precision floating-point value to the destination operand (first
source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 64-bit memory location and encoded in rm_field. The upper bits ([VLMAX-1:128]) of the YMM
destination register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1.

Opcode/
Instruction

Op/
En

64/32-
bit
Mode

CPUID
Feature
Flag

Description

VEX.DDS.LIG.66.0F38.W1 9F /r A V/V FMA Multiply scalar double-precision floating-point value
from xmm0 and xmm2/mem, negate the multiplica-
tion result and subtract xmm1 and put result in
xmm0.

VFNMSUB132SD xmm0, xmm1, xmm2/m64

VEX.DDS.LIG.66.0F38.W1 AF /r A V/V FMA Multiply scalar double-precision floating-point value
from xmm0 and xmm1, negate the multiplication
result and subtract xmm2/mem and put result in
xmm0.

VFNMSUB213SD xmm0, xmm1, xmm2/m64

VEX.DDS.LIG.66.0F38.W1 BF /r A V/V FMA Multiply scalar double-precision floating-point value
from xmm1 and xmm2/mem, negate the multiplica-
tion result and subtract xmm0 and put result in
xmm0.

VFNMSUB231SD xmm0, xmm1, xmm2/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 84

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).

VFNMSUB132SD DEST, SRC2, SRC3
DEST[63:0] RoundFPControl_MXCSR(- (DEST[63:0]*SRC3[63:0]) - SRC2[63:0])
DEST[127:64] DEST[127:64]
DEST[VLMAX-1:128] 0

VFNMSUB213SD DEST, SRC2, SRC3
DEST[63:0] RoundFPControl_MXCSR(- (SRC2[63:0]*DEST[63:0]) - SRC3[63:0])
DEST[127:64] DEST[127:64]
DEST[VLMAX-1:128] 0

VFNMSUB231SD DEST, SRC2, SRC3
DEST[63:0] RoundFPControl_MXCSR(- (SRC2[63:0]*SRC3[63:0]) - DEST[63:0])
DEST[127:64] DEST[127:64]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

VFNMSUB132SD: __m128d _mm_fnmsub_sd (__m128d a, __m128d b, __m128d c);

VFNMSUB213SD: __m128d _mm_fnmsub_sd (__m128d a, __m128d b, __m128d c);

VFNMSUB231SD: __m128d _mm_fnmsub_sd (__m128d a, __m128d b, __m128d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 85

VFNMSUB132SS/VFNMSUB213SS/VFNMSUB231SS — Fused Negative Multiply-Subtract of
Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

VFNMSUB132SS: Multiplies the low packed single-precision floating-point value from the first source operand to
the low packed single-precision floating-point value in the third source operand. From negated infinite precision
intermediate result, the low single-precision floating-point value in the second source operand, performs
rounding and stores the resulting packed single-precision floating-point value to the destination operand (first
source operand).
VFNMSUB213SS: Multiplies the low packed single-precision floating-point value from the second source operand
to the low packed single-precision floating-point value in the first source operand. From negated infinite precision
intermediate result, the low single-precision floating-point value in the third source operand, performs rounding
and stores the resulting packed single-precision floating-point value to the destination operand (first source
operand).
VFNMSUB231SS: Multiplies the low packed single-precision floating-point value from the second source to the low
packed single-precision floating-point value in the third source operand. From negated infinite precision interme-
diate result, the low single-precision floating-point value in the first source operand, performs rounding and
stores the resulting packed single-precision floating-point value to the destination operand (first source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 32-bit memory location and encoded in rm_field. The upper bits ([VLMAX-1:128]) of the YMM
destination register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).

Opcode/
Instruction

Op/
En

64/
32-bit
Mode

CPUID
Feature
Flag

Description

VEX.DDS.LIG.66.0F38.W0 9F /r A V/V FMA Multiply scalar single-precision floating-point value from
xmm0 and xmm2/mem, negate the multiplication result
and subtract xmm1 and put result in xmm0.

VFNMSUB132SS xmm0, xmm1, xmm2/m32

VEX.DDS.LIG.66.0F38.W0 AF /r A V/V FMA Multiply scalar single-precision floating-point value from
xmm0 and xmm1, negate the multiplication result and
subtract xmm2/mem and put result in xmm0.

VFNMSUB213SS xmm0, xmm1, xmm2/m32

VEX.DDS.LIG.66.0F38.W0 BF /r A V/V FMA Multiply scalar single-precision floating-point value from
xmm1 and xmm2/mem, negate the multiplication result
and subtract xmm0 and put result in xmm0.

VFNMSUB231SS xmm0, xmm1, xmm2/m32

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 86

VFNMSUB132SS DEST, SRC2, SRC3
DEST[31:0] RoundFPControl_MXCSR(- (DEST[31:0]*SRC3[31:0]) - SRC2[31:0])
DEST[127:32] DEST[127:32]
DEST[VLMAX-1:128] 0
VFNMSUB213SS DEST, SRC2, SRC3
DEST[31:0] RoundFPControl_MXCSR(- (SRC2[31:0]*DEST[31:0]) - SRC3[31:0])
DEST[127:32] DEST[127:32]
DEST[VLMAX-1:128] 0

VFNMSUB231SS DEST, SRC2, SRC3
DEST[31:0] RoundFPControl_MXCSR(- (SRC2[31:0]*SRC3[63:0]) - DEST[31:0])
DEST[127:32] DEST[127:32]
DEST[VLMAX-1:128] 0

Intel C/C++ Compiler Intrinsic Equivalent

VFNMSUB132SS: __m128 _mm_fnmsub_ss (__m128 a, __m128 b, __m128 c);

VFNMSUB213SS: __m128 _mm_fnmsub_ss (__m128 a, __m128 b, __m128 c);

VFNMSUB231SS: __m128 _mm_fnmsub_ss (__m128 a, __m128 b, __m128 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 87

VINSERTF128 — Insert Packed Floating-Point Values

Instruction Operand Encoding

Description

Performs an insertion of 128-bits of packed floating-point values from the second source operand (third operand)
into an the destination operand (first operand) at an 128-bit offset from imm8[0]. The remaining portions of the
destination are written by the corresponding fields of the first source operand (second operand). The second
source operand can be either an XMM register or a 128-bit memory location.
The high 7 bits of the immediate are ignored.

Operation

TEMP[255:0] SRC1[255:0]
CASE (imm8[0]) OF

0: TEMP[127:0] SRC2[127:0]
1: TEMP[255:128] SRC2[127:0]

ESAC
DEST TEMP

Intel C/C++ Compiler Intrinsic Equivalent

VINSERTF128: __m256 _mm256_insertf128_ps (__m256 a, __m128 b, int offset);

VINSERTF128: __m256d _mm256_insertf128_pd (__m256d a, __m128d b, int offset);

VINSERTF128: __m256i _mm256_insertf128_si256 (__m256i a, __m128i b, int offset);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.W = 1.
...

Opcode/
Instruction

Op/
En

64/32-bit
Mode

CPUID
Feature
Flag

Description

VEX.NDS.256.66.0F3A.W0 18 /r ib

VINSERTF128 ymm1, ymm2, xmm3/m128, imm8

RVM V/V AVX Insert 128-bits of floating point data selected
by imm8 from xmm3/m128 and the remaining
values from ymm2 into ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 88

XSAVES—Save Processor Extended States Supervisor

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), the logical-
AND of EDX:EAX and the logical-OR of XCR0 with the IA32_XSS MSR. XSAVES may be executed only if CPL = 0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Section 13.11, “Operation of XSAVES,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1 provides a detailed description of the operation of the XSAVES instruction. The following items provide
a high-level outline:
• Execution of XSAVES is similar to that of XSAVEC. XSAVES differs from XSAVEC in that it can save state

components corresponding to bits set in the IA32_XSS MSR and that it may use the modified optimization.
• XSAVES saves state component i only if RFBM[i] = 1 and XINUSE[i] = 1.1 (XINUSE is a bitmap by which the

processor tracks the status of various state components. See Section 13.6, “Processor Tracking of XSAVE-
Managed State.”) Even if both bits are 1, XSAVES may optimize and not save state component i if (1) state
component i has not been modified since the last execution of XRTOR or XRSTORS; and (2) this execution of
XSAVES correspond to that last execution of XRTOR or XRSTORS as determined by XRSTOR_INFO (see the
Operation section below).

• XSAVES does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy
Region of an XSAVE Area”).

• XSAVES writes the logical AND of RFBM and XINUSE to the XSTATE_BV field of the XSAVE header.2 (See
Section 13.4.2, “XSAVE Header.”) XSAVES sets bit 63 of the XCOMP_BV field and sets bits 62:0 of that field to
RFBM[62:0]. XSAVES does not write to any parts of the XSAVE header other than the XSTATE_BV and
XCOMP_BV fields.

• XSAVES always uses the compacted format of the extended region of the XSAVE area (see Section 13.4.3,
“Extended Region of an XSAVE Area”).

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F C7 /5 XSAVES mem M Valid Valid Save state components specified by EDX:EAX
to mem with compaction, optimizing if
possible.

REX.W+ 0F C7 /5 XSAVES64 mem M Valid N.E. Save state components specified by EDX:EAX
to mem with compaction, optimizing if
possible.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

1. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not
have its initial value of 1F80H. In this case, the init optimization does not apply and XSAVEC will save SSE state as long as
RFBM[1] = 1 and the modified optimization is not being applied.

2. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not
have its initial value of 1F80H. In this case, XSAVES sets XSTATE_BV[1] to 1 as long as RFBM[1] = 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 89

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Operation

RFBM ← (XCR0 OR IA32_XSS) AND EDX:EAX; /* bitwise logical OR and AND */
IF in VMX non-root operation

THEN VMXNR ← 1;
ELSE VMXNR ← 0;

FI;
LAXA ← linear address of XSAVE area;
COMPMASK ← RFBM OR 80000000_00000000H;
IF XRSTOR_INFO = CPL,VMXNR,LAXA,COMPMASK

THEN MODOPT ← 1;
ELSE MODOPT ← 0;

FI;

IF RFBM[0] = 1 and XINUSE[0] = 1
THEN store x87 state into legacy region of XSAVE area;
/* might avoid saving if x87 state is not modified and MODOPT = 1 */

FI;
IF RFBM[1] = 1 and (XINUSE[1] = 1 or MXCSR ≠ 1F80H)

THEN store SSE state into legacy region of XSAVE area;
/* might avoid saving if SSE state is not modified and MODOPT = 1 */

FI;
IF RFBM[2] = 1 AND XINUSE[2] = 1

THEN store AVX state into extended region of XSAVE area;
/* might avoid saving if AVX state is not modified and MODOPT = 1 */

FI;

XSTATE_BV field in XSAVE header ← XINUSE AND RFBM;1

XCOMP_BV field in XSAVE header ← COMPMASK;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVES: void _xsaves(void * , unsigned __int64);

XSAVES64: void _xsaves64(void * , unsigned __int64);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

1. If MXCSR does not have its initial value of 1F80H, XSAVES sets XSTATE_BV[1] to 1 as long as RFBM[1] = 1, regardless of the value
of XINUSE[1].

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 90

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 91

9. Updates to Appendix B, Volume 2C
Change bars show changes to Appendix B of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2C: Appendices.

--
...

B.13 SSE4.2 FORMATS AND ENCODING TABLE

The tables in this section provide SSE4.2 formats and encodings. Some SSE4.2 instructions require a mandatory
prefix (66H, F2H, F3H) as part of the three-byte opcode. These prefixes are included in the tables. In 64-bit mode,
some instructions requires REX.W, the byte sequence of REX.W prefix in the opcode sequence is shown.

Table B-36. Encodings of SSE4.2 instructions

Instruction and Format Encoding

CRC32 — Accumulate CRC32

 reg2 to reg1 1111 0010:0000 1111:0011 1000: 1111 000w :11 reg1 reg2

 mem to reg 1111 0010:0000 1111:0011 1000: 1111 000w : mod reg r/m

 bytereg2 to reg1 1111 0010:0100 WR0B:0000 1111:0011 1000: 1111 0000 :11
reg1 bytereg2

 m8 to reg 1111 0010:0100 WR0B:0000 1111:0011 1000: 1111 0000 : mod
reg r/m

 qwreg2 to qwreg1 1111 0010:0100 1R0B:0000 1111:0011 1000: 1111 0001 :11
qwreg1 qwreg2

 mem64 to qwreg 1111 0010:0100 1R0B:0000 1111:0011 1000: 1111 0001 : mod
qwreg r/m

PCMPESTRI— Packed Compare Explicit-Length Strings To
Index

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0001:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0001: mod xmmreg r/m

PCMPESTRM— Packed Compare Explicit-Length Strings To
Mask

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0000:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0000: mod xmmreg r/m

PCMPISTRI— Packed Compare Implicit-Length String To
Index

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0011:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0011: mod xmmreg r/m

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 92

...

10.Updates to Chapter 1, Volume 3A
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--
...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor

PCMPISTRM— Packed Compare Implicit-Length Strings To
Mask

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0010:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0010: mod xmmreg r/m

PCMPGTQ— Packed Compare Greater Than

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0111:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0111: mod xmmreg r/m

POPCNT— Return Number of Bits Set to 1

 reg2 to reg1 1111 0011:0000 1111:1011 1000:11 reg1 reg2

 mem to reg1 1111 0011:0000 1111:1011 1000:mod reg1 r/m

 qwreg2 to qwreg1 1111 0011:0100 1R0B:0000 1111:1011 1000:11 reg1 reg2

 mem64 to qwreg1 1111 0011:0100 1R0B:0000 1111:1011 1000:mod reg1 r/m

Table B-36. Encodings of SSE4.2 instructions

Instruction and Format Encoding

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 93

• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Core™2 Extreme QX9000 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• The Intel® Core™ M processor family
• Intel® Core™ i7-59xx Processor Extreme Edition
• Intel® Core™ i7-49xx Processor Extreme Edition
• Intel® Xeon® processor E3-1200 v3 product family
• Intel® Xeon® processor E5-2600/1600 v3 product families
• 5th generation Intel® Core™ processors
• Intel® Atom™ processor Z8000 series
• Intel® Atom™ processor Z3400 series
• Intel® Atom™ processor Z3500 series
• 6th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1500m v5 product family

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 94

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on
Enhanced Intel® Core™ microarchitecture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture and supports Intel 64 archi-
tecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel®
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32nm version of
Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and
various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These
processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2
product family and 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code name
Ivy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Intel® microarchitecture
code name Ivy Bridge-E and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

The Intel® Core™ M processor family and 5th generation Intel® Core™ processors are based on the Intel® micro-
architecture code name Broadwell and support Intel 64 architecture.

The Intel® Xeon® processor E3-1500m v5 product family and 6th generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Skylake and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Intel® microarchitecture code name Haswell-E and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Intel microarchitecture code name Airmont.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Intel
microarchitecture code name Silvermont.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors,

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 95

Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel®
64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is a
superset of and compatible with IA-32 architecture.

1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE
A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all seven volumes of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related
Intel manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation used by Intel 64 and IA-32
processors and the mechanisms provided by the architectures to support operating systems and executives,
including the system-oriented registers and data structures and the system-oriented instructions. The steps
necessary for switching between real-address and protected modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data structures, registers, and instruc-
tions that support segmentation and paging. The chapter explains how they can be used to implement a “flat”
(unsegmented) memory model or a segmented memory model.

Chapter 4 — Paging. Describes the paging modes supported by Intel 64 and IA-32 processors.

Chapter 5 — Protection. Describes the support for page and segment protection provided in the Intel 64 and IA-
32 architectures. This chapter also explains the implementation of privilege rules, stack switching, pointer valida-
tion, user and supervisor modes.

Chapter 6 — Interrupt and Exception Handling. Describes the basic interrupt mechanisms defined in the
Intel 64 and IA-32 architectures, shows how interrupts and exceptions relate to protection, and describes how the
architecture handles each exception type. Reference information for each exception is given in this chapter.
Includes programming the LINT0 and LINT1 inputs and gives an example of how to program the LINT0 and LINT1
pins for specific interrupt vectors.

Chapter 7 — Task Management. Describes mechanisms the Intel 64 and IA-32 architectures provide to
support multitasking and inter-task protection.

Chapter 8 — Multiple-Processor Management. Describes the instructions and flags that support multiple
processors with shared memory, memory ordering, and Intel® Hyper-Threading Technology. Includes MP initial-
ization for P6 family processors and gives an example of how to use of the MP protocol to boot P6 family proces-
sors in an MP system.

Chapter 9 — Processor Management and Initialization. Defines the state of an Intel 64 or IA-32 processor
after reset initialization. This chapter also explains how to set up an Intel 64 or IA-32 processor for real-address
mode operation and protected- mode operation, and how to switch between modes.

Chapter 10 — Advanced Programmable Interrupt Controller (APIC). Describes the programming interface
to the local APIC and gives an overview of the interface between the local APIC and the I/O APIC. Includes APIC
bus message formats and describes the message formats for messages transmitted on the APIC bus for P6 family
and Pentium processors.

Chapter 11 — Memory Cache Control. Describes the general concept of caching and the caching mechanisms
supported by the Intel 64 or IA-32 architectures. This chapter also describes the memory type range registers
(MTRRs) and how they can be used to map memory types of physical memory. Information on using the new
cache control and memory streaming instructions introduced with the Pentium III, Pentium 4, and Intel Xeon
processors is also given.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 96

Chapter 12 — Intel® MMX™ Technology System Programming. Describes those aspects of the Intel®
MMX™ technology that must be handled and considered at the system programming level, including: task
switching, exception handling, and compatibility with existing system environments.

Chapter 13 — System Programming For Instruction Set Extensions And Processor Extended States.
Describes the operating system requirements to support SSE/SSE2/SSE3/SSSE3/SSE4 extensions, including task
switching, exception handling, and compatibility with existing system environments. The latter part of this
chapter describes the extensible framework of operating system requirements to support processor extended
states. Processor extended state may be required by instruction set extensions beyond those of SSE/SSE2/SSE3/
SSSE3/SSE4 extensions.

Chapter 14 — Power and Thermal Management. Describes facilities of Intel 64 and IA-32 architecture used
for power management and thermal monitoring.

Chapter 15 — Machine-Check Architecture. Describes the machine-check architecture and machine-
check exception mechanism found in the Pentium 4, Intel Xeon, and P6 family processors. Addition-
ally, a signaling mechanism for software to respond to hardware corrected machine check error is
covered.
Chapter 16 — Interpreting Machine-Check Error Codes. Gives an example of how to interpret the error
codes for a machine-check error that occurred on a P6 family processor.

Chapter 17 — Debugging, Branch Profiles and Time-Stamp Counter. Describes the debugging registers
and other debug mechanism provided in Intel 64 or IA-32 processors. This chapter also describes the time-stamp
counter.

Chapter 18 — Performance Monitoring. Describes the Intel 64 and IA-32 architectures’ facilities for moni-
toring performance.

Chapter 19 — Performance-Monitoring Events. Lists architectural performance events. Non-architectural
performance events (i.e. model-specific events) are listed for each generation of microarchitecture.

Chapter 20 — 8086 Emulation. Describes the real-address and virtual-8086 modes of the IA-32 architecture.

Chapter 21 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 32-bit code modules within the
same program or task.

Chapter 22 — IA-32 Architecture Compatibility. Describes architectural compatibility among IA-32 proces-
sors.

Chapter 23 — Introduction to Virtual-Machine Extensions. Describes the basic elements of virtual machine
architecture and the virtual-machine extensions for Intel 64 and IA-32 Architectures.

Chapter 24 — Virtual-Machine Control Structures. Describes components that manage VMX operation.
These include the working-VMCS pointer and the controlling-VMCS pointer.

Chapter 25 — VMX Non-Root Operation. Describes the operation of a VMX non-root operation. Processor
operation in VMX non-root mode can be restricted programmatically such that certain operations, events or
conditions can cause the processor to transfer control from the guest (running in VMX non-root mode) to the
monitor software (running in VMX root mode).

Chapter 26 — VM Entries. Describes VM entries. VM entry transitions the processor from the VMM running in
VMX root-mode to a VM running in VMX non-root mode. VM-Entry is performed by the execution of VMLAUNCH or
VMRESUME instructions.

Chapter 27 — VM Exits. Describes VM exits. Certain events, operations or situations while the processor is in
VMX non-root operation may cause VM-exit transitions. In addition, VM exits can also occur on failed VM entries.

Chapter 28 — VMX Support for Address Translation. Describes virtual-machine extensions that support
address translation and the virtualization of physical memory.

Chapter 29 — APIC Virtualization and Virtual Interrupts. Describes the VMCS including controls that enable
the virtualization of interrupts and the Advanced Programmable Interrupt Controller (APIC).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 97

Chapter 30 — VMX Instruction Reference. Describes the virtual-machine extensions (VMX). VMX is intended
for a system executive to support virtualization of processor hardware and a system software layer acting as a
host to multiple guest software environments.

Chapter 31 — Virtual-Machine Monitoring Programming Considerations. Describes programming consid-
erations for VMMs. VMMs manage virtual machines (VMs).

Chapter 32 — Virtualization of System Resources. Describes the virtualization of the system resources.
These include: debugging facilities, address translation, physical memory, and microcode update facilities.

Chapter 33 — Handling Boundary Conditions in a Virtual Machine Monitor. Describes what a VMM must
consider when handling exceptions, interrupts, error conditions, and transitions between activity states.

Chapter 34 — System Management Mode. Describes Intel 64 and IA-32 architectures’ system management
mode (SMM) facilities.

Chapter 35 — Model-Specific Registers (MSRs). Lists the MSRs available in the Pentium processors, the P6
family processors, the Pentium 4, Intel Xeon, Intel Core Solo, Intel Core Duo processors, and Intel Core 2
processor family and describes their functions.

Chapter 36 — Intel® Processor Trace. Describes details of Intel® Processor Trace.

Chapter 37 — Introduction to Intel® Software Guard Extensions. Provides an overview of the Intel® Soft-
ware Guard Extensions (Intel® SGX) set of instructions.

Chapter 38 — Enclave Access Control and Data Structures. Describes Enclave Access Control procedures
and defines various Intel SGX data structures.

Chapter 39 — Enclave Operation. Describes enclave creation and initialization, adding pages and measuring
an enclave, and enclave entry and exit.

Chapter 40 — Enclave Exiting Events. Describes enclave-exiting events (EEE) and asynchronous enclave exit
(AEX).

Chapter 41 — SGX Instruction References. Describes the supervisor and user level instructions provided by
Intel SGX.

Chapter 42 — Intel® SGX Interactions with IA32 and Intel® 64 Architecture. Describes the Intel SGX
collection of enclave instructions for creating protected execution environments on processors supporting IA32
and Intel 64 architectures.

Chapter 43 — Enclave Code Debug and Profiling. Describes enclave code debug processes and options.

Appendix A — VMX Capability Reporting Facility. Describes the VMX capability MSRs. Support for specific
VMX features is determined by reading capability MSRs.

Appendix B — Field Encoding in VMCS. Enumerates all fields in the VMCS and their encodings. Fields are
grouped by width (16-bit, 32-bit, etc.) and type (guest-state, host-state, etc.).

Appendix C — VM Basic Exit Reasons. Describes the 32-bit fields that encode reasons for a VM exit. Examples
of exit reasons include, but are not limited to: software interrupts, processor exceptions, software traps, NMIs,
external interrupts, and triple faults.

...

11.Updates to Chapter 2, Volume 3A
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--
...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 98

2.5 CONTROL REGISTERS
Control registers (CR0, CR1, CR2, CR3, and CR4; see Figure 2-7) determine operating mode of the processor and
the characteristics of the currently executing task. These registers are 32 bits in all 32-bit modes and compati-
bility mode.

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions are used to manipulate the
register bits. Operand-size prefixes for these instructions are ignored. The following is also true:
• Bits 63:32 of CR0 and CR4 are reserved and must be written with zeros. Writing a nonzero value to any of the

upper 32 bits results in a general-protection exception, #GP(0).
• All 64 bits of CR2 are writable by software.
• Bits 51:40 of CR3 are reserved and must be 0.
• The MOV CRn instructions do not check that addresses written to CR2 and CR3 are within the linear-address

or physical-address limitations of the implementation.
• Register CR8 is available in 64-bit mode only.

The control registers are summarized below, and each architecturally defined control field in these control regis-
ters are described individually. In Figure 2-7, the width of the register in 64-bit mode is indicated in parenthesis
(except for CR0).
• CR0 — Contains system control flags that control operating mode and states of the processor.
• CR1 — Reserved.
• CR2 — Contains the page-fault linear address (the linear address that caused a page fault).
• CR3 — Contains the physical address of the base of the paging-structure hierarchy and two flags (PCD and

PWT). Only the most-significant bits (less the lower 12 bits) of the base address are specified; the lower 12
bits of the address are assumed to be 0. The first paging structure must thus be aligned to a page (4-KByte)
boundary. The PCD and PWT flags control caching of that paging structure in the processor’s internal data
caches (they do not control TLB caching of page-directory information).

When using the physical address extension, the CR3 register contains the base address of the page-directory-
pointer table In IA-32e mode, the CR3 register contains the base address of the PML4 table.

See also: Chapter 4, “Paging.”
• CR4 — Contains a group of flags that enable several architectural extensions, and indicate operating system

or executive support for specific processor capabilities. The control registers can be read and loaded (or
modified) using the move-to-or-from-control-registers forms of the MOV instruction. In protected mode, the
MOV instructions allow the control registers to be read or loaded (at privilege level 0 only). This restriction
means that application programs or operating-system procedures (running at privilege levels 1, 2, or 3) are
prevented from reading or loading the control registers.

• CR8 — Provides read and write access to the Task Priority Register (TPR). It specifies the priority threshold
value that operating systems use to control the priority class of external interrupts allowed to interrupt the
processor. This register is available only in 64-bit mode. However, interrupt filtering continues to apply in
compatibility mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 99

...

12. Updates to Chapter 4, Volume 3A
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

4.7 PAGE-FAULT EXCEPTIONS
Accesses using linear addresses may cause page-fault exceptions (#PF; exception 14). An access to a linear
address may cause page-fault exception for either of two reasons: (1) there is no translation for the linear
address; or (2) there is a translation for the linear address, but its access rights do not permit the access.

As noted in Section 4.3, Section 4.4.2, and Section 4.5, there is no translation for a linear address if the transla-
tion process for that address would use a paging-structure entry in which the P flag (bit 0) is 0 or one that sets a
reserved bit. If there is a translation for a linear address, its access rights are determined as specified in Section
4.6.

When Intel® Software Guard Extensions (Intel® SGX) are enabled, the processor may deliver exception 14 for
reasons unrelated to paging. See Section 38.3, “Access-control Requirements” and Section 38.19, “Enclave Page
Cache Map (EPCM)” in Chapter 38, “Enclave Access Control and Data Structures.” Such an exception is called an

Figure 2-7. Control Registers

CR1

W
P

A
M

Page-Directory Base

V
M
E

P
S
E

T
S
D

D
E

P
V
I

P
G
E

M
C
E

P
A
E

P
C
E

N
W

P
G

C
D

P
W
T

P
C
D

Page-Fault Linear Address

P
E

E
M

M
P

T
S

N
E

E
T

CR2

CR0

CR4

Reserved

CR3

Reserved

31 2930 28 19 18 17 16 15 6 5 4 3 2 1 0

31(63) 0

31(63) 0

31(63) 12 11 5 4 3 2

31(63) 9 8 7 6 5 4 3 2 1 0

(PDBR)

13 12 11 10

OSFXSR
OSXMMEXCPT

V
M
X
EE

X
M
S

1418

OSXSAVE PCIDE

17

S
M
E
P

20

FSGSBASE

16 15

S
M
A
P

22 21

P
K
E

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 100

SGX-induced page fault. The processor uses the error code to distinguish SGX-induced page faults from ordi-
nary page faults.

Figure 4-12 illustrates the error code that the processor provides on delivery of a page-fault exception. The
following items explain how the bits in the error code describe the nature of the page-fault exception:

• P flag (bit 0).
This flag is 0 if there is no translation for the linear address because the P flag was 0 in one of the paging-
structure entries used to translate that address.

• W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, it is 0. This flag describes
the access causing the page-fault exception, not the access rights specified by paging.

• U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is 0 if a supervisor-mode access did
so. This flag describes the access causing the page-fault exception, not the access rights specified by paging.
User-mode and supervisor-mode accesses are defined in Section 4.6.

• RSVD flag (bit 3).
This flag is 1 if there is no translation for the linear address because a reserved bit was set in one of the
paging-structure entries used to translate that address. (Because reserved bits are not checked in a paging-
structure entry whose P flag is 0, bit 3 of the error code can be set only if bit 0 is also set.1)

Figure 4-12. Page-Fault Error Code

1. Some past processors had errata for some page faults that occur when there is no translation for the linear address because the P
flag was 0 in one of the paging-structure entries used to translate that address. Due to these errata, some such page faults pro-
duced error codes that cleared bit 0 (P flag) and set bit 3 (RSVD flag).

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

A supervisor-mode access caused the fault.
A user-mode access caused the fault.

31 0

Reserved

1234

The fault was not caused by reserved bit violation.
The fault was caused by a reserved bit set to 1 in some

P 0
1

W/R 0
1

U/S 0

RSVD 0
1

1

I/D

I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

PW
/R

U/S
RSVD

paging-structure entry.

PK

5

PK 0 The fault was not caused by protection keys.
1 There was a protection-key violation.

SGX The fault is not related to SGX.0
1 The fault resulted from violation of SGX-specific access-control

requirements.

Reserved

SGX

15

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 101

Bits reserved in the paging-structure entries are reserved for future functionality. Software developers should
be aware that such bits may be used in the future and that a paging-structure entry that causes a page-fault
exception on one processor might not do so in the future.

• I/D flag (bit 4).
This flag is 1 if (1) the access causing the page-fault exception was an instruction fetch; and (2) either
(a) CR4.SMEP = 1; or (b) both (i) CR4.PAE = 1 (either PAE paging or IA-32e paging is in use); and
(ii) IA32_EFER.NXE = 1. Otherwise, the flag is 0. This flag describes the access causing the page-fault
exception, not the access rights specified by paging.

• PK flag (bit 5).
This flag is 1 if (1) IA32_EFER.LMA = CR4.PKE = 1; (2) the access causing the page-fault exception was a
data access; (3) the linear address was a user-mode address with protection key i; and (5) the PKRU register
(see Section 4.6.2) is such that either (a) ADi = 1; or (b) the following all hold: (i) WDi = 1; (ii) the access is
a write access; and (iii) either CR0.WP = 1 or the access causing the page-fault exception was a user-mode
access.

• SGX flag (bit 15).
This flag is 1 if the exception is unrelated to paging and resulted from violation of SGX-specific access-control
requirements. Because such a violation can occur only if there is no ordinary page fault, this flag is set only if
the P flag (bit 0) is 1 and the RSVD flag (bit 3) and the PK flag (bit 5) are both 0.

Page-fault exceptions occur only due to an attempt to use a linear address. Failures to load the PDPTE registers
with PAE paging (see Section 4.4.1) cause general-protection exceptions (#GP(0)) and not page-fault exceptions.

...

13. Updates to Chapter 6, Volume 3A
Change bars show changes to Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

Interrupt 14—Page-Fault Exception (#PF)

Exception Class Fault.

Description

Indicates that, with paging enabled (the PG flag in the CR0 register is set), the processor detected one of the
following conditions while using the page-translation mechanism to translate a linear address to a physical
address:
• The P (present) flag in a page-directory or page-table entry needed for the address translation is clear,

indicating that a page table or the page containing the operand is not present in physical memory.
• The procedure does not have sufficient privilege to access the indicated page (that is, a procedure running in

user mode attempts to access a supervisor-mode page). If the SMAP flag is set in CR4, a page fault may also
be triggered by code running in supervisor mode that tries to access data at a user-mode address. If the PKE
flag is set in CR4, the PKRU register may cause page faults on data accesses to user-mode addresses with
certain protection keys.

• Code running in user mode attempts to write to a read-only page. If the WP flag is set in CR0, the page fault
will also be triggered by code running in supervisor mode that tries to write to a read-only page.

• An instruction fetch to a linear address that translates to a physical address in a memory page with the
execute-disable bit set (for information about the execute-disable bit, see Chapter 4, “Paging”). If the SMEP

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 102

flag is set in CR4, a page fault will also be triggered by code running in supervisor mode that tries to fetch an
instruction from a user-mode address.

• One or more reserved bits in paging-structure entry are set to 1. See description below of RSVD error code
flag.

• An enclave access violates one of the specified access-control requirements. See Section 38.3, “Access-
control Requirements” and Section 38.19, “Enclave Page Cache Map (EPCM)” in Chapter 38, “Enclave Access
Control and Data Structures.” In this case, the exception is called an SGX-induced page fault. The processor
uses the error code (below) to distinguish SGX-induced page faults from ordinary page faults.

The exception handler can recover from page-not-present conditions and restart the program or task without any
loss of program continuity. It can also restart the program or task after a privilege violation, but the problem that
caused the privilege violation may be uncorrectable.

See also: Section 4.7, “Page-Fault Exceptions.”

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of information to aid in diag-
nosing the exception and recovering from it:
• An error code on the stack. The error code for a page fault has a format different from that for other

exceptions (see Figure 6-9). The processor establishes the bits in the error code as follows:

— P flag (bit 0).
This flag is 0 if there is no translation for the linear address because the P flag was 0 in one of the paging-
structure entries used to translate that address.

— W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, it is 0. This flag
describes the access causing the page-fault exception, not the access rights specified by paging.

— U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is 0 if a supervisor-mode access
did so. This flag describes the access causing the page-fault exception, not the access rights specified by
paging.

— RSVD flag (bit 3).
This flag is 1 if there is no translation for the linear address because a reserved bit was set in one of the
paging-structure entries used to translate that address.

— I/D flag (bit 4).
This flag is 1 if the access causing the page-fault exception was an instruction fetch. This flag describes the
access causing the page-fault exception, not the access rights specified by paging.

— PK flag (bit 5).
This flag is 1 if the access causing the page-fault exception was a data access to a user-mode address with
protection key disallowed by the value of the PKRU register.

— SGX flag (bit 15).
This flag is 1 if the exception is unrelated to paging and resulted from violation of SGX-specific access-
control requirements. Because such a violation can occur only if there is no ordinary page fault, this flag
is set only if the P flag (bit 0) is 1 and the RSVD flag (bit 3) and the PK flag (bit 5) are both 0.

See Section 4.6, “Access Rights” and Section 4.7, “Page-Fault Exceptions” for more information about page-
fault exceptions and the error codes that they produce.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 103

• The contents of the CR2 register. The processor loads the CR2 register with the 32-bit linear address that
generated the exception. The page-fault handler can use this address to locate the corresponding page
directory and page-table entries. Another page fault can potentially occur during execution of the page-fault
handler; the handler should save the contents of the CR2 register before a second page fault can occur.1 If a
page fault is caused by a page-level protection violation, the access flag in the page-directory entry is set
when the fault occurs. The behavior of IA-32 processors regarding the access flag in the corresponding page-
table entry is model specific and not architecturally defined.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the exception. If the
page-fault exception occurred during a task switch, the CS and EIP registers may point to the first instruction of
the new task (as described in the following “Program State Change” section).

Program State Change

A program-state change does not normally accompany a page-fault exception, because the instruction that
causes the exception to be generated is not executed. After the page-fault exception handler has corrected the
violation (for example, loaded the missing page into memory), execution of the program or task can be resumed.

When a page-fault exception is generated during a task switch, the program-state may change, as follows. During
a task switch, a page-fault exception can occur during any of following operations:

Figure 6-9. Page-Fault Error Code

1. Processors update CR2 whenever a page fault is detected. If a second page fault occurs while an earlier page fault is being deliv-
ered, the faulting linear address of the second fault will overwrite the contents of CR2 (replacing the previous address). These
updates to CR2 occur even if the page fault results in a double fault or occurs during the delivery of a double fault.

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

A supervisor-mode access caused the fault.
A user-mode access caused the fault.

31 0

Reserved

1234

The fault was not caused by reserved bit violation.
The fault was caused by a reserved bit set to 1 in some

P 0
1

W/R 0
1

U/S 0

RSVD 0
1

1

I/D

I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

PW
/R

U/S
RSVD

paging-structure entry.

PK

5

PK 0 The fault was not caused by protection keys.
1 There was a protection-key violation.

SGX The fault is not related to SGX.0
1 The fault resulted from violation of SGX-specific access-control

requirements.

Reserved

SGX

15

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 104

• While writing the state of the original task into the TSS of that task.
• While reading the GDT to locate the TSS descriptor of the new task.
• While reading the TSS of the new task.
• While reading segment descriptors associated with segment selectors from the new task.
• While reading the LDT of the new task to verify the segment registers stored in the new TSS.

In the last two cases the exception occurs in the context of the new task. The instruction pointer refers to the first
instruction of the new task, not to the instruction which caused the task switch (or the last instruction to be
executed, in the case of an interrupt). If the design of the operating system permits page faults to occur during
task-switches, the page-fault handler should be called through a task gate.

If a page fault occurs during a task switch, the processor will load all the state information from the new TSS
(without performing any additional limit, present, or type checks) before it generates the exception. The page-
fault handler should thus not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and
GS registers without causing another exception. (See the Program State Change description for “Interrupt 10—
Invalid TSS Exception (#TS)” in this chapter for additional information on how to handle this situation.)

Additional Exception-Handling Information

Special care should be taken to ensure that an exception that occurs during an explicit stack switch does not
cause the processor to use an invalid stack pointer (SS:ESP). Software written for 16-bit IA-32 processors often
use a pair of instructions to change to a new stack, for example:

MOV SS, AX
MOV SP, StackTop

When executing this code on one of the 32-bit IA-32 processors, it is possible to get a page fault, general-protec-
tion fault (#GP), or alignment check fault (#AC) after the segment selector has been loaded into the SS register
but before the ESP register has been loaded. At this point, the two parts of the stack pointer (SS and ESP) are
inconsistent. The new stack segment is being used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the exception handler switches to a well defined stack
(that is, the handler is a task or a more privileged procedure). However, if the exception handler is called at the
same privilege level and from the same task, the processor will attempt to use the inconsistent stack pointer.

In systems that handle page-fault, general-protection, or alignment check exceptions within the faulting task
(with trap or interrupt gates), software executing at the same privilege level as the exception handler should
initialize a new stack by using the LSS instruction rather than a pair of MOV instructions, as described earlier in
this note. When the exception handler is running at privilege level 0 (the normal case), the problem is limited to
procedures or tasks that run at privilege level 0, typically the kernel of the operating system.

...

14. Updates to Chapter 8, Volume 3A
Change bars show changes to Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

8.2.2 Memory Ordering in P6 and More Recent Processor Families
The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and P6 family processors also use a processor-
ordered memory-ordering model that can be further defined as “write ordered with store-buffer forwarding.” This
model can be characterized as follows.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 105

In a single-processor system for memory regions defined as write-back cacheable, the memory-ordering model
respects the following principles (Note the memory-ordering principles for single-processor and multiple-
processor systems are written from the perspective of software executing on the processor, where the term
“processor” refers to a logical processor. For example, a physical processor supporting multiple cores and/or Intel
Hyper-Threading Technology is treated as a multi-processor systems.):
• Reads are not reordered with other reads.
• Writes are not reordered with older reads.
• Writes to memory are not reordered with other writes, with the following exceptions:

— streaming stores (writes) executed with the non-temporal move instructions (MOVNTI, MOVNTQ,
MOVNTDQ, MOVNTPS, and MOVNTPD); and

— string operations (see Section 8.2.4.1).
• No write to memory may be reordered with an execution of the CLFLUSH instruction; a write may be

reordered with an execution of the CLFLUSHOPT instruction that flushes a cache line other than the one being
written.1 Executions of the CLFLUSH instruction are not reordered with each other. Executions of CLFLUSHOPT
that access different cache lines may be reordered with each other. An execution of CLFLUSHOPT may be
reordered with an execution of CLFLUSH that accesses a different cache line.

• Reads may be reordered with older writes to different locations but not with older writes to the same location.
• Reads or writes cannot be reordered with I/O instructions, locked instructions, or serializing instructions.
• Reads cannot pass earlier LFENCE and MFENCE instructions.
• Writes and executions of CLFLUSH and CLFLUSHOPT cannot pass earlier LFENCE, SFENCE, and MFENCE

instructions.
• LFENCE instructions cannot pass earlier reads.
• SFENCE instructions cannot pass earlier writes or executions of CLFLUSH and CLFLUSHOPT.
• MFENCE instructions cannot pass earlier reads, writes, or executions of CLFLUSH and CLFLUSHOPT.

In a multiple-processor system, the following ordering principles apply:
• Individual processors use the same ordering principles as in a single-processor system.
• Writes by a single processor are observed in the same order by all processors.
• Writes from an individual processor are NOT ordered with respect to the writes from other processors.
• Memory ordering obeys causality (memory ordering respects transitive visibility).
• Any two stores are seen in a consistent order by processors other than those performing the stores
• Locked instructions have a total order.

See the example in Figure 8-1. Consider three processors in a system and each processor performs three writes,
one to each of three defined locations (A, B, and C). Individually, the processors perform the writes in the same
program order, but because of bus arbitration and other memory access mechanisms, the order that the three
processors write the individual memory locations can differ each time the respective code sequences are executed
on the processors. The final values in location A, B, and C would possibly vary on each execution of the write
sequence.

...

1. Earlier versions of this manual specified that writes to memory may be reordered with executions of the CLFLUSH instruction. No
processors implementing the CLFLUSH instruction allow such reordering.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 106

8.7.13.1 Processor Caches
For processors supporting Intel Hyper-Threading Technology, the caches are shared. Any cache manipulation
instruction that is executed on one logical processor has a global effect on the cache hierarchy of the physical
processor. Note the following:
• WBINVD instruction — The entire cache hierarchy is invalidated after modified data is written back to

memory. All logical processors are stopped from executing until after the write-back and invalidate operation
is completed. A special bus cycle is sent to all caching agents. The amount of time or cycles for WBINVD to
complete will vary due to the size of different cache hierarchies and other factors. As a consequence, the use
of the WBINVD instruction can have an impact on interrupt/event response time.

• INVD instruction — The entire cache hierarchy is invalidated without writing back modified data to memory.
All logical processors are stopped from executing until after the invalidate operation is completed. A special
bus cycle is sent to all caching agents.

• CLFLUSH and CLFLUSHOPT instructions — The specified cache line is invalidated from the cache hierarchy
after any modified data is written back to memory and a bus cycle is sent to all caching agents, regardless of
which logical processor caused the cache line to be filled.

• CD flag in control register CR0 — Each logical processor has its own CR0 control register, and thus its own
CD flag in CR0. The CD flags for the two logical processors are ORed together, such that when any logical
processor sets its CD flag, the entire cache is nominally disabled.

...

15. Updates to Chapter 11, Volume 3A
Change bars show changes to Chapter 11 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

--

...

11.1 INTERNAL CACHES, TLBS, AND BUFFERS
The Intel 64 and IA-32 architectures support cache, translation look aside buffers (TLBs), and a store buffer for
temporary on-chip (and external) storage of instructions and data. (Figure 11-1 shows the arrangement of
caches, TLBs, and the store buffer for the Pentium 4 and Intel Xeon processors.) Table 11-1 shows the character-
istics of these caches and buffers for the Pentium 4, Intel Xeon, P6 family, and Pentium processors. The sizes
and characteristics of these units are machine specific and may change in future versions of the
processor. The CPUID instruction returns the sizes and characteristics of the caches and buffers for the
processor on which the instruction is executed. See “CPUID—CPU Identification” in Chapter 3, “Instruction Set
Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 107

Figure 11-2 shows the cache arrangement of Intel Core i7 processor.

Figure 11-1. Cache Structure of the Pentium 4 and Intel Xeon Processors

Figure 11-2. Cache Structure of the Intel Core i7 Processors

Trace CacheInstruction Decoder

Bus Interface Unit

System Bus

Data Cache
Unit (L1)

 (External)

Physical
Memory

Store Buffer

Data TLBs

L2 Cache

Instruction
TLBs

L3 Cache†

† Intel Xeon processors only

Instruction Decoder and front end

Out-of-Order Engine

Chipset

Data Cache
Unit (L1)

Instruction
Cache

STLBData TLB

L2 Cache

ITLB

L3 Cache

IMC

QPI

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 108

Table 11-1. Characteristics of the Caches, TLBs, Store Buffer, and
Write Combining Buffer in Intel 64 and IA-32 Processors

Cache or Buffer Characteristics

Trace Cache1 • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst® microarchitecture): 12 Kμops, 8-way set
associative.

• Intel Core i7, Intel Core 2 Duo, Intel® Atom™, Intel Core Duo, Intel Core Solo, Pentium M processor: not
implemented.

• P6 family and Pentium processors: not implemented.

L1 Instruction Cache • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): not implemented.
• Intel Core i7 processor: 32-KByte, 4-way set associative.
• Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo, Pentium M processor: 32-KByte, 8-way set

associative.
• P6 family and Pentium processors: 8- or 16-KByte, 4-way set associative, 32-byte cache line size; 2-way set

associative for earlier Pentium processors.

L1 Data Cache • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): 8-KByte, 4-way set
associative, 64-byte cache line size.

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): 16-KByte, 8-way set
associative, 64-byte cache line size.

• Intel Atom processors: 24-KByte, 6-way set associative, 64-byte cache line size.
• Intel Core i7, Intel Core 2 Duo, Intel Core Duo, Intel Core Solo, Pentium M and Intel Xeon processors: 32-

KByte, 8-way set associative, 64-byte cache line size.
• P6 family processors: 16-KByte, 4-way set associative, 32-byte cache line size; 8-KBytes, 2-way set

associative for earlier P6 family processors.
• Pentium processors: 16-KByte, 4-way set associative, 32-byte cache line size; 8-KByte, 2-way set

associative for earlier Pentium processors.

L2 Unified Cache • Intel Core 2 Duo and Intel Xeon processors: up to 4-MByte (or 4MBx2 in quadcore processors), 16-way set
associative, 64-byte cache line size.

• Intel Core 2 Duo and Intel Xeon processors: up to 6-MByte (or 6MBx2 in quadcore processors), 24-way set
associative, 64-byte cache line size.

• Intel Core i7, i5, i3 processors: 256KBbyte, 8-way set associative, 64-byte cache line size.
• Intel Atom processors: 512-KByte, 8-way set associative, 64-byte cache line size.
• Intel Core Duo, Intel Core Solo processors: 2-MByte, 8-way set associative, 64-byte cache line size
• Pentium 4 and Intel Xeon processors: 256, 512, 1024, or 2048-KByte, 8-way set associative, 64-byte cache

line size, 128-byte sector size.
• Pentium M processor: 1 or 2-MByte, 8-way set associative, 64-byte cache line size.
• P6 family processors: 128-KByte, 256-KByte, 512-KByte, 1-MByte, or 2-MByte, 4-way set associative,

32-byte cache line size.
• Pentium processor (external optional): System specific, typically 256- or 512-KByte, 4-way set associative,

32-byte cache line size.

L3 Unified Cache • Intel Xeon processors: 512-KByte, 1-MByte, 2-MByte, or 4-MByte, 8-way set associative, 64-byte cache line
size, 128-byte sector size.

• Intel Core i7 processor, Intel Xeon processor 5500: Up to 8MByte, 16-way set associative, 64-byte cache
line size.

• Intel Xeon processor 5600: Up to 12MByte, 64-byte cache line size.
• Intel Xeon processor 7500: Up to 24MByte, 64-byte cache line size.

Instruction TLB
(4-KByte Pages)

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): 128 entries, 4-way set
associative.

• Intel Atom processors: 32-entries, fully associative.
• Intel Core i7, i5, i3 processors: 64-entries per thread (128-entries per core), 4-way set associative.
• Intel Core 2 Duo, Intel Core Duo, Intel Core Solo processors, Pentium M processor: 128 entries, 4-way set

associative.
• P6 family processors: 32 entries, 4-way set associative.
• Pentium processor: 32 entries, 4-way set associative; fully set associative for Pentium processors with MMX

technology.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 109

Intel 64 and IA-32 processors may implement four types of caches: the trace cache, the level 1 (L1) cache, the
level 2 (L2) cache, and the level 3 (L3) cache. See Figure 11-1. Cache availability is described below:
• Intel Core i7, i5, i3 processor Family and Intel Xeon processor Family based on Intel® microarchi-

tecture code name Nehalem and Intel® microarchitecture code name Westmere — The L1 cache is
divided into two sections: one section is dedicated to caching instructions (pre-decoded instructions) and the
other caches data. The L2 cache is a unified data and instruction cache. Each processor core has its own L1
and L2. The L3 cache is an inclusive, unified data and instruction cache, shared by all processor cores inside a
physical package. No trace cache is implemented.

Data TLB (4-KByte
Pages)

• Intel Core i7, i5, i3 processors, DTLB0: 64-entries, 4-way set associative.
• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 256 entries, 4 ways.
• Intel Atom processors: 16-entry-per-thread micro-TLB, fully associative; 64-entry DTLB, 4-way set

associative; 16-entry PDE cache, fully associative.
• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): 64 entry, fully set

associative, shared with large page DTLB.
• Intel Core Duo, Intel Core Solo processors, Pentium M processor: 128 entries, 4-way set associative.
• Pentium and P6 family processors: 64 entries, 4-way set associative; fully set, associative for Pentium

processors with MMX technology.

Instruction TLB
(Large Pages)

• Intel Core i7, i5, i3 processors: 7-entries per thread, fully associative.
• Intel Core 2 Duo processors: 4 entries, 4 ways.
• Pentium 4 and Intel Xeon processors: large pages are fragmented.
• Intel Core Duo, Intel Core Solo, Pentium M processor: 2 entries, fully associative.
• P6 family processors: 2 entries, fully associative.
• Pentium processor: Uses same TLB as used for 4-KByte pages.

Data TLB (Large
Pages)

• Intel Core i7, i5, i3 processors, DTLB0: 32-entries, 4-way set associative.
• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 32 entries, 4 ways.
• Intel Atom processors: 8 entries, 4-way set associative.
• Pentium 4 and Intel Xeon processors: 64 entries, fully set associative; shared with small page data TLBs.
• Intel Core Duo, Intel Core Solo, Pentium M processor: 8 entries, fully associative.
• P6 family processors: 8 entries, 4-way set associative.
• Pentium processor: 8 entries, 4-way set associative; uses same TLB as used for 4-KByte pages in Pentium

processors with MMX technology.

Second-level Unified
TLB (4-KByte
Pages)

• Intel Core i7, i5, i3 processor, STLB: 512-entries, 4-way set associative.

Store Buffer • Intel Core i7, i5, i3 processors: 32entries.
• Intel Core 2 Duo processors: 20 entries.
• Intel Atom processors: 8 entries, used for both WC and store buffers.
• Pentium 4 and Intel Xeon processors: 24 entries.
• Pentium M processor: 16 entries.
• P6 family processors: 12 entries.
• Pentium processor: 2 buffers, 1 entry each (Pentium processors with MMX technology have 4 buffers for 4

entries).

Write Combining
(WC) Buffer

• Intel Core 2 Duo processors: 8 entries.
• Intel Atom processors: 8 entries, used for both WC and store buffers.
• Pentium 4 and Intel Xeon processors: 6 or 8 entries.
• Intel Core Duo, Intel Core Solo, Pentium M processors: 6 entries.
• P6 family processors: 4 entries.

NOTES:
1 Introduced to the IA-32 architecture in the Pentium 4 and Intel Xeon processors.

Table 11-1. Characteristics of the Caches, TLBs, Store Buffer, and
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 110

• Intel® Core™ 2 processor family and Intel® Xeon® processor family based on Intel® Core™ micro-
architecture — The L1 cache is divided into two sections: one section is dedicated to caching instructions
(pre-decoded instructions) and the other caches data. The L2 cache is a unified data and instruction cache
located on the processor chip; it is shared between two processor cores in a dual-core processor implemen-
tation. Quad-core processors have two L2, each shared by two processor cores. No trace cache is imple-
mented.

• Intel® Atom™ processor — The L1 cache is divided into two sections: one section is dedicated to caching
instructions (pre-decoded instructions) and the other caches data. The L2 cache is a unified data and
instruction cache is located on the processor chip. No trace cache is implemented.

• Intel® Core™ Solo and Intel® Core™ Duo processors — The L1 cache is divided into two sections: one
section is dedicated to caching instructions (pre-decoded instructions) and the other caches data. The L2
cache is a unified data and instruction cache located on the processor chip. It is shared between two processor
cores in a dual-core processor implementation. No trace cache is implemented.

• Pentium® 4 and Intel® Xeon® processors Based on Intel NetBurst® microarchitecture — The trace
cache caches decoded instructions (μops) from the instruction decoder and the L1 cache contains data. The
L2 and L3 caches are unified data and instruction caches located on the processor chip. Dualcore processors
have two L2, one in each processor core. Note that the L3 cache is only implemented on some Intel Xeon
processors.

• P6 family processors — The L1 cache is divided into two sections: one dedicated to caching instructions
(pre-decoded instructions) and the other to caching data. The L2 cache is a unified data and instruction cache
located on the processor chip. P6 family processors do not implement a trace cache.

• Pentium® processors — The L1 cache has the same structure as on P6 family processors. There is no trace
cache. The L2 cache is a unified data and instruction cache external to the processor chip on earlier Pentium
processors and implemented on the processor chip in later Pentium processors. For Pentium processors where
the L2 cache is external to the processor, access to the cache is through the system bus.

For Intel Core i7 processors and processors based on Intel Core, Intel Atom, and Intel NetBurst microarchitec-
tures, Intel Core Duo, Intel Core Solo and Pentium M processors, the cache lines for the L1 and L2 caches (and L3
caches if supported) are 64 bytes wide. The processor always reads a cache line from system memory beginning
on a 64-byte boundary. (A 64-byte aligned cache line begins at an address with its 6 least-significant bits clear.)
A cache line can be filled from memory with a 8-transfer burst transaction. The caches do not support partially-
filled cache lines, so caching even a single doubleword requires caching an entire line.

The L1 and L2 cache lines in the P6 family and Pentium processors are 32 bytes wide, with cache line reads from
system memory beginning on a 32-byte boundary (5 least-significant bits of a memory address clear.) A cache
line can be filled from memory with a 4-transfer burst transaction. Partially-filled cache lines are not supported.

The trace cache in processors based on Intel NetBurst microarchitecture is available in all execution modes:
protected mode, system management mode (SMM), and real-address mode. The L1,L2, and L3 caches are also
available in all execution modes; however, use of them must be handled carefully in SMM (see Section 34.4.2,
“SMRAM Caching”).

The TLBs store the most recently used page-directory and page-table entries. They speed up memory accesses
when paging is enabled by reducing the number of memory accesses that are required to read the page tables
stored in system memory. The TLBs are divided into four groups: instruction TLBs for 4-KByte pages, data TLBs
for 4-KByte pages; instruction TLBs for large pages (2-MByte, 4-MByte or 1-GByte pages), and data TLBs for
large pages. The TLBs are normally active only in protected mode with paging enabled. When paging is disabled
or the processor is in real-address mode, the TLBs maintain their contents until explicitly or implicitly flushed (see
Section 11.9, “Invalidating the Translation Lookaside Buffers (TLBs)”).

Processors based on Intel Core microarchitectures implement one level of instruction TLB and two levels of data
TLB. Intel Core i7 processor provides a second-level unified TLB.

The store buffer is associated with the processors instruction execution units. It allows writes to system memory
and/or the internal caches to be saved and in some cases combined to optimize the processor’s bus accesses. The
store buffer is always enabled in all execution modes.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 111

The processor’s caches are for the most part transparent to software. When enabled, instructions and data flow
through these caches without the need for explicit software control. However, knowledge of the behavior of these
caches may be useful in optimizing software performance. For example, knowledge of cache dimensions and
replacement algorithms gives an indication of how large of a data structure can be operated on at once without
causing cache thrashing.

In multiprocessor systems, maintenance of cache consistency may, in rare circumstances, require intervention by
system software. For these rare cases, the processor provides privileged cache control instructions for use in
flushing caches and forcing memory ordering.

There are several instructions that software can use to improve the performance of the L1, L2, and L3 caches,
including the PREFETCHh, CLFLUSH, and CLFLUSHOPT instructions and the non-temporal move instructions
(MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD). The use of these instructions are discussed in Section
11.5.5, “Cache Management Instructions.”

...

11.5.5 Cache Management Instructions
The Intel 64 and IA-32 architectures provide several instructions for managing the L1, L2, and L3 caches. The
INVD and WBINVD instructions are privileged instructions and operate on the L1, L2 and L3 caches as a whole.
The PREFETCHh, CLFLUSH and CLFLUSHOPT instructions and the non-temporal move instructions (MOVNTI,
MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD) offer more granular control over caching, and are available to all
privileged levels.

The INVD and WBINVD instructions are used to invalidate the contents of the L1, L2, and L3 caches. The INVD
instruction invalidates all internal cache entries, then generates a special-function bus cycle that indicates that
external caches also should be invalidated. The INVD instruction should be used with care. It does not force a
write-back of modified cache lines; therefore, data stored in the caches and not written back to system memory
will be lost. Unless there is a specific requirement or benefit to invalidating the caches without writing back the
modified lines (such as, during testing or fault recovery where cache coherency with main memory is not a
concern), software should use the WBINVD instruction.

The WBINVD instruction first writes back any modified lines in all the internal caches, then invalidates the
contents of both the L1, L2, and L3 caches. It ensures that cache coherency with main memory is maintained
regardless of the write policy in effect (that is, write-through or write-back). Following this operation, the WBINVD
instruction generates one (P6 family processors) or two (Pentium and Intel486 processors) special-function bus
cycles to indicate to external cache controllers that write-back of modified data followed by invalidation of
external caches should occur. The amount of time or cycles for WBINVD to complete will vary due to the size of
different cache hierarchies and other factors. As a consequence, the use of the WBINVD instruction can have an
impact on interrupt/event response time.

The PREFETCHh instructions allow a program to suggest to the processor that a cache line from a specified loca-
tion in system memory be prefetched into the cache hierarchy (see Section 11.8, “Explicit Caching”).

The CLFLUSH and CLFLUSHOPT instructions allow selected cache lines to be flushed from memory. These instruc-
tions give a program the ability to explicitly free up cache space, when it is known that cached section of system
memory will not be accessed in the near future.

The non-temporal move instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD) allow data to be
moved from the processor’s registers directly into system memory without being also written into the L1, L2, and/
or L3 caches. These instructions can be used to prevent cache pollution when operating on data that is going to
be modified only once before being stored back into system memory. These instructions operate on data in the
general-purpose, MMX, and XMM registers.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 112

16. Updates to Chapter 15, Volume 3B
Change bars show changes to Chapter 15 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

15.3.2.1 IA32_MCi_CTL MSRs
The IA32_MCi_CTL MSR controls signaling of #MC for errors produced by a particular hardware unit (or group of
hardware units). Each of the 64 flags (EEj) represents a potential error. Setting an EEj flag enables signaling #MC
of the associated error and clearing it disables signaling of the error. Error logging happens regardless of the
setting of these bits. The processor drops writes to bits that are not implemented. Figure 15-5 shows the bit fields
of IA32_MCi_CTL.

NOTE
For P6 family processors, processors based on Intel Core microarchitecture (excluding those on
which on which CPUID reports DisplayFamily_DisplayModel as 06H_1AH and onward): the
operating system or executive software must not modify the contents of the IA32_MC0_CTL MSR.
This MSR is internally aliased to the EBL_CR_POWERON MSR and controls platform-specific error
handling features. System specific firmware (the BIOS) is responsible for the appropriate initial-
ization of the IA32_MC0_CTL MSR. P6 family processors only allow the writing of all 1s or all 0s to
the IA32_MCi_CTL MSR.

15.3.2.2 IA32_MCi_STATUS MSRS
Each IA32_MCi_STATUS MSR contains information related to a machine-check error if its VAL (valid) flag is set
(see Figure 15-6). Software is responsible for clearing IA32_MCi_STATUS MSRs by explicitly writing 0s to them;
writing 1s to them causes a general-protection exception.

NOTE
Figure 15-6 depicts the IA32_MCi_STATUS MSR when IA32_MCG_CAP[24] = 1,
IA32_MCG_CAP[11] = 1 and IA32_MCG_CAP[10] = 1. When IA32_MCG_CAP[24] = 0 and
IA32_MCG_CAP[11] = 1, bits 56:55 is reserved and bits 54:53 for threshold-based error
reporting. When IA32_MCG_CAP[11] = 0, bits 56:53 are part of the “Other Information” field. The
use of bits 54:53 for threshold-based error reporting began with Intel Core Duo processors, and is
currently used for cache memory. See Section 15.4, “Enhanced Cache Error reporting,” for more
information. When IA32_MCG_CAP[10] = 0, bits 52:38 are part of the “Other Information” field.
The use of bits 52:38 for corrected MC error count is introduced with Intel 64 processor on which
CPUID reports DisplayFamily_DisplayModel as 06H_1AH.

Where:

Figure 15-5. IA32_MCi_CTL Register

EEj—Error reporting enable flag

63 0123
E
E
0
1

E
E
0
2

E
E
0
0

E
E
6
1

E
E
6
2

E
E
6
3

62 61

.

 (where j is 00 through 63)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 113

• MCA (machine-check architecture) error code field, bits 15:0 — Specifies the machine-check archi-
tecture-defined error code for the machine-check error condition detected. The machine-check architecture-
defined error codes are guaranteed to be the same for all IA-32 processors that implement the machine-check
architecture. See Section 15.9, “Interpreting the MCA Error Codes,” and Chapter 16, “Interpreting Machine-
Check Error Codes”, for information on machine-check error codes.

• Model-specific error code field, bits 31:16 — Specifies the model-specific error code that uniquely
identifies the machine-check error condition detected. The model-specific error codes may differ among IA-32
processors for the same machine-check error condition. See Chapter 16, “Interpreting Machine-Check Error
Codes” for information on model-specific error codes.

• Reserved, Error Status, and Other Information fields, bits 56:32 —

• If IA32_MCG_CAP.MCG_ELOG_P[bit 25] is 0, bits 37:32 contain “Other Information” that is implemen-
tation-specific and is not part of the machine-check architecture.

• If IA32_MCG_CAP.MCG_ELOG_P is 1, “Other Information” is in bits 36:32. If bit 37 is 0, system
firmware has not changed the contents of IA32_MCi_STATUS. If bit 37 is 1, system firmware may have
edited the contents of IA32_MCi_STATUS.

• If IA32_MCG_CAP.MCG_CMCI_P[bit 10] is 0, bits 52:38 also contain “Other Information” (in the same
sense as bits 37:32).

• If IA32_MCG_CAP[10] is 1, bits 52:38 are architectural (not model-specific). In this case, bits 52:38
reports the value of a 15 bit counter that increments each time a corrected error is observed by the
MCA recording bank. This count value will continue to increment until cleared by software. The most
significant bit, 52, is a sticky count overflow bit.

• If IA32_MCG_CAP[11] is 0, bits 56:53 also contain “Other Information” (in the same sense).

• If IA32_MCG_CAP[11] is 1, bits 56:53 are architectural (not model-specific). In this case, bits 56:53
have the following functionality:

• If IA32_MCG_CAP[24] is 0, bits 56:55 are reserved.

• If IA32_MCG_CAP[24] is 1, bits 56:55 are defined as follows:

Figure 15-6. IA32_MCi_STATUS Register

63

Threshold-based error status (54:53)**
AR — Recovery action required for UCR error (55)***
S — Signaling an uncorrected recoverable (UCR) error (56)***
PCC — Processor context corrupted (57)

37 32 31 16 0

P
C

AE

ADDRV — MCi_ADDR register valid (58)
MISCV — MCi_MISC register valid (59)
EN — Error reporting enabled (60)
UC — Uncorrected error (61)
OVER — Error overflow (62)
VAL — MCi_STATUS register valid (63)

C

MCA Error Code
U S

R
 Other MSCOD Model

54 53 3862 61 60 59 58 57 56 55 52 15

V
A
L

O
V
E
R

C N
Specific Error Code Info

Corrected Error
Count

** When IA32_MCG_CAP[11] (MCG_TES_P) is not set, these bits are model-specific
 (part of “Other Information”).

*** When IA32_MCG_CAP[11] or IA32_MCG_CAP[24] are not set, these bits are reserved, or
 model-specific (part of “Other Information”).

36

* When IA32_MCG_CAP[25] (MCG_ELOG_P) is set, bit 37 is not part of “Other Information”.

Firmware updated error status indicator (37)*

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 114

• S (Signaling) flag, bit 56 - Signals the reporting of UCR errors in this MC bank. See Section 15.6.2
for additional detail.

• AR (Action Required) flag, bit 55 - Indicates (when set) that MCA error code specific recovery
action must be performed by system software at the time this error was signaled. See Section
15.6.2 for additional detail.

• If the UC bit (Figure 15-6) is 1, bits 54:53 are undefined.

• If the UC bit (Figure 15-6) is 0, bits 54:53 indicate the status of the hardware structure that
reported the threshold-based error. See Table 15-1.

• PCC (processor context corrupt) flag, bit 57 — Indicates (when set) that the state of the processor might
have been corrupted by the error condition detected and that reliable restarting of the processor may not be
possible. When clear, this flag indicates that the error did not affect the processor’s state, and software may
be able to restart. When system software supports recovery, consult Section 15.10.4 for additional rules that
apply.

• ADDRV (IA32_MCi_ADDR register valid) flag, bit 58 — Indicates (when set) that the IA32_MCi_ADDR
register contains the address where the error occurred (see Section 15.3.2.3, “IA32_MCi_ADDR MSRs”).
When clear, this flag indicates that the IA32_MCi_ADDR register is either not implemented or does not contain
the address where the error occurred. Do not read these registers if they are not implemented in the
processor.

• MISCV (IA32_MCi_MISC register valid) flag, bit 59 — Indicates (when set) that the IA32_MCi_MISC
register contains additional information regarding the error. When clear, this flag indicates that the
IA32_MCi_MISC register is either not implemented or does not contain additional information regarding the
error. Do not read these registers if they are not implemented in the processor.

• EN (error enabled) flag, bit 60 — Indicates (when set) that the error was enabled by the associated EEj bit
of the IA32_MCi_CTL register.

• UC (error uncorrected) flag, bit 61 — Indicates (when set) that the processor did not or was not able to
correct the error condition. When clear, this flag indicates that the processor was able to correct the error
condition.

• OVER (machine check overflow) flag, bit 62 — Indicates (when set) that a machine-check error occurred
while the results of a previous error were still in the error-reporting register bank (that is, the VAL bit was
already set in the IA32_MCi_STATUS register). The processor sets the OVER flag and software is responsible
for clearing it. In general, enabled errors are written over disabled errors, and uncorrected errors are written
over corrected errors. Uncorrected errors are not written over previous valid uncorrected errors. For more
information, see Section 15.3.2.2.1, “Overwrite Rules for Machine Check Overflow”.

• VAL (IA32_MCi_STATUS register valid) flag, bit 63 — Indicates (when set) that the information within
the IA32_MCi_STATUS register is valid. When this flag is set, the processor follows the rules given for the
OVER flag in the IA32_MCi_STATUS register when overwriting previously valid entries. The processor sets the
VAL flag and software is responsible for clearing it.

...

Table 15-1. Bits 54:53 in IA32_MCi_STATUS MSRs when IA32_MCG_CAP[11] = 1 and UC = 0
Bits 54:53 Meaning

00 No tracking - No hardware status tracking is provided for the structure reporting this event.

01 Green - Status tracking is provided for the structure posting the event; the current status is green (below threshold).
For more information, see Section 15.4, “Enhanced Cache Error reporting”.

10 Yellow - Status tracking is provided for the structure posting the event; the current status is yellow (above threshold).
For more information, see Section 15.4, “Enhanced Cache Error reporting”.

11 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 115

15.5.2.3 CMCI Interrupt Handler
The following describes techniques system software may consider to implement a CMCI service routine:
• The service routine examines its private per-thread data structure to check which set of MC banks it has

ownership. If the thread does not have ownership of a given MC bank, proceed to the next MC bank.
Ownership is determined at initialization time which is described in Section [Cross Reference to 14.5.2.1].

If the thread had claimed ownership to an MC bank, this technique will allow each logical processors to handle
corrected MC errors independently and requires no synchronization to access shared MSR resources. Consult
Example 15-5 for guidelines on logging when processing CMCI.

...

15.6.3 UCR Error Classification
With the S and AR flag encoding in the IA32_MCi_STATUS register, UCR errors can be classified as:
• Uncorrected no action required (UCNA) - is a UCR error that is not signaled via a machine check exception

and, instead, is reported to system software as a corrected machine check error. UCNA errors indicate that
some data in the system is corrupted, but the data has not been consumed and the processor state is valid
and you may continue execution on this processor. UCNA errors require no action from system software to
continue execution. A UNCA error is indicated with UC=1, PCC=0, S=0 and AR=0 in the IA32_MCi_STATUS
register.

• Software recoverable action optional (SRAO) - a UCR error is signaled via a machine check exception and a
system software recovery action is optional and not required to continue execution from this machine check
exception. SRAO errors indicate that some data in the system is corrupt, but the data has not been consumed
and the processor state is valid. SRAO errors provide the additional error information for system software to
perform a recovery action. An SRAO error is indicated with UC=1, PCC=0, S=1, EN=1 and AR=0 in the
IA32_MCi_STATUS register. Recovery actions for SRAO errors are MCA error code specific. The MISCV and the
ADDRV flags in the IA32_MCi_STATUS register are set when the additional error information is available from
the IA32_MCi_MISC and the IA32_MCi_ADDR registers. System software needs to inspect the MCA error code
fields in the IA32_MCi_STATUS register to identify the specific recovery action for a given SRAO error. If
MISCV and ADDRV are not set, it is recommended that no system software error recovery be performed
however, you can resume execution.

• Software recoverable action required (SRAR) - a UCR error that requires system software to take a recovery
action on this processor before scheduling another stream of execution on this processor. SRAR errors indicate
that the error was detected and raised at the point of the consumption in the execution flow. An SRAR error is
indicated with UC=1, PCC=0, S=1, EN=1 and AR=1 in the IA32_MCi_STATUS register. Recovery actions are
MCA error code specific. The MISCV and the ADDRV flags in the IA32_MCi_STATUS register are set when the
additional error information is available from the IA32_MCi_MISC and the IA32_MCi_ADDR registers. System
software needs to inspect the MCA error code fields in the IA32_MCi_STATUS register to identify the specific
recovery action for a given SRAR error. If MISCV and ADDRV are not set, it is recommended that system
software shutdown the system.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 116

Table 15-6 summarizes UCR, corrected, and uncorrected errors.

...

15.9.2.1 Correction Report Filtering (F) Bit
Starting with Intel Core Duo processors, bit 12 in the “Form” column in Table 15-9 is used to indicate that a partic-
ular posting to a log may be the last posting for corrections in that line/entry, at least for some time:
• 0 in bit 12 indicates “normal” filtering (original P6/Pentium4/Atom/Xeon processor meaning).
• 1 in bit 12 indicates “corrected” filtering (filtering is activated for the line/entry in the posting). Filtering

means that some or all of the subsequent corrections to this entry (in this structure) will not be posted. The
enhanced error reporting introduced with the Intel Core Duo processors is based on tracking the lines affected
by repeated corrections (see Section 15.4, “Enhanced Cache Error reporting”). This capability is indicated by
IA32_MCG_CAP[11]. Only the first few correction events for a line are posted; subsequent redundant
correction events to the same line are not posted. Uncorrected events are always posted.

The behavior of error filtering after crossing the yellow threshold is model-specific. Filtering has meaning only for
corrected errors (UC=0 in IA32_MCi_STATUS MSR). System software must ignore filtering bit (12) for uncor-
rected errors.

...

15.9.3.1 Architecturally Defined SRAO Errors
The following two SRAO errors are architecturally defined.
• UCR Errors detected by memory controller scrubbing; and
• UCR Errors detected during L3 cache (L3) explicit writebacks.
The MCA error code encodings for these two architecturally-defined UCR errors corresponds to sub-classes of
compound MCA error codes (see Table 15-9). Their values and compound encoding format are given in Table
15-15.

Table 15-6. MC Error Classifications
Type of Error1 UC EN PCC S AR Signaling Software Action Example

Uncorrected Error (UC) 1 1 1 x x MCE If EN=1, reset the system, else log
and OK to keep the system running.

SRAR 1 1 0 1 1 MCE For known MCACOD, take specific
recovery action;

For unknown MCACOD, must
bugcheck.

If OVER=1, reset system, else take
specific recovery action.

Cache to processor load
error.

SRAO 1 1 0 1 0 MCE For known MCACOD, take specific
recovery action;

For unknown MCACOD, OK to keep
the system running.

Patrol scrub and explicit
writeback poison errors.

UCNA 1 x 0 0 0 CMC Log the error and Ok to keep the
system running.

Poison detection error.

Corrected Error (CE) 0 x x x x CMC Log the error and no corrective
action required.

ECC in caches and
memory.

NOTES:
1. SRAR, SRAO and UCNA errors are supported by the processor only when IA32_MCG_CAP[24] (MCG_SER_P) is set.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 117

Table 15-16 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally defined SRAO errors.

For both the memory scrubbing and L3 explicit writeback errors, the ADDRV and MISCV flags in the
IA32_MCi_STATUS register are set to indicate that the offending physical address information is available from
the IA32_MCi_MISC and the IA32_MCi_ADDR registers. For the memory scrubbing and L3 explicit writeback
errors, the address mode in the IA32_MCi_MISC register should be set as physical address mode (010b) and the
address LSB information in the IA32_MCi_MISC register should indicate the lowest valid address bit in the
address information provided from the IA32_MCi_ADDR register.
MCE signal is broadcast to all logical processors as outlined in Section 15.10.4.1. If LMCE is supported and
enabled, some errors (not limited to UCR errors) may be delivered to only a single logical processor. System soft-
ware should consult IA32_MCG_STATUS.LMCE_S to determine if the MCE signaled is only to this logical processor.
IA32_MCi_STATUS banks can be shared by logical processors within a core or within the same package. So
several logical processors may find an SRAO error in the shared IA32_MCi_STATUS bank but other processors do
not find it in any of the IA32_MCi_STATUS banks. Table 15-17 shows the RIPV and EIPV flag indication in the
IA32_MCG_STATUS register for the memory scrubbing and L3 explicit writeback errors on both the reporting and
non-reporting logical processors.

Table 15-15. MCA Compound Error Code Encoding for SRAO Errors
Type MCACOD Value MCA Error Code Encoding1

Memory Scrubbing C0H - CFH 0000_0000_1100_CCCC

000F 0000 1MMM CCCC (Memory Controller Error), where

Memory subfield MMM = 100B (memory scrubbing)

Channel subfield CCCC = channel # or generic

L3 Explicit Writeback 17AH 0000_0001_0111_1010

000F 0001 RRRR TTLL (Cache Hierarchy Error) where

Request subfields RRRR = 0111B (Eviction)

Transaction Type subfields TT = 10B (Generic)

Level subfields LL = 10B

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error must be ignored.

Table 15-16. IA32_MCi_STATUS Values for SRAO Errors
SRAO Error Valid OVER UC EN MISCV ADDRV PCC S AR MCACOD

Memory Scrubbing 1 0 1 1 1 1 0 1 0 C0H-CFH

L3 Explicit Writeback 1 0 1 1 1 1 0 1 0 17AH

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 118

15.9.3.2 Architecturally Defined SRAR Errors
The following two SRAR errors are architecturally defined.
• UCR Errors detected on data load; and
• UCR Errors detected on instruction fetch.
The MCA error code encodings for these two architecturally-defined UCR errors corresponds to sub-classes of
compound MCA error codes (see Table 15-9). Their values and compound encoding format are given in Table
15-18.

Table 15-19 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally defined SRAR errors.

For both the data load and instruction fetch errors, the ADDRV and MISCV flags in the IA32_MCi_STATUS register
are set to indicate that the offending physical address information is available from the IA32_MCi_MISC and the
IA32_MCi_ADDR registers. For the memory scrubbing and L3 explicit writeback errors, the address mode in the
IA32_MCi_MISC register should be set as physical address mode (010b) and the address LSB information in the
IA32_MCi_MISC register should indicate the lowest valid address bit in the address information provided from the
IA32_MCi_ADDR register.
MCE signal is broadcast to all logical processors on the system on which the UCR errors are supported, except
when the processor supports LMCE and LMCE is enabled by system software (see Section 15.3.1.5). The
IA32_MCG_STATUS MSR allows system software to distinguish the affected logical processor of an SRAR error
amongst logical processors that observed SRAR via MCi_STATUS bank.

Table 15-17. IA32_MCG_STATUS Flag Indication for SRAO Errors
SRAO Type Reporting Logical Processors Non-reporting Logical Processors

RIPV EIPV RIPV EIPV

Memory Scrubbing 1 0 1 0

L3 Explicit Writeback 1 0 1 0

Table 15-18. MCA Compound Error Code Encoding for SRAR Errors
Type MCACOD Value MCA Error Code Encoding1

Data Load 134H 0000_0001_0011_0100

000F 0001 RRRR TTLL (Cache Hierarchy Error), where

Request subfield RRRR = 0011B (Data Load)

Transaction Type subfield TT= 01B (Data)

Level subfield LL = 00B (Level 0)

Instruction Fetch 150H 0000_0001_0101_0000

000F 0001 RRRR TTLL (Cache Hierarchy Error), where

Request subfield RRRR = 0101B (Instruction Fetch)

Transaction Type subfield TT= 00B (Instruction)

Level subfield LL = 00B (Level 0)

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error must be ignored.

Table 15-19. IA32_MCi_STATUS Values for SRAR Errors
SRAR Error Valid OVER UC EN MISCV ADDRV PCC S AR MCACOD

Data Load 1 0 1 1 1 1 0 1 1 134H

Instruction Fetch 1 0 1 1 1 1 0 1 1 150H

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 119

Table 15-20 shows the RIPV and EIPV flag indication in the IA32_MCG_STATUS register for the data load and
instruction fetch errors on both the reporting and non-reporting logical processors. The recoverable SRAR error
reported by a processor may be continuable, where the system software can interpret the context of continuable
as follows: the error was isolated, contained. If software can rectify the error condition in the current instruction
stream, the execution context on that logical processor can be continued without loss of information.

...

15.10.1 Machine-Check Exception Handler
The machine-check exception (#MC) corresponds to vector 18. To service machine-check exceptions, a trap gate
must be added to the IDT. The pointer in the trap gate must point to a machine-check exception handler. Two
approaches can be taken to designing the exception handler:

1. The handler can merely log all the machine status and error information, then call a debugger or shut down
the system.

2. The handler can analyze the reported error information and, in some cases, attempt to correct the error and
restart the processor.

For Pentium 4, Intel Xeon, Intel Atom, P6 family, and Pentium processors; virtually all machine-check conditions
cannot be corrected (they result in abort-type exceptions). The logging of status and error information is there-
fore a baseline implementation requirement.
When IA32_MCG_CAP[24] is clear, consider the following when writing a machine-check exception handler:
• To determine the nature of the error, the handler must read each of the error-reporting register banks. The

count field in the IA32_MCG_CAP register gives number of register banks. The first register of register bank 0
is at address 400H.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error information in the register
is valid. If this flag is clear, the registers in that bank do not contain valid error information and do not need to
be checked.

• To write a portable exception handler, only the MCA error code field in the IA32_MCi_STATUS register should
be checked. See Section 15.9, “Interpreting the MCA Error Codes,” for information that can be used to write
an algorithm to interpret this field.

• Correctable errors are corrected automatically by the processor. The UC flag in each IA32_MCi_STATUS reg-
ister indicates whether the processor automatically corrected an error.

• The RIPV, PCC, and OVER flags in each IA32_MCi_STATUS register indicate whether recovery from the error
is possible. If PCC or OVER are set, recovery is not possible. If RIPV is not set, program execution can not be
restarted reliably. When recovery is not possible, the handler typically records the error information and
signals an abort to the operating system.

• The RIPV flag in the IA32_MCG_STATUS register indicates whether the program can be restarted at the
instruction indicated by the instruction pointer (the address of the instruction pushed on the stack when the

Table 15-20. IA32_MCG_STATUS Flag Indication for SRAR Errors
SRAR Type Affected Logical Processor Non-Affected Logical Processors

RIPV EIPV Continuable RIPV EIPV Continuable

Recoverable-
continuable

1 1 Yes1

1 0 YesRecoverable-not-
continuable

0 x No

NOTES:
1. see the definition of the context of “continuable” above and additional detail below.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 120

exception was generated). If this flag is clear, the processor may still be able to be restarted (for debugging
purposes) but not without loss of program continuity.

• For unrecoverable errors, the EIPV flag in the IA32_MCG_STATUS register indicates whether the instruction
indicated by the instruction pointer pushed on the stack (when the exception was generated) is related to the
error. If the flag is clear, the pushed instruction may not be related to the error.

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-check exception was
generated. Before returning from the machine-check exception handler, software should clear this flag so that
it can be used reliably by an error logging utility. The MCIP flag also detects recursion. The machine-check
architecture does not support recursion. When the processor detects machine-check recursion, it enters the
shutdown state.

...

15.10.3 Logging Correctable Machine-Check Errors
The error handling routine for servicing the machine-check exceptions is responsible for logging uncorrected
errors.
If a machine-check error is correctable, the processor does not generate a machine-check exception for it. To
detect correctable machine-check errors, a utility program must be written that reads each of the machine-check
error-reporting register banks and logs the results in an accounting file or data structure. This utility can be imple-
mented in either of the following ways.
• A system daemon that polls the register banks on an infrequent basis, such as hourly or daily.
• A user-initiated application that polls the register banks and records the exceptions. Here, the actual polling

service is provided by an operating-system driver or through the system call interface.
• An interrupt service routine servicing CMCI can read the MC banks and log the error. Please refer to Section

15.10.4.2 for guidelines on logging correctable machine checks.
Example 15-3 gives pseudocode for an error logging utility.

Example 15-3. Machine-Check Error Logging Pseudocode

Assume that execution is restartable;
IF the processor supports MCA

THEN
FOR each bank of machine-check registers

DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS = 1

THEN
IF ADDRV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_ADDR;
FI;
IF MISCV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_MISC;
FI;
IF MCIP flag in IA32_MCG_STATUS = 1

(* Machine-check exception is in progress *)
AND PCC flag in IA32_MCi_STATUS = 1
OR RIPV flag in IA32_MCG_STATUS = 0
(* execution is not restartable *)

THEN
RESTARTABILITY = FALSE;
return RESTARTABILITY to calling procedure;

FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 121

Save time-stamp counter and processor ID;
Set IA32_MCi_STATUS to all 0s;
Execute serializing instruction (i.e., CPUID);

FI;
OD;

FI;

If the processor supports the machine-check architecture, the utility reads through the banks of error-reporting
registers looking for valid register entries. It then saves the values of the IA32_MCi_STATUS, IA32_MCi_ADDR,
IA32_MCi_MISC and IA32_MCG_STATUS registers for each bank that is valid. The routine minimizes processing
time by recording the raw data into a system data structure or file, reducing the overhead associated with polling.
User utilities analyze the collected data in an off-line environment.
When the MCIP flag is set in the IA32_MCG_STATUS register, a machine-check exception is in progress and the
machine-check exception handler has called the exception logging routine.
Once the logging process has been completed the exception-handling routine must determine whether execution
can be restarted, which is usually possible when damage has not occurred (The PCC flag is clear, in the
IA32_MCi_STATUS register) and when the processor can guarantee that execution is restartable (the RIPV flag is
set in the IA32_MCG_STATUS register). If execution cannot be restarted, the system is not recoverable and the
exception-handling routine should signal the console appropriately before returning the error status to the Oper-
ating System kernel for subsequent shutdown.
The machine-check architecture allows buffering of exceptions from a given error-reporting bank although the
Pentium 4, Intel Xeon, Intel Atom, and P6 family processors do not implement this feature. The error logging
routine should provide compatibility with future processors by reading each hardware error-reporting bank's
IA32_MCi_STATUS register and then writing 0s to clear the OVER and VAL flags in this register. The error logging
utility should re-read the IA32_MCi_STATUS register for the bank ensuring that the valid bit is clear. The
processor will write the next error into the register bank and set the VAL flags.
Additional information that should be stored by the exception-logging routine includes the processor’s time-stamp
counter value, which provides a mechanism to indicate the frequency of exceptions. A multiprocessing operating
system stores the identity of the processor node incurring the exception using a unique identifier, such as the
processor’s APIC ID (see Section 10.8, “Handling Interrupts”).
The basic algorithm given in Example 15-3 can be modified to provide more robust recovery techniques. For
example, software has the flexibility to attempt recovery using information unavailable to the hardware. Specifi-
cally, the machine-check exception handler can, after logging carefully analyze the error-reporting registers when
the error-logging routine reports an error that does not allow execution to be restarted. These recovery tech-
niques can use external bus related model-specific information provided with the error report to localize the
source of the error within the system and determine the appropriate recovery strategy.

15.10.4 Machine-Check Software Handler Guidelines for Error Recovery

15.10.4.1 Machine-Check Exception Handler for Error Recovery
When writing a machine-check exception (MCE) handler to support software recovery from Uncorrected Recover-
able (UCR) errors, consider the following:
• When IA32_MCG_CAP [24] is zero, there are no recoverable errors supported and all machine-check are fatal

exceptions. The logging of status and error information is therefore a baseline implementation requirement.
• When IA32_MCG_CAP [24] is 1, certain uncorrected errors called uncorrected recoverable (UCR) errors may

be software recoverable. The handler can analyze the reported error information, and in some cases attempt
to recover from the uncorrected error and continue execution.

• For processors on which CPUID reports DisplayFamily_DisplayModel as 06H_0EH and onward, an MCA signal
is broadcast to all logical processors in the system (see CPUID instruction in Chapter 3, “Instruction Set
Reference, A-M” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). Due to

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 122

the potentially shared machine check MSR resources among the logical processors on the same package/core,
the MCE handler may be required to synchronize with the other processors that received a machine check
error and serialize access to the machine check registers when analyzing, logging and clearing the information
in the machine check registers.

— On processors that indicate ability for local machine-check exception (MCG_LMCE_P), hardware can
choose to report the error to only a single logical processor if system software has enabled LMCE by
setting IA32_MCG_EXT_CTL[LMCE_EN] = 1 as outlined in Section 15.3.1.5.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error information in the register
is valid. If this flag is clear, the registers in that bank do not contain valid error information and should not be
checked.

• The MCE handler is primarily responsible for processing uncorrected errors. The UC flag in each
IA32_MCi_Status register indicates whether the reported error was corrected (UC=0) or uncorrected (UC=1).
The MCE handler can optionally log and clear the corrected errors in the MC banks if it can implement software
algorithm to avoid the undesired race conditions with the CMCI or CMC polling handler.

• For uncorrectable errors, the EIPV flag in the IA32_MCG_STATUS register indicates (when set) that the
instruction pointed to by the instruction pointer pushed onto the stack when the machine-check exception is
generated is directly associated with the error. When this flag is cleared, the instruction pointed to may not be
associated with the error.

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-check exception was
generated. When a machine check exception is generated, it is expected that the MCIP flag in the
IA32_MCG_STATUS register is set to 1. If it is not set, this machine check was generated by either an INT 18
instruction or some piece of hardware signaling an interrupt with vector 18.

When IA32_MCG_CAP [24] is 1, the following rules can apply when writing a machine check exception (MCE)
handler to support software recovery:
• The PCC flag in each IA32_MCi_STATUS register indicates whether recovery from the error is possible for

uncorrected errors (UC=1). If the PCC flag is set for enabled uncorrected errors (UC=1 and EN=1), recovery
is not possible. When recovery is not possible, the MCE handler typically records the error information and
signals the operating system to reset the system.

• The RIPV flag in the IA32_MCG_STATUS register indicates whether restarting the program execution from the
instruction pointer saved on the stack for the machine check exception is possible. When the RIPV is set,
program execution can be restarted reliably when recovery is possible. If the RIPV flag is not set, program
execution cannot be restarted reliably. In this case the recovery algorithm may involve terminating the
current program execution and resuming an alternate thread of execution upon return from the machine
check handler when recovery is possible. When recovery is not possible, the MCE handler signals the
operating system to reset the system.

• When the EN flag is zero but the VAL and UC flags are one in the IA32_MCi_STATUS register, the reported
uncorrected error in this bank is not enabled. As uncorrected errors with the EN flag = 0 are not the source of
machine check exceptions, the MCE handler should log and clear non-enabled errors when the S bit is set and
should continue searching for enabled errors from the other IA32_MCi_STATUS registers. Note that when
IA32_MCG_CAP [24] is 0, any uncorrected error condition (VAL =1 and UC=1) including the one with the EN
flag cleared are fatal and the handler must signal the operating system to reset the system. For the errors that
do not generate machine check exceptions, the EN flag has no meaning.

• When the VAL flag is one, the UC flag is one, the EN flag is one and the PCC flag is zero in the
IA32_MCi_STATUS register, the error in this bank is an uncorrected recoverable (UCR) error. The MCE handler
needs to examine the S flag and the AR flag to find the type of the UCR error for software recovery and
determine if software error recovery is possible.

• When both the S and the AR flags are clear in the IA32_MCi_STATUS register for the UCR error (VAL=1,
UC=1, EN=x and PCC=0), the error in this bank is an uncorrected no-action required error (UCNA). UCNA
errors are uncorrected but do not require any OS recovery action to continue execution. These errors indicate
that some data in the system is corrupt, but that data has not been consumed and may not be consumed. If
that data is consumed a non-UNCA machine check exception will be generated. UCNA errors are signaled in

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 123

the same way as corrected machine check errors and the CMCI and CMC polling handler is primarily
responsible for handling UCNA errors. Like corrected errors, the MCA handler can optionally log and clear
UCNA errors as long as it can avoid the undesired race condition with the CMCI or CMC polling handler. As
UCNA errors are not the source of machine check exceptions, the MCA handler should continue searching for
uncorrected or software recoverable errors in all other MC banks.

• When the S flag in the IA32_MCi_STATUS register is set for the UCR error ((VAL=1, UC=1, EN=1 and PCC=0),
the error in this bank is software recoverable and it was signaled through a machine-check exception. The AR
flag in the IA32_MCi_STATUS register further clarifies the type of the software recoverable errors.

• When the AR flag in the IA32_MCi_STATUS register is clear for the software recoverable error (VAL=1, UC=1,
EN=1, PCC=0 and S=1), the error in this bank is a software recoverable action optional (SRAO) error. The
MCE handler and the operating system can analyze the IA32_MCi_STATUS [15:0] to implement MCA error
code specific optional recovery action, but this recovery action is optional. System software can resume the
program execution from the instruction pointer saved on the stack for the machine check exception when the
RIPV flag in the IA32_MCG_STATUS register is set.

• Even if the OVER flag in the IA32_MCi_STATUS register is set for the SRAO error (VAL=1, UC=1, EN=1,
PCC=0, S=1 and AR=0), the MCE handler can take recovery action for the SRAO error logged in the
IA32_MCi_STATUS register. Since the recovery action for SRAO errors is optional, restarting the program
execution from the instruction pointer saved on the stack for the machine check exception is still possible for
the overflowed SRAO error if the RIPV flag in the IA32_MCG_STATUS is set.

• When the AR flag in the IA32_MCi_STATUS register is set for the software recoverable error (VAL=1, UC=1,
EN=1, PCC=0 and S=1), the error in this bank is a software recoverable action required (SRAR) error. The
MCE handler and the operating system must take recovery action in order to continue execution after the
machine-check exception. The MCA handler and the operating system need to analyze the IA32_MCi_STATUS
[15:0] to determine the MCA error code specific recovery action. If no recovery action can be performed, the
operating system must reset the system.

• When the OVER flag in the IA32_MCi_STATUS register is set for the SRAR error (VAL=1, UC=1, EN=1, PCC=0,
S=1 and AR=1), the MCE handler cannot take recovery action as the information of the SRAR error in the
IA32_MCi_STATUS register was potentially lost due to the overflow condition. Since the recovery action for
SRAR errors must be taken, the MCE handler must signal the operating system to reset the system.

• When the MCE handler cannot find any uncorrected (VAL=1, UC=1 and EN=1) or any software recoverable
errors (VAL=1, UC=1, EN=1, PCC=0 and S=1) in any of the IA32_MCi banks of the processors, this is an
unexpected condition for the MCE handler and the handler should signal the operating system to reset the
system.

• Before returning from the machine-check exception handler, software must clear the MCIP flag in the
IA32_MCG_STATUS register. The MCIP flag is used to detect recursion. The machine-check architecture does
not support recursion. When the processor receives a machine check when MCIP is set, it automatically enters
the shutdown state.

Example 15-4 gives pseudocode for an MC exception handler that supports recovery of UCR.

Example 15-4. Machine-Check Error Handler Pseudocode Supporting UCR

MACHINE CHECK HANDLER: (* Called from INT 18 handler *)
NOERROR = TRUE;
ProcessorCount = 0;
IF CPU supports MCA

THEN
RESTARTABILITY = TRUE;
IF (Processor Family = 6 AND DisplayModel ≥ 0EH) OR (Processor Family > 6)

THEN
IF (MCG_LMCE = 1)

MCA_BROADCAST = FALSE;
ELSE

MCA_BROADCAST = TRUE;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 124

FI;
Acquire SpinLock;
ProcessorCount++; (* Allowing one logical processor at a time to examine machine check registers *)
CALL MCA ERROR PROCESSING; (* returns RESTARTABILITY and NOERROR *)

ELSE
MCA_BROADCAST = FALSE;
(* Implement a rendezvous mechanism with the other processors if necessary *)
CALL MCA ERROR PROCESSING;

FI;
ELSE (* Pentium(R) processor compatible *)

READ P5_MC_ADDR
READ P5_MC_TYPE;
RESTARTABILITY = FALSE;

FI;

IF NOERROR = TRUE
 THEN

IF NOT (MCG_RIPV = 1 AND MCG_EIPV = 0)
THEN

RESTARTABILITY = FALSE;
FI

FI;

IF RESTARTABILITY = FALSE
THEN

Report RESTARTABILITY to console;
Reset system;

FI;

IF MCA_BROADCAST = TRUE
THEN

IF ProcessorCount = MAX_PROCESSORS
 AND NOERROR = TRUE

THEN
Report RESTARTABILITY to console;
Reset system;

FI;
Release SpinLock;
Wait till ProcessorCount = MAX_PROCESSRS on system;
(* implement a timeout and abort function if necessary *)

FI;
CLEAR IA32_MCG_STATUS;
RESUME Execution;
(* End of MACHINE CHECK HANDLER*)

MCA ERROR PROCESSING: (* MCA Error Processing Routine called from MCA Handler *)
IF MCIP flag in IA32_MCG_STATUS = 0

THEN (* MCIP=0 upon MCA is unexpected *)
RESTARTABILITY = FALSE;

FI;
FOR each bank of machine-check registers

DO
CLEAR_MC_BANK = FALSE;
READ IA32_MCi_STATUS;
IF VAL Flag in IA32_MCi_STATUS = 1

THEN
IF UC Flag in IA32_MCi_STATUS = 1

THEN
IF Bit 24 in IA32_MCG_CAP = 0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 125

THEN (* the processor does not support software error recovery *)
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI;
(* the processor supports software error recovery *)
IF EN Flag in IA32_MCi_STATUS = 0 AND OVER Flag in IA32_MCi_STATUS=0

THEN (* It is a spurious MCA Log. Log and clear the register *)
CLEAR_MC_BANK = TRUE;
GOTO LOG MCA REGISTER;

FI;
IF PCC = 1 and EN = 1 in IA32_MCi_STATUS

THEN (* processor context might have been corrupted *)
RESTARTABILITY = FALSE;

ELSE (* It is a uncorrected recoverable (UCR) error *)
IF S Flag in IA32_MCi_STATUS = 0

THEN
IF AR Flag in IA32_MCi_STATUS = 0

THEN (* It is a uncorrected no action required (UCNA) error *)
GOTO CONTINUE; (* let CMCI and CMC polling handler to process *)

ELSE
RESTARTABILITY = FALSE; (* S=0, AR=1 is illegal *)

FI
FI;
IF RESTARTABILITY = FALSE

THEN (* no need to take recovery action if RESTARTABILITY is already false *)
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI;
(* S in IA32_MCi_STATUS = 1 *)
IF AR Flag in IA32_MCi_STATUS = 1

THEN (* It is a software recoverable and action required (SRAR) error *)
IF OVER Flag in IA32_MCi_STATUS = 1

THEN
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI
IF MCACOD Value in IA32_MCi_STATUS is recognized
 AND Current Processor is an Affected Processor

THEN
Implement MCACOD specific recovery action;
CLEAR_MC_BANK = TRUE;

ELSE
RESTARTABILITY = FALSE;

FI;
ELSE (* It is a software recoverable and action optional (SRAO) error *)

IF OVER Flag in IA32_MCi_STATUS = 0 AND
 MCACOD in IA32_MCi_STATUS is recognized

THEN
Implement MCACOD specific recovery action;

FI;
CLEAR_MC_BANK = TRUE;

FI; AR
FI; PCC
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

ELSE (* It is a corrected error; continue to the next IA32_MCi_STATUS *)
GOTO CONTINUE;

FI; UC

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 126

FI; VAL
LOG MCA REGISTER:

SAVE IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_MISC;

FI;
IF ADDRV in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_ADDR;

FI;
IF CLEAR_MC_BANK = TRUE

THEN
SET all 0 to IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS

THEN
SET all 0 to IA32_MCi_MISC;

FI;
IF ADDRV in IA32_MCi_STATUS

THEN
SET all 0 to IA32_MCi_ADDR;

FI;
FI;
CONTINUE:

OD;
(*END FOR *)
RETURN;
(* End of MCA ERROR PROCESSING*)

...

17. Updates to Chapter 18, Volume 3B
Change bars show changes to Chapter 18 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

18.12 SIXTH GENERATION INTEL® CORE™ PROCESSOR PERFORMANCE
MONITORING FACILITY

The 6th generation Intel® Core™ processor is based on the Skylake microarchitecture. The core PMU supports
architectural performance monitoring capability with version ID 4 (see Section 18.2.4) and a host of non-archi-
tectural monitoring capabilities.

Architectural performance monitoring events and non-architectural monitoring events are programmed using
fixed counters and programmable counters/event select MSRS as described in Section 18.2.3.

The core PMU’s capability is similar to those described in Section 18.8 through Section 18.8.5, with some differ-
ences and enhancements summarized in Table 18-37. Additionally, the core PMU provides some enhancement to
support performance monitoring when the target workload contains instruction streams using Intel® Transac-
tional Synchronization Extensions (TSX), see Section 18.10.5. For details of Intel TSX, see Chapter 15, “Program-
ming with Intel® Transactional Synchronization Extensions” of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 127

...

18.12.1 Precise Event Based Sampling (PEBS) Facility

The PEBS facility in the 6th Generation Intel Core processor provides a number enhancement relative to PEBS in
processors based on Haswell/Broadwell microarchitectures. The key components and differences of PEBS facility
relative to Haswell/Broadwell microarchitecture is summarized in Table 18-49.

...

18.12.1.1 PEBS Data Format
The PEBS record format for the 6th generation Intel Core processor is reporting with encoding 0011b in
IA32_PERF_CAPABILITIES[11:8]. The lay out is shown in Table 18-50. The PEBS record format, along with
debug/store area storage format, does not change regardless of whether IA-32e mode is active or not.
CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-independent.
When set, it uses 64-bit DS storage format.

The layout of PEBS records are largely identical to those shown in Table 18-39.

The PEBS records at offsets 98H, A0H, and ABH record data gathered from three of the PEBS capabilities in prior
processor generations: load latency facility (Section 18.8.4.2), PDIR (Section 18.8.4.4), and data address
profiling (Section 18.10.3).

In the core PMU of the 6th generation processor, load latency facility and PDIR capabilities and data address
profiling are unchanged relative to the 4th and 5th generation Intel Core processors. Similarly, precise store is
replaced by data address profiling.

With format 0010b, a snapshot of the IA32_PERF_GLOBAL_STATUS may be useful to resolve the situations when
more than one of IA32_PMICx have been configured to collect PEBS data and two consecutive overflows of the
PEBS-enabled counters are sufficiently far apart in time. It is also possible for the image at 90H to indicate

Table 18-50 PEBS Record Format for 6th Generation Intel Core Processor Family

Byte Offset Field Byte Offset Field

00H R/EFLAGS 68H R11

08H R/EIP 70H R12

10H R/EAX 78H R13

18H R/EBX 80H R14

20H R/ECX 88H R15

28H R/EDX 90H Applicable Counter

30H R/ESI 98H Data Linear Address

38H R/EDI A0H Data Source Encoding

40H R/EBP A8H Latency value (core cycles)

48H R/ESP B0H EventingIP

50H R8 B8H TX Abort Information (Section 18.10.5.1)

58H R9 C0H TSC

60H R10

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 128

multiple PEBS-enabled counters have overflowed. In the latter scenario, software cannot to correlate the PEBS
record entry to the multiple overflowed bits.

With PEBS record format encoding 0011b, offset 90H reports the “applicable counter” field, which is a multi-
counter PEBS resolution index allowing software to correlate the PEBS record entry with the eventing PEBS
overflow when multiple counters are configured to record PEBS records. Additionally, offset C0H captures a
snapshot of the TSC that provides a time line annotation for each PEBS record entry.

...

18.12.1.3 Data Address Profiling
The PEBS Data address profiling on the 6th generation Intel Core processor is largely unchanged from prior
generation. When the DataLA facility is enabled, the relevant information written into a PEBS record affects
entries at offsets 98H, A0H and A8H, as shown in Table 18-41.

18.12.1.4 PEBS Facility for Front End Events
In the 6th generation Intel Core processor, the PEBS facility has been extended to allow capturing PEBS data for
some microarchitectural conditions related to front end events. The frontend microarchitectural conditions
supported by PEBS requires the following interfaces:
• The IA32_PERFEVTSELx MSR must select “FrontEnd_Retired” (C6H) in the EventSelect field (bits 7:0) and

umask = 01H,
• The “FRONTEND_RETIRED” event employs a new MSR, MSR_PEBS_FRONTEND, to specify the supported

frontend event details, see Table 18-53.
• Program the PEBS_EN_PMCx field of IA32_PEBS_ENABLE MSR as required.

Note the AnyThread field of IA32_PERFEVTSELx is ignored by the processor for the “FRONTEND_RETIRED”
event.

...

18.12.2 Off-core Response Performance Monitoring
The core PMU facility to collect off-core response events are similar to those described in Section 18.8.5. Each
event code for off-core response monitoring requires programming an associated configuration MSR,
MSR_OFFCORE_RSP_x. Software must program MSR_OFFCORE_RSP_x according to:
• Transaction request type encoding (bits 15:0): see Table 18-55.

Table 18-52 Layout of Data Linear Address Information In PEBS Record

Field Offset Description

Data Linear
Address

98H The linear address of the load or the destination of the store.

Store Status A0H • DCU Hit (Bit 0): The store hit the data cache closest to the core (L1 cache) if this bit is set, otherwise
the store missed the data cache. This information is valid only for the following store events:
UOPS_RETIRED.ALL (if store is tagged),
MEM_INST_RETIRED.STLB_MISS_STORES,
MEM_INST_RETIRED.ALL_STORES,
MEM_INST_RETIRED.SPLIT_STORES.

• Other bits are zero.

Reserved A8H Always zero.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 129

• Supplier information (bits 30:16): see Table 18-56.
• Snoop response information (bits 37:31): see Table 18-57.

Table 18-56 lists the supplier information field that apply to 6th generation Intel Core processors. (CPUID signa-
ture 06_4EH, 06_5EH).

Table 18-57 lists the snoop information field that apply to processors with CPUID signature 06_4EH, 06_5EH.

Table 18-55 MSR_OFFCORE_RSP_x Request_Type Definition (Skylake microarchitecture)

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand data reads of full and partial cachelines as well as demand data
page table entry cacheline reads. Does not count hw or sw prefetches.

DMND_RFO 1 (R/W). Counts the number of demand reads for ownership (RFO) requests generated by a write to data
cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction cacheline reads. Does not count L2
code read prefetches.

Reserved 6:3 Reserved

PF_L3_DATA_RD 7 (R/W). Counts the number of MLC prefetches into L3.

PF_L3_RFO 8 (R/W). Counts the number of RFO requests generated by MLC prefetches to L3.

Reserved 10:9 Reserved

STRM_ST 11 (R/W). Counts the number of streaming store requests.

Reserved 14:12 Reserved

OTHER 15 (R/W). Any other request that crosses IDI, including I/O.

Table 18-56 MSR_OFFCORE_RSP_x Supplier Info Field Definition (CPUID Signature 06_4EH, 06_5EH)

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier
Info

NO_SUPP 17 (R/W). No Supplier Information available.

L3_HITM 18 (R/W). M-state initial lookup stat in L3.

L3_HITE 19 (R/W). E-state

L3_HITS 20 (R/W). S-state

Reserved 21 Reserved

L4_HIT 22 (R/W). L4 Cache (if L4 is present in the processor)

Reserved 25:23 Reserved

DRAM 26 (R/W). Local Node

Reserved 29:27 Reserved

SPL_HIT 30 (R/W). L4 cache super line hit (if L4 is present in the processor)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 130

...

18. Updates to Chapter 19, Volume 3B
Change bars show changes to Chapter 19 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

--

...

19.2 PERFORMANCE MONITORING EVENTS FOR NEXT GENERATION INTEL
CORE PROCESSOR

The next generation Intel Core processors are based on the Skylake microarchitecture. They support the architec-
tural performance-monitoring events listed in Table 19-1. Fixed counters in the core PMU support the architecture
events defined in Table 19-2. Non-architectural performance-monitoring events in the processor core are listed in
Table 19-3. The events in Table 19-3 apply to processors with CPUID signature of DisplayFamily_DisplayModel

Table 18-57 MSR_OFFCORE_RSP_x Snoop Info Field Definition (CPUID Signature 06_4EH, 06_5EH)

Subtype Bit Name Offset Description

Snoop Info SNOOP_NONE 31 (R/W). No details on snoop-related information

SNOOP_NOT_NEEDED 32 (R/W). No snoop was needed to satisfy the request.

SNOOP_MISS 33 (R/W). A snoop was needed and it missed all snooped caches:

-For LLC Hit, ReslHitl was returned by all cores

-For LLC Miss, Rspl was returned by all sockets and data was returned
from DRAM.

SNOOP_HIT_NO_FWD 34 (R/W). A snoop was needed and it hits in at least one snooped cache.
Hit denotes a cache-line was valid before snoop effect. This includes:

-Snoop Hit w/ Invalidation (LLC Hit, RFO)

-Snoop Hit, Left Shared (LLC Hit/Miss, IFetch/Data_RD)

-Snoop Hit w/ Invalidation and No Forward (LLC Miss, RFO Hit S)

In the LLC Miss case, data is returned from DRAM.

SNOOP_HIT_WITH_FWD 35 (R/W). A snoop was needed and data was forwarded from a remote
socket. This includes:

-Snoop Forward Clean, Left Shared (LLC Hit/Miss, IFetch/Data_RD/
RFT).

SNOOP_HITM 36 (R/W). A snoop was needed and it HitM-ed in local or remote cache.
HitM denotes a cache-line was in modified state before effect as a
results of snoop. This includes:

-Snoop HitM w/ WB (LLC miss, IFetch/Data_RD)

-Snoop Forward Modified w/ Invalidation (LLC Hit/Miss, RFO)

-Snoop MtoS (LLC Hit, IFetch/Data_RD).

SNOOP_NON_DRAM 37 (R/W). Target was non-DRAM system address. This includes MMIO
transactions.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 131

encoding with the following values: 06_4EH and 06_5EH. Table 19-7 lists performance events supporting Intel
TSX (see Section 18.10.5) and are applicable to processors based on Skylake microarchitecture. Where Skylake
microarchitecture implements TSX-related event semantics that differ from Table 19-7, they are listed inTable
19-4.

The comment column in Table 19-3 uses abbreviated letters to indicate additional conditions applicable to the
Event Mask Mnemonic. For event umasks listed in Table 19-3 that do not show “AnyT”, users should refrain from
programming “AnyThread =1” in IA32_PERF_EVTSELx.

Table 19-3. Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD Loads blocked by overlapping with store buffer that
cannot be forwarded.

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are
temporarily blocked because all resources for handling
the split accesses are in use.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS
_ALIAS

False dependencies in MOB due to partial compare on
address.

08H 01H DTLB_LOAD_MISSES.MISS_CAUS
ES_A_WALK

Load misses in all TLB levels that cause a page walk of
any page size.

08H 0EH DTLB_LOAD_MISSES.WALK_COM
PLETED

Load miss in all TLB levels causes a page walk that
completes. (All page sizes)

08H 10H DTLB_LOAD_MISSES.WALK_PEN
DING

Counts 1 per cycle for each PMH that is busy with a
page walk for a load.

08H 10H DTLB_LOAD_MISSES.WALK_ACTI
VE

Cycles when at least one PMH is busy with a walk for a
load.

CMSK1

08H 20H DTLB_LOAD_MISSES.STLB_HIT Loads that miss the DTLB but hit STLB.

0DH 01H INT_MISC.RECOVERY_CYCLES Core cycles the allocator was stalled due to recovery
from earlier machine clear event for this thread (e.g.
misprediction or memory order conflict)

0DH 01H INT_MISC.RECOVERY_CYCLES_A
NY

Core cycles the allocator was stalled due to recovery
from earlier machine clear event for any logical thread
in this processor core.

AnyT

0DH 80H INT_MISC.CLEAR_RESTEER_CYC
LES

Cycles the issue-stage is waiting for front-end to fetch
from resteered path following branch misprediction or
machine clear events.

0EH 01H UOPS_ISSUED.ANY The number of Uops issued by the RAT to RS.

0EH 01H UOPS_ISSUED.STALL_CYCLES Cycles when the RAT does not issue uops to RS for the
thread.

CMSK1, INV

0EH 02H UOPS_ISSUED.VECTOR_WIDTH_
MISMATCH

Uops inserted at issue-stage in order to preserve upper
bits of vector registers.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such uop
has 3 sources (e.g. 2 sources + immediate) regardless if
as a result of LEA instruction or not.

14H 01H ARITH.FPU_DIVIDER_ACTIVE Cycles when divider is busy executing divide or square
root operations. Accounts for FP operations including
integer divides.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 132

24H 21H L2_RQSTS.DEMAND_DATA_RD_
MISS

Demand Data Read requests that missed L2, no rejects.

24H 22H L2_RQSTS.RFO_MISS RFO requests that missed L2,

24H 24H L2_RQSTS.CODE_RD_MISS L2 cache misses when fetching instructions,

24H 27H L2_RQSTS.ALL_DEMAND_MISS Demand requests that missed L2,

24H 38H L2_RQSTS.PF_MISS Requests from the L1/L2/L3 hardware prefetchers or
Load software prefetches that miss L2 cache

24H 3FH L2_RQSTS.MISS All requests that missed L2,

24H 41H L2_RQSTS.DEMAND_DATA_RD_
HIT

Demand Data Read requests that hit L2 cache.

24H 42H L2_RQSTS.RFO_HIT RFO requests that hit L2 cache.

24H 44H L2_RQSTS.CODE_RD_HIT L2 cache hits when fetching instructions,

24H D8H L2_RQSTS.PF_HIT Prefetches that hit L2.

24H E1H L2_RQSTS.ALL_DEMAND_DATA
_RD

All demand data read requests to L2.

24H E2H L2_RQSTS.ALL_RFO All L RFO requests to L2.

24H E4H L2_RQSTS.ALL_CODE_RD All L2 code requests.

24H E7H L2_RQSTS.ALL_DEMAND_REFE
RENCES

All demand requests to L2.

24H F8H L2_RQSTS.ALL_PF All requests from the L1/L2/L3 hardware prefetchers
or Load software prefetches

24H EFH L2_RQSTS.REFERENCES All requests to L2.

2EH 4FH LONGEST_LAT_CACHE.REFEREN
CE

This event counts requests originating from the core
that reference a cache line in the L3 cache.

See Table 19-1.

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for
references to the L3 cache.

See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD_
P

Cycles while the logical processor is not in a halt state. See Table 19-1.

3CH 00H CPU_CLK_UNHALTED.THREAD_
P_ANY

Cycles while at least one logical processor is not in a
halt state.

AnyT

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK

Reference cycles when the logical processor is
unhalted (counts at 100 MHz rate)

See Table 19-1.

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK_ANY

Reference cycles when at least one logical processor in
the processor core is unhalted (counts at 100 MHz rate)

AnyT

3CH 02H CPU_CLK_THREAD_UNHALTED.
ONE_THREAD_ACTIVE

Count XClk pulses when this thread is unhalted and the
other thread is halted.

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses
every cycle.

48H 01H L1D_PEND_MISS.PENDING_CYCL
ES

Cycles with at least one outstanding L1D misses from
this logical processor

CMSK1

48H 01H L1D_PEND_MISS.PENDING_CYCL
ES_ANY

Cycles with at least one outstanding L1D misses from
any logical processor in this core.

CMSK1, AnyT

Table 19-3. Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 133

48H 02H L1D_PEND_MISS.FB_FULL Number of times a request needed a FB entry but there
was no entry available for it. That is the FB
unavailability was dominant reason for blocking the
request. A request includes cacheable/uncacheable
demands that is load, store or SW prefetch. HWP are
excluded.

49H 01H DTLB_STORE_MISSES.MISS_CAU
SES_A_WALK

Store misses in all TLB levels that cause page walks

49H 0EH DTLB_STORE_MISSES.WALK_CO
MPLETED

Counts completed page walks in any TLB levels due to
store misses (All page sizes).

49H 10H DTLB_STORE_MISSES.WALK_PE
NDING

Counts 1 per cycle for each PMH that is busy with a
page walk for a store.

49H 10H DTLB_STORE_MISSES.WALK_AC
TIVE

Cycles when at least one PMH is busy with a page walk
for a store.

CMSK1

49H 20H DTLB_STORE_MISSES.STLB_HIT Store misses that missed DTLB but hit STLB.

4CH 01H LOAD_HIT_PRE.HW_PF Demand load dispatches that hit fill buffer allocated for
software prefetch.

4FH 10H EPT.WALK_PENDING Counts 1 per cycle for each PMH that is busy with a EPT
walk for any request type.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data
cache.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

5EH 01H RS_EVENTS.EMPTY_END Counts end of periods where the Reservation Station
(RS) was empty. Could be useful to precisely locate
Frontend Latency Bound issues.

CMSK1, INV

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Increment each cycle of the number of offcore
outstanding Demand Data Read transactions in SQ to
uncore.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_DEMAND_D
ATA_RD

Cycles with at least one offcore outstanding Demand
Data Read transactions in SQ to uncore.

CMSK1

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD_GE_6

Cycles with at least 6 offcore outstanding Demand Data
Read transactions in SQ to uncore.

CMSK6

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Increment each cycle of the number of Offcore
outstanding Demand code Read transactions in SQ to
uncore.

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_DEMAND_C
ODE_RD

Cycles with at least one offcore outstanding Demand
code Read transactions in SQ to uncore.

CMSK1

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Increment each cycle of the number of Offcore
outstanding RFO store transactions in SQ to uncore. Set
Cmask=1 to count cycles.

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_DEMAND_R
FO

Cycles with at least one offcore outstanding RFO
transactions in SQ to uncore.

CMSK1

Table 19-3. Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 134

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Increment each cycle of the number of Offcore
outstanding cacheable data read transactions in SQ to
uncore. Set Cmask=1 to count cycles.

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_DATA_RD

Cycles with at least one offcore outstanding data read
transactions in SQ to uncore.

CMSK1

60H 10H OFFCORE_REQUESTS_OUTSTAN
DING.L3_MISS_DEMAND_DATA_
RD

Increment each cycle of the number of Offcore
outstanding demand data read requests from SQ that
missed L3.

60H 10H OFFCORE_REQUESTS_OUTSTAN
DING.CYCLES_WITH_L3_MISS_D
EMAND_DATA_RD

Cycles with at least one offcore outstanding Demand
Data Read requests from SQ that missed L3.

CMSK1

60H 10H OFFCORE_REQUESTS_OUTSTAN
DING.L3_MISS_DEMAND_DATA_
RD_GE_6

Cycles with at least one offcore outstanding Demand
Data Read requests from SQ that missed L3.

CMSK6

63H 02H LOCK_CYCLES.CACHE_LOCK_DU
RATION

Cycles in which the L1D is locked.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ from
MITE path.

79H 04H IDQ.MITE_CYCLES Cycles when uops are being delivered to IDQ from MITE
path

CMSK1

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ from
DSB path.

79H 08H IDQ.DSB_CYCLES Cycles when uops are being delivered to IDQ from DSB
path

CMSK1

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ by DSB
when MS_busy.

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UO
PS

Cycles DSB is delivered at least one uops. CMSK1

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Cycles DSB is delivered four uops. CMSK4

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ by
MITE when MS_busy.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UO
PS

Counts cycles MITE is delivered at least one uops. CMSK1

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. CMSK4

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ while
MS is busy.

79H 30H IDQ.MS_SWITCHES Number of switches from DSB or MITE to MS. EDG

79H 30H IDQ.MS_CYCLES Cycles MS is delivered at least one uops. CMSK1

80H 04H ICACHE_16B.IFDATA_STALL Cycles where a code fetch is stalled due to L1
instruction cache miss.

80H 04H ICACHE_64B.IFDATA_STALL Cycles where a code fetch is stalled due to L1
instruction cache tag miss.

Table 19-3. Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 135

83H 01H ICACHE_64B.IFTAG_HIT Instruction fetch tag lookups that hit in the instruction
cache (L1I). Counts at 64-byte cache-line granularity.

83H 02H ICACHE_64B.IFTAG_MISS Instruction fetch tag lookups that miss in the
instruction cache (L1I). Counts at 64-byte cache-line
granularity.

85H 01H ITLB_MISSES.MISS_CAUSES_A_
WALK

Misses at all ITLB levels that cause page walks

85H 0EH ITLB_MISSES.WALK_COMPLETE
D

Counts completed page walks in any TLB levels due to
code fetch misses (All page sizes).

85H 10H ITLB_MISSES.WALK_PENDING Counts 1 per cycle for each PMH that is busy with a
page walk for an instruction fetch request.

85H 20H ITLB_MISSES.STLB_HIT ITLB misses that hit STLB.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the
instruction.

9CH 01H IDQ_UOPS_NOT_DELIVERED.CO
RE

Count issue pipeline slots where no uop was delivered
from the frontend to the backend when there is no
backend stall.

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_0_UOP_DELIV.CORE

Cycles which 4 issue pipeline slots had no uop delivered
from the frontend to the backend when there is no
backend stall.

CMSK4

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_LE_n_UOP_DELIV.CORE

Cycles which “4-n” issue pipeline slots had no uop
delivered from the frontend to the backend when there
is no backend stall.

Set CMSK = 4-n, n = 1,
2, 3

9CH 01H IDQ_UOPS_NOT_DELIVERED.CYC
LES_FE_WAS_OK

Cycles which frontend delivered 4 uops or the RAT was
stalling FE.

CMSK, INV

A1H 01H UOPS_DISPATCHED_PORT.PORT
_0

Counts the number of cycles in which a uop is
dispatched to port 0.

A1H 02H UOPS_DISPATCHED_PORT.PORT
_1

Counts the number of cycles in which a uop is
dispatched to port 1.

A1H 04H UOPS_DISPATCHED_PORT.PORT
_2

Counts the number of cycles in which a uop is
dispatched to port 2.

A1H 08H UOPS_DISPATCHED_PORT.PORT
_3

Counts the number of cycles in which a uop is
dispatched to port 3.

A1H 10H UOPS_DISPATCHED_PORT.PORT
_4

Counts the number of cycles in which a uop is
dispatched to port 4.

A1H 20H UOPS_DISPATCHED_PORT.PORT
_5

Counts the number of cycles in which a uop is
dispatched to port 5.

A1H 40H UOPS_DISPATCHED_PORT.PORT
_6

Counts the number of cycles in which a uop is
dispatched to port 6.

A1H 80H UOPS_DISPATCHED_PORT.PORT
_7

Counts the number of cycles in which a uop is
dispatched to port 7.

A2H 01H RESOURCE_STALLS.ANY Resource-related stall cycles

Table 19-3. Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 136

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not
including draining form sync).

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_MI
SS

Cycles while L2 cache miss demand load is outstanding. CMSK1

A3H 02H CYCLE_ACTIVITY.CYCLES_L3_MI
SS

Cycles while L3 cache miss demand load is outstanding. CMSK2

A3H 04H CYCLE_ACTIVITY.STALLS_TOTAL Total execution stalls CMSK4

A3H 05H CYCLE_ACTIVITY.STALLS_L2_MI
SS

Execution stalls while L2 cache miss demand load is
outstanding.

CMSK5

A3H 06H CYCLE_ACTIVITY.STALLS_L3_MI
SS

Execution stalls while L3 cache miss demand load is
outstanding.

CMSK6

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_M
ISS

Cycles while L1 data cache miss demand load is
outstanding.

CMSK8

A3H 0CH CYCLE_ACTIVITY.STALLS_L1D_M
ISS

Execution stalls while L1 data cache miss demand load
is outstanding.

CMSK12

A3H 10H CYCLE_ACTIVITY.CYCLES_MEM_
ANY

Cycles while memory subsystem has an outstanding
load.

CMSK16

A3H 14H CYCLE_ACTIVITY.STALLS_MEM_
ANY

Execution stalls while memory subsystem has an
outstanding load.

CMSK20

A6H 01H EXE_ACTIVITY.EXE_BOUND_0_P
ORTS

Cycles for which no uops began execution, the
Reservation Station was not empty, the Store Buffer
was full and there was no outstanding load.

A6H 02H EXE_ACTIVITY.1_PORTS_UTIL Cycles for which one uop began execution on any port,
and the Reservation Station was not empty.

A6H 04H EXE_ACTIVITY.2_PORTS_UTIL Cycles for which two uops began execution, and the
Reservation Station was not empty.

A6H 08H EXE_ACTIVITY.3_PORTS_UTIL Cycles for which three uops began execution, and the
Reservation Station was not empty.

A6H 04H EXE_ACTIVITY.4_PORTS_UTIL Cycles for which four uops began execution, and the
Reservation Station was not empty.

A6H 40H EXE_ACTIVITY.BOUND_ON_STO
RES

Cycles where the Store Buffer was full and no
outstanding load.

A8H 01H LSD.UOPS Number of uops delivered by the LSD.

A8H 01H LSD.CYCLES_ACTIVE Cycles with at least one uop delivered by the LSD and
none from the decoder.

CMSK1

A8H 01H LSD.CYCLES_4_UOPS Cycles with 4 uops delivered by the LSD and none from
the decoder.

CMSK4

ABH 02H DSB2MITE_SWITCHES.PENALTY
_CYCLES

DSB-to-MITE switch true penalty cycles.

AEH 01H ITLB.ITLB_FLUSH Flushing of the Instruction TLB (ITLB) pages, includes
4k/2M/4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_
DATA_RD

Demand data read requests sent to uncore.

Table 19-3. Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 137

B0H 02H OFFCORE_REQUESTS.DEMAND_
CODE_RD

Demand code read requests sent to uncore.

B0H 04H OFFCORE_REQUESTS.DEMAND_
RFO

Demand RFO read requests sent to uncore, including
regular RFOs, locks, ItoM.

B0H 08H OFFCORE_REQUESTS.ALL_DATA
_RD

Data read requests sent to uncore (demand and
prefetch).

B0H 10H OFFCORE_REQUESTS.L3_MISS_
DEMAND_DATA_RD

Demand data read requests that missed L3

B0H 80H OFFCORE_REQUESTS.ALL_REQU
ESTS

Any memory transaction that reached the SQ.

B1H 01H UOPS_EXECUTED.THREAD Counts the number of uops that begin execution across
all ports.

B1H 01H UOPS_EXECUTED.STALL_CYCLE
S

Cycles which there were no uops began execution. CMSK, INV

B1H 01H UOPS_EXECUTED.CYCLES_GE_1
_UOP_EXEC

Cycles which there was al least one uop began
execution.

CMSK1

B1H 01H UOPS_EXECUTED.CYCLES_GE_2
_UOP_EXEC

Cycles which there were at least two uop began
execution.

CMSK2

B1H 01H UOPS_EXECUTED.CYCLES_GE_3
_UOP_EXEC

Cycles which there were at least three uop began
execution.

CMSK3

B1H 01H UOPS_EXECUTED.CYCLES_GE_4
_UOP_EXEC

Cycles which there were at least four uop began
execution.

CMSK4

B1H 02H UOPS_EXECUTED.CORE Counts the number of uops from any logical processor
in this core that begin execution.

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_1

Cycles which there was al least one uop, from any
logical processor in this core, began execution.

CMSK1

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_2

Cycles which there were al least two uops, from any
logical processor in this core, began execution.

CMSK2

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_3

Cycles which there were al least three uops, from any
logical processor in this core, began execution.

CMSK3

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_GE_4

Cycles which there were al least four uops, from any
logical processor in this core, began execution.

CMSK4

B1H 02H UOPS_EXECUTED.CORE_CYCLES
_NONE

Cycles which there were no uops from any logical
processor in this core that began execution.

CMSK1, INV

B1H 10H UOPS_EXECUTED.X87 Counts the number of X87 uops that begin execution.

B2H 01H OFF_CORE_REQUEST_BUFFER.S
Q_FULL

Offcore requests buffer cannot take more entries for
this core.

B7H 01H OFF_CORE_RESPONSE_0 see Section 18.8.5, “Off-core Response Performance
Monitoring”.

Requires MSR 01A6H

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.8.5, “Off-core Response Performance
Monitoring”.

Requires MSR 01A7H

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries

BDH 01H TLB_FLUSH.STLB_ANY STLB flush attempts

Table 19-3. Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 138

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1.

C0H 01H INST_RETIRED.PREC_DIST Precise instruction retired event with HW to reduce
effect of PEBS shadow in IP distribution.

PMC1 only;

C0H 01H INST_RETIRED.TOTAL_CYCLES Number of cycles using always true condition applied to
PEBS instructions retired event.

CMSK10, PS

C1H 3FH OTHER_ASSISTS.ANY Number of times a microcode assist is invoked by HW
other than FP-assist. Examples include AD (page Access
Dirty) and AVX* related assists.

C2H 01H UOPS_RETIRED.STALL_CYCLES Cycles without actually retired uops. CMSK1, INV

C2H 01H UOPS_RETIRED.TOTAL_CYCLES Cycles with less than 10 actually retired uops. CMSK10, INV

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Retirement slots used.

C3H 01H MACHINE_CLEARS.COUNT Number of machine clears of any type. CMSK1, EDG

C3H 02H MACHINE_CLEARS.MEMORY_OR
DERING

Counts the number of machine clears due to memory
order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears
detected.

C4H 00H BR_INST_RETIRED.ALL_BRANC
HES

Branch instructions that retired. See Table 19-1.

C4H 01H BR_INST_RETIRED.CONDITIONA
L

Counts the number of conditional branch instructions
retired.

PS

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. PS

C4H 04H BR_INST_RETIRED.ALL_BRANC
HES

Counts the number of branch instructions retired. PS

C4H 08H BR_INST_RETIRED.NEAR_RETU
RN

Counts the number of near return instructions retired. PS

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions
retired.

C4H 20H BR_INST_RETIRED.NEAR_TAKE
N

Number of near taken branches retired. PS

C4H 40H BR_INST_RETIRED.FAR_BRANC
H

Number of far branches retired. PS

C5H 00H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted branch instructions at retirement See Table 19-1.

C5H 01H BR_MISP_RETIRED.CONDITIONA
L

Mispredicted conditional branch instructions retired. PS

C5H 04H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted macro branch instructions retired. PS

C5H 20H BR_MISP_RETIRED.NEAR_TAKE
N

Number of near branch instructions retired that were
mispredicted and taken.

PS

C6H 01H FRONTEND_RETIRED.DSB_MISS Retired Instructions which experienced DSB miss.
Specify MSR_PEBS_FRONTEND.EVTSEL=11H

PS

Table 19-3. Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 139

C6H 01H FRONTEND_RETIRED.L1I_MISS Retired Instructions which experienced Instruction L1
cache true miss. Specify
MSR_PEBS_FRONTEND.EVTSEL=12H

PS

C6H 01H FRONTEND_RETIRED.L2_MISS Retired Instructions which experienced L2 cache true
miss. Specify
MSR_PEBS_FRONTEND.EVTSEL=13H

PS

C6H 01H FRONTEND_RETIRED.ITLB_MISS Retired Instructions which experienced ITLB true miss.
Specify MSR_PEBS_FRONTEND.EVTSEL=14H

PS

C6H 01H FRONTEND_RETIRED.STLB_MIS
S

Retired Instructions which experienced STLB true miss.
Specify MSR_PEBS_FRONTEND.EVTSEL=15H

PS

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_16

Retired Instructions that are fetched after an interval
where the front end delivered no uops for at least 16
cycles. Specify the following fields in
MSR_PEBS_FRONTEND: EVTSEL=16H,
IDQ_Bubble_Length =16, IDQ_Bubble_Width = 4.

PS

C6H 01H FRONTEND_RETIRED.LATENCY_
GE_2_BUBBLES_GE_m

Retired Instructions that are fetched after an interval
where the front end had ‘m’ IDQ slots delivered no uops
for at least 2 cycles. Specify the following fields in
MSR_PEBS_FRONTEND: EVTSEL=16H,
IDQ_Bubble_Length =2, IDQ_Bubble_Width = m

PS, m = 1, 2, 3

C7H 01H FP_ARITH_INST_RETIRED.SCAL
AR_DOUBLE

Number of double-precision, floating-point, scalar SSE/
AVX computational instructions that are retired. Each
scalar FMA instruction count as 2.

Software may treat
each count as one DP
FLOP.

C7H 02H FP_ARITH_INST_RETIRED.SCAL
AR_SINGLE

Number of single-precision, floating-point, scalar SSE/
AVX computational instructions that are retired. Each
scalar FMA instruction count as 2.

Software may treat
each count as one SP
FLOP.

C7H 04H FP_ARITH_INST_RETIRED.128B
_PACKED_DOUBLE

Number of double-precision, floating-point, 128-bit
SSE/AVX computational instructions that are retired.
Each 128-bit FMA or (V)DPPD instruction count as 2.

Software may treat
each count as two DP
FLOPs.

C7H 08H FP_ARITH_INST_RETIRED.128B
_PACKED_SINGLE

Number of single-precision, floating-point, 128-bit SSE/
AVX computational instructions that are retired. Each
128-bit FMA or (V)DPPS instruction count as 2.

Software may treat
each count as four SP
FLOPs.

C7H 10H FP_ARITH_INST_RETIRED.256B
_PACKED_DOUBLE

Number of double-precision, floating-point, 256-bit
SSE/AVX computational instructions that are retired.
Each 256-bit FMA instruction count as 2.

Software may treat
each count as four DP
FLOPs.

C7H 20H FP_ARITH_INST_RETIRED.256B
_PACKED_SINGLE

Number of single-precision, floating-point, 256-bit SSE/
AVX computational instructions that are retired. Each
256-bit FMA or VDPPS instruction count as 2.

Software may treat
each count as eight SP
FLOPs.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists. CMSK1

CBH 01H HW_INTERRUPTS.RECEIVED Number of hardware interrupts received by the
processor.

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY

Randomly sampled loads whose latency is above a user
defined threshold. A small fraction of the overall loads
are sampled due to randomization.

Specify threshold in
MSR 3F6H.

PSDLA

Table 19-3. Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 140

D0H 11H MEM_INST_RETIRED.STLB_MISS
_LOADS

Retired load instructions that miss the STLB. PSDLA

D0H 12H MEM_INST_RETIRED.STLB_MISS
_STORES

Retired store instructions that miss the STLB. PSDLA

D0H 21H MEM_INST_RETIRED.LOCK_LOA
DS

Retired load instructions with locked access. PSDLA

D0H 41H MEM_INST_RETIRED.SPLIT_LOA
DS

Number of load instructions retired with cache-line
splits that may impact performance.

PSDLA

D0H 42H MEM_INST_RETIRED.SPLIT_STO
RES

Number of store instructions retired with line-split. PSDLA

D0H 81H MEM_INST_RETIRED.ALL_LOAD
S

All retired load instructions. PSDLA

D0H 82H MEM_INST_RETIRED.ALL_STOR
ES

All retired store instructions. PSDLA

D1H 01H MEM_LOAD_RETIRED.L1_HIT Retired load Instructions with L1 cache hits as data
sources.

PSDLA

D1H 02H MEM_LOAD_RETIRED.L2_HIT Retired load Instructions with L2 cache hits as data
sources.

PSDLA

D1H 04H MEM_LOAD_RETIRED.L3_HIT Retired load Instructions with L3 cache hits as data
sources.

PSDLA

D1H 08H MEM_LOAD_RETIRED.L1_MISS Retired load Instructions missed L1 cache as data
sources.

PSDLA

D1H 10H MEM_LOAD_RETIRED.L2_MISS Retired load Instructions missed L2. Unknown data
source excluded.

PSDLA

D1H 20H MEM_LOAD_RETIRED.L3_MISS Retired load Instructions missed L3. Excludes unknown
data source.

PSDLA

D1H 40H MEM_LOAD_RETIRED.FB_HIT Retired load Instructions which data sources were load
uops missed L1 but hit FB due to preceding miss to the
same cache line with data not ready.

PSDLA

D2H 01H MEM_LOAD_L3_HIT_RETIRED.X
SNP_MISS

Retired load Instructions which data sources were L3
hit and cross-core snoop missed in on-pkg core cache.

PSDLA

D2H 02H MEM_LOAD_L3_HIT_RETIRED.X
SNP_HIT

Retired load Instructions which data sources were L3
and cross-core snoop hits in on-pkg core cache.

PSDLA

D2H 04H MEM_LOAD_L3_HIT_RETIRED.X
SNP_HITM

Retired load Instructions which data sources were HitM
responses from shared L3.

PSDLA

D2H 08H MEM_LOAD_L3_HIT_RETIRED.X
SNP_NONE

Retired load Instructions which data sources were hits
in L3 without snoops required.

PSDLA

E6H 01H BACLEARS.ANY Number of front end re-steers due to BPU
misprediction.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

Table 19-3. Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 141

Table 19-7 lists performance events supporting Intel TSX (see Section 18.10.5) and are applicable to processors
based on Skylake microarchitecture. Where Skylake microarchitecture implements TSX-related event semantics
that differ from Table 19-7, they are listed in Table 19-4.

...

 19.3 PERFORMANCE MONITORING EVENTS FOR THE INTEL® CORE™ M AND
FIFTH GENERATION INTEL CORE PROCESSORS

...
Table 19-8 lists performance events supporting Intel TSX (see Section 18.10.5) and are applicable to processors
based on Broadwell microarchitecture. Where Broadwell microarchitecture implements TSX-related event seman-
tics that differ from Table 19-8, they are listed in Table 19-6.

...

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2.

CMSK1: Counter Mask = 1 required; CMSK4: CounterMask = 4 required; CMSK6: CounterMask = 6 required; CMSK8: CounterMask = 8
required; CMSK10: CounterMask = 10 required; CMSK12: CounterMask = 12 required; CMSK16: CounterMask = 16 required; CMSK20:
CounterMask = 20 required.

AnyT: AnyThread = 1 required.

INV: Invert = 1 required.

EDG: EDGE = 1 required.

PSDLA: Also supports PEBS and DataLA.

PS: Also supports PEBS.

Table 19-3. Non-Architectural Performance Events of the Processor Core Supported by Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

Table 19-4. Intel TSX Performance Event Addendum in Processors based on Skylake Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

54H 02H TX_MEM.ABORT_CAPACITY Number of times a transactional abort was signaled due
to a data capacity limitation for transactional reads or
writes

Table 19-6 Intel® TSX Performance Event Addendum in Processors based on Broadwell Microarchitecture
Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

54H 02H TX_MEM.ABORT_CAPACITY Number of times a transactional abort was signaled due
to a data capacity limitation for transactional reads or
writes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 142

19. Updates to Chapter 24, Volume 3C
Change bars show changes to Chapter 24 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

24.6.2 Processor-Based VM-Execution Controls
The processor-based VM-execution controls constitute two 32-bit vectors that govern the handling of synchro-
nous events, mainly those caused by the execution of specific instructions.1 These are the primary processor-
based VM-execution controls and the secondary processor-based VM-execution controls.

Table 24-6 lists the primary processor-based VM-execution controls. See Chapter 25 for more details of how these
controls affect processor behavior in VMX non-root operation.

1. Some instructions cause VM exits regardless of the settings of the processor-based VM-execution controls (see Section 25.1.2), as
do task switches (see Section 25.2).

Table 24-6. Definitions of Primary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

2 Interrupt-window
exiting

If this control is 1, a VM exit occurs at the beginning of any instruction if RFLAGS.IF = 1 and
there are no other blocking of interrupts (see Section 24.4.2).

3 Use TSC offsetting This control determines whether executions of RDTSC, executions of RDTSCP, and executions
of RDMSR that read from the IA32_TIME_STAMP_COUNTER MSR return a value modified by
the TSC offset field (see Section 24.6.5 and Section 25.3).

7 HLT exiting This control determines whether executions of HLT cause VM exits.

9 INVLPG exiting This determines whether executions of INVLPG cause VM exits.

10 MWAIT exiting This control determines whether executions of MWAIT cause VM exits.

11 RDPMC exiting This control determines whether executions of RDPMC cause VM exits.

12 RDTSC exiting This control determines whether executions of RDTSC and RDTSCP cause VM exits.

15 CR3-load exiting In conjunction with the CR3-target controls (see Section 24.6.7), this control determines
whether executions of MOV to CR3 cause VM exits. See Section 25.1.3.

The first processors to support the virtual-machine extensions supported only the 1-setting
of this control.

16 CR3-store exiting This control determines whether executions of MOV from CR3 cause VM exits.

The first processors to support the virtual-machine extensions supported only the 1-setting
of this control.

19 CR8-load exiting This control determines whether executions of MOV to CR8 cause VM exits.

20 CR8-store exiting This control determines whether executions of MOV from CR8 cause VM exits.

21 Use TPR shadow Setting this control to 1 enables TPR virtualization and other APIC-virtualization features. See
Chapter 29.

22 NMI-window
exiting

If this control is 1, a VM exit occurs at the beginning of any instruction if there is no virtual-
NMI blocking (see Section 24.4.2).

23 MOV-DR exiting This control determines whether executions of MOV DR cause VM exits.

24 Unconditional I/O
exiting

This control determines whether executions of I/O instructions (IN, INS/INSB/INSW/INSD, OUT,
and OUTS/OUTSB/OUTSW/OUTSD) cause VM exits.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 143

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs
IA32_VMX_PROCBASED_CTLS and IA32_VMX_TRUE_PROCBASED_CTLS (see Appendix A.3.2) to determine how
to set reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section
26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 1, 4–6, 8, 13–
16, and 26. The VMX capability MSR IA32_VMX_PROCBASED_CTLS will always report that these bits must be 1.
Logical processors that support the 0-settings of any of these bits will support the VMX capability MSR
IA32_VMX_TRUE_PROCBASED_CTLS MSR, and software should consult this MSR to discover support for the 0-
settings of these bits. Software that is not aware of the functionality of any one of these bits should set that bit to
1.

Bit 31 of the primary processor-based VM-execution controls determines whether the secondary processor-based
VM-execution controls are used. If that bit is 0, VM entry and VMX non-root operation function as if all the
secondary processor-based VM-execution controls were 0. Processors that support only the 0-setting of bit 31 of
the primary processor-based VM-execution controls do not support the secondary processor-based VM-execution
controls.

Table 24-7 lists the secondary processor-based VM-execution controls. See Chapter 25 for more details of how
these controls affect processor behavior in VMX non-root operation.

25 Use I/O bitmaps This control determines whether I/O bitmaps are used to restrict executions of I/O instructions
(see Section 24.6.4 and Section 25.1.3).

For this control, “0” means “do not use I/O bitmaps” and “1” means “use I/O bitmaps.” If the I/O
bitmaps are used, the setting of the “unconditional I/O exiting” control is ignored.

27 Monitor trap flag If this control is 1, the monitor trap flag debugging feature is enabled. See Section 25.5.2.

28 Use MSR bitmaps This control determines whether MSR bitmaps are used to control execution of the RDMSR
and WRMSR instructions (see Section 24.6.9 and Section 25.1.3).

For this control, “0” means “do not use MSR bitmaps” and “1” means “use MSR bitmaps.” If the
MSR bitmaps are not used, all executions of the RDMSR and WRMSR instructions cause
VM exits.

29 MONITOR exiting This control determines whether executions of MONITOR cause VM exits.

30 PAUSE exiting This control determines whether executions of PAUSE cause VM exits.

31 Activate secondary
controls

This control determines whether the secondary processor-based VM-execution controls are
used. If this control is 0, the logical processor operates as if all the secondary processor-based
VM-execution controls were also 0.

Table 24-6. Definitions of Primary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description

Table 24-7. Definitions of Secondary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

0 Virtualize APIC
accesses

If this control is 1, the logical processor treats specially accesses to the page with the APIC-
access address. See Section 29.4.

1 Enable EPT If this control is 1, extended page tables (EPT) are enabled. See Section 28.2.

2 Descriptor-table
exiting

This control determines whether executions of LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, and
STR cause VM exits.

3 Enable RDTSCP If this control is 0, any execution of RDTSCP causes an invalid-opcode exception (#UD).

4 Virtualize x2APIC
mode

If this control is 1, the logical processor treats specially RDMSR and WRMSR to APIC MSRs (in
the range 800H–8FFH). See Section 29.5.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 144

All other bits in this field are reserved to 0. Software should consult the VMX capability MSR
IA32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3) to determine which bits may be set to 1. Failure to clear
reserved bits causes subsequent VM entries to fail (see Section 26.2.1.1).

...

24.6.5 Time-Stamp Counter Offset and Multiplier
The VM-execution control fields include a 64-bit TSC-offset field. If the “RDTSC exiting” control is 0 and the “use
TSC offsetting” control is 1, this field controls executions of the RDTSC and RDTSCP instructions. It also controls
executions of the RDMSR instruction that read from the IA32_TIME_STAMP_COUNTER MSR. For all of these, the
value of the TSC offset is added to the value of the time-stamp counter, and the sum is returned to guest software
in EDX:EAX.

Processors that support the 1-setting of the “use TSC scaling” control also support a 64-bit TSC-multiplier field.
If this control is 1 (and the “RDTSC exiting” control is 0 and the “use TSC offsetting” control is 1), this field also
affects the executions of the RDTSC, RDTSCP, and RDMSR instructions identified above. Specifically, the contents
of the time-stamp counter is first multiplied by the TSC multiplier before adding the TSC offset.

See Chapter 27 for a detailed treatment of the behavior of RDTSC, RDTSCP, and RDMSR in VMX non-root
operation

5 Enable VPID If this control is 1, cached translations of linear addresses are associated with a virtual-
processor identifier (VPID). See Section 28.1.

6 WBINVD exiting This control determines whether executions of WBINVD cause VM exits.

7 Unrestricted guest This control determines whether guest software may run in unpaged protected mode or in real-
address mode.

8 APIC-register
virtualization

If this control is 1, the logical processor virtualizes certain APIC accesses. See Section 29.4 and
Section 29.5.

9 Virtual-interrupt
delivery

This controls enables the evaluation and delivery of pending virtual interrupts as well as the
emulation of writes to the APIC registers that control interrupt prioritization.

10 PAUSE-loop exiting This control determines whether a series of executions of PAUSE can cause a VM exit (see
Section 24.6.13 and Section 25.1.3).

11 RDRAND exiting This control determines whether executions of RDRAND cause VM exits.

12 Enable INVPCID If this control is 0, any execution of INVPCID causes a #UD.

13 Enable
VM functions

Setting this control to 1 enables use of the VMFUNC instruction in VMX non-root operation. See
Section 25.5.5.

14 VMCS shadowing If this control is 1, executions of VMREAD and VMWRITE in VMX non-root operation may access
a shadow VMCS (instead of causing VM exits). See Section 24.10 and Section 30.3.

16 RDSEED exiting This control determines whether executions of RDSEED cause VM exits.

18 EPT-violation #VE If this control is 1, EPT violations may cause virtualization exceptions (#VE) instead of VM exits.
See Section 25.5.6.

20 Enable XSAVES/
XRSTORS

If this control is 0, any execution of XSAVES or XRSTORS causes a #UD.

25 Use TSC scaling This control determines whether executions of RDTSC, executions of RDTSCP, and executions
of RDMSR that read from the IA32_TIME_STAMP_COUNTER MSR return a value modified by the
TSC multiplier field (see Section 24.6.5 and Section 25.3).

Table 24-7. Definitions of Secondary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 145

...

20. Updates to Chapter 25, Volume 3C
Change bars show changes to Chapter 25 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

25.3 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT OPERATION
The behavior of some instructions is changed in VMX non-root operation. Some of these changes are determined
by the settings of certain VM-execution control fields. The following items detail such changes:1

• CLTS. Behavior of the CLTS instruction is determined by the bits in position 3 (corresponding to CR0.TS) in
the CR0 guest/host mask and the CR0 read shadow:

— If bit 3 in the CR0 guest/host mask is 0, CLTS clears CR0.TS normally (the value of bit 3 in the CR0 read
shadow is irrelevant in this case), unless CR0.TS is fixed to 1 in VMX operation (see Section 23.8), in which
case CLTS causes a general-protection exception.

— If bit 3 in the CR0 guest/host mask is 1 and bit 3 in the CR0 read shadow is 0, CLTS completes but does
not change the contents of CR0.TS.

— If the bits in position 3 in the CR0 guest/host mask and the CR0 read shadow are both 1, CLTS causes a
VM exit.

• INVPCID. Behavior of the INVPCID instruction is determined first by the setting of the “enable INVPCID”
VM-execution control:

— If the “enable INVPCID” VM-execution control is 0, INVPCID causes an invalid-opcode exception (#UD).
This exception takes priority over any other exception the instruction may incur.

— If the “enable INVPCID” VM-execution control is 1, treatment is based on the setting of the “INVLPG
exiting” VM-execution control:

• If the “INVLPG exiting” VM-execution control is 0, INVPCID operates normally.

• If the “INVLPG exiting” VM-execution control is 1, INVPCID causes a VM exit.
• IRET. Behavior of IRET with regard to NMI blocking (see Table 24-3) is determined by the settings of the “NMI

exiting” and “virtual NMIs” VM-execution controls:

— If the “NMI exiting” VM-execution control is 0, IRET operates normally and unblocks NMIs. (If the “NMI
exiting” VM-execution control is 0, the “virtual NMIs” control must be 0; see Section 26.2.1.1.)

— If the “NMI exiting” VM-execution control is 1, IRET does not affect blocking of NMIs. If, in addition, the
“virtual NMIs” VM-execution control is 1, the logical processor tracks virtual-NMI blocking. In this case,
IRET removes any virtual-NMI blocking.

The unblocking of NMIs or virtual NMIs specified above occurs even if IRET causes a fault.
• LMSW. Outside of VMX non-root operation, LMSW loads its source operand into CR0[3:0], but it does not

clear CR0.PE if that bit is set. In VMX non-root operation, an execution of LMSW that does not cause a VM exit
(see Section 25.1.3) leaves unmodified any bit in CR0[3:0] corresponding to a bit set in the CR0 guest/host
mask. An attempt to set any other bit in CR0[3:0] to a value not supported in VMX operation (see Section
23.8) causes a general-protection exception. Attempts to clear CR0.PE are ignored without fault.

1. Some of the items in this section refer to secondary processor-based VM-execution controls. If bit 31 of the primary processor-
based VM-execution controls is 0, VMX non-root operation functions as if these controls were all 0. See Section 24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 146

• MOV from CR0. The behavior of MOV from CR0 is determined by the CR0 guest/host mask and the CR0 read
shadow. For each position corresponding to a bit clear in the CR0 guest/host mask, the destination operand is
loaded with the value of the corresponding bit in CR0. For each position corresponding to a bit set in the CR0
guest/host mask, the destination operand is loaded with the value of the corresponding bit in the CR0 read
shadow. Thus, if every bit is cleared in the CR0 guest/host mask, MOV from CR0 reads normally from CR0; if
every bit is set in the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read shadow.
Depending on the contents of the CR0 guest/host mask and the CR0 read shadow, bits may be set in the
destination that would never be set when reading directly from CR0.

• MOV from CR3. If the “enable EPT” VM-execution control is 1 and an execution of MOV from CR3 does not
cause a VM exit (see Section 25.1.3), the value loaded from CR3 is a guest-physical address; see Section
28.2.1.

• MOV from CR4. The behavior of MOV from CR4 is determined by the CR4 guest/host mask and the CR4 read
shadow. For each position corresponding to a bit clear in the CR4 guest/host mask, the destination operand is
loaded with the value of the corresponding bit in CR4. For each position corresponding to a bit set in the CR4
guest/host mask, the destination operand is loaded with the value of the corresponding bit in the CR4 read
shadow. Thus, if every bit is cleared in the CR4 guest/host mask, MOV from CR4 reads normally from CR4; if
every bit is set in the CR4 guest/host mask, MOV from CR4 returns the value of the CR4 read shadow.
Depending on the contents of the CR4 guest/host mask and the CR4 read shadow, bits may be set in the
destination that would never be set when reading directly from CR4.

• MOV from CR8. If the MOV from CR8 instruction does not cause a VM exit (see Section 25.1.3), its behavior
is modified if the “use TPR shadow” VM-execution control is 1; see Section 29.3.

• MOV to CR0. An execution of MOV to CR0 that does not cause a VM exit (see Section 25.1.3) leaves
unmodified any bit in CR0 corresponding to a bit set in the CR0 guest/host mask. Treatment of attempts to
modify other bits in CR0 depends on the setting of the “unrestricted guest” VM-execution control:

— If the control is 0, MOV to CR0 causes a general-protection exception if it attempts to set any bit in CR0 to
a value not supported in VMX operation (see Section 23.8).

— If the control is 1, MOV to CR0 causes a general-protection exception if it attempts to set any bit in CR0
other than bit 0 (PE) or bit 31 (PG) to a value not supported in VMX operation. It remains the case,
however, that MOV to CR0 causes a general-protection exception if it would result in CR0.PE = 0 and
CR0.PG = 1 or if it would result in CR0.PG = 1, CR4.PAE = 0, and IA32_EFER.LME = 1.

• MOV to CR3. If the “enable EPT” VM-execution control is 1 and an execution of MOV to CR3 does not cause a
VM exit (see Section 25.1.3), the value loaded into CR3 is treated as a guest-physical address; see Section
28.2.1.

— If PAE paging is not being used, the instruction does not use the guest-physical address to access memory
and it does not cause it to be translated through EPT.1

— If PAE paging is being used, the instruction translates the guest-physical address through EPT and uses
the result to load the four (4) page-directory-pointer-table entries (PDPTEs). The instruction does not use
the guest-physical addresses the PDPTEs to access memory and it does not cause them to be translated
through EPT.

• MOV to CR4. An execution of MOV to CR4 that does not cause a VM exit (see Section 25.1.3) leaves
unmodified any bit in CR4 corresponding to a bit set in the CR4 guest/host mask. Such an execution causes a
general-protection exception if it attempts to set any bit in CR4 (not corresponding to a bit set in the CR4
guest/host mask) to a value not supported in VMX operation (see Section 23.8).

• MOV to CR8. If the MOV to CR8 instruction does not cause a VM exit (see Section 25.1.3), its behavior is
modified if the “use TPR shadow” VM-execution control is 1; see Section 29.3.

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 147

• MWAIT. Behavior of the MWAIT instruction (which always causes an invalid-opcode exception—#UD—if
CPL > 0) is determined by the setting of the “MWAIT exiting” VM-execution control:

— If the “MWAIT exiting” VM-execution control is 1, MWAIT causes a VM exit.

— If the “MWAIT exiting” VM-execution control is 0, MWAIT operates normally if one of the following are
true: (1) ECX[0] is 0; (2) RFLAGS.IF = 1; or both of the following are true: (a) the “interrupt-window
exiting” VM-execution control is 0; and (b) the logical processor has not recognized a pending virtual
interrupt (see Section 29.2.1).

— If the “MWAIT exiting” VM-execution control is 0, ECX[0] = 1, and RFLAGS.IF = 0, MWAIT does not cause
the processor to enter an implementation-dependent optimized state if either the “interrupt-window
exiting” VM-execution control is 1 or the logical processor has recognized a pending virtual interrupt;
instead, control passes to the instruction following the MWAIT instruction.

• RDMSR. Section 25.1.3 identifies when executions of the RDMSR instruction cause VM exits. If such an
execution causes neither a fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified for
certain values of ECX:

— If ECX contains 10H (indicating the IA32_TIME_STAMP_COUNTER MSR), the value returned by the
instruction is determined by the setting of the “use TSC offsetting” VM-execution control:

• If the control is 0, RDMSR operates normally, loading EAX:EDX with the value of the
IA32_TIME_STAMP_COUNTER MSR.

• If the control is 1, the value returned is determined by the setting of the “use TSC scaling”
VM-execution control:

— If the control is 0, RDMSR loads EAX:EDX with the sum of the value of the
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset.

— If the control is 1, RDMSR first computes the product of the value of the
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC multiplier. It then shifts the value of
the product right 48 bits and loads EAX:EDX with the sum of that shifted value and the value of
the TSC offset.

The 1-setting of the “use TSC-offsetting” VM-execution control does not affect executions of RDMSR if ECX
contains 6E0H (indicating the IA32_TSC_DEADLINE MSR). Such executions return the APIC-timer
deadline relative to the actual timestamp counter without regard to the TSC offset.

— If ECX is in the range 800H–8FFH (indicating an APIC MSR), instruction behavior may be modified if the
“virtualize x2APIC mode” VM-execution control is 1; see Section 29.5.

• RDTSC. Behavior of the RDTSC instruction is determined by the settings of the “RDTSC exiting” and “use TSC
offsetting” VM-execution controls:

— If both controls are 0, RDTSC operates normally.

— If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting” VM-execution control is 1,
the value returned is determined by the setting of the “use TSC scaling” VM-execution control:

• If the control is 0, RDTSC loads EAX:EDX with the sum of the value of the
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset.

• If the control is 1, RDTSC first computes the product of the value of the IA32_TIME_STAMP_COUNTER
MSR and the value of the TSC multiplier. It then shifts the value of the product right 48 bits and loads
EAX:EDX with the sum of that shifted value and the value of the TSC offset.

— If the “RDTSC exiting” VM-execution control is 1, RDTSC causes a VM exit.
• RDTSCP. Behavior of the RDTSCP instruction is determined first by the setting of the “enable RDTSCP”

VM-execution control:

— If the “enable RDTSCP” VM-execution control is 0, RDTSCP causes an invalid-opcode exception (#UD).
This exception takes priority over any other exception the instruction may incur.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 148

— If the “enable RDTSCP” VM-execution control is 1, treatment is based on the settings of the “RDTSC
exiting” and “use TSC offsetting” VM-execution controls:

• If both controls are 0, RDTSCP operates normally.

• If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting” VM-execution control is
1, the value returned is determined by the setting of the “use TSC scaling” VM-execution control:

— If the control is 0, RDTSCP loads EAX:EDX with the sum of the value of the
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset.

— If the control is 1, RDTSCP first computes the product of the value of the
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC multiplier. It then shifts the value of
the product right 48 bits and loads EAX:EDX with the sum of that shifted value and the value of
the TSC offset.

In either case, RDTSCP also loads ECX with the value of bits 31:0 of the IA32_TSC_AUX MSR.

• If the “RDTSC exiting” VM-execution control is 1, RDTSCP causes a VM exit.
• SMSW. The behavior of SMSW is determined by the CR0 guest/host mask and the CR0 read shadow. For each

position corresponding to a bit clear in the CR0 guest/host mask, the destination operand is loaded with the
value of the corresponding bit in CR0. For each position corresponding to a bit set in the CR0 guest/host mask,
the destination operand is loaded with the value of the corresponding bit in the CR0 read shadow. Thus, if
every bit is cleared in the CR0 guest/host mask, MOV from CR0 reads normally from CR0; if every bit is set in
the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read shadow.
Note the following: (1) for any memory destination or for a 16-bit register destination, only the low 16 bits of
the CR0 guest/host mask and the CR0 read shadow are used (bits 63:16 of a register destination are left
unchanged); (2) for a 32-bit register destination, only the low 32 bits of the CR0 guest/host mask and the
CR0 read shadow are used (bits 63:32 of the destination are cleared); and (3) depending on the contents of
the CR0 guest/host mask and the CR0 read shadow, bits may be set in the destination that would never be set
when reading directly from CR0.

• WRMSR. Section 25.1.3 identifies when executions of the WRMSR instruction cause VM exits. If such an
execution neither a fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified for certain
values of ECX:

— If ECX contains 79H (indicating IA32_BIOS_UPDT_TRIG MSR), no microcode update is loaded, and control
passes to the next instruction. This implies that microcode updates cannot be loaded in VMX non-root
operation.

— If ECX contains 808H (indicating the TPR MSR), 80BH (the EOI MSR), or 83FH (self-IPI MSR), instruction
behavior may modified if the “virtualize x2APIC mode” VM-execution control is 1; see Section 29.5.

• XRSTORS. Behavior of the XRSTORS instruction is determined first by the setting of the “enable XSAVES/
XRSTORS” VM-execution control:

— If the “enable XSAVES/XRSTORS” VM-execution control is 0, XRSTORS causes an invalid-opcode
exception (#UD).

— If the “enable XSAVES/XRSTORS” VM-execution control is 1, treatment is based on the value of the XSS-
exiting bitmap (see Section 24.6.17):

• XRSTORS causes a VM exit if any bit is set in the logical-AND of the following three values: EDX:EAX,
the IA32_XSS MSR, and the XSS-exiting bitmap.

• Otherwise, XRSTORS operates normally.
• XSAVES. Behavior of the XSAVES instruction is determined first by the setting of the “enable XSAVES/

XRSTORS” VM-execution control:

— If the “enable XSAVES/XRSTORS” VM-execution control is 0, XSAVES causes an invalid-opcode exception
(#UD).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 149

— If the “enable XSAVES/XRSTORS” VM-execution control is 1, treatment is based on the value of the XSS-
exiting bitmap (see Section 24.6.17):

• XSAVES causes a VM exit if any bit is set in the logical-AND of the following three values: EDX:EAX,
the IA32_XSS MSR, and the XSS-exiting bitmap.

• Otherwise, XSAVES operates normally.

...

21. Updates to Chapter 26, Volume 3C
Change bars show changes to Chapter 26 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

26.2.1.1 VM-Execution Control Fields
VM entries perform the following checks on the VM-execution control fields:1

• Reserved bits in the pin-based VM-execution controls must be set properly. Software may consult the VMX
capability MSRs to determine the proper settings (see Appendix A.3.1).

• Reserved bits in the primary processor-based VM-execution controls must be set properly. Software may
consult the VMX capability MSRs to determine the proper settings (see Appendix A.3.2).

• If the “activate secondary controls” primary processor-based VM-execution control is 1, reserved bits in the
secondary processor-based VM-execution controls must be cleared. Software may consult the VMX capability
MSRs to determine which bits are reserved (see Appendix A.3.3).
If the “activate secondary controls” primary processor-based VM-execution control is 0 (or if the processor
does not support the 1-setting of that control), no checks are performed on the secondary processor-based
VM-execution controls. The logical processor operates as if all the secondary processor-based VM-execution
controls were 0.

• The CR3-target count must not be greater than 4. Future processors may support a different number of CR3-
target values. Software should read the VMX capability MSR IA32_VMX_MISC to determine the number of
values supported (see Appendix A.6).

• If the “use I/O bitmaps” VM-execution control is 1, bits 11:0 of each I/O-bitmap address must be 0. Neither
address should set any bits beyond the processor’s physical-address width.2,3

• If the “use MSR bitmaps” VM-execution control is 1, bits 11:0 of the MSR-bitmap address must be 0. The
address should not set any bits beyond the processor’s physical-address width.4

• If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address width.5

1. If the “activate secondary controls” primary processor-based VM-execution control is 0, VM entry operates as if each secondary
processor-based VM-execution control were 0.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, these addresses must not set any bits in the range 63:32; see Appendix A.1.

4. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

5. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 150

If all of the above checks are satisfied and the “use TPR shadow” VM-execution control is 1, bytes 3:1 of
VTPR (see Section 29.1.1) may be cleared (behavior may be implementation-specific).
The clearing of these bytes may occur even if the VM entry fails. This is true either if the failure causes
control to pass to the instruction following the VM-entry instruction or if it causes processor state to be
loaded from the host-state area of the VMCS.

• If the “use TPR shadow” VM-execution control is 1 and the “virtual-interrupt delivery” VM-execution control is
0, bits 31:4 of the TPR threshold VM-execution control field must be 0.1

• The following check is performed if the “use TPR shadow” VM-execution control is 1 and the “virtualize APIC
accesses” and “virtual-interrupt delivery” VM-execution controls are both 0: the value of bits 3:0 of the TPR
threshold VM-execution control field should not be greater than the value of bits 7:4 of VTPR (see Section
29.1.1).

• If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” VM-execution control must be 0.
• If the “virtual NMIs” VM-execution control is 0, the “NMI-window exiting” VM-execution control must be 0.
• If the “virtualize APIC-accesses” VM-execution control is 1, the APIC-access address must satisfy the following

checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address width.2

• If the “use TPR shadow” VM-execution control is 0, the following VM-execution controls must also be 0:
“virtualize x2APIC mode”, “APIC-register virtualization”, and “virtual-interrupt delivery”.3

• If the “virtualize x2APIC mode” VM-execution control is 1, the “virtualize APIC accesses” VM-execution control
must be 0.

• If the “virtual-interrupt delivery” VM-execution control is 1, the “external-interrupt exiting” VM-execution
control must be 1.

• If the “process posted interrupts” VM-execution control is 1, the following must be true:4

— The “virtual-interrupt delivery” VM-execution control is 1.

— The “acknowledge interrupt on exit” VM-exit control is 1.

— The posted-interrupt notification vector has a value in the range 0–255 (bits 15:8 are all 0).

— Bits 5:0 of the posted-interrupt descriptor address are all 0.

— The posted-interrupt descriptor address does not set any bits beyond the processor's physical-address
width.5

• If the “enable VPID” VM-execution control is 1, the value of the VPID VM-execution control field must not be
0000H.6

• If the “enable EPT” VM-execution control is 1, the EPTP VM-execution control field (see Table 24-8 in Section
24.6.11) must satisfy the following checks:7

1. “Virtual-interrupt delivery” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-exe-
cution controls is 0, VM entry functions as if the “virtual-interrupt delivery” VM-execution control were 0. See Section 24.6.2.

2. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

3. “Virtualize x2APIC mode” and “APIC-register virtualization” are secondary processor-based VM-execution controls. If bit 31 of the
primary processor-based VM-execution controls is 0, VM entry functions as if these controls were 0. See Section 24.6.2.

4. “Process posted interrupts” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-
execution controls is 0, VM entry functions as if the “process posted interrupts” VM-execution control were 0. See Section 24.6.2.

5. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

6. “Enable VPID” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution con-
trols is 0, VM entry functions as if the “enable VPID” VM-execution control were 0. See Section 24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 151

— The EPT memory type (bits 2:0) must be a value supported by the processor as indicated in the
IA32_VMX_EPT_VPID_CAP MSR (see Appendix A.10).

— Bits 5:3 (1 less than the EPT page-walk length) must be 3, indicating an EPT page-walk length of 4; see
Section 28.2.2.

— Bit 6 (enable bit for accessed and dirty flags for EPT) must be 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP
MSR (see Appendix A.10) is read as 0, indicating that the processor does not support accessed and dirty
flags for EPT.

— Reserved bits 11:7 and 63:N (where N is the processor’s physical-address width) must all be 0.
• If the “unrestricted guest” VM-execution control is 1, the “enable EPT” VM-execution control must also be 1.1

• If the “enable VM functions” processor-based VM-execution control is 1, reserved bits in the VM-function
controls must be clear.2 Software may consult the VMX capability MSRs to determine which bits are reserved
(see Appendix A.11). In addition, the following check is performed based on the setting of bits in the VM-
function controls (see Section 24.6.14):

— If “EPTP switching” VM-function control is 1, the “enable EPT” VM-execution control must also be 1. In
addition, the EPTP-list address must satisfy the following checks:

• Bits 11:0 of the address must be 0.

• The address must not set any bits beyond the processor’s physical-address width.
If the “enable VM functions” processor-based VM-execution control is 0, no checks are performed on the VM-
function controls.

• If the “VMCS shadowing” VM-execution control is 1, the VMREAD-bitmap and VMWRITE-bitmap addresses
must each satisfy the following checks:3

— Bits 11:0 of the address must be 0.

— The address must not set any bits beyond the processor’s physical-address width.
• If the “EPT-violation #VE” VM-execution control is 1, the virtualization-exception information address must

satisfy the following checks:4

— Bits 11:0 of the address must be 0.

— The address must not set any bits beyond the processor’s physical-address width.

...

26.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs
The following checks are performed on fields in the guest-state area corresponding to control registers, debug
registers, and MSRs:

7. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls
is 0, VM entry functions as if the “enable EPT” VM-execution control were 0. See Section 24.6.2.

1. “Unrestricted guest” and “enable EPT” are both secondary processor-based VM-execution controls. If bit 31 of the primary proces-
sor-based VM-execution controls is 0, VM entry functions as if both these controls were 0. See Section 24.6.2.

2. “Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execu-
tion controls is 0, VM entry functions as if the “enable VM functions” VM-execution control were 0. See Section 24.6.2.

3. “VMCS shadowing” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “VMCS shadowing” VM-execution control were 0. See Section 24.6.2.

4. “EPT-violation #VE” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “EPT-violation #VE” VM-execution control were 0. See Section 24.6.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 152

• The CR0 field must not set any bit to a value not supported in VMX operation (see Section 23.8). The
following are exceptions:

— Bit 0 (corresponding to CR0.PE) and bit 31 (PG) are not checked if the “unrestricted guest” VM-execution
control is 1.1

— Bit 29 (corresponding to CR0.NW) and bit 30 (CD) are never checked because the values of these bits are
not changed by VM entry; see Section 26.3.2.1.

• If bit 31 in the CR0 field (corresponding to PG) is 1, bit 0 in that field (PE) must also be 1.2

• The CR4 field must not set any bit to a value not supported in VMX operation (see Section 23.8).
• If the “load debug controls” VM-entry control is 1, bits reserved in the IA32_DEBUGCTL MSR must be 0 in the

field for that register. The first processors to support the virtual-machine extensions supported only the 1-
setting of this control and thus performed this check unconditionally.

• The following checks are performed on processors that support Intel 64 architecture:

— If the “IA-32e mode guest” VM-entry control is 1, bit 31 in the CR0 field (corresponding to CR0.PG) and
bit 5 in the CR4 field (corresponding to CR4.PAE) must each be 1.3

— If the “IA-32e mode guest” VM-entry control is 0, bit 17 in the CR4 field (corresponding to CR4.PCIDE)
must be 0.

— The CR3 field must be such that bits 63:52 and bits in the range 51:32 beyond the processor’s physical-
address width are 0.4,5

— If the “load debug controls” VM-entry control is 1, bits 63:32 in the DR7 field must be 0. The first
processors to support the virtual-machine extensions supported only the 1-setting of this control and thus
performed this check unconditionally (if they supported Intel 64 architecture).

— The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field must each contain a canonical address.
• If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, bits reserved in the IA32_PERF_GLOBAL_CTRL

MSR must be 0 in the field for that register (see Figure 18-3).
• If the “load IA32_PAT” VM-entry control is 1, the value of the field for the IA32_PAT MSR must be one that

could be written by WRMSR without fault at CPL 0. Specifically, each of the 8 bytes in the field must have one
of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

• If the “load IA32_EFER” VM-entry control is 1, the following checks are performed on the field for the
IA32_EFER MSR:

— Bits reserved in the IA32_EFER MSR must be 0.

Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of the “IA-32e mode guest” VM-entry control. It
must also be identical to bit 8 (LME) if bit 31 in the CR0 field (corresponding to CR0.PG) is 1.6

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, bit 0 in the CR0 field must be 1
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

3. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, bit 31 in the CR0 field must be 1
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

4. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

5. Bit 63 of the CR3 field in the guest-state area must be 0. This is true even though, If CR4.PCIDE = 1, bit 63 of the source operand
to MOV to CR3 is used to determine whether cached translation information is invalidated.

6. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, bit 31 in the CR0 field must be 1
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 153

...

22. Updates to Chapter 27, Volume 3C
Change bars show changes to Chapter 27 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

27.2.1 Basic VM-Exit Information
Section 24.9.1 defines the basic VM-exit information fields. The following items detail their use.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. It is loaded with a number indicating the general cause
of the VM exit. Appendix C lists the numbers used and their meaning.

— The remainder of the field (bits 31:16) is cleared to 0 (certain SMM VM exits may set some of these bits;
see Section 34.15.2.3).1

• Exit qualification. This field is saved for VM exits due to the following causes: debug exceptions; page-fault
exceptions; start-up IPIs (SIPIs); system-management interrupts (SMIs) that arrive immediately after the
retirement of I/O instructions; task switches; INVEPT; INVLPG; INVPCID; INVVPID; LGDT; LIDT; LLDT; LTR;
SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON; XRSTORS; XSAVES;
control-register accesses; MOV DR; I/O instructions; MWAIT; accesses to the APIC-access page (see Section
29.4); EPT violations; EOI virtualization (Section 29.1.4); and APIC-write emulation (see Section 29.4.3.3).
For all other VM exits, this field is cleared. The following items provide details:

— For a debug exception, the exit qualification contains information about the debug exception. The
information has the format given in Table 27-1.

— For a page-fault exception, the exit qualification contains the linear address that caused the page fault. On
processors that support Intel 64 architecture, bits 63:32 are cleared if the logical processor was not in 64-
bit mode before the VM exit.

1. Bit 13 of this field is set on certain VM-entry failures; see Section 26.7.

Table 27-1. Exit Qualification for Debug Exceptions

Bit Position(s) Contents

3:0 B3 – B0. When set, each of these bits indicates that the corresponding breakpoint condition was met. Any of
these bits may be set even if its corresponding enabling bit in DR7 is not set.

12:4 Reserved (cleared to 0).

13 BD. When set, this bit indicates that the cause of the debug exception is “debug register access detected.”

14 BS. When set, this bit indicates that the cause of the debug exception is either the execution of a single
instruction (if RFLAGS.TF = 1 and IA32_DEBUGCTL.BTF = 0) or a taken branch (if
RFLAGS.TF = DEBUGCTL.BTF = 1).

63:15 Reserved (cleared to 0). Bits 63:32 exist only on processors that support Intel 64 architecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 154

— For a start-up IPI (SIPI), the exit qualification contains the SIPI vector information in bits 7:0. Bits 63:8
of the exit qualification are cleared to 0.

— For a task switch, the exit qualification contains details about the task switch, encoded as shown in
Table 27-2.

— For INVLPG, the exit qualification contains the linear-address operand of the instruction.

• On processors that support Intel 64 architecture, bits 63:32 are cleared if the logical processor was
not in 64-bit mode before the VM exit.

• If the INVLPG source operand specifies an unusable segment, the linear address specified in the exit
qualification will match the linear address that the INVLPG would have used if no VM exit occurred.
This address is not architecturally defined and may be implementation-specific.

— For INVEPT, INVPCID, INVVPID, LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR, VMCLEAR, VMPTRLD,
VMPTRST, VMREAD, VMWRITE, VMXON, XRSTORS, and XSAVES, the exit qualification receives the value
of the instruction’s displacement field, which is sign-extended to 64 bits if necessary (32 bits on
processors that do not support Intel 64 architecture). If the instruction has no displacement (for example,
has a register operand), zero is stored into the exit qualification.

On processors that support Intel 64 architecture, an exception is made for RIP-relative addressing (used
only in 64-bit mode). Such addressing causes an instruction to use an address that is the sum of the
displacement field and the value of RIP that references the following instruction. In this case, the exit
qualification is loaded with the sum of the displacement field and the appropriate RIP value.

In all cases, bits of this field beyond the instruction’s address size are undefined. For example, suppose
that the address-size field in the VM-exit instruction-information field (see Section 24.9.4 and Section
27.2.4) reports an n-bit address size. Then bits 63:n (bits 31:n on processors that do not support Intel
64 architecture) of the instruction displacement are undefined.

— For a control-register access, the exit qualification contains information about the access and has the
format given in Table 27-3.

— For MOV DR, the exit qualification contains information about the instruction and has the format given in
Table 27-4.

— For an I/O instruction, the exit qualification contains information about the instruction and has the format
given in Table 27-5.

— For MWAIT, the exit qualification contains a value that indicates whether address-range monitoring
hardware was armed. The exit qualification is set either to 0 (if address-range monitoring hardware is not
armed) or to 1 (if address-range monitoring hardware is armed).

Table 27-2. Exit Qualification for Task Switch

Bit Position(s) Contents

15:0 Selector of task-state segment (TSS) to which the guest attempted to switch

29:16 Reserved (cleared to 0)

31:30 Source of task switch initiation:

0: CALL instruction
1: IRET instruction
2: JMP instruction
3: Task gate in IDT

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 64 architecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 155

— For an APIC-access VM exit resulting from a linear access or a guest-physical access to the APIC-access
page (see Section 29.4), the exit qualification contains information about the access and has the format
given in Table 27-6.1

Such a VM exit that set bits 15:12 of the exit qualification to 0000b (data read during instruction
execution) or 0001b (data write during instruction execution) set bit 12—which distinguishes data read
from data write—to that which would have been stored in bit 1—W/R—of the page-fault error code had the
access caused a page fault instead of an APIC-access VM exit. This implies the following:

• For an APIC-access VM exit caused by the CLFLUSH and CLFLUSHOPT instructions, the access type is
“data read during instruction execution.”

For an APIC-access VM exit caused by the ENTER instruction, the access type is “data write during instruction
execution.”

...

23. Updates to Chapter 29, Volume 3C
Change bars show changes to Chapter 29 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

29.4.4 Instruction-Specific Considerations
Certain instructions that use linear address may cause page faults even though they do not use those addresses
to access memory. The APIC-virtualization features may affect these instructions as well:
• CLFLUSH, CLFLUSHOPT. With regard to faulting, the processor operates as if each of these instructions

reads from the linear address in its source operand. If that address translates to one on the APIC-access page,
the instruction may cause an APIC-access VM exit. If it does not, it will flush the corresponding cache line on
the virtual-APIC page instead of the APIC-access page.

• ENTER. With regard to faulting, the processor operates if ENTER writes to the byte referenced by the final
value of the stack pointer (even though it does not if its size operand is non-zero). If that value translates to
an address on the APIC-access page, the instruction may cause an APIC-access VM exit. If it does not, it will
cause the APIC-write emulation appropriate to the address’s page offset.

• MASKMOVQ and MAKSMOVDQU. Even if the instruction’s mask is zero, the processor may operate with
regard to faulting as if MASKMOVQ or MASKMOVDQU writes to memory (the behavior is implementation-
specific). In such a situation, an APIC-access VM exit may occur.

• MONITOR. With regard to faulting, the processor operates as if MONITOR reads from the effective address in
RAX. If the resulting linear address translates to one on the APIC-access page, the instruction may cause an
APIC-access VM exit.2 If it does not, it will monitor the corresponding address on the virtual-APIC page
instead of the APIC-access page.

1. The exit qualification is undefined if the access was part of the logging of a branch record or a precise-event-based-sampling
(PEBS) record to the DS save area. It is recommended that software configure the paging structures so that no address in the DS
save area translates to an address on the APIC-access page.

2. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX
operation also support Intel 64 architecture. For IA-32 processors, this notation refers to the 32-bit forms of those registers (EAX,
EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 156

• PREFETCH. An execution of the PREFETCH instruction that would result in an access to the APIC-access page
does not cause an APIC-access VM exit. Such an access may prefetch data; if so, it is from the corresponding
address on the virtual-APIC page.

Virtualization of accesses to the APIC-access page is principally intended for basic instructions such as AND, MOV,
OR, TEST, XCHG, and XOR. Use of an instruction that normally operates on floating-point, SSE, AVX, or AVX-512
registers may cause an APIC-access VM exit unconditionally regardless of the page offset it accesses on the APIC-
access page.

...

24. Updates to Chapter 35, Volume 3C
Change bars show changes to Chapter 35 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...
This chapter lists MSRs across Intel processor families. All MSRs listed can be read with the RDMSR and written
with the WRMSR instructions.

Register addresses are given in both hexadecimal and decimal. The register name is the mnemonic register name
and the bit description describes individual bits in registers.

Model specific registers and its bit-fields may be supported for a finite range of processor families/models. To
distinguish between different processor family and/or models, software must use CPUID.01H leaf function to
query the combination of DisplayFamily and DisplayModel to determine model-specific availability of MSRs (see
CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A). Table 35-1 lists the signature values of DisplayFamily and DisplayModel for
various processor families or processor number series.

Table 35-1. CPUID Signature Values of DisplayFamily_DisplayModel
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_57H Next Generation Intel® Xeon Phi™ Processor Family

06_4EH, 06_5EH 6th generation Intel Core processors and Intel Xeon processor E3-1500m v5 product family based on
Skylake microarchitecture

06_56H Intel Xeon processor D-1500 product family based on Broadwell microarchitecture

06_4FH Future Generation Intel Xeon processor based on Broadwell microarchitecture

06_47H 5th generation Intel Core processors, Intel Xeon processor E3-1200 v4 product family based on
Broadwell microarchitecture

06_3DH Intel Core M-5xxx Processor, 5th generation Intel Core processors based on Broadwell
microarchitecture

06_3FH Intel Xeon processor E5-4600/2600/1600 v3 product families, Intel Xeon processor E7 v3 product
families based on Haswell-E microarchitecture, Intel Core i7-59xx Processor Extreme Edition

06_3CH, 06_45H, 06_46H 4th Generation Intel Core processor and Intel Xeon processor E3-1200 v3 product family based on
Haswell microarchitecture

06_3EH Intel Xeon processor E7-8800/4800/2800 v2 product families based on Ivy Bridge-E
microarchitecture

06_3EH Intel Xeon processor E5-2600/1600 v2 product families and Intel Xeon processor E5-2400 v2
product family based on Ivy Bridge-E microarchitecture, Intel Core i7-49xx Processor Extreme Edition

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 157

06_3AH 3rd Generation Intel Core Processor and Intel Xeon processor E3-1200 v2 product family based on Ivy
Bridge microarchitecture

06_2DH Intel Xeon processor E5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core
i7-39xx Processor Extreme Edition

06_2FH Intel Xeon Processor E7 Family

06_2AH Intel Xeon processor E3-1200 product family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx
Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series

06_1DH Intel Xeon processor MP 7400 series

06_17H Intel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000
series

06_0FH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series,
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel
Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_4CH Intel® Atom™ processor X7-Z8000 and X5-Z8000 series based on Airmont Microarchitecture

06_5DH Intel® Atom™ processor X3-C3000 based on Silvermont Microarchitecture

06_5AH Intel Atom processor Z3500 series

06_4AH Intel Atom processor Z3400 series

06_37H Intel Atom processor E3000 series, Z3600 series, Z3700 series

06_4DH Intel Atom processor C2000 series

06_36H Intel Atom processor S1000 Series

06_1CH, 06_26H, 06_27H,
06_35H, 06_36H

Intel Atom processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D
processors

0F_03H, 0F_04H Intel Xeon processor, Intel Xeon processor MP, Intel Pentium 4, Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium III Xeon processor, Intel Pentium III processor

06_03H, 06_05H Intel Pentium II Xeon processor, Intel Pentium II processor

06_01H Intel Pentium Pro processor

05_01H, 05_02H, 05_04H Intel Pentium processor, Intel Pentium processor with MMX Technology

Table 35-1. CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 158

...

35.1 ARCHITECTURAL MSRS
Many MSRs have carried over from one generation of IA-32 processors to the next and to Intel 64 processors. A
subset of MSRs and associated bit fields, which do not change on future processor generations, are now consid-
ered architectural MSRs. For historical reasons (beginning with the Pentium 4 processor), these “architectural
MSRs” were given the prefix “IA32_”. Table 35-2 lists the architectural MSRs, their addresses, their current
names, their names in previous IA-32 processors, and bit fields that are considered architectural. MSR addresses
outside Table 35-2 and certain bit fields in an MSR address that may overlap with architectural MSR addresses are
model-specific. Code that accesses a machine specified MSR and that is executed on a processor that does not
support that MSR will generate an exception.

Architectural MSR or individual bit fields in an architectural MSR may be introduced or transitioned at the granu-
larity of certain processor family/model or the presence of certain CPUID feature flags. The right-most column of
Table 35-2 provides information on the introduction of each architectural MSR or its individual fields. This informa-
tion is expressed either as signature values of “DF_DM” (see Table 35-1) or via CPUID flags.

Certain bit field position may be related to the maximum physical address width, the value of which is expressed
as “MAXPHYADDR” in Table 35-2. “MAXPHYADDR” is reported by CPUID.8000_0008H leaf.

MSR address range between 40000000H - 400000FFH is marked as a specially reserved range. All existing and
future processors will not implement any features using any MSR in this range.

Table 35-2. IA-32 Architectural MSRs

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

0H 0 IA32_P5_MC_ADDR (P5_MC_ADDR) See Section 35.20, “MSRs in Pentium
Processors.”

Pentium Processor
(05_01H)

1H 1 IA32_P5_MC_TYPE (P5_MC_TYPE) See Section 35.20, “MSRs in Pentium
Processors.”

DF_DM = 05_01H

6H 6 IA32_MONITOR_FILTER_SIZE See Section 8.10.5, “Monitor/Mwait
Address Range Determination.”

0F_03H

10H 16 IA32_TIME_STAMP_
COUNTER (TSC)

See Section 17.14, “Time-Stamp Counter.” 05_01H

17H 23 IA32_PLATFORM_ID
(MSR_PLATFORM_ID)

Platform ID (RO)
The operating system can use this MSR to
determine “slot” information for the
processor and the proper microcode update
to load.

06_01H

49:0 Reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 159

52:50 Platform Id (RO)

Contains information concerning the
intended platform for the processor.

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

1BH 27 IA32_APIC_BASE (APIC_BASE) 06_01H

7:0 Reserved

8 BSP flag (R/W)

9 Reserved

10 Enable x2APIC mode 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYADDR - 1):12 APIC Base (R/W)

63: MAXPHYADDR Reserved

3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64 Processor
(R/W)

If any one enumeration
condition for defined bit
field holds

0 Lock bit (R/WO): (1 = locked). When set,
locks this MSR from being written, writes
to this bit will result in GP(0).

Note: Once the Lock bit is set, the contents
of this register cannot be modified.
Therefore the lock bit must be set after
configuring support for Intel Virtualization
Technology and prior to transferring control
to an option ROM or the OS. Hence, once
the Lock bit is set, the entire
IA32_FEATURE_CONTROL contents are
preserved across RESET when PWRGOOD is
not deasserted.

If any one enumeration
condition for defined bit
field position greater than
bit 0 holds

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 160

1 Enable VMX inside SMX operation (R/WL):
This bit enables a system executive to use
VMX in conjunction with SMX to support
Intel® Trusted Execution Technology.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag and
SMX feature flag set (ECX bits 5 and 6
respectively).

If CPUID.01H:ECX[5] = 1
&& CPUID.01H:ECX[6] = 1

2 Enable VMX outside SMX operation (R/WL):
This bit enables VMX for system executive
that do not require SMX.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag set
(ECX bit 5).

If CPUID.01H:ECX[5] = 1

7:3 Reserved

14:8 SENTER Local Function Enables (R/WL):
When set, each bit in the field represents
an enable control for a corresponding
SENTER function. This bit is supported only
if CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[6] = 1

15 SENTER Global Enable (R/WL): This bit must
be set to enable SENTER leaf functions.
This bit is supported only if
CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[6] = 1

17:16 Reserved

18 SGX Global Enable (R/WL): This bit must be
set to enable SGX leaf functions. This bit is
supported only if CPUID.1:ECX.[bit 6] is set.

If CPUID.(EAX=07H,
ECX=0H): EBX[2] = 1

19 Reserved

20 LMCE On (R/WL): When set, system
software can program the MSRs associated
with LMCE to configure delivery of some
machine check exceptions to a single logical
processor.

If IA32_MCG_CAP[27] = 1

63:21 Reserved

3BH 59 IA32_TSC_ADJUST Per Logical Processor TSC Adjust (R/Write
to clear)

If CPUID.(EAX=07H,
ECX=0H): EBX[1] = 1

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 161

63:0 THREAD_ADJUST:

Local offset value of the IA32_TSC for a
logical processor. Reset value is Zero. A
write to IA32_TSC will modify the local
offset in IA32_TSC_ADJUST and the
content of IA32_TSC, but does not affect
the internal invariant TSC hardware.

79H 121 IA32_BIOS_UPDT_TRIG
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR instruction to this MSR
causes a microcode update to be loaded
into the processor. See Section 9.11.6,
“Microcode Update Loader.”

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

8BH 139 IA32_BIOS_SIGN_ID (BIOS_SIGN/
BBL_CR_D3)

BIOS Update Signature (RO)

Returns the microcode update signature
following the execution of CPUID.01H.

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

31:0 Reserved

63:32 It is recommended that this field be pre-
loaded with 0 prior to executing CPUID.

If the field remains 0 following the
execution of CPUID; this indicates that no
microcode update is loaded. Any non-zero
value is the microcode update signature.

9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration (R/W) If CPUID.01H: ECX[5]=1 ||
CPUID.01H: ECX[6] = 1

0 Valid (R/W)

1 Reserved

2 Controls SMI unblocking by VMXOFF (see
Section 34.14.4)

If IA32_VMX_MISC[28]

11:3 Reserved

31:12 MSEG Base (R/W)

63:32 Reserved

9EH 158 IA32_SMBASE Base address of the logical processor’s
SMRAM image (RO, SMM only)

If IA32_VMX_MISC[15]

C1H 193 IA32_PMC0 (PERFCTR0) General Performance Counter 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 162

C2H 194 IA32_PMC1 (PERFCTR1) General Performance Counter 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

C3H 195 IA32_PMC2 General Performance Counter 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

C4H 196 IA32_PMC3 General Performance Counter 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

C5H 197 IA32_PMC4 General Performance Counter 4 (R/W) If CPUID.0AH: EAX[15:8] >
4

C6H 198 IA32_PMC5 General Performance Counter 5 (R/W) If CPUID.0AH: EAX[15:8] >
5

C7H 199 IA32_PMC6 General Performance Counter 6 (R/W) If CPUID.0AH: EAX[15:8] >
6

C8H 200 IA32_PMC7 General Performance Counter 7 (R/W) If CPUID.0AH: EAX[15:8] >
7

E7H 231 IA32_MPERF TSC Frequency Clock Counter (R/Write to
clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_MCNT: C0 TSC Frequency Clock Count

Increments at fixed interval (relative to TSC
freq.) when the logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_APERF.

E8H 232 IA32_APERF Actual Performance Clock Counter (R/Write
to clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_ACNT: C0 Actual Frequency Clock
Count

Accumulates core clock counts at the
coordinated clock frequency, when the
logical processor is in C0.

Cleared upon overflow / wrap-around of
IA32_MPERF.

FEH 254 IA32_MTRRCAP (MTRRcap) MTRR Capability (RO) Section 11.11.2.1,
“IA32_MTRR_DEF_TYPE MSR.”

06_01H

7:0 VCNT: The number of variable memory
type ranges in the processor.

8 Fixed range MTRRs are supported when
set.

9 Reserved.

10 WC Supported when set.

11 SMRR Supported when set.

63:12 Reserved.

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 163

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector

63:16 Reserved.

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H

179H 377 IA32_MCG_CAP (MCG_CAP) Global Machine Check Capability (RO) 06_01H

7:0 Count: Number of reporting banks.

8 MCG_CTL_P: IA32_MCG_CTL is present if
this bit is set

9 MCG_EXT_P: Extended machine check
state registers are present if this bit is set

10 MCP_CMCI_P: Support for corrected MC
error event is present.

06_01H

11 MCG_TES_P: Threshold-based error status
register are present if this bit is set.

15:12 Reserved

23:16 MCG_EXT_CNT: Number of extended
machine check state registers present.

24 MCG_SER_P: The processor supports
software error recovery if this bit is set.

25 Reserved.

26 MCG_ELOG_P: Indicates that the processor
allows platform firmware to be invoked
when an error is detected so that it may
provide additional platform specific
information in an ACPI format “Generic
Error Data Entry” that augments the data
included in machine check bank registers.

06_3EH

27 MCG_LMCE_P: Indicates that the processor
support extended state in
IA32_MCG_STATUS and associated
MSR necessary to configure Local
Machine Check Exception (LMCE).

06_3EH

63:28 Reserved.

17AH 378 IA32_MCG_STATUS (MCG_STATUS) Global Machine Check Status (R/W0) 06_01H

0 RIPV. Restart IP valid 06_01H

1 EIPV. Error IP valid 06_01H

2 MCIP. Machine check in progress 06_01H

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 164

3 LMCE_S. If
IA32_MCG_CAP.LMCE_P[2
7] =1

63:4 Reserved.

17BH 379 IA32_MCG_CTL (MCG_CTL) Global Machine Check Control (R/W) If IA32_MCG_CAP.CTL_P[8]
=1

180H-
185H

384-
389

Reserved 06_0EH1

186H 390 IA32_PERFEVTSEL0 (PERFEVTSEL0) Performance Event Select Register 0 (R/W) If CPUID.0AH: EAX[15:8] >
0

7:0 Event Select: Selects a performance event
logic unit.

15:8 UMask: Qualifies the microarchitectural
condition to detect on the selected event
logic.

16 USR: Counts while in privilege level is not
ring 0.

17 OS: Counts while in privilege level is ring 0.

18 Edge: Enables edge detection if set.

19 PC: enables pin control.

20 INT: enables interrupt on counter overflow.

21 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

22 EN: enables the corresponding performance
counter to commence counting when this
bit is set.

23 INV: invert the CMASK.

31:24 CMASK: When CMASK is not zero, the
corresponding performance counter
increments each cycle if the event count is
greater than or equal to the CMASK.

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 (PERFEVTSEL1) Performance Event Select Register 1 (R/W) If CPUID.0AH: EAX[15:8] >
1

188H 392 IA32_PERFEVTSEL2 Performance Event Select Register 2 (R/W) If CPUID.0AH: EAX[15:8] >
2

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 165

189H 393 IA32_PERFEVTSEL3 Performance Event Select Register 3 (R/W) If CPUID.0AH: EAX[15:8] >
3

18AH-
197H

394-
407

Reserved 06_0EH2

198H 408 IA32_PERF_STATUS (RO) 0F_03H

15:0 Current performance State Value

63:16 Reserved.

199H 409 IA32_PERF_CTL (R/W) 0F_03H

15:0 Target performance State Value

31:16 Reserved.

32 IDA Engage. (R/W)

When set to 1: disengages IDA

06_0FH (Mobile only)

63:33 Reserved.

19AH 410 IA32_CLOCK_MODULATION Clock Modulation Control (R/W)

See Section 14.7.3, “Software Controlled
Clock Modulation.”

0F_0H

0 Extended On-Demand Clock Modulation
Duty Cycle:

If CPUID.06H:EAX[5] = 1

3:1 On-Demand Clock Modulation Duty Cycle:
Specific encoded values for target duty
cycle modulation.

4 On-Demand Clock Modulation Enable: Set 1
to enable modulation.

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the processor’s thermal
sensors and thermal monitor.

See Section 14.7.2, “Thermal Monitor.”

0F_0H

0 High-Temperature Interrupt Enable

1 Low-Temperature Interrupt Enable

2 PROCHOT# Interrupt Enable

3 FORCEPR# Interrupt Enable

4 Critical Temperature Interrupt Enable

7:5 Reserved.

14:8 Threshold #1 Value

15 Threshold #1 Interrupt Enable

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 166

22:16 Threshold #2 Value

23 Threshold #2 Interrupt Enable

24 Power Limit Notification Enable If CPUID.06H:EAX[4] = 1

63:25 Reserved.

19CH 412 IA32_THERM_STATUS Thermal Status Information (RO)

Contains status information about the
processor’s thermal sensor and automatic
thermal monitoring facilities.

See Section 14.7.2, “Thermal Monitor”

0F_0H

0 Thermal Status (RO):

1 Thermal Status Log (R/W):

2 PROCHOT # or FORCEPR# event (RO)

3 PROCHOT # or FORCEPR# log (R/WC0)

4 Critical Temperature Status (RO)

5 Critical Temperature Status log (R/WC0)

6 Thermal Threshold #1 Status (RO) If CPUID.01H:ECX[8] = 1

7 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1

8 Thermal Threshold #2 Status (RO) If CPUID.01H:ECX[8] = 1

9 Thermal Threshold #2 log (R/WC0) If CPUID.01H:ECX[8] = 1

10 Power Limitation Status (RO) If CPUID.06H:EAX[4] = 1

11 Power Limitation log (R/WC0) If CPUID.06H:EAX[4] = 1

12 Current Limit Status (RO) If CPUID.06H:EAX[7] = 1

13 Current Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

14 Cross Domain Limit Status (RO) If CPUID.06H:EAX[7] = 1

15 Cross Domain Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

22:16 Digital Readout (RO) If CPUID.06H:EAX[0] = 1

26:23 Reserved.

30:27 Resolution in Degrees Celsius (RO) If CPUID.06H:EAX[0] = 1

31 Reading Valid (RO) If CPUID.06H:EAX[0] = 1

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to
be enabled and disabled.

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 167

0 Fast-Strings Enable

When set, the fast-strings feature (for REP
MOVS and REP STORS) is enabled (default);
when clear, fast-strings are disabled.

0F_0H

2:1 Reserved.

3 Automatic Thermal Control Circuit Enable
(R/W)

1 = Setting this bit enables the thermal
control circuit (TCC) portion of the
Intel Thermal Monitor feature. This
allows the processor to automatically
reduce power consumption in
response to TCC activation.

0 = Disabled (default).
Note: In some products clearing this bit
might be ignored in critical thermal
conditions, and TM1, TM2 and adaptive
thermal throttling will still be activated.

0F_0H

6:4 Reserved

7 Performance Monitoring Available (R)

1 = Performance monitoring enabled
0 = Performance monitoring disabled

0F_0H

10:8 Reserved.

11 Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch
trace storage (BTS)

0 = BTS is supported

0F_0H

12 Precise Event Based Sampling (PEBS)
Unavailable (RO)

1 = PEBS is not supported;
0 = PEBS is supported.

06_0FH

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology
Enable (R/W)

0= Enhanced Intel SpeedStep
Technology disabled

1 = Enhanced Intel SpeedStep
Technology enabled

If CPUID.01H: ECX[7] =1

17 Reserved.

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 168

18 ENABLE MONITOR FSM (R/W)

When this bit is set to 0, the MONITOR
feature flag is not set (CPUID.01H:ECX[bit
3] = 0). This indicates that MONITOR/
MWAIT are not supported.

Software attempts to execute MONITOR/
MWAIT will cause #UD when this bit is 0.

When this bit is set to 1 (default),
MONITOR/MWAIT are supported
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag ECX[0] is not set
(CPUID.01H:ECX[bit 0] = 0), the OS must
not attempt to alter this bit. BIOS must
leave it in the default state. Writing this bit
when the SSE3 feature flag is set to 0 may
generate a #GP exception.

0F_03H

21:19 Reserved.

22 Limit CPUID Maxval (R/W)

When this bit is set to 1, CPUID.00H returns
a maximum value in EAX[7:0] of 3.

BIOS should contain a setup question that
allows users to specify when the installed
OS does not support CPUID functions
greater than 3.

Before setting this bit, BIOS must execute
the CPUID.0H and examine the maximum
value returned in EAX[7:0]. If the maximum
value is greater than 3, the bit is supported.

Otherwise, the bit is not supported. Writing
to this bit when the maximum value is
greater than 3 may generate a #GP
exception.

Setting this bit may cause unexpected
behavior in software that depends on the
availability of CPUID leaves greater than 3.

0F_03H

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are
disabled. xTPR messages are optional
messages that allow the processor to
inform the chipset of its priority.

if CPUID.01H:ECX[14] = 1

33:24 Reserved.

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 169

34 XD Bit Disable (R/W)

When set to 1, the Execute Disable Bit
feature (XD Bit) is disabled and the XD Bit
extended feature flag will be clear
(CPUID.80000001H: EDX[20]=0).

When set to a 0 (default), the Execute
Disable Bit feature (if available) allows the
OS to enable PAE paging and take
advantage of data only pages.

BIOS must not alter the contents of this bit
location, if XD bit is not supported. Writing
this bit to 1 when the XD Bit extended
feature flag is set to 0 may generate a #GP
exception.

if
CPUID.80000001H:EDX[2
0] = 1

63:35 Reserved.

1B0H 432 IA32_ENERGY_PERF_BIAS Performance Energy Bias Hint (R/W) if CPUID.6H:ECX[3] = 1

3:0 Power Policy Preference:

0 indicates preference to highest
performance.

15 indicates preference to maximize
energy saving.

63:4 Reserved.

1B1H 433 IA32_PACKAGE_THERM_STATUS Package Thermal Status Information (RO)

Contains status information about the
package’s thermal sensor.

See Section 14.8, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg Thermal Status (RO):

1 Pkg Thermal Status Log (R/W):

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature Status (RO)

5 Pkg Critical Temperature Status log (R/
WC0)

6 Pkg Thermal Threshold #1 Status (RO)

7 Pkg Thermal Threshold #1 log (R/WC0)

8 Pkg Thermal Threshold #2 Status (RO)

9 Pkg Thermal Threshold #1 log (R/WC0)

10 Pkg Power Limitation Status (RO)

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 170

11 Pkg Power Limitation log (R/WC0)

15:12 Reserved.

22:16 Pkg Digital Readout (RO)

63:23 Reserved.

1B2H 434 IA32_PACKAGE_THERM_INTERRUPT Pkg Thermal Interrupt Control (R/W)

Enables and disables the generation of an
interrupt on temperature transitions
detected with the package’s thermal
sensor.

See Section 14.8, “Package Level Thermal
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg High-Temperature Interrupt Enable

1 Pkg Low-Temperature Interrupt Enable

2 Pkg PROCHOT# Interrupt Enable

3 Reserved.

4 Pkg Overheat Interrupt Enable

7:5 Reserved.

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt Enable

22:16 Pkg Threshold #2 Value

23 Pkg Threshold #2 Interrupt Enable

24 Pkg Power Limit Notification Enable

63:25 Reserved.

1D9H 473 IA32_DEBUGCTL (MSR_DEBUGCTLA,
MSR_DEBUGCTLB)

Trace/Profile Resource Control (R/W) 06_0EH

0 LBR: Setting this bit to 1 enables the
processor to record a running trace of the
most recent branches taken by the
processor in the LBR stack.

06_01H

1 BTF: Setting this bit to 1 enables the
processor to treat EFLAGS.TF as single-step
on branches instead of single-step on
instructions.

06_01H

5:2 Reserved.

6 TR: Setting this bit to 1 enables branch
trace messages to be sent.

06_0EH

7 BTS: Setting this bit enables branch trace
messages (BTMs) to be logged in a BTS
buffer.

06_0EH

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 171

8 BTINT: When clear, BTMs are logged in a
BTS buffer in circular fashion. When this bit
is set, an interrupt is generated by the BTS
facility when the BTS buffer is full.

06_0EH

9 1: BTS_OFF_OS: When set, BTS or BTM is
skipped if CPL = 0.

06_0FH

10 BTS_OFF_USR: When set, BTS or BTM is
skipped if CPL > 0.

06_0FH

11 FREEZE_LBRS_ON_PMI: When set, the LBR
stack is frozen on a PMI request.

If CPUID.01H: ECX[15] = 1
&& CPUID.0AH: EAX[7:0] >
1

12 FREEZE_PERFMON_ON_PMI: When set,
each ENABLE bit of the global counter
control MSR are frozen (address 38FH) on a
PMI request

If CPUID.01H: ECX[15] = 1
&& CPUID.0AH: EAX[7:0] >
1

13 ENABLE_UNCORE_PMI: When set, enables
the logical processor to receive and
generate PMI on behalf of the uncore.

06_1AH

14 FREEZE_WHILE_SMM: When set, freezes
perfmon and trace messages while in SMM.

If
IA32_PERF_CAPABILITIES[
12] = 1

15 RTM_DEBUG: When set, enables DR7 debug
bit on XBEGIN

If (CPUID.(EAX=07H,
ECX=0):EBX[11] = 1)

63:16 Reserved.

1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address (Writeable only in
SMM)

Base address of SMM memory range.

If
IA32_MTRRCAP.SMRR[11]
= 1

7:0 Type. Specifies memory type of the range.

11:8 Reserved.

31:12 PhysBase.

SMRR physical Base Address.

63:32 Reserved.

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask. (Writeable only in
SMM)

Range Mask of SMM memory range.

If IA32_MTRRCAP[SMRR]
= 1

10:0 Reserved.

11 Valid

Enable range mask.

31:12 PhysMask

SMRR address range mask.

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 172

63:32 Reserved.

1F8H 504 IA32_PLATFORM_DCA_CAP DCA Capability (R) If CPUID.01H: ECX[18] = 1

1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-Hint type. If CPUID.01H: ECX[18] = 1

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and Control register. If CPUID.01H: ECX[18] = 1

0 DCA_ACTIVE: Set by HW when DCA is fuse-
enabled and no defeatures are set.

2:1 TRANSACTION

6:3 DCA_TYPE

10:7 DCA_QUEUE_SIZE

12:11 Reserved.

16:13 DCA_DELAY: Writes will update the register
but have no HW side-effect.

23:17 Reserved.

24 SW_BLOCK: SW can request DCA block by
setting this bit.

25 Reserved.

26 HW_BLOCK: Set when DCA is blocked by
HW (e.g. CR0.CD = 1).

31:27 Reserved.

200H 512 IA32_MTRR_PHYSBASE0
(MTRRphysBase0)

See Section 11.11.2.3, “Variable Range
MTRRs.”

If CPUID.01H:
EDX.MTRR[12] =1

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 If CPUID.01H:
EDX.MTRR[12] =1

202H 514 IA32_MTRR_PHYSBASE1 MTRRphysBase1 If CPUID.01H:
EDX.MTRR[12] =1

203H 515 IA32_MTRR_PHYSMASK1 MTRRphysMask1 If CPUID.01H:
EDX.MTRR[12] =1

204H 516 IA32_MTRR_PHYSBASE2 MTRRphysBase2 If CPUID.01H:
EDX.MTRR[12] =1

205H 517 IA32_MTRR_PHYSMASK2 MTRRphysMask2 If CPUID.01H:
EDX.MTRR[12] =1

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 If CPUID.01H:
EDX.MTRR[12] =1

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 If CPUID.01H:
EDX.MTRR[12] =1

208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 If CPUID.01H:
EDX.MTRR[12] =1

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 173

209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 If CPUID.01H:
EDX.MTRR[12] =1

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 If CPUID.01H:
EDX.MTRR[12] =1

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 If CPUID.01H:
EDX.MTRR[12] =1

20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 If CPUID.01H:
EDX.MTRR[12] =1

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 If CPUID.01H:
EDX.MTRR[12] =1

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 If CPUID.01H:
EDX.MTRR[12] =1

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 If CPUID.01H:
EDX.MTRR[12] =1

210H 528 IA32_MTRR_PHYSBASE8 MTRRphysBase8 if IA32_MTRRCAP[7:0] > 8

211H 529 IA32_MTRR_PHYSMASK8 MTRRphysMask8 if IA32_MTRRCAP[7:0] > 8

212H 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 if IA32_MTRRCAP[7:0] > 9

213H 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 if IA32_MTRRCAP[7:0] > 9

250H 592 IA32_MTRR_FIX64K_00000 MTRRfix64K_00000 If CPUID.01H:
EDX.MTRR[12] =1

258H 600 IA32_MTRR_FIX16K_80000 MTRRfix16K_80000 If CPUID.01H:
EDX.MTRR[12] =1

259H 601 IA32_MTRR_FIX16K_A0000 MTRRfix16K_A0000 If CPUID.01H:
EDX.MTRR[12] =1

268H 616 IA32_MTRR_FIX4K_C0000
(MTRRfix4K_C0000)

See Section 11.11.2.2, “Fixed Range
MTRRs.”

If CPUID.01H:
EDX.MTRR[12] =1

269H 617 IA32_MTRR_FIX4K_C8000 MTRRfix4K_C8000 If CPUID.01H:
EDX.MTRR[12] =1

26AH 618 IA32_MTRR_FIX4K_D0000 MTRRfix4K_D0000 If CPUID.01H:
EDX.MTRR[12] =1

26BH 619 IA32_MTRR_FIX4K_D8000 MTRRfix4K_D8000 If CPUID.01H:
EDX.MTRR[12] =1

26CH 620 IA32_MTRR_FIX4K_E0000 MTRRfix4K_E0000 If CPUID.01H:
EDX.MTRR[12] =1

26DH 621 IA32_MTRR_FIX4K_E8000 MTRRfix4K_E8000 If CPUID.01H:
EDX.MTRR[12] =1

26EH 622 IA32_MTRR_FIX4K_F0000 MTRRfix4K_F0000 If CPUID.01H:
EDX.MTRR[12] =1

26FH 623 IA32_MTRR_FIX4K_F8000 MTRRfix4K_F8000 If CPUID.01H:
EDX.MTRR[12] =1

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 174

277H 631 IA32_PAT IA32_PAT (R/W) If CPUID.01H:
EDX.MTRR[16] =1

2:0 PA0

7:3 Reserved.

10:8 PA1

15:11 Reserved.

18:16 PA2

23:19 Reserved.

26:24 PA3

31:27 Reserved.

34:32 PA4

39:35 Reserved.

42:40 PA5

47:43 Reserved.

50:48 PA6

55:51 Reserved.

58:56 PA7

63:59 Reserved.

280H 640 IA32_MC0_CTL2 (R/W) If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
0

14:0 Corrected error count threshold.

29:15 Reserved.

30 CMCI_EN

63:31 Reserved.

281H 641 IA32_MC1_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
1

282H 642 IA32_MC2_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
2

283H 643 IA32_MC3_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
3

284H 644 IA32_MC4_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
4

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 175

285H 645 IA32_MC5_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
5

286H 646 IA32_MC6_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
6

287H 647 IA32_MC7_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
7

288H 648 IA32_MC8_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
8

289H 649 IA32_MC9_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
9

28AH 650 IA32_MC10_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
10

28BH 651 IA32_MC11_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
11

28CH 652 IA32_MC12_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
12

28DH 653 IA32_MC13_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
13

28EH 654 IA32_MC14_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
14

28FH 655 IA32_MC15_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
15

290H 656 IA32_MC16_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
16

291H 657 IA32_MC17_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
17

292H 658 IA32_MC18_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
18

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 176

293H 659 IA32_MC19_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
19

294H 660 IA32_MC20_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
20

295H 661 IA32_MC21_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
21

296H 662 IA32_MC22_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
22

297H 663 IA32_MC23_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
23

298H 664 IA32_MC24_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
24

299H 665 IA32_MC25_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
25

29AH 666 IA32_MC26_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
26

29BH 667 IA32_MC27_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
27

29CH 668 IA32_MC28_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
28

29DH 669 IA32_MC29_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
29

29EH 670 IA32_MC30_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
30

29FH 671 IA32_MC31_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
31

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType (R/W) If CPUID.01H:
EDX.MTRR[12] =1

2:0 Default Memory Type

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 177

9:3 Reserved.

10 Fixed Range MTRR Enable

11 MTRR Enable

63:12 Reserved.

309H 777 IA32_FIXED_CTR0
(MSR_PERF_FIXED_CTR0)

Fixed-Function Performance Counter 0 (R/
W): Counts Instr_Retired.Any.

If CPUID.0AH: EDX[4:0] > 0

30AH 778 IA32_FIXED_CTR1
(MSR_PERF_FIXED_CTR1)

Fixed-Function Performance Counter 1 0
(R/W): Counts CPU_CLK_Unhalted.Core

If CPUID.0AH: EDX[4:0] > 1

30BH 779 IA32_FIXED_CTR2
(MSR_PERF_FIXED_CTR2)

Fixed-Function Performance Counter 0 0
(R/W): Counts CPU_CLK_Unhalted.Ref

If CPUID.0AH: EDX[4:0] > 2

345H 837 IA32_PERF_CAPABILITIES RO If CPUID.01H: ECX[15] = 1

5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is supported.

13 1: Full width of counter writable via
IA32_A_PMCx.

63:14 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Fixed-Function Performance Counter
Control (R/W)

Counter increments while the results of
ANDing respective enable bit in
IA32_PERF_GLOBAL_CTRL with the
corresponding OS or USR bits in this MSR is
true.

If CPUID.0AH: EAX[7:0] > 1

0 EN0_OS: Enable Fixed Counter 0 to count
while CPL = 0.

1 EN0_Usr: Enable Fixed Counter 0 to count
while CPL > 0.

2 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

3 EN0_PMI: Enable PMI when fixed counter 0
overflows.

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 178

4 EN1_OS: Enable Fixed Counter 1to count
while CPL = 0.

5 EN1_Usr: Enable Fixed Counter 1to count
while CPL > 0.

6 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

7 EN1_PMI: Enable PMI when fixed counter 1
overflows.

8 EN2_OS: Enable Fixed Counter 2 to count
while CPL = 0.

9 EN2_Usr: Enable Fixed Counter 2 to count
while CPL > 0.

10 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

11 EN2_PMI: Enable PMI when fixed counter 2
overflows.

63:12 Reserved.

38EH 910 IA32_PERF_GLOBAL_STATUS Global Performance Counter Status (RO) If CPUID.0AH: EAX[7:0] > 0

0 Ovf_PMC0: Overflow status of IA32_PMC0. If CPUID.0AH: EAX[15:8] >
0

1 Ovf_PMC1: Overflow status of IA32_PMC1. If CPUID.0AH: EAX[15:8] >
1

2 Ovf_PMC2: Overflow status of IA32_PMC2. If CPUID.0AH: EAX[15:8] >
2

3 Ovf_PMC3: Overflow status of IA32_PMC3. If CPUID.0AH: EAX[15:8] >
3

31:4 Reserved.

32 Ovf_FixedCtr0: Overflow status of
IA32_FIXED_CTR0.

If CPUID.0AH: EAX[7:0] > 1

33 Ovf_FixedCtr1: Overflow status of
IA32_FIXED_CTR1.

If CPUID.0AH: EAX[7:0] > 1

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 179

34 Ovf_FixedCtr2: Overflow status of
IA32_FIXED_CTR2.

If CPUID.0AH: EAX[7:0] > 1

54:35 Reserved.

55 Trace_ToPA_PMI: A PMI occurred due to a
ToPA entry memory buffer was completely
filled.

If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) &&
IA32_RTIT_CTL.ToPA = 1

57:56 Reserved.

58 LBR_Frz: LBRs are frozen due to

• IA32_DEBUGCTL.FREEZE_LBR_ON_PMI=1,
• The LBR stack overflowed

If CPUID.0AH: EAX[7:0] > 3

59 CTR_Frz: Performance counters in the core
PMU are frozen due to

• IA32_DEBUGCTL.FREEZE_PERFMON_ON_
PMI=1,

• one or more core PMU counters
overflowed.

If CPUID.0AH: EAX[7:0] > 3

60 ASCI: Data in the performance counters in
the core PMU may include contributions
from the direct or indirect operation intel
SGX to protect an enclave.

If CPUID.(EAX=07H,
ECX=0):EBX[2] = 1

61 Ovf_Uncore: Uncore counter overflow
status.

If CPUID.0AH: EAX[7:0] > 2

62 OvfBuf: DS SAVE area Buffer overflow
status.

If CPUID.0AH: EAX[7:0] > 0

63 CondChgd: status bits of this register has
changed.

If CPUID.0AH: EAX[7:0] > 0

38FH 911 IA32_PERF_GLOBAL_CTRL Global Performance Counter Control (R/W)

Counter increments while the result of
ANDing respective enable bit in this MSR
with the corresponding OS or USR bits in
the general-purpose or fixed counter
control MSR is true.

If CPUID.0AH: EAX[7:0] > 0

0 EN_PMC0 If CPUID.0AH: EAX[15:8] >
0

1 EN_PMC1 If CPUID.0AH: EAX[15:8] >
1

2 EN_PMC2 If CPUID.0AH: EAX[15:8] >
2

n EN_PMCn If CPUID.0AH: EAX[15:8] >
n

31:n+1 Reserved.

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 180

32 EN_FIXED_CTR0 If CPUID.0AH: EDX[4:0] > 0

33 EN_FIXED_CTR1 If CPUID.0AH: EDX[4:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH: EDX[4:0] > 2

63:35 Reserved.

390H 912 IA32_PERF_GLOBAL_OVF_CTRL Global Performance Counter Overflow
Control (R/W)

If CPUID.0AH: EAX[7:0] > 0
&& CPUID.0AH: EAX[7:0]
<= 3

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[15:8] >
0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[15:8] >
1

2 Set 1 to Clear Ovf_PMC2 bit. If CPUID.0AH: EAX[15:8] >
2

n Set 1 to Clear Ovf_PMCn bit. If CPUID.0AH: EAX[15:8] >
n

31:n Reserved.

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EDX[4:0] > 0

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EDX[4:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EDX[4:0] > 2

54:35 Reserved.

55 Set 1 to Clear Trace_ToPA_PMI bit. If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) &&
IA32_RTIT_CTL.ToPA = 1

60:56 Reserved.

61 Set 1 to Clear Ovf_Uncore bit. 06_2EH

62 Set 1 to Clear OvfBuf: bit. If CPUID.0AH: EAX[7:0] > 0

63 Set to 1to clear CondChgd: bit. If CPUID.0AH: EAX[7:0] > 0

390H 912 IA32_PERF_GLOBAL_STATUS_RESET Global Performance Counter Overflow
Reset Control (R/W)

If CPUID.0AH: EAX[7:0] > 3

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[15:8] >
0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[15:8] >
1

2 Set 1 to Clear Ovf_PMC2 bit. If CPUID.0AH: EAX[15:8] >
2

n Set 1 to Clear Ovf_PMCn bit. If CPUID.0AH: EAX[15:8] >
n

31:n Reserved.

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 181

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EDX[4:0] > 0

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EDX[4:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EDX[4:0] > 2

54:35 Reserved.

55 Set 1 to Clear Trace_ToPA_PMI bit. If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) &&
IA32_RTIT_CTL.ToPA[8] =
1

57:56 Reserved.

58 Set 1 to Clear LBR_Frz bit. If CPUID.0AH: EAX[7:0] > 3

59 Set 1 to Clear CTR_Frz bit. If CPUID.0AH: EAX[7:0] > 3

58 Set 1 to Clear ASCI bit. If CPUID.0AH: EAX[7:0] > 3

61 Set 1 to Clear Ovf_Uncore bit. 06_2EH

62 Set 1 to Clear OvfBuf: bit. If CPUID.0AH: EAX[7:0] > 0

63 Set to 1to clear CondChgd: bit. If CPUID.0AH: EAX[7:0] > 0

391H 913 IA32_PERF_GLOBAL_STATUS_SET Global Performance Counter Overflow Set
Control (R/W)

If CPUID.0AH: EAX[7:0] > 3

0 Set 1 to cause Ovf_PMC0 = 1. If CPUID.0AH: EAX[7:0] > 3

1 Set 1 to cause Ovf_PMC1 = 1 If CPUID.0AH: EAX[15:8] >
1

2 Set 1 to cause Ovf_PMC2 = 1 If CPUID.0AH: EAX[15:8] >
2

n Set 1 to cause Ovf_PMCn = 1 If CPUID.0AH: EAX[15:8] >
n

31:n Reserved.

32 Set 1 to cause Ovf_FIXED_CTR0 = 1. If CPUID.0AH: EAX[7:0] > 3

33 Set 1 to cause Ovf_FIXED_CTR1 = 1. If CPUID.0AH: EAX[7:0] > 3

34 Set 1 to cause Ovf_FIXED_CTR2 = 1. If CPUID.0AH: EAX[7:0] > 3

54:35 Reserved.

55 Set 1 to cause Trace_ToPA_PMI = 1. If CPUID.0AH: EAX[7:0] > 3

57:56 Reserved.

58 Set 1 to cause LBR_Frz = 1. If CPUID.0AH: EAX[7:0] > 3

59 Set 1 to cause CTR_Frz = 1. If CPUID.0AH: EAX[7:0] > 3

58 Set 1 to cause ASCI = 1. If CPUID.0AH: EAX[7:0] > 3

61 Set 1 to cause Ovf_Uncore = 1. If CPUID.0AH: EAX[7:0] > 3

62 Set 1 to cause OvfBuf = 1. If CPUID.0AH: EAX[7:0] > 3

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 182

63 Reserved

392H 914 IA32_PERF_GLOBAL_INUSE Indicator of core perfmon interface is in use
(RO)

If CPUID.0AH: EAX[7:0] > 3

0 IA32_PERFEVTSEL0 in use

1 IA32_PERFEVTSEL1 in use If CPUID.0AH: EAX[15:8] >
1

2 IA32_PERFEVTSEL2 in use If CPUID.0AH: EAX[15:8] >
2

n IA32_PERFEVTSELn in use If CPUID.0AH: EAX[15:8] >
n

31:n Reserved.

32 IA32_FIXED_CTR0 in use

33 IA32_FIXED_CTR1 in use

34 IA32_FIXED_CTR2 in use

62:35 Reserved or Model specific.

63 PMI in use.

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0. 06_0FH

3:1 Reserved or Model specific.

31:4 Reserved.

35:32 Reserved or Model specific.

63:36 Reserved.

400H 1024 IA32_MC0_CTL MC0_CTL If IA32_MCG_CAP.CNT >0

401H 1025 IA32_MC0_STATUS MC0_STATUS If IA32_MCG_CAP.CNT >0

402H 1026 IA32_MC0_ADDR1 MC0_ADDR If IA32_MCG_CAP.CNT >0

403H 1027 IA32_MC0_MISC MC0_MISC If IA32_MCG_CAP.CNT >0

404H 1028 IA32_MC1_CTL MC1_CTL If IA32_MCG_CAP.CNT >1

405H 1029 IA32_MC1_STATUS MC1_STATUS If IA32_MCG_CAP.CNT >1

406H 1030 IA32_MC1_ADDR2 MC1_ADDR If IA32_MCG_CAP.CNT >1

407H 1031 IA32_MC1_MISC MC1_MISC If IA32_MCG_CAP.CNT >1

408H 1032 IA32_MC2_CTL MC2_CTL If IA32_MCG_CAP.CNT >2

409H 1033 IA32_MC2_STATUS MC2_STATUS If IA32_MCG_CAP.CNT >2

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR If IA32_MCG_CAP.CNT >2

40BH 1035 IA32_MC2_MISC MC2_MISC If IA32_MCG_CAP.CNT >2

40CH 1036 IA32_MC3_CTL MC3_CTL If IA32_MCG_CAP.CNT >3

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 183

40DH 1037 IA32_MC3_STATUS MC3_STATUS If IA32_MCG_CAP.CNT >3

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR If IA32_MCG_CAP.CNT >3

40FH 1039 IA32_MC3_MISC MC3_MISC If IA32_MCG_CAP.CNT >3

410H 1040 IA32_MC4_CTL MC4_CTL If IA32_MCG_CAP.CNT >4

411H 1041 IA32_MC4_STATUS MC4_STATUS If IA32_MCG_CAP.CNT >4

412H 1042 IA32_MC4_ADDR1 MC4_ADDR If IA32_MCG_CAP.CNT >4

413H 1043 IA32_MC4_MISC MC4_MISC If IA32_MCG_CAP.CNT >4

414H 1044 IA32_MC5_CTL MC5_CTL If IA32_MCG_CAP.CNT >5

415H 1045 IA32_MC5_STATUS MC5_STATUS If IA32_MCG_CAP.CNT >5

416H 1046 IA32_MC5_ADDR1 MC5_ADDR If IA32_MCG_CAP.CNT >5

417H 1047 IA32_MC5_MISC MC5_MISC If IA32_MCG_CAP.CNT >5

418H 1048 IA32_MC6_CTL MC6_CTL If IA32_MCG_CAP.CNT >6

419H 1049 IA32_MC6_STATUS MC6_STATUS If IA32_MCG_CAP.CNT >6

41AH 1050 IA32_MC6_ADDR1 MC6_ADDR If IA32_MCG_CAP.CNT >6

41BH 1051 IA32_MC6_MISC MC6_MISC If IA32_MCG_CAP.CNT >6

41CH 1052 IA32_MC7_CTL MC7_CTL If IA32_MCG_CAP.CNT >7

41DH 1053 IA32_MC7_STATUS MC7_STATUS If IA32_MCG_CAP.CNT >7

41EH 1054 IA32_MC7_ADDR1 MC7_ADDR If IA32_MCG_CAP.CNT >7

41FH 1055 IA32_MC7_MISC MC7_MISC If IA32_MCG_CAP.CNT >7

420H 1056 IA32_MC8_CTL MC8_CTL If IA32_MCG_CAP.CNT >8

421H 1057 IA32_MC8_STATUS MC8_STATUS If IA32_MCG_CAP.CNT >8

422H 1058 IA32_MC8_ADDR1 MC8_ADDR If IA32_MCG_CAP.CNT >8

423H 1059 IA32_MC8_MISC MC8_MISC If IA32_MCG_CAP.CNT >8

424H 1060 IA32_MC9_CTL MC9_CTL If IA32_MCG_CAP.CNT >9

425H 1061 IA32_MC9_STATUS MC9_STATUS If IA32_MCG_CAP.CNT >9

426H 1062 IA32_MC9_ADDR1 MC9_ADDR If IA32_MCG_CAP.CNT >9

427H 1063 IA32_MC9_MISC MC9_MISC If IA32_MCG_CAP.CNT >9

428H 1064 IA32_MC10_CTL MC10_CTL If IA32_MCG_CAP.CNT >10

429H 1065 IA32_MC10_STATUS MC10_STATUS If IA32_MCG_CAP.CNT >10

42AH 1066 IA32_MC10_ADDR1 MC10_ADDR If IA32_MCG_CAP.CNT >10

42BH 1067 IA32_MC10_MISC MC10_MISC If IA32_MCG_CAP.CNT >10

42CH 1068 IA32_MC11_CTL MC11_CTL If IA32_MCG_CAP.CNT >11

42DH 1069 IA32_MC11_STATUS MC11_STATUS If IA32_MCG_CAP.CNT >11

42EH 1070 IA32_MC11_ADDR1 MC11_ADDR If IA32_MCG_CAP.CNT >11

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 184

42FH 1071 IA32_MC11_MISC MC11_MISC If IA32_MCG_CAP.CNT >11

430H 1072 IA32_MC12_CTL MC12_CTL If IA32_MCG_CAP.CNT >12

431H 1073 IA32_MC12_STATUS MC12_STATUS If IA32_MCG_CAP.CNT >12

432H 1074 IA32_MC12_ADDR1 MC12_ADDR If IA32_MCG_CAP.CNT >12

433H 1075 IA32_MC12_MISC MC12_MISC If IA32_MCG_CAP.CNT >12

434H 1076 IA32_MC13_CTL MC13_CTL If IA32_MCG_CAP.CNT >13

435H 1077 IA32_MC13_STATUS MC13_STATUS If IA32_MCG_CAP.CNT >13

436H 1078 IA32_MC13_ADDR1 MC13_ADDR If IA32_MCG_CAP.CNT >13

437H 1079 IA32_MC13_MISC MC13_MISC If IA32_MCG_CAP.CNT >13

438H 1080 IA32_MC14_CTL MC14_CTL If IA32_MCG_CAP.CNT >14

439H 1081 IA32_MC14_STATUS MC14_STATUS If IA32_MCG_CAP.CNT >14

43AH 1082 IA32_MC14_ADDR1 MC14_ADDR If IA32_MCG_CAP.CNT >14

43BH 1083 IA32_MC14_MISC MC14_MISC If IA32_MCG_CAP.CNT >14

43CH 1084 IA32_MC15_CTL MC15_CTL If IA32_MCG_CAP.CNT >15

43DH 1085 IA32_MC15_STATUS MC15_STATUS If IA32_MCG_CAP.CNT >15

43EH 1086 IA32_MC15_ADDR1 MC15_ADDR If IA32_MCG_CAP.CNT >15

43FH 1087 IA32_MC15_MISC MC15_MISC If IA32_MCG_CAP.CNT >15

440H 1088 IA32_MC16_CTL MC16_CTL If IA32_MCG_CAP.CNT >16

441H 1089 IA32_MC16_STATUS MC16_STATUS If IA32_MCG_CAP.CNT >16

442H 1090 IA32_MC16_ADDR1 MC16_ADDR If IA32_MCG_CAP.CNT >16

443H 1091 IA32_MC16_MISC MC16_MISC If IA32_MCG_CAP.CNT >16

444H 1092 IA32_MC17_CTL MC17_CTL If IA32_MCG_CAP.CNT >17

445H 1093 IA32_MC17_STATUS MC17_STATUS If IA32_MCG_CAP.CNT >17

446H 1094 IA32_MC17_ADDR1 MC17_ADDR If IA32_MCG_CAP.CNT >17

447H 1095 IA32_MC17_MISC MC17_MISC If IA32_MCG_CAP.CNT >17

448H 1096 IA32_MC18_CTL MC18_CTL If IA32_MCG_CAP.CNT >18

449H 1097 IA32_MC18_STATUS MC18_STATUS If IA32_MCG_CAP.CNT >18

44AH 1098 IA32_MC18_ADDR1 MC18_ADDR If IA32_MCG_CAP.CNT >18

44BH 1099 IA32_MC18_MISC MC18_MISC If IA32_MCG_CAP.CNT >18

44CH 1100 IA32_MC19_CTL MC19_CTL If IA32_MCG_CAP.CNT >19

44DH 1101 IA32_MC19_STATUS MC19_STATUS If IA32_MCG_CAP.CNT >19

44EH 1102 IA32_MC19_ADDR1 MC19_ADDR If IA32_MCG_CAP.CNT >19

44FH 1103 IA32_MC19_MISC MC19_MISC If IA32_MCG_CAP.CNT >19

450H 1104 IA32_MC20_CTL MC20_CTL If IA32_MCG_CAP.CNT >20

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 185

451H 1105 IA32_MC20_STATUS MC20_STATUS If IA32_MCG_CAP.CNT >20

452H 1106 IA32_MC20_ADDR1 MC20_ADDR If IA32_MCG_CAP.CNT >20

453H 1107 IA32_MC20_MISC MC20_MISC If IA32_MCG_CAP.CNT >20

454H 1108 IA32_MC21_CTL MC21_CTL If IA32_MCG_CAP.CNT >21

455H 1109 IA32_MC21_STATUS MC21_STATUS If IA32_MCG_CAP.CNT >21

456H 1110 IA32_MC21_ADDR1 MC21_ADDR If IA32_MCG_CAP.CNT >21

457H 1111 IA32_MC21_MISC MC21_MISC If IA32_MCG_CAP.CNT >21

458H IA32_MC22_CTL MC22_CTL If IA32_MCG_CAP.CNT >22

459H IA32_MC22_STATUS MC22_STATUS If IA32_MCG_CAP.CNT >22

45AH IA32_MC22_ADDR1 MC22_ADDR If IA32_MCG_CAP.CNT >22

45BH IA32_MC22_MISC MC22_MISC If IA32_MCG_CAP.CNT >22

45CH IA32_MC23_CTL MC23_CTL If IA32_MCG_CAP.CNT >23

45DH IA32_MC23_STATUS MC23_STATUS If IA32_MCG_CAP.CNT >23

45EH IA32_MC23_ADDR1 MC23_ADDR If IA32_MCG_CAP.CNT >23

45FH IA32_MC23_MISC MC23_MISC If IA32_MCG_CAP.CNT >23

460H IA32_MC24_CTL MC24_CTL If IA32_MCG_CAP.CNT >24

461H IA32_MC24_STATUS MC24_STATUS If IA32_MCG_CAP.CNT >24

462H IA32_MC24_ADDR1 MC24_ADDR If IA32_MCG_CAP.CNT >24

463H IA32_MC24_MISC MC24_MISC If IA32_MCG_CAP.CNT >24

464H IA32_MC25_CTL MC25_CTL If IA32_MCG_CAP.CNT >25

465H IA32_MC25_STATUS MC25_STATUS If IA32_MCG_CAP.CNT >25

466H IA32_MC25_ADDR1 MC25_ADDR If IA32_MCG_CAP.CNT >25

467H IA32_MC25_MISC MC25_MISC If IA32_MCG_CAP.CNT >25

468H IA32_MC26_CTL MC26_CTL If IA32_MCG_CAP.CNT >26

469H IA32_MC26_STATUS MC26_STATUS If IA32_MCG_CAP.CNT >26

46AH IA32_MC26_ADDR1 MC26_ADDR If IA32_MCG_CAP.CNT >26

46BH IA32_MC26_MISC MC26_MISC If IA32_MCG_CAP.CNT >26

46CH IA32_MC27_CTL MC27_CTL If IA32_MCG_CAP.CNT >27

46DH IA32_MC27_STATUS MC27_STATUS If IA32_MCG_CAP.CNT >27

46EH IA32_MC27_ADDR1 MC27_ADDR If IA32_MCG_CAP.CNT >27

46FH IA32_MC27_MISC MC27_MISC If IA32_MCG_CAP.CNT >27

470H IA32_MC28_CTL MC28_CTL If IA32_MCG_CAP.CNT >28

471H IA32_MC28_STATUS MC28_STATUS If IA32_MCG_CAP.CNT >28

472H IA32_MC28_ADDR1 MC28_ADDR If IA32_MCG_CAP.CNT >28

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 186

473H IA32_MC28_MISC MC28_MISC If IA32_MCG_CAP.CNT >28

480H 1152 IA32_VMX_BASIC Reporting Register of Basic VMX
Capabilities (R/O)

See Appendix A.1, “Basic VMX Information.”

If CPUID.01H:ECX.[5] = 1

481H 1153 IA32_VMX_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If CPUID.01H:ECX.[5] = 1

482H 1154 IA32_VMX_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-based VM-execution Controls
(R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If CPUID.01H:ECX.[5] = 1

483H 1155 IA32_VMX_EXIT_CTLS Capability Reporting Register of VM-exit
Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If CPUID.01H:ECX.[5] = 1

484H 1156 IA32_VMX_ENTRY_CTLS Capability Reporting Register of VM-
entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If CPUID.01H:ECX.[5] = 1

485H 1157 IA32_VMX_MISC Reporting Register of Miscellaneous
VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data.”

If CPUID.01H:ECX.[5] = 1

486H 1158 IA32_VMX_CR0_FIXED0 Capability Reporting Register of CR0 Bits
Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[5] = 1

487H 1159 IA32_VMX_CR0_FIXED1 Capability Reporting Register of CR0 Bits
Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[5] = 1

488H 1160 IA32_VMX_CR4_FIXED0 Capability Reporting Register of CR4 Bits
Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[5] = 1

489H 1161 IA32_VMX_CR4_FIXED1 Capability Reporting Register of CR4 Bits
Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[5] = 1

48AH 1162 IA32_VMX_VMCS_ENUM Capability Reporting Register of VMCS
Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration.”

If CPUID.01H:ECX.[5] = 1

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 187

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Capability Reporting Register of
Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3.3, “Secondary Processor-
Based VM-Execution Controls.”

If (CPUID.01H:ECX.[5] &&
IA32_VMX_PROCBASED_C
TLS[63])

48CH 1164 IA32_VMX_EPT_VPID_CAP Capability Reporting Register of EPT and
VPID (R/O)

See Appendix A.10, “VPID and EPT
Capabilities.”

If (CPUID.01H:ECX.[5] &&
IA32_VMX_PROCBASED_C
TLS[63] && (
IA32_VMX_PROCBASED_C
TLS2[33] ||
IA32_VMX_PROCBASED_C
TLS2[37]))

48DH 1165 IA32_VMX_TRUE_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Flex Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If (CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Capability Reporting Register of Primary
Processor-based VM-execution Flex
Controls (R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If(CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Capability Reporting Register of VM-exit
Flex Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If(CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Capability Reporting Register of VM-
entry Flex Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If(CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

491H 1169 IA32_VMX_VMFUNC Capability Reporting Register of VM-
function Controls (R/O)

If(CPUID.01H:ECX.[5] = 1
&& IA32_VMX_BASIC[55])

4C1H 1217 IA32_A_PMC0 Full Width Writable IA32_PMC0 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
0) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C2H 1218 IA32_A_PMC1 Full Width Writable IA32_PMC1 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
1) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C3H 1219 IA32_A_PMC2 Full Width Writable IA32_PMC2 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
2) &&

IA32_PERF_CAPABILITIES[
13] = 1

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 188

4C4H 1220 IA32_A_PMC3 Full Width Writable IA32_PMC3 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
3) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C5H 1221 IA32_A_PMC4 Full Width Writable IA32_PMC4 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
4) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C6H 1222 IA32_A_PMC5 Full Width Writable IA32_PMC5 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
5) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C7H 1223 IA32_A_PMC6 Full Width Writable IA32_PMC6 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
6) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C8H 1224 IA32_A_PMC7 Full Width Writable IA32_PMC7 Alias (R/W) (If CPUID.0AH: EAX[15:8] >
7) &&

IA32_PERF_CAPABILITIES[
13] = 1

4D0H 1232 IA32_MCG_EXT_CTL (R/W) If IA32_MCG_CAP.LMCE_P
=1

0 LMCE_EN.

63:1 Reserved.

500H 1280 IA32_SGX_SVN_STATUS Status and SVN Threshold of SGX Support
for ACM (RO).

If CPUID.(EAX=07H,
ECX=0H): EBX[2] = 1

0 Lock. See Section 42.12.3,
“Interactions with
Authenticated Code
Modules (ACMs)”.

15:1 Reserved.

23:16 SGX_SVN_SINIT. See Section 42.12.3,
“Interactions with
Authenticated Code
Modules (ACMs)”.

63:24 Reserved.

560H 1376 IA32_RTIT_OUTPUT_BASE Trace Output Base Register (R/W) If ((CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) && (
(CPUID.(EAX=14H,ECX=0):
ECX[0] = 1) ||
(CPUID.(EAX=14H,ECX=0):
ECX[2] = 1)))

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 189

6:0 Reserved

MAXPHYADDR3-1:7 Base physical address

63:MAXPHYADDR Reserved.

561H 1377 IA32_RTIT_OUTPUT_MASK_PTRS Trace Output Mask Pointers Register (R/
W)

If ((CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) && (
(CPUID.(EAX=14H,ECX=0):
ECX[0] = 1) ||
(CPUID.(EAX=14H,ECX=0):
ECX[2] = 1)))

6:0 Reserved

31:7 MaskOrTableOffset

63:32 Output Offset.

570H 1392 IA32_RTIT_CTL Trace Control Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1)

0 TraceEn

1 CYCEn If (CPUID.(EAX=07H,
ECX=0):EBX[1] = 1)

2 OS

3 User

5:4 Reserved,

6 FabricEn If (CPUID.(EAX=07H,
ECX=0):ECX[3] = 1)

7 CR3 filter

8 ToPA

9 MTCEn If (CPUID.(EAX=07H,
ECX=0):EBX[3] = 1)

10 TSCEn

11 DisRETC

12 Reserved, MBZ

13 BranchEn

17:14 MTCFreq If (CPUID.(EAX=07H,
ECX=0):EBX[3] = 1)

18 Reserved, MBZ

22:19 CYCThresh If (CPUID.(EAX=07H,
ECX=0):EBX[1] = 1)

23 Reserved, MBZ

27:24 PSBFreq If (CPUID.(EAX=07H,
ECX=0):EBX[1] = 1)

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 190

31:28 Reserved, MBZ

35:32 ADDR0_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 0)

39:36 ADDR1_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 1)

43:40 ADDR2_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 2)

47:44 ADDR3_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 3)

63:48 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Tracing Status Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1)

0 FilterEn, (writes ignored) If (CPUID.(EAX=07H,
ECX=0):EBX[2] = 1)

1 ContexEn, (writes ignored)

2 TriggerEn, (writes ignored)

3 Reserved

4 Error

5 Stopped

31:6 Reserved, MBZ

48:32 PacketByteCnt If (CPUID.(EAX=07H,
ECX=0):EBX[1] > 3)

63:49 Reserved.

572H 1394 IA32_RTIT_CR3_MATCH Trace Filter CR3 Match Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1)

4:0 Reserved

63:5 CR3[63:5] value to match

580H 1408 IA32_RTIT_ADDR0_A Region 0 Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 0)

47:0 Virtual Address

63:48 SignExt_VA

581H 1409 IA32_RTIT_ADDR0_B Region 0 End Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 0)

47:0 Virtual Address

63:48 SignExt_VA

582H 1410 IA32_RTIT_ADDR1_A Region 1 Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 1)

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 191

47:0 Virtual Address

63:48 SignExt_VA

583H 1411 IA32_RTIT_ADDR1_B Region 1 End Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 1)

47:0 Virtual Address

63:48 SignExt_VA

584H 1412 IA32_RTIT_ADDR2_A Region 2 Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 2)

47:0 Virtual Address

63:48 SignExt_VA

585H 1413 IA32_RTIT_ADDR2_B Region 2 End Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 2)

47:0 Virtual Address

63:48 SignExt_VA

586H 1414 IA32_RTIT_ADDR3_A Region 3 Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 3)

47:0 Virtual Address

63:48 SignExt_VA

587H 1415 IA32_RTIT_ADDR3_B Region 3 End Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 3)

47:0 Virtual Address

63:48 SignExt_VA

600H 1536 IA32_DS_AREA DS Save Area (R/W)

Points to the linear address of the first
byte of the DS buffer management area,
which is used to manage the BTS and PEBS
buffers.

See Section 18.13.4, “Debug Store (DS)
Mechanism.”

If(CPUID.01H:EDX.DS[21]
= 1

63:0 The linear address of the first byte of the
DS buffer management area, if IA-32e
mode is active.

31:0 The linear address of the first byte of the
DS buffer management area, if not in IA-
32e mode.

63:32 Reserved if not in IA-32e mode.

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s TSC Deadline
Mode (R/W)

If CPUID.01H:ECX.[24] = 1

770H 1904 IA32_PM_ENABLE Enable/disable HWP (R/W) If CPUID.06H:EAX.[7] = 1

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 192

0 HWP_ENABLE (R/W1-Once).

See Section 14.4.2, “Enabling HWP”

If CPUID.06H:EAX.[7] = 1

63:1 Reserved.

771H 1905 IA32_HWP_CAPABILITIES HWP Performance Range Enumeration
(RO)

If CPUID.06H:EAX.[7] = 1

7:0 Highest_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If CPUID.06H:EAX.[7] = 1

15:8 Guaranteed_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If CPUID.06H:EAX.[7] = 1

23:16 Most_Efficient_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If CPUID.06H:EAX.[7] = 1

31:24 Lowest_Performance

See Section 14.4.3, “HWP Performance
Range and Dynamic Capabilities”

If CPUID.06H:EAX.[7] = 1

63:32 Reserved.

772H 1906 IA32_HWP_REQUEST_PKG Power Management Control Hints for All
Logical Processors in a Package (R/W)

If CPUID.06H:EAX.[11] = 1

7:0 Minimum_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1

15:8 Maximum_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1

23:16 Desired_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1

31:24 Energy_Performance_Preference

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1
&&

CPUID.06H:EAX.[10] = 1

41:32 Activity_Window

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1
&&

CPUID.06H:EAX.[9] = 1

63:42 Reserved.

773H 1907 IA32_HWP_INTERRUPT Control HWP Native Interrupts (R/W) If CPUID.06H:EAX.[8] = 1

0 EN_Guaranteed_Performance_Change.

See Section 14.4.6, “HWP Notifications”

If CPUID.06H:EAX.[8] = 1

1 EN_Excursion_Minimum.

See Section 14.4.6, “HWP Notifications”

If CPUID.06H:EAX.[8] = 1

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 193

63:2 Reserved.

774H 1908 IA32_HWP_REQUEST Power Management Control Hints to a
Logical Processor (R/W)

If CPUID.06H:EAX.[7] = 1

7:0 Minimum_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1

15:8 Maximum_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1

23:16 Desired_Performance

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1

31:24 Energy_Performance_Preference

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1
&& CPUID.06H:EAX.[10] =
1

41:32 Activity_Window

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1
&& CPUID.06H:EAX.[9] = 1

42 Package_Control

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1
&& CPUID.06H:EAX.[11] =
1

63:43 Reserved.

777H 1911 IA32_HWP_STATUS Log bits indicating changes to
Guaranteed & excursions to Minimum (R/
W)

If CPUID.06H:EAX.[7] = 1

0 Guaranteed_Performance_Change (R/
WC0).

See Section 14.4.5, “HWP Feedback”

If CPUID.06H:EAX.[7] = 1

1 Reserved.

2 Excursion_To_Minimum (R/WC0).

See Section 14.4.5, “HWP Feedback”

If CPUID.06H:EAX.[7] = 1

63:3 Reserved.

802H 2050 IA32_X2APIC_APICID x2APIC ID Register (R/O)

See x2APIC Specification

If CPUID.01H:ECX[21] = 1
&& IA32_APIC_BASE.[10]
= 1

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register (R/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

808H 2056 IA32_X2APIC_TPR x2APIC Task Priority Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority Register (R/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 194

80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register (W/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination Register (R/
O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt Vector
Register (R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register Bits 31:0 (R/
O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register Bits 63:32
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register Bits 95:64
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register Bits 127:96
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register Bits 159:128
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register Bits 191:160
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register Bits 223:192
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register Bits 255:224
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode Register Bits 31:0
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode Register Bits 63:32
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode Register Bits 95:64
(R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 195

81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode Register Bits
127:96 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode Register Bits
159:128 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode Register Bits
191:160 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode Register Bits
223:192 (R/O)

If (CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1)

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode Register Bits
255:224 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request Register Bits
31:0 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request Register Bits
63:32 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request Register Bits
95:64 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request Register Bits
127:96 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request Register Bits
159:128 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request Register Bits
191:160 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request Register Bits
223:192 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request Register Bits
255:224 (R/O)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

828H 2088 IA32_X2APIC_ESR x2APIC Error Status Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 196

82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected Machine Check
Interrupt Register (R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command Register (R/
W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer Interrupt Register (R/
W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

833H 2099 IA32_X2APIC_LVT_THERMAL x2APIC LVT Thermal Sensor Interrupt
Register (R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance Monitor
Interrupt Register (R/W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0 Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1 Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

837H 2103 IA32_X2APIC_LVT_ERROR x2APIC LVT Error Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

838H 2104 IA32_X2APIC_INIT_COUNT x2APIC Initial Count Register (R/W) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

839H 2105 IA32_X2APIC_CUR_COUNT x2APIC Current Count Register (R/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide Configuration Register (R/
W)

If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register (W/O) If CPUID.01H:ECX.[21] = 1
&& IA32_APIC_BASE.[10]
= 1

C80H 3200 IA32_DEBUG_INTERFACE Silicon Debug Feature Control (R/W) If CPUID.01H:ECX.[11] = 1

0 Enable (R/W)

BIOS set 1 to enable Silicon debug features.
Default is 0

If CPUID.01H:ECX.[11] = 1

29:1 Reserved.

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 197

30 Lock (R/W): If 1, locks any further change
to the MSR. The lock bit is set automatically
on the first SMI assertion even if not
explicitly set by BIOS. Default is 0.

If CPUID.01H:ECX.[11] = 1

31 Debug Occurred (R/O): This “sticky bit” is
set by hardware to indicate the status of
bit 0. Default is 0.

If CPUID.01H:ECX.[11] = 1

63:32 Reserved.

C81H 3201 IA32_L3_QOS_CFG L3 QOS Configuration (R/W) If (CPUID.(EAX=10H,
ECX=1):ECX.[2] = 1)

0 Enable (R/W)

Set 1 to enable L3 CAT masks and COS to
operate in Code and Data Prioritization
(CDP) mode

63:1 Reserved.

C8DH 3213 IA32_QM_EVTSEL Monitoring Event Select Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX.[12] = 1)

7:0 Event ID: ID of a supported monitoring
event to report via IA32_QM_CTR.

31: 8 Reserved.

N+31:32 Resource Monitoring ID: ID for monitoring
hardware to report monitored data via
IA32_QM_CTR.

N = Ceil (Log2 (
CPUID.(EAX= 0FH,
ECX=0H).EBX[31:0] +1))

63:N+32 Reserved.

C8EH 3214 IA32_QM_CTR Monitoring Counter Register (R/O) If (CPUID.(EAX=07H,
ECX=0):EBX.[12] = 1)

61:0 Resource Monitored Data

62 Unavailable: If 1, indicates data for this
RMID is not available or not monitored for
this resource or RMID.

63 Error: If 1, indicates and unsupported RMID
or event type was written to
IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC Resource Association Register (R/W) If (CPUID.(EAX=07H,
ECX=0):EBX.[12] = 1)

N-1:0 Resource Monitoring ID (R/W): ID for
monitoring hardware to track internal
operation, e.g. memory access.

N = Ceil (Log2 (
CPUID.(EAX= 0FH,
ECX=0H).EBX[31:0] +1))

31:N Reserved

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 198

63:32 COS (R/W). The class of service
(COS) to enforce (on writes);
returns the current COS when
read.

If (CPUID.(EAX=07H,
ECX=0):EBX.[15] = 1)

C90H -
D8FH

Reserved MSR Address Space for
Platform Enforcement Mask Registers

See Section 17.16.3.1, “Enumeration and
Detection Support of Cache Allocation
Technology”

C90H 3216 IA32_L3_MASK_0 L3 CQE Mask for COS0 (R/W) If (CPUID.(EAX=10H,
ECX=0H):EBX[1] != 0)

31:0 Capacity Bit Mask (R/W)

63:32 Reserved.

C90H+
n

3216+n IA32_L3_MASK_n L3 CQE Mask for COSn (R/W) n = CPUID.(EAX=10H,
ECX=1H):EDX[15:0]

31:0 Capacity Bit Mask (R/W)

63:32 Reserved.

D90H 3472 IA32_BNDCFGS Supervisor State of MPX Configuration.
(R/W)

If (CPUID.(EAX=07H,
ECX=0H):EBX[14] = 1)

0 EN: Enable Intel MPX in supervisor mode

1 BNDPRESERVE: Preserve the bounds
registers for near branch instructions in the
absence of the BND prefix

11:2 Reserved, must be 0

63:12 Base Address of Bound Directory.

DA0H 3488 IA32_XSS Extended Supervisor State Mask (R/W) If(CPUID.(0DH, 1):EAX.[3]
= 1

7:0 Reserved

8 Trace Packet Configuration State (R/W)

63:9 Reserved.

DB0H 3504 IA32_PKG_HDC_CTL Package Level Enable/disable HDC (R/W) If CPUID.06H:EAX.[13] = 1

0 HDC_Pkg_Enable (R/W)

Force HDC idling or wake up HDC-idled
logical processors in the package. See
Section 14.5.2, “Package level Enabling
HDC”

If CPUID.06H:EAX.[13] = 1

63:1 Reserved.

DB1H 3505 IA32_PM_CTL1 Enable/disable HWP (R/W) If CPUID.06H:EAX.[13] = 1

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 199

0 HDC_Allow_Block (R/W)

Allow/Block this logical processor for
package level HDC control. See Section
14.5.3

If CPUID.06H:EAX.[13] = 1

63:1 Reserved.

DB2H 3506 IA32_THREAD_STALL Per-Logical_Processor HDC Idle
Residency (R/0)

If CPUID.06H:EAX.[13] = 1

63:0 Stall_Cycle_Cnt (R/W)

Stalled cycles due to HDC forced idle on this
logical processor. See Section 14.5.4.1

If CPUID.06H:EAX.[13] = 1

4000_
0000H
-
4000_
00FFH

Reserved MSR Address Space All existing and future processors will
not implement MSR in this range.

C000_
0080H

IA32_EFER Extended Feature Enables If (
CPUID.80000001H:EDX.[2
0] ||
CPUID.80000001H:EDX.[2
9])

0 SYSCALL Enable: IA32_EFER.SCE (R/W)

Enables SYSCALL/SYSRET instructions in
64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable: IA32_EFER.LME (R/
W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active: IA32_EFER.LMA (R)

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable:
IA32_EFER.NXE (R/W)

63:12 Reserved.

C000_
0081H

IA32_STAR System Call Target Address (R/W) If
CPUID.80000001:EDX.[29]
= 1

C000_
0082H

IA32_LSTAR IA-32e Mode System Call Target Address
(R/W)

If
CPUID.80000001:EDX.[29]
= 1

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 200

35.4 MSRS IN THE PROCESSORS BASED ON SILVERMONT
MICROARCHITECTURE

Table 35-6 lists model-specific registers (MSRs) for Intel processors based on the Silvermont microarchitecture
These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_37H, 06_4AH, 06_4DH,
06_5AH, and 06_5DH, see Table 35-1.

The column “Scope” lists the core/shared/package granularity of sharing in the Silvermont microarchitecture.
“Core” means each processor core has a separate MSR, or a bit field not shared with another processor core.
“Shared” means the MSR or the bit field is shared by more than one processor cores in the physical package.
“Package” means all processor cores in the physical package share the same MSR or bit interface.

C000_
0084H

IA32_FMASK System Call Flag Mask (R/W) If
CPUID.80000001:EDX.[29]
= 1

C000_
0100H

IA32_FS_BASE Map of BASE Address of FS (R/W) If
CPUID.80000001:EDX.[29]
= 1

C000_
0101H

IA32_GS_BASE Map of BASE Address of GS (R/W) If
CPUID.80000001:EDX.[29]
= 1

C000_
0102H

IA32_KERNEL_GS_BASE Swap Target of BASE Address of GS (R/
W)

If
CPUID.80000001:EDX.[29]
= 1

C000_
0103H

IA32_TSC_AUX Auxiliary TSC (RW) If CPUID.80000001H:
EDX[27] = 1

31:0 AUX: Auxiliary signature of TSC

63:32 Reserved.
NOTES:

1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are supported, software must treat them as
model-specific. Starting with Intel Core Duo processors, MSR addresses 180H-185H, 188H-197H are reserved.

2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. See Section 15.3.2.3 and Section
15.3.2.4 for more information.

3. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

Table 35-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name and bit
fields

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal

Table 35-6. Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

0H 0 IA32_P5_MC_ADDR Shared See Section 35.20, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Shared See Section 35.20, “MSRs in Pentium Processors.”

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 201

6H 6 IA32_MONITOR_FILTER_
SIZE

Core See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
andTable 35-2

10H 16 IA32_TIME_STAMP_
COUNTER

Core See Section 17.14, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R)
See Table 35-2.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R)

7:0 Reserved.

12:8 Maximum Qualified Ratio (R)

The maximum allowed bus ratio.

49:13 Reserved.

52:50 See Table 35-2

63:33 Reserved.

1BH 27 IA32_APIC_BASE Core See Section 10.4.4, “Local APIC Status and Location,” and
Table 35-2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W) Enables and
disables processor features;

(R) indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

3 AERR# Drive Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

4 BERR# Enable for initiator bus requests (R/W)

1 = Enabled; 0 = Disabled
Always 0.

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Always 0.

8 Reserved.

Table 35-6. Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 202

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled

10 AERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

11 Reserved.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

Always 00B.

19: 18 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio (R/O)

34H 52 MSR_SMI_COUNT Core SMI Counter (R/O)

31:0 SMI Count (R/O)

Running count of SMI events since last RESET.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Core Control Features in Intel 64Processor (R/W)

See Table 35-2.

0 Lock (R/WL)

1 Reserved

2 Enable VMX outside SMX operation (R/WL)

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Core Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the source
instruction for one of the last eight branches, exceptions, or
interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.12, “Last Branch, Interrupt, and Exception Recording

(Pentium M Processors).”

Table 35-6. Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 203

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Core Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Core Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Core Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_
LASTBRANCH_4_FROM_IP

Core Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_FROM_IP

Core Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_FROM_IP

Core Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_FROM_IP

Core Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_TO_IP

Core Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the
destination instruction for one of the last eight branches,
exceptions, or interrupts taken by the processor.

61H 97 MSR_
LASTBRANCH_1_TO_IP

Core Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

62H 98 MSR_
LASTBRANCH_2_TO_IP

Core Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

63H 99 MSR_
LASTBRANCH_3_TO_IP

Core Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

64H 100 MSR_
LASTBRANCH_4_TO_IP

Core Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

65H 101 MSR_
LASTBRANCH_5_TO_IP

Core Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

66H 102 MSR_
LASTBRANCH_6_TO_IP

Core Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

67H 103 MSR_
LASTBRANCH_7_TO_IP

Core Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Core BIOS Update Signature ID (RO)

See Table 35-2.

Table 35-6. Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 204

C1H 193 IA32_PMC0 Core Performance counter register

See Table 35-2.

C2H 194 IA32_PMC1 Core Performance Counter Register

See Table 35-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Silvermont microarchitecture:

2:0 • 100B: 080.0 MHz
• 000B: 083.3 MHz
• 001B: 100.0 MHz
• 010B: 133.3 MHz
• 011B: 116.7 MHz

63:3 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Shared C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

100b: C4

110b: C6

111b: C7 (Silvermont only).

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Shared Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

Table 35-6. Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 205

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is the
IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to
be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

100b - C4 is the max C-State to include

110b - C6 is the max C-State to include

111b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Core Maximum Performance Frequency Clock Count (RW)

See Table 35-2.

E8H 232 IA32_APERF Core Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Core Memory Type Range Register (R)

See Table 35-2.

11EH 281 MSR_BBL_CR_CTL3 Shared

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle
unsuccessful read of this MSR.

Table 35-6. Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 206

1:0 AES Configuration (RW-L)

Upon a successful read of this MSR, the configuration of AES
instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

otherwise, AES instructions are available.

Note, AES instruction set is not available if read is unsuccessful. If
the configuration is not 01b, AES instruction can be mis-configured
if a privileged agent unintentionally writes 11b.

63:2 Reserved.

174H 372 IA32_SYSENTER_CS Core See Table 35-2.

175H 373 IA32_SYSENTER_ESP Core See Table 35-2.

176H 374 IA32_SYSENTER_EIP Core See Table 35-2.

179H 377 IA32_MCG_CAP Core See Table 35-2.

17AH 378 IA32_MCG_STATUS Core

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Core See Table 35-2.

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 Reserved

22 EN

Table 35-6. Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 207

23 INV

31:24 CMASK

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 Core See Table 35-2.

198H 408 IA32_PERF_STATUS Shared See Table 35-2.

199H 409 IA32_PERF_CTL Core See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Core Clock Modulation (R/W)

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-2.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Core Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Shared Automatic Thermal Control Circuit Enable (R/W)

See Table 35-2.

6:4 Reserved.

7 Core Performance Monitoring Available (R)

See Table 35-2.

10:8 Reserved.

11 Core Branch Trace Storage Unavailable (RO)

See Table 35-2.

12 Core Precise Event Based Sampling Unavailable (RO)

See Table 35-2.

15:13 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-2.

18 Core ENABLE MONITOR FSM (R/W)

See Table 35-2.

21:19 Reserved.

22 Core Limit CPUID Maxval (R/W)

See Table 35-2.

Table 35-6. Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 208

23 Shared xTPR Message Disable (R/W)

See Table 35-2.

33:24 Reserved.

34 Core XD Bit Disable (R/W)

See Table 35-2.

37:35 Reserved.

38 Shared Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Package

15:0 Reserved.

23:16 Temperature Target (R)

The default thermal throttling or PROCHOT# activation
temperature in degree C, The effective temperature for thermal
throttling or PROCHOT# activation is “Temperature Target” +
“Target Offset”

29:24 Target Offset (R/W)

Specifies an offset in degrees C to adjust the throttling and
PROCHOT# activation temperature from the default target
specified in TEMPERATURE_TARGET (bits 23:16).

63:30 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Shared Offcore Response Event Select Register (R/W)

1A7H 423 MSR_OFFCORE_RSP_1 Shared Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode (RW)

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

Table 35-6. Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 209

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved

1B0H 432 IA32_ENERGY_PERF_BIAS Core See Table 35-2.

1C9H 457 MSR_LASTBRANCH_TOS Core Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-2) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Core Debug Control (R/W)

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Core Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Core Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

200H 512 IA32_MTRR_PHYSBASE0 Core See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Core See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Core See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Core See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Core See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Core See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Core See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Core See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Core See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Core See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Core See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Core See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Core See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Core See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Core See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Core See Table 35-2.

Table 35-6. Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 210

250H 592 IA32_MTRR_FIX64K_
00000

Core See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Core See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Core See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Core See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Core See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Core See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Core See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Core See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Core See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Core See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Core See Table 35-2.

277H 631 IA32_PAT Core See Table 35-2.

2FFH 767 IA32_MTRR_DEF_TYPE Core Default Memory Types (R/W)

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Core Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Core Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Core Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Core See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Core Fixed-Function-Counter Control Register (R/W)

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Core See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

38FH 911 IA32_PERF_GLOBAL_CTRL Core See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Core See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Core See Table 35-2. See Section 18.4.4, “Precise Event Based Sampling
(PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

3FAH 1018 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

Table 35-6. Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 211

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Counts at the TSC Frequency.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Counts at the TSC Frequency.

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40CH 1036 MSR_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 35-6. Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 212

412H 1042 MSR_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

480H 1152 IA32_VMX_BASIC Core Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Core Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Core Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Core Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Core Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Core Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Core Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Core Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

Table 35-6. Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 213

488H 1160 IA32_VMX_CR4_FIXED0 Core Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Core Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Core Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Core Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Core Capability Reporting Register of EPT and VPID (R/O)

See Table 35-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Core Capability Reporting Register of Pin-based VM-execution Flex
Controls (R/O)

See Table 35-2

48EH 1166 IA32_VMX_TRUE_PROCBA
SED_CTLS

Core Capability Reporting Register of Primary Processor-based
VM-execution Flex Controls (R/O)

See Table 35-2

48FH 1167 IA32_VMX_TRUE_EXIT_CT
LS

Core Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 35-2

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Core Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 35-2

491H 1169 IA32_VMX_FMFUNC Core Capability Reporting Register of VM-function Controls (R/O)

See Table 35-2

4C1H 1217 IA32_A_PMC0 Core See Table 35-2.

4C2H 1218 IA32_A_PMC1 Core See Table 35-2.

600H 1536 IA32_DS_AREA Core DS Save Area (R/W)

See Table 35-2.

See Section 18.13.4, “Debug Store (DS) Mechanism.”

660H 1632 MSR_CORE_C1_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C1 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C1
states. Counts at the TSC frequency.

6E0H 1760 IA32_TSC_DEADLINE Core TSC Target of Local APIC’s TSC Deadline Mode (R/W)

See Table 35-2

Table 35-6. Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 214

Table 35-7 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor E3000 Series (CPUID
signature with DisplayFamily_DisplayModel of 06_37H) and Intel Atom processors (CPUID signatures with
DisplayFamily_DisplayModel of 06_4AH, 06_5AH, 06_5DH).

35.7 MSRS IN THE INTEL® XEON® PROCESSOR 5600 SERIES (BASED ON
INTEL® MICROARCHITECTURE CODE NAME WESTMERE)

Intel® Xeon® Processor 5600 Series (based on Intel® microarchitecture code name Westmere) supports the MSR
interfaces listed in Table 35-11, Table 35-12, plus additional MSR listed in Table 35-14. These MSRs apply to Intel
Core i7, i5 and i3 processor family with CPUID signature DisplayFamily_DisplayModel of 06_25H and 06_2CH, see
Table 35-1.

C000_
0080H

IA32_EFER Core Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Core System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Core IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Core System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Core Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Core Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Core Swap Target of BASE Address of GS (R/W) See Table 35-2.

C000_
0103H

IA32_TSC_AUX Core AUXILIARY TSC Signature. (R/W) See Table 35-2

Table 35-6. Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

Table 35-15. Additional MSRs Supported by Intel Processors
(Based on Intel® Microarchitecture Code Name Westmere)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle
unsuccessful read of this MSR.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 215

35.8 MSRS IN INTEL® PROCESSOR FAMILY BASED ON INTEL®
MICROARCHITECTURE CODE NAME SANDY BRIDGE

Table 35-16 lists model-specific registers (MSRs) that are common to Intel® processor family based on Intel
microarchitecture code name Sandy Bridge. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_2AH, 06_2DH, see Table 35-1. Additional MSRs specific to 06_2AH are listed in
Table 35-17.

1:0 AES Configuration (RW-L)

Upon a successful read of this MSR, the configuration of AES
instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

otherwise, AES instructions are available.

Note, AES instruction set is not available if read is unsuccessful. If
the configuration is not 01b, AES instruction can be mis-configured
if a privileged agent unintentionally writes 11b.

63:2 Reserved.

1A7H 423 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

63:48 Reserved.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 35-2.

Table 35-15. Additional MSRs Supported by Intel Processors
(Based on Intel® Microarchitecture Code Name Westmere)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 216

Table 35-16. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge

Register
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 35.20, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 35.20, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,”
and Table 35-2.

10H 16 IA32_TIME_STAMP_
COUNTER

Thread See Section 17.14, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 35-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and
Table 35-2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

Count SMIs.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 35-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Thread BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register

See Table 35-2.

C2H 194 IA32_PMC1 Thread Performance Counter Register

See Table 35-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register

See Table 35-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register

See Table 35-2.

C5H 197 IA32_PMC4 Core Performance Counter Register (if core not shared by threads)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 217

C6H 198 IA32_PMC5 Core Performance Counter Register (if core not shared by threads)

C7H 199 IA32_PMC6 Core Performance Counter Register (if core not shared by threads)

C8H 200 IA32_PMC7 Core Performance Counter Register (if core not shared by threads)

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

Table 35-16. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 218

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

When set, will map IO_read instructions sent to IO register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO)

When set, lock bits 15:0 of this register until next reset.

24:16 Reserved.

25 C3 state auto demotion enable (R/W)

When set, the processor will conditionally demote C6/C7 requests
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W)

When set, the processor will conditionally demote C3/C6/C7
requests to C1 based on uncore auto-demote information.

27 Enable C3 undemotion (R/W)

When set, enables undemotion from demoted C3.

28 Enable C1 undemotion (R/W)

When set, enables undemotion from demoted C1.

63:29 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W)

See http://biosbits.org.

Table 35-16. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 219

15:0 LVL_2 Base Address (R/W)

Specifies the base address visible to software for IO redirection. If
IO MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When IO port address redirection is enabled, this is
the IO port address reported to the OS/software.

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name
to be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 35-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Thread See Table 35-2.

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle
unsuccessful read of this MSR.

1:0 AES Configuration (RW-L)

Upon a successful read of this MSR, the configuration of AES
instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

otherwise, AES instructions are available.

Note, AES instruction set is not available if read is unsuccessful. If
the configuration is not 01b, AES instruction can be mis-configured
if a privileged agent unintentionally writes 11b.

63:2 Reserved.

174H 372 IA32_SYSENTER_CS Thread See Table 35-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 35-2.

179H 377 IA32_MCG_CAP Thread See Table 35-2.

17AH 378 IA32_MCG_STATUS Thread

Table 35-16. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 220

0 RIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Thread See Table 35-2.

187H 391 IA32_
PERFEVTSEL1

Thread See Table 35-2.

188H 392 IA32_
PERFEVTSEL2

Thread See Table 35-2.

189H 393 IA32_
PERFEVTSEL3

Thread See Table 35-2.

18AH 394 IA32_
PERFEVTSEL4

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18BH 395 IA32_
PERFEVTSEL5

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18CH 396 IA32_
PERFEVTSEL6

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18DH 397 IA32_
PERFEVTSEL7

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

198H 408 IA32_PERF_STATUS Package See Table 35-2.

15:0 Current Performance State Value.

63:16 Reserved.

198H 408 MSR_PERF_STATUS Package

47:32 Core Voltage (R/O)

P-state core voltage can be computed by

MSR_PERF_STATUS[37:32] * (float) 1/(2^13).

199H 409 IA32_PERF_CTL Thread See Table 35-2.

Table 35-16. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 221

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation (R/W)

See Table 35-2

IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.

3:0 On demand Clock Modulation Duty Cycle (R/W)

In 6.25% increment

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W)

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-2.

0 Thermal status (RO)

See Table 35-2.

1 Thermal status log (R/WC0)

See Table 35-2.

2 PROTCHOT # or FORCEPR# status (RO)

See Table 35-2.

3 PROTCHOT # or FORCEPR# log (R/WC0)

See Table 35-2.

4 Critical Temperature status (RO)

See Table 35-2.

5 Critical Temperature status log (R/WC0)

See Table 35-2.

6 Thermal threshold #1 status (RO)

See Table 35-2.

7 Thermal threshold #1 log (R/WC0)

See Table 35-2.

8 Thermal threshold #2 status (RO)

See Table 35-2.

9 Thermal threshold #2 log (R/WC0)

See Table 35-2.

10 Power Limitation status (RO)

See Table 35-2.

11 Power Limitation log (R/WC0)

See Table 35-2.

Table 35-16. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 222

15:12 Reserved.

22:16 Digital Readout (RO)

See Table 35-2.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

See Table 35-2.

31 Reading Valid (RO)

See Table 35-2.

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Thread Fast-Strings Enable

See Table 35-2

6:1 Reserved.

7 Thread Performance Monitoring Available (R)

See Table 35-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable (RO)

See Table 35-2.

12 Thread Precise Event Based Sampling Unavailable (RO)

See Table 35-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 35-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval (R/W)

See Table 35-2.

23 Thread xTPR Message Disable (R/W)

See Table 35-2.

33:24 Reserved.

34 Thread XD Bit Disable (R/W)

See Table 35-2.

37:35 Reserved.

Table 35-16. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 223

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H:
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Unique

15:0 Reserved.

23:16 Temperature Target (R)

The minimum temperature at which PROCHOT# will be asserted.
The value is degree C.

63:24 Reserved.

1A4H 420 MSR_MISC_FEATURE_
CONTROL

Miscellaneous Feature Control (R/W)

0 Core L2 Hardware Prefetcher Disable (R/W)

If 1, disables the L2 hardware prefetcher, which fetches additional
lines of code or data into the L2 cache.

1 Core L2 Adjacent Cache Line Prefetcher Disable (R/W)

If 1, disables the adjacent cache line prefetcher, which fetches the
cache line that comprises a cache line pair (128 bytes).

2 Core DCU Hardware Prefetcher Disable (R/W)

If 1, disables the L1 data cache prefetcher, which fetches the next
cache line into L1 data cache.

3 Core DCU IP Prefetcher Disable (R/W)

If 1, disables the L1 data cache IP prefetcher, which uses
sequential load history (based on instruction Pointer of previous
loads) to determine whether to prefetch additional lines.

63:4 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1A7H 422 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT See http://biosbits.org.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 35-2.

Table 35-16. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 224

1B1H 433 IA32_PACKAGE_THERM_
STATUS

Package See Table 35-2.

1B2H 434 IA32_PACKAGE_THERM_
INTERRUPT

Package See Table 35-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

See Section 17.6.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 35-2.

0 LBR: Last Branch Record

1 BTF

5:2 Reserved.

6 TR: Branch Trace

7 BTS: Log Branch Trace Message to BTS buffer

8 BTINT

9 BTS_OFF_OS

10 BTS_OFF_USER

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

63:15 Reserved.

Table 35-16. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 225

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

1FCH 508 MSR_POWER_CTL Core See http://biosbits.org.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 35-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 35-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 35-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 35-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 35-2.

Table 35-16. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 226

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 35-2.

277H 631 IA32_PAT Thread See Table 35-2.

280H 640 IA32_MC0_CTL2 Core See Table 35-2.

281H 641 IA32_MC1_CTL2 Core See Table 35-2.

282H 642 IA32_MC2_CTL2 Core See Table 35-2.

283H 643 IA32_MC3_CTL2 Core See Table 35-2.

284H 644 MSR_MC4_CTL2 Package Always 0 (CMCI not supported).

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W)

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 35-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. See Table 35-2.

11:8 PEBS_REC_FORMAT. See Table 35-2.

12 SMM_FREEZE. See Table 35-2.

63:13 Reserved.

Table 35-16. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 227

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Thread Ovf_PMC0

1 Thread Ovf_PMC1

2 Thread Ovf_PMC2

3 Thread Ovf_PMC3

4 Core Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Core Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Core Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Core Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Ovf_FixedCtr0

33 Thread Ovf_FixedCtr1

34 Thread Ovf_FixedCtr2

60:35 Reserved.

61 Thread Ovf_Uncore

62 Thread Ovf_BufDSSAVE

63 Thread CondChgd

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Thread Set 1 to enable PMC0 to count

1 Thread Set 1 to enable PMC1 to count

2 Thread Set 1 to enable PMC2 to count

3 Thread Set 1 to enable PMC3 to count

4 Core Set 1 to enable PMC4 to count (if CPUID.0AH:EAX[15:8] > 4)

5 Core Set 1 to enable PMC5 to count (if CPUID.0AH:EAX[15:8] > 5)

6 Core Set 1 to enable PMC6 to count (if CPUID.0AH:EAX[15:8] > 6)

7 Core Set 1 to enable PMC7 to count (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to enable FixedCtr0 to count

33 Thread Set 1 to enable FixedCtr1 to count

34 Thread Set 1 to enable FixedCtr2 to count

Table 35-16. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 228

63:35 Reserved.

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

0 Thread Set 1 to clear Ovf_PMC0

1 Thread Set 1 to clear Ovf_PMC1

2 Thread Set 1 to clear Ovf_PMC2

3 Thread Set 1 to clear Ovf_PMC3

4 Core Set 1 to clear Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Core Set 1 to clear Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Core Set 1 to clear Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Core Set 1 to clear Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to clear Ovf_FixedCtr0

33 Thread Set 1 to clear Ovf_FixedCtr1

34 Thread Set 1 to clear Ovf_FixedCtr2

60:35 Reserved.

61 Thread Set 1 to clear Ovf_Uncore

62 Thread Set 1 to clear Ovf_BufDSSAVE

63 Thread Set 1 to clear CondChgd

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.7.1.1, “Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

62:36 Reserved.

63 Enable Precise Store. (R/W)

3F6H 1014 MSR_PEBS_LD_LAT Thread see See Section 18.7.1.2, “Load Latency Performance Monitoring
Facility.”

Table 35-16. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 229

15:0 Minimum threshold latency value of tagged load operation that will
be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6
states. Count at the same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6
states. Count at the same frequency as the TSC.

3FEH 1022 MSR_CORE_C7_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C7 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C7
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 35-16. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 230

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

403H 1027 IA32_MC0_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

406H 1030 IA32_MC1_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

407H 1031 IA32_MC1_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

0 PCU Hardware Error (R/W)

When set, enables signaling of PCU hardware detected errors.

1 PCU Controller Error (R/W)

When set, enables signaling of PCU controller detected errors

2 PCU Firmware Error (R/W)

When set, enables signaling of PCU firmware detected errors

63:2 Reserved.

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

Table 35-16. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 231

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Thread Capability Reporting Register of EPT and VPID (R/O)

See Table 35-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Thread Capability Reporting Register of Pin-based VM-execution Flex
Controls (R/O)

See Table 35-2

48EH 1166 IA32_VMX_TRUE_PROCBAS
ED_CTLS

Thread Capability Reporting Register of Primary Processor-based
VM-execution Flex Controls (R/O)

See Table 35-2

48FH 1167 IA32_VMX_TRUE_EXIT_CTL
S

Thread Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 35-2

Table 35-16. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 232

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Thread Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 35-2

4C1H 1217 IA32_A_PMC0 Thread See Table 35-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 35-2.

4C3H 1219 IA32_A_PMC2 Thread See Table 35-2.

4C4H 1220 IA32_A_PMC3 Thread See Table 35-2.

4C5H 1221 IA32_A_PMC4 Core See Table 35-2.

4C6H 1222 IA32_A_PMC5 Core See Table 35-2.

4C7H 1223 IA32_A_PMC6 Core See Table 35-2.

4C8H 1224 IA32_A_PMC7 Core See Table 35-2.

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-2.

See Section 18.13.4, “Debug Store (DS) Mechanism.”

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

See Section 14.9.1, “RAPL Interfaces.”

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C3 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

Table 35-16. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 233

60BH 1547 MSR_PKGC6_IRTL Package Package C6 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the package to exit from
C6 to a C0 state, where interrupt request can be delivered to the
core and serviced. Additional core-exit latency amy be applicable
depending on the actual C-state the core is in.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C6 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

63:16 Reserved.

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C2 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C2
states. Count at the same frequency as the TSC.

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.9.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) See Section 14.9.3, “Package RAPL
Domain.”

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

Table 35-16. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 234

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
source instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_FROM_IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-16. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 235

68FH 1679 MSR_
LASTBRANCH_15_FROM_IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last
branch record stack. This part of the stack contains pointers to the
destination instruction.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 35-16. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 236

35.8.1 MSRs In 2nd Generation Intel® Core™ Processor Family (Based on Intel®
Microarchitecture Code Name Sandy Bridge)

Table 35-17 lists model-specific registers (MSRs) that are specific to the 2nd generation Intel® Core™ processor
family (based on Intel microarchitecture code name Sandy Bridge). These processors have a CPUID signature
with DisplayFamily_DisplayModel of 06_2AH, see Table 35-1.

6E0H 1760 IA32_TSC_DEADLINE Thread See Table 35-2.

802H-
83FH

X2APIC MSRs Thread See Table 35-2.

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W)

See Table 35-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature (R/W)

See Table 35-2 and Section 17.14.2, “IA32_TSC_AUX Register and
RDTSCP Support.”

Table 35-16. MSRs Supported by Intel® Processors
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-17. MSRs Supported by 2nd Generation Intel® Core™ Processors (Intel® microarchitecture code name Sandy
Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 237

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

392H 914 MSR_UNC_PERF_GLOBAL_
STATUS

Package Uncore PMU main status

0 Fixed counter overflowed

1 An ARB counter overflowed

2 Reserved

3 A CBox counter overflowed (on any slice)

63:4 Reserved.

394H 916 MSR_UNC_PERF_FIXED_
CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow propagation

21 Reserved

22 Enable counting

63:23 Reserved.

Table 35-17. MSRs Supported by 2nd Generation Intel® Core™ Processors (Intel® microarchitecture code name Sandy
Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 238

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box configuration information (R/O)

3:0 Encoded number of C-Box, derive value by “-1“

63:4 Reserved.

3B0H 946 MSR_UNC_ARB_PERFCTR0 Package Uncore Arb unit, performance counter 0

3B1H 947 MSR_UNC_ARB_PERFCTR1 Package Uncore Arb unit, performance counter 1

3B2H 944 MSR_UNC_ARB_
PERFEVTSEL0

Package Uncore Arb unit, counter 0 event select MSR

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

60CH 1548 MSR_PKGC7_IRTL Package Package C7 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the package to exit from
C7 to a C0 state, where interrupt request can be delivered to the
core and serviced. Additional core-exit latency amy be applicable
depending on the actual C-state the core is in.

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

9:0 Interrupt response time limit (R/W)

Specifies the limit that should be used to decide if the package
should be put into a package C7 state.

12:10 Time Unit (R/W)

Specifies the encoding value of time unit of the interrupt response
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W)

Indicates whether the values in bits 12:0 are valid and can be used
by the processor for package C-sate management.

Table 35-17. MSRs Supported by 2nd Generation Intel® Core™ Processors (Intel® microarchitecture code name Sandy
Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 239

63:16 Reserved.

63AH 1594 MSR_PP0_POLICY Package PP0 Balance Policy (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

640H 1600 MSR_PP1_POWER_LIMIT Package PP1 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATUS Package PP1 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

706H 1798 MSR_UNC_CBO_0_PERFCTR0 Package Uncore C-Box 0, performance counter 0

707H 1799 MSR_UNC_CBO_0_PERFCTR1 Package Uncore C-Box 0, performance counter 1

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

716H 1814 MSR_UNC_CBO_1_PERFCTR0 Package Uncore C-Box 1, performance counter 0

717H 1815 MSR_UNC_CBO_1_PERFCTR1 Package Uncore C-Box 1, performance counter 1

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

721H 1824 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

726H 1830 MSR_UNC_CBO_2_PERFCTR0 Package Uncore C-Box 2, performance counter 0

727H 1831 MSR_UNC_CBO_2_PERFCTR1 Package Uncore C-Box 2, performance counter 1

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR.

736H 1846 MSR_UNC_CBO_3_PERFCTR0 Package Uncore C-Box 3, performance counter 0.

737H 1847 MSR_UNC_CBO_3_PERFCTR1 Package Uncore C-Box 3, performance counter 1.

Table 35-17. MSRs Supported by 2nd Generation Intel® Core™ Processors (Intel® microarchitecture code name Sandy
Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 240

...

35.10.1 MSRs in 4th Generation Intel® Core™ Processor Family (based on Haswell
Microarchitecture)

Table 35-25 lists model-specific registers (MSRs) that are specific to 4th generation Intel® Core™ processor
family and Intel® Xeon® processor E3-1200 v3 product family (based on Haswell microarchitecture). These
processors have a CPUID signature with DisplayFamily_DisplayModel of 06_3CH/06_45H/06_46H, see Table
35-1.

Table 35-25. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

3:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power) for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: C0/C1 (no package C-state support)

0001b: C2

0010b: C3

0011b: C6

0100b: C7

0101b: C7s

9:4 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

63:29 Reserved

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in
SMM.

http://biosbits.org

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 241

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is
supported and the MSR_SMM_FEATURE_CONTROL is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported
and the MSR_SMM_DELAYED is supported.

63:60 Reserved

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

9 EN_CALL_STACK

63:9 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

Table 35-25. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 242

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

392H 914 MSR_UNC_PERF_GLOBAL_
STATUS

Package Uncore PMU main status

0 Fixed counter overflowed

1 An ARB counter overflowed

2 Reserved

3 A CBox counter overflowed (on any slice)

63:4 Reserved.

394H 916 MSR_UNC_PERF_FIXED_
CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow propagation

21 Reserved

22 Enable counting

63:23 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box configuration information (R/O)

3:0 Encoded number of C-Box, derive value by “-1“

63:4 Reserved.

3B0H 946 MSR_UNC_ARB_PERFCTR0 Package Uncore Arb unit, performance counter 0

3B1H 947 MSR_UNC_ARB_PERFCTR1 Package Uncore Arb unit, performance counter 1

3B2H 944 MSR_UNC_ARB_
PERFEVTSEL0

Package Uncore Arb unit, counter 0 event select MSR

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

Table 35-25. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 243

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

4E0H 1248 MSR_SMM_FEATURE_CONTRO
L

Package Enhanced SMM Feature Control (SMM-RW)

Reports SMM capability Enhancement. Accessible only while in
SMM.

0 Lock (SMM-RWO)

When set to ‘1’ locks this register from further changes

1 Reserved

2 SMM_Code_Chk_En (SMM-RW)

This control bit is available only if MSR_SMM_MCA_CAP[58] == 1.
When set to ‘0’ (default) none of the logical processors are
prevented from executing SMM code outside the ranges defined by
the SMRR.

When set to ‘1’ any logical processor in the package that attempts
to execute SMM code not within the ranges defined by the SMRR
will assert an unrecoverable MCE.

63:3 Reserved

4E2H 1250 MSR_SMM_DELAYED Package SMM Delayed (SMM-RO)

Reports the interruptible state of all logical processors in the
package. Available only while in SMM and
MSR_SMM_MCA_CAP[LONG_FLOW_INDICATION] == 1.

Table 35-25. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 244

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its state in a long flow of
internal operation which delays servicing an interrupt. The
corresponding bit will be set at the start of long events such as:
Microcode Update Load, C6, WBINVD, Ratio Change, Throttle.

The bit is automatically cleared at the end of each long event. The
reset value of this field is 0.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

4E3H 1251 MSR_SMM_BLOCKED Package SMM Blocked (SMM-RO)

Reports the blocked state of all logical processors in the package.
Available only while in SMM.

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its blocked state to
service an SMI. The corresponding bit will be set if the logical
processor is in one of the following states: Wait For SIPI or SENTER
Sleep.

The reset value of this field is 0FFFH.

Only bit positions below N = CPUID.(EAX=0BH,
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.9.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the multiplier, 1/
2^ESU; where ESU is an unsigned integer represented by bits 12:8.
Default value is 0EH (or 61 micro-joules)

15:13 Package Reserved

19:16 Package Time Units

See Section 14.9.1, “RAPL Interfaces.”

63:20 Reserved

613H 1555 MSR_PKG_PERF_STATUS Package PKG Perf Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

640H 1600 MSR_PP1_POWER_LIMIT Package PP1 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

Table 35-25. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 245

641H 1601 MSR_PP1_ENERGY_STATUS Package PP1 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

690H 1680 MSR_CORE_PERF_LIMIT_REAS
ONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating
system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system
request due to Processor Graphics driver override.

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system
request because the processor has detected that utilization is low.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Core Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

12 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating system
request due to multi-core turbo limits.

Table 35-25. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 246

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating system
request due to Turbo transition attenuation. This prevents
performance degradation due to frequent operating ratio changes.

15:14 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the Graphics Driver Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the Autonomous Utilization-Based
Frequency Control Status bit has asserted since the log bit was last
cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Core Power Limiting Log

When set, indicates that the Core Power Limiting Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

Table 35-25. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 247

26 Package-Level PL1 Power Limiting Log

When set, indicates that the Package Level PL1 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:30 Reserved.

6B0H 1712 MSR_GRAPHICS_PERF_LIMIT_
REASONS

Package Indicator of Frequency Clipping in the Processor Graphics (R/W)

(frequency refers to processor graphics frequency)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system
request due to Processor Graphics driver override.

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system
request because the processor has detected that utilization is low

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

Table 35-25. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 248

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Graphics Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

15:12 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the Graphics Driver Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the Autonomous Utilization-Based
Frequency Control Status bit has asserted since the log bit was last
cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

Table 35-25. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 249

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Core Power Limiting Log

When set, indicates that the Core Power Limiting Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the Package Level PL1 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:30 Reserved.

6B1H 1713 MSR_RING_PERF_LIMIT_REAS
ONS

Package Indicator of Frequency Clipping in the Ring Interconnect (R/W)

(frequency refers to ring interconnect in the uncore)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal event.

5:2 Reserved.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

Table 35-25. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 250

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system
request due to electrical design point constraints (e.g. maximum
electrical current consumption).

9 Reserved.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system
request due to package-level power limiting PL2.

15:12 Reserved

16 PROCHOT Log

When set, indicates that the PROCHOT Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log

When set, indicates that the Thermal Status bit has asserted since
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19:18 Reserved.

20 Graphics Driver Log

When set, indicates that the Graphics Driver Status bit has asserted
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

21 Autonomous Utilization-Based Frequency Control Log

When set, indicates that the Autonomous Utilization-Based
Frequency Control Status bit has asserted since the log bit was last
cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log

When set, indicates that the VR Therm Alert Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

24 Electrical Design Point Log

When set, indicates that the EDP Status bit has asserted since the
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

Table 35-25. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 251

25 Core Power Limiting Log

When set, indicates that the Core Power Limiting Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

26 Package-Level PL1 Power Limiting Log

When set, indicates that the Package Level PL1 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 Power Limiting
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation Status
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:30 Reserved.

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

706H 1798 MSR_UNC_CBO_0_PERFCTR0 Package Uncore C-Box 0, performance counter 0

707H 1799 MSR_UNC_CBO_0_PERFCTR1 Package Uncore C-Box 0, performance counter 1

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

716H 1814 MSR_UNC_CBO_1_PERFCTR0 Package Uncore C-Box 1, performance counter 0

717H 1815 MSR_UNC_CBO_1_PERFCTR1 Package Uncore C-Box 1, performance counter 1

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

721H 1824 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

Table 35-25. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 252

...

35.13 MSRS IN FUTURE GENERATION INTEL® XEON® PROCESSORS
The MSRs listed in Table 35-31 are available in Intel® Xeon® Processor D Product Family (CPUID
DisplayFamily_DisplayModel = 06_56H). It is based on the Broadwell microarchitecture.

Table 35-31 also applies to future Intel Xeon processors based on the Broadwell microarchitecture (CPUID
DisplayFamily_DisplayModel = 06_4FH).

...

35.14 MSRS IN THE 6TH GENERATION INTEL® CORE™ PROCESSORS
The 6th generation Intel® Core™ processor family is based on the Skylake microarchitecture. They have CPUID
DisplayFamily_DisplayModel signatures of 06_4EH and 06_5EH, supports the MSR interfaces listed in Table
35-16, Table 35-17, Table 35-20, Table 35-24, Table 35-30, and Table 35-32. For an MSR listed in Table 35-32 that
also appears in the model-specific tables of prior generations, Table 35-32 supercede prior generation tables.

726H 1830 MSR_UNC_CBO_2_PERFCTR0 Package Uncore C-Box 2, performance counter 0

727H 1831 MSR_UNC_CBO_2_PERFCTR1 Package Uncore C-Box 2, performance counter 1

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR.

736H 1846 MSR_UNC_CBO_3_PERFCTR0 Package Uncore C-Box 3, performance counter 0.

737H 1847 MSR_UNC_CBO_3_PERFCTR1 Package Uncore C-Box 3, performance counter 1.

See Table 35-16, Table 35-17, Table 35-20, Table 35-24 for other MSR definitions applicable to processors with CPUID
signatures 063CH, 06_46H

Table 35-25. MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Table 35-32. Additional MSRs Supported by 6th Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 35-2.

0 Lock (R/WL)

1 Enable VMX inside SMX operation (R/WL)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 253

2 Enable VMX outside SMX operation (R/WL)

14:8 SENTER local functions enables (R/WL)

15 SENTER global functions enable (R/WL)

18 SGX global functions enable (R/WL)

20 LMCE_ON (R/WL)

63:21 Reserved.

FEH 254 IA32_MTRRCAP Thread MTRR Capality (RO, Architectural). See Table 35-2

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W)

See Table 35-2.

0 Thermal status (RO)

See Table 35-2.

1 Thermal status log (R/WC0)

See Table 35-2.

2 PROTCHOT # or FORCEPR# status (RO)

See Table 35-2.

3 PROTCHOT # or FORCEPR# log (R/WC0)

See Table 35-2.

4 Critical Temperature status (RO)

See Table 35-2.

5 Critical Temperature status log (R/WC0)

See Table 35-2.

6 Thermal threshold #1 status (RO)

See Table 35-2.

7 Thermal threshold #1 log (R/WC0)

See Table 35-2.

8 Thermal threshold #2 status (RO)

See Table 35-2.

9 Thermal threshold #2 log (R/WC0)

See Table 35-2.

10 Power Limitation status (RO)

See Table 35-2.

11 Power Limitation log (R/WC0)

See Table 35-2.

12 Current Limit status (RO)

See Table 35-2.

Table 35-32. Additional MSRs Supported by 6th Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 254

13 Current Limit log (R/WC0)

See Table 35-2.

14 Cross Domain Limit status (RO)

See Table 35-2.

15 Cross Domain Limit log (R/WC0)

See Table 35-2.

22:16 Digital Readout (RO)

See Table 35-2.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

See Table 35-2.

31 Reading Valid (RO)

See Table 35-2.

63:32 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-4) that points to the MSR containing the
most recent branch record.

300H 768 MSR_SGXOWNER0 Package Lower 64 Bit OwnerEpoch Component of SGX Key (RO).

63:0 Low 64 bits of an 128-bit external entropy value for key
derivation of an enclave.

301H 768 MSR_SGXOWNER1 Package Upper 64 Bit OwnerEpoch Component of SGX Key (RO).

63:0 Upper 64 bits of an 128-bit external entropy value for key
derivation of an enclave.

Table 35-32. Additional MSRs Supported by 6th Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 255

38EH 910 IA32_PERF_GLOBAL_
STAUS

See Table 35-2. See Section 18.2.4, “Architectural Performance
Monitoring Version 4.”

0 Thread Ovf_PMC0

1 Thread Ovf_PMC1

2 Thread Ovf_PMC2

3 Thread Ovf_PMC3

4 Thread Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Thread Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Thread Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Thread Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Ovf_FixedCtr0

33 Thread Ovf_FixedCtr1

34 Thread Ovf_FixedCtr2

54:35 Reserved.

55 Thread Trace_ToPA_PMI.

57:56 Reserved.

58 Thread LBR_Frz.

59 Thread CTR_Frz.

60 Thread ASCI.

61 Thread Ovf_Uncore

62 Thread Ovf_BufDSSAVE

63 Thread CondChgd

390H 912 IA32_PERF_GLOBAL_STAT
US_RESET

See Table 35-2. See Section 18.2.4, “Architectural Performance
Monitoring Version 4.”

0 Thread Set 1 to clear Ovf_PMC0

1 Thread Set 1 to clear Ovf_PMC1

2 Thread Set 1 to clear Ovf_PMC2

3 Thread Set 1 to clear Ovf_PMC3

4 Thread Set 1 to clear Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Thread Set 1 to clear Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Thread Set 1 to clear Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Thread Set 1 to clear Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

Table 35-32. Additional MSRs Supported by 6th Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 256

32 Thread Set 1 to clear Ovf_FixedCtr0

33 Thread Set 1 to clear Ovf_FixedCtr1

34 Thread Set 1 to clear Ovf_FixedCtr2

54:35 Reserved.

55 Thread Set 1 to clear Trace_ToPA_PMI.

57:56 Reserved.

58 Thread Set 1 to clear LBR_Frz.

59 Thread Set 1 to clear CTR_Frz.

60 Thread Set 1 to clear ASCI.

61 Thread Set 1 to clear Ovf_Uncore

62 Thread Set 1 to clear Ovf_BufDSSAVE

63 Thread Set 1 to clear CondChgd

391H 913 IA32_PERF_GLOBAL_STAT
US_SET

See Table 35-2. See Section 18.2.4, “Architectural Performance
Monitoring Version 4.”

0 Thread Set 1 to cause Ovf_PMC0 = 1

1 Thread Set 1 to cause Ovf_PMC1 = 1

2 Thread Set 1 to cause Ovf_PMC2 = 1

3 Thread Set 1 to cause Ovf_PMC3 = 1

4 Thread Set 1 to cause Ovf_PMC4=1 (if CPUID.0AH:EAX[15:8] > 4)

5 Thread Set 1 to cause Ovf_PMC5=1 (if CPUID.0AH:EAX[15:8] > 5)

6 Thread Set 1 to cause Ovf_PMC6=1 (if CPUID.0AH:EAX[15:8] > 6)

7 Thread Set 1 to cause Ovf_PMC7=1 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to cause Ovf_FixedCtr0 = 1

33 Thread Set 1 to cause Ovf_FixedCtr1 = 1

34 Thread Set 1 to cause Ovf_FixedCtr2 = 1

54:35 Reserved.

55 Thread Set 1 to cause Trace_ToPA_PMI = 1

57:56 Reserved.

58 Thread Set 1 to cause LBR_Frz = 1

59 Thread Set 1 to cause CTR_Frz = 1

60 Thread Set 1 to cause ASCI = 1

61 Thread Set 1 to cause Ovf_Uncore

Table 35-32. Additional MSRs Supported by 6th Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 257

62 Thread Set 1 to cause Ovf_BufDSSAVE

63 Reserved

392H 913 IA32_PERF_GLOBAL_INUSE See Table 35-2.

3F7H 1015 MSR_PEBS_FRONTEND Thread FrontEnd Precise Event Condition Select (R/W)

2:0 Event Code Select

3 Reserved.

4 Event Code Select High

7:5 Reserved.

19:8 IDQ_Bubble_Length Specifier

22:20 IDQ_Bubble_Width Specifier

63:23 Reserved

500H 1280 IA32_SGX_SVN_STATUS Thread Status and SVN Threshold of SGX Support for ACM (RO).

0 Lock. See Section 42.12.3, “Interactions with Authenticated Code
Modules (ACMs)”

15:1 Reserved.

23:16 SGX_SVN_SINIT. See Section 42.12.3, “Interactions with
Authenticated Code Modules (ACMs)”

63:24 Reserved.

560H 1376 IA32_RTIT_OUTPUT_BASE Thread Trace Output Base Register (R/W). See Table 35-2.

561H 1377 IA32_RTIT_OUTPUT_MASK
_PTRS

Thread Trace Output Mask Pointers Register (R/W). See Table 35-2.

570H 1392 IA32_RTIT_CTL Thread Trace Control Register (R/W)

0 TraceEn

1 CYCEn

2 OS

3 User

6:4 Reserved, MBZ

7 CR3 filter

8 ToPA; writing 0 will #GP if also setting TraceEn

9 MTCEn

10 TSCEn

11 DisRETC

12 Reserved, MBZ

13 BranchEn

Table 35-32. Additional MSRs Supported by 6th Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 258

17:14 MTCFreq

18 Reserved, MBZ

22:19 CYCThresh

23 Reserved, MBZ

27:24 PSBFreq

31:28 Reserved, MBZ

35:32 ADDR0_CFG

39:36 ADDR1_CFG

63:40 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Thread Tracing Status Register (R/W)

0 FilterEn, writes ignored.

1 ContexEn, writes ignored.

2 TriggerEn, writes ignored.

3 Reserved

4 Error (R/W)

5 Stopped

31:6 Reserved. MBZ

48:32 PacketByteCnt

63:49 Reserved, MBZ.

572H 1394 IA32_RTIT_CR3_MATCH THREAD Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match

64EH 1615 MSR_PPERF THREAD Productive Performance Count. (R/O).

63:0 Hardware’s view of workload scalability. See Section 14.4.5.1

652H 1614 MSR_PKG_HDC_CONFIG Package HDC Configuration (R/W).

2:0 PKG_Cx_Monitor.

Configures Package Cx state threshold for
MSR_PKG_HDC_DEEP_RESIDENCY

63: 3 Reserved

653H 1615 MSR_CORE_HDC_

RESIDENCY

Core Core HDC Idle Residency. (R/O).

63:0 Core_Cx_Duty_Cycle_Cnt.

655H 1617 MSR_PKG_HDC_SHALLOW_
RESIDENCY

Package Accumulate the cycles the package was in C2 state and at least one
logical processor was in forced idle. (R/O).

Table 35-32. Additional MSRs Supported by 6th Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 259

63:0 Pkg_C2_Duty_Cycle_Cnt.

656H 1618 MSR_PKG_HDC_DEEP_

RESIDENCY

Package Package Cx HDC Idle Residency. (R/O).

63:0 Pkg_Cx_Duty_Cycle_Cnt.

658H 1620 MSR_WEIGHTED_CORE_C0 Package Core-count Weighted C0 Residency. (R/O).

63:0 Increment at the same rate as the TSC. The increment each cycle is
weighted by the number of processor cores in the package that
reside in C0. If N cores are simultaneously in C0, then each cycle the
counter increments by N.

659H 1621 MSR_ANY_CORE_C0 Package Any Core C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is
one if any processor core in the package is in C0.

65AH 1622 MSR_ANY_GFXE_C0 Package Any Graphics Engine C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is
one if any processor graphic device’s compute engines are in C0.

65BH 1623 MSR_CORE_GFXE_OVERLA
P_C0

Package Core and Graphics Engine Overlapped C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is
one if at least one compute engine of the processor graphics is in
C0 and at least one processor core in the package is also in C0.

690H 1680 MSR_
LASTBRANCH_16_FROM_IP

Thread Last Branch Record 16 From IP (R/W)

One of 32 triplets of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the source
instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.9

691H 1681 MSR_
LASTBRANCH_17_FROM_IP

Thread Last Branch Record 17 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

692H 1682 MSR_
LASTBRANCH_18_FROM_IP

Thread Last Branch Record 18 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

693H 1683 MSR_
LASTBRANCH_19_FROM_IP

Thread Last Branch Record 19From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

694H 1684 MSR_
LASTBRANCH_20_FROM_IP

Thread Last Branch Record 20 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

695H 1685 MSR_
LASTBRANCH_21_FROM_IP

Thread Last Branch Record 21 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

696H 1686 MSR_
LASTBRANCH_22_FROM_IP

Thread Last Branch Record 22 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-32. Additional MSRs Supported by 6th Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 260

697H 1687 MSR_
LASTBRANCH_23_FROM_IP

Thread Last Branch Record 23 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

698H 1688 MSR_
LASTBRANCH_24_FROM_IP

Thread Last Branch Record 24 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

699H 1689 MSR_
LASTBRANCH_25_FROM_IP

Thread Last Branch Record 25 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69AH 1690 MSR_
LASTBRANCH_26_FROM_IP

Thread Last Branch Record 26 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69BH 1691 MSR_
LASTBRANCH_27_FROM_IP

Thread Last Branch Record 27 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69CH 1692 MSR_
LASTBRANCH_28_FROM_IP

Thread Last Branch Record 28 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69DH 1693 MSR_
LASTBRANCH_29_FROM_IP

Thread Last Branch Record 29 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69EH 1694 MSR_
LASTBRANCH_30_FROM_IP

Thread Last Branch Record 30 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69FH 1695 MSR_
LASTBRANCH_31_FROM_IP

Thread Last Branch Record 31 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6D0H 1744 MSR_
LASTBRANCH_16_TO_IP

Thread Last Branch Record 16 To IP (R/W)

One of 32 triplets of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the
destination instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.9

6D1H 1745 MSR_
LASTBRANCH_17_TO_IP

Thread Last Branch Record 17 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D2H 1746 MSR_
LASTBRANCH_18_TO_IP

Thread Last Branch Record 18 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D3H 1747 MSR_
LASTBRANCH_19_TO_IP

Thread Last Branch Record 19To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D4H 1748 MSR_
LASTBRANCH_20_TO_IP

Thread Last Branch Record 20 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D5H 1749 MSR_
LASTBRANCH_21_TO_IP

Thread Last Branch Record 21 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D6H 1750 MSR_
LASTBRANCH_22_TO_IP

Thread Last Branch Record 22 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 35-32. Additional MSRs Supported by 6th Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 261

6D7H 1751 MSR_
LASTBRANCH_23_TO_IP

Thread Last Branch Record 23 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D8H 1752 MSR_
LASTBRANCH_24_TO_IP

Thread Last Branch Record 24 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D9H 1753 MSR_
LASTBRANCH_25_TO_IP

Thread Last Branch Record 25 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DAH 1754 MSR_
LASTBRANCH_26_TO_IP

Thread Last Branch Record 26 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DBH 1755 MSR_
LASTBRANCH_27_TO_IP

Thread Last Branch Record 27 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DCH 1756 MSR_
LASTBRANCH_28_TO_IP

Thread Last Branch Record 28 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DDH 1757 MSR_
LASTBRANCH_29_TO_IP

Thread Last Branch Record 29 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DEH 1758 MSR_
LASTBRANCH_30_TO_IP

Thread Last Branch Record 30 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DFH 1759 MSR_
LASTBRANCH_31_TO_IP

Thread Last Branch Record 31 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

770H 1904 IA32_PM_ENABLE Package See Section 14.4.2, “Enabling HWP”

771H 1905 IA32_HWP_CAPABILITIES Thread See Section 14.4.3, “HWP Performance Range and Dynamic
Capabilities”

772H 1906 IA32_HWP_REQUEST_PKG Package See Section 14.4.4, “Managing HWP”

773H 1907 IA32_HWP_INTERRUPT Thread See Section 14.4.6, “HWP Notifications”

774H 1908 IA32_HWP_REQUEST Thread See Section 14.4.4, “Managing HWP”

7:0 Minimum Performance (R/W).

15:8 Maximum Performance (R/W).

23:16 Desired Performance (R/W).

31:24 Energy/Performance Preference (R/W).

41:32 Activity Window (R/W).

42 Package Control (R/W).

63:43 Reserved.

777H 1911 IA32_HWP_STATUS Thread See Section 14.4.5, “HWP Feedback”

DB0H 3504 IA32_PKG_HDC_CTL Package See Section 14.5.2, “Package level Enabling HDC”

DB1H 3505 IA32_PM_CTL1 Thread See Section 14.5.3, “Logical-Processor Level HDC Control”

DB2H 3506 IA32_THREAD_STALL Thread See Section 14.5.4.1, “IA32_THREAD_STALL”

Table 35-32. Additional MSRs Supported by 6th Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 262

DC0H 3520 MSR_LBR_INFO_0 Thread Last Branch Record 0 Additional Information (R/W)

One of 32 triplet of last branch record registers on the last branch
record stack. This part of the stack contains flag, TSX-related and
elapsed cycle information. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

DC1H 3521 MSR_LBR_INFO_1 Thread Last Branch Record 1 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC2H 3522 MSR_LBR_INFO_2 Thread Last Branch Record 2 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC3H 3523 MSR_LBR_INFO_3 Thread Last Branch Record 3 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC4H 3524 MSR_LBR_INFO_4 Thread Last Branch Record 4 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC5H 3525 MSR_LBR_INFO_5 Thread Last Branch Record 5 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC6H 3526 MSR_LBR_INFO_6 Thread Last Branch Record 6 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC7H 3527 MSR_LBR_INFO_7 Thread Last Branch Record 7 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC8H 3528 MSR_LBR_INFO_8 Thread Last Branch Record 8 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC9H 3529 MSR_LBR_INFO_9 Thread Last Branch Record 9 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCAH 3530 MSR_LBR_INFO_10 Thread Last Branch Record 10 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCBH 3531 MSR_LBR_INFO_11 Thread Last Branch Record 11 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCCH 3532 MSR_LBR_INFO_12 Thread Last Branch Record 12 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCDH 3533 MSR_LBR_INFO_13 Thread Last Branch Record 13 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCEH 3534 MSR_LBR_INFO_14 Thread Last Branch Record 14 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCFH 3535 MSR_LBR_INFO_15 Thread Last Branch Record 15 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Table 35-32. Additional MSRs Supported by 6th Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 263

...

DD0H 3536 MSR_LBR_INFO_16 Thread Last Branch Record 16 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD1H 3537 MSR_LBR_INFO_17 Thread Last Branch Record 17 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD2H 3538 MSR_LBR_INFO_18 Thread Last Branch Record 18 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD3H 3539 MSR_LBR_INFO_19 Thread Last Branch Record 19 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD4H 3520 MSR_LBR_INFO_20 Thread Last Branch Record 20 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD5H 3521 MSR_LBR_INFO_21 Thread Last Branch Record 21 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD6H 3522 MSR_LBR_INFO_22 Thread Last Branch Record 22 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD7H 3523 MSR_LBR_INFO_23 Thread Last Branch Record 23 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD8H 3524 MSR_LBR_INFO_24 Thread Last Branch Record 24 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD9H 3525 MSR_LBR_INFO_25 Thread Last Branch Record 25 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDAH 3526 MSR_LBR_INFO_26 Thread Last Branch Record 26 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDBH 3527 MSR_LBR_INFO_27 Thread Last Branch Record 27 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDCH 3528 MSR_LBR_INFO_28 Thread Last Branch Record 28 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDDH 3529 MSR_LBR_INFO_29 Thread Last Branch Record 29 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDEH 3530 MSR_LBR_INFO_30 Thread Last Branch Record 30 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDFH 3531 MSR_LBR_INFO_31 Thread Last Branch Record 31 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Table 35-32. Additional MSRs Supported by 6th Generation Intel® Core™ Processors Based on Skylake
Microarchitecture

Register
Address Register Name

Scope
Bit Description

 Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 264

35.15 MSRS IN THE NEXT GENERATION INTEL® XEON PHI™ PROCESSORS
The next generation Intel® Xeon Phi™ processor family, with CPUID DisplayFamily_DisplayModel signature
06_57H, supports the MSR interfaces listed in Table 35-33. These processors are based on the Knights Landing
microarchitecture. Some MSRs are shared between a pair of processor cores, the scope is marked as module.

Table 35-33. Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

0H 0 IA32_P5_MC_ADDR Module See Section 35.20, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Module See Section 35.20, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
and Table 35-2

10H 16 IA32_TIME_STAMP_
COUNTER

Thread See Section 17.14, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R)
See Table 35-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and
Table 35-2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O)

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 35-2.

0 Lock (R/WL)

1 Reserved

2 Enable VMX outside SMX operation (R/WL)

3BH 59 IA32_TSC_ADJUST THREAD Per-Logical-Processor TSC ADJUST (R/W)

See Table 35-2.

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID THREAD BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 THREAD Performance counter register

See Table 35-2.

C2H 194 IA32_PMC1 THREAD Performance Counter Register

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 265

15:8 Package Maximum Non-Turbo Ratio (R/O)

The is the ratio of the frequency that invariant TSC runs at.
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O)

When set to 1, indicates that Programmable Ratio Limits for Turbo
mode is enabled, and when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O)

When set to 1, indicates that TDP Limits for Turbo mode are
programmable, and when set to 0, indicates TDP Limit for Turbo
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O)

The is the minimum ratio (maximum efficiency) that the processor
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Module C-State Configuration Control (R/W)

2:0 Package C-State Limit (R/W)

The following C-state code name encodings are supported:

000b: C0/C1

001b: C2

010b: C6 No Retention

011b: C6 Retention

111b: No limit

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved.

15 CFG Lock (R/WO)

63:16 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Module Power Management IO Redirection in C-state (R/W)

15:0 LVL_2 Base Address (R/W)

Table 35-33. Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 266

18:16 C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to
be included when IO read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

100b - C4 is the max C-State to include

110b - C6 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW)

See Table 35-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Core Memory Type Range Register (R)

See Table 35-2.

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle
unsuccessful read of this MSR.

1:0 AES Configuration (RW-L)

Upon a successful read of this MSR, the configuration of AES
instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

otherwise, AES instructions are available.

Note, AES instruction set is not available if read is unsuccessful. If
the configuration is not 01b, AES instruction can be mis-configured
if a privileged agent unintentionally writes 11b.

63:2 Reserved.

174H 372 IA32_SYSENTER_CS Thread See Table 35-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 35-2.

179H 377 IA32_MCG_CAP Thread See Table 35-2.

17AH 378 IA32_MCG_STATUS Thread See Table 35-2.

186H 390 IA32_PERFEVTSEL0 Thread Performance Monitoring Event Select Register (R/W)

See Table 35-2.

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

Table 35-33. Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 267

19 PC

20 INT

21 AnyThread

22 EN

23 INV

31:24 CMASK

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 Thread See Table 35-2.

198H 408 IA32_PERF_STATUS Package See Table 35-2.

199H 409 IA32_PERF_CTL Thread See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Thread Clock Modulation (R/W)

See Table 35-2.

19BH 411 IA32_THERM_INTERRUPT Module Thermal Interrupt Control (R/W)

See Table 35-2.

19CH 412 IA32_THERM_STATUS Module Thermal Monitor Status (R/W)

See Table 35-2.

0 Thermal status (RO)

1 Thermal status log (R/WC0)

2 PROTCHOT # or FORCEPR# status (RO)

3 PROTCHOT # or FORCEPR# log (R/WC0)

4 Critical Temperature status (RO)

5 Critical Temperature status log (R/WC0)

6 Thermal threshold #1 status (RO)

7 Thermal threshold #1 log (R/WC0)

8 Thermal threshold #2 status (RO)

9 Thermal threshold #2 log (R/WC0)

10 Power Limitation status (RO)

11 Power Limitation log (R/WC0)

15:12 Reserved.

22:16 Digital Readout (RO)

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO)

31 Reading Valid (RO)

63:32 Reserved.

Table 35-33. Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 268

1A0H 416 IA32_MISC_ENABLE Thread Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

2:1 Reserved.

3 Automatic Thermal Control Circuit Enable (R/W)

6:4 Reserved.

7 Performance Monitoring Available (R)

10:8 Reserved.

11 Branch Trace Storage Unavailable (RO)

12 Precise Event Based Sampling Unavailable (RO)

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable (R/W)

18 ENABLE MONITOR FSM (R/W)

21:19 Reserved.

22 Limit CPUID Maxval (R/W)

23 xTPR Message Disable (R/W)

33:24 Reserved.

34 XD Bit Disable (R/W)

37:35 Reserved.

38 Turbo Mode Disable (R/W)

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Package

15:0 Reserved.

23:16 Temperature Target (R)

29:24 Target Offset (R/W)

63:30 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Shared Offcore Response Event Select Register (R/W)

1A7H 423 MSR_OFFCORE_RSP_1 Shared Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode for Groups of Cores (RW)

0 Reserved

7:1 Package Maximum Number of Cores in Group 0

Number active processor cores which operates under the maximum
ratio limit for group 0.

Table 35-33. Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 269

15:8 Package Maximum Ratio Limit for Group 0

Maximum turbo ratio limit when the number of active cores are not
more than the group 0 maximum core count.

20:16 Package Number of Incremental Cores Added to Group 1

Group 1, which includes the specified number of additional cores
plus the cores in group 0, operates under the group 1 turbo max
ratio limit = “group 0 Max ratio limit” - “group ratio delta for group
1”.

23:21 Package Group Ratio Delta for Group 1

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit to Group 0.

28:24 Package Number of Incremental Cores Added to Group 2

Group 2, which includes the specified number of additional cores
plus all the cores in group 1, operates under the group 2 turbo max
ratio limit = “group 1 Max ratio limit” - “group ratio delta for group
2”.

31:29 Package Group Ratio Delta for Group 2

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 1.

36:32 Package Number of Incremental Cores Added to Group 3

Group 3, which includes the specified number of additional cores
plus all the cores in group 2, operates under the group 3 turbo max
ratio limit = “group 2 Max ratio limit” - “group ratio delta for group
3”.

39:37 Package Group Ratio Delta for Group 3

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 2.

44:40 Package Number of Incremental Cores Added to Group 4

Group 4, which includes the specified number of additional cores
plus all the cores in group 3, operates under the group 4 turbo max
ratio limit = “group 3 Max ratio limit” - “group ratio delta for group
4”.

47:45 Package Group Ratio Delta for Group 4

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 3.

52:48 Package Number of Incremental Cores Added to Group 5

Group 5, which includes the specified number of additional cores
plus all the cores in group 4, operates under the group 5 turbo max
ratio limit = “group 4 Max ratio limit” - “group ratio delta for group
5”.

Table 35-33. Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 270

55:53 Package Group Ratio Delta for Group 5

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 4.

60:56 Package Number of Incremental Cores Added to Group 6

Group 6, which includes the specified number of additional cores
plus all the cores in group 5, operates under the group 6 turbo max
ratio limit = “group 5 Max ratio limit” - “group ratio delta for group
6”.

63:61 Package Group Ratio Delta for Group 6

An unsigned integer specifying the ratio decrement relative to the
Max ratio limit for Group 5.

1B0H 432 IA32_ENERGY_PERF_BIAS Thread See Table 35-2.

1B1H 433 IA32_PACKAGE_THERM_
STATUS

Package See Table 35-2.

1B2H 434 IA32_PACKAGE_THERM_
INTERRUPT

Package See Table 35-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W)

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W)

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W)

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R)

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R)

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

200H 512 IA32_MTRR_PHYSBASE0 Core See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Core See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Core See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Core See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Core See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Core See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Core See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Core See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Core See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Core See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Core See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Core See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Core See Table 35-2.

Table 35-33. Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 271

20DH 525 IA32_MTRR_PHYSMASK6 Core See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Core See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Core See Table 35-2.

250H 592 IA32_MTRR_FIX64K_00000 Core See Table 35-2.

258H 600 IA32_MTRR_FIX16K_80000 Core See Table 35-2.

259H 601 IA32_MTRR_FIX16K_A000
0

Core See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Core See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Core See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Core See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Core See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Core See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Core See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Core See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Core See Table 35-2.

277H 631 IA32_PAT Core See Table 35-2.

2FFH 767 IA32_MTRR_DEF_TYPE Core Default Memory Types (R/W)

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W)

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W)

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Core See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W)

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_STAUS Thread See Table 35-2.

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-2.

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-2.

3F1H 1009 MSR_PEBS_ENABLE Thread See Table 35-2.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 Package C3 Residency Counter. (R/O)

Table 35-33. Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 272

3F9H 1017 MSR_PKG_C6_RESIDENCY Package

63:0 Package C6 Residency Counter. (R/O)

3FAH 1018 MSR_PKG_C7_RESIDENCY Package

63:0 Package C7 Residency Counter. (R/O)

3FCH 1020 MSR_MC0_RESIDENCY Module Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 Module C0 Residency Counter. (R/O)

3FDH 1021 MSR_MC6_RESIDENCY Module

63:0 Module C6 Residency Counter. (R/O)

3FFH 1023 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 CORE C6 Residency Counter. (R/O)

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40CH 1036 MSR_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

480H 1152 IA32_VMX_BASIC Core Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

Table 35-33. Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 273

481H 1153 IA32_VMX_PINBASED_
CTLS

Core Capability Reporting Register of Pin-based VM-execution
Controls (R/O)

See Table 35-2.

482H 1154 IA32_VMX_PROCBASED_
CTLS

Core Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/O)

483H 1155 IA32_VMX_EXIT_CTLS Core Capability Reporting Register of VM-exit Controls (R/O)

See Table 35-2.

484H 1156 IA32_VMX_ENTRY_CTLS Core Capability Reporting Register of VM-entry Controls (R/O)

See Table 35-2.

485H 1157 IA32_VMX_MISC Core Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Table 35-2.

486H 1158 IA32_VMX_CR0_FIXED0 Core Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Table 35-2.

487H 1159 IA32_VMX_CR0_FIXED1 Core Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Table 35-2.

488H 1160 IA32_VMX_CR4_FIXED0 Core Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Table 35-2.

489H 1161 IA32_VMX_CR4_FIXED1 Core Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Table 35-2.

48AH 1162 IA32_VMX_VMCS_ENUM Core Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Core Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/O)

See Table 35-2

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Core Capability Reporting Register of EPT and VPID (R/O)

See Table 35-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Core Capability Reporting Register of Pin-based VM-execution Flex
Controls (R/O)

See Table 35-2

48EH 1166 IA32_VMX_TRUE_PROCBAS
ED_CTLS

Core Capability Reporting Register of Primary Processor-based
VM-execution Flex Controls (R/O)

See Table 35-2

48FH 1167 IA32_VMX_TRUE_EXIT_CTL
S

Core Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 35-2

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Core Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 35-2

Table 35-33. Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 274

491H 1169 IA32_VMX_FMFUNC Core Capability Reporting Register of VM-function Controls (R/O)

See Table 35-2

4C1H 1217 IA32_A_PMC0 Thread See Table 35-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 35-2.

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-2.

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O)

3:0 Package Power Units

See Section 14.9.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the multiplier, 1/
2^ESU; where ESU is an unsigned integer represented by bits 12:8.
Default value is 0EH (or 61 micro-joules)

15:13 Package Reserved

19:16 Package Time Units

See Section 14.9.1, “RAPL Interfaces.”

63:20 Reserved

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 Package C2 Residency Counter. (R/O)

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W)

See Section 14.9.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

613H 1555 MSR_PKG_PERF_STATUS Package PKG Perf Status (R/O)

See Section 14.9.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) See Section 14.9.3, “Package RAPL
Domain.”

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O)

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5,
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W)

See Section 14.9.5, “DRAM RAPL Domain.”

Table 35-33. Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 275

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Base TDP Ratio (R/O)

See Table 35-20

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O). See Table 35-20

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O). See Table 35-20

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

See Table 35-20

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

See Table 35-20

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

1 Thermal Status (R0)

5:2 Reserved.

6 VR Therm Alert Status (R0)

7 Reserved.

8 Electrical Design Point Status (R0)

63:9 Reserved.

6E0H 1760 IA32_TSC_DEADLINE Core TSC Target of Local APIC’s TSC Deadline Mode (R/W)

See Table 35-2

802H 2050 IA32_X2APIC_APICID Thread x2APIC ID register (R/O) See x2APIC Specification.

803H 2051 IA32_X2APIC_VERSION Thread x2APIC Version register (R/O)

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority register (R/W)

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority register (R/O)

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI register (W/O)

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination register (R/O)

80FH 2063 IA32_X2APIC_SIVR Thread x2APIC Spurious Interrupt Vector register (R/W)

810H 2064 IA32_X2APIC_ISR0 Thread x2APIC In-Service register bits [31:0] (R/O)

811H 2065 IA32_X2APIC_ISR1 Thread x2APIC In-Service register bits [63:32] (R/O)

812H 2066 IA32_X2APIC_ISR2 Thread x2APIC In-Service register bits [95:64] (R/O)

813H 2067 IA32_X2APIC_ISR3 Thread x2APIC In-Service register bits [127:96] (R/O)

814H 2068 IA32_X2APIC_ISR4 Thread x2APIC In-Service register bits [159:128] (R/O)

Table 35-33. Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 276

815H 2069 IA32_X2APIC_ISR5 Thread x2APIC In-Service register bits [191:160] (R/O)

816H 2070 IA32_X2APIC_ISR6 Thread x2APIC In-Service register bits [223:192] (R/O)

817H 2071 IA32_X2APIC_ISR7 Thread x2APIC In-Service register bits [255:224] (R/O)

818H 2072 IA32_X2APIC_TMR0 Thread x2APIC Trigger Mode register bits [31:0] (R/O)

819H 2073 IA32_X2APIC_TMR1 Thread x2APIC Trigger Mode register bits [63:32] (R/O)

81AH 2074 IA32_X2APIC_TMR2 Thread x2APIC Trigger Mode register bits [95:64] (R/O)

81BH 2075 IA32_X2APIC_TMR3 Thread x2APIC Trigger Mode register bits [127:96] (R/O)

81CH 2076 IA32_X2APIC_TMR4 Thread x2APIC Trigger Mode register bits [159:128] (R/O)

81DH 2077 IA32_X2APIC_TMR5 Thread x2APIC Trigger Mode register bits [191:160] (R/O)

81EH 2078 IA32_X2APIC_TMR6 Thread x2APIC Trigger Mode register bits [223:192] (R/O)

81FH 2079 IA32_X2APIC_TMR7 Thread x2APIC Trigger Mode register bits [255:224] (R/O)

820H 2080 IA32_X2APIC_IRR0 Thread x2APIC Interrupt Request register bits [31:0] (R/O)

821H 2081 IA32_X2APIC_IRR1 Thread x2APIC Interrupt Request register bits [63:32] (R/O)

822H 2082 IA32_X2APIC_IRR2 Thread x2APIC Interrupt Request register bits [95:64] (R/O)

823H 2083 IA32_X2APIC_IRR3 Thread x2APIC Interrupt Request register bits [127:96] (R/O)

824H 2084 IA32_X2APIC_IRR4 Thread x2APIC Interrupt Request register bits [159:128] (R/O)

825H 2085 IA32_X2APIC_IRR5 Thread x2APIC Interrupt Request register bits [191:160] (R/O)

826H 2086 IA32_X2APIC_IRR6 Thread x2APIC Interrupt Request register bits [223:192] (R/O)

827H 2087 IA32_X2APIC_IRR7 Thread x2APIC Interrupt Request register bits [255:224] (R/O)

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status register (R/W)

82FH 2095 IA32_X2APIC_LVT_CMCI Thread x2APIC LVT Corrected Machine Check Interrupt register (R/W)

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command register (R/W)

832H 2098 IA32_X2APIC_LVT_TIMER Thread x2APIC LVT Timer Interrupt register (R/W)

833H 2099 IA32_X2APIC_LVT_THERMA
L

Thread x2APIC LVT Thermal Sensor Interrupt register (R/W)

834H 2100 IA32_X2APIC_LVT_PMI Thread x2APIC LVT Performance Monitor register (R/W)

835H 2101 IA32_X2APIC_LVT_LINT0 Thread x2APIC LVT LINT0 register (R/W)

836H 2102 IA32_X2APIC_LVT_LINT1 Thread x2APIC LVT LINT1 register (R/W)

837H 2103 IA32_X2APIC_LVT_ERROR Thread x2APIC LVT Error register (R/W)

838H 2104 IA32_X2APIC_INIT_COUNT Thread x2APIC Initial Count register (R/W)

839H 2105 IA32_X2APIC_CUR_COUNT Thread x2APIC Current Count register (R/O)

83EH 2110 IA32_X2APIC_DIV_CONF Thread x2APIC Divide Configuration register (R/W)

83FH 2111 IA32_X2APIC_SELF_IPI Thread x2APIC Self IPI register (W/O)

Table 35-33. Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 277

25. Updates to Chapter 36, Volume 3C
Change bars show changes to Chapter 36 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

--

...

36.2.3.1 Packet Enable (PacketEn)
When PacketEn is set, the processor is in the mode that Intel PT is monitoring and all packets can be generated to
log what is being executed. PacketEn is composed of other states according to this relationship:

PacketEn TriggerEn AND ContextEn AND FilterEn AND BranchEn

These constituent controls are detailed in the following subsections.
PacketEn ultimately determines when the processor is tracing. When PacketEn is set, all control flow packets are
enabled. When PacketEn is clear, no control flow packets are generated, though other packets (timing and book-
keeping packets) may still be sent. See Section 36.2.4 for details of PacketEn and packet generation.
Note that, on processors that do not support IP filtering (i.e., CPUID.(EAX=14H,
ECX=0):EBX.IPFILT_WRSTPRSV[bit 2] = 0), FilterEn is treated as always set.

...

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W) See Table 35-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W) See Table 35-2

Table 35-33. Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 278

36.2.3.3 Context Enable (ContextEn)
Context Enable (ContextEn) indicates whether the processor is in the state or mode that software configured
hardware to trace. For example, if execution with CPL = 0 code is not being traced (IA32_RTIT_CTL.OS = 0), then
ContextEn will be 0 when the processor is in CPL0.
Software can discover the current ContextEn value by reading the IA32_RTIT_STATUS.ContextEn bit. ContextEn
is defined as follows:

ContextEn = !((IA32_RTIT_CTL.OS = 0 AND CPL = 0) OR
(IA32_RTIT_CTL.USER = 0 AND CPL > 0) OR (IS_IN_A_PRODUCTION_ENCLAVE1) OR
(IA32_RTIT_CTL.CR3Filter = 1 AND IA32_RTIT_CR3_MATCH does not match CR3)

If the clearing of ContextEn causes PacketEn to be cleared, a Packet Generation Disable (TIP.PGD) packet is
generated, but its IP payload is suppressed. If the setting of ContextEn causes PacketEn to be set, a Packet
Generation Enable (TIP.PGE) packet is generated.
When ContextEn is 0, control flow packets (TNT, FUP, TIP.*, MODE.*) are not generated, and no Linear Instruction
Pointers (LIPs) are exposed. However, some packets, such as MTC and PSB (see Section 36.4.2.16 and Section
36.4.2.17), may still be generated while ContextEn is 0. For details of which packets are generated only when
ContextEn is set, see Section 36.4.1.
The processor does not update ContextEn when TriggerEn = 0.
The value of ContextEn will toggle only when TriggerEn = 1.

...

36.2.3.5 Filter Enable (FilterEn)
Filter Enable indicates that the Instruction Pointer (IP) is within the range of IPs that Intel PT is configured to
watch. Software can get the state of Filter Enable by a RDMSR of IA32_RTIT_STATUS.FilterEn. For details on
configuration and use of IP filtering, see Section 36.2.2.3.
On clearing of FilterEn that also clears PacketEn, a Packet Generation Disable (TIP.PGD) will be generated, but
unlike the ContextEn case, the IP payload may not be suppressed. For direct, unconditional branches, as well as
for indirect branches (including RETs), the PGD generated by leaving the tracing region and clearing FilterEn will
contain the target IP. This means that IPs from outside the configured range can be exposed in the trace, as long
as they are within context.
When FilterEn is 0, control flow packets are not generated (e.g., TNT, TIP). However, some packets, such as PIP,
MTC, and PSB, may still be generated while FilterEn is clear. For details on packet enable dependencies, see
Section 36.4.1.
After TraceEn is set, FilterEn is set to 1 at all times if there is no IP filter range configured by software
(IA32_RTIT_CTL.ADDRn_CFG != 1, for all n), or if the processor does not support IP filtering (i.e.,
CPUID.(EAX=14H, ECX=0):EBX.IPFILT_WRSTPRSV[bit 2] = 0). FilterEn will toggle only when TraceEn=1 and
ContextEn=1, and when at least one range is configured for IP filtering.

...

36.2.4.2 Table of Physical Addresses (ToPA)
When IA32_RTIT_CTL.ToPA is set and IA32_RTIT_CTL.FabricEn is clear, the ToPA output mechanism is utilized.
The ToPA mechanism uses a linked list of tables; see Figure 36-1 for an illustrative example. Each entry in the
table contains some attribute bits, a pointer to an output region, and the size of the region. The last entry in the
table may hold a pointer to the next table. This pointer can either point to the top of the current table (for circular

1. Trace packets generation is disabled in a production enclave, see Section 36.2.6.3. See Intel® Software Guard Extensions Pro-
gramming Reference about differences between a production enclave and a debug enclave.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 279

array) or to the base of another table. The table size is not fixed, since the link to the next table can exist at any
entry.
The processor treats the various output regions referenced by the ToPA table(s) as a unified buffer. This means
that a single packet may span the boundary between one output region and the next.
The ToPA mechanism is controlled by three values maintained by the processor:
• proc_trace_table_base.

This is the physical address of the base of the current ToPA table. When tracing is enabled, the processor loads
this value from the IA32_RTIT_OUTPUT_BASE MSR. While tracing is enabled, the processor updates the
IA32_RTIT_OUTPUT_BASE MSR with changes to proc_trace_table_base, but these updates may not be
synchronous to software execution. When tracing is disabled, the processor ensures that the MSR contains
the latest value of proc_trace_table_base.

• proc_trace_table_offset.
This indicates the entry of the current table that is currently in use. (This entry contains the address of the
current output region.) When tracing is enabled, the processor loads this value from bits 31:7 (MaskOrT-
ableOffset) of the IA32_RTIT_OUTPUT_MASK_PTRS. While tracing is enabled, the processor updates
IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset with changes to proc_trace_table_offset, but these
updates may not be synchronous to software execution. When tracing is disabled, the processor ensures that
the MSR contains the latest value of proc_trace_table_offset.

• proc_trace_output_offset.
This a pointer into the current output region and indicates the location of the next write. When tracing is
enabled, the processor loads this value from bits 63:32 (OutputOffset) of the
IA32_RTIT_OUTPUT_MASK_PTRS. While tracing is enabled, the processor updates
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset with changes to proc_trace_output_offset, but these updates
may not be synchronous to software execution. When tracing is disabled, the processor ensures that the MSR
contains the latest value of proc_trace_output_offset.

Figure 36-1 provides an illustration (not to scale) of the table and associated pointers.

Figure 36-1. ToPA Memory Illustration

0FF_FFFF _FFFFH

STOP=1

proc_trace_output_offset: IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset

proc_trace_table_offset: IA32_RTIT_OUTPUT_MASK_PTRS.TableOffset

proc_trace_table_base: IA32_RTIT_OUTPUT_BASE

0

ToPA Table B

Physical Memory

64K OutputBaseX

4K OutputBaseY

END=1 TableBaseB

ToPA Table A

OutputRegionY

OutputRegionX

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 280

With the ToPA mechanism, the processor writes packets to the current output region (identified by
proc_trace_table_base and the proc_trace_table_offset). The offset within that region to which the next byte will
be written is identified by proc_trace_output_offset. When that region is filled with packet output (thus
proc_trace_output_offset = RegionSize–1), proc_trace_table_offset is moved to the next ToPA entry,
proc_trace_output_offset is set to 0, and packet writes begin filling the new output region specified by
proc_trace_table_offset.
As packets are written out, each store derives its physical address as follows:

trace_store_phys_addr Base address from current ToPA table entry +
proc_trace_output_offset

Eventually, the regions represented by all entries in the table may become full, and the final entry of the table is
reached. An entry can be identified as the final entry because it has either the END or STOP attribute. The END
attribute indicates that the address in the entry does not point to another output region, but rather to another
ToPA table. The STOP attribute indicates that tracing will be disabled once the corresponding region is filled. See
Section 36.2.4.2 for details on STOP.
When an END entry is reached, the processor loads proc_trace_table_base with the base address held in this END
entry, thereby moving the current table pointer to this new table. The proc_trace_table_offset is reset to 0, as is
the proc_trace_output_offset, and packet writes will resume at the base address indicated in the first entry.
If the table has no STOP or END entry, and trace-packet generation remains enabled, eventually the maximum
table size will be reached (proc_trace_table_offset = FFFFFFFFH). In this case, the proc_trace_table_offset and
proc_trace_output_offset are reset to 0 (wrapping back to the beginning of the current table) once the last output
region is filled.
It is important to note that processor updates to the IA32_RTIT_OUTPUT_BASE and
IA32_RTIT_OUTPUT_MASK_PTRS MSRs are asynchronous to instruction execution. Thus, reads of these MSRs
while Intel PT is enabled may return stale values. Like all IA32_RTIT_* MSRs, the values of these MSRs should not
be trusted or saved unless trace packet generation is first disabled by clearing IA32_RTIT_CTL.TraceEn. This
ensures that he output MSR values account for all packets generated to that point, after which the output MSR
values will be frozen until tracing resumes. 1

The processor may cache internally any number of entries from the current table or from tables that it references
(directly or indirectly). If tracing is enabled, the processor may ignore or delay detection of modifications to these
tables. To ensure that table changes are detected by the processor in a predictable manner, software should clear
TraceEn before modifying the current table (or tables that it references) and only then re-enable packet genera-
tion.

Single Output Region ToPA Implementation

The first processor generation to implement Intel PT supports only ToPA configurations with a single ToPA entry
followed by an END entry that points back to the first entry (creating one circular output buffer). Such processors
enumerate CPUID.(EAX=14H,ECX=0):ECX.MENTRY[bit 1] = 0 and CPUID.(EAX=14H,ECX=0):ECX.TOPAOUT[bit
0] = 1.
If CPUID.(EAX=14H,ECX=0):ECX.MENTRY[bit 1] = 0, ToPA tables can hold only one output entry, which must be
followed by an END=1 entry which points back to the base of the table. Hence only one contiguous block can be
used as output.
The lone output entry can have INT or STOP set, but nonetheless must be followed by an END entry as described
above. Note that, if INT=1, the PMI will actually be delivered before the region is filled.

ToPA Table Entry Format

The format of ToPA table entries is shown in Figure 36-2. The size of the address field is determined by the
processor’s physical-address width (MAXPHYADDR) in bits, as reported in CPUID.80000008H:EAX[7:0].

1. Although WRMSR is a serializing instruction, the execution of WRMSR that forces packet writes by clearing TraceEn does not itself
cause these writes to be globally observed.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 281

Table 36-3 describes the details of the ToPA table entry fields. If reserved bits are set to 1, an error is signaled.

ToPA STOP

Each ToPA entry has a STOP bit. If this bit is set, the processor will set the IA32_RTIT_STATUS.Stopped bit when
the corresponding trace output region is filled. This will clear TriggerEn and thereby cease packet generation. See
Section 36.2.5.4 for details on IA32_RTIT_STATUS.Stopped. This sequence is known as “ToPA Stop”.
No TIP.PGD packet will be seen in the output when the ToPA stop occurs, since the disable happens only when the
region is already full. When this occurs, output ceases after the last byte of the region is filled, which may mean
that a packet is cut off in the middle. Any packets remaining in internal buffers are lost and cannot be recovered.

Figure 36-2. Layout of ToPA Table Entry

11 91012MAXPHYADDR–1

9:6 Size

6 5 0

4 : STOP
2 : INT
0 : END

Output Region Base Physical Address

4 13 2

Reserved

63

Table 36-3. ToPA Table Entry Fields

ToPA Entry Field Description

Output Region
Base Physical
Address

If END=0, this is the base physical address of the output region specified by this entry. Note that all regions
must be aligned based on their size. Thus a 2M region must have bits 20:12 clear. If the region is not properly
aligned, an operational error will be signaled when the entry is reached.
If END=1, this is the 4K-aligned base physical address of the next ToPA table (which may be the base of the cur-
rent table, or the first table in the linked list if a circular buffer is desired). If the processor supports only a single
ToPA output region (see above), this address must be the value currently in the IA32_RTIT_OUTPUT_BASE
MSR.

Size Indicates the size of the associated output region. Encodings are:
0: 4K, 1: 8K, 2: 16K, 3: 32K, 4: 64K, 5: 128K, 6: 256K, 7: 512K,
8: 1M, 9: 2M, 10: 4M, 11: 8M, 12: 16M, 13: 32M, 14: 64M, 15: 128M
This field is ignored if END=1.

STOP When the output region indicated by this entry is filled, software should disable packet generation. This will be
accomplished by setting IA32_RTIT_STATUS.Stopped, which clears TriggerEn. This bit must be 0 if END=1; oth-
erwise it is treated as reserved bit violation (see ToPA Errors).

INT When the output region indicated by this entry is filled, signal Perfmon LVT interrupt.
Note that if both INT and STOP are set in the same entry, the STOP will happen before the INT. Thus the inter-
rupt handler should expect that the IA32_RTIT_STATUS.Stopped bit will be set, and will need to be reset before
tracing can be resumed.
This bit must be 0 if END=1; otherwise it is treated as reserved bit violation (see ToPA Errors).

END If set, indicates that this is an END entry, and thus the address field points to a table base rather than an output
region base.
If END=1, INT and STOP must be set to 0; otherwise it is treated as reserved bit violation (see ToPA Errors). The
Size field is ignored in this case.
If the processor supports only a single ToPA output region (see above), END must be set in the second table
entry.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 282

When ToPA stop occurs, the IA32_RTIT_OUTPUT_BASE MSR will hold the base address of the table whose entry
had STOP=1. IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset will hold the index value for that entry, and
the IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset should be set to the size of the region.
Note that this means the offset pointer is pointing to the next byte after the end of the region, a configuration that
would produce an operational error if the configuration remained when tracing is re-enabled with
IA32_RTIT_STATUS.Stopped cleared.

ToPA PMI

Each ToPA entry has an INT bit. If this bit is set, the processor will signal a performance-monitoring interrupt
(PMI) when the corresponding trace output region is filled. This interrupt is not precise, and it is thus likely that
writes to the next region will occur by the time the interrupt is taken.
The following steps should be taken to configure this interrupt:

1. Enable PMI via the LVT Performance Monitor register (at MMIO offset 340H in xAPIC mode; via MSR 834H in
x2APIC mode). See Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B for more
details on this register. For ToPA PMI, set all fields to 0, save for the interrupt vector, which can be selected by
software.

2. Set up an interrupt handler to service the interrupt vector that a ToPA PMI can raise.

3. Set the interrupt flag by executing STI.

4. Set the INT bit in the ToPA entry of interest and enable packet generation, using the ToPA output option. Thus,
TraceEn=ToPA=1 in the IA32_RTIT_CTL MSR.

Once the INT region has been filled with packet output data, the interrupt will be signaled. This PMI can be distin-
guished from others by checking bit 55 (Trace_ToPA_PMI) of the IA32_PERF_GLOBAL_STATUS MSR (MSR 38EH).
Once the ToPA PMI handler has serviced the relevant buffer, writing 1 to bit 55 of the MSR at 390H
(IA32_GLOBAL_STATUS_RESET) clears IA32_PERF_GLOBAL_STATUS.Trace_ToPA_PMI.
Intel PT is not frozen on PMI, and thus the interrupt handler will be traced (though filtering can prevent this). The
IA32_DEBUGCTL.Freeze_Perfmon_on_PMI setting will be applied on ToPA PMI just as on other PMIs, and hence
Perfmon counters are frozen.
Assuming the PMI handler wishes to read any buffered packets for persistent output, software should first disable
packet generation by clearing TraceEn. This ensures that all buffered packets are written to memory and avoids
tracing of the PMI handler. The configuration MSRs can then be used to determine where tracing has stopped. If
packet generation is disabled by the handler, it should then be manually re-enabled before the IRET if continued
tracing is desired.

ToPA PMI and Single Output Region ToPA Implementation

A processor that supports only a single ToPA output region implementation (such that only one output region is
supported; see above) will attempt to signal a ToPA PMI interrupt before the output wraps and overwrites the top
of the buffer. To support this functionality, the PMI handler should disable packet generation as soon as possible.
Due to PMI skid, it is possible, in rare cases, that the wrap will have occurred before the PMI is delivered. Software
can avoid this by setting the STOP bit in the ToPA entry (see Table 36-3); this will disable tracing once the region
is filled, and no wrap will occur. This approach has the downside of disabling packet generation so that some of the
instructions that led up to the PMI will not be traced. If the PMI skid is significant enough to cause the region to
fill and tracing to be disabled, the PMI handler will need to clear the IA32_RTIT_STATUS.Stopped indication before
tracing can resume.

ToPA PMI and XSAVES/XRSTORS State Handling

In some cases the ToPA PMI may be taken after completion of an XSAVES instruction that switches Intel PT state,
and in such cases any modification of Intel PT MSRs within the PMI handler will not persist when the saved Intel
PT context is later restored with XRSTORS. To account for such a scenario, it is recommended that the Intel PT
output configuration be modified by altering the ToPA tables themselves, rather than the Intel PT output MSRs.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 283

Table 36-4 depicts a recommended PMI handler algorithm for managing multi-region ToPA output and handling
ToPA PMIs that may arrive between XSAVES and XRSTORS. This algorithm is flexible to allow software to choose
between adding entries to the current ToPA table, adding a new ToPA table, or using the current ToPA table as a
circular buffer. It assumes that the ToPA entry that triggers the PMI is not the last entry in the table, which is the
recommended treatment.

ToPA Errors

When a malformed ToPA entry is found, an operation error results (see Section 36.3.9). A malformed entry can
be any of the following:

1. ToPA entry reserved bit violation.
This describes cases where a bit marked as reserved in Section 36.2.4.2 above is set to 1.

2. ToPA alignment violation.
This includes cases where illegal ToPA entry base address bits are set to 1:

a. ToPA table base address is not 4KB-aligned. The table base can be from a WRMSR to
IA32_RTIT_OUTPUT_BASE, or from a ToPA entry with END=1.

b. ToPA entry base address is not aligned to the ToPA entry size (e.g., a 2MB region with base address[20:12]
not equal to 0).

c. ToPA entry base address sets upper physical address bits not supported by the processor.

3. Illegal ToPA Output Offset (if IA32_RTIT_STATUS.Stopped=0).
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset is greater than or equal to the size of the current ToPA output
region size.

4. ToPA rules violations.
These are similar to ToPA entry reserved bit violations; they are cases when a ToPA entry is encountered with
illegal field combinations. They include the following:

Table 36-4. Algorithm to Manage Intel PT ToPA PMI and XSAVES/XRSTORS

Pseudo Code Flow

IF (IA32_PERF_GLOBAL_STATUS.ToPA)

 Save IA32_RTIT_CTL value;

 IF (IA32_RTIT_CTL.TraceEN)

 Disable Intel PT by clearing TraceEn;

 FI;

 IF (there is space available to grow the current ToPA table)

 Add one or more ToPA entries after the last entry in the ToPA table;

 Point new ToPA entry address field(s) to new output region base(s);

 ELSE

 Modify an upcoming ToPA entry in the current table to have END=1;

 IF (output should transition to a new ToPA table)

 Point the address of the "END=1" entry of the current table to the new table base;

 ELSE

 /* Continue to use the current ToPA table, make a circular. */

 Point the address of the "END=1"l entry to the base of the current table;

 Modify the ToPA entry address fields for filled output regions to point to new, unused output regions;

 /* Filled regions are those with index in the range of 0 to (IA32_RTIT_MASK_PTRS.MaskOrTableOffset -1). */

 FI;

FI;
Restore saved IA32_RTIT_CTL.value;

FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 284

a. Setting the STOP or INT bit on an entry with END=1.

b. Setting the END bit in entry 0 of a ToPA table.

c. On processors that support only a single ToPA entry (see above), two additional illegal settings apply:

i) ToPA table entry 1 with END=0.

ii) ToPA table entry 1 with base address not matching the table base.
In all cases, the error will be logged by setting IA32_RTIT_STATUS.Error, thereby disabling tracing when the prob-
lematic ToPA entry is reached (when proc_trace_table_offset points to the entry containing the error). Any packet
bytes that are internally buffered when the error is detected may be lost.
Note that operational errors may also be signaled due to attempts to access restricted memory. See Section
36.2.4.4 for details.
A tracing software have a range of flexibility using ToPA to manage the interaction of Intel PT with application
buffers, see Section 36.5.

...

36.2.4.3 Trace Transport Subsystem
When IA32_RTIT_CTL.FabricEn is set, the IA32_RTIT_CTL.ToPA bit is ignored, and trace output is written to the
trace transport subsystem. The endpoints of this transport are platform-specific, and details of configuration
options should refer to the specific platform documentation. The FabricEn bit is available to be set if
CPUID(EAX=14H,ECX=0):EBX[bit 3] = 1.

...

36.2.5.1 General Considerations
Trace packet generation is enabled and configured by a collection of model-specific registers (MSRs), which are
detailed below. Some notes on the configuration MSR behavior:
• If Intel Processor Trace is not supported by the processor (see Section 36.3.1), RDMSR or WRMSR of the

IA32_RTIT_* MSRs will cause #GP.
• A WRMSR to any of these configuration MSRs that begins and ends with IA32_RTIT_CTL.TraceEn set will #GP

fault. Packet generation must be disabled before the configuration MSRs can be changed.

Note: Software may write the same value back to IA32_RTIT_CTL without #GP, even if TraceEn=1.
• All configuration MSRs for Intel PT are duplicated per logical processor
• For each configuration MSR, any MSR write that attempts to change bits marked reserved, or utilize encodings

marked reserved, will cause a #GP fault.
• All configuration MSRs for Intel PT are cleared on a cold RESET.

— If CPUID.(EAX=14H, ECX=0):EBX.IPFILT_WRSTPRSV[bit 2] = 1, only the TraceEn bit is cleared on warm
RESET; though this may have the impact of clearing other bits in IA32_RTIT_STATUS. Other MSR values
of the trace configuration MSRs are preserved on warm RESET.

• The semantics of MSR writes to trace configuration MSRs in this chapter generally apply to explicit WRMSR to
these registers, using VM-exit or VM-entry MSR load list to these MSRs, XRSTORS with requested feature bit
map including XSAVE map component of state_8 (corresponding to IA32_XSS[bit 8]), and the write to
IA32_RTIT_CTL.TraceEn by XSAVES (Section 36.3.5.2).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 285

36.2.5.2 IA32_RTIT_CTL MSR
IA32_RTIT_CTL, at address 570H, is the primary enable and control MSR for trace packet generation. Bit positions
are listed in Table 36-5.

Table 36-6. IA32_RTIT_CTL MSR

Position Bit Name At Reset Bit Description

0 TraceEn 0 If 1, enables tracing; else tracing is disabled if 0.

When this bit transitions from 1 to 0, all buffered packets are flushed out of internal buffers.
A further store, fence, or architecturally serializing instruction may be required to ensure that
packet data can be observed at the trace endpoint. See Section 36.2.5.3 for details of
enabling and disabling packet generation.

Note that the processor will clear this bit on #SMI (Section) and warm reset. Other MSR bits
of IA32_RTIT_CTL (and other trace configuration MSRs) are not impacted by these events.

1 CYCEn 0 0: Disables CYC Packet (see Section 36.4.2.14).

1: Enables CYC Packet.

This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX.CPSB_CAM[bit 1] = 0.

2 OS 0 0: Packet generation is disabled when CPL = 0.

1: Packet generation may be enabled when CPL = 0.

3 User 0 0: Packet generation is disabled when CPL > 0.

1: Packet generation may be enabled when CPL > 0.

5:4 Reserved 0 Must be 0.

6 FabricEn 0 0: Trace output is directed to the memory subsystem, mechanism depends on
IA32_RTIT_CTL.ToPA.

1: Trace output is directed to the trace transport subsystem, IA32_RTIT_CTL.ToPA is ignored.
This bit is reserved if CPUID.(EAX=14H, ECX=0):ECX[bit 3] = 0.

7 CR3Filter 0 0: Disables CR3 filtering.

1: Enables CR3 filtering.

8 ToPA 0 0: Single-range output scheme enabled if CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2]
= 1 and IA32_RTIT_CTL.FabricEn=0.

1: ToPA output scheme enabled (see Section 36.2.4.2) if CPUID.(EAX=14H,
ECX=0):ECX.TOPA[bit 0] = 1, and IA32_RTIT_CTL.FabricEn=0.

Note: WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit and FabricEn would
cause #GP, if CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0.

WRMSR to IA32_RTIT_CTL that sets this bit causes #GP, if CPUID.(EAX=14H,
ECX=0):ECX.TOPA[bit 0] = 0.

9 MTCEn 0 0: Disables MTC Packet (see Section 36.4.2.16).

1: Enables MTC Packet.

This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX.MTC[bit 3] = 0.

10 TSCEn 0 0: Disable TSC packets.

1: Enable TSC packets (see Section 36.4.2.11).

11 DisRETC 0 0: Enable RET compression.

1: Disable RET compression (see Section 36.2.1.2).

12 Reserved 0 Must be 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 286

13 BranchEn 0 0: Disable COFI-based packets.

1: Enable COFI-based packets: FUP, TIP, TIP.PGE, TIP.PGD, TNT, MODE.Exec, MODE.TSX.

see Section 36.2.4 for details on BranchEn.

17:14 MTCFreq 0 Defines MTC packet Frequency, which is based on the core crystal clock, or Always Running
Timer (ART). MTC will be sent each time the selected ART bit toggles. The following Encodings
are defined:

0: ART(0), 1: ART(1), 2: ART(2), 3: ART(3), 4: ART(4), 5: ART(5), 6: ART(6), 7: ART(7),

8: ART(8), 9: ART(9), 10: ART(10), 11: ART(11), 12: ART(12), 13: ART(13), 14: ART(14), 15:
ART(15)

Software must use CPUID to query the supported encodings in the processor, see Section
36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if
CPUID.(EAX=14H, ECX=0):EBX.MTC[bit 3] = 0.

18 Reserved 0 Must be 0.

22:19 CycThresh 0 CYC packet threshold, see Section 36.3.6 for details. CYC packets will be sent with the first
eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then
N=0, otherwise N is defined as 2(CycThresh-1). The following Encodings are defined:

0: 0, 1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64,
8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384
Software must use CPUID to query the supported encodings in the processor, see Section
36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if
CPUID.(EAX=14H, ECX=0):EBX.CPSB_CAM[bit 1] = 0.

23 Reserved 0 Must be 0.

27:24 PSBFreq 0 Indicates the frequency of PSB packets. PSB packet frequency is based on the number of Intel
PT packet bytes output, so this field allows the user to determine the increment of
IA32_IA32_RTIT_STATUS.PacketByteCnt that should cause a PSB to be generated. Note that
PSB insertion is not precise, but the average output bytes per PSB should approximate the
SW selected period. The following Encodings are defined:

0: 2K, 1: 4K, 2: 8K, 3: 16K, 4: 32K, 5: 64K, 6: 128K, 7: 256K,
8: 512K, 9: 1M, 10: 2M, 11: 4M, 12: 8M, 13: 16M, 14: 32M, 15: 64M
Software must use CPUID to query the supported encodings in the processor, see Section
36.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if
CPUID.(EAX=14H, ECX=0):EBX.CPSB_CAM[bit 1] = 0.

31:28 Reserved 0 Must be 0.

35:32 ADDR0_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR0_A/B based on the following
encodings:

0: ADDR0 range unused.

1: The [IA32_RTIT_ADDR0_A..IA32_RTIT_ADDR0_B] range defines a FilterEn range. FilterEn
will only be set when the IP is within this range, though other FilterEn ranges can additionally
be used. See Section 36.2.2.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR0_A..IA32_RTIT_ADDR0_B] range defines a TraceStop range.
TraceStop will be asserted if code branches into this range. See 4.2.8 for details on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] >= 0.

Table 36-6. IA32_RTIT_CTL MSR

Position Bit Name At Reset Bit Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 287

...

36.3.6 Cycle-Accurate Mode
Intel PT can be run in a cycle-accurate mode which enables CYC packets (see Section 36.4.2.14) that provide low-
level information in the processor core clock domain. This cycle counter data in CYC packets can be used to
compute IPC (Instructions Per Cycle), or to track wall-clock time on a fine-grain level.

39:36 ADDR1_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR1_A/B based on the following
encodings:

0: ADDR1 range unused.

1: The [IA32_RTIT_ADDR1_A..IA32_RTIT_ADDR1_B] range defines a FilterEn range. FilterEn
will only be set when the IP is within this range, though other FilterEn ranges can additionally
be used. See Section 36.2.2.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR1_A..IA32_RTIT_ADDR1_B] range defines a TraceStop range.
TraceStop will be asserted if code branches into this range. See Section 36.4.2.10 for details
on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 2.

43:40 ADDR2_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR2_A/B based on the following
encodings:

0: ADDR2 range unused.

1: The [IA32_RTIT_ADDR2_A..IA32_RTIT_ADDR2_B] range defines a FilterEn range. FilterEn
will only be set when the IP is within this range, though other FilterEn ranges can additionally
be used. See Section 36.2.2.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR2_A..IA32_RTIT_ADDR2_B] range defines a TraceStop range.
TraceStop will be asserted if code branches into this range. See Section 36.4.2.10 for details
on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 3.

47:44 ADDR3_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR3_A/B based on the following
encodings:

0: ADDR3 range unused.

1: The [IA32_RTIT_ADDR3_A..IA32_RTIT_ADDR3_B] range defines a FilterEn range. FilterEn
will only be set when the IP is within this range, though other FilterEn ranges can additionally
be used. See Section 36.2.2.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR3_A..IA32_RTIT_ADDR3_B] range defines a TraceStop range.
TraceStop will be asserted if code branches into this range. See Section 36.4.2.10 for details
on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 4.

59:48 Reserved 0 Reserved only for future trace content enables, or address filtering configuration enables.
Must be 0.

63:60 Reserved 0 Must be 0.

Table 36-6. IA32_RTIT_CTL MSR

Position Bit Name At Reset Bit Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 288

To enable cycle-accurate mode packet generation, software should set IA32_RTIT_CTL.CYCEn=1. It is recom-
mended that software also set TSCEn=1 anytime cycle-accurate mode is in use. With this, all CYC-eligible packets
will be preceded by a CYC packet, the payload of which indicates the number of core clock cycles since the last
CYC packet. In cases where multiple CYC-eligible packets are generated in a single cycle, only a single CYC will be
generated before the CYC-eligible packets, otherwise each CYC-eligible packet will be preceded by its own CYC.
The CYC-eligible packets are:
• TNT, TIP, TIP.PGE, TIP.PGD, MODE.EXEC, MODE.TSX, PIP, VMCS, OVF, MTC, TSC
TSC packets are generated when there is insufficient information to reconstruct wall-clock time, due to tracing
being disabled (TriggerEn=0), or power down scenarios like a transition to a deep-sleep MWAIT C-state. In this
case, the CYC that is generated along with the TSC will indicate the number of cycles actively tracing (those
powered up, with TriggerEn=1) executed between the last CYC packet and the TSC packet. And hence the amount
of time spent while tracing is inactive can be inferred from the difference in time between that expected based on
the CYC value, and the actual time indicated by the TSC.
Additional CYC packets may be sent stand-alone, so that the processor can ensure that the decoder is aware of
the number of cycles that have passed before the internal hardware counter wraps, or is reset due to other micro-
architectural condition. There is no guarantee at what intervals these standalone CYC packets will be sent, except
that they will be sent before the wrap occurs. An illustration is given below.

...

Example 36-1. An Illustrative CYC Packet Example

Time (cycles) Instruction Snapshot Generated Packets Comment

x call %eax CYC(?), TIP ?Elapsed cycles from the previous CYC unknown

x + 2 call %ebx CYC(2), TIP 1 byte CYC packet; 2 cycles elapsed from the previous CYC

x + 8 jnz Foo (not taken) CYC(6) 1 byte CYC packet

x + 9 ret (compressed)

x + 12 jnz Bar (taken)

x + 16 ret (uncompressed) TNT, CYC(8), TIP 1 byte CYC packet

x + 4111 CYC(4095) 2 byte CYC packet

x + 12305 CYC(8194) 3 byte CYC packet

x + 16332 mov cr3, %ebx CYC(4027), PIP 2 byte CYC packet

Table 36-12. CPUID Leaf 14H, sub-leaf 1H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=1) Name Description Behavior

Register Bits

EAX 2:0 Number of Address Ranges A non-zero value specifies the number ADDRn_CFG field supported in
IA32_RTIT_CTL and the number of register pair IA32_RTIT_ADDRn_A/
IA32_RTIT_ADDRn_B supported for IP filtering and IP TraceStop.

NOTE: Currently, no processors support more than 4 address ranges.

15:3 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 289

...

36.3.1.1 Packet Decoding of RIP versus LIP
FUP, TIP, TIP.PGE, and TIP.PGE packets can contain an instruction pointer (IP) payload. On some processor gener-
ations, this payload will be an effective address (RIP), while on others this will be a linear address (LIP). In the
former case, the payload is the offset from the current CS base address, while in the latter it is the sum of the
offset and the CS base address (Note that in real mode, the CS base address is the value of CS<<4, while in
protected mode the CS base address is the base linear address of the segment indicated by the CS register.).
Which IP type is in use is indicated by enumeration (see CPUID.(EAX=14H, ECX=0):ECX.LIP[bit 31] in Table 36-10).

31:16 Bitmap of supported MTC
Period Encodings

The non-zero bit positions indicate the map of supported encoding
values for the IA32_RTIT_CTL.MTCFreq field. This applies only if
CPUID.(EAX=14H, ECX=0):EBX.MTC[bit 3] = 1 (MTC Packet generation is
supported), otherwise the MTCFreq field is reserved to 0.

Each bit position in this field represents 1 encoding value in the 4-bit
MTCFreq field (ie, bit 0 is associated with encoding value 0). For each
bit:

1: MTCFreq can be assigned the associated encoding value.

0: MTCFreq cannot be assigned to the associated encoding value. A
write to IA32_RTIT_CTLMTCFreq with unsupported encoding will cause
#GP fault.

EBX 15:0 Bitmap of supported Cycle
Threshold values

The non-zero bit positions indicate the map of supported encoding for
the IA32_RTIT_CTL.CycThresh field. This applies only if
CPUID.(EAX=14H, ECX=0):EBX.CPSB_CAM[bit 1] = 1 (Cycle-Accurate
Mode is Supported), otherwise the CycThresh field is reserved to 0. See
Section 36.2.5.

Each bit position in this field represents 1 encoding value in the 4-bit
CycThresh field (ie, bit 0 is associated with encoding value 0). For each
bit:

1: CycThresh can be assigned the associated encoding value.

0: CycThresh cannot be assigned to the associated encoding value. A
write to CycThresh with unsupported encoding will cause #GP fault.

31:16 Bitmap of supported
Configurable PSB Frequency
encoding

The non-zero bit positions indicate the map of supported encoding for
the IA32_RTIT_CTL.PSBFreq field. This applies only if
CPUID.(EAX=14H, ECX=0):EBX.CPSB_CAM[bit 1] = 1 (Configurable PSB
is supported), otherwise the PSBFreq field is reserved to 0. See
Section 36.2.5.

Each bit position in this field represents 1 encoding value in the 4-bit
PSBFreq field (ie, bit 0 is associated with encoding value 0). For each
bit:

1: PSBFreq can be assigned the associated encoding value.

0: PSBFreq cannot be assigned to the associated encoding value. A
write to PSBFreq with unsupported encoding will cause #GP fault.

ECX 31:0 Reserved

EDX 31:0 Reserved

Table 36-12. CPUID Leaf 14H, sub-leaf 1H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=1) Name Description Behavior

Register Bits

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 290

For software that executes while the CS base address is 0 (including all software executing in 64-bit mode), the
difference is indistinguishable. A trace decoder must account for cases where the CS base address is not 0 and the
resolved LIP will not be evident in a trace generated on a CPU that enumerates use of RIP. This is likely to cause
problems when attempting to link the trace with the associated binaries.
Note that IP comparison logic, for IP filtering and TraceStop range calculation, is based on the same IP type as
these IP packets. For processors that output RIP, the IP comparison mechanism is also based on RIP, and hence
on those processors RIP values should be written to IA32_RTIT_ADDRn_[AB] MSRs. This can produce differing
behavior if the same trace configuration setting is run on processors reporting different IP types, i.e.
CPUID.(EAX=14H, ECX=0):ECX.LIP[bit 31]. Care should be taken to check CPUID when configuring IP filters.

...

36.3.8 Internal Buffer Overflow
In the rare circumstances when new packets need to be generated but the processor’s dedicated internal buffers
are all full, an “internal buffer overflow” occurs. On such an overflow packet generation ceases (as packets would
need to enter the processor’s internal buffer) until the overflow resolves. Once resolved, packet generation
resumes.
When the buffer overflow is cleared, an OVF packet (Section 36.4.2.16) is generated, and the processor ensures
that packets which follow the OVF are not compressed (IP compression or RET compression) against packets that
were lost.
If IA32_RTIT_CTL.BranchEn = 1, the OVF packet will be followed by a FUP if the overflow resolves while Pack-
etEn=1. If the overflow resolves while PacketEn = 0 no packet is generated, but a TIP.PGE will naturally be gener-
ated later, once PacketEn = 1. The payload of the FUP or TIP.PGE will be the Current IP of the first instruction upon
which tracing resumes after the overflow is cleared. Between the OVF and following FUP or TIP.PGE, there may be
packets that do not depend on PacketEn, such as timing packets. If the overflow resolves while PacketEn=0, other
packets that are not dependent on PacketEn may come before the TIP.PGE.

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 291

36.4.2.6 Flow Update (FUP) Packet

FUP IP Payload

Flow Update Packet gives the source address of an instruction when it is needed. In general, branch instructions
do not need a FUP, because the source address is clear from the disassembly. For asynchronous events, however,
the source address cannot be inferred from the source, and hence a FUP will be sent. Table 36-24 illustrates cases
where FUPs are sent, and which IP can be expected in those cases.

Table 36-24. FUP Packet Definition

Name Flow Update (FUP) Packet

Packet Format

Dependencies TriggerEn & ContextEn.
(Typically depends on
BranchEn and FilterEn as well,
see Section 36.2.2 for details.)

Generation
Scenario

Asynchronous Events (interrupts, exceptions, INIT, SIPI, SMI, VM
exit1, #MC), XBEGIN, XEND, XABORT, XACQUIRE, XRELEASE, (EEN-
TRY, EEXIT, ERESUME, EEE, AEX,)2, INT 0, INT 3, INT n, a WRMSR that
disables packet generation.

Description Provides the source address for asynchronous events, and some other instructions. Is never sent alone, always sent
with an associated TIP or MODE packet, and potentially others.

Application FUP packets provide the IP to which they bind. However, they are never standalone, but are coupled with other
packets.
In TSX cases, the FUP is immediately preceded by a MODE.TSX, which binds to the same IP. A TIP will follow only in
the case of TSX aborts, see Section 36.4.2.8 for details.
Otherwise, FUPs are part of compound packet events (see Section 36.4.1). In these compound cases, the FUP pro-
vides the source IP for an instruction or event, while a following TIP (or TIP.PGD) uop will provide any destination IP.
Other packets may be included in the compound event between the FUP and TIP.

NOTES:
1.If IA32_VMX_MISC[bit 14] reports 1.
2.If Intel Software Guard Extensions is supported.

7 6 5 4 3 2 1 0

0 IPBytes 1 1 1 0 1

1 IP[7:0]

2 IP[15:8]

3 IP[23:16]

4 IP[31:24]

5 IP[39:32]

6 IP[47:40]

7 IP[55:48]

8 IP[63:56]

Table 36-24. FUP Cases and IP Payload

Event Flow Update IP Comment

External Interrupt, NMI/SMI, Traps,
Machine Check (trap-like), INIT/SIPI

Address of next instruction (Next IP) that
would have been executed

Functionally, this matches the LBR FROM field
value and also the EIP value which is saved onto
the stack.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 292

On a canonical fault due to sequentially fetching an instruction in non-canonical space (as opposed to jumping to
non-canonical space), the IP of the fault (and thus the payload of the FUP) will be a non-canonical address. This
is consistent with what is pushed on the stack for such faulting cases.
If there are post-commit task switch faults, the IP value of the FUP will be the original IP when the task switch
started. This is the same value as would be seen in the LBR_FROM field. But it is a different value as is saved on
the stack or VMCS.

...

Exceptions/Faults, Machine check
(fault-like)

Address of the instruction which took the

exception/fault (Current IP)

This matches the similar functionality of LBR
FROM field value and also the EIP value which is
saved onto the stack.

Software Interrupt Address of the software interrupt instruction
(Current IP)

This matches the similar functionality of LBR
FROM field value, but does not match the EIP
value which is saved onto the stack (Next
Linear Instruction Pointer - NLIP).

EENTER, EEXIT, ERESUME, Enclave
Exiting Event (EEE), AEX1

Current IP of the instruction This matches the LBR FROM field value and also
the EIP value which is saved onto the stack.

XACQUIRE Address of the X* instruction

XRELEASE, XBEGIN, XEND,
XABORT, other transactional abort

Current IP

#SMI IP that is saved into SMRAM

WRMSR that clears TraceEn Current IP
NOTES:
1.Information on EENTER, EEXIT, ERESUME, EEE, Asynchronous Enclave eXit (AEX) can be found in Intel® Soft-

ware Guard Extensions Programming Reference.

Table 36-24. FUP Cases and IP Payload

Event Flow Update IP Comment

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 293

36.4.2.12 Mini Time Counter (MTC) Packet

...

Table 36-33. MTC Packet Definition

Name Mini time Counter (MTC) Packet

Packet Format

Dependencies IA32_RTIT_CTL.MTCEn &&
TriggerEn

Generation
Scenario

Periodic, based on the core crystal clock, or Always Running Timer
(ART).

Description When enabled by software, an MTC packet provides a periodic indication of wall-clock time. The 8-bit CTC (Common
Timestamp Copy) payload value is set to (ART >> N) & 0xFF. The frequency of the ART is related to the Maximum
Non-Turbo frequency, and the ratio can be determined from CPUID leaf 15H, as described in Section 36.8.3.
Software can select the threshold N, which determines the MTC frequency by setting the IA32_RTIT_CTL.MTCFreq
field (see Section 36.2.5.2) to a supported value using the lookup enumerated by CPUID (see Section 36.3.1).
See Section 36.8.3 for details on how to use the MTC payload to track TSC time.
MTC provides 8 bits from the ART, starting with the bit selected by MTCFreq to dictate the frequency of the packet.
Whenever that 8-bit range being watched changes, an MTC packet will be sent out with the new value of that 8-bit
range. This allows the decoder to keep track of how much wall-clock time has elapsed since the last TSC packet was
sent, by keeping track of how many MTC packets were sent and what their value was. The decoder can infer the
truncated bits, CTC[N-1:0], are 0 at the time of the MTC packet.
There are cases in which MTC packet can be dropped, due to overflow or other micro-architectural conditions. The
decoder should be able to recover from such cases by checking the 8-bit payload of the next MTC packet, to deter-
mine how many MTC packets were dropped. It is not expected that >256 consecutive MTC packets should ever be
dropped.

Application MTC does not precisely indicate the time of any other packet, nor does it bind to any IP. However, all preceding pack-
ets represent instructions or events that executed before the indicated ART time, and all subsequent packets repre-
sent instructions that executed after, or at the same time as, the ART time.

7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 0 1

1 CTC[N+7:N]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 294

36.4.2.19 Maintenance (MNT) Packet

...

36.5.2.1 System-Wide Tracing
When a host or VMM configures Intel PT to collect trace packets of the entire system, it can leave the VMCS
controls in its default setting to allow VMX-specific packets to provide information across VMX transitions. MSR
load list is not used across VM exits or VM entries, nor is VM-exit MSR save list.
The decoder will desire to identify the occurrence of VMX transitions. The packets of interests to a decoder are
shown in Table 36-43.

Table 36-40. MNT Packet Definition

Name Maintenance (MNT) Packet

Packet Format

Dependencies TriggerEn Generation Sce-
nario

Implementation specific.

Description This packet is generated by hardware, the payload meaning is model-specific.

Application Unless a decoder has been extended for a particular family/model/stepping to interpret MNT packet payloads, this
packet should simply be ignored. It does not bind to any IP.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 1 1

2 1 0 0 0 1 0 0 0

3 Payload[7:0]

4 Payload[15:8]

5 Payload[23:16]

6 Payload[31:24]

7 Payload[39:32]

8 Payload[47:40]

9 Payload[55:48]

10 Payload[63:56]

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 295

Since the packet suppression controls are cleared, the VMCS packet will be included in all PSB+ for this usage
scenario. Thus the decoder can distinguish the execution context of different VMs. Additionally, it will be gener-
ated on VMPTRLD. Thus the decoder can distinguish the execution context of different VMs.
When the host VMM configures a system to collect trace packets in this scenario, it should emulate CPUID to
report CPUID.(EAX=07H, ECX=0):EBX[bit 26] with 0 to guests, indicating to guests that Intel PT is not available.

VMX TSC Manipulation

The TSC packets generated while in VMX non-Root operation will include any changes resulting from the use of a
VMM’s use of the TSC offsetting or TSC scaling VMCS control (see Chapter 25, “VMX Non-Root Operation”). In this
system-wide usage model, the decoder may need to account for the effect of per-VM adjustments in the TSC
packets generated in non-Root operation and the absence of TSC adjustments in TSC packets generated in Root
operation. The VMM can supply this information to the decoder.

...

36.5.2.5 Emulation of Intel PT Traced State
If a VMM emulates an element of processor state by taking a VM exit on reads and/or writes to that piece of state,
and the state element impacts Intel PT packet generation or values, it may be incumbent upon the VMM to insert
or modify the output trace data.
If a VM exit is taken on a guest write to CR3 (including “MOV CR3” as well as task switches), the PIP packet
normally generated on the CR3 write will be missing.
To avoid decoder confusion when the guest trace is decoded, the VMM should emulate the missing PIP by writing
it into the guest output buffer. If the guest CR3 value is manipulated, the VMM may also need to manipulate the
IA32_RTIT_CR3_MATCH value, in order to ensure the trace behavior matches the guest's expectation.
Similarly, if a VMM emulates the TSC value by taking a VM exit on RDTSC, the TSC packets generated in the trace
may mismatch the TSC values returned by the VMM on RDTSC. To ensure that the trace can be properly aligned

Table 36-44. Packets on VMX Transitions (System-Wide Tracing)

Event Packets Description

VM exit FUP(GuestIP) The FUP indicates at which point in the Guest flow the VM exit occurred. This is important,
since VM exit can be an asynchronous event. The IP will match that written into the VMCS.

PIP(HostCR3, NR=0) The PIP packet provides the new Host CR3 value, as well as indication that the logical
processor is entering VMX Root operation. This allows the decoder to identify the change of
executing context from guest to host and load the appropriate set of binaries to continue
decode.

TIP(HostIP) The TIP indicates the destination IP, the IP of the first instruction to be executed in VMX Root
operation.

Note, this packet could be preceded by a MODE.Exec packet (Section 36.4.2.8). This is
generated only in cases where CS.D or (CS.L & EFER.LMA) change during the transition.

VM entry PIP(GuestCR3, NR=1) The PIP packet provides the new Guest CR3 value, as well as indication that the logical
processor is entering VMX non-Root operation. This allows the decoder to identify the change
of executing context from host to guest and load the appropriate set of binaries to continue
decode.

TIP(GuestIP) The TIP indicates the destination IP, the IP of the first instruction to be executed in VMX no-
Root operation. This should match the IP value read out from the VMCS.

Note, this packet could be preceded by a MODE.Exec packet (Section 36.4.2.8). This is
generated only in cases where CS.D or (CS.L & EFER.LMA) change during the transition.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 296

with software logs based on RDTSC, the VMM should either make corresponding modifications to the TSC packet
values in the guest trace, or use mechanisms such as TSC offsetting or TSC scaling in place of exiting.

36.5.2.6 TSC Scaling
When TSC scaling is enabled for a guest using Intel PT, the VMM should ensure that the value of Maximum Non-
Turbo Ratio[15:8] in MSR_PLATFORM_INFO (MSR 0CEH) and the TSC/”core crystal clock” ratio (EBX/EAX) in
CPUID leaf 15H are set in a manner consistent with the resulting TSC rate that will be visible to the VM. This will
allow the decoder to properly apply TSC packets, MTC packets (based on the core crystal clock or ART, whose
frequency is indicated by CPUID leaf 15H), and CBR packets (which indicate the ratio of the processor frequency
to the Max Non-Turbo frequency). Absent this, or separate indication of the scaling factor, the decoder will be
unable to properly track time in the trace. See Section 36.8.3 for details on tracking time within an Intel PT trace.

...

36.8.3.1 Time Domain Relationships
The three domains are related by the following formula:

TimeStampValue = (CoreCrystalClockValue * P) + AdjustedProcessorCycles + Software_Offset;

The CoreCrystalClockValue can provide the coarse-grained component of the TSC value. P, or the TSC/”core
crystal clock” ratio, can be derived from CPUID leaf 15H, as described in Section 36.8.3.
The AdjustedProcessorCycles component provides the fine-grained distance from the rising edge of the last core
crystal clock. Specifically, it is a cycle count in the same frequency as the timestamp counter from the last crystal
clock rising edge. The value is adjusted based on the ratio of the processor core clock frequency to the Maximum
Non-Turbo (or P1) frequency.
The Software_Offsets component includes software offsets that are factored into the timestamp value, such as
IA32_TSC_ADJUST.

36.8.3.2 Estimating TSC within Intel PT
For many usages, it may be useful to have an estimated timestamp value for all points in the trace. The formula
provided in Section 36.8.3.1 above provides the framework for how such an estimate can be calculated from the
various timing packets present in the trace.
The TSC packet provides the precise timestamp value at the time it is generated; however, TSC packets are infre-
quent, and estimates of the current timestamp value based purely on TSC packets are likely to be very inaccurate
for this reason. In order to get more precise timing information between TSC packets, CYC packets and/or MTC
packets should be enabled.
MTC packets provide incremental updates of the CoreCrystalClockValue. On processors that support CPUID leaf
15H, the frequency of the timestamp counter and the core crystal clock is fixed, thus MTC packets provide a
means to update the running timestamp estimate. Between two MTC packets A and B, the number of crystal clock
cycles passed is calculated from the 8-bit payloads of respective MTC packets:
(CTCB - CTCA), where CTCi = MTCi[15:8] << IA32_RTIT_CTL.MTCFreq and i = A, B.
The time from a TSC packet to the subsequent MTC packet can be calculated using the TMA packet that follows
the TSC packet. The TMA packet provides both the crystal clock value (lower 16 bits, in the CTC field) and the
AdjustedProcessorCycles value (in the FastCounter field) that can be used in the calculation of the corresponding
core crystal clock value of the TSC packet.
When the next MTC after a pair of TSC/TMA is seen, the number of crystal clocks passed since the TSC packet can
be calculated by subtracting the TMA.CTC value from the time indicated by the MTCNext packet by
CTCDelta[15:0] = (CTCNext[15:0] - TMA.CTC[15:0]), where CTCNext = MTCPayload << IA32_RTIT_CTL.MTCFreq.
The TMA.FastCounter field provides the fractional component of the TSC packet into the next crystal clock cycle.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 297

CYC packets can provide further precision of an estimated timestamp value to many non-timing packets, by
providing an indication of the time passed between other timing packets (MTCs or TSCs).
When enabled, CYC packets are sent preceding each CYC-eligible packet, and provide the number of processor
core clock cycles that have passed since the last CYC packet. Thus between MTCs and TSCs, the accumulated CYC
values can be used to estimate the adjusted_processor_cycles component of the timestamp value. The accumu-
lated CPU cycles will have to be adjusted to account for the difference in frequency between the processor core
clock and the P1 frequency. The necessary adjustment can be estimated using the core:bus ratio value given in
the CBR packet, by multiplying the accumulated cycle count value by P1/CBRpayload.
A greater level of precision may be achieved by calculating the CPU clock frequency, see Section 36.8.3.4 below
for a method to do so using Intel PT packets.
CYCs can be used to estimate time between TSCs even without MTCs, though this will likely result in a reduction
in estimated TSC precision.

36.8.3.3 VMX TSC Manipulation
When software executes in non-Root operation, additional offset and scaling factors may be applied to the TSC
value. These are optional, but may be enabled via VMCS controls on a per-VM basis. See Chapter 25, “VMX Non-
Root Operation” for details on VMX TSC offsetting and TSC scaling.
Like the value returned by RDTSC, TSC packets will include these adjustments, but other timing packets (such as
MTC, CYC, and CBR) are not impacted. In order to use the algorithm above to estimate the TSC value when TSC
scaling is in use, it will be necessary for software to account for the scaling factor. See Section 36.5.2.6 for details.

...

26. New Chapter 37, New Volume 3D
A new chapter, Chapter 37, has been added to the new volume: Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3D: System Programming Guide, Part 4.

--

...
CHAPTER 37

INTRODUCTION TO INTEL® SOFTWARE GUARD EXTENSIONS

37.1 OVERVIEW
This document describes the Intel® Software Guard Extensions (Intel® SGX), a set of instructions and mecha-
nisms for memory accesses added to future Intel® Architecture processors. Intel SGX can encompass two col-
lections of instruction extensions, referred to as SGX1 and SGX2, see Table 37-4. The SGX1 extensions allow
an application to instantiate a protected container, referred to as an enclave. An enclave is a protected area in
the application’s address space (see Figure 37-1), which provides confidentiality and integrity even in the pres-
ence of privileged malware. Accesses to the enclave memory area from any software not resident in the enclave
are prevented. The SGX2 extensions allow additional flexibility in runtime management of enclave resources
and thread execution within an enclave.
Chapter 38 covers main concepts, objects and data structure formats that interact within the Intel SGX archi-
tecture. Chapter 39 covers operational aspects ranging from preparing an enclave, transferring control to en-
clave code, and programming considerations for the enclave code and system software providing support for
enclave execution. Chapter 40 describes the behavior of Asynchronous Enclave Exit (AEX) caused by events
while executing enclave code. Chapter 41 covers the syntax and operational details of the instruction and as-

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 298

sociated leaf functions available in Intel SGX. Chapter 42 describes interaction of various aspects of IA32 and
Intel® 64 architectures with Intel SGX. Chapter 43 covers Intel SGX support for application debug, profiling and
performance monitoring.

37.2 ENCLAVE INTERACTION AND PROTECTION
Intel SGX allows the protected portion of an application to be distributed in the clear. Before the enclave is built,
the enclave code and data are free for inspection and analysis. The protected portion is loaded into an enclave
where its code and data is measured. Once the application’s protected portion of the code and data are loaded
into an enclave, it is protected against external software access. An enclave can prove its identity to a remote
party and provide the necessary building-blocks for secure provisioning of keys and credentials. The application
can also request an enclave-specific and platform-specific key that it can use to protect keys and data that it
wishes to store outside the enclave.1

Intel SGX introduces two significant capabilities to the Intel Architecture. First is the change in enclave memory
access semantics. The second is protection of the address mappings of the application.

37.3 ENCLAVE LIFE CYCLE
Enclave memory management is divided into two parts: address space allocation and memory commitment.
Address space allocation is the specification of the range of logical addresses that the enclave may use. This range
is called the ELRANGE. No actual resources are committed to this region. Memory commitment is the assignment
of actual memory resources (as pages) within the allocated address space. This two-phase technique allows flex-
ibility for enclaves to control their memory usage and adjust dynamically without overusing memory resources
when enclave needs are low. Commitment adds physical pages to the enclave. An operating system may support
separate allocate and commit operations.
Proper memory management procedure for enclave memory access or non-enclave memory access are required
throughout the life cycle of an enclave: from creation, use, to destruction.

Figure 37-1. An Enclave Within the Application’s Virtual Address Space

1. For additional information, see white papers on Intel SGX at http://software.intel.com/en-us/intel-isa-extensions.

OS

App Code

App Code

Entry Table
Enclave

Enclave Heap

Enclave Stack

Enclave Code

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 299

During enclave creation, code and data for an enclave are loaded from a clear-text source, i.e. from non-enclave
memory.
Un-trusted application code starts using an initialized enclave typically by using the Intel SGX EENTER instruction
to transfer control to the enclave code residing in protected enclave page cache (EPC). The enclave code returns
to the caller via the EEXIT instruction. Upon enclave entry, control is transferred by hardware to software inside
the enclave. the software inside the enclave switches the stack pointer to one inside the enclave. When returning
back from the enclave, the software swaps the stack pointer then executes the EEXIT instruction.
On processors that supports the SGX2 extensions, an enclave writer may add memory to an enclave using the
SGX2 instruction set, after the enclave is built and running. These instructions allow adding additional memory
resources to the enclave for use in such areas as the heap. In addition, SGX2 instructions allow the enclave to add
new threads to the enclave. The SGX2 features provide additional capabilities to the software model without
changing the security properties of the Intel SGX architecture.
Calling an external procedure from an enclave could also be done using the EEXIT instruction. EEXIT and a soft-
ware convention between the trusted section and the un-trusted section.
An active enclave consumes available resource from the EPC. Intel SGX provides the EREMOVE instruction that an
EPC manager can use to reclaim resources committed to an enclave no longer in use. The EPC manager uses
EREMOVE on every page. After execution of EREMOVE the page is available for allocation to another enclave.

37.4 DATA STRUCTURES AND ENCLAVE OPERATION
There are 2 main data structures associated with operating an enclave, the SGX Enclave Control Structure (SECS)
and the Thread Control Structure (TCS).
There is one SECS for each enclave. The SECS contains meta-data which is used by the hardware to protect the
enclave. Included in the SECS is a field which stores the enclave build measurement value. This field, MREN-
CLAVE, is initialized by the ECREATE instruction and updated by every EADD and EEXTEND. It is locked by EINIT.
The SECS cannot be accessed by software.
Every enclave contains one or more TCSs. The TCS contains meta-data used by the hardware to save and restore
thread specific information when entering/exiting the enclave. There is one field, FLAGS, which may be accessed
by software.
The SECS is created at the time ECREATE (see Table 37-1) is executed. The TCS can be created using the EADD
instruction or the SGX2 instructions (see Table 37-2).

37.5 ENCLAVE PAGE CACHE
The Enclave Page Cache (EPC) is a secure storage used by the processor to store enclave pages when they are a
part of an executing enclave.
The EPC is divided into chunks of 4KB pages. An EPC page is always aligned on a 4KB boundary.
EPC is used to hold pages belonging to instance of enclaves. Pages in the EPC can either be valid or invalid. Every
valid page in the EPC belongs to one enclave instance. Each enclave instance has one EPC page holding its SECS.
The security metadata for each EPC page are held in an internal micro-architecture structure called Enclave Page
Cache Map (EPCM).
The EPC is a platform asset and as such must be managed by privileged software. Intel SGX provides a set of
instructions for adding and removing content to and from the EPC. The EPC is typically configured by BIOS at boot
time. On implementations in which EPC is part of system DRAM, the contents of the EPC are protected by an
encryption engine.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 300

37.5.1 Enclave Page Cache Map (EPCM)
The EPCM is a secure structure used by the processor to track the contents of the EPC. The EPCM holds one entry
for each page in the EPC. The format of the EPCM is micro-architectural, and consequently is implementation
dependent. However, the EPCM contains the following architectural information to hardware:
• The status of EPC page with respect to validity and accessibility.
• The enclave instance that owns the page. SECS identifier of the enclave to which the page belongs.
• The type of page: regular, SECS, TCS or VA.
• The linear address through which the enclave is allowed to access the page.
• The specified read/write/execute permissions on that page.
The EPCM structure is used by the CPU in the address-translation flow to enforce access-control on the enclave
pages loaded into the EPC. The EPCM structure is described in Table 38-27, and the conceptual access-control
flow is described in Section 38.5.
The EPCM entries are managed by the processor as part of various instruction flows.

37.6 ENCLAVE INSTRUCTIONS AND INTEL® SGX
The enclave instructions available with Intel SGX are organized as leaf functions under two instruction
mnemonics: ENCLS (ring 0) and ENCLU (ring 3). Each leaf function uses EAX to specify the leaf function index,
and may require additional implicit input registers as parameters. The use of EAX is implied implicitly by the
ENCLS and ENCLU instructions, ModR/M byte encoding is not used with ENCLS and ENCLU. The use of additional
registers does not use ModR/M encoding and is implied implicitly by respective leaf function index.
Each leaf function index is also associated with a unique, leaf-specific mnemonic. A long-form expression of Intel
SGX instruction takes the form of ENCLx[LEAF_MNEMONIC], where ‘x’ is either ‘S’ or ‘U’. The long-form expres-
sion provides clear association of the privilege-level requirement of a given “leaf mnemonic”. For simplicity, the
unique “Leaf_Mnemonic” name is also used interchangeably in this document for brevity.

Table 37-1. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1
Supervisor Instruction Description User Instruction Description

ENCLS[EADD] Add a page ENCLU[EENTER] Enter an Enclave

ENCLS[EBLOCK] Block an EPC page ENCLU[EEXIT] Exit an Enclave

ENCLS[ECREATE] Create an enclave ENCLU[EGETKEY] Create a cryptographic key

ENCLS[EDBGRD] Read data by debugger ENCLU[EREPORT] Create a cryptographic report

ENCLS[EDBGWR] Write data by debugger ENCLU[ERESUME] Re-enter an Enclave

ENCLS[EEXTEND] Extend EPC page measurement

ENCLS[EINIT] Initialize an enclave

ENCLS[ELDB] Load an EPC page as blocked

ENCLS[ELDU] Load an EPC page as unblocked

ENCLS[EPA] Add version array

ENCLS[EREMOVE] Remove a page from EPC

ENCLS[ETRACK] Activate EBLOCK checks

ENCLS[EWB] Write back/invalidate an EPC page

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 301

37.7 DISCOVERING SUPPORT FOR INTEL® SGX AND ENABLING ENCLAVE
INSTRUCTIONS

Detection of support of Intel SGX and enumeration of available and enabled Intel SGX resources are queried using
the CPUID instruction. The enumeration interface comprises the following:
• Processor support of Intel SGX is enumerated by a feature flag in CPUID leaf 07H: CPUID.(EAX=07H,

ECX=0H):EBX.SGX[bit 2]. If CPUID.(EAX=07H, ECX=0H):EBX.SGX = 1, the processor has support for Intel
SGX, and requires opt-in enabling by BIOS via IA32_FEATURE_CONTROL MSR.

If CPUID.(EAX=07H, ECX=0H):EBX.SGX = 1, CPUID will report via the available sub-leaves of
CPUID.(EAX=12H) on available and/or configured Intel SGX resources.

• The available and configured Intel SGX resources enumerated by the sub-leaves of CPUID.(EAX=12H) depend
on the state of opt-in configuration by BIOS.

37.7.1 Intel® SGX Opt-In Configuration
On processors that support Intel SGX, IA32_FEATURE_CONTROL provides the SGX_ENABLE field (bit 18). Before
system software can configure and enable Intel SGX resources, BIOS is required to set
IA32_FEATURE_CONTROL.SGX_ENABLE = 1 to opt-in the use of Intel SGX by system software.
The semantics of setting SGX_ENABLE follows the rules of IA32_FEATURE_CONTROL.LOCK (bit 0). Software is
considered to have opted into Intel SGX if and only if IA32_FEATURE_CONTROL.SGX_ENABLE and
IA32_FEATURE_CONTROL.LOCK are set to 1. The setting of IA32_FEATURE_CONTROL.SGX_ENABLE (bit 18) is
not reflected by CPUID.

37.7.2 Intel® SGX Resource Enumeration Leaves
If CPUID.(EAX=07H, ECX=0H):EBX.SGX = 1, the processor also supports querying CPUID with EAX=12H on Intel
SGX resource capability and configuration. The number of available sub-leaves in leaf 12H depends on the Opt-in

Table 37-2. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX2
Supervisor Instruction Description User Instruction Description

ENCLS[EAUG] Allocate page to an existing enclave ENCLU[EACCEPT] Accept changes to a page

ENCLS[EMODPR] Restrict page permissions ENCLU[EMODPE] Enhance access rights

ENCLS[EMODT] Make page TCS ENCLU[EACCEPTCOPY] Copy page to a new location

Table 37-3. Intel® SGX Opt-in and Enabling Behavior
CPUID.(07H,0H):EBX.

SGX
CPUID.(12H) FEATURE_CONTROL.

LOCK
FEATURE_CONTROL.

SGX_ENABLE
Enclave Instruction

0 Invalid X X #UD

1 Valid* X X #UD

1 Valid* 0 X #GP

1 Valid* 1 0 #GP

1 Valid* 1 1 Available (see Table 37-4 for
details of SGX1 and SGX2).

* Leaf 12H enumeration results are dependent on enablement.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 302

and system software configuration. Information returned by CPUID.12H is thread specific; software should not
assume that if Intel SGX instructions are supported on one hardware thread, they are also supported elsewhere.
A properly configured processor exposes Intel SGX functionality with CPUID.EAX=12H reporting valid information
(non-zero content) in three or more sub-leaves, see Table 37-4:

• CPUID.(EAX=12H, ECX=0H) enumerates Intel SGX capability, including enclave instruction opcode support.
• CPUID.(EAX=12H, ECX=1H) enumerates Intel SGX capability of processor state configuration and enclave

configuration in the SECS structure (see Table 38-3).
• CPUID.(EAX=12H, ECX >1) enumerates available EPC resources.

CPUID leaf 12H sub-leaves 2 and higher report physical memory resources available for use with Intel SGX. These
physical memory sections are typically configured by BIOS as Processor Reserved Memory, and available to
the OS to manage as EPC.
To enumerate how many EPC sections are available to the EPC manager, software can enumerate CPUID leaf 12H
with sub-leaf index starting from 2, and decode the sub-leaf-type encoding (returned in EAX[3:0]) until the sub-
leaf type is invalid. All invalid sub-leaves of CPUID leaf 12H return EAX/EBX/ECX/EDX with 0.

Table 37-4. CPUID Leaf 12H, Sub-Leaf 0 Enumeration of Intel® SGX Capabilities

CPUID.(EAX=12H,ECX=0) Description Behavior

Register Bits

EAX 0 SGX1: If 1, indicates opcodes of SGX1 instruction listed in Table 37-1 are supported.

1 SGX2: If 1, indicates opcodes of SGX2 instruction listed in Table 37-2 are supported.

31:2 Reserved (0).

EBX
31:0 MISCSELECT: Reports the bit vector of supported extended features that can be written to the MISC

region of the SSA.

ECX 31:0 Reserved (0).

EDX

7:0 MaxEnclaveSize_Not64: the maximum enclave size is 2^(EDX[7:0]) byes when not in 64-bit mode.

15:8 MaxEnclaveSize_64: the maximum enclave size is 2^(EDX[15:8]) byes when operating in 64-bit mode.

31:16 Reserved (0).

Table 37-5. CPUID Leaf 12H, Sub-Leaf 1 Enumeration of Intel® SGX Capabilities

CPUID.(EAX=12H,ECX=1) Description Behavior

Register Bits

EAX 31:0 Report the valid bit fields of bits [31:0] of SECS.ATTRIBUTES that software can set with ECREATE.

EBX 31:0 Report the valid bit fields of bits [63:32] of SECS.ATTRIBUTES that software can set with ECREATE.

ECX 31:0 Report the valid bit fields of bits [95:64] of SECS.ATTRIBUTES that software can set with ECREATE.

EDX 31:0 Report the valid bit fields of bits [127:96] of SECS.ATTRIBUTES that software can set with ECREATE.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 303

...

27. New Chapter 38, New Volume 3D
A new chapter, Chapter 38, has been added to the new volume: Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3D: System Programming Guide, Part 4.

--

...
CHAPTER 38

ENCLAVE ACCESS CONTROL AND DATA STRUCTURES

38.1 OVERVIEW OF ENCLAVE EXECUTION ENVIRONMENT
An enclave comprises a contiguous range in the linear address space. An enclave must run from a special area of
physical memory called Enclave Page Cache (EPC), which is protected from “non-enclave” memory accesses. An
enclave need not be physically contiguous within the EPC. It is up to the EPC manager to allocate EPC pages to
various enclaves. Enclaves abide by OS/VMM imposed segmentation and paging policies. OS/VMM-managed page
tables and extended page tables provide address translation for the enclave pages, and the hardware guarantees
that these pages will be mapped to EPC (any failure generates an exception).

Table 37-6. CPUID Leaf 12H, Sub-Leaf Index 2 or Higher Enumeration of Intel® SGX Resources

CPUID.(EAX=12H,ECX > 1) Description Behavior

Register Bits

EAX 3:0 0000b: This sub-leaf is invalid, EBX:EAX and EDX:ECX report 0.

0001b: This sub-leaf provides information on the Enclave Page Cache (EPC) in EBX:EAX and EDX:ECX.

All other encoding are reserved.

11:4 Reserved (0).

31:12 If EAX[3:0] = 0001b, these are bits 31:12 of the physical address of the base of the EPC section.

EBX
19:0 If EAX[3:0] = 0001b, these are bits 51:32 of the physical address of the base of the EPC section.

31:20 Reserved (0).

ECX

3: 0 0000b: Not valid.

0001b: The EPC section is confidentiality, integrity and replay protected.

All other encoding are reserved.

11:4 Reserved (0).

31:12 If EAX[3:0] = 0001b, these are bits 31:12 of the size of the corresponding EPC section within the
Processor Reserved Memory.

EDX 19: 0 If EAX[3:0] = 0001b, these are bits 51:32 of the size of the corresponding EPC section within the
Processor Reserved Memory.

31:20 Reserved (0).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 304

38.2 TERMINOLOGY
A memory access that is initiated by internal enclave code to a linear address inside that enclave is called a Direct
Enclave Access (Direct EA).
Memory accesses initiated by certain Intel® SGX instruction leaf functions such as ECREATE, EADD, EDBGRD,
EDBGWR, ELDU/ELDB, EWB, EREMOVE, EENTER, and ERESUME that need to access EPC data by a non-enclave,
managing context are called Indirect Enclave Accesses (Indirect EA). Table 38-1 lists additional details of the indi-
rect EA of SGX1 and SGX2 extensions.
Direct EAs and Indirect EAs together are called Enclave Accesses (EAs). Intel SGX instruction leaves with indirect
EA are listed in Table 38-1.
Any memory access that is not an Enclave Access is called a non-enclave access.

38.3 ACCESS-CONTROL REQUIREMENTS
Enclave accesses have the following access-control requirements:
• All memory accesses must conform to segmentation and paging policies set by the OS/VMM.
• Enclave entry/exit must happen through specific enclave instructions or events:

— ENCLU[EENTER], ENCLU[ERESUME].

— ENCLU[EEXIT], Asynchronous Enclave Exit (AEX).
• Direct jumps from outside an enclave to any linear address that maps to an enclave page do not enable

enclave mode and result in abort page semantics and undefined behavior.
• Code fetches from inside an enclave to a linear address outside that enclave result in a #GP(0) exception.
• Non-enclave accesses to EPC memory result in abort page semantics.
• Hardware detects and prevents enclave accesses using logical-to-linear address translations which are

different than the original direct EA used to allocate the page. Detection of modified translation results in
#GP(0).

• Direct EAs to any EPC pages must conform to the currently defined security attributes for that page. These
attributes may be defined at enclave creation time (EADD) or when the enclave redefines them using SGX2
instructions:

— Target must belong to the same enclave.

— RWX attributes of the access must be compatible with the current RWX permissions.

— Target must not have a restricted page type (PT_SECS, PT_TCS or PT_VA, PT_TRIM).

— The EPC page must not be BLOCKED.

— The EPC page must not be PENDING.

— The EPC page must not be MODIFIED.

NOTE
For read accesses with abort-page semantics, see Section 6.5, “Exception Classifications,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. Write accesses with
abort-page semantics are ignored.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 305

38.4 SEGMENT-BASED ACCESS CONTROL
Intel SGX architecture does not modify the segment checks performed by a logical processor. All memory
accesses arising from a logical processor in protected mode (including one that is inside an enclave) are subject
to segmentation checks with the appropriate segment register.
To ensure that outside entities do not modify the enclave's logical-to-linear address translation in an unexpected
fashion, ENCLU[EENTER] and ENCLU[ERESUME] check that CS, DS, ES, and SS, if usable (i.e., not null), have
segment base value of zero. A non-zero segment base value for these registers results in a #GP(0).
On enclave entry either via EENTER or ERESUME, the processor saves the contents of the FS and GS registers,
and modifies these registers to enable the enclave's use of these registers for accessing the thread-local storage
inside the enclave. FS and GS are loaded from values stored in the TCS at build time. On enclave exit, the
contents at time of entry are restored. The details of these modifications can be found in the descriptions of
EENTER, ERESUME, EEXIT, and AEX flows.

38.5 PAGE-BASED ACCESS CONTROL

38.5.1 Access-control for Accesses that Originate from non-SGX Instructions
Intel SGX builds on the processor's paging mechanism to afford enclaves a protected execution environment.
Intel SGX provides page-granular access-control for enclave pages that are loaded into an EPC. Enclave pages
loaded into an EPC are only accessible from inside the same enclave, or through certain Intel SGX instructions.

38.5.2 Memory Accesses that Split across ELRANGE
Memory data accesses are allowed to split across ELRANGE (i.e., a part of the access is inside ELRANGE and a part
of the access is outside ELRANGE) while the processor is inside an enclave. If an access splits across ELRANGE,
the processor splits the access into two sub-accesses (one inside ELRANGE and the other outside ELRANGE), and
each access is evaluated. A code-fetch access that splits across ELRANGE results in a #GP due to the portion that
lies outside of the ELRANGE.

38.5.3 Implicit vs. Explicit Accesses
Memory accesses originating from Intel SGX instruction leaf functions are categorized as either explicit accesses
or implicit accesses. Table 38-1 lists the implicit and explicit memory accesses made by Intel SGX leaf functions.

38.5.3.1 Explicit Accesses
Accesses to memory locations provided as explicit operands to Intel SGX instruction leaf functions, or their linked
data structures are called explicit accesses.
Explicit accesses are always made using logical addresses. These accesses are subject to segmentation, paging,
extended paging, and APIC-virtualization checks, and trigger any faults/exit associated with these checks when
the access is made.
The interaction of explicit memory accesses with data breakpoints is leaf-function-specific, and is documented in
Section 43.3.5.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 306

38.5.3.2 Implicit Accesses
Accesses to data structures whose physical addresses are cached by the processor are called implicit accesses.
These accesses are not passed as operands of the instruction but are implied by use of the instruction.
Implicit accesses are made using physical addresses that are cached by the processor. These accesses do not
trigger any access-control faults/exits or data breakpoints. Table 38-1 lists memory objects that Intel SGX
instruction leaf functions access either by explicit access or implicit access. The addresses of explicit access
objects are passed via register operands with the second through fourth column of Table 38-1 matching implicitly
encoded registers RBX, RCX, RDX.
Physical addresses used in different implicit accesses are cached via different instructions and for different dura-
tions. The physical address of SECS associated with each EPC page is cached at the time the page is added to the
enclave via ENCLS[EADD]. This binding is severed when the corresponding page is removed from the EPC via
ENCLS[EREMOVE]. Physical addresses of TCS and SSA memory are cached at the time of most-recent enclave
entry. Exit from an enclave (ENCLU[EEXIT] or AEX) flushes this caching. Details of Asynchronous Enclave Exit is
described in Chapter 40.
The physical addresses that are used for implicit accesses are derived from logical (or linear) addresses using
ordinary address translation. Before caching such a physical address the original logical (or linear) address is
subject to ordinary checks such as segmentation, paging, EPT, and APIC virtualization checks. These checks may
trigger exceptions or VM exits. Note, however, that such exception or VM exits may not occur after a physical
address is cached and used for an implicit access.

Table 38-1. List of Implicit and Explicit Memory Access by Intel® SGX Enclave Instructions
Instr. Leaf Explicit 1 Explicit 2 Explicit 3 Implicit

ECREATE PAGEINFO and linked structures EPCPAGE

EADD PAGEINFO and linked structures EPCPAGE

EEXTEND EPCPAGE SECS

EINIT SIGSTRUCT SECS EINITTOKEN

EBLOCK EPCPAGE SECS

ETRACK EPCPAGE

ELDB/ELDU PAGEINFO and linked structures, PCMD EPCPAGE VAPAGE

EWB PAGEINFO and linked structures, PCMD EPCPAGE VAPAGE SECS

EREMOVE EPCPAGE SECS

EDBGRD EPCADDR Destination SECS

EDBGWR EPCADDR Source SECS

EENTER TCS and linked SSA SECS

ERESUME TCS and linked SSA SECS

EGETKEY KEYREQUEST KEY SECS

EREPORT TARGETINFO REPORTDATA OUTPUTDATA SECS

EEXIT SECS, TCS

EPA EPCADDR

EAUG PAGEINFO and linked structures EPCPAGE SECS

EMODPE SECINFO EPCPAGE

EMODPR SECINFO EPCPAGE SECS

EMODT SECINFO EPCPAGE SECS

EACCEPT SECINFO EPCPAGE SECS

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 307

38.6 INTEL® SGX DATA STRUCTURES OVERVIEW
Enclave operation is managed via a collection of data structures, many of the top-level data structures contain
sub-structures. The top-level data structures relate to parameters that may be used in enclave setup/mainte-
nance, by Intel SGX instructions, or AEX event. The top-level data structures are:
• SGX Enclave Control Structure (SECS)
• Thread Control Structure (TCS)
• State Save Area (SSA)
• Page Information (PageInfo)
• Security Information (SECINFO)
• Paging Crypto MetaData (PCMD)
• Enclave Signature Structure (SIGSTRUCT)
• EINIT Token Structure (EINITTOKEN)
• Report Structure (REPORT)
• Report Target Info (TARGETINFO)
• Key Request (KEYREQUEST)
• Version Array (VA)
• Enclave Page Cache Map (EPCM)
Details of the top-level data structures and associated sub-structures are listed in Section 38.7 through Section
38.19.

38.7 SGX ENCLAVE CONTROL STRUCTURE (SECS)
The SECS data structure requires 4K-Bytes alignment.

EACCEPTCOPY SECINFO EPCPAGE (Src) EPCPAGE (Dst)

Asynchronous Enclave Exit* SECS, TCS, SSA

*Details of Asynchronous Enclave Exit (AEX) is described in Section 40.4

Table 38-1. List of Implicit and Explicit Memory Access by Intel® SGX Enclave Instructions
Instr. Leaf Explicit 1 Explicit 2 Explicit 3 Implicit

Table 38-2. Layout of SGX Enclave Control Structure (SECS)
Field OFFSET (Bytes) Size (Bytes) Description

SIZE 0 8 Size of enclave in bytes; must be power of 2.

BASEADDR 8 8 Enclave Base Linear Address must be naturally aligned to size.

SSAFRAMESIZE 16 4 Size of one SSA frame in pages (including XSAVE, pad, GPR, and condition-
ally MISC).

MISCSELECT 20 4 Bit vector specifying which extended features are saved to the MISC region
of the SSA frame when an AEX occurs.

RESERVED 24 24

ATTRIBUTES 48 16 Attributes of the Enclave, see Table 38-3.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 308

38.7.1 ATTRIBUTES
The ATTRIBUTES data structure is comprised of bit-granular fields that are used in the SECS, CPUID enumeration,
the REPORT and the KEYREQUEST structures.

38.7.2 SECS.MISCSELECT Field
If CPUID.(EAX=12H, ECX=0):EBX[31:0] != 0, the processor can save extended information into the MISC region
of SSA when an AEX occurs. An enclave writer can specify in the SECS.MISCSELECT field with the bit vector repre-
senting which extended information are to be saved in the MISC region of the SSA frame when an AEX is gener-
ated. The bit vector definition of extended information is listed in Table 38-4.
If CPUID.(EAX=12H, ECX=0):EBX[31:0] = 0, SECS.MISCSELECT field must be all zeros.
The SECS.MISCSELECT field determines the size of MISC region of the SSA frame, see Section 38.9.2.

MRENCLAVE 64 32 Measurement Register of enclave build process. See SIGSTRUCT for proper
format.

RESERVED 96 32

MRSIGNER 128 32 Measurement Register extended with the public key that verified the
enclave. See SIGSTRUCT for proper format.

RESERVED 160 96

ISVPRODID 256 2 Product ID of enclave.

ISVSVN 258 2 Security version number (SVN) of the enclave.

EID Implementation
dependent

8 Enclave Identifier.

PADDING Implementation
dependent

352 Padding pattern from the Signature (used for key derivation strings).

RESERVED 260 3836 Includes EID, other non-zero reserved field and must-be-zero fields.

Table 38-2. Layout of SGX Enclave Control Structure (SECS)
Field OFFSET (Bytes) Size (Bytes) Description

Table 38-3. Layout of ATTRIBUTES Structure
Field Bit Position Description

RESERVED 0

DEBUG 1 If 1, the enclave permit debugger to read and write data to enclave.

MODE64BIT 2 Enclave runs in 64-bit mode.

RESERVED 3 Must be Zero.

PROVISIONKEY 4 Provisioning Key is available from EGETKEY.

EINITTOKENKEY 5 EINIT token key is available from EGETKEY.

RESERVED 63:6

XFRM 127:64 XSAVE Feature Request Mask. See Section 42.7.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 309

38.8 THREAD CONTROL STRUCTURE (TCS)
Each executing thread in the enclave is associated with a Thread Control Structure. It requires 4K-Bytes align-
ment.

38.8.1 TCS.FLAGS

38.8.2 State Save Area Offset (OSSA)
The OSSA points to a stack of state save area frames used to save the processor state when an interrupt or excep-
tion occurs while executing in the enclave. Each frame in the stack consists of the XSAVE region starting at the

Table 38-4. Bit Vector Layout of MISCSELECT Field of Extended Information
Field Bit Position Description

EXINFO 0 Report page fault and general protection exception info inside an enclave.

Reserved 31:1 Reserved (0).

Table 38-5. Layout of Thread Control Structure (TCS)
Field OFFSET (Bytes) Size (Bytes) Description

RESERVED 0 8

FLAGS 8 8 The thread’s execution flags.

OSSA 16 8 Offset of the base of the State Save Area stack, relative to the enclave base.
Must be page aligned.

CSSA 24 4 Current slot index of an SSA frame, cleared by EADD.

NSSA 28 4 Number of available slots for SSA frames.

OENTRY 32 8 Offset in enclave to which control is transferred on EENTER relative to the
beginning of the enclave.

RESERVED 40 8

OFSBASGX 48 8 When added to the base address of the enclave, produces the base address FS
segment inside the enclave. Must be page aligned.

OGSBASGX 56 8 When added to the base address of the enclave, produces the base address GS
segment inside the enclave. Must be page aligned.

FSLIMIT 64 4 Size to become the new FS limit in 32-bit mode.

GSLIMIT 68 4 Size to become the new GS limit in 32-bit mode.

RESERVED 72 4024 Must-be-zero.

Table 38-6. Layout of TCS.FLAGS Field
Field Bit Position Description

DBGOPTIN 0 If set, enables debugging features (TF, breakpoints, etc.) while executing in the enclave on this
TCS. Hardware clears this bit. A debugger may later modify it.

RESERVED 63:1

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 310

base of a state save area frame. The GPRSGX region is top-aligned to the end of the frame. Each frame must be
4KBytes aligned and multiples of 4KBytes in size. Enclave writer can choose the pad size between the XSAVE
region and the MISC region. A MISC region contains additional information written by the processor is next below
the GPRSGX region inside the frame.

38.8.3 Number of State Save Area Frames (NSSA)
NSSA specifies the number of SSA frames available for this TCS. There must be at least one available SSA frame
when EENTER-ing the enclave or the EENTER will fail.

38.8.4 Current State Save Area Frame (CSSA)
CSSA is the index of the current SSA frame that will be used by the processor to determine where to save the
processor state on an interrupt or exception that occurs while executing in the enclave. It is an index into the
array of frames addressed by OSSA. CSSA is incremented on an AEX and decremented on an ERESUME.

38.9 STATE SAVE AREA (SSA) FRAME
When an AEX occurs while running in an enclave, the architectural state is saved in the thread’s current SSA
frame, which is pointed to by TCS.CSSA. An SSA frame must be page aligned, and contains the following regions:
• The XSAVE region starts at the base of the SSA frame, this region contains extended feature register state in

an XSAVE/FXSAVE-compatible non-compacted format.
• The GPRSGX region. This is used to hold the processor general purpose registers (RAX … R15), the RIP, the

outside RSP and RBP, RFLAGS and the AEX information. The GPRSGX region is flush-aligned within the end of
an SSA frame.

• The MISC region (If CPUIDEAX=12H, ECX=0):EBX[31:0] != 0). The MISC region is adjacent to the GRPSGX
region, and may contain zero or more components of extended information that would be saved when an AEX
occurs. If the MISC region is absent, the region between the GPRSGX and XSAVE regions are pads that
software can use. If the MISC region is present, the region between the MISC and XSAVE regions are pads
that software can use.

One or more components of extended information may be written to the MISC region if one or more bits in
CPUID.(EAX=12H, ECX=0):EBX[31:0] are set. The component written to the MISC region is determined by
the set bits in SECS.MISCSELECT.

Table 38-7. Top-to-Bottom Layout of an SSA Frame
Region Offset (Byte) Size (Bytes) Description

GPRSGX SSAFRAMESIZE
-1 77

176 See Table 38-8 for layout of the GPRSGX region.

MISC base of GPRSGX
-sizeof(MISC)

Calculate from high-
est set bit of
SECS.MISCSELECT

See Section 38.9.2.

Pad End of XSAVE
region

Chosen by enclave
writer

Ensure the end of GPRSGX region is aligned to the end of a 4KB page.

XSAVE 0 Calculate using CPUID
leaf 0DH information

The size of XSAVE region in SSA is derived from the enclave’s support of the col-
lection of processor extended states that would be managed by XSAVE. The
enablement of those processor extended state components in conjunction with
CPUID leaf 0DH information determines the XSAVE region size in SSA.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 311

38.9.1 GPRSGX Region
The layout of the GPRSGX region is shown in Table 38-8.

38.9.1.1 EXITINFO
EXITINFO contains the information used to report exit reasons to software inside the enclave. It is a 4 byte field
laid out as in Table 38-9. The VALID bit is set only for the exceptions conditions which are reported inside an
enclave. See Table 38-10 for which exceptions are reported inside the enclave. If the exception condition is not
one reported inside the enclave then VECTOR and EXIT_TYPE are cleared.

Table 38-8. Layout of GPRSGX Portion of the State Save Area
Field OFFSET (Bytes) Size (Bytes) Description

RAX 0 8

RCX 8 8

RDX 16 8

RBX 24 8

RSP 32 8

RBP 40 8

RSI 48 8

RDI 56 8

R8 64 8

R9 72 8

R10 80 8

R11 88 8

R12 96 8

R13 104 8

R14 112 8

R15 120 8

RFLAGS 128 8 Flag register.

RIP 136 8 Instruction pointer.

URSP 144 8 Untrusted (outside) stack pointer. Saved by EENTER, restored on AEX.

URBP 152 8 Untrusted (outside) RBP pointer. Saved by EENTER, restored on AEX.

EXITINFO 160 4 Contains information about exceptions that cause AEXs, which might be
needed by enclave software.

RESERVED 164 4 Padding to 8-byte alignment.

FSBASE 168 8 FS BASE.

GSBASE 176 8 GS BASE.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 312

38.9.1.2 VECTOR Field Definition
Table 38-10 contains the VECTOR field. This field contains information about some exceptions which occur inside
the enclave. These vector values are the same as the values that would be used when vectoring into regular
exception handlers. All values not shown are not reported inside an enclave.

38.9.2 MISC Region
The layout of the MISC region is shown in Table 38-11. The number of components available in the MISC region
corresponds to the set bits of CPUID.(EAX=12H, ECX=0):EBX[31:0]. Each set bit in CPUID.(EAX=12H,
ECX=0):EBX[31:0] has a defined size for the corresponding component, as shown in Table 38-11. Enclave writers
must consult both CPUID.(EAX=12H, ECX=0):EBX[31:0], SECS.MISCSELECT, and Offset/Size information of
Table 38-11 to determine the size of the MISC region. The first component, EXINFO, starts below the base of the
GPRSGX region. Additional components in the MISC region grow downward within the MISC region.
The size of the MISC region is calculated as follows:
• If CPUID.(EAX=12H, ECX=0):EBX[31:0] = 0, MISC region is not supported.

Table 38-9. Layout of EXITINFO Field
Field Bit Position Description

VECTOR 7:0 Exception number of exceptions reported inside enclave.

EXIT_TYPE 10:8 011b: Hardware exceptions.
110b: Software exceptions.
Other values: Reserved.

RESERVED 30:11 Reserved as zero.

VALID 31 0: unsupported exceptions.
1: Supported exceptions. Includes two categories:

• Unconditionally supported exceptions: #DE, #DB, #BP, #BR, #UD, #MF, #AC, #XM.
• Conditionally supported exception:

— #PF, #GP if SECS.MISCSELECT.EXINFO = 1.

Table 38-10. Exception Vectors
Name Vector # Description

#DE 0 DIV and IDIV instructions.

#DB 1 For Intel use only.

#BP 3 INT 3 instruction.

#BR 5 BOUND instruction.

#UD 6 UD2 instruction and reserved opcodes.

#GP 13 General protection violation. Only reported if SECS.MISCSELECT.EXINFO = 1.

#PF 14 Page fault. Only reported if SECS.MISCSELECT.EXINFO = 1.

#MF 16 x87 FPU floating-point or WAIT/FWAIT instruction.

#AC 17 Any data reference in memory.

#XM 19 Any SIMD floating-point exceptions.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 313

• If CPUID.(EAX=12H, ECX=0):EBX[31:0] != 0, the size of MISC region is derived from the highest bit set in
SECS.MISCSELECT in conjunction with the offset and size information defined in Table 38-11. For example, if
the highest bit set in SECS.MISCSELECT is bit 0, the MISC region size is OFFSET(EXINFO) + Sizeof(EXINFO).

38.9.2.1 EXINFO Structure
Table 38-12 contains the layout of the EXINFO structure that provides additional information.

38.9.2.2 Page Fault Error Codes
Table 38-13 contains page fault error code that may be reported in EXINFO.ERRCD.

38.10 PAGE INFORMATION (PAGEINFO)
PAGEINFO is an architectural data structure that is used as a parameter to the EPC-management instructions. It
requires 32-Byte alignment.

Table 38-11. Layout of MISC region of the State Save Area
MISC Components OFFSET (Bytes) Size (Bytes) Description

EXINFO base(GPRSGX)-16 16 if CPUID.(EAX=12H, ECX=0):EBX[0] = 1, exception information
on #GP or #PF that occurred inside an enclave can be written to
the EXINFO structure if specified by SECS.MISCSELECT[0] = 1.

Future Extension Below EXINFO TBD Reserved. (Zero size if CPUID.(EAX=12H, ECX=0):EBX[31:1] =0)

Table 38-12. Layout of EXINFO Structure
Field OFFSET (Bytes) Size (Bytes) Description

MADDR 0 8 Page fault address (unused for #GP).

ERRCD 8 4 Exception error code for either #GP or #PF.

RESERVED 12 4

Table 38-13. Page Fault Error Codes
Name Bit Position Description

P 0 Same as non-SGX page fault exception P flag in Intel Architecture.

W/R 1 Same as non-SGX page fault exception W/R flag.

U/S 2 Always set to 1 (user mode reference).

RSVD 3 Reserved.

I/D 4 Same as non-SGX page fault exception I/D flag.

RSVD 31:5 Reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 314

38.11 SECURITY INFORMATION (SECINFO)
The SECINFO data structure holds meta-data about an enclave page.

38.11.1 SECINFO.FLAGS
The SECINFO.FLAGS are a set of bits describing the properties of an enclave page.

38.11.2 PAGE_TYPE Field Definition
The SECINFO flags and EPC flags contain bits indicating the type of page.

Table 38-14. Layout of PAGEINFO Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

LINADDR 0 8 Enclave linear address.

SRCPGE 8 8 Effective address of the page where page contents are located.

SECINFO/PCMD 16 8 Effective address of the SECINFO or PCMD (for ELDU, ELDB, EWB) structure for
the page.

SECS 24 8 Effective address of EPC slot that currently contains a copy of the SECS.

Table 38-15. Layout of SECINFO Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

FLAGS 0 8 Flags describing the state of the enclave page; R/W by software.

RESERVED 8 56 Must be zero.

Table 38-16. Layout of SECINFO.FLAGS Field
Field Bit Position Description

R 0 If 1 indicates that the page can be read from inside the enclave; otherwise the page cannot be read
from inside the enclave.

W 1 If 1 indicates that the page can be written from inside the enclave; otherwise the page cannot be writ-
ten from inside the enclave.

X 2 If 1 indicates that the page can be executed from inside the enclave; otherwise the page cannot be
executed from inside the enclave.

PENDING 3 If 1 indicates that the page is in the PENDING state; otherwise the page is not in the PENDING state.

MODIFIED 4 If 1 indicates that the page is in the MODIFIED state; otherwise the page is not in the MODIFIED state.

RESERVED 7:5 Must be zero.

PAGE_TYPE 15:8 The type of page that the SECINFO is associated with.

RESERVED 63:16 Must be zero.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 315

38.12 PAGING CRYPTO METADATA (PCMD)
The PCMD structure is used to keep track of crypto meta-data associated with a paged-out page. Combined with
PAGEINFO, it provides enough information for the processor to verify, decrypt, and reload a paged-out EPC page.
The size of the PCMD structure (128 bytes) is architectural. EWB writes out the reserved field and MAC values.
ELDB/U reads the fields and checks the MAC.
The format of PCMD is as follows:

38.13 ENCLAVE SIGNATURE STRUCTURE (SIGSTRUCT)
SIGSTRUCT contains information about the enclave from the enclave signer, and must be 4K-Bytes aligned.
SIGSTRUCT includes ENCLAVEHASH as SHA256 digests as defined in FIPS PUB 180-4. The digests are byte
strings of length 32 with the most significant byte of each of the 8 HASH dwords at the left most byte position.
SIGSTRUCT includes four 3072-bit integers (MODULUS, SIGNATURE, Q1, Q2). Each such integer is represented
as a byte strings of length 384, with the most significant byte at the position “offset + 383”, and the least signifi-
cant byte at position “offset”.
The (3072-bit integer) SIGNATURE should be an RSA signature, where: a) the RSA modulus (MODULUS) is a
3072-bit integer; b) the public exponent is set to 3; c) the signing procedure uses the EMSA-PKCS1-v1.5 format
with DER encoding of the “DigestInfo” value as specified in of PKCS#1 v2.1/RFC 3447.
The 3072-bit integers Q1 and Q2 are defined by:
q1 = floor(Signature^2 / Modulus);
q2 = floor((Signature^3 - q1 * Signature * Modulus) / Modulus);
SIGSTRUCT must be page aligned
In column 5 of Table 38-19, ‘Y’ indicates that this field should be included in the signature generated by the devel-
oper.

Table 38-17. Supported PAGE_TYPE
TYPE Value Description

PT_SECS 0 Page is an SECS.

PT_TCS 1 Page is a TCS.

PT_REG 2 Page is a normal page.

PT_VA 3 Page is a Version Array.

PT_TRIM 4 Page is in trimmed state.

All other Reserved.

Table 38-18. Layout of PCMD Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

SECINFO 0 64 Flags describing the state of the enclave page; R/W by software.

ENCLAVEID 64 8 ENCLAVEID.

RESERVED 72 40 Must be zero.

MAC 112 16 MAC for the page, page meta-data and reserved field.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 316

38.14 EINIT TOKEN STRUCTURE (EINITTOKEN)
The EINIT token is used by EINIT to verify that the enclave is permitted to launch.
EINIT token must be 512-Byte aligned.

Table 38-19. Layout of Enclave Signature Structure (SIGSTRUCT)
Field OFFSET (Bytes) Size (Bytes) Description Signed

HEADER 0 16 Must be byte stream
06000000E10000000000010000000000H.

Y

VENDOR 16 4 Intel Enclave: 00008086H
Non-Intel Enclave: 00000000H.

Y

DATE 20 4 Build date is yyyymmdd in hex:
yyyy=4 digit year, mm=1-12, dd=1-31.

Y

HEADER2 24 16 Must be byte stream
01010000600000006000000001000000H.

Y

SWDEFINED 40 4 Available for software use. Y

RESERVED 44 84 Must be zero. Y

MODULUS 128 384 Module Public Key (keylength=3072 bits). N

EXPONENT 512 4 RSA Exponent = 3. N

SIGNATURE 516 384 Signature over Header and Body. N

MISCSELECT* 900 4 Bit vector specifying Extended SSA frame feature set to be
used.

Y

MISCMASK* 904 4 Bit vector mask of MISCSELECT to enforce. Y

RESERVED 908 20 Must be zero. Y

ATTRIBUTES 928 16 Enclave Attributes that must be set. Y

ATTRIBUTEMASK 944 16 Mask of Attributes to enforce. Y

ENCLAVEHASH 960 32 MRENCLAVE of enclave this structure applies to. Y

RESERVED 992 32 Must be zero. Y

ISVPRODID 1024 2 ISV assigned Product ID. Y

ISVSVN 1026 2 ISV assigned SVN (security version number). Y

RESERVED 1028 12 Must be zero. N

Q1 1040 384 Q1 value for RSA Signature Verification. N

Q2 1424 384 Q2 value for RSA Signature Verification. N

* If CPUID.(EAX=12H, ECX=0):EBX[31:0] = 0, MISCSELECT must be 0.
If CPUID.(EAX=12H, ECX=0):EBX[31:0] !=0, enclave writers must specify MISCSELECT such that each cleared
bit in MISCMASK must also specify the corresponding bit as 0 in MISCSELECT.

Table 38-20. Layout of EINIT Token (EINITTOKEN)
Field OFFSET (Bytes) Size (Bytes) MACed Description

VALID 0 4 Y Bits 0: 1: Valid; 0: Debug. All other bits reserved.

RESERVED 4 44 Y Must be zero.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 317

38.15 REPORT (REPORT)
The REPORT structure is the output of the EREPORT instruction, and must be 512-Byte aligned.

ATTRIBUTES 48 16 Y ATTRIBUTES of the Enclave.

MRENCLAVE 64 32 Y MRENCLAVE of the Enclave.

RESERVED 96 32 Y Reserved.

MRSIGNER 128 32 Y MRSIGNER of the Enclave.

RESERVED 160 32 Y Reserved.

CPUSVNLE 192 16 N Launch Enclave’s CPUSVN.

ISVPRODIDLE 208 02 N Launch Enclave’s ISVPRODID.

ISVSVNLE 210 02 N Launch Enclave’s ISVSVN.

RESERVED 212 24 N Reserved.

MASKEDMISCSEL
ECTLE

236 4 MASKEDMISCSELECT of Launch Enclave. This should be set to the LE’s
MASKEDMISCSELECT masked with MISCMASK of the LE’s KEYRE-
QUEST.

MASKEDATTRIBU
TESLE

240 16 N MASKEDATTRIBUTES of Launch Enclave. This should be set to the LE’s
ATTRIBUTES masked with ATTRIBUTEMASK of the LE’s KEYREQUEST.

KEYID 256 32 N Value for key wear-out protection.

MAC 288 16 N A cryptographic MAC on EINITTOKEN using Launch key.

Table 38-20. Layout of EINIT Token (EINITTOKEN)
Field OFFSET (Bytes) Size (Bytes) MACed Description

Table 38-21. Layout of REPORT
Field OFFSET (Bytes) Size (Bytes) Description

CPUSVN 0 16 The security version number of the processor.

MISCSELECT 16 4 SSA Frame specified extended feature set bit vector.

RESERVED 20 28 Must be zero.

ATTRIBUTES 48 16 The values of the attributes flags for the enclave. See Section 38.7.1 (ATTRI-
BUTES Bits) for the definitions of these flags.

MRENCLAVE 64 32 The value of SECS.MRENCLAVE.

RESERVED 96 32 Reserved.

MRSIGNER 128 32 The value of SECS.MRSIGNER.

RESERVED 160 96 Zero.

ISVPRODID 256 02 Enclave PRODUCT ID.

ISVSVN 258 02 The security version number of the Enclave.

RESERVED 260 60 Zero.

REPORTDATA 320 64 A set of data used for communication between the enclave and the target
enclave.This value is provided by the EREPORT call in RCX.

KEYID 384 32 Value for key wear-out protection.

MAC 416 16 The CMAC on the report using report key.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 318

38.15.1 REPORTDATA
The REPORTDATA structure is specifies the address of a 64-Byte input buffer that the EREPORT instruction will use
to generate cryptographic report. It requires 128-Byte alignment.

38.16 REPORT TARGET INFO (TARGETINFO)
This structure is an input parameter to the EREPORT instruction leaf. The address of TARGETINFO is specified as
an effective address in RBX. It is used to identify the enclave which will be able to cryptographically verify the
REPORT structure returned by EREPORT. A TARGETINFO requires 512-Byte alignment.

38.17 KEY REQUEST (KEYREQUEST)
This structure is an input parameter to the EGETKEY instruction. It is passed in as an effective address in RBX and
requires 512-Byte alignment. It is used for selecting the appropriate key and any additional parameters required
in the derivation of that key.

Table 38-22. Layout of TARGETINFO Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

MEASUREMENT 0 32 The MRENCLAVE of the target enclave.

ATTRIBUTES 32 16 The ATTRIBUTES field of the target enclave.

RESERVED 48 4

MISCSELECT 52 4 SSA Frame extended feature set bit vector.

RESERVED 56 456

Table 38-23. Layout of KEYREQUEST Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

KEYNAME 0 02 Identifies the Key Required.

KEYPOLICY 02 02 Identifies which inputs are required to be used in the key derivation.

ISVSVN 04 02 The ISV security version number used in the key derivation.

RESERVED 06 02 Must be zero.

CPUSVN 08 16 The security version number of the processor used in the key derivation.

ATTRIBUTEMASK 24 16 A mask defining which ATTRIBUTES bits will be included in the derivation of
the Seal Key.

KEYID 40 32 Value for key wear-out protection.

MISCMASK 72 4 A mask defining which MISCSELECT bits will be included in the derivation of
the Seal Key.

RESERVED 76 436

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 319

38.17.1 KEY REQUEST KeyNames

38.17.2 Key Request Policy Structure

38.18 VERSION ARRAY (VA)
In order to securely store the versions of evicted EPC pages, Intel SGX defines a special EPC page type called a
Version Array (VA). Each VA page contains 512 slots, each of which can contain an 8-byte version number for a
page evicted from the EPC. When an EPC page is evicted, software chooses an empty slot in a VA page; this slot
receives the unique version number of the page being evicted. When the EPC page is reloaded, a VA slot must
hold the version of the page. If the page is successfully reloaded, the version in the VA slot is cleared.
VA pages can be evicted, just like any other EPC page. When evicting a VA page, a version slot in some other VA
page must be used to receive the version for the VA being evicted. A Version Array Page must be 4K-Bytes
aligned.

Table 38-24. Supported KEY Name Values
Key Name Value Description

LAUNCH_KEY 0 Launch key.

PROVISION_KEY 1 Provisioning Key.

PROVISION_SEAL_KEY 2 Provisioning Seal Key.

REPORT_KEY 3 Report Key.

SEAL_KEY 4 Report Key.

All other Reserved.

Table 38-25. Layout of KEYPOLICY Field
Field Bit Position Description

MRENCLAVE 0 If 1, derive key using the enclave's MRENCLAVE measurement register.

MRSIGNER 1 If 1, derive key using the enclave's MRSIGNER measurement register.

RESERVED 15:2 Must be zero.

Table 38-26. Layout of Version Array Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

Slot 0 0 08 Version Slot 0

Slot 1 8 08 Version Slot 1

...

Slot 511 4088 08 Version Slot 511

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 320

38.19 ENCLAVE PAGE CACHE MAP (EPCM)
EPCM is a secure structure used by the processor to track the contents of the EPC. The EPCM holds exactly one
entry for each page that is currently loaded into the EPC. EPCM is not accessible by software, and the layout of
EPCM fields is implementation specific.

...

28. New Chapter 39, New Volume 3D
A new chapter, Chapter 39, has been added to the new volume: Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3D: System Programming Guide, Part 4.

--

...
CHAPTER 39

ENCLAVE OPERATION

The following aspects of enclave operation are described in this chapter:
• Enclave creation: Includes loading code and data from outside of enclave into the EPC and establishing the

enclave entity.
• Adding pages and measuring the enclave.
• Initialization of an enclave: Finalizes the cryptographic log and establishes the enclave identity and sealing

identity.
• Enclave entry and exiting including

— Synchronous entry and exit.

— Asynchronous Enclave Exit (AEX) and resuming execution after an AEX.

Table 38-27. Content of an Enclave Page Cache Map Entry
Field Description

VALID Indicates whether the EPCM entry is valid.

R Read access; indicates whether enclave accesses are allowed for the EPC page.

W Write access; indicates whether enclave accesses are allowed for the EPC page.

X Execute access; indicates whether enclave accesses are allowed for the EPC page.

PT EPCM page type (PT_SECS, PT_TCS, PT_REG, PT_VA, PT_TRIM).

ENCLAVESECS SECS identifier of the enclave to which the page belongs.

ENCLAVEADDRESS Linear enclave address of the page.

BLOCKED Indicates whether the page is in the blocked state.

PENDING Indicates whether the page is in the pending state.

MODIFIED Indicates whether the page is in the modified state.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 321

39.1 CONSTRUCTING AN ENCLAVE
Figure 39-1 illustrates a typical Enclave memory layout.

The enclave creation, commitment of memory resources, and finalizing the enclave’s identity with measurement
comprises multiple phases. This process can be illustrated by the following exemplary steps:

1. The application hands over the enclave content along with additional information required by the enclave
creation API to the enclave creation service running at ring-0.

2. Use the ECREATE leaf to set up the initial environment, specifying base address and size of the enclave. This
address range, the ELRANGE, is part of the application's address space. This reserves the memory range. The
enclave will now reside in this address region. ECREATE also allocates an Enclave Page Cache (EPC) page for
the SGX Enclave Control Structure (SECS). Note that this page is not required to be a part of the enclave
linear address space and is not required to be mapped into the process.

3. Use the EADD instruction leaf to commit EPC pages to the enclave, and use EEXTEND to measure the
committed memory content of the enclave. For each additional page to be added to the enclave:

— Use EADD to add the new page to the enclave.

— If the enclave developer requires measurement, use EEXTEND to add a measurement for 256 bytes of the
page. Repeat this operation until the entire page is measured.

4. Use the EINIT instruction leaf to complete the enclave creation process and finalize the enclave measurement
to establish the enclave identity. Until an EINIT is executed, the enclave is not permitted to execute any
enclave code (i.e. entering the enclave by executing EENTER).

Figure 39-1. Enclave Memory Layout

Thread Data

Global Data

Code

Enclave Memory

SECS

TCS

Base + Size

Base

Replicated once
per thread

Enclave {Base, Size}

Application Context

OS Context

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 322

39.1.1 EADD and EEXTEND Interaction
Once the SECS has been created, enclave pages can be added to the enclave via EADD. This involves converting
a free EPC page into either a PT_REG or a PT_TCS page.
When EADD is invoked, the processor will initialize the EPCM entry to add the type of page (PT_REG or PT_TCS),
the linear address used by the enclave to access the page, and the enclave RWX permissions for the page. It asso-
ciates the page to the SECS provided as input. The EPCM entry information is used by hardware to manage access
control to the page. EADD records EPCM information in a cryptographic log stored in the SECS and copy 4 KBytes
of data from unprotected memory outside the EPC to the allocated EPC page.
System software is responsible for selecting a free EPC page. System software is also responsible for providing
the type of page to be added, the attributes the page, the contents of the page, and the SECS (enclave) to which
the page is to be added as requested by the application.
After a page has been added to an enclave, software can measure a 256 byte region as determined by the devel-
oper by invoking EEXTEND. Thus to measure an entire page, system software must execute EEXTEND 16 times.
Each invocation of EEXTEND adds to the cryptographic log information about which region is being measured and
the measurement of the section.
Entries in the cryptographic log define the measurement of the enclave and are critical in gaining assurance that
the enclave was correctly constructed by the un-trusted system software.
Examples of incorrect construction includes adding multiple pages with the same enclave linear address resulting
in an alias, loading modified contents into an enclave page, or not measuring all of the enclave.

39.1.2 EINIT Interaction
Once system software has completed the process of adding and measuring pages, the enclave needs to be initial-
ized by the EINIT instruction. Initializing an enclave prevents the addition or measurement of enclave pages and
enables enclave entry. The initialization process finalizes the cryptographic log and establishes the enclave iden-
tity and sealing identity used by EGETKEY and EREPORT.
A cryptographic hash of the log is stored. Correct construction results in the cryptographic log matching the one
built by the enclave owner in SIGSTRUCT. It can be verified by a remote party.
The enclave is initialized by the EINIT instruction. The EINIT instruction checks the ENIT token to validate that the
enclave has been enabled on this platform. If the enclave is not correctly constructed or the EINIT token is not
valid for the platform then EINIT will fail. See the EINIT instruction for details on the error reporting.
The enclave identity is a cryptographic hash that reflects the content of the enclave, the order in which it was
built, the addresses it occupies in memory, and the security attributes of each page. The Enclave Identity is estab-
lished by EINIT.
The sealing identity is managed by a sealing authority represented by the hash of a public key used to sign a
structure processed by EINIT. The sealing authority assigns a product ID and security version number to a partic-
ular enclave identity comprising the attributes of the enclave and the measurement of the enclave.
EINIT establishes the sealing identity using the following steps:
1. Verifies that SIGSTRUCT is signed using the public key enclosed in the SIGSTRUCT.
2. Checks that the measurement of the enclave matches the measurement of the enclave specified in
SIGSTRUCT.
3. Checks that the enclave’s attributes are compatible with those specified in SIGSTRUCT.
4. Finalizes the measurement of the enclave and records the sealing identity and enclave identity (the sealing
authority, product id and security version number) in the SECS.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 323

39.2 ENCLAVE ENTRY AND EXITING

39.2.1 Synchronous Entry and Exit
The EENTER instruction is the method to enter the enclave under program control. To execute EENTER, software
must supply an address of a TCS that is part of the enclave to be entered. The TCS holds the location inside the
enclave to transfer control to and a pointer to the area inside the enclave an AEX should store the register state.
When a logical processor enters an enclave, the TCS is considered busy until the logical processors exits the
enclave. Intel® SGX allows an enclave builder to define multiple TCSs, thereby providing support for multi-
threaded enclaves.
EENTER also defines the Asynchronous Exit Pointer (AEP) parameter. AEP is an address external to the enclave
which is used to transition back into the enclave after an AEX. The AEP is the address an exception handler will
return to using IRET. Typically the location would contain the ERESUME instruction. ERESUME transfers control
back to the enclave, to the address retrieved from the enclave thread’s saved state.
EENTER performs the following operations:

1. Check that TCS is not busy and flush TLB entries for enclave linear addresses in the enclave’s ELRANGE.

2. Change the mode of operation to be in enclave mode.

3. Save the RSP, RBP for later restore on AEX.

4. Save XCR0 and replace it with the XFRM value for the enclave.

5. Check if the enclave is debuggable and the software wishes to debug. If not then set hardware so the enclave
appears as a single instruction.

6. If the enclave is debuggable and the software wishes to debug, then set hardware to allow traps, breakpoints,
and single steps inside the enclave.

7. Set the TCS as busy.

8. Transfer control from outside enclave to predetermined location inside the enclave specified by the TCS.
The EEXIT instruction is the method of leaving the enclave under program control, it performs the following oper-
ations:

1. Clear enclave mode and TLB entries for enclave addresses.

2. Mark TCS as not busy.

3. Transfer control from inside the enclave to a location on the outside specified by the register, RBX.
It is the responsibility of enclave software to erase any secret from the registers prior to invoking EEXIT.

39.2.2 Asynchronous Enclave Exit (AEX)
Asynchronous and synchronous events, such as exceptions, interrupts, SMIs, and VM exits may occur while
executing inside an enclave. These events are referred to as Enclave Exiting Events (EEE). Upon an EEE, the
processor state is securely saved inside the enclave (in the thread’s current SSA frame) and then replaced by a
synthetic state to prevent leakage of secrets. The process of securely saving state and establishing the synthetic
state is called an Asynchronous Enclave Exit (AEX).
As part of most EEEs, the AEP is pushed onto the stack as the location of the eventing address. This is the location
where control will return to after executing the IRET. The ERESUME can be executed from that point to reenter the
enclave and resume execution from the interrupted point.
After AEX has completed, the logical processor is no longer in enclave mode and the exiting event is processed
normally. Any new events that occur after the AEX has completed are treated as having occurred outside the
enclave (e.g. a #PF in dispatching to an interrupt handler).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 324

39.2.3 Resuming Execution after AEX
After system software has serviced the event that caused the logical processor to exit an enclave, the logical
processor can re-start execution using ERESUME. ERESUME restores registers and returns control to where
execution was interrupted.
If the cause of the exit was an exception or a fault and was not resolved, the event will be triggered again if the
enclave is re-entered using ERESUME. For example, if an enclave performs a divide by 0 operation, executing
ERESUME will cause the enclave to attempt to re-execute the faulting instruction and result in another divide by
0 exception. In order to handle an exception that occurred inside the enclave, software can enter the enclave at a
different location and invoke the exception handler within the enclave by executing the EENTER instruction. The
exception handler within the enclave can attempt to resolve the faulting condition or simply return and indicate to
software that the enclave should be terminated (e.g. using EEXIT).

39.2.3.1 ERESUME Interaction
ERESUME restores registers depending on the mode of the enclave (32 or 64 bit).
• In 32-bit mode (IA32_EFER.LMA = 0 || CS.L = 0), the low 32-bits of the legacy registers (EAX, EBX, ECX,

EDX, ESP, EBP, ESI, EDI, EIP and EFLAGS) are restored from the thread’s GPR area of the current SSA frame.
Neither the upper 32 bits of the legacy registers nor the 64-bit registers (R8 … R15) are loaded.

• In 64-bit mode (IA32_EFER.LMA = 1 && CS.L = 1), all 64 bits of the general processor registers (RAX, RBX,
RCX, RDX, RSP, RBP, RSI, RDI, R8 … R15, RIP and RFLAGS) are loaded.

Extended features specified by SECS.ATTRIBUTES.XFRM are restored from the XSAVE area of the current SSA
frame. The layout of the x87 area depends on the current values of IA32_EFER.LMA and CS.L:
• IA32_EFER.LMA = 0 || CS.L = 0

— 32-bit load in the same format that XSAVE/FXSAVE uses with these values.
• IA32_EFER.LMA = 1 && CS.L = 1

— 64-bit load in the same format that XSAVE/FXSAVE uses with these values plus REX.W = 1.

39.3 CALLING ENCLAVE PROCEDURES

39.3.1 Calling Convention
In standard call conventions subroutine parameters are generally pushed onto the stack. The called routine, being
aware of its own stack layout, knows how to find parameters based on compile-time-computable offsets from the
SP or BP register (depending on runtime conventions used by the compiler).
Because of the stack switch when calling an enclave, stack-located parameters cannot be found in this manner.
Entering the enclave requires a modified parameter passing convention.
For example, the caller might push parameters onto the untrusted stack and then pass a pointer to those param-
eters in RAX to the enclave software. The exact choice of calling conventions is up to the writer of the edge
routines; be those routines hand-coded or compiler generated.

39.3.2 Register Preservation
As with most systems, it is the responsibility of the callee to preserve all registers except that used for returning
a value. This is consistent with conventional usage and tends to optimize the number of register save/restore
operations that need be performed. It has the additional security result that it ensures that data is scrubbed from
any registers that were used to temporarily contain secrets.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 325

39.3.3 Returning to Caller
No registers are modified during EEXIT. It is the responsibility of software to remove secrets in registers before
executing EEXIT.

39.4 INTEL® SGX KEY AND ATTESTATION
To provide cryptographic separation between platforms, Intel SGX provides individual keys to each platform.
Each processor is provisioned with a unique key as the root of the key hierarchy. This is done at manufacturing
time. This key is the basis for all keys derived in the EGETKEY instruction. Figure 39-2 shows the hierarchy used
to generate keys on the platform.
Each enclave requests keys using the EGETKEY instruction. The key is based on enclave parameters such as
measurement or the enclave signing key plus the key derived from the device key and various security version
numbers (SVNs). See the EGETKEY instruction for more details.
In order for a remote party to understand the security level of a remote platform, security version numbers are
designed into the Intel SGX architecture. Some of the version numbers indicate the patch level of the relevant
phases of the processor boot up and system operations that affect the identity of the Intel SGX instructions.

The SVN values are reported to the remote user as part of the attestation process. They are part of the EREPORT
instruction output.

Figure 39-2. Intel® SGX Key Overview

Owner Epoch

Seal Key, Report Key, etc

Key Derivation

128 bits)

Device Key
(128 bits)

Intel SGX SVNs

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 326

Owner Epoch is a 128 bit value which is loaded into the SGXOWNEREPOCH0 and SGXOWNEREPOCH1 MSRs when
Intel SGX is booted. These registers provide a user with the ability to add personal entropy into the key derivation
process.
NOTE: Owner Epoch must be kept the same in order to decrypt data using the EGETKEY instruction. A different
Owner Epoch will result in the failure to decrypt files sealed by EGETKEY in a previous boot.

39.5 EPC AND MANAGEMENT OF EPC PAGES
EPC layout is implementation specific, and is enumerated through CPUID (see Table 37-6 for EPC layout). EPC is
typically configured by BIOS at system boot time.

39.5.1 EPC Implementation
One example of EPC implementation is a Memory Encryption Engine (MEE). An MEE provides a cost-effective
mechanism of creating cryptographically protected volatile storage using platform DRAM. These units provide
integrity, replay, and confidentiality protection. Details are implementation specific.

39.5.2 OS Management of EPC Pages
The EPC is a finite resource. To oversubscribe the EPC the EPC manager must keep track of all EPC entries, type
and state, context affiliation, SECS affiliation, so that it could manage this resource and properly swap pages out
of and into the EPC.
On processors that support Intel SGX with Intel SGX instruction opcode support of SGX1 (i.e. CPUID.(EAX=12H,
ECX=0):EAX.SGX1 = 1 but CPUID.(EAX=12H, ECX=0):EAX.SGX2 = 0), Intel SGX instructions provide a number
of primitives for managing memory resources used by an enclave.
Intel SGX includes the EWB instruction for securely evicting pages out of the EPC. EWB encrypts a page in the EPC
and writes it to unprotected memory. In addition, EWB also creates a cryptographic MAC of the page and stores it
in unprotected memory. A page can be reloaded back to the processor only if the data and MAC match.
Intel SGX includes two instructions for reloading pages that have been evicted by system software: ELDU and
ELDB. The difference between the two instructions is the value of the paging state at the end of the instruction.
ELDU results in a page being reloaded and set to an UNBLOCKED state, while ELDB results in a page loaded to a
BLOCKED state.
ELDB is intended for use by a VMM. When a VMM reloads an evicted page, it needs to restore the correct state of
the page (BLOCKED vs. UNBLOCKED) as it existed at the time the page was evicted. Based on the state of the
page at eviction, the VMM chooses either ELDB or ELDU.

39.5.2.1 Enhancement to Managing EPC Pages
On processors with Intel SGX instruction opcode supporting SGX2 (i.e. CPUID.(EAX=12H, ECX=0):EAX.SGX2 =
1), the EPC manager can manage EPC resources (while enclave is running) with more flexibility provided by the
SGX2 instructions. The additional flexibility is described in Section 39.5.7 through Section 39.5.11

39.5.3 Eviction of Enclave Pages
Intel SGX paging is optimized to allow the OS to page out multiple EPC pages under a single synchronization.

1. For each enclave page to be evicted:

a. Select a slot in a Version Array page.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 327

• If no VA page exists with an empty slot, create a new PT_VA page using the EPA instruction.

b. Remove mapping from the page table (OS removes from system page table, VMM removes from EPT).

c. Execute EBLOCK for the target page. This sets the target page state to BLOCKED. At this point no new
mappings of the page will be created. Accesses which do not have mapping cached in the TLB will
generate a #PF.

2. For each enclave containing pages selected in step 1:

— Execute an ETRACK on that enclave.

3. For all hardware threads executing in processes (OS) or guests (VMM) that contain the enclaves selected in
step 1:

— Issue an IPI (inter-processor interrupt) to those threads. This causes those hardware threads to exit any
enclaves they might be in, and as a result flush all TLB entries that might hold stale translations to blocked
pages.

4. After enclaves exit, allow h/w threads to execute normally.

5. For each page to be evicted:

— Evict the page using the EWB command. Parameters include the EPC page linear address (the OS or VMM
needs to use its own, private page mapping for this because of step 1.c), the VA slot, a 4k byte buffer to
hold the encrypted page contents, and a buffer to hold page metadata. The last three elements are tied
together cryptographically and must be used to later reload the page.

At this point, system software has an encrypted copy of each page data and page metadata, both in main
memory.

39.5.4 Loading an Enclave Page
To reload a previously evicted page, system software needs four elements: the VA slot used when the page was
evicted, a buffer containing the encrypted page contents, a buffer containing the page metadata, and the parent
SECS. If the VA page or the parent SECS are not already in the EPC, they must be reloaded first.

1. Execute ELDB/ELDU, passing as parameters: the EPC page linear address (again, using a private mapping),
the VA slot, the encrypted page, and the page metadata.

2. Create a mapping in the page table to allow the application to access that page (OS: system page table; VMM:
EPT).

The ELDB/ELDU instruction marks the VA slot empty so that the page cannot be replayed at a later date.

39.5.5 Eviction of an SECS Page
The eviction of an SECS page is similar to the eviction of an enclave page. The only difference is that an SECS
page cannot be evicted until all other pages belonging to the enclave have been evicted. Since all other pages
have been evicted, there will be no threads executing inside the enclave. When reloading an enclave, the SECS
page must be reloaded before all other constituent pages.

1. Ensure all pages are evicted from enclave.

2. Select a slot in a Version Array page.

— If no VA page exists with an empty slot, create a new one using EPA.

3. Evict the page using the EWB command. Parameters include the EPC page effective address, the VA slot, a 4k
byte buffer to hold the encrypted page contents and a buffer to hold page metadata. The last three elements
are tied together cryptographically and must be used to later reload the page.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 328

39.5.6 Eviction of a Version Array Page
VA pages do not belong to any enclave. When evicting the VA page, a slot in a different VA page must be specified
in order to provide versioning of the evicted VA page.

1. Select a slot in a Version Array page other than the page being evicted.

— If no VA page exists with an empty slot, create a new one using EPA.

2. Evict the page using the EWB command. Parameters include the EPC page linear address, the VA slot, a 4k
byte buffer to hold the encrypted page contents, and a buffer to hold page metadata. The last three elements
are tied together cryptographically and must be used to later reload the page.

39.5.7 Allocating a Regular Page
On processors that support SGX2, allocating a new page is accomplished by invoking the EAUG instruction. Typi-
cally, the enclave requests that the OS allocate a new page at a particular location within the enclave’s address
space. Once allocated, the page remains in a pending state until the enclave executes the corresponding EACCEPT
instruction to accept the new page into the enclave. Page allocation operations may be batched to improve effi-
ciency.
The typical process for allocating a page is as follows:

1. Enclave requests additional memory from OS when the current allocation becomes insufficient.

2. The OS calls EAUG to add a new memory page to the enclave.

a. EAUG may only be called on an invalid page.

b. Successful completion of the EAUG instruction places the target page in the VALID and PENDING state.

c. All dynamically created pages have the type PT_REG.

3. The enclave issues an EACCEPT instruction, which clears the pending bit. At that point the page becomes ac-
cessible for normal enclave use.

39.5.8 Allocating a TCS Page
On processors that support SGX2, allocating a new TCS page is a two-step process. First the OS allocates a
regular page with a call to EAUG. This page must then be accepted and initialized by the enclave to which it
belongs. Once the page has been initialized with appropriate values for a TCS page, the OS may change the
page’s type to PT_TCS. This change must also be accepted. As with allocating a regular page, TCS allocation oper-
ations may be batched.
The procedure for allocating a TCS page is as follows:

1. Enclave requests an additional page from the OS.

2. The OS calls EAUG to add a new regular memory page to the enclave.

a. EAUG may only be called on an invalid page.

b. Successful completion of the EAUG instruction places the target page in the VALID and PENDING state.

3. The enclave issues an EACCEPT instruction, at which point the page becomes accessible for normal enclave
use.

4. The enclave initializes the contents of the new page.

5. The enclave requests that the OS convert the page from type PT_REG to PT_TCS.

6. OS issues an EMODT instruction on the page.

a. The parameters to EMODT indicate that the regular page should be converted into a TCS.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 329

b. EMODT forces the RWX bits to 000 because TCS pages may not be accessed by enclave code.

7. The enclave issues an EACCEPT instruction to confirm the requested modification.

39.5.9 Trimming a Page
On processors that support SGX2, Intel SGX supports the removal of an enclave page as a special case of EMODT.
The page type PT_TRIM indicates that a page has been trimmed from the enclave’s address space and that the
page is no longer accessible. Modifications to a page in the PT_TRIM state are not permitted; the page must be
removed and then reallocated by the OS before the enclave may use the page again. Page deallocation operations
may be batched to improve efficiency.
The protocol for trimming a page from an enclave is as follows:

1. Enclave signals OS that a particular page is no longer in use.

2. OS calls EMODT on the page, requesting that the page’s type be changed to PT_TRIM.

a. SECS and VA pages cannot be trimmed in this way, so the initial type of the page must be PT_REG or
PT_TCS.

b. EMODT may only be called on VALID pages.

3. OS performs an ETRACK instruction to remove the TLB addresses from all the processors.

4. Enclave issues an EACCEPT instruction.

5. The OS may now permanently remove it (by calling EREMOVE).

39.5.10 Restricting the EPCM Permissions of a Page
On processors that support SGX2, restricting the EPCM permissions associated with a page is accomplished using
the EMODPR instruction. This operation requires the cooperation of the OS to flush stale entries to the page and
to update the page-table permissions of the page to match. Permissions restriction operations may be batched.
The protocol for restricting the permissions of a page is as follows:

1. Enclave requests that the OS restrict the permissions of an EPC page.

2. OS performs permission restriction, TLB flushing, and page-table modifications.

a. Invokes EMODPR to restrict permissions.

b. Performs ETRACK.

c. Updates page tables to match the new EPCM permissions.

d. Sends IPIs to trigger enclave thread exit and TLB shootdown.

3. Enclave calls EACCEPT.

a. Enclave may access page throughout the entire process.

b. Successful call to EACCEPT guarantees that no stale TLB mappings are present.

39.5.11 Extending the EPCM Permissions of a Page
On processors that support SGX2, extending the EPCM permissions associated with a page is performed directly
be the enclave using EMODPE. After performing the EPCM permission extension, the enclave requests that the OS
update the page table permissions to match. Permission extension does not require enclave threads to leave the
enclave---TLBs with stale references to the more restrictive permissions will be flushed on demand.

1. Enclave invokes EMODPE to extend the EPCM permissions associated with am EPC page.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 330

2. Enclave requests that OS update the page tables to match the new EPCM permissions.

3. Enclave code resumes.

a. If TLB mappings are present to the more restrictive permissions, the enclave thread will page fault. The
OS sees that the page tables permit the access and resume the thread, which can now successfully access
the page because exiting cleared the TLB.

b. If TLB mappings are not present, access to the page with the new permissions will succeed without an
enclave exit.

39.6 CHANGES TO INSTRUCTION BEHAVIOR INSIDE AN ENCLAVE
This section covers instructions whose behavior changes when executed in enclave mode.

39.6.1 Illegal Instructions
The instructions listed in Table 39-1 are ring 3 instructions which become illegal when executed inside an enclave.
Executing these instructions inside an enclave will generate a #UD fault.
The first row of Table 39-1 enumerates instructions that may cause a VM exit for VMM emulation. Since a VMM
cannot emulate enclave execution, execution of any these instructions inside an enclave results in an invalid-
opcode exception (#UD) and no VM exit.
The second row of Table 39-1 enumerates I/O instructions that may cause a fault or a VM exit for emulation.
Again, enclave execution cannot be emulated, so execution of any these instructions inside an enclave results in
#UD.
The third row of Table 39-1 enumerates instructions that load descriptors from the GDT or the LDT or that change
privilege level. The former class is disallowed because enclave software should not depend on the contents of the
descriptor tables and the latter because enclave execution must be entirely with CPL = 3. Again, execution of any
these instructions inside an enclave results in #UD.
The fourth row of Table 39-1 enumerates instructions that provide access to kernel information from user mode
and can be used to aid kernel exploits from within enclave. Execution of any these instructions inside an enclave
results in #UD.

RDTSC and RDTSCP instructions are legal instructions inside an enclave.
RDTSC and RDTSCP instructions can be disabled by setting CR4. TSD when inside an enclave.
RDTSC and RDTSCP instructions may cause a VM exit when inside an enclave.

Table 39-1. Illegal Instructions Inside an Enclave
 Instructions Result Comment

CPUID, GETSEC, RDPMC, SGDT, SIDT, SLDT, STR, VMCALL, VMFUNC #UD Might cause VM exit.

IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD #UD I/O fault may not safely recover. May require emulation.

Far call, Far jump, Far Ret, INT n/INTO, IRET, LDS/LES/LFS/LGS/LSS,
MOV to DS/ES/SS/FS/GS, POP DS/ES/SS/FS/GS, SYSCALL,
SYSENTER

#UD Access segment register could change privilege level.

LAR, VERR, VERW #UD Might provide access to kernel information.

ENCLU[EENTER], ENCLU[ERESUME] #GP Cannot enter an enclave from within an enclave.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 331

NOTE
Some early processor implementation of Intel SGX will generate a #UD when RDTSC and RDTSCP
are executed inside an enclave. See the model-specific processor errata for details of which
processors treat execution of RDTSC and RDTSCP inside an enclave as illegal.

Software developers must take into account that the RDTSC/RDTSCP results are not immune to influences by
other software, e.g. the TSC can be manipulated by software outside the enclave.

39.6.2 RDRAND and RDSEED Instructions
These instructions may cause a VM exit if the “RDRAND exiting” VM-execution control is 1. Unlike other instruc-
tions that can cause VM exits, these instructions are legal inside an enclave. As noted in Section 6.5.5, any VM
exit originating on an instruction boundary inside an enclave sets bit 27 of the exit-reason field of the VMCS. If a
VMM receives a VM exit due to an attempt to execute either of these instructions determines (by that bit) that the
execution was inside an enclave, it can do either of two things. It can clear the “RDRAND exiting” VM-execution
control and execute VMRESUME; this will result in the enclave executing RDRAND or RDSEED again, and this time
a VM exit will not occur. Alternatively, the VMM might choose to discontinue execution of this virtual machine.

NOTE
It is expected that VMMs that virtualize Intel SGX will not set “RDRAND exiting” to 1.

39.6.3 PAUSE Instruction
The PAUSE instruction may cause a VM exit if either of the “PAUSE exiting” and “PAUSE-loop exiting” VM-execu-
tion controls is 1. Unlike other instructions that can cause VM exits, the PAUSE instruction is legal inside an
enclave.
If a VMM receives a VM exit due to the 1-setting of “PAUSE-loop exiting”, it may take action to prevent recurrence
of the PAUSE loop (e.g., by scheduling another virtual CPU of this virtual machine) and then execute VMRESUME;
this will result in the enclave executing PAUSE again, but this time the PAUSE loop (and resulting VM exit) will not
occur.
If a VMM receives a VM exit due to the 1-setting of “PAUSE exiting”, it can do either of two things. It can clear the
“PAUSE exiting” VM-execution control and execute VMRESUME; this will result in the enclave executing PAUSE
again, but this time a VM exit will not occur. Alternatively, the VMM might choose to discontinue execution of this
virtual machine.

NOTE
It is expected that VMMs that virtualize Intel SGX will not set “PAUSE exiting” to 1.

39.6.4 INT 3 Behavior Inside an Enclave
INT3 is legal inside an enclave, however, the behavior inside an enclave is different from its behavior outside an
enclave. See Section 43.4.1 for details.

39.6.5 INVD Handling when Enclaves Are Enabled

Once processor reserved memory protections are activated (see Section 39.5), any execution of INVD will result
in a #GP(0).

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 332

29. New Chapter 40, New Volume 3D
A new chapter, Chapter 40, has been added to the new volume: Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3D: System Programming Guide, Part 4.

--

...
CHAPTER 40

ENCLAVE EXITING EVENTS

Certain events, such as exceptions and interrupts, incident to (but asynchronous with) enclave execution may
cause control to transition to an address outside the enclave. (Most of these also cause a change of privilege
level.) To protect the integrity and security of the enclave, the processor will exit the enclave (and enclave mode)
before invoking the handler for such an event. For that reason, such events are called an enclave-exiting
events (EEE); EEEs include external interrupts, non-maskable interrupts, system-management interrupts,
exceptions, and VM exits.
The process of leaving an enclave in response to an EEE is called an asynchronous enclave exit (AEX). To
protect the secrecy of the enclave, an AEX saves the state of certain registers within enclave memory and then
loads those registers with fixed values called synthetic state.

40.1 COMPATIBLE SWITCH TO THE EXITING STACK OF AEX
Asynchronous enclave exits push information onto the appropriate stack in a form expected by the operating
system. To accomplish this, an address to trampoline code is pushed onto the exiting stack as the RIP. This tram-
poline code eventually returns to the enclave by means of an ENCLU(ERESUME) instruction.
The stack to be used is chosen using the same rules as for non-SGX mode:
• If there is a privilege level change, the stack will be the one associated with the new ring.
• If there is no privilege level change, the current application stack is used.
• If the IA-32e IST mechanism is used, the exit stack is chosen using that method.
In all cases, the choice of exit stack and the information pushed onto it is consistent with non-SGX operation.
Figure 40-1 shows the Application and Exiting Stacks after an exit with a stack switch. An exit without a stack
switch uses the Application Stack. The ERESUME leaf index is placed into RAX, the TCS pointer is placed in RBX
and the AEP (see below) is placed into RCX for later use when resuming the enclave after the exit.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 333

Upon an AEX, the AEP (Asynchronous Exit Pointer) is pushed onto the exit stack as the return RIP. The AEP points
to a trampoline code sequence which includes the ERESUME instruction that is later used to reenter the enclave.
The following bits of RFLAGS are cleared before RFLAGS is pushed onto the exit stack: CF, PF, AF, ZF, SF, OF, RF.
The remaining bits are left unchanged.

40.2 STATE SAVING BY AEX
The State Save Area holds the processor state at the time of an AEX. To allow handling events within the enclave
and re-entering it after an AEX, the SSA can be a stack of multiple SSA frames as illustrated in Figure 40-2.

Figure 40-1. Exit Stack Just After Interrupt with Stack Switch

ENCLU[ERESUME]

RAX

Current SSA Frame
Per-Thread
Trampoline in uRTS

RSP after pushes

CSSA

AEP

TCS

Exit Stack

SS

RSP

RFLAGS

CS

RIP

Error Code (optional)

uRSP

AEP

RSP

TCS LA

ENCLU[ERESUME]

RCX

RBX

Next SSA Frame

uRSP

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 334

The location of the SSA frames to be used is controlled by three variables in the TCS:
Number of State Save Area Slots (NSSA). Defines the total number of slots (frames) in the State Save Area stack.
Current State Save Area Slot (CSSA). Defines the current slot to use on the next exit.
State Save Area (OSSA). Address of a set of save area slots large enough to hold the GPR state and the XSAVE
state.
When an AEX occurs while executing on a thread inside the enclave, hardware selects the SSA frame to use by
examining TCS.CSSA. Processor state (as described in Section 40.3.1) is saved and loaded with a synthetic state
(to avoid leaking secrets) and TCS.CSSA is incremented. As will be described later, if an exception takes the last
slot, it will not be possible to reenter the enclave to handle the exception inside the enclave.
The format of the XSAVE section of SSA is identical to the format used by the XSAVE/XRSTOR instructions.
Note: On EENTER, CSSA must be less than NSSA, ensuring that there is at least one Save Area available for exits.
Multiple SSA frames are defined to allow for a variety of behavior. When an AEX occurs the SSA frame is loaded
and the pointer incremented. An ERESUME restores the processor state and frees the SSA frame. If after the AEX
an EENTER is executed then the next SSA frame is reserved to hold state for another AEX. If there is no free SSA
frame when executing EENTER, the entry will fail.

40.3 SYNTHETIC STATE ON ASYNCHRONOUS ENCLAVE EXIT

40.3.1 Processor Synthetic State on Asynchronous Enclave Exit
Table 40-1 shows the synthetic state loaded on AEX. The values written are the lower 32 bits when the processor
is in 32 bit mode and 64 bits when the processor is in 64 bit mode.

Figure 40-2. The SSA Stack

Current

SECS.SSAFRAMESIZE

TCS

NSSA

CSSA

OSSA

(in pages)

MISC_N-1

GRP_N-1

GPR_1

XSAVE_N-1

XSAVE_1

MISC_1

XAVE_0

MISC_0

GRP_0

SSA Stack

SSA Fram

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 335

40.3.2 Synthetic State for Extended Features
When CR4.OSXSAVE = 1, extended features (those controlled by XCR0[63:2]) are set to their respective INIT
states when this corresponding bit of SECS.XFRM is set. The INIT state is the state that would be loaded by the
XRSTOR instruction had the instruction mask and the XSTATE_BV field of the XSAVE header each contained the
value XFRM. (When the AEX occurs in 32-bit mode, those features that do not exist in 32-bit mode are
unchanged.)

40.3.3 VMCS Synthetic State on Asynchronous Enclave Exit
All processor registers saved in the VMCS have the same synthetic values listed above. Additional VMCS fields
that are treated specially on VM exit are listed in Table 40-2.

Table 40-1. GPR, x87 Synthetic States on Asynchronous Enclave Exit
Register Value

RAX 3 (ENCLU[3] is ERESUME).

RBX TCS pointer of interrupted enclave thread.

RCX AEP of interrupted enclave thread.

RDX, RSI, RDI 0.

RSP Loaded from SSA.uRSP.

RBP Loaded from SSA.uRBP.

R8-R15 0 in 64-bit mode; unchanged in 32-bit mode.

RIP AEP of interrupted enclave thread.

RFLAGS CF, PF, AF, ZF, SF, OF, RF bits are cleared. Remaining bits are left unchanged.

x87/SSE State Unless otherwise listed here, all x87 and SSE state are set to the INIT state. The INIT state is the state
that would be loaded by the XRSTOR instruction with bits 1:0 both set in the instruction mask and
XCR0, and both clear in XSTATE_BV the XSAVE header.

FCW On #MF exception: 037EH. On all other exits: 037FH.

FSW On #MF exception: 8081H. On all other exits: 0H.

MXCSR On #XM exception:1F01H. On all other exits: 0H.

CR2 If the event that caused the AEX is a #PF, and the #PF does not directly cause a VM exit, then the low
12 bits are cleared.
If the #PF leads directly to a VM exit, CR2 is not updated (usual IA behavior).
Note: The low 12 bits are not cleared if a #PF is encountered during the delivery of the EEE that caused
the AEX. This is because it is the AEX that clears those bits, and EEE delivery occurs after AEX. Also, the
address of an access causing a #PF during EEE delivery reveals no enclave secrets.

FS, GS Including hidden portion. Restored to values as of most recent EENTER/ERESUME.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 336

40.4 AEX FLOW
On Enclave Exiting Events (interrupts, exceptions, VM exits or SMIs), the processor state is securely saved inside
the enclave, a synthetic state is loaded and the enclave is exited. The EEE then proceeds in the usual exit-defined
fashion. The following sections describes the details of an AEX:

1. The exact processor state saved into the current SSA frame depends on whether the enclave is a 32-bit or a
64-bit enclave. In 32-bit mode (IA32_EFER.LMA = 0 || CS.L = 0), the low 32 bits of the legacy registers (EAX,
EBX, ECX, EDX, ESP, EBP, ESI, EDI, EIP and EFLAGS) are stored. The upper 32 bits of the legacy registers and
the 64-bit registers (R8 … R15) are not stored.

In 64-bit mode (IA32_EFER.LMA = 1 && CS.L = 1), all 64 bits of the general processor registers (RAX, RBX,
RCX, RDX, RSP, RBP, RSI, RDI, R8 … R15, RIP and RFLAGS) are stored.
The state of those extended features specified by SECS.ATTRIBUTES.XFRM are stored into the XSAVE area
of the current SSA frame. The layout of the x87 and XMM portions (the 1st 512 bytes) depends on the
current values of IA32_EFER.LMA and CS.L:
If IA32_EFER.LMA = 0 || CS.L = 0, the same format (32-bit) that XSAVE/FXSAVE uses with these values.

Table 40-2. VMCS Synthetic States on Asynchronous Enclave Exit
Field Value

ENCLAVE_INTERRUPTION A new configuration bit (bit 4 in the “Guest Interruptibility State” field) and an indicator (bit 27 in Basic
VM-exit information field) for exit reasons. Set to 1 if exit occurred in enclave mode.

Guest-linear address If the event that caused the AEX is an EPT violation that sets bit 7 of the Exit-Qualification field, the low
12 bits are cleared.
Note: If the EPT violation occurs during delivery of an event that caused the AEX (e.g., an EPT violation
that occurs during IDT vectoring), then the low 12 bits are NOT cleared.

Guest-physical address If the event that caused the AEX is an EPT violation or mis-configured EPT, then the low 12 bits are
cleared.
Note: If the EPT violation or misconfiguration occurs during delivery of an event that caused the AEX
(e.g., an EPT violation or misconfiguration that occurs during IDT vectoring), then the low 12 bits are
NOT cleared.

Exit-Qualification On page-fault that causes an AEX: low 12 bits are cleared.
On APIC-access that causes an AEX: low 12 bits are cleared.
Note: If either the page-fault or APIC-access occurs during delivery of an event that caused the AEX, the
low 12 bits are NOT cleared.

VM-exit instruction length Cleared.

VM-exit instruction
information

This field is defined only for VM exits due to or during the execution of specific instructions (i.e. should
be reported properly). Most of these instructions do not cause VM exits when executed inside an
enclave. Exceptions are MOV DR, INVEPT, INVVPID, RDTSC, RDTSCP, VMCLEAR, VMLAUNCH, VMPTRLD,
VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, and VMXON. Normally, this field is defined for VM
exits due to INT3 (or exceptions encountered while delivering INT3). This is not true for INT3 in an
enclave, as the instruction becomes fault-like.
INT3 Interruption types are reported as hardware exception when invoked inside enclave instead of 6
respectively when invoked outside enclave.
This field is cleared for all other VM exits.

I/O RCX Cleared.

I/O RSI Cleared.

I/O RDI Cleared.

I/O RIP Cleared.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 337

If IA32_EFER.LMA = 1 && CS.L = 1, the same format (64-bit) that XSAVE/FXSAVE uses with these values
when REX.W = 1.
The state of those miscellaneous features specified by SECS.MISCSELECT are stored into the MISC area of the
current SSA frame.

2. Synthetic state is created for a number of processor registers to present an opaque view of the enclave state.
Table 40-1 shows the values for GPRs, x87, SSE, FS, GS, Debug and performance monitoring on AEX. The
synthetic state for other extended features (those controlled by XCR0[62:2]) is set to their respective INIT
states when the corresponding bit of SECS.ATTRIBUTES.XFRM is set. The INIT state is that state as defined by
the behavior of the XRSTOR instruction when HEADER.XSTATE_BV[n] is 0. In addition, on VM exit the VMCS
or SMRAM state is initialized as described in Table 40-2.

3. In the current SSA frame, the cause of the AEX is saved in the EXITINFO field. See Table 38-9 for details and
values of the various fields.

4. Any code and data breakpoints that were suppressed at the time of enclave entry are unsuppressed when
exiting the enclave.

5. RFLAGS.TF is set to the value that it had at the time of the most recent enclave entry (an exception is made if
that entry was opt-in; see Section 43.2). In the SSA, RFLAGS.TF is set to 0. However, due to the way TF is
handled on enclave entry, this value is irrelevant (see EENTER and ERESUME instructions).

6. RFLAGS.RF is set to 0 in the synthetic state. In the SSA, the value saved is the same as what would have been
saved on stack in the non-SGX case (architectural value of RF). Thus, AEXs due to interrupts, traps, and code
breakpoints save RF unmodified into SSA, while AEXs due to other faults save RF as 1 in the SSA.

If the event causing AEX happened on intermediate iteration of a REP-prefixed instruction, then RF=1 is
saved on SSA, irrespective of its priority.

7. Any performance monitoring activity (including PEBS) on the exiting thread that was suppressed due to the
enclave entry on that thread is unsuppressed. Any counting that had been demoted to MyThread (on other
threads) is promoted back to AnyThread.

40.4.1 AEX Operational Detail

Temp Variables in AEX Operational Flow

The pseudo code in this section describes the internal operations that are executed when an AEX occurs in enclave
mode. These operations occur just before the normal interrupt or exception processing occurs.

(* Save RIP for later use *)
TMP_RIP = Linear Address of Resume RIP
(* Is the processor in 64-bit mode? *)
TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Save all registers, When saving EFLAGS, the TF bit is set to 0 and
the RF bit is set to what would have been saved on stack in the non-SGX case *)

Name Type Size (bits) Description

TMP_RIP Effective Address 32/64 Address of instruction at which to resume execution on ERESUME.

TMP_MODE64 binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1)).

TMP_BRANCH_RECORD LBR Record 2x64 From/To address to be pushed onto LBR stack.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 338

 IF (TMP_MODE64 = 0)
THEN

Save EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI, EFLAGS, EIP into the current SSA frame using
CR_GPR_PA, see Table 41-4

SSA.RFLAGS.TF 0;
ELSE (* TMP_MODE64 = 1 *)
 Save RAX, RBX, RCX, RDX, RSP, RBP, RSI, RDI, R8-R15, RFLAGS, RIP into SSA using CR_GPR_PA

SSA.RFLAGS.TF 0;
FI;
Save FS and GS BASE into SSA using CR_GPR_PA;

(* Use a special version of XSAVE that takes a list of physical addresses of logically sequential pages to
perform the save. TMP_MODE64 specifies whether to use the 32-bit or 64-bit layout.
SECS.ATTRIBUTES.XFRM selects the features to be saved.
CR_XSAVE_PAGE_n specifies a list of 1 or more physical addresses of pages that contain the XSAVE area.

*)
XSAVE(TMP_MODE64, SECS.ATTRIBUTES.XFRM, CR_XSAVE_PAGE_n);

(* Clear bytes 8 to 23 of XSAVE_HEADER, i.e. the next 16 bytes after XHEADER_BV *)

CR_XSAVE_PAGE_0.XHEADER_BV[191:64] 0;

(* Clear bits in XHEADER_BV[63:0] that are not enabled in ATTRIBUTES.XFRM *)

CR_XSAVE_PAGE_0.XHEADER_BV[63:0]
CR_XSAVE_PAGE_0.XHEADER_BV[63:0] & SECS(CR_ACTIVE_SECS).ATTRIBUTES.XFRM;
Apply synthetic state to GPRs, RFLAGS, extended features, etc.

(* Restore the outside RSP and RBP from the current SSA frame.
This is where they had been stored on most recent EENTER *)

RSP CR_GPR_PA.URSP;
RBP CR_GPR_PA.URBP;

(* Restore the FS and GS *)
FS.selector CR_SAVE_FS.selector;
FS.base CR_SAVE_FS.base;
FS.limit CR_SAVE_FS.limit;
FS.access_rights CR_SAVE_FS.access_rights;
GS.selector CR_SAVE_GS.selector;
GS.base CR_SAVE_GS.base;
GS.limit CR_SAVE_GS.limit;
GS.access_rights CR_SAVE_GS.access_rights;

(* Examine exception code and update enclave internal states*)
exception_code Exception or interrupt vector;

(* Indicate the exit reason in SSA *)
IF (exception_code = (#DE OR #DB OR #BP OR #BR OR #UD OR #MF OR #AC OR #XM))

THEN
CR_GPR_PA.EXITINFO.VECTOR exception_code;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 339

IF (exception code = #BP)
THEN CR_GPR_PA.EXITINFO.EXIT_TYPE 6;
ELSE CR_GPR_PA.EXITINFO.EXIT_TYPE 3;

FI;
CR_GPR_PA.EXITINFO.VALID 1;

ELSE IF (exception_code is #PF or #GP)
THEN
(* Check SECS.MISCSELECT using CR_ACTIVE_SECS *)
IF (SECS.MISCSELECT[0] is set)

THEN
CR_GPR_PA.EXITINFO.VECTOR exception_code;
CR_GPR_PA.EXITINFO.EXIT_TYPE 3;
IF (exception_code is #PF)

THEN
SSA.MISC.EXINFO. MADDR CR2;
SSA.MISC.EXINFO.ERRCD PFEC;
SSA.MISC.EXINFO.RESERVED 0;

ELSE
SSA.MISC.EXINFO. MADDR 0;
SSA.MISC.EXINFO.ERRCD GPEC;
SSA.MISC.EXINFO.RESERVED 0;

FI;
CR_GPR_PA.EXITINFO.VALID 1;

FI;
ELSE

CR_GPR_PA.EXITINFO.VECTOR 0;
CR_GPR_PA.EXITINFO.EXIT_TYPE 0
CR_GPR_PA.REASON.VALID 0;

FI;

(* Execution will resume at the AEP *)
RIP CR_TCS_PA.AEP;

(* Set EAX to the ERESUME leaf index *)
EAX 3;

(* Put the TCS LA into RBX for later use by ERESUME *)
RBX CR_TCS_LA;

(* Put the AEP into RCX for later use by ERESUME *)
RCX CR_TCS_PA.AEP;

(* Update the SSA frame # *)
CR_TCS_PA.CSSA CR_TCS_PA.CSSA + 1;

(* Restore XCR0 if needed *)
IF (CR4.OSXSAVE = 1)

THEN XCR0 CR_SAVE_XCR0; FI;

Un-suppress all code breakpoints that are outside ELRANGE

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 340

(* Update the thread context to show not in enclave mode *)
CR_ENCLAVE_MODE 0;

(* Assure consistent translations. *)
Flush linear context including TLBs and paging-structure caches

IF (CR_DBGOPTIN = 0)
THEN

Un-suppress all breakpoints that overlap ELRANGE
(* Clear suppressed breakpoint matches *)
Restore suppressed breakpoint matches
(* Restore TF *)
RFLAGS.TF CR_SAVE_TF;
Un-suppress monitor trap flag;
Un-suppress branch recording facilities;
Un-suppress all suppressed performance monitoring activity;
Promote any sibling-thread counters that were demoted from AnyThread to MyThread during enclave

entry back to AnyThread;
FI;

IF (VMCS.MTF = 1)
THEN Pend MTF VM Exit at the end of exit; FI;

(* Clear low 12 bits of CR2 on #PF *)
IF (Exception is #PF)

THEN CR2 CR2 & ~0xFFF; FI;

(* end_of_flow *)

(* Execution continues with normal event processing. *)

...

30. New Chapter 41, New Volume 3D
A new chapter, Chapter 41, has been added to the new volume: Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3D: System Programming Guide, Part 4.

--

...
CHAPTER 41

SGX INSTRUCTION REFERENCE

Supervisor and user level instructions provided by Intel® Software Guard Extensions are described in this chapter.
In general, a various functionalities are encoded as leaf functions within the ENCLS (supervisor) and ENCLU (user)
instruction mnemonics. Different leaf functions are encoded by specifying an input value in the EAX register of the
respective instruction mnemonic.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 341

41.1 INTEL® SGX INSTRUCTION SYNTAX AND OPERATION
ENCLS and ENCLU instruction mnemonics for all leaf functions are covered in this section.
For all instructions, the value of CS.D is ignored; addresses and operands are 64 bits in 64-bit mode and are
otherwise 32 bits. Aside from EAX specifying the leaf number as input, each instruction leaf may require all or
some subset of the RBX/RCX/RDX as input parameters. Some leaf functions may return data or status informa-
tion in one or more of the general purpose registers.

41.1.1 ENCLS Register Usage Summary
Table 41-1 summarizes the implicit register usage of supervisor mode enclave instructions.

41.1.2 ENCLU Register Usage Summary
Table 41-2 Summarized the implicit register usage of user mode enclave instructions.

Table 41-1. Register Usage of Privileged Enclave Instruction Leaf Functions
Instr. Leaf EAX RBX RCX RDX

ECREATE 00H (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EADD 01H (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EINIT 02H (In) SIGSTRUCT (In, EA) SECS (In, EA) EINITTOKEN (In, EA)

EREMOVE 03H (In) EPCPAGE (In, EA)

EDBGRD 04H (In) Result Data (Out) EPCPAGE (In, EA)

EDBGWR 05H (In) Source Data (In) EPCPAGE (In, EA)

EEXTEND 06H (In) EPCPAGE (In, EA)

ELDB 07H (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

ELDU 08H (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

EBLOCK 09H (In) EPCPAGE (In, EA)

EPA 0AH (In) PT_VA (In) EPCPAGE (In, EA)

EWB 0BH (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

ETRACK 0CH (In) EPCPAGE (In, EA)

EAUG 0DH (In) PAGEINFO (In, EA) EPCPAGE (In, EA) LINADDR

EMODPR 0EH (In) SECINFO (In, EA) EPCPAGE (In, EA)

EMODT 0FH (In) SECINFO (In, EA) EPCPAGE (In, EA)

EA: Effective Address

Table 41-2. Register Usage of Unprivileged Enclave Instruction Leaf Functions
Instr. Leaf EAX RBX RCX RDX

EREPORT 00H (In) TARGETINFO (In, EA) REPORTDATA (In, EA) OUTPUTDATA (In, EA)

EGETKEY 01H (In) KEYREQUEST (In, EA) KEY (In, EA)

EENTER 02H (In) TCS (In, EA) AEP (In, EA)

RBX.CSSA (Out) Return (Out, EA)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 342

41.1.3 Information and Error Codes
Information and error codes are reported by various instruction leaf functions to show an abnormal termination of
the instruction or provide information which may be useful to the developer. Table 41-3 shows the various codes
and the instruction which generated the code. Details of the meaning of the code is provided in the individual
instruction.

ERESUME 03H (In) TCS (In, EA) AEP (In, EA)

EEXIT 04H (In) Target (In, EA) Current AEP (Out)

EACCEPT 05H (In) SECINFO (In, EA) EPCPAGE (In, EA)

EMODPE 06H (In) SECINFO (In, EA) EPCPAGE (In, EA)

EACCEPTCOPY 07H (In) SECINFO (In, EA) EPCPAGE (In, EA) EPCPAGE (In, EA)

EA: Effective Address

Table 41-2. Register Usage of Unprivileged Enclave Instruction Leaf Functions
Instr. Leaf EAX RBX RCX RDX

Table 41-3. Error or Information Codes for Intel® SGX Instructions
Name Value Returned By

No Error 0

SGX_INVALID_SIG_STRUCT 1 EINIT

SGX_INVALID_ATTRIBUTE 2 EINIT, EGETKEY

SGX_BLSTATE 3 EBLOCK

SGX_INVALID_MEASUREMENT 4 EINIT

SGX_NOTBLOCKABLE 5 EBLOCK

SGX_PG_INVLD 6 EBLOCK

SGX_LOCKFAIL 7 EBLOCK, EMODPR, EMODT

SGX_INVALID_SIGNATURE 8 EINIT

SGX_MAC_COMPARE_FAIL 9 ELDB, ELDU

SGX_PAGE_NOT_BLOCKED 10 EWB

SGX_NOT_TRACKED 11 EWB, EACCEPT

SGX_VA_SLOT_OCCUPIED 12 EWB

SGX_CHILD_PRESENT 13 EWB, EREMOVE

SGX_ENCLAVE_ACT 14 EREMOVE

SGX_ENTRYEPOCH_LOCKED 15 EBLOCK

SGX_INVALID_EINIT_TOKEN 16 EINIT

SGX_PREV_TRK_INCMPL 17 ETRACK

SGX_PG_IS_SECS 18 EBLOCK

SGX_PAGE_ATTRIBUTES_MISMATCH 19 EACCEPT, EACCEPTCOPY

SGX_PAGE_NOT_MODIFIABLE 20 EMODPR, EMODT

SGX_INVALID_CPUSVN 32 EINIT, EGETKEY

SGX_INVALID_ISVSVN 64 EGETKEY

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 343

41.1.4 Internal CREGs
The CREGs as shown in Table 5-4 are hardware specific registers used in this document to indicate values kept by
the processor. These values are used while executing in enclave mode or while executing an Intel SGX instruction.
These registers are not software visible and are implementation specific. The values in Table 41-4 appear at
various places in the pseudo-code of this document. They are used to enhance understanding of the operations.

SGX_UNMASKED_EVENT 128 EINIT

SGX_INVALID_KEYNAME 256 EGETKEY

Table 41-3. Error or Information Codes for Intel® SGX Instructions
Name Value Returned By

Table 41-4. List of Internal CREG
Name Size (Bits) Scope

CR_ENCLAVE_MODE 1 LP

CR_DBGOPTIN 1 LP

CR_TCS_LA 64 LP

CR_TCS_PH 64 LP

CR_ACTIVE_SECS 64 LP

CR_ELRANGE 128 LP

CR_SAVE_TF 1 LP

CR_SAVE_FS 64 LP

CR_GPR_PA 64 LP

CR_XSAVE_PAGE_n 64 LP

CR_SAVE_DR7 64 LP

CR_SAVE_PERF_GLOBAL_CTRL 64 LP

CR_SAVE_DEBUGCTL 64 LP

CR_SAVE_PEBS_ENABLE 64 LP

CR_CPUSVN 128 PACKAGE

CSR_SGX_OWNEREPOCH 128 PACKAGE

CSR_INTELPUBKEYHASH 32 PACKAGE

CR_SAVE_XCR0 64 LP

CR_SGX_ATTRIBUTES_MASK 128 LP

CR_PAGING_VERSION 64 PACKAGE

CR_VERSION_THRESHOLD 64 PACKAGE

CR_NEXT_EID 64 PACKAGE

CR_BASE_PK 128 PACKAGE

CR_SEAL_FUSES 128 PACKAGE

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 344

41.1.5 Concurrent Operation Restrictions
To protect the integrity of Intel SGX data structures, under certain conditions, Intel SGX disallows certain leaf
functions from operating concurrently. Listed below are some examples of concurrency that are not allowed.
• For example, Intel SGX disallows the following leafs to concurrently operate on the same EPC page.

— ECREATE, EADD, and EREMOVE are not allowed to operate on the same EPC page concurrently with
themselves or any other Intel SGX leaf function.

— EADD, EEXTEND, and EINIT leafs are not allowed to operate on the same SECS concurrently.
• Intel SGX disallows the EREMOVE leaf from removing pages from an enclave that is in use.
• Intel SGX disallows entry (EENTER and ERESUME) to an enclave while a page from that enclave is being

removed.
When disallowed operation is detected, a leaf function causes an exception. To prevent such exceptions, software
must serialize leaf functions or prevent these leaf functions from accessing the same resource.

41.1.5.1 Concurrency Table of Intel® SGX Instructions
Summary tables of concurrency describing whether a given Intel SGX instruction leaf is allowed to execute while
another leaf function is executing or owns common resource. Concurrent restriction of an individual leaf function
(ENCLS or ENCLU) with another Intel SGX instruction leaf functions is listed under the Concurrency Restriction
paragraph of the respective reference pages of the leaf function.
The concurrency restriction depends on the type of EPC page and the parameter of the two concurrent instruc-
tions each Intel SGX instruction leaf attempts to operate on. The spectrum concurrency behavior of the instruc-
tion leaf shown in a given row is denoted by the following:
• ‘N’: The instructions listed in a given row heading may not execute concurrently with the instruction leaf

shown in the respective column. Software should serialize them.
• ‘Y’: The instruction leaf listed in a given row may execute concurrently with the instruction leaf shown in the

respective column.
• ‘C’: The instruction leaf listed in a given row heading may return an error code when executed concurrently

with the instruction leaf shown in the respective column.
• ‘U’: These two instruction leaves may complete, but the occurrence these two simultaneous flows are

considered a user program error for which the processor does not enforce any restriction.
• A grey cell indicates concurrent execution of two leaf functions that is architecturally impossible or restricted,

e.g. executing an ENCLU and an ENCLS leaf on the same logical processor, or executing two leaves with
incompatible EPCM state requirements. Concurrent execution of two such leaf instructions may result in a
page fault in one of the leaf instructions.

For instance, multiple ELDB/ELDUs are allowed to execute as long as the selected EPC page is not the same page.
Multiple ETRACK operations are not allowed to execute concurrently.

41.2 INTEL® SGX INSTRUCTION REFERENCE

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 345

ENCLS—Execute an Enclave System Function of Specified Leaf Number

Instruction Operand Encoding

Description

The ENCLS instruction invokes the specified privileged Intel SGX leaf function for managing and debugging
enclaves. Software specifies the leaf function by setting the appropriate value in the register EAX as input. The
registers RBX, RCX, and RDX have leaf-specific purpose, and may act as input, as output, or may be unused. In
64-bit mode, the instruction ignores upper 32 bits of the RAX register.
The instruction also results in a #UD if CR0.PE is 0 or RFLAGS.VM is 1, or if it is executed from inside SMM. Addi-
tionally, any attempt to execute this instruction when current privilege level is not 0 results in #UD.
Any attempt to invoke an undefined leaf function results in #GP(0).
If CR0.PG is 0, any attempt to execute ENCLS results in #GP(0).
In VMX non-root operation, execution of ENCLS is unconditionally allowed if the “Enable ENCLS exiting” VM-
execution control is cleared. If the “Enable ENCLS exiting” VM-execution control is set, execution of individual leaf
function of ENCLS is governed by the “ENCLS-exiting bitmap”. Each bit position of “ENCLS-exiting bitmap” corre-
sponds to the index (EAX) of an ENCLS leaf function.
Software in VMX root mode of operation can intercept the invocation of various ENCLS leaf functions from VMX
non-root mode by setting the Enable_ENCLS_EXITING control and writing the desired bit patterns into the
“ENCLS-exiting bitmap” (accessed via encoding pair 0202EH/0202FH). A processor implements the
Enable_ENCLS_EXITING VM-execution control field if IA32_VMX_PROCBASED_CTLS2[15] is read as 1.
The DS segment is used to create linear addresses.
Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA = 0 || CS.L = 0) and are 64 bits in 64-
bit mode (IA32_EFER.LMA = 1 || CS.L = 1). CS.D value has no impact on address calculation.
Segment prefix override is ignored. Address size prefix (67H) override is ignored.
REX prefix is ignored in 64-bit mode.

Operation

IN_64BIT_MODE 0;
IF TSX_ACTIVE

Then GOTO TSX_ABORT_PROCESSING; FI;

IF (CR0.PE = 0 or RFLAGS.VM = 1 or IN_SMM or CPUID.SGX_LEAF.0:EAX.SE1 = 0)
Then #UD; FI;

IF (CPL > 0)
Then #UD; FI;

IF ((in VMX non-root operation) and (Enable_ENCLS_EXITING = 1))

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 0F 01 CF NP V/V SGX1 This instruction is used to execute privileged Intel SGX leaf func-
tions that are used for managing and debugging the enclaves.ENCLS

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

NP NA NA NA See Section 41.3

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 346

Then
IF (((EAX < 63) and (ENCLS_EXITING_Bitmap[EAX] = 1)) or (EAX> 62 and ENCLS_EXITING_Bitmap[63] = 1))

Then
Set VMCS.EXIT_REASON = ENCLS;
Deliver VM exit;

FI;
FI;
IF (IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0)

Then #GP(0); FI;

IF (EAX is invalid leaf number)
Then #GP(0); FI;

IF (CR0.PG = 0)
Then #GP(0); FI;

IN_64BIT_MODE IA32_EFER.LMA AND CS.L ? 1 : 0;

IF (IN_64BIT_MODE = 0 and (DS[S] = 1) and (DS[bit 11] = 0) and DS[bit 10] = 1)
Then #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions

Protected Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If data segment expand down.
If CR0.PG=0.

Real-Address Mode Exceptions

#UD ENCLS is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLS is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 347

64-Bit Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 348

ENCLU—Execute an Enclave User Function of Specified Leaf Number

Instruction Operand Encoding

Description

The ENCLU instruction invokes the specified non-privileged Intel SGX leaf functions. Software specifies the leaf
function by setting the appropriate value in the register EAX as input. The registers RBX, RCX, and RDX have leaf-
specific purpose, and may act as input, as output, or may be unused. In 64-bit mode, the instruction ignores
upper 32 bits of the RAX register.
The instruction also results in a #UD if CR0.PE is 0 or RFLAGS.VM is 1, or if it is executed from inside SMM. Addi-
tionally, any attempt to execute this instruction when current privilege level is not 3 results in #UD.
Any attempt to invoke an undefined leaf function results in #GP(0).
Any attempt to execute ENCLU instruction when paging is disabled or in MS-DOS compatible mode results in #GP.
The DS segment is used to create linear addresses.
Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA = 0 || CS.L = 0) and are 64 bits in 64-
bit mode (IA32_EFER.LMA = 1 || CS.L = 1). CS.D value has no impact on address calculation.
Segment prefix override is ignored. Address size prefix (67H) override is ignored.
REX prefix is ignored in 64-bit mode.

Operation

IN_64BIT_MODE 0;
IF TSX_ACTIVE

Then GOTO TSX_ABORT_PROCESSING; FI;

IF (CR0.PE= 0 or RFLAGS.VM = 1 or IN_SMM or CPUID.SGX_LEAF.0:EAX.SE1 = 0)
Then #UD; FI;

IF (CR0.TS = 1)
Then #NM; FI;

IF (CPL != 3)
Then #UD; FI;

IF (IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0)
Then #GP(0); FI;

IF (EAX is invalid leaf number)
Then #GP(0); FI;

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 0F 01 D7 NP V/V SGX1 This instruction is used to execute non-privileged Intel SGX leaf
functions that are used for operating the enclaves.ENCLU

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

NP NA NA NA See Section 41.4

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 349

IF (CR0.PG = 0 or CR0.NE = 0)
Then #GP(0); FI;

IN_64BIT_MODE IA32_EFER.LMA AND CS.L ? 1 : 0;
(*Check not in 16-bit mode and DS is not a 16-bit segment*)
IF (IN_64BIT_MODE = 0 and ((CS.D = 0) or (DS.B = 0))

Then #GP(0); FI;

IF (CR_ENCLAVE_MODE = 1 and ((EAX = EENTER) or (EAX = ERESUME)))
Then #GP(0); FI;

IF (CR_ENCLAVE_MODE = 0 and ((EAX = EGETKEY) or (EAX = EREPORT) or (EAX = EEXIT) or (EAX = EACCEPT) or
(EAX = EACCEPTCOPY) or (EAX = EMODPE)))
Then #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions

Protected Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.
If current privilege level is not 3.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If input value in EAX encodes EENTER/ERESUME and ENCLAVE_MODE = 1.
If input value in EAX encodes EGETKEY/EREPORT/EEXIT/EACCEPT/EACCEPTCOPY/EMODPE
and ENCLAVE_MODE = 0.
If operating in 16-bit mode.
If data segment is in 16-bit mode.
If CR0.PG = 0 or CR0.NE= 0.

#NM If CR0.TS = 1.

Real-Address Mode Exceptions

#UD ENCLS is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLS is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 350

If current privilege level is not 3.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If input value in EAX encodes EENTER/ERESUME and ENCLAVE_MODE = 1.
If input value in EAX encodes EGETKEY/EREPORT/EEXIT/EACCEPT/EACCEPTCOPY/EMODPE
and ENCLAVE_MODE = 0.
If CR0.NE= 0.

#NM If CR0.TS = 1.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 351

41.3 INTEL® SGX SYSTEM LEAF FUNCTION REFERENCE
Leaf functions available with the ENCLS instruction mnemonic are covered in this section. In general, each
instruction leaf requires EAX to specify the leaf function index and/or additional implicit registers specifying leaf-
specific input parameters. An instruction operand encoding table provides details of each implicit register usage
and associated input/output semantics.
In many cases, an input parameter specifies an effective address associated with a memory object inside or
outside the EPC, the memory addressing semantics of these memory objects are also summarized in a separate
table.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 352

EADD—Add a Page to an Uninitialized Enclave

Instruction Operand Encoding

Description

This leaf function copies a source page from non-enclave memory into the EPC, associates the EPC page with an
SECS page residing in the EPC, and stores the linear address and security attributes in EPCM. As part of the asso-
ciation, the enclave offset and the security attributes are measured and extended into the SECS.MRENCLAVE.
This instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a PAGEINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of EADD leaf function.

EADD Memory Parameter Semantics

The instruction faults if any of the following:

EADD Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 01H IR V/V SGX1 This leaf function adds a page to an uninitialized enclave.
ENCLS[EADD]

Op/En EAX RBX RCX

IR EADD (In) Address of a PAGEINFO (In) Address of the destination EPC page (In)

PAGEINFO PAGEINFO.SECS PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permitted
by Non Enclave

Read/Write access permit-
ted by Enclave

Read access permitted
by Non Enclave

Read access permitted
by Non Enclave

Write access permitted
by Enclave

The operands are not properly aligned. Unsupported security attributes are set.

Refers to an invalid SECS. Reference is made to an SECS that is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page.

The EPC page is already valid. If security attributes specifies a TCS and the source page specifies unsupported
TCS values or fields.

The SECS has been initialized. The specified enclave offset is outside of the enclave address space.

Table 41-5. Concurrency Restrictions of EADD with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EADD Targ N N N N N N N N N N N

SECS N N Y Y N Y N N N N Y N

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 353

Operation

Temp Variables in EADD Operational Flow

IF (DS:RBX is not 32Byte Aligned)
Then #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

TMP_SRCPGE DS:RBX.SRCPGE;
TMP_SECS DS:RBX.SECS;
TMP_SECINFO DS:RBX.SECINFO;
TMP_LINADDR DS:RBX.LINADDR;

IF (DS:TMP_SRCPGE is not 4KByte aligned or DS:TMP_SECS is not 4KByte aligned or
DS:TMP_SECINFO is not 64Byte aligned or TMP_LINADDR is not 4KByte aligned)
Then #GP(0); FI;

IF (DS:TMP_SECS does not resolve within an EPC)
Then #PF(DS:TMP_SECS); FI;

SCRATCH_SECINFO DS:TMP_SECINFO;

(* Check for mis-configured SECINFO flags*)

Table 41-6. Concurrency Restrictions of EADD with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Para
m

SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EADD Targ N N N N N N N N

SECS N Y N Y N Y N N N N N N

Name Type Size (bits) Description

TMP_SRCPGE Effective Address 32/64 Effective address of the source page.

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security
attributes of the page to be added.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:TMP_SECINFO.

TMP_LINADDR Unsigned Integer 64 Holds the linear address to be stored in the EPCM and used to
calculate TMP_ENCLAVEOFFSET.

TMP_ENCLAVEOFFSET Enclave Offset 64 The page displacement from the enclave base address.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 354

IF (SCRATCH_SECINFO reserved fields are not zero or
! (SCRATCH_SECINFO.FLAGS.PT is PT_REG or SCRATCH_SECINFO.FLAGS.PT is PT_TCS))
Then #GP(0); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use)

Then #GP(0); FI;

IF (EPCM(DS:RCX).VALID != 0)
Then #PF(DS:RCX); FI;

(* Check the SECS for concurrency *)
IF (SECS is not available for EADD)

Then #GP(0); FI;

IF (EPCM(DS:TMP_SECS).VALID = 0 or EPCM(DS:TMP_SECS).PT != PT_SECS)
Then #PF(DS:TMP_SECS); FI;

(* Copy 4KBytes from source page to EPC page*)
DS:RCX[32767:0] DS:TMP_SRCPGE[32767:0];

CASE (SCRATCH_SECINFO.FLAGS.PT)
{

PT_TCS:
IF (DS:RCX.RESERVED != 0) #GP(0); FI;
IF ((DS:TMP_SECS.ATTIBUTES.MODE64BIT = 0) and

((DS:TCS.FSLIMIT & 0FFFH != 0FFFH) or (DS:TCS.GSLIMIT & 0FFFH != 0FFFH))) #GP(0); FI;
BREAK;

PT_REG:
IF (SCRATCH_SECINFO.FLAGS.W = 1 and SCRATCH_SECINFO.FLAGS.R = 0) #GP(0); FI;
BREAK;

ESAC;

(* Check the enclave offset is within the enclave linear address space *)
IF (TMP_LINADDR < DS:TMP_SECS.BASEADDR or TMP_LINADDR >= DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE)

Then #GP(0); FI;

(* Check concurrency of measurement resource*)
IF (Measurement being updated)

Then #GP(0); FI;

(* Check if the enclave to which the page will be added is already in Initialized state *)
IF (DS:TMP_SECS already initialized)

Then #GP(0); FI;

(* For TCS pages, force EPCM.rwx bits to 0 and no debug access *)
IF (SCRATCH_SECINFO.FLAGS.PT = PT_TCS)

THEN
SCRATCH_SECINFO.FLAGS.R 0;
SCRATCH_SECINFO.FLAGS.W 0;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 355

SCRATCH_SECINFO.FLAGS.X 0;
(DS:RCX).FLAGS.DBGOPTIN 0; // force TCS.FLAGS.DBGOPTIN off
DS:RCX.CSSA 0;
DS:RCX.AEP 0;
DS:RCX.STATE 0;

FI;

(* Add enclave offset and security attributes to MRENCLAVE *)
TMP_ENCLAVEOFFSET TMP_LINADDR - DS:TMP_SECS.BASEADDR;
TMPUPDATEFIELD[63:0] 0000000044444145H; // “EADD”
TMPUPDATEFIELD[127:64] TMP_ENCLAVEOFFSET;
TMPUPDATEFIELD[511:128] SCRATCH_SECINFO[375:0]; // 48 bytes
DS:TMP_SECS.MRENCLAVE SHA256UPDATE(DS:TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(* Add enclave offset and security attributes to MRENCLAVE *)
EPCM(DS:RCX).R SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X SCRATCH_SECINFO.FLAGS.X;
EPCM(DS:RCX).PT SCRATCH_SECINFO.FLAGS.PT;
EPCM(DS:RCX).ENCLAVEADDRESS TMP_LINADDR;

(* associate the EPCPAGE with the SECS by storing the SECS identifier of DS:TMP_SECS *)
Update EPCM(DS:RCX) SECS identifier to reference DS:TMP_SECS identifier;

(* Set EPCM entry fields *)
EPCM(DS:RCX).BLOCKED 0;
EPCM(DS:RCX).PENDING 0;
EPCM(DS:RCX).MODIFIED 0;
EPCM(DS:RCX).VALID 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If an enclave memory operand is outside of the EPC.
If an enclave memory operand is the wrong type.
If a memory operand is locked.
If the enclave is initialized.
If the enclave's MRENCLAVE is locked.
If the TCS page reserved bits are set.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the EPC page is valid.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 356

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If an enclave memory operand is outside of the EPC.
If an enclave memory operand is the wrong type.
If a memory operand is locked.
If the enclave is initialized.
If the enclave's MRENCLAVE is locked.
If the TCS page reserved bits are set.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the EPC page is valid.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 357

EAUG—Add a Page to an Initialized Enclave

Instruction Operand Encoding

Description

This leaf function zeroes a page of EPC memory, associates the EPC page with an SECS page residing in the EPC,
and stores the linear address and security attributes in the EPCM. As part of the association, the security attri-
butes are configured to prevent access to the EPC page until a corresponding invocation of the EACCEPT leaf or
EACCEPTCOPY leaf confirms the addition of the new page into the enclave. This instruction can only be executed
when current privilege level is 0.
RBX contains the effective address of a PAGEINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EAUG leaf function.

EAUG Memory Parameter Semantics

The instruction faults if any of the following:

EAUG Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 0DH IR V/V SGX2 This leaf function adds a page to an initialized enclave.
ENCLS[EAUG]

Op/En EAX RBX RCX

IR EAUG (In) Address of a SECINFO (In) Address of the destination EPC page (In)

PAGEINFO PAGEINFO.SECS PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permit-
ted by Non Enclave

Read/Write access permit-
ted by Enclave

Must be zero
Read access permitted by

Non Enclave
Write access permitted by

Enclave

The operands are not properly aligned. Unsupported security attributes are set.

Refers to an invalid SECS. Reference is made to an SECS that is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page.

The EPC page is already valid. The specified enclave offset is outside of the enclave address space.

The SECS has been initialized.

Table 41-7. Concurrency Restrictions of EAUG with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EP

A

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EAUG Targ N N N N N N N N N N N N

SECS Y N N Y N Y Y N Y N N Y N

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 358

Operation

Temp Variables in EAUG Operational Flow

IF (DS:RBX is not 32Byte Aligned)
Then #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

TMP_SECS DS:RBX.SECS;
TMP_LINADDR DS:RBX.LINADDR;

IF (DS:TMP_SECS is not 4KByte aligned or TMP_LINADDR is not 4KByte aligned)
Then #GP(0); FI;

IF ((DS:RBX.SRCPAGE is not 0) or (DS:RBX:SECINFO is not 0))
Then #GP(0); FI;

IF (DS:TMP_SECS does not resolve within an EPC)
Then #PF(DS:SECS); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use)

Then #GP(0); FI;

IF (EPCM(DS:RCX).VALID != 0)
Then #PF(DS:RCX); FI;

Table 41-8. Concurrency Restrictions of EAUG with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EAUG Targ N N N N N N N N

SECS N Y Y Y N Y N Y Y N Y Y

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security
attributes of the page to be added.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:TMP_SECINFO.

TMP_LINADDR Unsigned Integer 64 Holds the linear address to be stored in the EPCM and used to
calculate TMP_ENCLAVEOFFSET.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 359

(* Check the SECS for concurrency *)
IF (SECS is not available for EAUG)

Then #GP(0); FI;

IF (EPCM(DS:TMP_SECS).VALID = 0 or EPCM(DS:TMP_SECS).PT != PT_SECS)
Then #PF(DS:TMP_SECS); FI;

(* Check if the enclave to which the page will be added is in the Initialized state *)
IF (DS:TMP_SECS is not initialized)

Then #GP(0); FI;

(* Check the enclave offset is within the enclave linear address space *)
IF ((TMP_LINADDR < DS:TMP_SECS.BASEADDR) or (TMP_LINADDR >= DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE))

Then #GP(0); FI;

(* Clear the content of EPC page*)
DS:RCX[32767:0] 0;

(* Set EPCM security attributes *)
EPCM(DS:RCX).R 1;
EPCM(DS:RCX).W 1;
EPCM(DS:RCX).X 0;
EPCM(DS:RCX).PT PT_REG;
EPCM(DS:RCX).ENCLAVEADDRESS TMP_LINADDR;
EPCM(DS:RCX).BLOCKED 0;
EPCM(DS:RCX).PENDING 1;
EPCM(DS:RCX).MODIFIED 0;

(* associate the EPCPAGE with the SECS by storing the SECS identifier of DS:TMP_SECS *)
Update EPCM(DS:RCX) SECS identifier to reference DS:TMP_SECS identifier;

(* Set EPCM valid fields *)
EPCM(DS:RCX).VALID 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.
If the enclave is not initialized.

#PF(fault code) If a page fault occurs in accessing memory operands.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 360

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.
If the enclave is not initialized.

#PF(fault code) If a page fault occurs in accessing memory operands.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 361

EBLOCK—Mark a page in EPC as Blocked

Instruction Operand Encoding

Description

This leaf function causes an EPC page to be marked as BLOCKED. This instruction can only be executed when
current privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address.
Segment override is not supported.
An error code is returned in RAX.
The table below provides additional information on the memory parameter of EBLOCK leaf function.

EBLOCK Memory Parameter Semantics

The error codes are:

EBLOCK Error Codes

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 09H IR V/V SGX1 This leaf function marks a page in the EPC as blocked.
ENCLS[EBLOCK]

Op/En EAX RCX

IR EBLOCK (In) Return error code (Out) Effective address of the EPC page (In)

EPCPAGE

Read/Write access permitted by Enclave

0 (No Error) EBLOCK successful

SGX_BLKSTATE Page already blocked. This value is used to indicate that the page was already EBLOCKed and thus will need
to be restored to this state when it is eventually reloaded (using ELDB).

SGX_ENTRYEPOCH_LO
CKED

This value indicates that an ETRACK is currently executing on the SECS. The EBLOCK should be re-attempted.

SGX_NOTBLOCKABLE Page type is not one which can be blocked.

SGX_PG_INVLD Page is not valid and cannot be blocked.

SGX_LOCKFAIL Page is being written by ECREATE, ELDU/ELDB, or EWB.

Table 41-9. Concurrency Restrictions of EBLOCK with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EBLOCK Targ Y Y Y N C C C N Y C C Y C C Y N C N

SECS Y C Y Y Y Y Y Y Y Y Y

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 362

Operation

Temp Variables in EBLOCK Operational Flow

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

RFLAGS.ZF,CF,PF,AF,OF,SF 0;
RAX 0;

(* Check concurrency with other Intel SGX instructions *)
IF (ETRACK executed concurrently)

Then
RAX SGX_ENTRYEPOCH_LOCKED;
RFLAGS.ZF 1;
goto Done;

ELSIF (Other Intel SGX instructions reading or writing EPCM)
RAX SGX_LOCKFAIL;
RFLAGS.ZF 1;
goto Done;

FI;
FI;

IF (EPCM(DS:RCX). VALID = 0)
Then

RFLAGS.ZF 1;
RAX SGX_PG_INVLD;
goto Done;

FI;

IF ((EPCM(DS:RCX).PT != PT_REG) and (EPCM(DS:RCX).PT != PT_TCS) and (EPCM(DS:RCX).PT != PT_TRIM))
Then

RFLAGS.CF 1;
IF (EPCM(DS:RCX).PT = PT_SECS)

THEN RAX SGX_PG_IS_SECS;

Table 41-10. Concurrency Restrictions of EBLOCK with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EBLOCK Targ N C C N C C N Y C N C C

SECS Y Y Y C Y Y Y Y Y Y

Name Type Size (Bits) Description

TMP_BLKSTATE Integer 64 Page is already blocked

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 363

ELSE RAX SGX_NOTBLOCKABLE;
FI;
goto Done;

FI;

(* Check if the page is already blocked and report blocked state *)
TMP_BLKSTATE EPCM(DS:RCX).BLOCKED;

(* at this point, the page must be valid and PT_TCS or PT_REG or PT_TRIM*)
IF (TMP_BLKSTATE = 1))

Then
RFLAGS.CF 1;
RAX SGX_BLKSTATE;

ELSE
EPCM(DS:RCX).BLOCKED 1

FI;

Done:

Flags Affected

Sets ZF if SECS is in use or invalid, otherwise cleared. Sets CF if page is BLOCKED or not blockable, otherwise
cleared. Clears PF, AF, OF, SF

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 364

ECREATE—Create an SECS page in the Enclave Page Cache

Instruction Operand Encoding

Description

ENCLS[ECREATE] is the first instruction executed in the enclave build process. ECREATE copies an SECS structure
outside the EPC into an SECS page inside the EPC. The internal structure of SECS is not accessible to software.
ECREATE will set up fields in the protected SECS and mark the page as valid inside the EPC. ECREATE initializes or
checks unused fields.
Software sets the following fields in the source structure: SECS:BASEADDR, SECS:SIZE in bytes, and ATTRI-
BUTES. SECS:BASEADDR must be naturally aligned on an SECS.SIZE boundary. SECS.SIZE must be at least 2
pages (8192).
The source operand RBX contains an effective address of a PAGEINFO structure. PAGEINFO contains an effective
address of a source SECS and an effective address of an SECINFO. The SECS field in PAGEINFO is not used.
The RCX register is the effective address of the destination SECS. It is an address of an empty slot in the EPC. The
SECS structure must be page aligned. SECINFO flags must specify the page as an SECS page.

ECREATE Memory Parameter Semantics

ECREATE will fault if the SECS target page is in use; already valid; outside the EPC. It will also fault if addresses
are not aligned; unused PAGEINFO fields are not zero.
If the amount of space needed to store the SSA frame is greater than the amount specified in SECS.SSAFRAME-
SIZE, a #GP(0) results. The amount of space needed for an SSA frame is computed based on
DS:TMP_SECS.ATTRIBUTES.XFRM size. Details of computing the size can be found Section 42.7.

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 00H IR V/V SGX1 This leaf function begins an enclave build by creating an SECS
page in EPC.ENCLS[ECREATE]

Op/En EAX RBX RCX

IR ECREATE (In) Address of a PAGEINFO (In) Address of the destination SECS page (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permitted by
Non Enclave

Read access permitted by
Non Enclave

Read access permitted by Non
Enclave

Write access permitted by
Enclave

Table 41-11. Concurrency Restrictions of ECREATE with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

ECREATE SECS N N N N N N N N N N N N

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 365

Operation

Temp Variables in ECREATE Operational Flow

IF (DS:RBX is not 32Byte Aligned)
Then #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

TMP_SRCPGE DS:RBX.SRCPGE;
TMP_SECINFO DS:RBX.SECINFO;

IF (DS:TMP_SRCPGE is not 4KByte aligned or DS:TMP_SECINFO is not 64Byte aligned)
Then #GP(0); FI;

IF (DS:RBX.LINADDR ! = 0 or DS:RBX.SECS != 0)
Then #GP(0); FI;

(* Check for misconfigured SECINFO flags*)
IF (DS:TMP_SECINFO reserved fields are not zero or DS:TMP_SECINFO.FLAGS.PT != PT_SECS))

Then #GP(0); FI;

TMP_SECS RCX;

IF (EPC entry in use)
Then #GP(0); FI;

Table 41-12. Concurrency Restrictions of ECREATE with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Tar
g

SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

ECREATE SECS N N N N N N N N

Name Type Size (Bits) Description

TMP_SRCPGE Effective Address 32/64 Effective address of the SECS source page.

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security
attributes of the SECS page to be added.

TMP_XSIZE SSA Size 64 The size calculation of SSA frame.

TMP_MISC_SIZE MISC Field Size 64 Size of the selected MISC field components.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 366

IF (EPCM(DS:RCX).VALID = 1)
Then #PF(DS:RCX); FI;

(* Copy 4KBytes from source page to EPC page*)
DS:RCX[32767:0] DS:TMP_SRCPGE[32767:0];

(* Check lower 2 bits of XFRM are set *)
IF ((DS:TMP_SECS.ATTRIBUTES.XFRM BitwiseAND 03H) != 03H)

Then #GP(0); FI;

IF (XFRM is illegal)
Then #GP(0); FI;

(* Make sure that the SECS does not have any unsupported MISCSELECT options*)
IF (!(CPUID.(EAX=12H, ECX=0):EBX[31:0] & DS:TMP_SECS.MISSELECT[31:0]))

THEN
EPCM(DS:TMP_SECS).EntryLock.Release();
#GP(0);

FI;

(* Compute size of MISC area *)
TMP_MISC_SIZE compute_misc_region_size();

(* Compute the size required to save state of the enclave on async exit, see Section 42.7.2.2*)
TMP_XSIZE compute_xsave_size(DS:TMP_SECS.ATTRIBUTES.XFRM) + GPR_SIZE + TMP_MISC_SIZE;

(* Ensure that the declared area is large enough to hold XSAVE and GPR stat *)
IF ((DS:TMP_SECS.SSAFRAMESIZE*4096 < TMP_XSIZE)

Then #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1) and (DS:TMP_SECS.BASEADDR is not canonical))
Then #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and (DS:TMP_SECS.BASEADDR and 0FFFFFFFF00000000H))
Then #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and (DS:TMP_SECS.SIZE and 0FFFFFFFF00000000H))
Then #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1) and (DS:TMP_SECS.SIZE and 0FFFFFFE000000000H))
Then #GP(0); FI;

(* Enclave size must be at least 8192 bytes and must be power of 2 in bytes*)
IF (DS:TMP_SECS.SIZE < 8192 or popcnt(DS:TMP_SECS.SIZE) > 1)

Then #GP(0); FI;

(* Ensure base address of an enclave is aligned on size*)
IF ((DS:TMP_SECS.BASEADDR and (DS:TMP_SECS.SIZE-1))

Then #GP(0); FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 367

* Ensure the SECS does not have any unsupported attributes*)
IF ((DS:TMP_SECS.ATTRIBUTES and (~CR_SGX_ATTRIBUTES_MASK))

Then #GP(0); FI;

IF ((DS:TMP_SECS reserved fields are not zero)
Then #GP(0); FI;

Clear DS:TMP_SECS to Uninitialized;
DS:TMP_SECS.MRENCLAVE SHA256INITIALIZE(DS:TMP_SECS.MRENCLAVE);
DS:TMP_SECS.ISVSVN 0;
DS:TMP_SECS.ISVPRODID 0;

(* Initialize hash updates etc*)
Initialize enclave’s MRENCLAVE update counter;

(* Add “ECREATE” string and SECS fields to MRENCLAVE *)
TMPUPDATEFIELD[63:0] 0045544145524345H; // “ECREATE”
TMPUPDATEFIELD[95:64] DS:TMP_SECS.SSAFRAMESIZE;
TMPUPDATEFIELD[159:96] DS:TMP_SECS.SIZE;
TMPUPDATEFIELD[511:160] 0;
SHA256UPDATE(DS:TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(* Set EID *)
DS:TMP_SECS.EID LockedXAdd(CR_NEXT_EID, 1);

(* Set the EPCM entry, first create SECS identifier and store the identifier in EPCM *)
EPCM(DS:TMP_SECS).PT PT_SECS;
EPCM(DS:TMP_SECS).ENCLAVEADDRESS 0;
EPCM(DS:TMP_SECS).R 0;
EPCM(DS:TMP_SECS).W 0;
EPCM(DS:TMP_SECS).X 0;

(* Set EPCM entry fields *)
EPCM(DS:RCX).BLOCKED 0;
EPCM(DS:RCX).PENDING 0;
EPCM(DS:RCX).MODIFIED 0;
EPCM(DS:RCX).VALID 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the reserved fields are not zero.
If PAGEINFO.SECS is not zero.
If PAGEINFO.LINADDR is not zero.
If the SECS destination is locked.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 368

If SECS.SSAFRAMESIZE is insufficient.
#PF(fault code) If a page fault occurs in accessing memory operands.

If the SECS destination is outside the EPC.

64-Bit Mode Exceptions

#GP(0) If a memory address is non-canonical form.
If a memory operand is not properly aligned.
If the reserved fields are not zero.
If PAGEINFO.SECS is not zero.
If PAGEINFO.LINADDR is not zero.
If the SECS destination is locked.
If SECS.SSAFRAMESIZE is insufficient.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the SECS destination is outside the EPC.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 369

EDBGRD—Read From a Debug Enclave

Instruction Operand Encoding

Description

This leaf function copies a quadword/doubleword from an EPC page belonging to a debug enclave into the RBX
register. Eight bytes are read in 64-bit mode, four bytes are read in non-64-bit modes. The size of data read
cannot be overridden.
The effective address of the source location inside the EPC is provided in the register RCX

EDBGRD Memory Parameter Semantics

The instruction faults if any of the following:

EDBGRD Faulting Conditions

This instruction ignores the EPCM RWX attributes on the enclave page. Consequently, violation of EPCM RWX attri-
butes via EDGBRD does not result in a #GP.

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 04H IR V/V SGX1 This leaf function reads a dword/quadword from a debug enclave.
ENCLS[EDBGRD]

Op/En EAX RBX RCX

IR EDBGRD (In) Data read from a debug enclave (Out) Address of source memory in the EPC (In)

EPCQW

Read access permitted by Enclave

RCX points into a page that is an SECS. RCX does not resolve to a naturally aligned linear address.

RCX points to a page that does not belong to an
enclave that is in debug mode.

RCX points to a location inside a TCS that is beyond the architectural size of the
TCS (SGX_TCS_LIMIT).

An operand causing any segment violation. May page fault.

CPL != 0.

Table 41-13. Concurrency Restrictions of EDBGRD with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EDBGRD Targ Y Y N Y N Y Y Y Y Y N N Y N

SECS Y Y Y Y Y Y Y Y Y Y

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 370

Operation

Temp Variables in EDBGRD Operational Flow

TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF ((TMP_MODE64 = 1) and (DS:RCX is not 8Byte Aligned))
Then #GP(0); FI;

IF ((TMP_MODE64 = 0) and (DS:RCX is not 4Byte Aligned))
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing EPCM *)
IF (Other EPCM modifying instructions executing)

Then #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
Then #PF(DS:RCX); FI;

(* make sure that DS:RCX (SOURCE) is pointing to a PT_REG or PT_TCS or PT_VA *)
IF ((EPCM(DS:RCX).PT != PT_REG) and (EPCM(DS:RCX).PT != PT_TCS) and (EPCM(DS:RCX).PT != PT_VA))

Then #PF(DS:RCX); FI;

(* If source is a TCS, then make sure that the offset into the page is not beyond the TCS size*)
IF ((EPCM(DS:RCX). PT = PT_TCS) and ((DS:RCX) & 0xFFF >= SGX_TCS_LIMIT))

Then #GP(0); FI;

(* make sure the enclave owning the PT_REG or PT_TCS page allow debug *)
IF ((EPCM(DS:RCX).PT = PT_REG) or (EPCM(DS:RCX).PT = PT_TCS))

Then
TMP_SECS GET_SECS_ADDRESS;
IF (TMP_SECS.ATTRIBUTES.DEBUG = 0)

Then #GP(0); FI;

Table 41-14. Concurrency Restrictions of EDBGRD with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EDBGRD Targ N Y N N Y N Y Y Y N Y Y Y

SECS Y Y Y Y Y Y Y Y Y Y

Name Type Size (Bits) Description

TMP_MODE64 Binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1)).

TMP_SECS 64 Physical address of SECS of the enclave to which source operand belongs.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 371

IF ((TMP_MODE64 = 1))
Then RBX[63:0] (DS:RCX)[63:0];
ELSE EBX[31:0] (DS:RCX)[31:0];

FI;
ELSE

TMP_64BIT_VAL[63:0] (DS:RCX)[63:0] & (~07H); // Read contents from VA slot
IF (TMP_MODE64 = 1)

THEN
IF (TMP_64BIT_VAL != 0H)

THEN RBX[63:0] 0FFFFFFFFFFFFFFFFH;
ELSE RBX[63:0] 0H;

FI;
ELSE

IF (TMP_64BIT_VAL != 0H)
THEN EBX[31:0] 0FFFFFFFFH;
ELSE EBX[31:0] 0H;

FI;
FI;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If the address in RCS violates DS limit or access rights.
If DS segment is unusable.
If RCX points to a memory location not 4Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS, PT_REG or PT_VA.
If the address in RCX points to a location inside TCS that is beyond SGX_TCS_LIMIT.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page

64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.
If RCX points to a memory location not 8Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS, PT_REG or PT_VA.
If the address in RCX points to a location inside TCS that is beyond SGX_TCS_LIMIT.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 372

EDBGWR—Write to a Debug Enclave

Instruction Operand Encoding

Description

This leaf function copies the content in EBX/RBX to an EPC page belonging to a debug enclave. Eight bytes are
written in 64-bit mode, four bytes are written in non-64-bit modes. The size of data cannot be overridden.
The effective address of the source location inside the EPC is provided in the register RCX

EDBGWR Memory Parameter Semantics

The instruction faults if any of the following:

EDBGWR Faulting Conditions

This instruction ignores the EPCM RWX attributes on the enclave page. Consequently, violation of EPCM RWX attri-
butes via EDGBRD does not result in a #GP.

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 05H IR V/V SGX1 This leaf function writes a dword/quadword to a debug enclave.
ENCLS[EDBGWR]

Op/En EAX RBX RCX

IR EDBGWR (In) Data to be written to a debug enclave (In) Address of Target memory in the EPC (In)

EPCQW

Write access permitted by Enclave

RCX points into a page that is an SECS. RCX does not resolve to a naturally aligned linear address.

RCX points to a page that does not belong to an
enclave that is in debug mode.

RCX points to a location inside a TCS that is not the FLAGS word.

An operand causing any segment violation. May page fault.

CPL != 0.

Table 41-15. Concurrency Restrictions of EDBGWR with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EDBGWR Targ Y Y N Y N Y Y Y Y Y N N Y N

SECS Y Y Y Y Y Y Y Y Y Y

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 373

Operation

Temp Variables in EDBGWR Operational Flow

TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF ((TMP_MODE64 = 1) and (DS:RCX is not 8Byte Aligned))
Then #GP(0); FI;

IF ((TMP_MODE64 = 0) and (DS:RCX is not 4Byte Aligned))
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing EPCM *)
IF (Other EPCM modifying instructions executing)

Then #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
Then #PF(DS:RCX); FI;

(* make sure that DS:RCX (DST) is pointing to a PT_REG or PT_TCS *)
IF ((EPCM(DS:RCX).PT != PT_REG) and (EPCM(DS:RCX).PT != PT_TCS))

Then #PF(DS:RCX); FI;

(* If destination is a TCS, then make sure that the offset into the page can only point to the FLAGS field*)
IF ((EPCM(DS:RCX). PT = PT_TCS) and ((DS:RCX) & 0xFF8H != offset_of_FLAGS & 0FF8H))

Then #GP(0); FI;

(* Locate the SECS for the enclave to which the DS:RCX page belongs *)
TMP_SECS GET_SECS_PHYS_ADDRESS(EPCM(DS:RCX).ENCLAVESCES);

(* make sure the enclave owning the PT_REG or PT_TCS page allow debug *)
IF (TMP_SECS.ATTRIBUTES.DEBUG = 0)

Then #GP(0); FI;

Table 41-16. Concurrency Restrictions of EDBGWR with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EDBGWR Targ N Y N N Y N Y Y Y N Y Y Y

SECS Y Y Y Y Y Y Y Y Y Y

Name Type Size (Bits) Description

TMP_MODE64 Binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1)).

TMP_SECS 64 Physical address of SECS of the enclave to which source operand belongs.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 374

IF ((TMP_MODE64 = 1))
Then (DS:RCX)[63:0] RBX[63:0];
ELSE (DS:RCX)[31:0] EBX[31:0];

FI;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If the address in RCS violates DS limit or access rights.
If DS segment is unusable.
If RCX points to a memory location not 4Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a location inside TCS that is not the FLAGS word.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.
If RCX points to a memory location not 8Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a location inside TCS that is not the FLAGS word.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 375

EEXTEND—Extend Uninitialized Enclave Measurement by 256 Bytes

Instruction Operand Encoding

Description

This leaf function updates the MRENCLAVE measurement register of an SECS with the measurement of an
EXTEND string compromising of “EEXTEND” || ENCLAVEOFFSET || PADDING || 256 bytes of the enclave page.
This instruction can only be executed when current privilege level is 0 and the enclave is uninitialized.
RCX contains the effective address of the 256 byte region of an EPC page to be measured. The DS segment is
used to create linear addresses. Segment override is not supported.

EEXTEND Memory Parameter Semantics

The instruction faults if any of the following:

EEXTEND Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 06H IR V/V SGX1 This leaf function measures 256 bytes of an uninitialized enclave
page.ENCLS[EEXTEND]

Op/En EAX RCX

IR EEXTEND (In) Effective address of a 256-byte chunk in the EPC (In)

EPC[RCX]

Read access by Enclave

RCX points and address not 256B aligned. RCX points to an unused page or a SECS.

RCX does not resolve in an EPC page. If SECS is locked.

If the SECS is already initialized. May page fault.

CPL != 0.

Table 41-17. Concurrency Restrictions of EEXTEND with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EEXTEND Targ N N N Y N Y Y N N N

SECS N Y Y Y N N N Y

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 376

Operation

Temp Variables in EEXTEND Operational Flow

TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF (DS:RCX is not 256Byte Aligned)
Then GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing EPCM *)
IF (Other instructions accessing EPCM)

Then #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
Then #PF(DS:RCX); FI;

(* make sure that DS:RCX (DST) is pointing to a PT_REG or PT_TCS *)
IF ((EPCM(DS:RCX).PT != PT_REG) and (EPCM(DS:RCX).PT != PT_TCS))

Then #PF(DS:RCX); FI;

TMP_SECS Get_SECS_ADDRESS();

(* make sure no other instruction is accessing MRENCLAVE or ATTRIBUETS.INIT *)
IF ((Other instruction accessing MRENCLAVE) or (Other instructions checking or updating the initialized state of the SECS))

Then #GP(0); FI;

(* Calculate enclave offset *)
TMP_ENCLAVEOFFSET EPCM(DS:RCX).ENCLAVEADDRESS - TMP_SECS.BASEADDR;
TMP_ENCLAVEOFFSET TMP_ENCLAVEOFFSET + (DS:RCX & 0FFFH)

(* Add EEXTEND message and offset to MRENCLAVE *)
TMPUPDATEFIELD[63:0] 00444E4554584545H; // “EEXTEND”

Table 41-18. Concurrency Restrictions of EEXTEND with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EEXTEND Targ N N N N N

SECS Y Y Y Y Y N N N

Name Type Size (Bits) Description

TMP_SECS 64 Physical address of SECS of the enclave to which source operand belongs.

TMP_ENCLAVEOFFS
ET

Enclave Offset 64 The page displacement from the enclave base address.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 377

TMPUPDATEFIELD[127:64] TMP_ENCLAVEOFFSET;
TMPUPDATEFIELD[511:128] 0; // 48 bytes
TMP_SECS.MRENCLAVE SHA256UPDATE(TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(*Add 256 bytes to MRENCLAVE, 64 byte at a time *)
TMP_SECS.MRENCLAVE SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[511:0]);
TMP_SECS.MRENCLAVE SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[1023: 512]);
TMP_SECS.MRENCLAVE SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[1535: 1024]);
TMP_SECS.MRENCLAVE SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[2047: 1536]);
INC enclave’s MRENCLAVE update counter by 4;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If the address in RCS is outside the DS segment limit.
If RCX points to a memory location not 256Byte-aligned.
If another instruction is accessing MRENCLAVE.
If another instruction is checking or updating the SECS.
If the enclave is already initialized.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.
If RCX points to a memory location not 256 Byte-aligned.
If another instruction is accessing MRENCLAVE.
If another instruction is checking or updating the SECS.
If the enclave is already initialized.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 378

EINIT—Initialize an Enclave for Execution

Instruction Operand Encoding

Description

This leaf function is the final instruction executed in the enclave build process. After EINIT, the MRENCLAVE
measurement is complete, and the enclave is ready to start user code execution using the EENTER instruction.
EINIT takes the effective address of a SIGSTRUCT and EINITTOKEN. The SIGSTRUCT describes the enclave
including MRENCLAVE, ATTRIBUTES, ISVSVN, a 3072 bit RSA key, and a signature using the included key.
SIGSTRUCT must be populated with two values, q1 and q2. These are calculated using the formulas shown below:
q1 = floor(Signature2 / Modulus);
q2 = floor((Signature3 - q1 * Signature * Modulus) / Modulus);
The EINITTOKEN contains the MRENCLAVE, MRSIGNER, and ATTRIBUTES. These values must match the corre-
sponding values in the SECS. If the EINITTOKEN was created with a debug launch key, the enclave must be in
debug mode as well.

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 02H IR V/V SGX1 This leaf function initializes the enclave and makes it ready to
execute enclave code.ENCLS[EINIT]

Op/En EAX RBX RCX RDX

IR EINIT (In) Error code (Out) Address of SIGSTRUCT (In) Address of SECS (In) Address of EINITTOKEN (In)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 379

EINIT Memory Parameter Semantics

EINIT performs the following steps, which can be seen in Figure 41-1:
Validates that SIGSTRUCT is signed using the enclosed public key.
Checks that the completed computation of SECS.MRENCLAVE equals SIGSTRUCT.HASHENCLAVE.
Checks that no reserved bits are set to 1 in SIGSTRUCT.ATTRIBUTES and no reserved bits in SIGSTRUCT.ATTRI-
BUTESMASK are set to 0.
Checks that no Intel-only bits are set in SIGSTRUCT.ATTRIBUTES unless SIGSTRUCT was signed by Intel.
Checks that SIGSTRUCT.ATTRIBUTES equals the result of logically and-ing SIGSTRUCT.ATTRIBUTEMASK with
SECS.ATTRIBUTES.
If EINITTOKEN.VALID is 0, checks that SIGSTRUCT is signed by Intel.
If EINITTOKEN.VALID is 1, checks the validity of EINITTOKEN.
If EINITTOKEN.VALID is 1, checks that EINITTOKEN.MRENCLAVE equals SECS.MRENCLAVE.
If EINITTOKEN.VALID is 1 and EINITTOKEN.ATTRIBUTES.DEBUG is 1, SECS.ATTRIBUTES.DEBUG must be 1.

Figure 41-1. Relationships Between SECS, SIGSTRUCT and EINITTOKEN

MRSIGNER

ATTRIBUTES

MRENCLAVE

Hashed

Check

If VALID=1, Check

Signature

ATTRIBUTES

PubKey

ATTRIBUTEMASK
MRENCLAVE

SIGSTRUCT

Verify

DS:RBX

EINIT

SECS

ENCLAVE

EPC

ATTRIBUTES

MRENCLAVE

MRSIGNER

If VALID=1,
Check

Copy

DS:RCX
Check

DS:RDX

EINITTOKEN

SIGSTRUCT SECS EINITTOKEN

 Access by non-Enclave Read/Write access by Enclave Access by non-Enclave

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 380

Commits SECS.MRENCLAVE, and sets SECS.MRSIGNER, SECS.ISVSVN, and SECS.ISVPRODID based on
SIGSTRUCT.
Update the SECS as Initialized.
Periodically, EINIT polls for certain asynchronous events. If such an event is detected, it completes with failure
code (ZF=1 and RAX = SGX_UNMASKED_EVENT), and RIP is incremented to point to the next instruction. These
events are INTR, NMI, SMI, INIT, VMX_TIMER, MCAKIND, MCE_SMI, and CMCI_SMI. EINIT does not fail if the
pending event is inhibited (e.g., INTR could be inhibited due to MOV/POP SS blocking and STI blocking).
RFLAGS.{CF,PF,AF,OF,SF} are set to 0. When the instruction completes with an error, RFLAGS.ZF is set to 1, and
the corresponding error bit is set in RAX. If no error occurs, RFLAGS.ZF is cleared and RAX is set to 0.

Concurrency Restrictions

Operation

Temp Variables in EINIT Operational Flow

(* make sure SIGSTRUCT and SECS are aligned *)
IF ((DS:RBX is not 4KByte Aligned) or (DS:RCX is not 4KByte Aligned))

Then #GP(0); FI;

Table 41-19. Concurrency Restrictions of EINIT with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EINIT SECS N N N Y Y N N Y N N N N N N Y N

Table 41-20. Concurrency Restrictions of EINIT with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EINIT SECS N Y N Y N Y N N N N N N

Name Type Size Description

TMP_SIG SIGSTRUCT 1808Bytes Temp space for SIGSTRUCT.

TMP_TOKEN EINITTOKEN 304Bytes Temp space for EINITTOKEN.

TMP_MRENCLAVE 32Bytes Temp space for calculating MRENCLAVE.

TMP_MRSIGNER 32Bytes Temp space for calculating MRSIGNER.

INTEL_ONLY_MASK ATTRIBUTES 16Bytes Constant mask of all ATTRIBUTE bits that can only be set for Intel enclaves.

CSR_INTELPUBKEYHA
SH

32Bytes Constant with the SHA256 of the Intel Public key used to sign Architectural
Enclaves.

TMP_KEYDEPENDENC
IES

Buffer 224Bytes Temp space for key derivation.

TMP_EINITTOKENKEY 16Bytes Temp space for the derived EINITTOKEN Key.

TMP_SIG_PADDING PKCS Padding
Buffer

352Bytes The value of the top 352 bytes from the computation of Signature3 modulo
MRSIGNER.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 381

(* make sure the EINITTOKEN is aligned *)
IF (DS:RDX is not 512Byte Aligned)

Then #GP(0); FI;

(* make sure the SECS is inside the EPC *)
IF (DS:RCX does not resolve within an EPC)

Then #PF(DS:RCX); FI;

TMP_SIG[14463:0] DS:RBX[14463:0]; // 1808 bytes
TMP_TOKEN[2423:0] DS:RDX[2423:0]; // 304 bytes

(* Verify SIGSTRUCT Header. *)
IF ((TMP_SIG.HEADER != 06000000E10000000000010000000000h) or

((TMP_SIG.VENDOR != 0) and (TMP_SIG.VENDOR != 00008086h)) or
(TMP_SIG HEADER2 != 01010000600000006000000001000000h) or
(TMP_SIG.EXPONENT != 00000003h) or (Reserved space is not 0’s))
THEN

RFLAGS.ZF 1;
RAX SGX_INVALID_SIG_STRUCT;
goto EXIT;

FI;

(* Open “Event Window” Check for Interrupts. Verify signature using embedded public key, q1, and q2. Save upper 352 bytes of the
PKCS1.5 encoded message into the TMP_SIG_PADDING*)
IF (interrupt was pending) {

RFLAG.ZF 1;
RAX SGX_UNMASKED_EVENT;
goto EXIT;

FI
IF (signature failed to verify) {

RFLAG.ZF 1;
RAX SGX_INVALID_SIGNATURE;
goto EXIT;

FI;
(*Close “Event Window” *)

(* make sure no other Intel SGX instruction is modifying SECS*)
IF (Other instructions modifying SECS)

Then #GP(0); FI;

IF ((EPCM(DS:RCX). VALID = 0) or (EPCM(DS:RCX).PT != PT_SECS))
Then #PF(DS:RCX); FI;

(* make sure no other instruction is accessing MRENCLAVE or ATTRIBUETS.INIT *)
IF ((Other instruction modifying MRENCLAVE) or (Other instructions modifying the SECS’s Initialized state))

Then #GP(0); FI;

(* Calculate finalized version of MRENCLAVE *)
(* SHA256 algorithm requires one last update that compresses the length of the hashed message into the output SHA256 digest *)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 382

TMP_ENCLAVE SHA256FINAL((DS:RCX).MRENCLAVE, enclave’s MRENCLAVE update count *512);

(* Verify MRENCLAVE from SIGSTRUCT *)
IF (TMP_SIG.ENCLAVEHASH != TMP_MRENCLAVE)

RFLAG.ZF 1;
RAX SGX_INVALID_MEASUREMENT;
goto EXIT;

FI;

TMP_MRSIGNER SHA256(TMP_SIG.MODULUS)

(* if INTEL_ONLY ATTRIBUTES are set, SIGSTRUCT must be signed using the Intel Key *)
INTEL_ONLY_MASK 0000000000000020H;
IF (((DS:RCX.ATTRIBUTES & INTEL_ONLY_MASK) != 0) and (TMP_MRSIGNER != CSR_INTELPUBKEYHASH))

RFLAG.ZF 1;
RAX SGX_INVALID_ATTRIBUTE;
goto EXIT;

FI;

(* Verify SIGSTRUCT.ATTRIBUTE requirements are met *)
IF ((DS:RCX.ATTRIBUTES & TMP_SIG.ATTRIBUTEMASK) != (TMP_SIG.ATTRIBUTE & TMP_SIG.ATTRIBUTEMASK))

RFLAG.ZF 1;
RAX SGX_INVALID_ATTRIBUTE;
goto EXIT;

FI;

(*Verify SIGSTRUCT.MISCSELECT requirements are met *)
IF ((DS:RCX.MISCSELECT & TMP_SIG.MISCMASK) != (TMP_SIG.MISCSELECT & TMP_SIG.MISCMASK))

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ATTRIBUTE;

goto EXIT
FI;

(* if EINITTOKEN.VALID[0] is 0, verify the enclave is signed by Intel *)
IF (TMP_TOKEN.VALID[0] = 0)

IF (TMP_MRSIGNER != CSR_INTELPUBKEYHASH)
RFLAG.ZF 1;
RAX SGX_INVALID_EINITTOKEN;
goto EXIT;

FI;
goto COMMIT;

FI;

(* Debug Launch Enclave cannot launch Production Enclaves *)
IF ((DS:RDX.MASKEDATTRIBUTESLE.DEBUG = 1) and (DS:RCX.ATTRIBUTES.DEBUG = 0))

RFLAG.ZF 1;
RAX SGX_INVALID_EINITTOKEN;
goto EXIT;

FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 383

(* Check reserve space in EINIT token includes reserved regions and upper bits in valid field *)
IF (TMP_TOKEN reserved space is not clear)

RFLAG.ZF 1;
RAX SGX_INVALID_EINITTOKEN;
goto EXIT;

FI;

(* EINIT token must be <= CR_CPUSVN *)
IF (TMP_TOKEN.CPUSVN > CR_CPUSVN)

RFLAG.ZF 1;
RAX SGX_INVALID_CPUSVN;
goto EXIT;

FI;

(* Derive Launch key used to calculate EINITTOKEN.MAC *)
HARDCODED_PKCS1_5_PADDING[15:0] 0100H;
HARDCODED_PKCS1_5_PADDING[2655:16] SignExtend330Byte(-1); // 330 bytes of 0FFH
HARDCODED_PKCS1_5_PADDING[2815:2656] 2004000501020403650148866009060D30313000H;

TMP_KEYDEPENDENCIES.KEYNAME LAUNCH_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID TMP_TOKEN.ISVPRODIDLE;
TMP_KEYDEPENDENCIES.ISVSVN TMP_TOKEN.ISVSVN;
TMP_KEYDEPENDENCIES.OWNEREPOCH CSR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES TMP_TOKEN.MASKEDATTRIBUTESLE;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK 0;
TMP_KEYDEPENDENCIES.MRENCLAVE 0;
TMP_KEYDEPENDENCIES.MRSIGNER 0;
TMP_KEYDEPENDENCIES.KEYID TMP_TOKEN.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN TMP_TOKEN.CPUSVN;
TMP_KEYDEPENDENCIES.MISCSELECT TMP_TOKEN.MASKEDMISCSELECTLE;
TMP_KEYDEPENDENCIES.MISCMASK 0;
TMP_KEYDEPENDENCIES.PADDING HARDCODED_PKCS1_5_PADDING;

(* Calculate the derived key*)
TMP_EINITTOKENKEY derivekey(TMP_KEYDEPENDENCIES);

(* Verify EINITTOKEN was generated using this CPU's Launch key and that it has not been modified since issuing by the Launch
Enclave. Only 192 bytes of EINITOKEN are CMACed *)
IF (TMP_TOKEN.MAC != CMAC(TMP_EINITTOKENKEY, TMP_TOKEN[1535:0]))

RFLAG.ZF 1;
RAX SGX_INVALID_EINIT_TOKEN;
goto EXIT;

FI;

(* Verify EINITTOKEN (RDX) is for this enclave *)
IF (TMP_TOKEN.MRENCLAVE != TMP_MRENCLAVE) or (TMP_TOKEN.MRSIGNER != TMP_MRSIGNER))

RFLAG.ZF 1;
RAX SGX_INVALID_MEASUREMENT;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 384

goto EXIT;
FI;

(* Verify ATTRIBUTES in EINITTOKEN are the same as the enclave’s *)
IF (TMP_TOKEN.ATTRIBUTES != DS:RCX.ATTRIBUTES)

RFLAG.ZF 1;
RAX SGX_INVALID_EINIT_ATTRIBUTE;
goto EXIT;

FI;

COMMIT:
(* Commit changes to the SECS; Set ISVPRODID, ISVSVN, MRSIGNER, INIT ATTRIBUTE fields in SECS (RCX) *)
DS:RCX.MRENCLAVE TMP_MRENCLAVE;
(* MRSIGNER stores a SHA256 in little endian implemented natively on x86 *)
DS:RCX.MRSIGNER TMP_MRSIGNER;
DS:RCX.ISVPRODID TMP_SIG.ISVPRODID;
DS:RCX.ISVSVN TMP_SIG.ISVSVN;
DS:RCX.PADDING TMP_SIG_PADDING;

(* Mark the SECS as initialized *)
Update DS:RCX to initialized;

(* Set RAX and ZF for success*)
RFLAG.ZF 0;
RAX 0;

EXIT:
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

ZF is cleared if successful, otherwise ZF is set and RAX contains the error code. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand is not properly aligned.
If another instruction is modifying the SECS.
If the enclave is already initialized.
If the SECS.MRENCLAVE is in use.

#PF(fault code) If a page fault occurs in accessing memory operands.
If RCX does not resolve in an EPC page.
If the memory address is not a valid, uninitialized SECS.

64-Bit Mode Exceptions

#GP(0) If a memory operand is not properly aligned.
If another instruction is modifying the SECS.
If the enclave is already initialized.
If the SECS.MRENCLAVE is in use

#PF(fault code) If a page fault occurs in accessing memory operands.
If RCX does not resolve in an EPC page.
If the memory address is not a valid, uninitialized SECS.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 385

ELDB/ELDU—Load an EPC page and Marked its State

Instruction Operand Encoding

Description

This leaf function copies a page from regular main memory to the EPC. As part of the copying process, the page
is cryptographically authenticated and decrypted. This instruction can only be executed when current privilege
level is 0.
The ELDB leaf function sets the BLOCK bit in the EPCM entry for the destination page in the EPC after copying. The
ELDU leaf function clears the BLOCK bit in the EPCM entry for the destination page in the EPC after copying.
RBX contains the effective address of a PAGEINFO structure; RCX contains the effective address of the destination
EPC page; RDX holds the effective address of the version array slot that holds the version of the page.
The table below provides additional information on the memory parameter of ELDB/ELDU leaf functions.

EBLDB/ELDBU Memory Parameter Semantics

The error codes are:

ELDB/ELDU Error Codes

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 07H IR V/V SGX1 This leaf function loads, verifies an EPC page and marks the page
as blocked.ENCLS[ELDB]

 EAX = 08H IR V/V SGX1 This leaf function loads, verifies an EPC page and marks the page
as unblocked.ENCLS[ELDU]

Op/En EAX RBX RCX RDX

IR
ELDB/ELDU

(In)
Return error
code (Out)

Address of the PAGEINFO
(In)

Address of the EPC page
(In)

Address of the version-
array slot (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.PCMD PAGEINFO.SECS EPCPAGE Version-Array Slot

Non-enclave
read access

Non-enclave read
access

Non-enclave read
access

Enclave read/write
access

Read/Write access
permitted by Enclave

Read/Write access per-
mitted by Enclave

0 (No Error) ELDB/ELDU successful

SGX_MAC_COMPARE_FAIL If the MAC check fails.

Table 41-21. Concurrency Restrictions of ELDB/ELDU with Intel® SGX Instructions - 1of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type Targ VA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

ELDB/
ELDU

Targ N N N N N N N N N N N

VA N N Y N Y N

SECS Y N Y Y N Y Y Y Y Y N Y

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 386

Operation

Temp Variables in ELDB/ELDU Operational Flow

(* Check PAGEINFO and EPCPAGE alignment *)
IF ((DS:RBX is not 32Byte Aligned) or (DS:RCX is not 4KByte Aligned))

Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

(* Check VASLOT alignment *)
IF (DS:RDX is not 8Byte aligned)

Then #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
Then #PF(DS:RDX); FI;

TMP_SRCPGE DS:RBX.SRCPGE;
TMP_SECS DS:RBX.SECS;
TMP_PCMD DS:RBXPCMD;

(* Check alignment of PAGEINFO (RBX) linked parameters. Note: PCMD pointer is overlaid on top of PAGEINFO.SECINFO field *)
IF ((DS:TMP_PCMD is not 128Byte aligned) or (DS:TMP_SRCPGE is not 4KByte aligned))

Then #GP(0); FI;

(* Check concurrency of EPC and VASLOT by other Intel SGX instructions *)

Table 41-22. Concurrency Restrictions of ELDB/ELDU with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SRC SECI
NFO

ELDB/
ELDU

Targ N N N N N N N N

VA N N Y N N

SECS N Y Y Y Y N Y Y Y

Name Type Size (Bits) Description

TMP_SRCPGE Memory page 4KBytes

TMP_SECS Memory page 4KBytes

TMP_PCMD PCMD 128 Bytes

TMP_HEADER MACHEADER 128 Bytes

TMP_VER UINT64 64

TMP_MAC UINT128 128

TMP_PK UINT128 128 Page encryption/MAC key.

SCRATCH_PCMD PCMD 128 Bytes

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 387

IF ((other instructions accessing EPC) or (Other instructions modifying VA slot))
Then #GP(0); FI;

(* Verify EPCM attributes of EPC page, VA, and SECS *)
IF (EPCM(DS:RCX).VALID = 1)

Then #PF(DS:RCX); FI;

IF ((EPCM(DS:RDX & ~0FFFH).VALID = 0) or (EPCM(DS:RDX & ~0FFFH).PT != PT_VA))
Then #PF(DS:RDX); FI;

(* Copy PCMD into scratch buffer *)
SCRATCH_PCMD[1023: 0] DS:TMP_PCMD[1023:0];

(* Zero out TMP_HEADER*)
TMP_HEADER[sizeof(TMP_HEADER)-1: 0] 0;

TMP_HEADER.SECINFO SCRATCH_PCMD.SECINFO;
TMP_HEADER.RSVD SCRATCH_PCMD.RSVD;
TMP_HEADER.LINADDR DS:RBX.LINADDR;

(* Verify various attributes of SECS parameter *)
IF ((TMP_HEADER.SECINFO.FLAGS.PT = PT_REG) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_TCS) or

 (TMP_HEADER.SECINFO.FLAGS.PT = PT_TRIM))
Then

IF (DS:TMP_SECS is not 4KByte aligned)
THEN #GP(0) FI;

IF (DS:TMP_SECS does not resolve within an EPC)
THEN #PF(DS:TMP_SECS) FI;

IF (Other instructions modifying SECS)
THEN #GP(0) FI;

IF ((EPCM(DS:TMP_SECS).VALID = 0) or (EPCM(DS:TMP_SECS).PT != PT_SECS))
THEN #PF(DS:TMP_SECS) FI;

ELSIF ((TMP_HEADER.SECINFO.FLAGS.PT = PT_SECS) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_VA))
IF ((TMP_SECS != 0))

THEN #GP(0) FI;
ELSE

#GP(0)
FI;

IF ((TMP_HEADER.SECINFO.FLAGS.PT = PT_REG) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_TCS) or
 (TMP_HEADER.SECINFO.FLAGS.PT = PT_TRIM))
Then

TMP_HEADER.EID DS:TMP_SECS.EID;
ELSE

(* These pages do not have any parent, and hence no EID binding *)
TMP_HEADER.EID 0;

FI;

(* Copy 4KBytes SRCPGE to secure location *)
DS:RCX[32767: 0] DS:TMP_SRCPGE[32767: 0];

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 388

TMP_VER DS:RDX[63:0];

(* Decrypt and MAC page. AES_GCM_DEC has 2 outputs, {plain text, MAC} *)
(* Parameters for AES_GCM_DEC {Key, Counter, ..} *)
{DS:RCX, TMP_MAC} AES_GCM_DEC(CR_BASE_PK, TMP_VER << 32, TMP_HEADER, 128, DS:RCX, 4096);

IF ((TMP_MAC != DS:TMP_PCMD.MAC))
Then

RFLAGS.ZF 1;
RAX SGX_MAC_COMPARE_FAIL;
goto ERROR_EXIT;

FI;

(* Check version before committing *)
IF (DS:RDX != 0)

Then #GP(0);
ELSE

DS:RDX TMP_VER;
FI;

(* Commit EPCM changes *)
EPCM(DS:RCX).PT TMP_HEADER.SECINFO.FLAGS.PT;
EPCM(DS:RCX).RWX TMP_HEADER.SECINFO.FLAGS.RWX;
EPCM(DS:RCX).PENDING TMP_HEADER.SECINFO.FLAGS.PENDING;
EPCM(DS:RCX).MODIFIED TMP_HEADER.SECINFO.FLAGS.MODIFIED;
EPCM(DS:RCX).ENCLAVEADDRESS TMP_HEADER.LINADDR;

IF ((EAX = 07H) and (TMP_HEADER.SECINFO.FLAGS.PT is NOT PT_SECS or PT_VA))
Then

EPCM(DS:RCX).BLOCKED 1;
ELSE

EPCM(DS:RCX).BLOCKED 0;
FI;

EPCM(DS:RCX). VALID 1;

RAX 0;
RFLAGS.ZF 0;

ERROR_EXIT:
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

Sets ZF if unsuccessful, otherwise cleared and RAX returns error code. Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the instruction’s EPC resource is in use by others.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 389

If the instruction fails to verify MAC.
If the version-array slot is in use.
If the parameters fail consistency checks.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand expected to be in EPC does not resolve to an EPC page.
If one of the EPC memory operands has incorrect page type.
If the destination EPC page is already valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the instruction’s EPC resource is in use by others.
If the instruction fails to verify MAC.
If the version-array slot is in use.
If the parameters fail consistency checks.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand expected to be in EPC does not resolve to an EPC page.
If one of the EPC memory operands has incorrect page type.
If the destination EPC page is already valid.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 390

EMODPR—Restrict the Permissions of an EPC Page

Instruction Operand Encoding

Description

This leaf function restricts the access rights associated with an EPC page in an initialized enclave. THE RWX bits of
the SECINFO parameter are treated as a permissions mask; supplying a value that does not restrict the page
permissions will have no effect. This instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EMODPR leaf function.

EMODPR Memory Parameter Semantics

The instruction faults if any of the following:

EMODPR Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 0EH IR V/V SGX2 This leaf function restricts the access rights associated with a
EPC page in an initialized enclave.ENCLS[EMODPR]

Op/En EAX RBX RCX

IR EMODPR (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read access permitted by Enclave

The operands are not properly aligned. If unsupported security attributes are set.

The Enclave is not initialized. SECS is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid.

Table 41-23. Concurrency Restrictions of EMODPR with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EP

A

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EMODPR Targ Y N Y N Y N N N

SECS Y N Y Y Y N Y N Y

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 391

Operation

Temp Variables in EMODPR Operational Flow

IF (DS:RBX is not 64Byte Aligned)
Then #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

SCRATCH_SECINFO DS:RBX;

(* Check for mis-configured SECINFO flags*)
IF ((SCRATCH_SECINFO reserved fields are not zero) or

!(SCRATCH_SECINFO.FLAGS.R is 0 or SCRATCH_SECINFO.FLAGS.W is not 0))
Then #GP(0); FI;

(* Check concurrency with SGX1 or SGX2 instructions on the EPC page *)
IF (SGX1 or other SGX2 instructions accessing EPC page)

Then #GP(0); FI;

IF (EPCM(DS:RCX).VALID is 0)
Then #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction)

Then
RFLAGS 1;
RAX SGX_LOCKFAIL;
goto Done;

FI;

IF ((EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0))

Table 41-24. Concurrency Restrictions of EMODPR with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EMODP
R

Targ N N N C C C C C Y Y

SECS Y Y Y N Y Y Y Y Y Y

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operand belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 392

Then
RFLAGS 1;
RAX SGX_PAGE_NOT_MODIFIABLE;
goto Done;

FI;

IF (EPCM(DS:RCX).PT is not PT_REG)
Then #PF(DS:RCX); FI;

TMP_SECS GET_SECS_ADDRESS

IF (TMP_SECS.ATTRIBUTES.INIT = 0)
 Then #GP(0); FI;

(* Check concurrency with ETRACK *)
IF (ETRACK executed concurrently)

Then #GP(0); FI;

(* Update EPCM permissions *)
EPCM(DS:RCX).R EPCM(DS:RCX).R & SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W EPCM(DS:RCX).W & SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X EPCM(DS:RCX).X & SCRATCH_SECINFO.FLAGS.X;

RFLAGS.ZF 0;
RAX 0;

Done:
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

Sets ZF if page is not modifiable or if other SGX2 instructions are executing concurrently, otherwise cleared.
Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 393

EMODT—Change the Type of an EPC Page

Instruction Operand Encoding

Description

This leaf function modifies the type of an EPC page. The security attributes are configured to prevent access to the
EPC page at its new type until a corresponding invocation of the EACCEPT leaf confirms the modification. This
instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EMODT leaf function.

EMODT Memory Parameter Semantics

The instruction faults if any of the following:

EMODT Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 0FH IR V/V SGX2 This leaf function changes the type of an existing EPC page.
ENCLS[EMODT]

Op/En EAX RBX RCX

IR EMODT (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read access permitted by Enclave

The operands are not properly aligned. If unsupported security attributes are set.

The Enclave is not initialized. SECS is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid.

Table 41-25. Concurrency Restrictions of EMODT with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EP

A

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EMODT Targ Y Y N N N N N C N N N N N

SECS Y N Y Y Y Y N Y N Y

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 394

Operation

Temp Variables in EMODT Operational Flow

IF (DS:RBX is not 64Byte Aligned)
Then #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

SCRATCH_SECINFO DS:RBX;

(* Check for mis-configured SECINFO flags*)
IF ((SCRATCH_SECINFO reserved fields are not zero) or

!(SCRATCH_SECINFO.FLAGS.PT is PT_TCS or SCRATCH_SECINFO.FLAGS.PT is PT_TRIM))
Then #GP(0); FI;

(* Check concurrency with SGX1 instructions on the EPC page *)
IF (other SGX1 instructions accessing EPC page)

Then #GP(0); FI;

IF (EPCM(DS:RCX).VALID is 0 or
!(EPCM(DS:RCX).PT is PT_REG or EPCM(DS:RCX).PT is PT_TCS))
Then #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction)

Then #GP(0); FI;

(* Check for mis-configured SECINFO flags*)
IF ((EPCM(DS:RCX).R = 0) and (SCRATCH_SECINFO.FLAGS.R = 0) and (SCRATCH_SECINFO.FLAGS.W != 0)))

Then
RFLAGS 1;

Table 41-26. Concurrency Restrictions of EMODT with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EMODT Targ N N N N N C C C C C Y Y

SECS Y Y Y C Y Y Y Y Y Y

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operand belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 395

RAX SGX_LOCKFAIL;
goto Done;

FI;

IF ((EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0))
Then

RFLAGS 1;
RAX SGX_PAGE_NOT_MODIFIABLE;
goto Done;

FI;

TMP_SECS GET_SECS_ADDRESS

IF (TMP_SECS.ATTRIBUTES.INIT = 0)
 Then #GP(0); FI;

(* Check concurrency with ETRACK *)
IF (ETRACK executed concurrently)

Then #GP(0); FI;

(* Update EPCM fields *)
EPCM(DS:RCX).MODIFIED 1;
EPCM(DS:RCX).R 0;
EPCM(DS:RCX).W 0;
EPCM(DS:RCX).X 0;
EPCM(DS:RCX).PT SCRATCH_SECINFO.FLAGS.PT;

RFLAGS.ZF 0;
RAX 0;

Done:
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

Sets ZF if page is not modifiable or if other SGX2 instructions are executing concurrently, otherwise cleared.
Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 396

If a memory operand is not an EPC page.

EPA—Add Version Array

Instruction Operand Encoding

Description

This leaf function creates an empty version array in the EPC page whose logical address is given by DS:RCX, and
sets up EPCM attributes for that page. At the time of execution of this instruction, the register RBX must be set to
PT_VA.

The table below provides additional information on the memory parameter of EPA leaf function.

EPA Memory Parameter Semantics

Concurrency Restrictions

Operation

IF (RBX != PT_VA or DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 0AH IR V/V SGX1 This leaf function adds a Version Array to the EPC.
ENCLS[EPA]

Op/En EAX RBX RCX

IR EPA (In) PT_VA (In, Constant) Effective address of the EPC page (In)

EPCPAGE

Write access permitted by Enclave

Table 41-27. Concurrency Restrictions of EPA with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EPA VA N N N N N N N N N N N

Table 41-28. Concurrency Restrictions of EPA with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EPA VA N N N N N N N N

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 397

Then #PF(DS:RCX); FI;

(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions accessing the page)

THEN #GP(0); FI;

(* Check EPC page must be empty *)
IF (EPCM(DS:RCX). VALID != 0)

THEN #PF(DS:RCX); FI;

(* Clears EPC page *)
DS:RCX[32767:0] 0;

EPCM(DS:RCX).PT PT_VA;
EPCM(DS:RCX).ENCLAVEADDRESS 0;
EPCM(DS:RCX).BLOCKED 0;
EPCM(DS:RCX).PENDING 0;
EPCM(DS:RCX).MODIFIED 0;
EPCM(DS:RCX).RWX 0;
EPCM(DS:RCX).VALID 1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the EPC page.
If RBX is not set to PT_VA.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If the EPC page is valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the EPC page.
If RBX is not set to PT_VA.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If the EPC page is valid.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 398

EREMOVE—Remove a page from the EPC

Instruction Operand Encoding

Description

This leaf function causes an EPC page to be un-associated with its SECS and be marked as unused. This instruc-
tion leaf can only be executed when the current privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address.
Segment override is not supported.
The instruction fails if the operand is not properly aligned or does not refer to an EPC page or the page is in use
by another thread, or other threads are running in the enclave to which the page belongs. In addition the instruc-
tion fails if the operand refers to an SECS with associations.

EREMOVE Memory Parameter Semantics

The instruction faults if any of the following:

EREMOVE Faulting Conditions

The error codes are:

EREMOVE Error Codes

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 03H IR V/V SGX1 This leaf function removes a page from the EPC.
ENCLS[EREMOVE]

Op/En EAX RCX

IR EREMOVE (In) Effective address of the EPC page (In)

EPCPAGE

Write access permitted by Enclave

The memory operand is not properly aligned. The memory operand does not resolve in an EPC page.

Refers to an invalid SECS. Refers to an EPC page that is locked by another thread.

Another Intel SGX instruction is accessing the EPC page. RCX does not contain an effective address of an EPC page.

the EPC page refers to an SECS with associations.

0 (No Error) EREMOVE successful.

SGX_CHILD_PRESENT If the SECS still have enclave pages loaded into EPC.

SGX_ENCLAVE_ACT If there are still logical processors executing inside the enclave.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 399

Concurrency Restrictions

Operation

Temp Variables in EREMOVE Operational Flow

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

TMP_SRCPGE DS:RBX.SRCPGE;
TMP_SECS DS:RBX.SECS;
TMP_SECINFO DS:RBX.SECINFO;
TMP_LINADDR DS:RBX.LINADDR;

SCRATCH_SECINFO DS:RBX.TMP_SECINFO;

(* Check the EPC page for concurrency *)
IF (EPC page being referenced by another Intel SGX instruction)

Then #GP(0); FI;

(* if DS:RCX is already unused, nothing to do*)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PT = PT_TRIM AND EPCM(DS:RCX).MODIFIED = 0))

Then goto DONE;
FI;

IF (EPCM(DS:RCX).PT = PT_VA)
Then

Table 41-29. Concurrency Restrictions of EREMOVE with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EREMOVE Targ C C C N N N C N N C N C N C C C N N N N N

SECS C Y Y Y Y C Y C Y Y

Table 41-30. Concurrency Restrictions of EREMOVE with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EREMOVE Targ N C C C N N N C N N N C N C C

SECS Y Y Y C Y Y Y Y Y Y C

Name Type Size (Bits) Description

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 400

EPCM(DS:RCX).VALID 0;
goto DONE;

FI;

IF (EPCM(DS:RCX).PT = PT_SECS)
Then

IF (DS:RCX has an EPC page associated with it)
Then

RFLAGS.ZF 1;
RAX SGX_CHILD_PRESENT;
goto ERROR_EXIT;

FI;
EPCM(DS:RCX).VALID 0;
goto DONE;

FI;

TEMP_SECS Get_SECS_ADDRESS();

IF (Other threads active using SECS)
Then

RFLAGS.ZF 1;
RAX SGX_ENCLAVE_ACT;
goto ERROR_EXIT;

FI;

DONE:
RAX 0;
RFLAGS.ZF 0;

ERROR_EXIT:
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

Sets ZF if unsuccessful, otherwise cleared and RAX returns error code. Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the page.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If the memory operand is non-canonical form.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the page.

#PF(fault code) If a page fault occurs in accessing memory operands.
If the memory operand is not an EPC page.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 401

ETRACK—Activates EBLOCK Checks

Instruction Operand Encoding

Description

This leaf function provides the mechanism for hardware to track that software has completed the required TLB
address clears successfully. The instruction can only be executed when the current privilege level is 0.
The content of RCX is an effective address of an EPC page.
The table below provides additional information on the memory parameter of EBLOCK leaf function.

ETRACK Memory Parameter Semantics

The error codes are:

ETRACK Error Codes

Concurrency Restrictions

Operation

IF (DS:RCX is not 4KByte Aligned)

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 0CH IR V/V SGX1 This leaf function activates EBLOCK checks.
ENCLS[ETRACK]

Op/En EAX RCX

IR ETRACK (In) Return error code (Out) Pointer to the SECS of the EPC page (In)

EPCPAGE

Read/Write access permitted by Enclave

0 (No Error) ETRACK successful.

SGX_PREV_TRK_INCMPL All logical processors on the platform did not complete the previous tracking cycle.

Table 41-31. Concurrency Restrictions of ETRACK with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

ETRACK SECS Y N Y N N N Y Y Y Y Y N Y N

Table 41-32. Concurrency Restrictions of ETRACK with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

ETRACK SECS N Y Y N N Y N Y N N Y

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 402

Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions using tracking facility on this SECS)

Then #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
Then #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).PT != PT_SECS)
Then #PF(DS:RCX); FI;

(* All processors must have completed the previous tracking cycle*)
IF ((DS:RCX).TRACKING != 0))

Then
RFLAGS.ZF 1;
RAX SGX_PREV_TRK_INCMPL;
goto Done;

ELSE
RAX 0;
RFLAGS.ZF 0;

FI;

Done:
RFLAGS.ZF,CF,PF,AF,OF,SF 0;

Flags Affected

Sets ZF if SECS is in use or invalid, otherwise cleared. Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another thread is concurrently using the tracking facility on this SECS.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 403

EWB—Invalidate an EPC Page and Write out to Main Memory

Instruction Operand Encoding

Description

This leaf function copies a page from the EPC to regular main memory. As part of the copying process, the page is
cryptographically protected. This instruction can only be executed when current privilege level is 0.

The table below provides additional information on the memory parameter of EPA leaf function.

EWB Memory Parameter Semantics

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 0BH IR V/V SGX1 This leaf function invalidates an EPC page and writes it out to
main memory.ENCLS[EWB]

Op/En EAX RBX RCX RDX

IR EWB (In) Error code (Out) Address of an PAGEINFO (In) Address of the EPC page (In) Address of a VA slot (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.PCMD EPCPAGE VASLOT

Non-EPC R/W access Non-EPC R/W access Non-EPC R/W access EPC R/W access EPC R/W access

Table 41-33. Concurrency Restrictions of EWB with Intel® SGX Instructions - 1of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type Targ VA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EWB Src C C C N N N C N N C N C N C C C N N N N

VA N N Y N Y N

SECS Y Y Y Y Y Y Y Y Y Y

Table 41-34. Concurrency Restrictions of EWB with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SRC SECI
NFO

EWB Src N C C C N N N C N N N C N C C

VA N N Y N N

SECS Y Y Y Y Y Y Y Y Y Y

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 404

Operation

Temp Variables in EWB Operational Flow

IF ((DS:RBX is not 32Byte Aligned) or (DS:RCX is not 4KByte Aligned))
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

IF (DS:RDX is not 8Byte Aligned)
Then #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
Then #P(DS:RDX); FI;

(* EPCPAGE and VASLOT should not resolve to the same EPC page*)
IF (DS:RCX and DS:RDX resolve to the same EPC page)

Then GP(0); FI;

TMP_SRCPGE DS:RBX.SRCPGE;
(* Note PAGEINFO.PCMD is overlaid on top of PAGEINFO.SECINFO *)
TMP_PCMD DS:RBX.PCMD;

If (DS:RBX.LINADDR != 0) OR (DS:RBX.SECS != 0)
Then #GP(0); FI;

IF ((DS:TMP_PCMD is not 128Byte Aligned) or (DSTMP_SRCPGE is not 4KByte Aligned))
Then GP(0); FI;

(* Check for concurrent Intel SGX instruction access to the page *)
IF (Other Intel SGX instruction is accessing page)

THEN #GP(0); FI;

(*Check if the VA Page is being removed or changed*)

Name Type Size (Bytes) Description

TMP_SRCPGE Memory page 4096

TMP_PCMD PCMD 128

TMP_SECS SECS 4096

TMP_BPEPOCH UINT64 8

TMP_BPREFCOUNT UINT64 8

TMP_HEADER MAC Header 128

TMP_PCMD_ENCLAVEID UINT64 8

TMP_VER UINT64 8

TMP_PK UINT128 16

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 405

IF (VA Page is being modified)
THEN #GP(0); FI;

(* Verify that EPCPAGE and VASLOT page are valid EPC pages and DS:RDX is VA *)
IF (EPCM(DS:RCX).VALID = 0)

THEN #PF(DS:RCX); FI;

IF ((EPCM(DS:RDX & ~0FFFH).VALID = 0) or (EPCM(DS:RDX & ~0xFFF).PT is not PT_VA))
THEN #PF(DS:RDX); FI;

(* Perform page-type-specific exception checks *)
IF ((EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM))

THEN
TMP_SECS = Obtain SECS through EPCM(DS:RCX)

(* Check that EBLOCK has occurred correctly *)
IF (EBLOCK is not correct)

THEN #GP(0); FI;
FI;

RFLAGS.ZF,CF,PF,AF,OF,SF 0;
RAX 0;

(* Perform page-type-specific checks *)
IF ((EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM))

THEN
(* check to see if the page is evictable *)
IF (EPCM(DS:RCX).BLOCKED = 0)

THEN
RAX SGX_PAGE NOT_BLOCKED;
RFLAGS.ZF 1;
GOTO ERROR_EXIT;

FI;
(* Check if tracking done correctly *)
IF (Tracking not correct)

THEN
RAX SGX_NOT_TRACKED;
RFLAGS.ZF 1;
GOTO ERROR_EXIT;

FI;

(* Obtain EID to establish cryptographic binding between the paged-out page and the enclave *)
TMP_HEADER.EID TMP_SECS.EID;

(* Obtain EID as an enclave handle for software *)
TMP_PCMD_ENCLAVEID TMP_SECS.EID;

ELSE IF (EPCM(DS:RCX).PT is PT_SECS)
(*check that there are no child pages inside the enclave *)
IF (DS:RCX has an EPC page associated with it)

THEN
RAX SGX_CHILD_PRESENT;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 406

RFLAGS.ZF 1;
GOTO ERROR_EXIT;

FI:
TMP_HEADER.EID 0;
(* Obtain EID as an enclave handle for software *)
TMP_PCMD_ENCLAVEID (DS:RCX).EID;

ELSE IF (EPCM(DS:RCX).PT is PT_VA)
TMP_HEADER.EID 0; // Zero is not a special value
(* No enclave handle for VA pages*)
TMP_PCMD_ENCLAVEID 0;

FI;

(* Zero out TMP_HEADER*)
TMP_HEADER[sizeof(TMP_HEADER)-1 : 0] 0;

TMP_HEADER.LINADDR EPCM(DS:RCX).ENCLAVEADDRESS;
TMP_HEADER.SECINFO.FLAGS.PT EPCM(DS:RCX).PT;
TMP_HEADER.SECINFO.FLAGS.RWX EPCM(DS:RCX).RWX;
TMP_HEADER.SECINFO.FLAGS.PENDING EPCM(DS:RCX).PENDING;
TMP_HEADER.SECINFO.FLAGS.MODIFIED EPCM(DS:RCX).MODIFIED;

(* Encrypt the page, DS:RCX could be encrypted in place. AES-GCM produces 2 values, {ciphertext, MAC}. *)
(* AES-GCM input parameters: key, GCM Counter, MAC_HDR, MAC_HDR_SIZE, SRC, SRC_SIZE)*)
{DS:TMP_SRCPGE, DS:TMP_PCMD.MAC} AES_GCM_ENC(CR_BASE_PK), (TMP_VER << 32),

TMP_HEADER, 128, DS:RCX, 4096);

(* Write the output *)
Zero out DS:TMP_PCMD.SECINFO
DS:TMP_PCMD.SECINFO.FLAGS.PT EPCM(DS:RCX).PT;
DS:TMP_PCMD.SECINFO.FLAGS.RWX EPCM(DS:RCX).RWX;
DS:TMP_PCMD.SECINFO.FLAGS.PENDING EPCM(DS:RCX).PENDING;
DS:TMP_PCMD.SECINFO.FLAGS.MODIFIED EPCM(DS:RCX).MODIFIED;
DS:TMP_PCMD.RESERVED 0;
DS:TMP_PCMD.ENCLAVEID TMP_PCMD_ENCLAVEID;
DS:RBX.LINADDR EPCM(DS:RCX).ENCLAVEADDRESS;

(*Check if version array slot was empty *)
IF ([DS.RDX])

THEN
RAX SGX_VA_SLOT_OCCUPIED
RFLAGS.CF 1;

FI;

(* Write version to Version Array slot *)
[DS.RDX] TMP_VER;

(* Free up EPCM Entry *)
EPCM.(DS:RCX).VALID 0;
EXIT:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 407

Flags Affected

ZF is set if page is not blocked, not tracked, or a child is present. Otherwise cleared.
CF is set if VA slot is previously occupied, Otherwise cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the EPC page and VASLOT resolve to the same EPC page.
If another Intel SGX instruction is concurrently accessing either the target EPC, VA, or SECS
pages.
If the tracking resource is in use.
If the EPC page or the version array page is invalid.
If the parameters fail consistency checks.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If one of the EPC memory operands has incorrect page type.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the EPC page and VASLOT resolve to the same EPC page.
If another Intel SGX instruction is concurrently accessing either the target EPC, VA, or SECS
pages.
If the tracking resource is in use.
If the EPC page or the version array page in invalid.
If the parameters fail consistency checks.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If one of the EPC memory operands has incorrect page type.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 408

41.4 INTEL® SGX USER LEAF FUNCTION REFERENCE

41.4.1 Instruction Column in the Instruction Summary Table
Leaf functions available with the ENCLU instruction mnemonic are covered in this section. In general, each
instruction leaf requires EAX to specify the leaf function index and/or additional registers specifying leaf-specific
input parameters. An instruction operand encoding table provides details of the implicitly-encoded register usage
and associated input/output semantics.
In many cases, an input parameter specifies an effective address associated with a memory object inside or
outside the EPC, the memory addressing semantics of these memory objects are also summarized in a separate
table.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 409

EACCEPT—Accept Changes to an EPC Page

Instruction Operand Encoding

Description

This leaf function accepts changes to a page in the running enclave by verifying that the security attributes spec-
ified in the SECINFO match the security attributes of the page in the EPCM. This instruction leaf can only be
executed when inside the enclave.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EACCEPT leaf function.

EACCEPT Memory Parameter Semantics

The instruction faults if any of the following:

EACCEPT Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 05H IR V/V SGX2 This leaf function accepts changes made by system software to
an EPC page in the running enclave.ENCLU[EACCEPT]

Op/En EAX RBX RCX

IR EACCEPT (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE (Destination)

Read access permitted by Non Enclave Read/Write access permitted by Enclave

The operands are not properly aligned. If security attributes of the SECINFO page make the page inaccessible.

The EPC page is locked by another thread. RBX does not contain an effective address in an EPC page in the running enclave.

The EPC page is not valid. RCX does not contain an effective address of an EPC page in the running enclave.

SECINFO contains an invalid request. Page type is PT_REG and MODIFIED bit is 0.

Page type is PT_TCS or PT_TRIM and PENDING bit is 0 and MODIFIED bit is 1.

Table 41-35. Concurrency Restrictions of EACCEPT with Intel® SGX Instructions - 1of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type Targ VA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EACCE
PT

Targ C Y Y C Y Y

SECINFO U Y U U

SECS Y Y Y Y Y Y Y

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 410

Operation

Temp Variables in EACCEPT Operational Flow

IF (DS:RBX is not 64Byte Aligned)
Then #GP(0); FI;

IF (DS:RBX is not within CR_ELRANGE)
Then #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
Then #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).VALID = 0) or (EPCM(DS:RBX).R = 0) or (EPCM(DS:RBX).PENDING != 0) or (EPCM(DS:RBX).MODIFIED != 0) or
(EPCM(DS:RBX).BLOCKED != 0) or (EPCM(DS:RBX).PT != PT_REG) or (EPCM(DS:RBX).ENCLAVESECS != CR_ACTIVE_SECS) or
(EPCM(DS:RBX).ENCLAVEADDRESS != DS:RBX))
Then #PF(DS:RBX); FI;

SCRATCH_SECINFO DS:RBX;

(* Check for mis-configured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero))

Then #GP(0); FI;

IF (DS:RCX is not 512Byte Aligned)
Then #GP(0); FI;

IF (DS:RCX is not within CR_ELRANGE)
Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

(* Check that the combination of requested PT, PENDING and MODIFIED is legal *)

Table 41-36. Concurrency Restrictions of EACCEPT with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SRC SECI
NFO

EACCE
PT

Targ Y N Y N N N Y N Y Y

SECIN
FO

U Y Y Y Y U Y

SECS Y Y Y Y Y Y Y Y Y Y

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operands belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 411

IF (NOT (((SCRATCH_SECINFO.FLAGS.PT is PT_REG) and (SCRATCH_SECINFO.FLAGS.MODIFIED is 0)) or
((SCRATCH_SECINFO.FLAGS.PT is PT_TCS or PT_TRIM) and (SCRATCH_SECINFO.FLAGS.PENDING is 0) and
(SCRATCH_SECINFO.FLAGS.MODIFIED is 1))))

Then #GP(0); FI

(* Check security attributes of the destination EPC page *)
If ((EPCM(DS:RCX).VALID is 0) or (EPCM(DS:RCX).BLOCKED is not 0) or

((EPCM(DS:RCX).PT is not PT_REG) and (EPCM(DS:RCX).PT is not PT_TCS) and (EPCM(DS:RCX).PT is not PT_TRIM)) or
(EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS))
Then #PF((DS:RCX); FI;

(* Check the destination EPC page for concurrency *)
IF (EPC page in use)

Then #GP(0); FI;

(* Re-Check security attributes of the destination EPC page *)
IF ((EPCM(DS:RCX).VALID is 0) or (EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS))

Then #PF(DS:RCX); FI;

(* Verify that accept request matches current EPC page settings *)
IF ((EPCM(DS:RCX).ENCLAVEADDRESS != DS:RCX) or (EPCM(DS:RCX).PENDING != SCRATCH_SECINFO.FLAGS.PENDING) or

(EPCM(DS:RCX).MODIFIED != SCRATCH_SECINFO.FLAGS.MODIFIED) or (EPCM(DS:RCX).R != SCRATCH_SECINFO.FLAGS.R) or
(EPCM(DS:RCX).W != SCRATCH_SECINFO.FLAGS.W) or (EPCM(DS:RCX).X != SCRATCH_SECINFO.FLAGS.X) or
(EPCM(DS:RCX).PT != SCRATCH_SECINFO.FLAGS.PT))
Then

RFLAGS 1;
RAX SGX_PAGE_ATTRIBUTES_MISMATCH;
goto DONE;

FI;
(* Check that all required threads have left enclave *)
IF (Tracking not correct)

THEN
RFLAGS.ZF 1;
RAX SGX_NOT_TRACKED;
goto DONE;

FI;

(* Get pointer to the SECS to which the EPC page belongs *)
TMP_SECS = << Obtain physical address of SECS through EPCM(DS:RCX)>>
(* For TCS pages, perform additional checks *)
IF (SCRATCH_SECINFO.FLAGS.PT = PT_TCS)

Then
IF (DS:RCX.RESERVED != 0) #GP(0); FI;

FI;

(* Check that TCS.FLAGS.DBGOPTIN, TCS stack, and TCS status are correctly initialized *)
IF (((DS:RCX).FLAGS.DBGOPTIN is not 0) or ((DS:RCX).CSSA >= (DS:RCX).NSSA) or ((DS:RCX).AEP is not 0) or ((DS:RCX).STATE is not 0)

Then #GP(0); FI;

(* Check consistency of FS & GS Limit *)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 412

IF ((TMP_SECS.ATTRIBUTES.MODE64BIT is 0) and ((DS:RCX.FSLIMIT & 0xFFF != 0xFFF) or (DS:RCX.GSLIMIT & 0xFFF != 0xFFF)))
Then #GP(0); FI;

(* Clear PENDING/MODIFIED flags to mark accept operation complete *)
EPCM(DS:RCX).PENDING 0;
EPCM(DS:RCX).MODIFIED 0;

(* Clear EAX and ZF to indicate successful completion *)
RFLAGS.ZF 0;
RAX 0;

Done:
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

Sets ZF if page cannot be accepted, otherwise cleared. Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 413

EACCEPTCOPY—Initialize a Pending Page

Instruction Operand Encoding

Description

This leaf function copies the contents of an existing EPC page into an uninitialized EPC page (created by EAUG).
After initialization, the instruction may also modify the access rights associated with the destination EPC page.
This instruction leaf can only be executed when inside the enclave.
RBX contains the effective address of a SECINFO structure while RCX and RDX each contain the effective address
of an EPC page. The table below provides additional information on the memory parameter of the EACCEPTCOPY
leaf function.

EACCEPTCOPY Memory Parameter Semantics

The instruction faults if any of the following:

EACCEPTCOPY Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 07H IR V/V SGX2 This leaf function initializes a dynamically allocated EPC page
from another page in the EPC.ENCLU[EACCEPTCOPY]

Op/En EAX RBX RCX RDX

IR EACCEPTCOPY (In)
Return Error Code

(Out)
Address of a SECINFO (In)

Address of the destina-
tion EPC page (In)

Address of the
source EPC page (In)

SECINFO EPCPAGE (Destination) EPCPAGE (Source)

Read access permitted by Non Enclave Read/Write access permitted by Enclave Read access permitted by Enclave

The operands are not properly aligned. If security attributes of the SECINFO page make the page inaccessible.

The EPC page is locked by another thread. If security attributes of the source EPC page make the page inaccessible.

The EPC page is not valid. RBX does not contain an effective address in an EPC page in the running enclave.

SECINFO contains an invalid request. RCX/RDX does not contain an effective address of an EPC page in the running
enclave.

Table 41-37. Concurrency Restrictions of EACCEPTCOPY with Intel® SGX Instructions - 1of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type Targ VA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EACCE
PTCOP

Y

Targ

Src U Y U Y

SECIN
FO

U Y U U

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 414

Operation

Temp Variables in EACCEPTCOPY Operational Flow

IF (DS:RBX is not 64Byte Aligned)
Then #GP(0); FI;

IF ((DS:RCX is not 4KByte Aligned) or (DS:RDX is not 4KByte Aligned))
Then #GP(0); FI;

IF ((DS:RBX is not within CR_ELRANGE) or (DS:RCX is not within CR_ELRANGE) or (DS:RDX is not within CR_ELRANGE))
Then #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
Then #PF(DS:RBX); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

IF (DS:RDX does not resolve within an EPC)
Then #PF(DS:RDX); FI;

IF ((EPCM(DS:RBX).VALID = 0) or (EPCM(DS:RBX).R = 0) or (EPCM(DS:RBX).PENDING != 0) or (EPCM(DS:RBX).MODIFIED != 0) or
(EPCM(DS:RBX).BLOCKED != 0) or (EPCM(DS:RBX).PT != PT_REG) or (EPCM(DS:RBX).ENCLAVESECS != CR_ACTIVE_SECS) or
(EPCM(DS:RBX).ENCLAVEADDRESS != DS:RBX))
Then #PF(DS:RBX); FI;

SCRATCH_SECINFO DS:RBX;

(* Check for mis-configured SECINFO flags*)
IF ((SCRATCH_SECINFO reserved fields are not zero) or ((SCRATCH_SECINFO.FLAGS.R=0) AND(SCRATCH_SECINFO.FLAGS.W!=0) or

(SCRATCH_SECINFO.FLAGS.PT is not PT_REG))
Then #GP(0); FI;

(* Check security attributes of the source EPC page *)

Table 41-38. Concurrency Restrictions of EACCEPTCOPY with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SRC SECI
NFO

EACCE
PTCOP

Y

Targ N N

Src Y Y Y Y U Y Y

SECIN
FO

U Y Y Y Y Y Y

Name Type Size (bits) Description

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 415

IF ((EPCM(DS:RDX).VALID = 0) or (EPCM(DS:RDX).PENDING != 0) or (EPCM(DS:RDX).MODIFIED != 0) or
(EPCM(DS:RDX).BLOCKED != 0) or (EPCM(DS:RDX).PT != PT_REG) or (EPCM(DS:RDX).ENCLAVESECS != CR_ACTIVE_SECS) or
(EPCM(DS:RDX).ENCLAVEADDRESS != DS:RDX))
Then #PF(DS:RDX); FI;

(* Check security attributes of the destination EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING != 1) or (EPCM(DS:RCX).MODIFIED != 0) or

(EPCM(DS:RCX).PT != PT_REG) or (EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS))
Then

RFLAGS 1;
RAX SGX_PAGE_ATTRIBUTE_MISMATCH;
goto Done;

FI;

(* Check the destination EPC page for concurrency *)
IF (destination EPC page in use)

Then #GP(0); FI;

(* Re-Check security attributes of the destination EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING != 1) or (EPCM(DS:RCX).MODIFIED != 0) or

(EPCM(DS:RCX).R != 1) or (EPCM(DS:RCX).W != 1) or (EPCM(DS:RCX).X != 0) or
(EPCM(DS:RCX).PT != SCRATCH_SECINFO.FLAGS.PT) or (EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS) or
(EPCM(DS:RCX).ENCLAVEADDRESS != DS:RCX))
Then #PF(DS:RCX); FI;

(* Copy 4KBbytes form the source to destination EPC page*)
DS:RCX[32767:0] DS:RDX[32767:0];

(* Update EPCM permissions *)
EPCM(DS:RCX).R EPCM(DS:RCX).R | SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W EPCM(DS:RCX).W | SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X EPCM(DS:RCX).X | SCRATCH_SECINFO.FLAGS.X;
EPCM(DS:RCX).PENDING 0;

RFLAGS.ZF 0;
RAX 0;

Done:
RFLAGS.CF,PF,AF,OF,SF 0;

Flags Affected

Sets ZF if page is not modifiable, otherwise cleared. Clears CF, PF, AF, OF, SF.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 416

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 417

EENTER—Enters an Enclave

Instruction Operand Encoding

Description

The ENCLU[EENTER] instruction transfers execution to an enclave. At the end of the instruction, the logical
processor is executing in enclave mode at the RIP computed as EnclaveBase + TCS.OENTRY. If the target address
is not within the CS segment (32-bit) or is not canonical (64-bit), a #GP(0) results.

EENTER Memory Parameter Semantics

EENTER is a serializing instruction. The instruction faults if any of the following occurs:

The following operations are performed by EENTER:
• RSP and RBP are saved in the current SSA frame on EENTER and are automatically restored on EEXIT or

interrupt.
• The AEP contained in RCX is stored into the TCS for use by AEXs.FS and GS (including hidden portions) are

saved and new values are constructed using TCS.OFSBASE/GSBASE (32 and 64-bit mode) and
TCS.OFSLIMIT/GSLIMIT (32-bit mode only). The resulting segments must be a subset of the DS segment.

• If CR4.OSXSAVE == 1, XCR0 is saved and replaced by SECS.ATTRIBUTES.XFRM.The effect of RFLAGS.TF
depends on whether the enclave entry is opt-in or opt-out (see Section 43.1.2):

— On opt-out entry, TF is saved and cleared (it is restored on EEXIT or AEX). Any attempt to set TF via a
POPF instruction while inside the enclave clears TF (see Section 43.2.6).

— On opt-in entry, a single-step debug exception is pended on the instruction boundary immediately after
EENTER (see Section 43.2.3).

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 02H IR V/V SGX1 This leaf function is used to enter an enclave.
ENCLU[EENTER]

Op/En EAX RBX RCX

IR EENTER (In)
Content of RBX.CSSA

(Out)
Address of a TCS (In) Address of AEP (In)

Address of IP following
EENTER (Out)

TCS

 Enclave access

Address in RBX is not properly aligned. Any TCS.FLAGS’s must-be-zero bit is not zero.

TCS pointed to by RBX is not valid or available or
locked.

Current 32/64 mode does not match the enclave mode in
SECS.ATTRIBUTES.MODE64.

The SECS is in use. Either of TCS-specified FS and GS segment is not a subsets of the current DS
segment.

Any one of DS, ES, CS, SS is not zero. If XSAVE available, CR4.OSXSAVE = 0, but SECS.ATTRIBUTES.XFRM != 0x3.

CR4.OSFXSR != 1. If CR4.OSXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 418

• All code breakpoints that do not overlap with ELRANGE are also suppressed. If the entry is an opt-out entry,
all code and data breakpoints that overlap with the ELRANGE are suppressed.

• On opt-out entry, a number of performance monitoring counters and behaviors are modified or suppressed
(see Section 43.2.4):

— All performance monitoring activity on the current thread is suppressed except for incrementing and firing
of FIXED_CTR1 and FIXED_CTR2.

— PEBS is suppressed.

— AnyThread counting on other threads is demoted to MyThread mode and
IA32_PERF_GLOBAL_STATUS[60] on that thread is set

— If the opt-out entry on a hardware thread results in suppression of any performance monitoring, then the
processor sets IA32_PERF_GLOBAL_STATUS[60] and IA32_PERF_GLOBAL_STATUS[63].

Concurrency Restrictions

Operation

Temp Variables in EENTER Operational Flow

TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

Table 41-39. Concurrency Restrictions of EENTER with Intel® SGX Instructions - 1of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type Targ VA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EENTE
R

TCS N N N Y N N N

SSA U Y U U

SECS Y N Y Y Y Y N Y N Y

Table 41-40. Concurrency Restrictions of EENTER with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SRC SECI
NFO

EENTE
R

TCS N N N N

SSA U Y U Y U U U

SECS Y Y Y Y Y Y Y Y Y Y Y

Name Type Size (Bits) Description

TMP_FSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_GSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_FSLIMIT Effective Address 32/64 Highest legal address in proposed FS segment.

TMP_GSLIMIT Effective Address 32/64 Highest legal address in proposed GS segment.

TMP_XSIZE integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective Address 32/64 Pointer used to iterate over the SSA pages in the current frame.

TMP_GPR Effective Address 32/64 Address of the GPR area within the current SSA frame.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 419

(* Make sure DS is usable, expand up *)
IF (TMP_MODE64 = 0 and (DS not usable or ((DS[S] = 1) and (DS[bit 11] = 0) and DS[bit 10] = 1))))

Then #GP(0); FI;

(* Check that CS, SS, DS, ES.base is 0 *)
IF (TMP_MODE64 = 0)

Then
IF(CS.base != 0 or DS.base != 0) #GP(0); FI;
IF(ES usable and ES.base != 0) #GP(0); FI;
IF(SS usable and SS.base != 0) #GP(0); FI;
IF(SS usable and SS.B = 0) #GP(0); FI;

FI;

IF (DS:RBX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
Then #PF(DS:RBX); FI;

(* Check AEP is canonical*)
IF (TMP_MODE64 = 1 and (DS:RCX is not canonical))

Then #GP(0); FI;

(* Check concurrency of TCS operation*)
IF (Other Intel SGX instructions is operating on TCS)

Then #GP(0); FI;

(* TCS verification *)
IF (EPCM(DS:RBX).VALID = 0)

Then #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1)
Then #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).ENCLAVEADDRESS != DS:RBX) or (EPCM(DS:RBX).PT != PT_TCS))
Then #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))
Then #PF(DS:RBX); FI;

IF ((DS:RBX).OSSA is not 4KByte Aligned)
Then #GP(0); FI;

(* Check proposed FS and GS *)
IF (((DS:RBX).OFSBASE is not 4KByte Aligned) or ((DS:RBX).OGSBASE is not 4KByte Aligned))

Then #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)
TMP_SECS Address of SECS for TCS;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 420

(* Check proposed FS/GS segments fall within DS *)
IF (TMP_MODE64 = 0)

Then
TMP_FSBASE (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_FSLIMIT (DS:RBX).OFSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;
TMP_GSBASE (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
TMP_GSLIMIT (DS:RBX).OGSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;
(* if FS wrap-around, make sure DS has no holes*)
IF (TMP_FSLIMIT < TMP_FSBASE)

THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_FSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
(* if GS wrap-around, make sure DS has no holes*)
IF (TMP_GSLIMIT < TMP_GSBASE)

THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_GSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
ELSE

TMP_FSBASE (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_GSBASE (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
IF ((TMP_FSBASE is not canonical) or (TMP_GSBASE is not canonical))

THEN #GP(0); FI;
FI;

(* Ensure that the FLAGS field in the TCS does not have any reserved bits set *)
IF (((DS:RBX).FLAGS & & 0xFFFFFFFFFFFFFFFE) != 0)

Then #GP(0); FI;

(* SECS must exist and enclave must have previously been EINITted *)
IF (the enclave is not already initialized)

Then #GP(0); FI;

(* make sure the logical processor’s operating mode matches the enclave *)
IF ((TMP_MODE64 != TMP_SECS.ATTRIBUTES.MODE64BIT))

Then #GP(0); FI;

IF (CR4.OSFXSR = 0)
Then #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)
IF (CR4.OSXSAVE = 0)

Then
IF (TMP_SECS.ATTRIBUES.XFRM != 03H) THEN #GP(0); FI;

ELSE
IF ((TMP_SECS.ATTRIBUES.XFRM & XCR0) != TMP_SECS.ATTRIBUES.XFRM) THEN #GP(0); FI;

FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 421

(* Make sure the SSA contains at least one more frame *)
IF ((DS:RBX).CSSA >= (DS:RBX).NSSA)

Then #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA (DS:RBX).OSSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * (DS:RBX).CSSA;
TMP_XSIZE compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;

IF (DS:TMP_SSA_PAGE does not resolve to EPC page)
Then #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0)
Then #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1)
Then #PF(DS:TMP_SSA_PAGE); FI;

IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE).MODIFIED = 1))
Then #PF(DS:TMP_SSA_PAGE); FI;

IF ((EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS != DS:TMPSSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT != PT_REG) or
(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS != EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_SECS).R = 0) or (EPCM(DS:TMP_SECS).W = 0))
Then #PF(DS:TMP_SSA_PAGE); FI;

CR_XSAVE_PAGE_n Physical_Address(DS:TMP_SSA_PAGE);
ENDFOR

(* Compute address of GPR area*)
TMP_GPR TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE -- sizeof(GPRSGX_AREA);
If a fault occurs; release locks, abort and deliver that fault;

IF (DS:TMP_GPR does not resolve to EPC page)
Then #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).VALID = 0)
Then #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).BLOCKED = 1)
Then #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
Then #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).ENCLAVEADDRESS != DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT != PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS != EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))
Then #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
Then

IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) Then #GP(0); FI;
FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 422

CR_GPR_PA Physical_Address (DS: TMP_GPR);

(* Validate TCS.OENTRY *)
TMP_TARGET (DS:RBX).OENTRY + TMP_SECS.BASEADDR;
IF (TMP_MODE64 = 1)

Then
IF (TMP_TARGET is not canonical) Then #GP(0); FI;

ELSE
IF (TMP_TARGET > CS limit) Then #GP(0); FI;

FI;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)
IF (DS:RBX.STATE = ACTIVE))

Then #GP(0); FI;

CR_ENCALVE_MODE 1;
CR_ACTIVE_SECS TMP_SECS;
CR_ELRANGE (TMPSECS.BASEADDR, TMP_SECS.SIZE);

(* Save state for possible AEXs *)
CR_TCS_PA Physical_Address (DS:RBX);
CR_TCS_LA RBX;
CR_TCS_LA.AEP RCX;

(* Save the hidden portions of FS and GS *)
CR_SAVE_FS_selector FS.selector;
CR_SAVE_FS_base FS.base;
CR_SAVE_FS_limit FS.limit;
CR_SAVE_FS_access_rights FS.access_rights;
CR_SAVE_GS_selector GS.selector;
CR_SAVE_GS_base GS.base;
CR_SAVE_GS_limit GS.limit;
CR_SAVE_GS_access_rights GS.access_rights;

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.OSXSAVE = 1)

CR_SAVE_XCR0 XCR0;
XCR0 TMP_SECS.ATTRIBUTES.XFRM;

FI;

(* Set CR_ENCLAVE_ENTRY_IP *)
CR_ENCLAVE_ENTRY_IP CRIP”
RIP NRIP;
RAX (DS:RBX).CSSA;
(* Save the outside RSP and RBP so they can be restored on interrupt or EEXIT *)
DS:TMP_SSA.U_RSP RSP;
DS:TMP_SSA.U_RBP RBP;

(* Do the FS/GS swap *)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 423

FS.base TMP_FSBASE;
FS.limit DS:RBX.FSLIMIT;
FS.type 0001b;
FS.W DS.W;
FS.S 1;
FS.DPL DS.DPL;
FS.G 1;
FS.B 1;
FS.P 1;
FS.AVL DS.AVL;
FS.L DS.L;
FS.unusable 0;
FS.selector 0BH;

GS.base TMP_GSBASE;
GS.limit DS:RBX.GSLIMIT;
GS.type 0001b;
GS.W DS.W;
GS.S 1;
GS.DPL DS.DPL;
GS.G 1;
GS.B 1;
GS.P 1;
GS.AVL DS.AVL;
GS.L DS.L;
GS.unusable 0;
GS.selector 0BH;

CR_DBGOPTIN TSC.FLAGS.DBGOPTIN;
Suppress_all_code_breakpoints_that_are_outside_ELRANGE;

IF (CR_DBGOPTIN = 0)
THEN

Suppress_all_code_breakpoints_that_overlap_with_ELRANGE;
CR_SAVE_TF RFLAGS.TF;
RFLAGS.TF 0;
Suppress_monitor_trap_flag for the source of the execution of the enclave;
Clear_all_pending_debug_exceptions;
Clear_pending_MTF_VM_exit;

ELSE
IF (RFLAGS.TF = 1)

Then Pend_Single-Step_#DB_at_the_end_of_ENTER; FI;
IF (VMCS.MTF = 1)

Then Pend_MTF_VM_exit_at_the_end_of_ENTER; FI;
FI;

Flush_linear_context;
Allow_front_end_to_begin_fetch_at_new_RIP;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 424

Flags Affected

RFLAGS.TF is cleared on opt-out entry.

Protected Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If part or all of the FS or GS segment specified by TCS is outside the DS segment or not prop-
erly aligned.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If any reserved field in the TCS FLAG is set.
If the target address is not within the CS segment.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM != 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(fault code) If a page fault occurs in accessing memory.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

#NM If CR0.TS is set.

64-Bit Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment or not prop-
erly aligned.
If the target address is not canonical.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM != 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(fault code) If a page fault occurs in accessing memory operands.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

#NM If CR0.TS is set.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 425

EEXIT—Exits an Enclave

Instruction Operand Encoding

Description

The ENCLU[EEXIT] instruction exits the currently executing enclave and branches to the location specified in RBX.
RCX receives the current AEP. If RBX is not within the CS (32-bit mode) or is not canonical (64-bit mode) a #GP(0)
results.

EEXIT Memory Parameter Semantics

If RBX specifies an address that is inside the enclave, the instruction will complete normally. The fetch of the next
instruction will occur in non-enclave mode, but will attempt to fetch from inside the enclave. This has the effect of
abort page semantics on the next destination.
If secrets are contained in any registers, it is responsibility of enclave software to clear those registers.
If XCR0 was modified on enclave entry, it is restored to the value it had at the time of the most recent EENTER or
ERESUME.
If the enclave is opt-out, RFLAGS.TF is loaded from the value previously saved on EENTER.
Code and data breakpoints are unsuppressed.
Performance monitoring counters are unsuppressed.

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 04H IR V/V SGX1 This leaf function is used to exit an enclave.
ENCLU[EEXIT]

Op/En EAX RBX RCX

IR EEXIT (In) Target address outside the enclave (In) Address of the current AEP (In)

Target Address

 non-Enclave read and execute access

Table 41-41. Concurrency Restrictions of EEXIT with Intel® SGX Instructions - 1of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type Targ VA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EEXIT TCS N N N Y N Y N N N N N N

SSA U N Y N Y N U N N N U N

SECS Y N Y Y Y Y N Y N N Y

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 426

Operation

Temp Variables in EEXIT Operational Flow

TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF (TMP_MODE64 = 1)
Then

IF (RBX is not canonical) Then #GP(0); FI;
ELSE

IF (RBX > CS limit) Then #GP(0); FI;
FI;

TMP_RIP CRIP;
RIP RBX;

(* Return current AEP in RCX *)
RCX CR_TCS_PA.AEP;

(* Do the FS/GS swap *)
FS.selector CR_SAVE_FS.selector;
FS.base CR_SAVE_FS.base;
FS.limit CR_SAVE_FS.limit;
FS.access_rights CR_SAVE_FS.access_rights;
GS.selector CR_SAVE_GS.selector;
GS.base CR_SAVE_GS.base;
GS.limit CR_SAVE_GS.limit;
GS.access_rights CR_SAVE_GS.access_rights;

(* Restore XCR0 if needed *)
IF (CR4.OSXSAVE = 1)

XCR0 CR_SAVE__XCR0;
FI;

Unsuppress_all_code_breakpoints_that_are_outside_ELRANGE;

IF (CR_DBGOPTIN = 0)

Table 41-42. Concurrency Restrictions of EEXIT with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SRC SECI
NFO

EEXIT TCS Y N N Y N N Y N Y N

SSA Y N U N Y N Y U Y N Y N Y U N U U

SECS Y Y Y Y Y Y Y Y Y N Y

Name Type Size (Bits) Description

TMP_RIP Effective Address 32/64 Saved copy of CRIP for use when creating LBR.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 427

THEN
UnSuppress_all_code_breakpoints_that_overlap_with_ELRANGE;
Restore suppressed breakpoint matches;
RFLAGS.TF CR_SAVE_TF;
UnSuppress_montior_trap_flag;
UnSuppress_LBR_Generation;
UnSuppress_performance monitoring_activity;
Restore performance monitoring counter AnyThread demotion to MyThread in enclave back to AnyThread

FI;

IF (RFLAGS.TF = 1)
Pend Single-Step #DB at the end of EEXIT;

FI;

IF (VMCS.MTF = 1)
Pend MTF VM exit at the end of EEXIT;

FI;

CR_ENCLAVE_MODE 0;
CR_TCS_PA.STATE INACTIVE;

(* Assure consistent translations *)
Flush_linear_context;

Flags Affected

RFLAGS.TF is restored from the value previously saved in EENTER or ERESUME.

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If RBX is outside the CS segment.

#PF(fault code) If a page fault occurs in accessing memory.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If RBX is not canonical.

#PF(fault code) If a page fault occurs in accessing memory operands.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 428

EGETKEY—Retrieves a Cryptographic Key

Instruction Operand Encoding

Description

The ENCLU[EGETKEY] instruction returns a 128-bit secret key from the processor specific key hierarchy. The
register RBX contains the effective address of a KEYREQUEST structure, which the instruction interprets to deter-
mine the key being requested. The Requesting Keys section below provides a description of the keys that can be
requested. The RCX register contains the effective address where the key will be returned. Both the addresses in
RBX & RCX should be locations inside the enclave.
EGETKEY derives keys using a processor unique value to create a specific key based on a number of possible
inputs. This instruction leaf can only be executed inside an enclave.

EEGETKEY Memory Parameter Semantics

After validating the operands, the instruction determines which key is to be produced and performs the following
actions:
• The instruction assembles the derivation data for the key based on the Table 41-43
• Computes derived key using the derivation data and package specific value
• Outputs the calculated key to the address in RCX
The instruction fails with #GP(0) if the operands are not properly aligned. Successful completion of the instruction
will clear RFLAGS.{ZF, CF, AF, OF, SF, PF}. The instruction returns an error code if the user tries to request a key
based on an invalid CPUSVN or ISVSVN (when the user request is accepted, see the table below), requests a key
for which it has not been granted the attribute to request, or requests a key that is not supported by the hard-
ware. These checks may be performed in any order. Thus, an indication by error number of one cause (for
example, invalid attribute) does not imply that there are not also other errors. Different processors may thus give
different error numbers for the same Enclave. The correctness of software should not rely on the order resulting
from the checks documented in this section. In such cases the ZF flag is set and the corresponding error bit
(SGX_INVALID_SVN, SGX_INVALID_ATTRIBUTE, SGX_INVALID_KEYNAME) is set in RAX and the data at the
address specified by RCX is unmodified.
Requesting Keys
The KEYREQUEST structure (see Section 38.17.1) identifies the key to be provided. The Keyrequest.KeyName
field identifies which type of key is requested.
Deriving Keys
Key derivation is based on a combination of the enclave specific values (see Table 41-43) and a processor key.
Depending on the key being requested a field may either be included by definition or the value may be included
from the KeyRequest. A “yes” in Table 41-43 indicates the value for the field is included from its default location,

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 04H IR V/V SGX1 This leaf function retrieves a cryptographic key.
ENCLU[EGETKEY]

Op/En EAX RBX RCX

IR EGETKEY (In) Address to a KEYREQUEST (In) Address of the OUTPUTDATA (In)

KEYREQUEST OUTPUTDATA

 Enclave read access Enclave write access

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 429

identified in the source row, and a “request” indicates the values for the field is included from its corresponding
KeyRequest field.

Keys that permit the specification of a CPU or ISV's code's SVNs have additional requirements. The caller may not
request a key for an SVN beyond the current CPU or ISV SVN, respectively.
Some keys are derived based on a hardcode PKCS padding constant (352 byte string):
HARDCODED_PKCS1_5_PADDING[15:0] ß 0100H;
HARDCODED_PKCS1_5_PADDING[2655:16] ß SignExtend330Byte(-1); // 330 bytes of 0FFH
HARDCODED_PKCS1_5_PADDING[2815:2656] ß 2004000501020403650148866009060D30313000H;

The error codes are:

EGETKEY Error Codes

Table 41-43. Key Derivation

Key Name Attributes
Owner
Epoch CPU SVN ISV SVN

ISV
PRODID

MRENCLA
VE MRSIGNER RAND

Source

Key
Dependent
Constant

Y
SECS.ATTRIBUTE
S and
SECS.MISCSELECT;

CSR_SEO
WNEREP
OCH

Y CPUSVN
Register;

R
Req.ISVSVN;

SECS.
ISVID

SECS.
MRENCLAV
E

SECS.
MRSIGNER

Req
.KEYID

RAttribMask &
SECS..ATTRIBUTE
S and
SECS.MISCSELECT;

R
Req.CPUSVN;

Launch Yes Request Yes Request Request Yes No No Request

Report Yes Yes Yes Yes No No Yes No Request

Seal Yes Request Yes Request Request Yes Request Request Request

Provisioni
ng

Yes Request Yes Request Request Yes No Yes Yes

Provisioni
ng Seal

Yes Request Yes Request Request Yes No Yes Yes

0 (No Error) EGETKEY successful.

SGX_INVALID_ATTRIBUTE The KEYREQUEST contains a KEYNAME for which the enclave is not authorized.

SGX_INVALID_CPUSVN If KEYREQUEST.CPUSVN is beyond platforms CPUSVN value.

SGX_INVALID_ISVSVN If KEYREQUEST.ISVSVN is greater than the enclave's ISV_SVN.

SGX_INVALID_KEYNAME If KEYREQUEST.KEYNAME is an unsupported value.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 430

Concurrency Restrictions

Operation

Temp Variables in EGETKEY Operational Flow

(* Make sure KEYREQUEST is properly aligned and inside the current enclave *)
IF ((DS:RBX is not 128Byte aligned) or (DS:RBX is within CR_ELRANGE))

THEN #GP(0); FI;

(* Make sure DS:RBX is an EPC address and the EPC page is valid *)
IF ((DS:RBX does not resolve to an EPC address) or (EPCM(DS:RBX).VALID = 0))

THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1))
THEN #PF(DS:RBX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RBX).PT != PT_REG) or (EPCM(DS:RBX).ENCLAVESECS != CR_ACTIVE_SECS) or (EPCM(DS:RBX).PENDING = 1) or

(EPCM(DS:RBX).MODIFIED = 1) or (EPCM(DS:RBX).ENCLAVEADDRESS != (DS:RBX & ~0FFFH)) or (EPCM(DS:RBX).R = 0))
THEN #PF(DS:RBX);

FI;

(* Make sure OUTPUTDATA is properly aligned and inside the current enclave *)
IF ((DS:RCX is not 16Byte aligned) or (DS:RCX is within CR_ELRANGE))

THEN #GP(0); FI;

Table 41-44. Concurrency Restrictions of EGETKEY with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EGETKEY Param U Y U U

SECS Y Y Y Y Y Y Y

Table 41-45. Concurrency Restrictions of EGETKEY with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EGETKEY Param U Y U Y U Y U

SECS Y Y Y Y Y Y Y Y Y Y

Name Type Size (Bits) Description

TMP_CURRENTSECS Address of the SECS for the currently executing enclave.

TMP_KEYDEPENDENCIES Temp space for key derivation.

TMP_ATTRIBUTES 128 Temp Space for the calculation of the sealable Attributes.

TMP_OUTPUTKEY 128 Temp Space for the calculation of the key.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 431

(* Make sure DS:RCX is an EPC address and the EPC page is valid *)
IF ((DS:RCX does not resolve to an EPC address) or (EPCM(DS:RCX).VALID = 0))

THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).BLOCKED = 1))
THEN #PF(DS:RCX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RCX).PT != PT_REG) or (EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RCX).ENCLAVEADDRESS != (DS:RCX & ~0FFFH)) or (EPCM(DS:RCX).W = 0))
THEN #PF(DS:RCX);

FI;

(* Verify RESERVED spaces in KEYREQUEST are valid *)
IF ((DS:RBX).RESERVED != 0) or (DS:RBX.KEYPOLICY.RESERVED != 0))

THEN #GP(0); FI;

TMP_CURRENTSECS CR_ACTIVE_SECS;

(* Determine which enclave attributes that must be included in the key. Attributes that must always be include INIT & DEBUG *)
REQUIRED_SEALING_MASK[127:0] 00000000 00000000 00000000 00000003H;
TMP_ATTRIBUTES (DS:RBX.ATTRIBUTEMASK | REQUIRED_SEALING_MASK) & TMP_CURRENTSECS.ATTRIBUTES;

(* Compute MISCSELECT fields to be included *)
TMP_MISCSELECT DS:RBX.MISCMASK & TMP_CURRENTSECS.MISCSELECT

CASE (DS:RBX.KEYNAME)
SEAL_KEY:

IF (DS:RBX.CPUSVN is beyond current CPU configuration)
THEN

RFLAGS.ZF 1;
RAX SGX_INVALID_CPUSVN;
goto EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ISVSVN;
goto EXIT;

FI;
// Include enclave identity?
TMP_MRENCLAVE 0;
IF (DS:RBX.KEYPOLICY.MRENCLAVE = 1)

THEN TMP_MRENCLAVE TMP_CURRENTSECS.MRENCLAVE;
FI;
// Include enclave author?
TMP_MRSIGNER 0;
IF (DS:RBX.KEYPOLICY.MRSIGNER = 1)

THEN TMP_MRSIGNER TMP_CURRENTSECS.MRSIGNER;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 432

FI;
//Determine values key is based on
TMP_KEYDEPENDENCIES.KEYNAME SEAL_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID TMP_CURRENTSECS.ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.OWNEREPOCH CSR_SEOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE TMP_MRENCLAVE;
TMP_KEYDEPENDENCIES.MRSIGNER TMP_MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK ~DS:RBX.MISCMASK;
BREAK;

REPORT_KEY:
//Determine values key is based on
TMP_KEYDEPENDENCIES.KEYNAME REPORT_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID 0;
TMP_KEYDEPENDENCIES.ISVSVN 0;
TMP_KEYDEPENDENCIES.OWNEREPOCH CSR_SEOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES TMP_CURRENTSECS.ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK 0;
TMP_KEYDEPENDENCIES.MRENCLAVE TMP_CURRENTSECS.MRENCLAVE;
TMP_KEYDEPENDENCIES.MRSIGNER 0;
TMP_KEYDEPENDENCIES.KEYID DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN CR_CPUSVN;
TMP_KEYDEPENDENCIES.PADDING HARDCODED_PKCS1_5_PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT TMP_CURRENTSECS.MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK 0;
BREAK;

EINITTOKEN_KEY:
(* Check ENCLAVE has LAUNCH capability *)
IF (TMP_CURRENTSECS.ATTRIBUTES.LAUNCHKEY = 0)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ATTRIBUTE;
goto EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_CPUSVN;
goto EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 433

RFLAGS.ZF 1;
RAX SGX_INVALID_ISVSVN;
goto EXIT;

FI;
(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME EINITTOKEN_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID TMP_CURRENTSECS.ISVPRODID
TMP_KEYDEPENDENCIES.ISVSVN DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.OWNEREPOCH CSR_SEOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK 0;
TMP_KEYDEPENDENCIES.MRENCLAVE 0;
TMP_KEYDEPENDENCIES.MRSIGNER 0;
TMP_KEYDEPENDENCIES.KEYID DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK 0;
BREAK;

PROVISION_KEY: // Check ENCLAVE has PROVISIONING capability
IF (TMP_CURRENTSECS.ATTRIBUTES.PROVISIONKEY = 0)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ATTRIBUTE;
goto EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_CPUSVN;
goto EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ISVSVN;
goto EXIT;

FI;
(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME PROVISION_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID TMP_CURRENTSECS.ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.OWNEREPOCH 0;
TMP_KEYDEPENDENCIES.ATTRIBUTES TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE 0;
TMP_KEYDEPENDENCIES.MRSIGNER TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID 0;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES 0;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 434

TMP_KEYDEPENDENCIES.CPUSVN DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK ~DS:RBX.MISCMASK;
BREAK;

PROVISION_SEAL_KEY:
(* Check ENCLAVE has PROVISIONING capability *)
IF (TMP_CURRENTSECS.ATTRIBUTES.PROVISIONKEY = 0)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ATTRIBUTE;
goto EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_CPUSVN;
goto EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF 1;
RAX SGX_INVALID_ISVSVN;
goto EXIT;

FI;
(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME PROVISION_SEAL_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID TMP_CURRENTSECS.ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.OWNEREPOCH 0;
TMP_KEYDEPENDENCIES.ATTRIBUTES TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE 0;
TMP_KEYDEPENDENCIES.MRSIGNER TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID 0;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK ~DS:RBX.MISCMASK;
BREAK;

DEFAULT:
(* The value of KEYNAME is invalid *)
RFLAGS.ZF 1;
RAX SGX_INVALID_KEYNAME;
goto EXIT:

ESAC;

(* Calculate the final derived key and output to the address in RCX *)
TMP_OUTPUTKEY derivekey(TMP_KEYDEPENDENCIES);

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 435

DS:RCX[15:0] TMP_OUTPUTKEY;
RAX 0;
RFLAGS.ZF 0;

EXIT:
RFLAGS.CF 0;
RFLAGS.PF 0;
RFLAGS.AF 0;
RFLAGS.OF 0;
RFLAGS.SF 0;

Flags Affected

ZF is cleared if successful, otherwise ZF is set. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the current enclave.
If an effective address is not properly aligned.
If an effective address is outside the DS segment limit.
If KEYREQUEST format is invalid.

#PF(fault code) If a page fault occurs in accessing memory.

64-Bit Mode Exceptions

#GP(0) If a memory operand effective address is outside the current enclave.
If an effective address is not properly aligned.
If an effective address is not canonical.
If KEYREQUEST format is invalid.

#PF(fault code) If a page fault occurs in accessing memory operands.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 436

EMODPE—Extend an EPC Page Permissions

Instruction Operand Encoding

Description

This leaf function extends the access rights associated with an existing EPC page in the running enclave. THE RWX
bits of the SECINFO parameter are treated as a permissions mask; supplying a value that does not extend the
page permissions will have no effect. This instruction leaf can only be executed when inside the enclave.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC
page. The table below provides additional information on the memory parameter of the EMODPE leaf function.

EMODPE Memory Parameter Semantics

The instruction faults if any of the following:

EMODPE Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 06H IR V/V SGX2 This leaf function extends the access rights of an existing EPC
page.ENCLU[EMODPE]

Op/En EAX RBX RCX

IR EMODPE (In) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read access permitted by Enclave

The operands are not properly aligned. If security attributes of the SECINFO page make the page inaccessible.

The EPC page is locked by another thread. RBX does not contain an effective address in an EPC page in the running enclave.

The EPC page is not valid. RCX does not contain an effective address of an EPC page in the running enclave.

SECINFO contains an invalid request.

Table 41-46. Concurrency Restrictions of EMODPE with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EP

A

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EMODPE Targ Y Y Y Y

SECIN
FO

U Y U U

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 437

Operation

Temp Variables in EMODPE Operational Flow

IF (DS:RBX is not 64Byte Aligned)
Then #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
Then #GP(0); FI;

IF ((DS:RBX is not within CR_ELRANGE) or (DS:RCX is not within CR_ELRANGE))
Then #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
Then #PF(DS:RBX); FI;

IF (DS:RCX does not resolve within an EPC)
Then #PF(DS:RCX); FI;

IF ((EPCM(DS:RBX).VALID = 0) or (EPCM(DS:RBX).R = 0) or (EPCM(DS:RBX).PENDING != 0) or (EPCM(DS:RBX).MODIFIED != 0) or
(EPCM(DS:RBX).BLOCKED != 0) or (EPCM(DS:RBX).PT != PT_REG) or (EPCM(DS:RBX).ENCLAVESECS != CR_ACTIVE_SECS) or
(EPCM(DS:RBX).ENCLAVEADDRESS != DS:RBX))
Then #PF(DS:RBX); FI;

SCRATCH_SECINFO DS:RBX;

(* Check for mis-configured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero)

Then #GP(0); FI;

(* Check security attributes of the EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING != 0) or (EPCM(DS:RCX).MODIFIED != 0) or

(EPCM(DS:RCX).BLOCKED != 0) or (EPCM(DS:RCX).PT != PT_REG) or (EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS))
Then #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction)

Table 41-47. Concurrency Restrictions of EMODPE with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EMODP
E

Targ Y N Y N N N Y Y Y

SECIN
FO

U Y Y Y Y Y Y

Name Type Size (bits) Description

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 438

Then #GP(0); FI;

(* Re-Check security attributes of the EPC page *)
IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING != 0) or (EPCM(DS:RCX).MODIFIED != 0) or

(EPCM(DS:RCX).BLOCKED != 0) or (EPCM(DS:RCX).PT != PT_REG) or (EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS) or
(EPCM(DS:RCX).ENCLAVEADDRESS != DS:RCX))
Then #PF(DS:RCX); FI;

(* Check for mis-configured SECINFO flags*)
IF ((EPCM(DS:RCX).R = 0) and (SCRATCH_SECINFO.FLAGS.R = 0) and (SCRATCH_SECINFO.FLAGS.W != 0)))

Then #GP(0); FI;

(* Update EPCM permissions *)
EPCM(DS:RCX).R EPCM(DS:RCX).R | SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W EPCM(DS:RCX).W | SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X EPCM(DS:RCX).X | SCRATCH_SECINFO.FLAGS.X;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(fault code) If a page fault occurs in accessing memory operands.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 439

EREPORT—Create a Cryptographic Report of the Enclave

Instruction Operand Encoding

Description

This leaf function creates a cryptographic REPORT that describes the contents of the enclave. This instruction leaf
can only be executed when inside the enclave. The cryptographic report can be used by other enclaves to deter-
mine that the enclave is running on the same platform.
RBX contains the effective address of the MRENCLAVE value of the enclave that will authenticate the REPORT
output, using the REPORT key delivered by EGETKEY command for that enclave. RCX contains the effective
address of a 64-byte REPORTDATA structure, which allows the caller of the instruction to associate data with the
enclave from which the instruction is called. RDX contains the address where the REPORT will be output by the
instruction.

EREPORT Memory Parameter Semantics

This instruction leaf perform the following:

1. Validate the 3 operands (RBX, RCX, RDX) are inside the enclave.

2. Compute a report key for the target enclave, as indicated by the value located in RBX(TARGETINFO).

3. Assemble the enclave SECS data to complete the REPORT structure (including the data provided using the
RCX (REPORTDATA) operand).

4. Computes a crytpographic hash over REPORT structure.

5. Add the computed hash to the REPORT structure.

6. Output the completed REPORT structure to the address in RDX (OUTPUTDATA).
The instruction fails if the operands are not properly aligned.
CR_REPORT_KEYID, used to provide key wearout protection, is populated with a statistically unique value on boot
of the platform by a trusted entity within the SGX TCB.

The instruction faults if any of the following:

EREPORT Faulting Conditions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 00H IR V/V SGX1 This leaf function creates a cryptographic report of the enclave.
ENCLU[EREPORT]

Op/En EAX RBX RCX RDX

IR EREPORT (In)
Address of TARGETINFO

(In)
Address of REPORTDATA

(In)
Address where the REPORT is

written to in an OUTPUTDATA (In)

TARGETINFO REPORTDATA OUTPUTDATA

Read access by Enclave Read access by Enclave Write access by Enclave

An effective address not properly aligned. An memory address does not resolve in an EPC page.

If accessing an invalid EPC page. If the EPC page is blocked.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 440

Concurrency Restrictions

Operation

Temp Variables in EREPORT Operational Flow

TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Address verification for TARGETINFO (RBX) *)
IF ((DS:RBX is not 128Byte Aligned) or (DS:RBX is not within CR_ELRANGE))

Then #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
Then #PF(DS:RBX); FI;

IF (EPCM(DS:RBX). VALID = 0)
Then #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1))
THEN #PF(DS:RBX); FI;

(* Check page parameters for correctness *)

May page fault.

An effective address not properly aligned. An memory address does not resolve in an EPC page.

Table 41-48. Concurrency Restrictions of EREPORT with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EREPORT Param U Y U U

SECS Y Y Y Y Y Y Y

Table 41-49. Concurrency Restrictions of EREPORT with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EREPORT Param U Y U Y U Y U

SECS Y Y Y Y Y Y Y Y Y Y

Name Type Size (bits) Description

TMP_ATTRIBUTES 32 Physical address of SECS of the enclave to which source operand belongs.

TMP_CURRENTSECS Address of the SECS for the currently executing enclave.

TMP_KEYDEPENDENCIES Temp space for key derivation.

TMP_REPORTKEY 128 REPORTKEY generated by the instruction.

TMP_REPORT 3712

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 441

IF ((EPCM(DS:RBX).PT != PT_REG) or (EPCM(DS:RBX).ENCLAVESECS != CR_ACTIVE_SECS) or (EPCM(DS:RBX).PENDING = 1) or
(EPCM(DS:RBX).MODIFIED = 1) or (EPCM(DS:RBX).ENCLAVEADDRESS != (DS:RBX & ~0FFFH)) or (EPCM(DS:RBX).R = 0))
THEN #PF(DS:RBX);

FI;

(* Address verification for REPORTDATA (RCX) *)
IF ((DS:RCX is not 128Byte Aligned) or (DS:RCX is not within CR_ELRANGE))

Then #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
Then #P(DS:RCX); FI;

IF (EPCM(DS:RCX). VALID = 0)
Then #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).BLOCKED = 1))
THEN #PF(DS:RCX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RCX).PT != PT_REG) or (EPCM(DS:RCX).ENCLAVESECS != CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RCX).ENCLAVEADDRESS != (DS:RCX & ~0FFFH)) or (EPCM(DS:RCX).R = 0))
THEN #PF(DS:RCX);

FI;

(* Address verification for OUTPUTDATA (RDX) *)
IF ((DS:RDX is not 512Byte Aligned) or (DS:RDX is not within CR_ELRANGE))

Then #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
Then #PF(DS:RDX); FI;

IF (EPCM(DS:RDX). VALID = 0)
Then #PF(DS:RDX); FI;

IF (EPCM(DS:RDX).BLOCKED = 1))
THEN #PF(DS:RDX); FI;

(* Check page parameters for correctness *)
IF ((EPCM(DS:RDX).PT != PT_REG) or (EPCM(DS:RDX).ENCLAVESECS != CR_ACTIVE_SECS) or

(EPCM(DS:RDX).ENCLAVEADDRESS != (DS:RDX & ~0FFFH)) or (EPCM(DS:RDX).W = 0))
THEN #PF(DS:RDX);

FI;

(* REPORT MAC needs to be computed over data which cannot be modified *)
TMP_REPORT.CPUSVN CR_CPUSVN;
TMP_REPORT.ISVPRODID TMP_CURRENTSECS.ISVPRODID;
TMP_REPORT.ISVSVN TMP_CURRENTSECS..ISVSVN;
TMP_REPORT.ATTRIBUTES TMP_CURRENTSECS.ATTRIBUTES;
TMP_REPORT.REPORTDATA DS:RCX[511:0];
TMP_REPORT.MRENCLAVE TMP_CURRENTSECS.MRENCLAVE;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 442

TMP_REPORT.MRSIGNER TMP_CURRENTSECS.MRSIGNER;
TMP_REPORT.MRRESERVED 0;
TMP_REPORT.KEYID[255:0] CR_REPORT_KEYID;
TMP_REPORT.MISCSELECT TMP_CURRENTSECS.MISCSELECT;

(* Derive the report key *)
TMP_KEYDEPENDENCIES.KEYNAME REPORT_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID 0;
TMP_KEYDEPENDENCIES.ISVSVN 0;
TMP_KEYDEPENDENCIES.OWNEREPOCH CSR_SGX_OWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES DS:RBX.ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK 0;
TMP_KEYDEPENDENCIES.MRENCLAVE DS:RBX.MEASUREMENT;
TMP_KEYDEPENDENCIES.MRSIGNER 0;
TMP_KEYDEPENDENCIES.KEYID TMP_REPORT.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN CR_CPUSVN;
TMP_KEYDEPENDENCIES.PADDING TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT DS:RBX.MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK 0;

(* Calculate the derived key*)
TMP_REPORTKEY derive_key(TMP_KEYDEPENDENCIES);

(* call cryptographic CMAC function, CMAC data are not including MAC&KEYID *)
TMP_REPORT.MAC cmac(TMP_REPORTKEY, TMP_REPORTKEY[3071:0]);
DS:RDX[3455: 0] TMP_REPORT;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If the address in RCS is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is not in the current enclave.

#PF(fault code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is not in the current enclave.

#PF(fault code) If a page fault occurs in accessing memory operands.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 443

ERESUME—Re-Enters an Enclave

Instruction Operand Encoding

Description

The ENCLU[ERESUME] instruction resumes execution of an enclave that was interrupted due to an exception or
interrupt, using the machine state previously stored in the SSA.

ERESUME Memory Parameter Semantics

The instruction faults if any of the following:

If CR0.TS is set, ERESUME generates a #NM exception.
The following operations are performed by EENTER:
• RSP and RBP are saved in the current SSA frame on EENTER and are automatically restored on EEXIT or an

asynchronous exit due to any Interrupt event.
• The AEP contained in RCX is stored into the TCS for use by AEXs.FS and GS (including hidden portions) are

saved and new values are constructed using TCS.OFSBASE/GSBASE (32 and 64-bit mode) and
TCS.OFSLIMIT/GSLIMIT (32-bit mode only). The resulting segments must be a subset of the DS segment.

• If CR4.OSXSAVE == 1, XCR0 is saved and replaced by SECS.ATTRIBUTES.XFRM.The effect of RFLAGS.TF
depends on whether the enclave entry is opt-in or opt-out (see Section 43.1.2):

— On opt-out entry, TF is saved and cleared (it is restored on EEXIT or AEX). Any attempt to set TF via a
POPF instruction while inside the enclave clears TF (see Section 43.2.6).

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

 EAX = 03H IR V/V SGX1 This leaf function is used to re-enter an enclave after an inter-
rupt.ENCLU[ERESUME]

Op/En RAX RBX RCX

IR ERESUME (In) Address of a TCS (In) Address of AEP (In)

TCS

 Enclave read/write access

Address in RBX is not properly aligned Any TCS.FLAGS’s must-be-zero bit is not zero.

TCS pointed to by RBX is not valid or available or
locked

Current 32/64 mode does not match the enclave mode in
SECS.ATTRIBUTES.MODE64.

The SECS is in use by another enclave Either of TCS-specified FS and GS segment is not a subset of the current DS
segment.

Any one of DS, ES, CS, SS is not zero If XSAVE available, CR4.OSXSAVE = 0, but SECS.ATTRIBUTES.XFRM != 0x3.

CR4.OSFXSR != 1 If CR4.OSXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

Offsets 520-535 of the XSAVE area not 0 The bit vector stored at offset 512 of the XSAVE area must be a subset of
SECS.ATTRIBUTES.XFRM.

The SSA frame is not valid or in use

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 444

— On opt-in entry, a single-step debug exception is pended on the instruction boundary immediately after
EENTER (see Section 43.2.4).

• All code breakpoints that do not overlap with ELRANGE are also suppressed. If the entry is an opt-out entry,
all code and data breakpoints that overlap with the ELRANGE are suppressed.

• On opt-out entry, a number of performance monitoring counters and behaviors are modified or suppressed
(see Section 43.2.4):

— All performance monitoring activity on the current thread is suppressed except for incrementing and firing
of FIXED_CTR1 and FIXED_CTR2.

— PEBS is suppressed.

— AnyThread counting on other threads is demoted to MyThread mode and
IA32_PERF_GLOBAL_STATUS[60] on that thread is set.

— If the opt-out entry on a hardware thread results in suppression of any performance monitoring, then the
processor sets IA32_PERF_GLOBAL_STATUS[60] and IA32_PERF_GLOBAL_STATUS[63].

Concurrency Restrictions

Operation

Temp Variables in ERESUME Operational Flow

Table 41-50. Concurrency Restrictions of ERESUME with Intel® SGX Instructions - 1of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Type Targ VA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

ERESU
ME

TCS N N N Y N N N

SSA U Y U U

SECS Y N Y Y Y Y N Y N Y

Table 41-51. Concurrency Restrictions of ERESUME with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Type Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SRC SECI
NFO

ERESU
ME

TCS N N N N

SSA U Y U Y U U U

SECS Y Y Y Y Y Y Y Y Y Y Y

Name Type Size Description

TMP_FSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_GSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_FSLIMIT Effective Address 32/64 Highest legal address in proposed FS segment.

TMP_GSLIMIT Effective Address 32/64 Highest legal address in proposed GS segment.

TMP_TARGET Effective Address 32/64 Address of first instruction inside enclave at which execution is to resume.

TMP_SECS Effective Address 32/64 Physical address of SECS for this enclave.

TMP_SSA Effective Address 32/64 Address of current SSA frame.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 445

TMP_MODE64 ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Make sure DS is usable, expand up *)
IF (TMP_MODE64 = 0 and (DS not usable or ((DS[S] = 1) and (DS[bit 11] = 0) and DS[bit 10] = 1))))

Then #GP(0); FI;

(* Check that CS, SS, DS, ES.base is 0 *)
IF (TMP_MODE64 = 0)

Then
IF(CS.base != 0 or DS.base != 0) GP(0); FI;
IF(ES usable and ES.base != 0) GP(0); FI;
IF(SS usable and SS.base != 0) GP(0); FI;
IF(SS usable and SS.B = 0) GP(0); FI;

FI;

IF (DS:RBX is not 4KByte Aligned)
Then #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
Then #PF(DS:RBX); FI;

(* Check AEP is canonical*)
IF (TMP_MODE64 = 1 and (DS:RCX is not canonical))

Then #GP(0); FI;

(* Check concurrency of TCS operation*)
IF (Other Intel SGX instructions is operating on TCS)

Then #GP(0); FI;

(* TCS verification *)
IF (EPCM(DS:RBX).VALID = 0)

Then #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1)
Then #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))
Then #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).ENCLAVEADDRESS != DS:RBX) or (EPCM(DS:RBX).PT != PT_TCS))
Then #PF(DS:RBX); FI;

TMP_XSIZE integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective Address 32/64 Pointer used to iterate over the SSA pages in the current frame.

TMP_GPR Effective Address 32/64 Address of the GPR area within the current SSA frame.

TMP_BRANCH_REC
ORD

LBR Record From/to addresses to be pushed onto the LBR stack.

Name Type Size Description

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 446

IF ((DS:RBX).OSSA is not 4KByte Aligned)
Then #GP(0); FI;

(* Check proposed FS and GS *)
IF (((DS:RBX).OFSBASE is not 4KByte Aligned) or ((DS:RBX).OGSBASE is not 4KByte Aligned))

Then #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)
TMP_SECS Address of SECS for TCS;

(* Make sure that the FLAGS field in the TCS does not have any reserved bits set *)
IF (((DS:RBX).FLAGS & & 0xFFFFFFFFFFFFFFFE) != 0)

Then #GP(0); FI;

(* SECS must exist and enclave must have previously been EINITted *)
IF (the enclave is not already initialized)

Then #GP(0); FI;

(* make sure the logical processor’s operating mode matches the enclave *)
IF ((TMP_MODE64 != TMP_SECS.ATTRIBUTES.MODE64BIT))

Then #GP(0); FI;

IF (CR4.OSFXSR = 0)
Then #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)
IF (CR4.OSXSAVE = 0)

Then
IF (TMP_SECS.ATTRIBUES.XFRM != 03H) THEN #GP(0); FI;

ELSE
IF ((TMP_SECS.ATTRIBUES.XFRM & XCR0) != TMP_SECS.ATTRIBUES.XFRM) THEN #GP(0); FI;

FI;

(* Make sure the SSA contains at least one active frame *)
IF ((DS:RBX).CSSA = 0)

Then #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA (DS:RBX).OSSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * ((DS:RBX).CSSA - 1);
TMP_XSIZE compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_SSA_PAGE does not resolve to EPC page)

Then #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0)

Then #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 447

Then #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE_.MODIFIED = 1))

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS != DS:TMPSSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT != PT_REG) or

(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS != EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_SECS).R = 0) or (EPCM(DS:TMP_SECS).W = 0))
Then #PF(DS:TMP_SSA_PAGE); FI;

CR_XSAVE_PAGE_n Physical_Address(DS:TMP_SSA_PAGE);
ENDFOR

(* Compute address of GPR area*)
TMP_GPR TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE -- sizeof(GPRSGX_AREA);
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_GPR does not resolve to EPC page)

Then #PF(DS:TMP_GPR); FI;
IF (EPCM(DS:TMP_GPR).VALID = 0)

Then #PF(DS:TMP_GPR); FI;
IF (EPCM(DS:TMP_GPR).BLOCKED = 1)

Then #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).ENCLAVEADDRESS != DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT != PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS != EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))
Then #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
Then

IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) Then #GP(0); FI;
FI;

CR_GPR_PA Physical_Address (DS: TMP_GPR);

TMP_TARGET (DS:TMP_GPR).RIP;
IF (TMP_MODE64 = 1)

Then
IF (TMP_TARGET is not canonical) Then #GP(0); FI;

ELSE
IF (TMP_TARGET > CS limit) Then #GP(0); FI;

FI;

(* Check proposed FS/GS segments fall within DS *)
IF (TMP_MODE64 = 0)

Then
TMP_FSBASE (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_FSLIMIT (DS:RBX).OFSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;
TMP_GSBASE (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
TMP_GSLIMIT (DS:RBX).OGSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;
(* if FS wrap-around, make sure DS has no holes*)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 448

IF (TMP_FSLIMIT < TMP_FSBASE)
THEN

IF (DS.limit < 4GB) THEN #GP(0); FI;
ELSE

IF (TMP_FSLIMIT > DS.limit) THEN #GP(0); FI;
FI;
(* if GS wrap-around, make sure DS has no holes*)
IF (TMP_GSLIMIT < TMP_GSBASE)

THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_GSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
ELSE

TMP_FSBASE (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_GSBASE (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
IF ((TMP_FSBASE is not canonical) or (TMP_GSBASE is not canonical))

THEN #GP(0); FI;
FI;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)
IF (DS:RBX.STATE = ACTIVE))

Then #GP(0); FI;

(* SECS.ATTRIBUTES.XFRM selects the features to be saved. *)
(* CR_XSAVE_PAGE_n: A list of 1 or more physical address of pages that contain the XSAVE area. *)
XRSTOR(TMP_MODE64, SECS.ATTRIBUTES.XFRM, CR_XSAVE_PAGE_n);

IF (XRSTOR failed with #GP)
THEN

DS:RBX.STATE INACTIVE;
#GP(0);

FI;

CR_ENCALVE_MODE 1;
CR_ACTIVE_SECS TMP_SECS;
CR_ELRANGE (TMP_SECS.BASEADDR, TMP_SECS.SIZE);

(* Save sate for possible AEXs *)
CR_TCS_PA Physical_Address (DS:RBX);
CR_TCS_LA RBX;
CR_TCS_LA.AEP RCX;

(* Save the hidden portions of FS and GS *)
CR_SAVE_FS_selector FS.selector;
CR_SAVE_FS_base FS.base;
CR_SAVE_FS_limit FS.limit;
CR_SAVE_FS_access_rights FS.access_rights;
CR_SAVE_GS_selector GS.selector;
CR_SAVE_GS_base GS.base;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 449

CR_SAVE_GS_limit GS.limit;
CR_SAVE_GS_access_rights GS.access_rights;

(* Set CR_ENCLAVE_ENTRY_IP *)
CR_ENCLAVE_ENTRY_IP CRIP”
RIP TMP_TARGET;

Restore_GPRs from DS:TMP_GPR;

(*Restore the RFLAGS values from SSA*)
RFLAGS.CF DS:TMP_GPR.RFLAGS.CF;
RFLAGS.PF DS:TMP_GPR.RFLAGS.PF;
RFLAGS.AF DS:TMP_GPR.RFLAGS.AF;
RFLAGS.ZF DS:TMP_GPR.RFLAGS.ZF;
RFLAGS.SF DS:TMP_GPR.RFLAGS.SF;
RFLAGS.DF DS:TMP_GPR.RFLAGS.DF;
RFLAGS.OF DS:TMP_GPR.RFLAGS.OF;
RFLAGS.NT DS:TMP_GPR.RFLAGS.NT;
RFLAGS.AC DS:TMP_GPR.RFLAGS.AC;
RFLAGS.ID DS:TMP_GPR.RFLAGS.ID;
RFLAGS.RF DS:TMP_GPR.RFLAGS.RF;
RFLAGS.VM 0;
IF (RFLAGS.IOPL = 3)

Then RFLAGS.IF = DS:TMP_GPR.IF; FI;

IF (TCS.FLAGS.OPTIN = 0)
Then RFLAGS.TF = 0; FI;

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.OSXSAVE = 1)

CR_SAVE_XCR0 XCR0;
XCR0 TMP_SECS.ATTRIBUTES.XFRM;

FI;

(* Pop the SSA stack*)
(DS:RBX).CSSA (DS:RBX).CSSA -1;

(* Do the FS/GS swap *)
FS.base TMP_FSBASE;
FS.limit DS:RBX.FSLIMIT;
FS.type 0001b;
FS.W DS.W;
FS.S 1;
FS.DPL DS.DPL;
FS.G 1;
FS.B 1;
FS.P 1;
FS.AVL DS.AVL;
FS.L DS.L;
FS.unusable 0;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 450

FS.selector 0BH;

GS.base TMP_GSBASE;
GS.limit DS:RBX.GSLIMIT;
GS.type 0001b;
GS.W DS.W;
GS.S 1;
GS.DPL DS.DPL;
GS.G 1;
GS.B 1;
GS.P 1;
GS.AVL DS.AVL;
GS.L DS.L;
GS.unusable 0;
GS.selector 0BH;

CR_DBGOPTIN TSC.FLAGS.DBGOPTIN;
Suppress_all_code_breakpoints_that_are_outside_ELRANGE;

IF (CR_DBGOPTIN = 0)
THEN

Suppress_all_code_breakpoints_that_overlap_with_ELRANGE;
CR_SAVE_TF RFLAGS.TF;
RFLAGS.TF 0;
Suppress_monitor_trap_flag for the source of the execution of the enclave;
Clear_all_pending_debug_exceptions;
Clear_pending_MTF_VM_exit;

ELSE
Clear all pending debug exceptions;
Clear pending MTF VM exits;

FI;

(* Assure consistent translations *)
Flush_linear_context;
Clear_Monitor_FSM;
Allow_front_end_to_begin_fetch_at_new_RIP;

Flags Affected

RFLAGS.TF is cleared on opt-out entry.

Protected Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment.
If any reserved field in the TCS FLAG is set.
If the target address is not within the CS segment.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 451

If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM != 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(fault code) If a page fault occurs in accessing memory.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

#NM If CR0.TS is set.

64-Bit Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment.
If any reserved field in the TCS FLAG is set.
If the target address is not canonical.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM != 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(fault code) If a page fault occurs in accessing memory operands.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

#NM If CR0.TS is set.

...

31. New Chapter 42, New Volume 3D
A new chapter, Chapter 42, has been added to the new volume: Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3D: System Programming Guide, Part 4.

--

...
CHAPTER 42

INTEL® SGX INTERACTIONS WITH IA32 AND INTEL® 64 ARCHITECTURE

Intel® SGX provides Intel® Architecture with a collection of enclave instructions for creating protected execution
environments on processors supporting IA32 and Intel® 64 architectures. These Intel SGX instructions are
designed to work with legacy software and the various IA32 and Intel 64 modes of operation.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 452

42.1 INTEL® SGX AVAILABILITY IN VARIOUS PROCESSOR MODES
The Intel SGX extensions (see Table 37-1) are available only when the processor is executing in protected mode
of operation. Additionally, the extensions are not available in System Management Mode (SMM) of operation or in
Virtual 8086 (VM86) mode of operation. Finally, all leaf functions of ENCLU and ENCLS require CR0.PG enabled.
The exact details of exceptions resulting from illegal modes and their priority are listed in the reference pages of
ENCLS and ENCLU.

42.2 IA32_FEATURE_CONTROL
A new bit in IA32_FEATURE_CONTROL MSR (bit 18) is provided to BIOS to control the availability of Intel SGX
extensions. For Intel SGX extensions to be available on a logical processor, bit 18 in the IA32_FEATURE_CONTROL
MSR on that logical processor must be set, and IA32_FEATURE_CONTROL MSR on that logical processor must be
locked (bit 0 must be set). See Section 37.7.1 for additional details. OS is expected to examine the value of bit 18
prior to enabling Intel SGX on the thread, as the settings of bit 18 is not reflected by CPUID.

42.3 INTERACTIONS WITH SEGMENTATION

42.3.1 Scope of Interaction
Intel SGX extensions are available only when the processor is executing in a protected mode operation (see
Section 42.1 for Intel SGX availability in various processor modes). Enclaves abide by all the segmentation poli-
cies set up by the OS.
Intel SGX interacts with segmentation at two levels:
• The Intel SGX instruction (see the enclave instruction in Table 37-1).
• logical-processor execution inside an enclave (legacy instructions and enclave instructions permitted inside an

enclave).

42.3.2 Interactions of Intel® SGX Instructions with Instruction Prefixes and Addressing
All the memory operands used by the Intel SGX instructions are interpreted as offsets within the data segment
(DS). The segment-override prefix on Intel SGX instructions is ignored.
Operand size is fixed for each enclave instruction. The operand-size prefix is reserved, and results in a #UD
exception.
All address sizes are determined by the operating mode of the processor. The address-size prefix is ignored. This
implies that while operating in 64-bit mode of operation, the address size is always 64 bits, and while operating in
32-bit mode of operation, the address size is always 32 bits. Additionally, when operating in 16-bit addressing,
memory operands used by enclave instructions use 32 bit addressing; the value of CS.D is ignored.

42.3.3 Interaction of Intel® SGX Instructions with Segmentation
The Intel SGX instructions used for entering the enclave (ENCLU[EENTER] and ENCLU[ERESUME]) ensure that all
usable segment registers (i.e., the segment registers that have “Segment Unusable” bit in “Access Rights” field,
a.k.a., “null” bit, set to 0) except for FS and GS have a zero base.
Additionally they save the existing contents of the FS/GS segment registers (including the hidden portion) in the
processor, and load those registers with new values. The instructions also ensure that the linear ranges and

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 453

access rights available under the newly-loaded FS and GS are subsets of the linear-address range/access rights
available under DS. See EENTER Leaf and ERESUME Leaf in Chapter 41 for exact details of this computation.
Any exit from the enclave either via ENCLU[EEXIT] or via an AEX restores the saved values of FS/GS segment
registers.
The enclave-entry instructions also ensure that the CS segment mode (64-bit vs 32 bit) is consistent with the
segment mode for which the enclave was created, as indicated by the SECS.ATTRIBUTES.MODE64 bit, and that
the CPL of the logical processor is 3.
Finally, all leaf functions of ENCLU and ENCLS instructions require that the DS segment be usable, and be an
expand-up segment. Failing this check results in generation of a #GP(0) exception.

42.3.4 Interactions of Enclave Execution with Segmentation
During the course of execution, enclave code abides by all segmentation policies as dictated by legacy IA32 and
Intel 64 Architectures, and generates appropriate exceptions on violations.
Additionally, any attempt by software executing inside an enclave to modify the processor's segmentation state
(via MOV seg register, POP seg register, LDS, far jump, etc.) results in the generation of a #UD.
Execution of WRFSBASE and WRGSBASE from inside a 64-bit enclave does not generate the #UD exception. If the
software running inside an enclave modifies the segment-base values for these registers using the WRFSBASE
and WRGSBASE instructions, the new values are saved into the current SSA frame on an asynchronous enclave
exit (AEX) and restored back on enclave entry via ENCLU[ERESUME] instruction.

42.4 INTERACTIONS WITH PAGING
Intel SGX instructions are available only when the processor is executing in a protected mode of operation. Addi-
tionally, all Intel SGX leaf functions except for EDBGRD and EDBGWR are available only in paged mode of opera-
tion. Any attempt to execute these leaf functions in non-paged mode of operation results in delivery of #UD to the
system software (OS or VMM).
All the memory operands passed into Intel SGX instructions are interpreted as offsets within the data segments,
and the linear addresses generated by combining these offsets with DS segment register are subject to paging-
based access control, if paging is enabled at the time of the execution of the leaf function.
Since the ENCLU[EENTER] and ENCLU[EEXIT] can only be executed when paging is enabled, and since paging
cannot be disabled by software running inside an enclave (recall that enclaves always run with CPL of 3), enclave
execution is always subject to paging-based access control. The Intel SGX access control itself is implemented as
an extension to the traditional IA-32 and Intel 64 paging state machine. See Section 38.5 for details.
It should be noted that Intel SGX instructions may set the A and D bit on non-faulting EPC pages, even if the
instruction may eventually fault due to some other reason.

42.5 INTERACTIONS WITH VMX
Intel SGX functionality (including SGX1 and SGX2) can be made available to software running in either VMX-root
or VMX-non-root mode, as long as:
• The software is not running in SMM mode of operation.
• The software is using a legal mode of operation (see Section 42.1).
A VMM has the flexibility to configure the VMCS to permit a guest to use the entirety of the ENCLS leaf functions
or any sub-set of the ENCLS leaf functions at the granularity of individual leaf function. Availability of the ENCLU
leaf functions in VMX non-root operation has the same requirement as ENCLU leaf functions outside of a virtual-
ized environment.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 454

Enhancement in the VMCS to allow configurability for Intel SGX in a guest is enumerated by VMX capability MSRs.
A summary of the enumerated capability is listed in Table 42-1.

Details of the VMCS control to allow VMM to configure support of Intel SGX in guest operation is described in
Section 42.5.1

42.5.1 VMM Controls to Configure Guest Support of Intel® SGX
The Intel SGX capability is primarily exposed to the software via CPUID instruction. VMMs can virtualize CPUID
instruction to expose/hide this capability to/from guests.
Next, the various parameters related to Intel SGX resources (such as EPC size, EPC location, etc.) are exposed/
controlled via model-specific registers. VMMs can virtualize these MSRs for the guests using standard RDMSR/
WRMSR hooks.
The VMM can partition the Enclave Page Cache, and assign various partitions to (a subset of) its guests via the
usual memory-virtualization techniques such as EPTs or shadow page tables.
The VMM can hook into the ENCLS instruction by setting the new VM-exiting control called “enable ENCLS exiting”
(bit 15 in the secondary processor-based VM-execution controls). Support for the 1-setting of this control will be
enumerated in the VMX capability MSRs (see Section 42.5.1.1).
If the “enable ENCLS exiting” control is 0 on a VM entry, all of the ENCLS leaf functions are permitted in VMX non-
root operation.
If the “enable ENCLS exiting” control is 1, execution of ENCLS leaf functions in VMX non-root operation is
governed by consulting the bits in a new 64-bit VM-execution control called “ENCLS-exiting bitmap” (encoding
pair 0202EH/0202FH).
When bits in the “ENCLS-exiting bitmap” are set, execution of the corresponding ENCLS leaf functions in the guest
results in a VM exit.
The priority of “ENCLS-exiting bitmap” check is immediately below the CPL check. This field exists only on proces-
sors that support the 1-setting of “enable ENCLS exiting”.
Processors that do not support Intel SGX, i.e. CPUID.(EAX=07H, ECX=0):EBX.SGX = 0, the following items hold:
• VMX capability MSRS enumerate the 1-setting of “enable ENCLS exiting” is not supported.
• VM entries with “enable ENCLS exiting” field set to 1 will fail.
• VMREAD/VMWRITE of the “ENCLS-exiting bitmap” will fail due to access to an unsupported VMCS field.

Table 42-1. Summary of VMX Capability Enumeration MSRS for Processors Supporting Intel® SGX
Interface Description

IA32_VMX_PROCBASED_CTLS2[bit 15] Mirrors the value of CPUID.(EAX=07H, ECX=0).EBX.SGX.
IA32_VMX_MISC[bit 30] If 1, VM entry checks that the VM-entry instruction length is in the range

0-15. See Section 42.5.3.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 455

42.5.1.1 Guest State Area - Guest Non-Register State

42.5.1.2 VM-Execution Controls
VM-Execution controls related to Intel SGX include a ENCLS-exiting bitmap (accessed via VMCS encoding pair
0202EH/0202FH) and the “Enable ENCLS exiting” control at bit 15 of the secondary processor based VM execution
controls. The ENCLS-exiting bitmap provides bit fields for VMM to permit individual ENCLS leaf functions to
execute without causing a VM exit in a guest, see “ENCLS—Execute an Enclave System Function of Specified Leaf
Number”. If bit 31 of the primary processor-based VM execution controls is 0, the processor functions as if the
Enable ENCLS Exiting bit was set to 0.

42.5.1.3 Basic VM-Exit Information
The VM-exit information fields adds bit 27 to provide information on VM exits due to the interaction between
enclave and asynchronous events.

The encodings of Basic Exit Reason can indicate if the VM exit is related to executing ENCLS leaf functions.

Table 42-2. Guest Interruptibility State
Position Field Value

0 Blocking by STI See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

1 Blocking by MOV SS See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

3 Blocking by SMI See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

4 Blocking by NMI See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

5 ENCLAVE_INTERRUPTION See Section 42.5.5.

Table 42-3. Secondary Processor Based VM Execution Controls
Position Field Value

14:0 See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

15 Enable ENCLS exiting Enable ENCLS-exiting bitmap for ENCLS leaf functions.

31:16 See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

Table 42-4. Format of Exit Reason
Bit Position Value

15:0 Basic exit reason: See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

26:16 Reserved: See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

27 ENCLAVE_INTERRUPTION: see Section 42.5.2.

31:28 See Chapter 24 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 456

42.5.2 VM Exits While Inside an Enclave
All VM exits that originate on an instruction boundary inside an enclave set a new bit called the “Enclave Interrup-
tion” bit (bit position 4) in the VMCS Guest Interruptibility State field (field encoding 4824H, Table 42-2) and in
the EXIT_REASON field (bit 27) of the VMCS before delivering the VM exit to the VMM. Any VM exit (except for
failed VM-entry VM exit) that sets the ENCLAVE_INTERRUPTION bit in GUEST_INTERRUPTIBILITY state, also sets
Bit 27 in the EXIT_REASON field. These VM exit conditions include:
• Direct VM exits caused by exceptions, interrupts, and NMIs that happen while the logical processor is

executing inside an enclave.
• Indirect VM exits triggered by interrupts, exceptions, and NMIs that happen while the logical processor is

executing inside an enclave.

— This includes VM exits encountered during vectoring due to EPT violations, task switch, etc.
• Parallel VM exits caused by SMI that is received while the logical processor is executing inside an enclave.
• All other VM exits that happen on an instruction boundary that is inside an enclave.
IA32/Intel 64 Architectures define very strict priority ordering between classes of events that are received on the
same instruction boundary, and such ordering requires careful attention to cross-interactions between events.
See Section 42.6 for details of interactions of architecturally visible events with Intel SGX architecture.
All processor states saved in the VMCS on VM exits from an enclave contain synthetic state. See Table 40-2 for
details of the state saved into the VMCS.
A failed VM-entry VM exit will not set the ENCLAVE_INTERRUPTION bit in EXIT_REASON but since it will not save
the GUEST_INTERRUPTIBILITY_STATE, the original value of the ENCLAVE_INTERRUPTION bit will remain
untouched in GUEST_INTERRUPTIBILITY_STATE.

42.5.3 VM Entry Consistency Checks and Intel® SGX
A VM entry will perform consistency checks according to those described in Chapter 26 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3C.
Additionally, VM entry may allow the VM-entry instruction-length field having a value 0 if the following items all
hold true:
• IA32_VMX_MISC[30] as 1.
• The valid bit (bit 31) of the VM-entry interruption-information field in the current VMCS is 1.
• the interruption type (bits 10:8)of the VM-entry interruption-information field has value 4 (software

interrupt), 5 (privileged software exception), or 6 (software exception).

42.5.4 VM Execution Control Setting Checks
A VM entry will perform consistency checks according to those described in Chapter 26 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3C. Additional consistency check on VM-execution control
fields includes:

Table 42-5. Basic Exit Reasons
Basic Exit Reason Value

0 through 59 See Appendix C of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

60 ENCLS.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 457

• If CPUID.(EAX=07H, ECX=0):EBX.SGX = 0, and if the “ENCLS Exiting” control (bit 15 in the secondary
processor-based VM-execution controls) is set, then the VM entry fails, which sets RFLAGS.ZF=1 and error
code=7 (VM entry with invalid control field).

42.5.5 Guest Interruptibility State Checks
If the ENCLAVE_INTERRUPTION bit in VM-entry control field is set and if CPUID.(EAX=07H, ECX=0):EBX.SGX =
0, VM entry will fail.
If both the MOV-SS blocking and ENCLAVE_INTERRUPTION bits are set in the interruptibility-state field in the
guest-state area of the VMCS, VM entry leads to a Failed VMENTRY/VMEXIT, error code 33. Note that, since the
MOV SS and POP SS instructions are illegal inside an enclave, no VM exit will set the interruptibility-state field with
both bits set.
If the ENCLAVE_INTERRUPTION bit is set in the interruptibility-state field of the VMCS, and a VM entry leads to a
VMEXIT during event injection, then the VM exit sets the ENCLAVE_INTERRUPTION bit. Such a transition does not
include an asynchronous enclave exit and consequently, neither the processor's architectural state, nor the state
saved in the guest-state area of the VMCS is synthesized as is done during asynchronous enclave exits (for
example: there is no clearing of the GPRs or of VMCS fields such as the VM-exit instruction length or the low 12
bits in certain address fields in the VMCS).

42.5.6 Interaction of Intel® SGX with Various VMMs
If IA32_VMX_MISC.[bit 30] = 0, permitted VM entry instruction lengths are 1-15 bytes. If IA32_VMX_MISC.[bit
30] = 1, permitted VM entry instruction lengths allow 0 as a legal value for interruption type 4(software inter-
rupt), 5 (privileged software exception), or 6 (software exception).

42.5.7 Interactions with EPTs
Intel SGX instructions are fully compatible with Extended Page Tables.
All the memory operands passed into Intel SGX instructions are interpreted as offsets within the data segments,
and the linear addresses generated by combining these offsets with DS segment register are subject to paging
and EPT-based access control.
The Intel SGX access control itself is implemented as an extension to the traditional IA-32 paging/EPT state
machine. See Section 38.5 for details of this extension.
Intel SGX instructions may set A and D bit on non-faulting EPC pages, even if the instruction may eventually fault
due to some other reason, in IA page tables and EPT page tables when enabled.

42.5.8 Interactions with APIC Virtualization
The Intel SGX architecture interacts with APIC virtualization due to its interactions with the APIC access page as
well as Virtual APIC Page. See Section 42.11.2 for interactions of the Intel SGX architecture with the Virtual APIC
Page, and to Section 42.11.4 for the interactions of Intel SGX architecture with the APIC Access Page.

42.5.9 Interactions with Monitor Trap Flag
The interactions of Intel SGX with the Monitor Trap Flag are documented in Section 43.2.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 458

42.5.10 Interactions with Interrupt-Virtualization Features and Events
If software is executing in an enclave and a VM exit would occur that would report “interrupt window” as basic exit
reason (due to the 1-setting of the “interrupt window exiting” VM-execution control), an AEX occurs before the VM
exit is delivered.
If software is executing in an enclave and a virtual interrupt would be delivered through the IDT (due to the 1-
setting of the “virtual interrupt delivery” VM-execution control), an AEX occurs before delivery of the virtual inter-
rupt.
If software is executing in an enclave and an external interrupt arrives that would cause a VM exit (due to the 1-
setting of the “external interrupt exiting” VM-execution control), an AEX occurs before the VM exit is delivered.
If software is executing in an enclave and an external interrupt arrives that would cause virtual interrupts to be
posted to the virtual-IRR field in the virtual-APIC page (due to the 1-setting of the “process posted interrupts” VM-
execution control), an AEX may or may not occur before the posting of the virtual interrupts. This behavior is
implementation specific.

42.6 INTEL® SGX INTERACTIONS WITH ARCHITECTURALLY-VISIBLE EVENTS
All architecturally visible vectored events (IA32 exceptions, interrupts, SMI, NMI, INIT, VM exit) that are detected
while inside an enclave cause an asynchronous enclave exit. Additionally, INT3, entry/redirection, and the
SignalTXTMsg[SENTER] events also cause asynchronous enclave exits. Note that SignalTXTMsg[SEXIT] does not
cause an AEX.
On an AEX, information about the event causing the AEX is stored in the SSA (see Section 40.4 for details of AEX).
The information stored in the SSA only describes the first event that triggered the AEX. If parsing/delivery of the
first event results in detection of further events (e.g. VM exit, double fault, etc.), then the event information in the
SSA is not updated to reflect these subsequently detected events.

42.7 INTERACTIONS WITH THE XSAVE/XRSTOR PROCESSOR EXTENDED
STATES

42.7.1 Requirements and Architecture Overview
Processor extended states are the ISA features that are enabled by the settings of CR4.OSXSAVE and the XCR0
register. Processor extended states are normally saved/restored by software via XSAVE/XRSTOR instructions.
Details of discovery of processor extended states and management of these states are described in CHAPTER 13
of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
Additionally, the following requirements apply to Intel SGX:
• On an AEX, the Intel SGX architecture must protect the processor extended state in the state-save area

(SSA), and clear the secrets in the processor extended state, if the extended state is being used by an
enclave.

• Intel SGX architecture must ensure that erroneous XCR0 and/or XBV_HEADER settings by system software do
not result in SSA overflow.

• Enclave software should be able to discover only those processor extended states for which such protection is
enabled.

• The processor extended states that are enabled inside the enclave must form an integral part of the enclave's
identity. This requirement has two implications:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 459

— Certain processor extended state (e.g., Memory Protection Extensions, see Chapter 9 of Intel® Archi-
tecture Instruction Set Extensions Programming Reference) modify the behavior of the legacy ISA
software. If such features are enabled for enclaves that do not understand those features, then such a
configuration could lead to a compromise of the enclave's security.

— Service providers may decide to assign different trust level to the same enclave depending on the ISA
features the enclave is using.

To meet these requirements, the Intel SGX architecture defines a sub-field called X-feature Request Mask (XFRM)
in the ATTRIBUTES field of the SECS. On enclave entry, after certain consistency checks, the value in the XCR0 is
saved in a micro-architectural location, and is replaced by the XFRM. On enclave exit, the original value of XCR0
is restored. Consequently, while inside the enclave, the processor extended states enabled in XFRM are in enabled
state, and those that are disabled in XFRM are in disabled state. The entire ATTRIBUTES field, including the XFRM
subfield is integral part of enclave's identity (i.e., its value is included in reports generated by ENCLU[EREPORT],
and select bits from this field can be included in key-derivation for keys obtained via ENCLU[EGETKEY]).
On an asynchronous enclave exit, the processor extended states enabled by XFRM are saved in the current SSA
frame, and overwritten by synthetic state (see Section 40.3 for the definition of the synthetic state). When the
interrupted enclave is resumed via ENCLU[ERESUME], the saved state for processor extended states enabled by
XFRM is restored.

42.7.2 Relevant Fields in Various Data Structures

42.7.2.1 SECS.ATTRIBUTES.XFRM
The ATTRIBUTES field of the SECS data structure (see Section 38.7) contains a sub-field called X-Feature Request
Mask (XFRM). Software populates this field at the time of enclave creation indicating the processor extended state
configuration required by the enclave.
Intel SGX architecture guarantees that during enclave execution, the processor extended state configuration of
the processor is identical to what is required by the XFRM sub-field. All the processor extended states enabled in
XFRM are saved on AEX from the enclave and restored on ERESUME.
The XFRM sub-field has the same layout as XCR0, and has consistency requirements that are similar to those for
XCR0. Specifically, the consistency requirements on XFRM values depend on the processor implementation and
the set of features enabled in CR4.
Legal values for SECS.ATTRIBUTES.XFRM conform to these requirements:
• XFRM[1:0] must be set to 0x3.
• If the processor does not support XSAVE, or if the system software has not enabled XSAVE, then XFRM[63:2]

must be zero.
• If the processor does support XSAVE, XFRM must contain a value that would be legal if loaded into XCR0.
The various consistency requirements are enforced at different times in the enclave's life cycle, and the exact
enforcement mechanisms are elaborated in Section 42.7.3 through Section 42.7.6.
On processors not supporting XSAVE, software should initialize XFRM to 0x3. On processors supporting XSAVE,
software should initialize XFRM to be a subset of XCR0 that would be present at the time of enclave execution.
Because bits 0 and 1 of XFRM must always be set, the use of Intel SGX requires that SSE be enabled
(CR4.OSFXSR = 1).

42.7.2.2 SECS.SSAFRAMESIZE
The SSAFRAMESIZE field in the SECS data structure specifies the number of pages which software allocated1 for
each SSA frame, including both the GPRSGX area and the XSAVE area (x87 and XMM states are stored in the
latter area). The specified size must be large enough to hold all the general-purpose registers, additional Intel

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 460

SGX specific information, plus the state size of set of processor extended states specified by SECS.ATTRI-
BUTES.XFRM (see Section 38.9 for the layout of SSA). The SSA is always in non-compacted format.
If the processor does not support XSAVE, the XSAVE area will always be 576 bytes; a copy of XFRM (which will be
set to 0x3) is saved at offset 512 on an AEX.
If the processor does support XSAVE, the length of the XSAVE area depends on SECS.ATTRIBUTES.XFRM. The
length would be equal to what CPUID.(EAX=0DH, ECX= 0):EBX returns if XCR0 were set to XFRM. The following
pseudo code illustrates how software can calculate this length using XFRM as the input parameter without modi-
fying XCR0:

offset = 576;
size_last_x = 0;
For x=2 to 63
IF (XFRM[x] != 0) Then

tmp_offset = CPUID.(EAX=0DH, ECX= x):EBX[31:0];
IF (tmp_offset >= offset + size_last_x) Then

offset = tmp_offset;
size_last_x = CPUID.(EAX=0DH, ECX= x):EAX[31:0];

FI;
FI;
EndFor
return (offset + size_last_x); (* compute_xsave_size(XFRM), see “ECREATE—Create an SECS page in the
Enclave Page Cache”*)

Where the non-zero bits in XFRM are a subset of non-zero bit fields in XCR0.

42.7.2.3 XSAVE Area in SSA
The XSAVE area of an SSA frame begins at offset 0 of the frame.

42.7.3 Processor Extended States and ENCLS[ECREATE]
The ECREATE leaf of the ENCLS instruction enforces a number of consistency checks described earlier. The execu-
tion of ENCLS[ECREATE] instruction results in a #GP(0) exception in any of the following cases:
• SECS.ATTRIBUTES.XFRM[1:0] is not 3.
• The processor does not support XSAVE and any of the following is true:

— SECS.ATTRIBUTES.XFRM[63:2] is not 0.

— SECS.SSAFRAMESIZE is 0.
• The processor supports XSAVE and any of the following is true:

— XSETBV would fault on an attempt to load XFRM into XCR0.

— XFRM[63]=1.

— SSAFRAMESIZE*4096 < 168 + X, where X is the value that would be returned in EBX if CPUID were
executed with EAX=0DH, ECX=0, and XCR0 was loaded with the value of XFRM.

1. It is the responsibility of the enclave to actually allocate this memory.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 461

42.7.4 Processor Extended States and ENCLU[EENTER]

42.7.4.1 Fault Checking
The EENTER leaf of ENCLU instruction enforces a number of consistency requirements described earlier. Specifi-
cally, the ENCLU[EENTER] instruction results in a #GP(0) exception in any of the following cases:
• CR4.OSFXSR=0.
• The processor supports XSAVE and either of the following is true:

— CR4.OSXSAVE=0 and SECS.ATTRIBUTES.XFRM is not 3.

— (SECS.ATTRIBUTES.XFRM & XCR0) != SECS.ATTRIBUTES.XFRM.

42.7.4.2 State Loading
If ENCLU[EENTER] is successful, it saves the current value of XCR0 in a micro-architectural location and sets
XCR0 to SECS.ATTRIBUTES.XFRM.

42.7.5 Processor Extended States and AEX

42.7.5.1 State Saving
On an AEX, processor extended states are saved into the XSAVE area of the SSA frame as if the XSAVE instruction
was executed with EDX:EAX = SECS.ATTRIBUTES.XFRM, with the memory operand being the XSAVE area, and
(for 64-bit enclaves) as if REX.W=1. The XSTATE_BV part of the XSAVE header is saved with 0 for every bit that
is 0 in XFRM. Other bits may be saved as 0 if the state saved is initialized.
Note that enclave entry ensures that if CR4.OSXSAVE is set to 0, then SECS.ATTRIBUTES.XFRM is set to 3. It
should also be noted that it is not possible to enter an enclave with FXSAVE disabled. While AEX is defined to save
data as XSAVE would, implementations may use FXSAVE flows if CR4.OSXSAVE=0. In this case, the implementa-
tion ensures that the non-state data is consistent with the XSAVE format, and not the FXSAVE format (e.g., the
XSAVE header).

42.7.5.2 State Synthesis
After saving state, AEXs restore XCR0 to the value it held at the time of the most recent enclave entry.
The state of features corresponding to bits set in XFRM is synthesized. In general, these states are initialized.
Details of state synthesis on AEX are documented in Section 40.3.1.

42.7.6 Processor Extended States and ENCLU[ERESUME]

42.7.6.1 Fault Checking
The ERESUME leaf of ENCLU instruction enforces a number of consistency requirements described earlier. Specif-
ically, the ENCLU[ERESUME] instruction results in a #GP(0) exception in any of the following cases:
• CR4.OSFXSR=0.
• The processor supports XSAVE and either of the following is true:

— CR4.OSXSAVE=0 and SECS.ATTRIBUTES.XFRM is not 3.

— (SECS.ATTRIBUTES.XFRM & XCR0) != SECS.ATTRIBUTES.XFRM.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 462

A successful execution of ENCLU[ERESUME] loads state from the XSAVE area of the SSA frame in a fashion similar
to that used by the XRSTOR instruction. Data in the XSAVE area that would cause the XRSTOR instruction to fault
will cause the ENCLU[ERESUME] instruction to fault. Examples include the following:
• A bit is set in the XSTATE_BV field and clear in XFRM.
• The required bytes in the header are not clear.
• Loading data would set a reserved bit in MXCSR.
Any of these conditions will cause ERESUME to fault, even if CR4.OSXSAVE=0. In this case, it is the responsibility
of the processor to generate faults that are caused by XRSTOR and not by FXRSTOR.

42.7.6.2 State Loading
If ENCLU[ERESUME] is successful, it saves the current value of XCR0 microarchitecturally and sets XCR0 to XFRM.
State is loaded from the XSAVE area of the SSA frame as if the XRSTOR instruction were executed with
XCR0=XFRM, EDX:EAX = XFRM, with the memory operand being the XSAVE area, and (for 64-bit enclaves) as if
REX.W=1. The XSTATE_BV part of the XSAVE header is saved with 0 for every bit that is 0 in XFRM, as a non-
compacted buffer. Other bits may be saved as 0 if the state saved is initialized.
ENCLU[ERESUME] ensures that a subsequent execution of XSAVEOPT inside the enclave will operate properly
(e.g., by marking all state as modified).

42.7.7 Processor Extended States and ENCLU[EEXIT]
The ENCLU[EEXIT] instruction does not perform any X-feature specific consistency checks. However, successful
execution of the ENCLU[EEXIT] instruction restores XCR0 to the value it held at the time of the most recent
enclave entry.

42.8 INTERACTIONS WITH SMM

42.8.1 Availability of Intel® SGX instructions in SMM
Enclave instructions are not available in SMM, and any attempt to execute ENCLS or ENCLU instructions inside
SMM results in a #UD exception.

42.8.2 SMI while Inside an Enclave
The response to an SMI received while executing inside an enclave depends on whether the dual-monitor treat-
ment is enabled. For detailed discussion of transfer to SMM, see Chapter 34, “System Management Mode” of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.
If the logical processor executing inside an enclave receives an SMI when dual-monitor treatment is not enabled,
the logical processor exits the enclave asynchronously, and transfers the control to the SMM handler. In addition
to saving the synthetic architectural state to the SMRAM State Save Map (SSM), the logical processor also sets the
“Enclave Interruption” bit in the SMRAM SSM (bit position 1 in SMRAM field at offset 7EE0H).
If the logical processor executing inside an enclave receives an SMI when dual-monitor treatment is enabled, the
logical processor exits the enclave asynchronously, and transfers the control to the SMM monitor via SMM VM exit.
The SMM VM exit sets the “Enclave Interruption” bit in the Exit Reason (see Table 42-4) and in the Guest Inter-
ruptibility State field (see Table 42-2) of the SMM transfer VMCS.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 463

An SMI received immediately after ERESUME results in an asynchronous exit. The asynchronous exit does not set
a pending MTF indication, and consequently, no pending MTF indication is saved inside the SMRAM. After RSM the
processor will re-establish the MTF VMCS execution control.

42.8.3 SMRAM Synthetic State of AEX Triggered by SMI
All processor registers saved in the SMRAM have the same synthetic values listed in Section 40.3. Additional
SMRAM fields that are treated specially on SMI are:

42.9 INTERACTIONS OF INIT, SIPI, AND WAIT-FOR-SIPI WITH INTEL® SGX
INIT received inside an enclave, while the logical processor is not in VMX operation, causes the logical processor
to exit the enclave asynchronously. After the AEX, the processor's architectural state is initialized to “Power-on”
state (Table 9.1 in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). If the logical
processor is BSP, then it proceeds to execute the BIOS initialization code. If the logical processor is an AP, it enters
Wait-for-SIPI (WFS) state.
INIT received inside an enclave, while the logical processor (LP) is in VMX-root operation, is blocked until either
the LP exits VMX operation (via VMXOFF) or enters VMX-non-root operation (via VMLAUNCH or VMRESUME).
Since VMXOFF, VMLAUNCH, and VMRESUME cause a CPL-based #GP inside an enclave, such an INIT remains
blocked at least until the LP exits the enclave.
INIT received inside an enclave, while the logical processor is in VMX-non-root operation, causes an AEX. Subse-
quent to the AEX, the INIT is delivered to the VMM via appropriate VM exit with INSIDE_ENCLAVE bit in the
VMCS.EXIT_REASON set.
A processor cannot be inside an enclave in WFS state. Consequently, a SIPI received while inside an enclave is
lost.
If a processor is in WFS state outside VMX operation, receipt of SIPI vectors the processor to 000VV000H to run
BIOS-initialization code. If a processor is in WFS state in VMX-non-root operation, receipt of SIPI causes the LP to
deliver appropriate VM exit. A processor cannot be in WFS state in VMX-root operation. In either case, the
behavior of the LP on SIPI while in WFS state does not change for Intel SGX.
INIT is considered a warm reset, which keeps all the cache state, RR state, and feature-configuration state
unmodified. Consequently, subsequently to INIT, CPUID enumeration of Intel SGX feature remains intact.
The SGX-related processor states after INIT-SIPI-SIPI is as follows:
• EPCM: Unchanged.
• CPUID.LEAF_12H.*: Unchanged.
• ENCLAVE_MODE: 0 (LP exits enclave asynchronously).
• MEE state: Unchanged.
OSes that use INIT-SIPI-SIPI only during initial boot (i.e., only after reset) can blindly assume that the entire EPC
is empty, and every entry in the EPCM is marked invalid. These OSes do not need to use EREMOVE after INIT-SIPI-
SIPI.
OSes that use INIT-SIPI-SIPI for dynamic offlining of a processor should use software conventions for communi-
cating the EPCM and other state with the processors that are offlined/onlined dynamically.

Table 42-6. SMRAM Synthetic States on Asynchronous Enclave Exit
Position Field Value

SMRAM Offset 07EE0H.Bit 1 ENCLAVE_INTERRUPTION Set to 1 if exit occurred in enclave mode.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 464

42.10 INTERACTIONS WITH DMA
DMA is not allowed to access any Processor Reserved Memory.

42.11 INTERACTIONS WITH MEMORY CONFIGURATION AND VARIOUS MEMORY
RANGES

42.11.1 Interactions of Intel® SGX with APIC Access Address
A memory access by an enclave instruction that implicitly uses a cached physical address is never checked for
overlap with the APIC-access page. Such accesses never cause APIC-access VM exits and are never redirected to
the virtual-APIC page. Implicit memory accesses can only be made to the SECS, the TCS, or the SSA of an enclave
(see Section 38.3). Consequently, all implicit accesses are always targeted at a page inside an EPC.
For all other memory accesses, physical-address matches against the APIC-access address occur before checking
for other range register matches.
An Enclave Access (a linear memory access which is either done by from within an enclave into it ELRANGE, or an
access by an Intel SGX instruction that is expected to be in the EPC) that overlaps with the APIC-access page
causes a #PF exception (APIC page is expected to be outside of EPC).
Non-Enclave accesses made either by an Intel SGX instruction (either SGX1 or SGX2) or by a logical processor
inside an enclave that would have caused redirection to the virtual-APIC page instead cause an APIC-access VM
exit.
Other than implicit accesses made by Intel SGX instructions, guest-physical and physical accesses are not consid-
ered “enclave accesses”; consequently, such accesses results in abort-page semantics if these accesses eventu-
ally reach EPC. This applies to any physical accesses that are redirected to the virtual-APIC page.
While a logical processor inside an enclave, the checking of the instruction pointer's linear address against the
enclave's linear-address range (ELRANGE) is done before checking the physical address to which the linear
address translates against the APIC-access page. Thus, an attempt to execute an instruction outside ELRANGE,
the instruction fetch results in a #GP(0), even if the linear address would translate to a physical address overlaps
the APIC-access page.

42.12 INTERACTIONS WITH TXT

42.12.1 Enclaves Created Prior to Execution of GETSEC
Enclaves which have been created before the GETSEC[SENTER] instruction are available for execution after the
successful completion of GETSEC[SENTER] and the corresponding SINIT ACM. Intel SGX will need to be re-
enabled by the software launched by GETSEC[SENTER], in addition to any other actions a TXT launched environ-
ment performs when preparing to execute code which was running previously to GETSEC[SENTER].

42.12.2 Interaction of GETSEC with Intel® SGX
All leaf functions of the GETSEC instruction are illegal inside an enclave, and result in #UD.
Responding Logical Processors (RLP) which are executing inside an enclave at the time a GETSEC[SENTER] event
occurs perform an AEX from the enclave and then enter the Wait-for-SIPI state.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 465

RLP threads executing an enclave at the time of GETSEC[SEXIT], behave as defined for GETSEC[SEXIT]-that is,
the RLPs pause during execution of SEXIT and resume after the completion of SEXIT.
The execution of a TXT launch does not affect Intel SGX configuration or security parameters.
Processors supporting Intel SGX also require that the ACM-verification key be located on die, and that such ACMs
contain a new header field.

42.12.3 Interactions with Authenticated Code Modules (ACMs)
After execution of any non-faulting Intel SGX instructions, the Intel SGX architecture forbids the launching of
ACMs with Intel SGX SVN that is lower than the expected Intel SGX SVN threshold that was specified by BIOS. The
non-faulting Intel SGX instructions refer to Intel SGX instruction leaves that do not return error code and
executed successfully without causing an exception. Intel SGX provides interfaces for system software to discover
whether a non faulting Intel SGX instruction has been executed, and evaluate the suitability of the Intel SGX SVN
value of any ACM that is expected to be launched by the OS or the VMM.
These interfaces are provided through a read-only MSR called the IA32_SGX_SVN_STATUS MSR (MSR address
500h). The IA32_SGX_SVN_STATUS MSR has the format shown in Table 42-7.

OS/VMM that wishes to launch an architectural ACM such as SINIT is expected to read the
IA32_SGX_SVN_STATUS MSR. If the Intel SGX SVN value reported in the corresponding component of the
IA32_SGX_SVN_STATUS is greater than the Intel SGX SVN value in the ACM's header, and if bit 0 of
IA32_SGX_SVN_STATUS is 1, then the OS/VMM should not launch that version of the ACM. It should obtain an
updated version of the ACM either from the BIOS or from an external resource. If either the Intel SGX SVN of the
ACM is greater than the value reported by IA32_SGX_SVN_STATUS, or the lock bit in the
IA32_SGX_SVN_STATUS is not set, then the OS/VMM can safely launch the ACM. However, OSVs/VMMs are
strongly advised to update their version of the ACM any time they detect that the Intel SGX SVN of the ACM
carried by the OS/VMM is lower than that reported by IA32_SGX_SVN_STATUS MSR, irrespective of the setting of
the lock bit.

42.13 INTERACTIONS WITH CACHING OF LINEAR-ADDRESS TRANSLATIONS
Entering and exiting an enclave causes the logical processor to flush all the global linear-address context as well
as the linear-address context associated with the current VPID and PCID. The MONITOR FSM is also cleared.

Table 42-7. Layout of the IA32_SGX_SVN_STATUS MSR
Bit Position Name ACM Module ID Value

0 Lock N.A. • If 1, indicates that a non-faulting Intel SGX instruction
has been executed, consequently, launching a properly
signed ACM but with Intel SGX SVN value less than the
BIOS specified Intel SGX SVN threshold would lead to an
TXT shutdown.

• If 0, indicates that the processor will allow a properly
signed ACM to launch irrespective of the Intel SGX SVN
value of the ACM.

15:1 RSVD N.A. 0

23:16 SGX_SVN_SINIT SINIT ACM • If CPUID.01H:ECX.SMX =1, this field reflects the
expected threshold of Intel SGX SVN for the SINIT ACM.

• If CPUID.01H:ECX.SMX =0, this field is reserved (0).
63:24 RSVD N.A. 0

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 466

42.14 INTERACTIONS WITH INTEL® TRANSACTIONAL SYNCHRONIZATION
EXTENSIONS (INTEL® TSX)

1. ENCLU or ENCLS instructions inside an HLE region will cause the flow to be aborted and restarted non-specula-
tively. ENCLU or ENCLS instructions inside an RTM region will cause the flow to be aborted and transfer control to
the fallback handler.
2. If XBEGIN is executed inside an enclave, the processor does NOT check whether the address of the fallback
handler is within the enclave.
3. If an RTM transaction is executing inside an enclave and there is an attempt to fetch an instruction outside the
enclave, the transaction is aborted and control is transferred to the fallback handler. No #GP is delivered.
4. If an RTM transaction is executing inside an enclave and there is a data access to an address within the enclave
that denied due to EPCM content (e.g., to a page belonging to a different enclave), the transaction is aborted and
control is transferred to the fallback handler. No #GP is delivered.
5. If an RTM transaction executing inside an enclave aborts and the address of the fallback handler is outside the
enclave, a #GP is delivered after the abort (EIP reported is that of the fallback handler).

42.14.1 HLE and RTM Debug
RTM debug will be suppressed on opt-out enclave entry. After opt-out entry, the logical processor will behave as if
IA32_DEBUG_CTL[15]=0. Any #DB detected inside an RTM transaction region will just cause an abort with no
exception delivered. After opt-in entry, if either DR7[11] = 0 OR IA32_DEBUGCTL[15] = 0, any #DB or #BP
detected inside an RTM transaction region will just cause an abort with no exception delivered. After opt-in entry,
if DR7[11] = 1 AND IA32_DEBUGCTL[15] = 1, any #DB or #BP detected inside an RTM translation will terminate
speculative execution, set RIP to the address of the XBEGIN instruction, and be delivered as #DB (any #BP is
converted to #DB) - imply an Intel SGX AEX. DR6[16] will be cleared, indicating RTM debug (if the #DB causes a
VM exit, DR6 is not modified but bit 16 of the pending debug exceptions field in the VMCS will be set).

42.15 INTEL® SGX INTERACTIONS WITH S STATES
Whenever an Intel SGX enabled processor leaves the S0 or S1 state for S2-S5 state, enclaves are destroyed. This
is due to the EPC being destroyed when power down occurs.

42.16 INTEL® SGX INTERACTIONS WITH MACHINE CHECK ARCHITECTURE (MCA)

42.16.1 Interactions with MCA Events
All architecturally visible machine check events (#MC and CMCI) that are detected while inside an enclave cause
an asynchronous enclave exit.
Any machine check exception (#MC) that occurs after Intel SGX is first enables causes Intel SGX to be disabled,
(CPUID.SGX_Leaf.0:EAX[SGX1] == 0). It cannot be enabled until after the next reset.

42.16.2 Machine Check Enables (IA32_MCi_CTL)
All supported IA32_MCi_CTL bits for all the machine check banks must be set for Intel SGX to be available
(CPUID.SGX_Leaf.0:EAX[SGX1] == 1). Any act of clearing bits from '1 to '0 in any of the IA32_MCi_CTL register
may disable Intel SGX (set CPUID.SGX_Leaf.0:EAX[SE1] to 0) until the next reset.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 467

42.16.3 CR4.MCE
CR4.MCE can be set or cleared with no interactions with Intel SGX.

42.17 INTEL® SGX INTERACTIONS WITH PROTECTED MODE VIRTUAL
INTERRUPTS

ENCLS[EENTER] modifies neither EFLAGS.VIP nor EFLAGS.VIF.
ENCLS[ERESUME] loads EFLAGS in a manner similar to that of an execution of IRET with CPL = 3. This means that
ERESUME modifies neither EFLAGS.VIP nor EFLAGS.VIF regardless of the value of the EFLAGS image in the SSA
frame.
AEX saves EFLAGS.VIP and EFLAGS.VIF unmodified into the EFLAGS image in the SSA frame. AEX modifies
neither EFLAGS.VIP nor EFLAGS.VIF after saving EFLAGS.

If CR4.PVI = 1, CPL = 3, EFLAGS.VM = 0, IOPL < 3, EFLAGS.VIP = 1, and EFLAGS.VIF = 0, execution of STI
causes a #GP fault. In this case, STI modifies neither EFLAGS.IF nor EFLAGS.VIF. This behavior applies without
change within an enclave (where CPL is always 3). Note that, if IOPL = 3, STI always sets EFLAGS.IF without
fault; CR4.PVI, EFLAGS.VIP, and EFLAGS.VIF are neither consulted nor modified in this case.

...

32. New Chapter 43, New Volume 3D
A new chapter, Chapter 43, has been added to the new volume: Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3D: System Programming Guide, Part 4.

--

...
CHAPTER 43

ENCLAVE CODE DEBUG AND PROFILING

Intel® SGX is architected to provide protection for production enclaves and permit enclave code developers to use
an SGX-aware debugger to effectively debug a non-production enclave (debug enclave). Intel SGX also allows a
non-SGX-aware debugger to debug non-enclave portions of the application without getting confused by enclave
instructions.

43.1 CONFIGURATION AND CONTROLS

43.1.1 Debug Enclave vs. Production Enclave
The SECS of each enclave provides a bit, SECS.ATTRIBUTES.DEBUG, indicating whether the enclave is a debug
enclave (if set) or a production enclave (if 0). If this bit is set, software outside the enclave can use EDBGRD/
EDBGWR to access the EPC memory of the enclave. The value of DEBUG is not included in the measurement of
the enclave and therefore doesn't require a special SIGSTRUCT to be generated for this matter.
The ATTRIBUTES field in the SECS is reported in the enclave's attestation, and is included in the key derivation for
the enclave secrets that were protected by the enclave using Intel SGX keys when it ran as a production enclave

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 468

will not be accessible by the debug enclave. A debugger needs to be aware that special debug content might be
required for a debug enclave to run in a meaningful way.
EPC memory belonging to a debug enclave can be accessed via the EDBGRD/EDBGWR leaf functions (see Section
41.4), while that belonging to a non-debug enclave cannot be accessed by these leaf functions.

43.1.2 Tool-chain Opt-in
The TCS.FLAGS.DBGOPTIN bit controls interactions of certain debug and profiling features with enclaves,
including code/data breakpoints, TF, RF, monitor trap flag, BTF, LBRs, BTM, BTS, and performance monitoring.
This bit is forced to zero when EPC pages are added via EADD. A debugger can set this bit via EDBGWR to the TCS
of a debug enclave.
An enclave entry through a TCS with the TCS.FLAGS.DBGOPTIN set to 0 is called an opt-out entry. Conversely,
an enclave entry through a TCS with TCS.FLAGS.DBGOPTIN set to 1 is called an opt-in entry.

43.2 SINGLE STEP DEBUG

43.2.1 Single Stepping Requirements
The following requirements are identified for the single-stepping architecture:
• The privileged Intel SGX instruction ENCLS must exhibit legacy single-stepping behavior.
• If a debugger is not debugging an enclave, then the enclave should appear as a “giant instruction” to the

debugger.
• The architecture must allow an SGX-capable debugger and a debug enclave to single-step within an enclave

that it wants to debug in a fashion that is consistent with the IA32/Intel 64 legacy prior to the introduction of
Intel SGX.

43.2.2 Single Stepping ENCLS Instruction Leafs
If the RFLAGS.TF bit is set at the beginning of ENCLS, then a single-step debug exception is pending on the
instruction boundary immediately after the ENCLS instruction. Additionally, if the instruction is invoked from a
VMX guest, and if the monitor trap flag is asserted at the time of the time of invocation, then an MTF VM exit is
pending on the instruction boundary immediately after the instruction.

43.2.3 Single Stepping ENCLU Instruction Leafs
The interactions of the unprivileged Intel SGX instruction ENCLU are leaf dependent.
An enclave entry via EENTER/ERESUME leaf functions of the ENCLU, in certain cases, may clear the RFLAGS.TF
bit, and suppress the monitor trap flag. In such situations, an exit from the enclave, either via the EEXIT leaf func-
tion or via an AEX restores the RFLAGS.TF bit and effectiveness of the monitor trap flag. The details of this
clearing/suppression and the exact pending of single stepping events across EENTER/ERESUME/EEXIT/AEX are
covered in detail in Section 43.2.4.
If the RFLAGS.TF bit is set at the beginning of EREPORT or EGETKEY leafs, then a single-step debug exception is
pending on the instruction boundary immediately after the ENCLU instruction. Additionally, if the instruction is
invoked from a VMX guest, and if the monitor trap flag is asserted at the time of invocation, and if the monitor trap
flag is not suppressed by the preceding enclave entry, then an MTF VM exit is pending on the instruction boundary
immediately after the instruction.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 469

Consistent with the IA32 and Intel® 64 architectures, a pending MTF VM exit takes priority over a pending debug
exception. Additionally, if an SMI, an INIT, or an #MC is received on the same instruction boundary, then that
event takes priority over both the pending MTF VM exit and the pending debug exception. In such a situation, the
pending MTF VM exit and/or pending debug exception are handled in a manner consistent with the IA32 and Intel
64 architectures.
If the instruction under consideration results in a fault, then the control flow goes to the fault handler, and no
single-step debug exception is asserted. In such a situation, if the instruction is executed from a VMX guest, and
if the VMM has asserted the monitor trap flag, then an MTF VM exit is pending after the delivery of the fault
through the IDT (i.e., before the first instruction of the OS handler). If a VM exit occurs before reaching that
boundary, then the MTF VM exit is lost.

43.2.4 Single-stepping Enclave Entry with Opt-out Entry

43.2.4.1 Single Stepping without AEX
Figure 43-1 shows the most common case for single-stepping after an opt-out entry.

In this scenario, if the RFLAGS.TF bit is set at the time of the enclave entry, then a single step debug exception is
pending on the instruction boundary after EEXIT. Additionally, if the enclave is executing in a VMX guest, and if the
monitor trap flag is asserted at the time of the enclave entry, then an MTF VM exit is pending on the instruction
boundary after EEXIT.
The value of the RFLAGS.TF bit at the end of EEXIT is same as the value of RFLAGS.TF at the time of the enclave
entry. Similarly, if the enclave is executing inside a VMX guest, then the value of the monitor trap flag after EEXIT
is same as the value of that control at the time of the enclave entry.
Consistent with the IA32 and Intel 64 architectures, MTF VM exit, if pending, takes priority over a pending debug
exception. If an SMI, an INIT, or an MC# is received on the same instruction boundary, then that event takes
priority over both the pending MTF VM exit and the pending debug exception. In such a situation, the pending MTF
VM exit and/or pending debug exception are handled in a manner consistent with the IA32 and Intel 64 architec-
ture.

Figure 43-1. Single Stepping with Opt-out Entry - No AEX

SMI

EENTER

Inst1

RFLAGS.TF

VMCS.MTF

ERESUME
Inst2 Inst3 EEXIT Inst4

TF/MTF

Handler

Higher Priority

Handler

INIT
#MCSingle-Step #DB Pending

MTF VM Exit Pending

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 470

43.2.4.2 Single Step Preempted by AEX due to Non-SMI Event
Figure 43-2 shows the interaction of single stepping with AEX due to a non-SMI event after an opt-out entry.

In this scenario, if the enclave is executing in a VMX guest, and if the monitor trap flag is asserted at the time of
the enclave entry, then an MTF VM exit is pending on the instruction boundary after the delivery of the AEX.
Consistent with the IA32 and Intel 64 architectures, if another VM exit happens before reaching that instruction
boundary, the MTF VM exit is lost.
The value of the RFLAGS.TF bit at the end of AEX is same as the value of RFLAGS.TF at the time of the enclave
entry. Also, if the enclave is executing inside a VMX guest, then the value of the monitor trap flag after AEX is the
same as the value of that control at the time of the enclave entry.

43.2.5 RFLAGS.TF Treatment on AEX
When an opt-in enclave takes an AEX, RFLAGS.TF passes unmodified into synthetic state, and is saved as
RFLAGS.TF=0 in the GPR portion of the SSA. For opt-out entry, the external value of TF is saved in CR_SAVE_TF,
and TF is then cleared. For more detail see EENTER and ERESUME in Chapter 5.

43.2.6 Restriction on Setting of TF after an Opt-out Entry
From an opt-out EENTER or ERESUME until the next enclave exit, enclave is not allowed to set RFLAGS.TF. In such
a situation, the POPF instruction forces RFLAGS.TF to 0 if the enclave was entered through TCS with
DBGOPTIN=0.

43.2.7 Trampoline Code Considerations
Any AEX from the enclave which results in the RFLAGS.TF =1 on the reporting stack will result in a single-step
#DB after the first instruction of the trampoline code if the trampoline is entered using the IRET instruction.

Figure 43-2. Single Stepping with Opt-out Entry -AEX Due to Non-SMI Event Before Single-Step Boundary

Event Inside Enclave

EENTER

Inst1

RFLAGS.TF

VMCS.MTF

ERESUME
Inst2 Inst3 EEXIT Inst4

TF/MTF

Handler

AEX

Handler

Single-Step #DB Pending

MTF VM Exit Pending

AEX

Higher Priority

Handler

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 471

43.3 CODE AND DATA BREAKPOINTS

43.3.1 Breakpoint Suppression
On an opt-out entry into an enclave, all code and data breakpoints that overlap with the ELRANGE are
suppressed. On any entry (either opt-in or opt-out) into an enclave, all code breakpoints that do not overlap with
ELRANGE are also suppressed.

43.3.2 Breakpoint Match Reporting during Enclave Execution
The processor does not report any new matches on debug breakpoints that are suppressed on enclave entry.
However, the processor does not clear any bits in DR6 that were already set at the time of the enclave entry.
Intel SGX architecture specifically forbids reporting of silent matches on any debug breakpoints that overlap with
ELRANGE after an opt-out entry.

43.3.3 Reporting of Code Breakpoint on Next Instruction on a Debug Trap
If execution in an enclave encounters a single-step trap or an enabled data breakpoint, the logical processor
performs an AEX. Following the AEX, the logical processor checks the new instruction pointer (the AEP address)
against any code breakpoints programmed in DR0-DR3. Any matches are reported to software.
If execution in an enclave encounters an enabled code breakpoint, the logical processor checks the current
instruction pointer (within the enclave) against any code breakpoints programmed in DR0-DR3. This checking for
code breakpoints occurs before the AEX, the Intel SGX breakpoint-suppression architecture applies. Following
this, the logical processor performs an AEX, after which any breakpoints matched earlier are reported to software.

43.3.4 RFLAGS.RF Treatment on AEX
RF is always set to 0 in synthetic state. This is because ERESUME after AEX is a new execution attempt.
RF value saved on SSA is the same as what would have been saved on stack in the non-SGX case. AEXs due to
interrupts, traps, and code breakpoints save RF unmodified into SSA, while AEXs due to other faults save RF as 1
in the SSA.

43.3.5 Breakpoint Matching in Intel® SGX Instruction Flows
None of the implicit accesses made by Intel SGX instructions to EPC regions generate data breakpoints. Explicit
accesses made by ENCLS[ECREATE], ENCLS[EADD], ENCLS[EEXTEND], ENCLS[EINIT], ENCLS[EREMOVE],
ENCLS[ETRACK], ENCLS[EBLOCK], ENCLS[EPA], ENCLS[EWB], ENCLS[ELD], ENCLS[EDBGRD],
ENCLS[EDBGWR], ENCLU[EENTER], and ENCLU[ERESUME] to the EPC parameters do not fire any data break-
points.
Explicit accesses made by the remaining Intel SGX instructions (ENCLU[EGETKEY] and ENCLU[EREPORT]),
trigger precise data breakpoints for their EPC operands. It should also be noted that all Intel SGX instructions
trigger precise data breakpoints for their non-EPC operands.
After an opt-out entry, ENCLU[EGETKEY] and ENCLU[EREPORT] do not fire any of the data breakpoints that were
suppressed as a part of the enclave entry.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 472

43.4 INT3 CONSIDERATION

43.4.1 Behavior of INT3 inside an Enclave
Inside an enclave, INT3 delivers a fault-class exception. However, the vector delivered as a result of executing the
instruction depends on the manner in which the enclave was entered. Following opt-out entry, the instruction
delivers #UD. Following opt-in entry, INT3 delivers #BP.
Since the event is a fault-class exception, the delivery flow of the exception does not check CPL against the DPL
in the IDT gate. (Normally, delivery of INT3 generates a #GP if CPL is greater than the DPL field in IDT gate 3.)
Additionally, the RIP saved in the SSA is always that of the INT3 instruction. The RIP saved on the stack/VMCS is
that of the trampoline code as specified by the AEX architecture.
If execution of INT3 in an enclave causes a VM exit, the event type in the VM-exit interruption information field
indicates a hardware exception (type 3; not a software exception with type 6) and the VM-exit instruction length
field is saved as zero.

43.4.2 Debugger Considerations
The INT3 is always fault-like inside an enclave. Consequently, the debugger must not decrement SSA.RIP for #BP
coming from an enclave. INT3 will result in #UD, if the debugger is not attached to the enclave.

43.4.3 VMM Considerations
As described above, INT3 executed by enclave delivers #BP with “interruption type” of 3. This behavior will not
cause any problems for VMMs that obtain VM-entry interruption information from appropriate VMCS field (as
recommended in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C), and those VMMs
will continue to work seamlessly.
VMMs that fabricate the VM-entry interruption information based on the interruption vector need additional
enabling. Specifically, such VMMs should be modified to use injection type of 3 (instead of 6) when they see inter-
ruption vector 3 along with the VMCS “Enclave Interruption” bit set.

43.5 BRANCH TRACING

43.5.1 BTF Treatment
Any single-step traps pending after EENTER trigger BTF exception, as EENTER is considered a branch instruction.
Additionally, any single-step traps pending after EEXIT trigger BTF exception, as EEXIT is also considered a branch
instruction. ERESUME does not trigger BTF traps. An AEX does not trigger BTF or TF traps.

43.5.2 LBR Treatment

43.5.2.1 LBR Stack on Opt-in Entry
An opt-in enclave entry does not change the behavior of IA32_DEBUGCTL.LBR bit. Both enclave entry and enclave
exit push a record on LBR stack. EENTER/ERESUME with TCS.FLAGS.DBGOPTIN=1, inserts a new LBR record on
the LBR stack. The MSR_LASTBRANCH_n_FROM_IP of this record holds linear address of the EENTER/ERESUME

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 473

instruction, while MSR_LASTBRANCH_n_TO_IP of this record holds linear address of EENTER/ERESUME destina-
tion.
On EEXIT a new LBR record is pushed on the LBR stack. The MSR_LASTBRANCH_n_FROM_IP of this record holds
linear address of the EEXIT instruction, while MSR_LASTBRANCH_n_TO_IP of this record holds the linear address
of EEXIT destination.
On AEX a new LBR record is pushed on the LBR stack. The MSR_LASTBRANCH_n_FROM_IP of this record holds
RIP saved in the SSA, while MSR_LASTBRANCH_n_TO_IP of this record holds RIP of the linear address of the AEP.
Additionally, for every branch inside the enclave, one record each is pushed on LBR stack.
Figure 43-3 shows an example of LBR stack manipulation after an opt-in entry. Every arrow in this picture indi-
cates a branch record pushed on the LBR stack. The “From IP” of the branch record contains the linear address of
the instruction located at the start of the arrow, while the “To IP” of the branch record contains the linear address
of the instruction at the end of the arrow.

43.5.2.2 LBR Stack on Opt-out Entry
An opt-out entry into an enclave suppresses IA32_DEBUGCTL.LBR bit, and enclave exit after an opt-out entry un-
suppresses the IA32_DEBUGCTL.LBR bit.
Opt-out entry into an enclave does not push any record on LBR stack.
If IA32_DEBUGCTL.LBR is set at the time of enclave entry, then EEXIT following such an enclave entry pushes one
record on LBR stack. The MSR_LASTBRANCH_n_FROM_IP of such record holds the linear address of the instruc-
tion that took the logical processor into the enclave, while the MSR_LASTBRANCH_n_TO_IP of such record holds
linear address of the destination of EEXIT. Additionally, if IA32_DEBUGCTL.LBR is set at the time of enclave entry,
then an AEX after such an entry pushes one record on LBR stack, before pushing record for the event causing the
AEX. The MSR_LASTBRANCH_n_FROM_IP of the new record holds linear address of the instruction that took the
LP into the enclave, while MSR_LASTBRANCH_n_TO_IP of the new record holds linear address of the AEP. If the

Figure 43-3. LBR Stack Interaction with Opt-in Entry

Inst1

BR2 Inst3

EEXIT

Inst4

AEP

EENTER

Inst4

IRET

OS

Inst4

AEP

AEP

ERESUME

BR5 Inst6

Inst7

Fault

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 474

event causing AEX pushes a record on LBR stack, then the MSR_LASTBRANCH_n_FROM_IP for that record holds
linear address of the AEP.
Figure 43-4 shows an example of LBR stack manipulation after an opt-out entry. Every arrow in this picture indi-
cates a branch record pushed on the LBR stack. The “From IP” of the branch record contains the linear address of
the instruction located at the start of the arrow, while the “To IP” of the branch record contains the linear address
of the instruction at the end of the arrow.

43.5.2.3 Mispredict Bit, Record Type, and Filtering
All branch records resulting from Intel SGX instructions/AEXs are reported as predicted branches, and conse-
quently, bit 63 of MSR_LASTBRANCH_n_FROM_IP for such records is set. Branch records due to these Intel SGX
operations are always non-HLE/non-RTM records.
For LBR filtering, EENTER, ERESUME, EEXIT, and AEX are considered to be far branches. Consequently, bit 8 in
MSR_LBR_SELECT controls filtering of the new records introduced by Intel SGX.

43.6 INTERACTION WITH PERFORMANCE MONITORING

43.6.1 IA32_PERF_GLOBAL_STATUS Enhancement
On processors supporting Intel SGX, the IA32_PERF_GLOBAL_STATUS MSR provides a bit indicator, known as
“Anti Side-channel Interference” (ASCI) at bit position 60. If this bit is 0, the performance monitoring data in
various performance monitoring counters are accumulated normally as defined by relevant architectural/microar-
chitectural conditions associated with the eventing logic. If the ASCI bit is set, the contents in various perfor-

Figure 43-4. LBR Stack Interaction with Opt-out Entry

Inst1

BR2 Inst3

EEXIT

Inst4

AEP

EENTER

IRET

OS

Inst4

AEP

AEP

ERESUME

BR5 Inst6

Inst7

Fault

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 475

mance monitoring counters can be affected by the direct or indirect consequence of Intel SGX protection of
enclave code executing in the processor.

43.6.2 Performance Monitoring with Opt-in Entry
An opt-in enclave entry allow performance monitoring eventing logic to observe the contribution of enclave code
executing in the processor. Thus the contents of performance monitoring counters does not distinguish between
contribution originating from enclave code or otherwise. All counters, events, precise events, etc. continue to
work as defined in the IA32/Intel 64 Software Developer Manual. Consequently, bit 60 of
IA32_PERF_GLOBAL_STATUS MSR is always cleared.

43.6.3 Performance Monitoring with Opt-out Entry
In general, performance monitoring activities are suppressed when entering an opt-out enclave. This applies to
all thread-specific, configured performance monitoring, except for the cycle-counting fixed counter,
IA32_FIXED_CTR1 and IA32_FIXED_CTR2. Upon entering an opt-out enclave, IA32_FIXED_CTR0, IA32_PMCx
will stop accumulating counts. Additionally, if PEBS is configured to capture PEBS record for this thread, PEBS
record generation will also be suppressed.
Performance monitoring on the sibling thread may also be affected. Any one of IA32_FIXED_CTRx or IA32_PMCx
on the sibling thread configured to monitor thread-specific eventing logic with AnyThread =1 is demoted to count
only MyThread while an opt-out enclave is executing on the other thread.

43.6.4 Enclave Exit and Performance Monitoring
When a logical processor exits an enclave, either via ENCLU[EEXIT] or via AEX, all performance monitoring
activity (including PEBS) on that logical processor that was suppressed is unsuppressed.
Any counters that were demoted from AnyThread to MyThread on the sibling thread are promoted back to
AnyThread.

43.6.5 PEBS Record Generation on Intel® SGX Instructions
All leaf functions of the ENCLS instruction report “Eventing RIP” of the ENCLS instruction if a PEBS record is gener-
ated at the end of the instruction execution. Additionally, the EGETKEY and EREPORT leaf functions of the ENCLU
instruction report “Eventing RIP” of the ENCLU instruction if a PEBS record is generated at the end of the instruc-
tion execution.
The behavior of EENTER and ERESUME leaf functions of the ENCLU instruction depends on whether these leaf
functions are performing an opt-in entry or an opt-out entry. If these leaf functions are performing an opt-in entry
report “Eventing RIP” of the ENCLU instruction if a PEBS record is generated at the end of the instruction execu-
tion. On the other hand, if these leaf functions are performing an opt-out entry, then these leaf functions result in
PEBS being suppressed, and no PEBS record is generated at the end of these instructions.
The behavior of the EEXIT leaf function is as follows. A PEBS record is generated if there is a PEBS event pending
at the end of EEXIT (due to a counter overflowing during enclave execution or during EEXIT execution). This PEBS
record contains the architectural state of the logical processor at the end of EEXIT. If the enclave was entered via
an opt-in entry, then this record reports the “Eventing RIP” as the linear address of the ENCLU[EEXIT] instruction
(which is inside ELRANGE of the enclave just exited). If the enclave was entered via an opt-out entry, then the
record reports the “Eventing RIP” as the linear address of the ENCLU[EENTER/ERESUME] instruction that
performed the last enclave entry.
A PEBS record is generated immediately after the AEX if there is a PEBS event pending at the end of AEX (due to
a counter overflowing during enclave execution or during AEX execution). This PEBS record contains the synthetic
state of the logical processor that is established at the end of AEX. For opt-in entry, this record has the

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 476

EVENTING_RIP set to the eventing LIP in the enclave. For opt-out entry, the record has the EVENTING_RIP set to
EENTER/ERESUME LIP.
If the enclave was entered via an opt-in entry, then this record reports the “Eventing RIP” as the linear address in
the SSA of the enclave (a.k.a., the “Eventing LIP” inside the enclave). If the enclave was entered via an opt-out
entry, then the record reports the “Eventing RIP” as the linear address of the ENCLU[EENTER/ERESUME] instruc-
tion that performed the last enclave entry.
It should be noted that a second PEBS event may be pended during the Enclave Exiting Event (EEE). If the PEBS
event is taken at the end of the EEE then the “Eventing RIP” in this second PEBS record is the linear address of the
AEP.

43.6.6 Exception-Handling on PEBS/BTS Loads/Stores after AEX
The OS/VMM is expected to pin the DS area in virtual memory. If the OS does not pin this area in memory, loads/
stores to the PEBS or BTS buffer may incur faults (or other events such as APIC-access VM exit). Usually, such
events are reported to the OS/VMM immediately, and generation of the PEBS/BTS record is skipped.
However, any events that are detected during PEBS/BTS record generation cannot be reported immediately to the
OS/VMM, as an event window is not open at the end of AEX. Consequently, fault-like events such as page faults,
EPT faults, EPT mis-configuration, and accesses to APIC-access page detected on stores to the PEBS/BTS buffer
are not reported, and generation of the PEBS and/or BTS record is aborted (this may leave the buffers in a state
where they have partial PEBS or BTS records), while trap-like events (such as debug traps) are pended until the
next instruction boundary, where they are handled according to the architecturally defined priority. The processor
continues the handling of the Enclave Exiting Event (SMI, NMI, interrupt, exception delivery, VM exit, etc.) after
aborting the PEBS/BTS record generation.

43.6.6.1 Other Interactions with Performance Monitoring
For opt-in entry, EENTER, ERESUME, EEXIT, and AEX are all treated as predicted branches, and any counters that
are counting such branches are incremented by 1 as a part of execution of these instructions. All of these flows
are also counted as instructions, and any counters configured appropriately are incremented by 1.
For opt-out entry, execution inside an enclave is treated as a single predicted branch, and all branch-counting
performance monitoring counters are incremented accordingly. Additionally, such execution is also counted as a
single instruction, and all performance monitoring counters counting instructions are incremented accordingly.
Enclave entry does not affect any performance monitoring counters shared between cores.
EENTER, ERESUME, EEXIT and AEX are classified as far branches.

...

33. Updates to Appendix B, New Volume 3D
Change bars show changes to Appendix B in the new volume: Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3D: System Programming Guide, Part 4.

--

...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 477

B.2.1 64-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index
value in bits 9:1. Table B-4 enumerates the 64-bit control fields.

Table B-4. Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb)
Field Name Index Encoding

Address of I/O bitmap A (full)
000000000B

00002000H

Address of I/O bitmap A (high) 00002001H

Address of I/O bitmap B (full)
000000001B

00002002H

Address of I/O bitmap B (high) 00002003H

Address of MSR bitmaps (full)1
000000010B

00002004H

Address of MSR bitmaps (high)1 00002005H

VM-exit MSR-store address (full)
000000011B

00002006H

VM-exit MSR-store address (high) 00002007H

VM-exit MSR-load address (full)
000000100B

00002008H

VM-exit MSR-load address (high) 00002009H

VM-entry MSR-load address (full)
000000101B

0000200AH

VM-entry MSR-load address (high) 0000200BH

Executive-VMCS pointer (full)
000000110B

0000200CH

Executive-VMCS pointer (high) 0000200DH

TSC offset (full)
000001000B

00002010H

TSC offset (high) 00002011H

Virtual-APIC address (full)2
000001001B

00002012H

Virtual-APIC address (high)2 00002013H

APIC-access address (full)3
000001010B

00002014H

APIC-access address (high)3 00002015H

Posted-interrupt descriptor address (full)4
000001011B

00002016H

Posted-interrupt descriptor address (high)4 00002017H

VM-function controls (full)5
000001100B

00002018H

VM-function controls (high)5 00002019H

EPT pointer (EPTP; full)6
000001101B

0000201AH

EPT pointer (EPTP; high)6 0000201BH

EOI-exit bitmap 0 (EOI_EXIT0; full)7
000001110B

0000201CH

EOI-exit bitmap 0 (EOI_EXIT0; high)7 0000201DH

EOI-exit bitmap 1 (EOI_EXIT1; full)7
000001111B

0000201EH

EOI-exit bitmap 1 (EOI_EXIT1; high)7 0000201FH

EOI-exit bitmap 2 (EOI_EXIT2; full)7
000010000B

00002020H

EOI-exit bitmap 2 (EOI_EXIT2; high)7 00002021H

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 478

...

EOI-exit bitmap 3 (EOI_EXIT3; full)7
000010001B

00002022H

EOI-exit bitmap 3 (EOI_EXIT3; high)7 00002023H

EPTP-list address (full)8
000010010B

00002024H

EPTP-list address (high)8 00002025H

VMREAD-bitmap address (full)9
000010011B

00002026H

VMREAD-bitmap address (high)9 00002027H

VMWRITE-bitmap address (full)9
000010100B

00002028H

VMWRITE-bitmap address (high)9 00002029H

Virtualization-exception information address (full)10

000010101B
0000202AH

Virtualization-exception information address (high)10 0000202BH

XSS-exiting bitmap (full)11

000010110B
0000202CH

XSS-exiting bitmap (high)11 0000202DH

TSC multiplier (full)12

000011001B
00002032H

TSC multiplier (high)12 00002033H
NOTES:

1. This field exists only on processors that support the 1-setting of the “use MSR bitmaps”
VM-execution control.

2. This field exists only on processors that support either the 1-setting of the “use TPR shadow” VM-execution control.
3. This field exists only on processors that support the 1-setting of the “virtualize APIC accesses” VM-execution control.
4. This field exists only on processors that support the 1-setting of the “process posted interrupts” VM-execution control.
5. This field exists only on processors that support the 1-setting of the “enable VM functions” VM-execution control.
6. This field exists only on processors that support the 1-setting of the “enable EPT” VM-execution control.
7. This field exists only on processors that support the 1-setting of the “virtual-interrupt delivery” VM-execution control.
8. This field exists only on processors that support the 1-setting of the “EPTP switching” VM-function control.
9. This field exists only on processors that support the 1-setting of the “VMCS shadowing” VM-execution control.
10.This field exists only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.
11.This field exists only on processors that support the 1-setting of the “enable XSAVES/XRSTORS” VM-execution control.
12.This field exists only on processors that support the 1-setting of the “use TSC scaling” VM-execution control.

Table B-4. Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb) (Contd.)
Field Name Index Encoding

	Revision History
	Preface
	Summary Tables of Changes
	Documentation Changes
	1. Updates to Chapter 1, Volume 1
	2. Updates to Chapter 5, Volume 1
	3. Updates to Chapter 8, Volume 1
	4. Updates to Chapter 13, Volume 1
	5. Updates to Chapter 15, Volume 1
	6. Updates to Chapter 1, Volume 2A
	7. Updates to Chapter 3, Volume 2A
	8. Updates to Chapter 4, Volume 2B
	9. Updates to Appendix B, Volume 2C
	10. Updates to Chapter 1, Volume 3A
	11. Updates to Chapter 2, Volume 3A
	12. Updates to Chapter 4, Volume 3A
	13. Updates to Chapter 6, Volume 3A
	14. Updates to Chapter 8, Volume 3A
	15. Updates to Chapter 11, Volume 3A
	16. Updates to Chapter 15, Volume 3B
	17. Updates to Chapter 18, Volume 3B
	18. Updates to Chapter 19, Volume 3B
	19. Updates to Chapter 24, Volume 3C
	20. Updates to Chapter 25, Volume 3C
	21. Updates to Chapter 26, Volume 3C
	22. Updates to Chapter 27, Volume 3C
	23. Updates to Chapter 29, Volume 3C
	24. Updates to Chapter 35, Volume 3C
	25. Updates to Chapter 36, Volume 3C
	26. New Chapter 37, New Volume 3D
	Chapter 37 Introduction to Intel® Software Guard Extensions
	27. New Chapter 38, New Volume 3D
	Chapter 38 Enclave Access Control and Data Structures
	28. New Chapter 39, New Volume 3D
	Chapter 39 Enclave Operation
	29. New Chapter 40, New Volume 3D
	Chapter 40 Enclave Exiting Events
	30. New Chapter 41, New Volume 3D
	Chapter 41 SGX Instruction Reference
	31. New Chapter 42, New Volume 3D
	Chapter 42 Intel® SGX Interactions with IA32 and Intel® 64 Architecture
	32. New Chapter 43, New Volume 3D
	Chapter 43 Enclave Code Debug and Profiling
	33. Updates to Appendix B, New Volume 3D

