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Preface

This document is an update to the specifications contained in the Affected Documents table below. This
document is a compilation of device and documentation errata, specification clarifications and changes. It is
intended for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents

Document Title Document Number/
Location
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture 253665
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2A: Instruction Set
253666
Reference, A-M
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2B: Instruction Set
253667
Reference, N-Z
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2C: Instruction Set 326018
Reference
Intel® 64 and 1A-32 Architectures Software Developer’'s Manual, Volume 3A: System
- . 253668
Programming Guide, Part 1
Intel® 64 and 1A-32 Architectures Software Developer’'s Manual, Volume 3B: System
- . 253669
Programming Guide, Part 2
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3C: System
- . 326019
Programming Guide, Part 3
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3D: System
- . 332831
Programming Guide, Part 4

Nomenclature

Documentation Changes include typos, errors, or omissions from the current published specifications. These
will be incorporated in any new release of the specification.
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Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and IA-32 architectures. This
table uses the following notations:

Codes Used in Summary Tables

Change bar to left of table row indicates this erratum is either new or modified from the previous version of the
document.

Documentation Changes(Sheet 1 of 2)

No. DOCUMENTATION CHANGES

1 Updates to Chapter 1, Volume 1

2 Updates to Chapter 6, Volume 1

3 Updates to Chapter 8, Volume 1

4 Updates to Chapter 13, Volume 1
5 Updates to Chapter 15, Volume 1
6 Updates to Chapter 1, Volume 2A
7 Updates to Chapter 2, Volume 2A
8 Updates to Chapter 3, Volume 2A
9 Updates to Chapter 4, Volume 2B
10 Updates to Chapter 1, Volume 3A
11 Updates to Chapter 2, Volume 3A
12 Updates to Chapter 4, Volume 3A
13 Updates to Chapter 5, Volume 3A
14 Updates to Chapter 6, Volume 3A
15 Updates to Chapter 10, Volume 3A
16 Updates to Chapter 14, Volume 3B
17 Updates to Chapter 15, Volume 3B
18 Updates to Chapter 16, Volume 3B
19 Updates to Chapter 17, Volume 3B
20 Updates to Chapter 18, Volume 3B
21 Updates to Chapter 19, Volume 3B
22 Updates to Chapter 22, Volume 3C
23 Updates to Chapter 24, Volume 3C
24 Updates to Chapter 25, Volume 3C
25 Updates to Chapter 26, Volume 3C
26 Updates to Chapter 27, Volume 3C
27 Updates to Chapter 28, Volume 3C
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Documentation Changes(Sheet 2 of 2)

No. DOCUMENTATION CHANGES
28 Updates to Chapter 34, Volume 3C
29 Updates to Chapter 35, Volume 3C
30 Updates to Chapter 36, Volume 3C
31 Updates to Chapter 38, Volume 3D
32 Updates to Appendix B, Volume 3D
33 Updates to Appendix C, Volume 3D
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Documentation Changes

1. Updates to Chapter 1, Volume 1

Change bars show changes to Chapter 1 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:

e Pentium® processors

e P6 family processors

e Pentium® 4 processors

e Pentium® M processors

e Intel® Xeon® processors

e Pentium® D processors

e Pentium® processor Extreme Editions

e 64-bit Intel® Xeon® processors

e Intel® Core™ Duo processor

e Intel® Core™ Solo processor

e Dual-Core Intel® Xeon® processor LV

e Intel® Core™2 Duo processor

e Intel® Core™2 Quad processor Q6000 series

o Intel® Xeon® processor 3000, 3200 series

e Intel® Xeon® processor 5000 series

o Intel® Xeon® processor 5100, 5300 series

e Intel® Core™2 Extreme processor X7000 and X6800 series
e Intel® Core™2 Extreme processor QX6000 series
e Intel® Xeon® processor 7100 series

e Intel® Pentium® Dual-Core processor

e Intel® Xeon® processor 7200, 7300 series

e Intel® Core™2 Extreme processor QX9000 and X9000 series
e Intel® Core™2 Quad processor Q9000 series

e Intel® Core™2 Duo processor ES000, T9000 series
e Intel® Atom™ processor family

e Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,
C1000 series are built from 45 nm and 32 nm processes
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e Intel® Core™ i7 processor

e Intel® Core™i5 processor

e Intel® Xeon® processor E7-8800/4800/2800 product families

e Intel® Core™ i7-3930K processor

e 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
e Intel® Xeon® processor E3-1200 product family

e Intel® Xeon® processor E5-2400/1400 product family

e Intel® Xeon® processor E5-4600/2600/1600 product family

e 3rd generation Intel® Core™ processors

e Intel® Xeon® processor E3-1200 v2 product family

o Intel® Xeon® processor E5-2400/1400 v2 product families

e Intel® Xeon® processor E5-4600/2600/1600 v2 product families
o Intel® Xeon® processor E7-8800/4800/2800 v2 product families
e 4th generation Intel® Core™ processors

e The Intel® Core™ M processor family

e Intel® Core™ i7-59xx Processor Extreme Edition

e Intel® Core™ i7-49xx Processor Extreme Edition

e Intel® Xeon® processor E3-1200 v3 product family

o Intel® Xeon® processor E5-2600/1600 v3 product families

e Intel® Xeon® processor 5200, 5400, 7400 series

e 5th generation Intel® Core™ processors

e Intel® Atom™ processor X7-Z8000 and X5-Z8000 series

e Intel® Atom™ processor Z3400 series

e Intel® Atom™ processor Z3500 series

e 6th generation Intel® Core™ processors

e Intel® Xeon® processor E3-1500m v5 product family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® 11, and Pentium® 11l Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processor QX9000, X9000 series, Intel® Core™2 processor EB000 series are based on Enhanced
Intel® Core™ microarchitecture.

The Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, 2500, Z600, Z2000,
C1000 series are based on the Intel® Atom™ microarchitecture and supports Intel 64 architecture.
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The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel®
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32 nm version of
Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and
various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These
processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2
product family and the 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code
name Ivy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Intel® microarchitecture
code name Ivy Bridge-E and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

The Intel® Core™ M processor family and 5th generation Intel® Core™ processors are based on the Intel® micro-
architecture code name Broadwell and support Intel 64 architecture.

The Intel® Xeon® processor E3-1500m v5 product family and 6th generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Skylake and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Intel® microarchitecture code name Haswell-E and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Intel microarchitecture code name Airmont.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Intel
microarchitecture code name Silvermont.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors,
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel®
64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is the
superset of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

2. Updates to Chapter 6, Volume 1

Change bars show changes to Chapter 6 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 12



6.4.1 Call and Return Operation for Interrupt or Exception Handling Procedures

A call to an interrupt or exception handler procedure is similar to a procedure call to another protection level (see
Section 6.3.6, "CALL and RET Operation Between Privilege Levels”). Here, the vector references one of two kinds
of gates in the IDT: an interrupt gate or a trap gate. Interrupt and trap gates are similar to call gates in that
they provide the following information:

e Access rights information

e The segment selector for the code segment that contains the handler procedure

e An offset into the code segment to the first instruction of the handler procedure

The difference between an interrupt gate and a trap gate is as follows. If an interrupt or exception handler is
called through an interrupt gate, the processor clears the interrupt enable (IF) flag in the EFLAGS register to
prevent subsequent interrupts from interfering with the execution of the handler. When a handler is called

through a trap gate, the state of the IF flag is not changed.

Table 6-1 Exceptions and Interrupts
Vector | Mnemonic Description Source
0 #DE Divide Error DIV and IDIV instructions.
1 #DB Debug Any code or data reference.
2 NMI Interrupt Non-maskable external interrupt.
3 #BP Breakpoint INT 3 instruction.
4 #OF Overflow INTO instruction.
5 #BR BOUND Range Exceeded BOUND instruction.
6 #UD Invalid Opcode (UnDefined Opcode) UD2 instruction or reserved opcode.!
7 #NM Device Not Available (No Math Coprocessor) Floating-point or WAIT/FWAIT instruction.
8 #DF Double Fault Any instruction that can generate an exception, an NMI, or
an INTR.
9 #MF CoProcessor Segment Overrun (reserved) Floating-point instruction.?
10 #TS Invalid TSS Task switch or TSS access.
11 #NP Segment Not Present Loading segment registers or accessing system segments.
12 #SS Stack Segment Fault Stack operations and SS register loads.
13 #GP General Protection Any memory reference and other protection checks.
14 #PF Page Fault Any memory reference.
15 Reserved
16 #MF Floating-Point Error (Math Fault) Floating-point or WAIT/FWAIT instruction.
17 #AC Alignment Check Any data reference in memory.3
18 #MC Machine Check Error codes (if any) and source are model dependent.*
19 #XM SIMD Floating-Point Exception SIMD Floating-Point Instruction®
20 #VE Virtualization Exception EPT violations®
21-31 Reserved
32-255 Maskable Interrupts External interrupt from INTR pin or INT ninstruction.
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Table 6-1 Exceptions and Interrupts (Contd.)

Vector ‘ Mnemonic Description ‘ Source
NOTES:
1. The UDZ2 instruction was introduced in the Pentium Pro processor.
2. IA-32 processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.
4. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.
5. This exception was introduced in the Pentium Il processor.
6. This exception can occur only on processors that support the 1-setting of the “EPT-violation #VE" VM-execution control.

3. Updates to Chapter 8, Volume 1

Change bars show changes to Chapter 8 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

8.1.2 x87 FPU Data Registers

The x87 FPU data registers (shown in Figure 8-1) consist of eight 80-bit registers. Values are stored in these
registers in the double extended-precision floating-point format shown in Figure 4-3. When floating-point,
integer, or packed BCD integer values are loaded from memory into any of the x87 FPU data registers, the values
are automatically converted into double extended-precision floating-point format (if they are not already in that
format). When computation results are subsequently transferred back into memory from any of the x87 FPU
registers, the results can be left in the double extended-precision floating-point format or converted back into a
shorter floating-point format, an integer format, or the packed BCD integer format. (See Section 8.2, “"x87 FPU
Data Types,” for a description of the data types operated on by the x87 FPU.)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 14



Data Registers
i 7978 64 63 0
Slgn\
R7 | | Exponent Significand
R6
R5
R4
R3
R2
R1
RO
15 0 47 0
ggg”itsrtoe'r Last Instruction Pointer (FCS:FIP)
Rsetgit:tirr Last Data (Operand) Pointer (FDS:FDP)
Register Opcode

Figure 8-1 x87 FPU Execution Environment

8.1.8 x87 FPU Instruction and Data (Operand) Pointers

The x87 FPU stores pointers to the instruction and data (operand) for the last non-control instruction executed.
These are the x87 FPU instruction pointer and x87 FPU data (operand) pointers; software can save these pointers
to provide state information for exception handlers. The pointers are illustrated in Figure 8-1 (the figure illustrates
the pointers as used outside 64-bit mode; see below).

Note that the value in the x87 FPU data pointer is always a pointer to a memory operand. If the last non-control
instruction that was executed did not have a memory operand, the value in the data pointer is undefined
(reserved). If CPUID.(EAX=07H,ECX=0H):EBX[bit 6] = 1, the data pointer is updated only for x87 non-control
instructions that incur unmasked x87 exceptions.

The contents of the x87 FPU instruction and data pointers remain unchanged when any of the following instruc-
tions are executed: FCLEX/FNCLEX, FLDCW, FSTCW/FNSTCW, FSTSW/FNSTSW, FSTENV/FNSTENYV, FLDENV, and
WAIT/FWAIT.

For all the x87 FPUs and NPXs except the 8087, the x87 FPU instruction pointer points to any prefixes that
preceded the instruction. For the 8087, the x87 FPU instruction pointer points only to the actual opcode.

The x87 FPU instruction and data pointers each consists of an offset and a segment selector:

e The x87 FPU Instruction Pointer Offset (FIP) comprises 64 bits on processors that support IA-32e mode; on
other processors, it offset comprises 32 bits.

e The x87 FPU Instruction Pointer Selector (FCS) comprises 16 bits.

e The x87 FPU Data Pointer Offset (FDP) comprises 64 bits on processors that support IA-32e mode; on other
processors, it offset comprises 32 bits.

e The x87 FPU Data Pointer Selector (FDS) comprises 16 bits.
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The pointers are accessed by the FINIT/FNINIT, FLDENV, FRSTOR, FSAVE/FNSAVE, FSTENV/FNSTENV, FXRSTOR,
FXSAVE, XRSTOR, XSAVE, and XSAVEOPT instructions as follows:

e FINIT/FNINIT. Each instruction clears FIP, FCS, FDP, and FDS.

e FLDENV, FRSTOR. These instructions use the memory formats given in Figures Figure 8-9 through Figure 8-
12:

— For each of FIP and FDP, each instruction loads the lower 32 bits from memory and clears the upper 32
bits.

— If CRO.PE = 1, each instruction loads FCS and FDS from memory; otherwise, it clears them.

e FSAVE/FNSAVE, FSTENV/FNSTENV. These instructions use the memory formats given in Figures Figure 8-9
through Figure 8-12.

— Each instruction saves the lower 32 bits of each FIP and FDP into memory. the upper 32 bits are not saved.

— If CRO.PE = 1, each instruction saves FCS and FDS into memory. If
CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the processor deprecates FCS and FDS; it saves each as
0000H.

— After saving these data into memory, FSAVE/FNSAVE clears FIP, FCS, FDP, and FDS.

e FXRSTOR, XRSTOR. These instructions load data from a memory image whose format depend on operating
mode and the REX prefix. The memory formats are given in Tables 3-52, 3-55, and 3-56 in Chapter 3,
“Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

— Outside of 64-bit mode or if REX.W = 0, the instructions operate as follows:

e For each of FIP and FDP, each instruction loads the lower 32 bits from memory and clears the upper 32
bits.

e Each instruction loads FCS and FDS from memory.

— In 64-bit mode with REX.W = 1, the instructions operate as follows:
e Each instruction loads FIP and FDP from memory.
e Each instruction clears FCS and FDS.

e FXSAVE, XSAVE, and XSAVEOPT. These instructions store data into a memory image whose format depend on
operating mode and the REX prefix. The memory formats are given in Tables 3-52, 3-55, and 3-56 in Chapter
3, “Instruction Set Reference, A-M,” of the Intel® 64 and I1A-32 Architectures Software Developer’s Manual,
Volume 2A.

— Outside of 64-bit mode or if REX.W = 0, the instructions operate as follows:

e Each instruction saves the lower 32 bits of each of FIP and FDP into memory. The upper 32 bits are not
saved.

e Each instruction saves FCS and FDS into memory. If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the
processor deprecates FCS and FDS; it saves each as 0000H.

— In 64-bit mode with REX.W = 1, each instruction saves FIP and FDP into memory. FCS and FDS are not
saved.

8.3 X87 FPU INSTRUCTION SET

The floating-point instructions that the x87 FPU supports can be grouped into six functional categories:
e Data transfer instructions
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e Basic arithmetic instructions
e Comparison instructions

e Transcendental instructions
e Load constant instructions

e x87 FPU control instructions

See Section , "CPUID.EAX=80000001H:ECX.PREFTEHCHWT[bit 8]: if 1 indicates the processor supports the
PREFTEHCHW instruction. CPUID.(EAX=07H, ECX=0H):ECX.PREFTEHCHWT1[bit 0]: if 1 indicates the processor
supports the PREFTEHCHWT1 instruction.,” for a list of the floating-point instructions by category.

The following section briefly describes the instructions in each category. Detailed descriptions of the floating-point
instructions are given in the Intel® 64 and 1A-32 Architectures Software Developer’'s Manual, Volumes 2A, 2B
& 2C.

8.1.10 Saving the x87 FPU’s State with FSTENV/FNSTENV and FSAVE/FNSAVE

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions store x87 FPU state information in memory for use by
exception handlers and other system and application software. The FSTENV/FNSTENV instruction saves the
contents of the status, control, tag, x87 FPU instruction pointer, x87 FPU data pointer, and opcode registers. The
FSAVE/FNSAVE instruction stores that information plus the contents of the x87 FPU data registers. Note that the
FSAVE/FNSAVE instruction also initializes the x87 FPU to default values (just as the FINIT/FNINIT instruction
does) after it has saved the original state of the x87 FPU.

The manner in which this information is stored in memory depends on the operating mode of the processor
(protected mode or real-address mode) and on the operand-size attribute in effect (32-bit or 16-bit). See Figures
Figure 8-9 through Figure 8-12. In virtual-8086 mode or SMM, the real-address mode formats shown in Figure 8-
12 is used. See Chapter 34, "System Management Mode,” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C, for information on using the x87 FPU while in SMM.

The FLDENV and FRSTOR instructions allow x87 FPU state information to be loaded from memory into the x87
FPU. Here, the FLDENYV instruction loads only the status, control, tag, x87 FPU instruction pointer, x87 FPU data
pointer, and opcode registers, and the FRSTOR instruction loads all the x87 FPU registers, including the x87 FPU
stack registers.

32-Bit Protected Mode Format

31 16 15 0
Control Word
Status Word
Tag Word
FPU Instruction Pointer Offset (FIP) 12
00000| Bits 10:0 of opcode | FPU Instruction Pointer Selector | 16
FPU Data Pointer Offset (FDP) 20
‘FPU Data Pointer Selector (FDS) | 24

For instructions that also store x87 FPU data registers, the eight
80-bit registers (R0O-R7) follow the above structure in sequence.

Figure 8-9 Protected Mode x87 FPU State Image in Memory, 32-Bit Format
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32-Bit Real-Address Mode Format

31 16 15 0
Control Word 0
Status Word 4
Tag Word 8
FIP[15:0] 12
000 0| FIP[31:16] | FOP[10:0] 16
| FDP[15:0] 20
0000| FDP[31:16] | 000000000000 |24

For instructions that also store x87 FPU data registers, the eight
80-bit registers (R0-R7) follow the above structure in sequence.

Figure 8-10 Real Mode x87 FPU State Image in Memory, 32-Bit Format

16-Bit Protected Mode Format
15 0

Control Word
Status Word
Tag Word
FIP
FCS
FDP
FDS

o

= 2 00 o AN

N O

Figure 8-11 Protected Mode x87 FPU State Image in Memory, 16-Bit Format

16-Bit Real-Address Mode and

Virtual-8086 Mode Format
15

Control Word
Status Word
Tag Word
FIP[15:0]
FIP[19:16]‘0‘ Bits 10:0 of opcode
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Figure 8-12 Real Mode x87 FPU State Image in Memory, 16-Bit Format
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4. Updates to Chapter 13, Volume 1

Change bars show changes to Chapter 13 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

13.4.1 Legacy Region of an XSAVE Area

The legacy region of an XSAVE area comprises the 512 bytes starting at the area’s base address. It has the same
format as the FXSAVE area (see Section 10.5.1). The XSAVE feature set uses the legacy area for x87 state (state
component 0) and SSE state (state component 1). Table 13-1 illustrates the format of the first 416 bytes of the
legacy region of an XSAVE area.

Table 13-1 Format of the Legacy Region of an XSAVE Area

15 14 13 12 11 10 | 9 8 7 6 5 4 3 2 1 0
FIP[63:48] or F|Eﬁ187:gr2] FIP[31:0] FOP  |Rsvd | FTW| Fsw FCw 0
MXCSR_MASK MXCSR FOPIS3:48] FDEI[]“S% 2 FDP[31:0 16
Reserved STO/MMO 32
Reserved ST1/MM1 48
Reserved ST2/MM2 64
Reserved ST3/MM3 80
Reserved ST4/MM4 96
Reserved ST5/MM5 112
Reserved ST6/MM6 128
Reserved ST7/MM7 144
XMMO 160
XMM1 176
XMM2 192
XMM3 208
XMM4 224
XMMS 240
XMM6 256
XMM7 272
XMM8 288
XMM9 304
XMM10 320
XMM11 336
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Table 13-1 Format of the Legacy Region of an XSAVE Area (Contd.) (Contd.)

15 14 13 12 1 10 9 8 7 6 | s | 4] 32 | 10
XMM12 352
XMM13 368
XMM14 384
XMM15 400

The x87 state component comprises bytes 23:0 and bytes 159:32. The SSE state component comprises
bytes 31:24 and bytes 415:160. The XSAVE feature set does not use bytes 511:416; bytes 463:416 are
reserved.

Section 13.7 through Section 13.9 provide details of how instructions in the XSAVE feature set use the legacy
region of an XSAVE area.

13.5.1 x87 State

Instructions in the XSAVE feature set can manage the same state of the x87 FPU execution environment (x87
state) that can be managed using the FXSAVE and FXRSTOR instructions. They organize all x87 state as a user
state component in the legacy region of the XSAVE area (see Section 13.4.1). This region is illustrated in Table 13-
1; the x87 state is listed below, along with details of its interactions with the XSAVE feature set:

e Bytes 1:0, 3:2, 7:6. These are used for the x87 FPU Control Word (FCW), the x87 FPU Status Word (FSW),
and the x87 FPU Opcode (FOP), respectively.

e Byte 4 is used for an abridged version of the x87 FPU Tag Word (FTW). The following items describe its usage:

— Foreachj, 0 <j<7,XSAVE, XSAVEOPT, XSAVEC, and XSAVES save a 0 into bit j of byte 4 if x87 FPU data
register STj has a empty tag; otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save a 1 into bit j of
byte 4.

— Foreachj, 0 <j<7,XRSTOR and XRSTORS establish the tag value for x87 FPU data register STj as
follows. If bit j of byte 4 is 0, the tag for STj in the tag register for that data register is marked empty
(11B); otherwise, the x87 FPU sets the tag for STj based on the value being loaded into that register (see
below).

e Bytes 15:8 are used as follows:
— If the instruction has no REX prefix, or if REX.W = 0:
e Bytes 11:8 are used for bits 31:0 of the x87 FPU Instruction Pointer Offset (FIP).

e If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 13:12 are used for x87 FPU Instruction Pointer
Selector (FCS). Otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save these bytes as 0000H, and
XRSTOR and XRSTORS ignore them.

e Bytes 15:14 are not used.
— If the instruction has a REX prefix with REX.W = 1, bytes 15:8 are used for the full 64 bits of FIP.
e Bytes 23:16 are used as follows:
— If the instruction has no REX prefix, or if REX.W = 0:
e Bytes 19:16 are used for bits 31:0 of the x87 FPU Data Pointer Offset (FDP).

e If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 21:20 are used for x87 FPU Data Pointer
Selector (FDS). Otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save these bytes as 0000H; and
XRSTOR and XRSTORS ignore them.
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e Bytes 23:22 are not used.
— If the instruction has a REX prefix with REX.W = 1, bytes 23:16 are used for the full 64 bits of FDP.
e Bytes 31:24 are used for SSE state (see Section 13.5.2).

e Bytes 159:32 are used for the registers STO-ST7 (MM0-MM?7). Each of the 8 register is allocated a 128-bit
region, with the low 80 bits used for the register and the upper 48 bits unused.

Xx87 state is XSAVE-managed but the x87 FPU feature is not XSAVE-enabled. The XSAVE feature set can operate
on x87 state only if the feature set is enabled (CR4.0SXSAVE = 1).! Software can otherwise use x87 state even
if the XSAVE feature set is not enabled.

13.5.6 PT State

The register state used by Intel Processor Trace (PT state) comprises the following 9 MSRs: IA32_RTIT_CTL,
IA32_RTIT_OUTPUT_BASE, IA32_RTIT_OUTPUT_MASK_PTRS, IA32_RTIT_STATUS, IA32_RTIT_CR3_MATCH,
IA32_RTIT_ADDRO_A, IA32_RTIT_ADDRO_B, IA32_RTIT_ADDR1_A, and IA32_RTIT_ADDR1_B.2

As noted in Section 13.1, the XSAVE feature set manages PT state as supervisor state component 8. Thus, PT
state is located in the extended region of the XSAVE area (see Section 13.4.3). As noted in Section 13.2,
CPUID.(EAX=0DH,ECX=8):EAX enumerates the size (in bytes) required for PT state. Each of the MSRs is allo-
cated 8 bytes in the state component, with IA32_RTIT_CTL at byte offset 0, IA32_RTIT_OUTPUT_BASE at byte
offset 8, etc. Any locations in the state component at or beyond byte offset 72 are reserved.

PT state is XSAVE-managed but Intel Processor Trace is not XSAVE-enabled. The XSAVE feature set can operate
on PT state only if the feature set is enabled (CR4.0SXSAVE = 1) and has been configured to manage PT state
(IA32_XSS[8] = 1). Software can otherwise use Intel Processor Trace and access its MSRs (using RDMSR and
WRMSR) even if the XSAVE feature set is not enabled or has not been configured to manage PT state.

The following items describe special treatment of PT state by the XSAVES and XRSTORS instructions:

e If XSAVES saves PT state, the instruction clears IA32_RTIT_CTL.TraceEn (bit 0) after saving the value of the
IA32_RTIT_CTL MSR and before saving any other PT state. If XSAVES causes a fault or a VM exit, it restores
IA32_RTIT_CTL.TraceEn to its original value.

e If XSAVES saves PT state, the instruction saves zeroes in the reserved portions of the state component.

e If XRSTORS would restore (or initialize) PT state and IA32_RTIT_CTL.TraceEn = 1, the instruction causes a
general-protection exception (#GP) before modifying PT state.

e If XRSTORS causes an exception or a VM exit, it does so before any modification to IA32_RTIT_CTL.TraceEn
(even if it has loaded other PT state).

13.6 PROCESSOR TRACKING OF XSAVE-MANAGED STATE

The XSAVEOPT, XSAVEC, and XSAVES instructions use two optimization to reduce the amount of data that they
write to memory. They avoid writing data for any state component known to be in its initial configuration (the init
optimization). In addition, if either XSAVEOPT or XSAVES is using the same XSAVE area as that used by the
most recent execution of XRSTOR or XRSTORS, it may avoid writing data for any state component whose config-

1. The processor ensures that XCRO[0] is always 1.

2. These MSRs might not be supported by every processor that supports Intel Processor Trace. Software can use the CPUID instruc-@
tion to discover which are supported; see Section 36.3.1, “Detection of Intel Processor Trace and Capability Enumeration,” of Inte/
64 and IA-32 Architectures Software Developer's Manual, Volume 3C.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 21



uration is known not to have been modified since then (the modified optimization). (XSAVE does not use these
optimizations, and XSAVEC does not use the modified optimization.) The operation of XSAVEOPT, XSAVEC, and
XSAVES are described in more detail in Section 13.9 through Section 13.11.

A processor can support the init and modified optimizations with special hardware that tracks the state compo-
nents that might benefit from those optimizations. Other implementations might not include such hardware; such
a processor would always consider each such state component as not in its initial configuration and as modified
since the last execution of XRSTOR or XRSTORS.

The following notation describes the state of the init and modified optimizations:

e XINUSE denotes the state-component bitmap corresponding to the init optimization. If XINUSE[i] = 0, state
component i is known to be in its initial configuration; otherwise XINUSE[i] = 1. Itis possible for XINUSE[i] to
be 1 even when state component i is in its initial configuration. On a processor that does not support the init
optimization, XINUSE[i] is always 1 for every value of i.

Executing XGETBV with ECX = 1 returns in EDX:EAX the logical-AND of XCRO and the current value of the
XINUSE state-component bitmap. Such an execution of XGETBV always sets EAX[1] to 1 if XCRO[1] = 1 and
MXCSR does not have its RESET value of 1F80H. Section 13.2 explains how software can determine whether
a processor supports this use of XGETBV.

e XMODIFIED denotes the state-component bitmap corresponding to the modified optimization. If
XMODIFIEDIi] = 0, state component i is known not to have been modified since the most recent execution of
XRSTOR or XRSTORS; otherwise XMODIFIED[i] = 1. It is possible for XMODIFIED[i] to be 1 even when state
component i has not been modified since the most recent execution of XRSTOR or XRSTORS. On a processor
that does not support the modified optimization, XMODIFIED[i] is always 1 for every value of i.

A processor that implements the modified optimization saves information about the most recent execution of
XRSTOR or XRSTORS in a quantity called XRSTOR_INFO, a 4-tuple containing the following: (1) the CPL;

(2) whether the logical processor was in VMX non-root operation; (3) the linear address of the XSAVE area; and
(4) the XCOMP_BYV field in the XSAVE area. An execution of XSAVEOPT or XSAVES uses the modified optimization
only if that execution corresponds to XRSTOR_INFO on these four parameters.

This mechanism implies that, depending on details of the operating system, the processor might determine that
an execution of XSAVEOPT by one user application corresponds to an earlier execution of XRSTOR by a different
application. For this reason, Intel recommends the application software not use the XSAVEOPT instruction.

The following items specify the initial configuration each state component (for the purposes of defining the
XINUSE bitmap):

e Xx87 state. x87 state is in its initial configuration if the following all hold: FCW is 037FH; FSW is 0000H; FTW
is FFFFH; FCS and FDS are each 0000H; FIP and FDP are each 00000000_00000000H; each of STO-ST7 is
0000_00000000_00000000H.

e SSE state. In 64-bit mode, SSE state is in its initial configuration if each of XMM0-XMM15 is 0. Outside 64-bit
mode, SSE state is in its initial configuration if each of XMM0-XMM7 is 0. XINUSE[ 1] pertains only to the state
of the XMM registers and not to MXCSR. An execution of XRSTOR or XRSTORS outside 64-bit mode does not
update XMM8-XMM15. (See Section 13.13.)

e AVX state. In 64-bit mode, AVX state is in its initial configuration if each of YMMO_H-YMM15_H is 0. Outside
64-bit mode, AVX state is in its initial configuration if each of YMMO_H-YMM7_H is 0. An execution of XRSTOR
or XRSTORS outside 64-bit mode does not update YMM8_H-YMM15_H. (See Section 13.13.)

< BNDREG state. BNDREG state is in its initial configuration if the value of each of BNDO-BND3 is 0.
< BNDCSR state. BNDCSR state is in its initial configuration if BNDCFGU and BNDCSR each has value 0.
e Opmask state. Opmask state is in its initial configuration if each of the opmask registers k0-k7 is 0.

e ZMM_Hi256 state. In 64-bit mode, ZMM_Hi256 state is in its initial configuration if each of ZMMO_H-
ZMM15_H is 0. Outside 64-bit mode, ZMM_Hi256 state is in its initial configuration if each of ZMMO_H-
ZMM7_H is 0. An execution of XRSTOR or XRSTORS outside 64-bit mode does not update ZMM8_H-
ZMM15_H. (See Section 13.13.)
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e Hil6_ZMM state. In 64-bit mode, Hil6_ZMM state is in its initial configuration if each of ZMM16-ZMM31 is
0. Outside 64-bit mode, Hi1l6_ZMM state is always in its initial configuration. An execution of XRSTOR or
XRSTORS outside 64-bit mode does not update ZMM31-ZMM31. (See Section 13.13.)

e PT state. PT state is in its initial configuration if each of the 9 MSRs is 0.
¢ PKRU state. PKRU state is in its initial configuration if the value of the PKRU is 0.

5. Updates to Chapter 15, Volume 1

Change bars show changes to Chapter 15 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

15.3.7 RTM-Enabled Debugger Support

Any debug exception (#DB) or breakpoint exception (#BP) inside an RTM region causes a transactional abort and,
by default, redirects control flow to the fallback instruction address with architectural state recovered and bit 4 in
EAX set. However, to allow software debuggers to intercept execution on debug or breakpoint exceptions, the RTM
architecture provides additional capability called advanced debugging of RTM transactional regions.

Advanced debugging of RTM transactional regions is enabled if bit 11 of DR7 and bit 15 of the IA32_DEBUGCTL
MSR are both 1. In this case, any RTM transactional abort due to a #DB or #BP causes execution to roll back to
just before the XBEGIN instruction (EAX is restored to the value it had before XBEGIN) and then delivers a #DB.
(A #DB is delivered even if the transactional abort was caused by a #BP.) DR6[16] is cleared to indicate that the
exception resulted from a debug or breakpoint exception inside an RTM region. See also Section 17.3.3, "Debug
Exceptions, Breakpoint Exceptions, and Restricted Transactional Memory (RTM),” of Intel® 64 and I1A-32 Architec-
tures Software Developer’s Manual, Volume 3B.

6. Updates to Chapter 1, Volume 2A

Change bars show changes to Chapter 1 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-M.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:

e Pentium® processors

e P6 family processors

e Pentium® 4 processors

e Pentium® M processors
e Intel® Xeon® processors
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e Pentium® D processors

e Pentium® processor Extreme Editions

e 64-bit Intel® Xeon® processors

e Intel® Core™ Duo processor

e Intel® Core™ Solo processor

e Dual-Core Intel® Xeon® processor LV

e Intel® Core™2 Duo processor

e Intel® Core™2 Quad processor Q6000 series

o Intel® Xeon® processor 3000, 3200 series

e Intel® Xeon® processor 5000 series

e Intel® Xeon® processor 5100, 5300 series

e Intel® Core™2 Extreme processor X7000 and X6800 series
e Intel® Core™2 Extreme processor QX6000 series

e Intel® Xeon® processor 7100 series

e Intel® Pentium® Dual-Core processor

e Intel® Xeon® processor 7200, 7300 series

e Intel® Core™2 Extreme processor QX9000 and X9000 series
e Intel® Core™2 Quad processor Q9000 series

e Intel® Core™2 Duo processor E8000, T9000 series

e Intel® Atom™ processor family

e Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,
C1000 series are built from 45 nm and 32 nm processes

e Intel® Core™ i7 processor

e Intel® Core™i5 processor

e Intel® Xeon® processor E7-8800/4800/2800 product families

e Intel® Core™ i7-3930K processor

e 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
o Intel® Xeon® processor E3-1200 product family

e Intel® Xeon® processor E5-2400/1400 product family

e Intel® Xeon® processor E5-4600/2600/1600 product family

e 3rd generation Intel® Core™ processors

o Intel® Xeon® processor E3-1200 v2 product family

e Intel® Xeon® processor E5-2400/1400 v2 product families

o Intel® Xeon® processor E5-4600/2600/1600 v2 product families
e Intel® Xeon® processor E7-8800/4800/2800 v2 product families
e  4th generation Intel® Core™ processors

e The Intel® Core™ M processor family

e Intel® Core™ i7-59xx Processor Extreme Edition

e Intel® Core™ i7-49xx Processor Extreme Edition

o Intel® Xeon® processor E3-1200 v3 product family
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o Intel® Xeon® processor E5-2600/1600 v3 product families
e Intel® Xeon® processor 5200, 5400, 7400 series

e 5th generation Intel® Core™ processors

e Intel® Atom™ processor X7-Z8000 and X5-Z8000 series

e Intel® Atom™ processor Z3400 series

e Intel® Atom™ processor Z3500 series

e 6th generation Intel® Core™ processors

e Intel® Xeon® processor E3-1500m v5 product family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® 11, and Pentium® 11l Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processor QX9000, X9000 series, Intel® Core™2 processor EB000 series are based on Enhanced
Intel® Core™ microarchitecture.

The Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,
C1000 series are based on the Intel® Atom™ microarchitecture and supports Intel 64 architecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel®
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32 nm version of
Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and
various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These
processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2
product family and the 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code
name Ivy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Intel® microarchitecture
code name Ivy Bridge-E and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

The Intel® Core™ M processor family and 5th generation Intel® Core™ processors are based on the Intel® micro-
architecture code name Broadwell and support Intel 64 architecture.

The Intel® Xeon® processor E3-1500m v5 product family and 6th generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Skylake and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Intel® microarchitecture code name Haswell-E and support Intel 64 architecture.
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The Intel® Atom™ processor Z8000 series is based on the Intel microarchitecture code name Airmont.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Intel
microarchitecture code name Silvermont.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors,
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel®
64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is the
superset of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

7. Updates to Chapter 2, Volume 2A

Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-M.

2.1 INSTRUCTION FORMAT FOR PROTECTED MODE, REAL-ADDRESS MODE,
AND VIRTUAL-8086 MODE

The Intel 64 and IA-32 architectures instruction encodings are subsets of the format shown in Figure 2-1. Instruc-
tions consist of optional instruction prefixes (in any order), primary opcode bytes (up to three bytes), an
addressing-form specifier (if required) consisting of the ModR/M byte and sometimes the SIB (Scale-Index-Base)
byte, a displacement (if required), and an immediate data field (if required).
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2.1.1

Instruction ; ;
Prefixes Opcode ModR/M SIB Displacement Immediate
Prefixes of  1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
1 byte each opcode (if required) (if required) displacement data of
of 1,2, or4 1,2,0r4

(optional)’- 2

bytes or none®

bytes or none®

/

7 65 32

Reg/
Mod | opcode

0 7 6 5 32 0

R/M Scale | Index Base

1. The REX prefix is optional, but if used must be immediately before the opcode; see Section
2.2.1, “REX Prefixes” for additional information.

2. For VEX encoding information, see Section 2.3, “Intel® Advanced Vector Extensions (Intel®
AVX)".

3. Some rare instructions can take an 8B immediate or 8B displacement.

Figure 2-1 Intel 64 and IA-32 Architectures Instruction Format

Instruction Prefixes

Instruction prefixes are divided into four groups, each with a set of allowable prefix codes. For each instruction, it
is only useful to include up to one prefix code from each of the four groups (Groups 1, 2, 3, 4). Groups 1 through
4 may be placed in any order relative to each other.

e Groupl

— Lock and repeat prefixes:

LOCK prefix is encoded using FOH.

REPNE/REPNZ prefix is encoded using F2H. Repeat-Not-Zero prefix applies only to string and input/
output instructions. (F2H is also used as a mandatory prefix for some instructions.)

REP or REPE/REPZ is encoded using F3H. The repeat prefix applies only to string and input/output
instructions. F3H is also used as a mandatory prefix for POPCNT, LZCNT and ADOX instructions.

— Bound prefix is encoded using F2H if the following conditions are true:

CPUID.(EAX=07H, ECX=0):EBX.MPX[bit 14] is set.
BNDCFGU.EN and/or IA32_BNDCFGS.EN is set.

When the F2 prefix precedes a near CALL, a near RET, a near JMP, or a near Jcc instruction (see
Chapter 16, “Intel® MPX,” of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 1).

e Group 2

— Segment override prefixes:

2EH—CS segment override (use with any branch instruction is reserved)

36H—SS segment override prefix (use with any branch instruction is reserved)
3EH—DS segment override prefix (use with any branch instruction is reserved)
26H—ES segment override prefix (use with any branch instruction is reserved)

64H—FS segment override prefix (use with any branch instruction is reserved)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27



e 65H—GS segment override prefix (use with any branch instruction is reserved)
— Branch hints!:

e 2EH—Branch not taken (used only with Jcc instructions)
e 3EH—Branch taken (used only with Jcc instructions)

e Group 3
e Operand-size override prefix is encoded using 66H (66H is also used as a mandatory prefix for some

instructions).

e Group 4

e 67H—Address-size override prefix

The LOCK prefix (FOH) forces an operation that ensures exclusive use of shared memory in a multiprocessor envi-
ronment. See "LOCK—Assert LOCK# Signal Prefix” in Chapter 3, “Instruction Set Reference, A-M,” for a descrip-
tion of this prefix.

Repeat prefixes (F2H, F3H) cause an instruction to be repeated for each element of a string. Use these prefixes

only with string and I/0 instructions (MOVS, CMPS, SCAS, LODS, STOS, INS, and OUTS). Use of repeat prefixes
and/or undefined opcodes with other Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable
behavior.

Some instructions may use F2H,F3H as a mandatory prefix to express distinct functionality.

Branch hint prefixes (2EH, 3EH) allow a program to give a hint to the processor about the most likely code path
for a branch. Use these prefixes only with conditional branch instructions (Jcc). Other use of branch hint prefixes
and/or other undefined opcodes with Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable
behavior.

The operand-size override prefix allows a program to switch between 16- and 32-bit operand sizes. Either size can
be the default; use of the prefix selects the non-default size.

Some SSE2/SSE3/SSSE3/SSE4 instructions and instructions using a three-byte sequence of primary opcode
bytes may use 66H as a mandatory prefix to express distinct functionality.

Other use of the 66H prefix is reserved; such use may cause unpredictable behavior.

The address-size override prefix (67H) allows programs to switch between 16- and 32-bit addressing. Either size
can be the default; the prefix selects the non-default size. Using this prefix and/or other undefined opcodes when
operands for the instruction do not reside in memory is reserved; such use may cause unpredictable behavior.

8. Updates to Chapter 3, Volume 2A

Change bars show changes to Chapter 3 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-M.

1. Some earlier microarchitectures used these as branch hints, but recent generations have not and they are reserved for future hint
usage.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 28



CPUID—CPU Identification

Opcode Instruction Op/ 64-Bit Compat/ Description
En  Mode Leg Mode
OF A2 CPUID NP  Valid Valid Returns processor identification and feature

information to the EAX, EBX, ECX, and EDX
registers, as determined by input entered in
EAX (in some cases, ECX as well).

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can
set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction
operates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.! The
instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well).
For example, the following pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value
and the Vendor Identification String in the appropriate registers:

MOV EAX, OOH
CPUID

Table 3-17 shows information returned, depending on the initial value loaded into the EAX register.

Two types of information are returned: basic and extended function information. If a value entered for CPUID.EAX
is higher than the maximum input value for basic or extended function for that processor then the data for the
highest basic information leaf is returned. For example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = 0O5H (* Returns MONITOR/MWAIT leaf. *)

CPUID.EAX = OAH (* Returns Architectural Performance Monitoring leaf. *)

CPUID.EAX = OBH (* Returns Extended Topology Enumeration leaf. *)

CPUID.EAX = OCH (* INVALID: Returns the same information as CPUID.EAX = OBH. *)

CPUID.EAX = 80000008H (* Returns linear/physical address size data. *)

CPUID.EAX = B000000AH (* INVALID: Returns same information as CPUID.EAX = OBH. *)

If a value entered for CPUID.EAX is less than or equal to the maximum input value and the leaf is not supported
on that processor then 0 is returned in all the registers.

When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence
on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution
guarantees that any modifications to flags, registers, and memory for previous instructions are completed before
the next instruction is fetched and executed.

See also:

“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and 1A-32 Architec-
tures Software Developer’s Manual, Volume 3A.

1. OnIntel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.
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“Caching Translation Information” in Chapter 4, “Paging,” in the Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 3A.

Table 3-17 Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor
Basic CPUID Information
OH EAX Maximum Input Value for Basic CPUID Information.
EBX "Genu”
ECX “ntel”
EDX "inel”
O1H EAX Version Information: Type, Family, Model, and Stepping ID (see Figure 3-6).
EBX Bits 07 - 00: Brand Index.
Bits 15 - 08: CLFLUSH line size (Value * 8 = cache line size in bytes; used also by CLFLUSHOPT).
Bits 23 - 16: Maximum number of addressable IDs for logical processors in this physical package*.
Bits 31 - 24: Initial APIC ID.
ECX Feature Information (see Figure 3-7 and Table 3-19).
EDX Feature Information (see Figure 3-8 and Table 3-20).
NOTES:
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the number of unique initial APIC
IDs reserved for addressing different logical processors in a physical package. This field is only valid if
CPUID.1.EDX.HTT[bit 28]= 1.
02H EAX Cache and TLB Information (see Table 3-21).
EBX Cache and TLB Information.
ECX Cache and TLB Information.
EDX Cache and TLB Information.
03H EAX Reserved.
EBX Reserved.
ECX Bits 00 - 31 of 96 bit processor serial number. (Available in Pentium Ill processor only; otherwise, the
value in this register is reserved.)
EDX Bits 32 - 63 of 96 bit processor serial number. (Available in Pentium Ill processor only; otherwise, the
value in this register is reserved.)
NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models, use
the PSN flag (returned using CPUID) to check for PSN support before accessing the feature.
CPUID leaves > 3 < 80000000 are visible only when IA32_MISC_ENABLE.BOOT_NT4[bit 22] = O (default).
Deterministic Cache Parameters Leaf
04H NOTES:
Leaf 04H output depends on the initial value in ECX.*
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters for each level on page 2-53.
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Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

EAX

EBX

ECX
EDX

Bits 04 - 00: Cache Type Field.
0 = Null - No more caches.
1 = Data Cache.
2 = Instruction Cache.
3 = Unified Cache.
4-31 = Reserved.

Bits 07 - 05: Cache Level (starts at 1).
Bit 08: Self Initializing cache level (does not need SW initialization).
Bit 09: Fully Associative cache.

Bits 13 - 10: Reserved.

Bits 25 - 14: Maximum number of addressable IDs for logical processors sharing this cache**, ***,
Bits 31 - 26: Maximum number of addressable IDs for processor cores in the physical

package**' ****’ *****.

Bits 11 - 00: L = System Coherency Line Size**.
Bits 21 - 12: P = Physical Line partitions**.
Bits 31 - 22: W = Ways of associativity**.

Bits 31-00: S = Number of Sets**.

Bit 00: Write-Back Invalidate/Invalidate.
0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads sharing this
cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads sharing
this cache.
Bit 01: Cache Inclusiveness.
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.
Bit 02: Complex Cache Indexing.
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using all address bits.
Bits 31 - 03: Reserved = 0.

NOTES:

* If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n+1 is invalid if sub-
leaf n returns EAX[4:0] as 0.

** Add one to the return value to get the result.

***The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique ini-
tial APIC IDs reserved for addressing different logical processors sharing this cache.

**** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of unique
Core_IDs reserved for addressing different processor cores in a physical package. Core ID is a subset of
bits of the initial APIC ID.

***** The returned value is constant for valid initial values in ECX. Valid ECX values start from O.

MONITOR/MWAIT Leaf

O5H

EAX

EBX

Bits 15 - 00: Smallest monitor-line size in bytes (default is processor’s monitor granularity).
Bits 31 - 16: Reserved = 0.

Bits 15 - 00: Largest monitor-line size in bytes (default is processor’s monitor granularity).
Bits 31 - 16: Reserved = 0.
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Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

ECX

EDX

Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported.
Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled.
Bits 31 - 02: Reserved.

Bits 03 - 00: Number of CO* sub C-states supported using MWAIT.
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT.
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT.
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT.
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT.
Bits 23 - 20: Number of C5* sub C-states supported using MWAIT.
Bits 27 - 24: Number of C6* sub C-states supported using MWAIT.
Bits 31 - 28: Number of C7* sub C-states supported using MWAIT.
NOTE:

* The definition of CO through C7 states for MWAIT extension are processor-specific C-states, not ACPI C-
states.

Thermal and Power Management Leaf

06H

EAX

EBX

ECX

EDX

Bit 00: Digital temperature sensor is supported if set.

Bit 01: Intel Turbo Boost Technology Available (see description of IA32_MISC_ENABLE[38]).

Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.

Bit 03: Reserved.

Bit 04: PLN. Power limit notification controls are supported if set.

Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.

Bit 06: PTM. Package thermal management is supported if set.

Bit 07: HWP. HWP base registers (IA32_PM_ENABLE[bit 0], IA32_HWP_CAPABILITIES,
IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set.

Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set.

Bit 09: HWP_Activity_Window. IA32_HWP_REQUEST [bits 41:32] is supported if set.

Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUEST[bits 31:24] is supported if set.
Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set.

Bit 12: Reserved.

Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs are
supported if set.

Bits 31 - 15: Reserved.

Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor.
Bits 31 - 04: Reserved.

Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The
capability to provide a measure of delivered processor performance (since last reset of the counters), as
a percentage of the expected processor performance when running at the TSC frequency.

Bits 02 - 01: Reserved = 0.

Bit 03: The processor supports performance-energy bias preference if CPUID.O6H:ECX.SETBH[bit 3] is set
and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1BOH).
Bits 31 - 04: Reserved = 0.

Reserved = 0.

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)

07H

Sub-leaf O (Input ECX = 0). *
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Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

EAX Bits 31 - 00: Reports the maximum input value for supported leaf 7 sub-leaves.

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01:1A32_TSC_ADJUST MSR is supported if 1.
Bit 02: Reserved.
Bit 03: BMI1.
Bit 04: HLE.
Bit 05: AVX2.
Bit 06: FDP_EXCPTN_ONLY. x87 FPU Data Pointer updated only on x87 exceptions if 1.
Bit 07: SMEP. Supports Supervisor-Mode Execution Prevention if 1.
Bit 08: BMI2.
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software that manages process-context
identifiers.
Bit 11: RTM.
Bit 12: Supports Platform Quality of Service Monitoring (PQM) capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.
Bit 14: MPX. Supports Intel® Memory Protection Extensions if 1.
Bit 15: Supports Platform Quality of Service Enforcement (PQE) capability if 1.
Bits 17 - 16: Reserved.
Bit 18: RDSEED.
Bit 19: ADX.
Bit 20: SMAP. Supports Supervisor-Mode Access Prevention (and the CLAC/STAC instructions) if 1.
Bits 22 - 21: Reserved.
Bit 23: CLFLUSHOPT.
Bit 24: Reserved.
Bit 25: Intel Processor Trace.
Bits 31 - 26: Reserved.

ECX Bit 00: PREFETCHWTT1.
Bits 02 - 01: Reserved.
Bit 03: PKU. Supports protection keys for user-mode pages if 1.
Bit 04: OSPKE. If 1, OS has set CR4.PKE to enable protection keys (and the RDPKRU/WRPKRU instruc-
tions).
Bits 31 - 05: Reserved.

EDX Reserved.
NOTE:
* |f ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n

exceeds the value that sub-leaf O returns in EAX.
Direct Cache Access Information Leaf
09H EAX Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H).

EBX Reserved.

ECX Reserved.

EDX Reserved.

Architectural Performance Monitoring Leaf
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Table 3-17 Information Returned by CPUID Instruction (Contd.)

EAX

EBX

ECX

EDX

Initial EAX
Value Information Provided about the Processor
OAH EAX Bits 07 - 00: Version ID of architectural performance monitoring.

Bits 15 - 08: Number of general-purpose performance monitoring counter per logical processor.
Bits 23 - 16: Bit width of general-purpose, performance monitoring counter.
Bits 31 - 24: Length of EBX bit vector to enumerate architectural performance monitoring events.

EBX Bit 00: Core cycle event not available if 1.
Bit 01: Instruction retired event not available if 1.
Bit 02: Reference cycles event not available if 1.
Bit 03: Last-level cache reference event not available if 1.
Bit 04: Last-level cache misses event not available if 1.
Bit 05: Branch instruction retired event not available if 1.
Bit 06: Branch mispredict retired event not available if 1.
Bits 31 - 07: Reserved = 0.

ECX Reserved = 0.

EDX Bits 04 - 00: Number of fixed-function performance counters (if Version ID > 1).
Bits 12 - 05: Bit width of fixed-function performance counters (if Version ID > 1).
Reserved = 0.

Extended Topology Enumeration Leaf

0BH NOTES:

Most of Leaf OBH output depends on the initial value in ECX.

The EDX output of leaf OBH is always valid and does not vary with input value in ECX.
Output value in ECX[7:0] always equals input value in ECX[7:0].

For sub-leaves that return an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return O.

If an input value nin ECX returns the invalid level-type of 0 in ECX[15:8], other input values with ECX >
n also return O in ECX[15:8].

Bits 04 - 00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type*.
All logical processors with the same next level ID share current level.
Bits 31 - 05: Reserved.

Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as shipped
by Intel**,
Bits 31- 16: Reserved.

Bits 07 - 00: Level number. Same value in ECX input.
Bits 15 - 08: Level type***.
Bits 31 - 16: Reserved.

Bits 31- 00: x2APIC ID the current logical processor.
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Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.
** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in this
field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical processors
available to BIOS/0S/Applications may be different from the value of EBX[15:0], depending on software
and platform hardware configurations.
*** The value of the “level type” field is not related to level numbers in any way, higher “level type” val-
ues do not mean higher levels. Level type field has the following encoding:
0: Invalid.
1: SMT.
2: Core.
3-255: Reserved.
Processor Extended State Enumeration Main Leaf (EAX = ODH, ECX = 0)
ODH NOTES:
Leaf ODH main leaf (ECX = 0).

EAX Bits 31 - 00: Reports the supported bits of the lower 32 bits of XCRO. XCRO[n] can be set to 1 only if

EAX[n]is 1.

Bit 00: x87 state.

Bit 01: SSE state.

Bit 02: AVX state.

Bits 04 - 03: MPX state.

Bits 07 - 05: AVX-512 state.
Bit 08: Used for IA32_XSS.
Bit 09: PKRU state.

Bits 31 - 10: Reserved.

EBX Bits 31 - 00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by
enabled features in XCRO. May be different than ECX if some features at the end of the XSAVE save area
are not enabled.

ECX Bit 31 - 00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the XSAVE/
XRSTOR save area required by all supported features in the processor, i.e all the valid bit fields in XCRO.

EDX Bit 31 - 00: Reports the supported bits of the upper 32 bits of XCRO. XCRO[n+32] can be set to 1 only if
EDX[n] is 1.
Bits 31 - 00: Reserved.

Processor Extended State Enumeration Sub-leaf (EAX = ODH, ECX = 1)

ODH EAX Bit 00: XSAVEOPT is available.

Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set.
Bit 02: Supports XGETBV with ECX = 1 if set.
Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set.
Bits 31 - 04: Reserved.

EBX Bits 31 - 00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.
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Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

ECX

EDX

Bits 31 - 00: Reports the supported bits of the lower 32 bits of the IA32_XSS MSR. IA32_XSS[n] can be
setto 1 only if ECX[n] is 1.

Bits 07 - 00: Used for XCRO.

Bit 08: PT state.

Bit 09: Used for XCRO.

Bits 31 - 10: Reserved.

Bits 31 - 00: Reports the supported bits of the upper 32 bits of the IA32_XSS MSR. IA32_XSS[n+32] can
be set to 1 only if EDX[n]is 1.
Bits 31 - 00: Reserved.

Processor Extended State Enumeration Sub-leaves (EAX = ODH, ECX =n,n > 1)

ODH

EAX

EBX

ECX

EDX

NOTES:
Leaf ODH output depends on the initial value in ECX.
Each sub-leaf index (starting at position 2) is supported if it corresponds to a supported bit in either the
XCRO register or the IA32_XSS MSR.
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf n (0 £ n < 31) is invalid
if sub-leaf O returns 0 in EAX[n] and sub-leaf 1 returns 0 in ECX[n]. Sub-leaf n (32 < n < 63) is invalid if
sub-leaf O returns 0 in EDX[n-32] and sub-leaf 1 returns 0 in EDX[n-32].

Bits 31 - 0: The size in bytes (from the offset specified in EBX) of the save area for an extended state
feature associated with a valid sub-leaf index, n.

Bits 31 - O: The offset in bytes of this extended state component’s save area from the beginning of the
XSAVE/XRSTOR area.
This field reports O if the sub-leaf index, n, does not map to a valid bit in the XCRO register*.

Bit 00 is set if the bit n (corresponding to the sub-leaf index) is supported in the IA32_XSS MSR; it is clear
if bit n is instead supported in XCRO.

Bit 01 is set if, when the compacted format of an XSAVE area is used, this extended state component
located on the next 64-byte boundary following the preceding state component (otherwise, it is located
immediately following the preceding state component).

Bits 31 - 02 are reserved.

This field reports 0 if the sub-leaf index, n, is invalid*.

This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Platform QoS Monitoring Enumeration Sub-leaf (EAX = OFH, ECX = 0)

OFH

EAX
EBX
ECX
EDX

NOTES:
Leaf OFH output depends on the initial value in ECX.
Sub-leaf index O reports valid resource type starting at bit position 1 of EDX.

Reserved.
Bits 31 - 00: Maximum range (zero-based) of RMID within this physical processor of all types.
Reserved.

Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS Monitoring if 1.
Bits 31 - 02: Reserved.

L3 Cache QoS Monitoring Capability Enumeration Sub-leaf (EAX = OFH, ECX = 1)

OFH

NOTES:
Leaf OFH output depends on the initial value in ECX.
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Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
EAX Reserved.
EBX Bits 31 - 00: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes).
ECX Maximum range (zero-based) of RMID of this resource type.
EDX Bit 00: Supports L3 occupancy monitoring if 1.
Bits 31 - 01: Reserved.
Platform QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = 0)
10H NOTES:
Leaf 10H output depends on the initial value in ECX.
Sub-leaf index O reports valid resource identification (ResID) starting at bit position 1 of EBX.
EAX Reserved.
EBX Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS Enforcement if 1.
Bits 31 - 02: Reserved.
ECX Reserved.
EDX Reserved.
L3 Cache QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = ResID =1)
10H NOTES:
Leaf 10H output depends on the initial value in ECX.
EAX Bits 4 - 00: Length of the capacity bit mask for the corresponding ResID.
Bits 31 - 05: Reserved.
EBX Bits 31 - 00: Bit-granular map of isolation/contention of allocation units.
ECX Bit 00: Reserved.
Bit 01: Updates of COS should be infrequent if 1.
Bit 02: Code and Data Prioritization Technology supported if 1.
Bits 31 - 03: Reserved.
EDX Bits 15 - 00: Highest COS number supported for this ResID.
Bits 31 - 16: Reserved.
Intel Processor Trace Enumeration Main Leaf (EAX = 14H, ECX = 0)
14H NOTES:
Leaf 14H main leaf (ECX = Q).
EAX Bits 31 - 00: Reports the maximum sub-leaf supported in leaf 14H.
EBX Bit 00: If 1, Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that IA32_RTIT_CR3_MATCH
MSR can be accessed.
Bit 01: If 1, Indicates support of Configurable PSB and Cycle-Accurate Mode.
Bit 02: If 1, Indicates support of IP Filtering, TraceStop filtering, and preservation of Intel PT MSRs across
warm reset.
Bit 03: If 1, Indicates support of MTC timing packet and suppression of COFl-based packets.
Bit 31 - 04: Reserved.
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Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
ECX Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output
scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
Bit 01: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the Mas-
kOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.
Bit 02: If 1, Indicates support of Single-Range Output scheme.
Bit 03: If 1, Indicates support of output to Trace Transport subsystem.
Bit 30 - 04: Reserved.
Bit 31: If 1, Generated packets which contain IP payloads have LIP values, which include the CS base com-
ponent.
EDX Bits 31 - 00: Reserved.
Intel Processor Trace Enumeration Sub-leaf (EAX = 14H, ECX = 1)
14H EAX Bits 02 - 00: Number of configurable Address Ranges for filtering.
Bits 15 - 03: Reserved.
Bits 31 - 16: Bitmap of supported MTC period encodings.
EBX Bits 15 - 00: Bitmap of supported Cycle Threshold value encodings.
Bit 31 - 16: Bitmap of supported Configurable PSB frequency encodings.
ECX Bits 31 - 00: Reserved.
EDX Bits 31 - 00: Reserved.
Time Stamp Counter/Core Crystal Clock Information-leaf
15H NOTES:
If EBX[31:0] is O, the TSC/"core crystal clock” ratio is not enumerated.
EBX[31:0]/EAX[31:0] indicates the ratio of the TSC frequency and the core crystal clock frequency.
“TSC frequency” = “core crystal clock frequency” * EBX/EAX.
The core crystal clock may differ from the reference clock, bus clock, or core clock frequencies.
EAX Bits 31 - 00: An unsigned integer which is the denominator of the TSC/"core crystal clock” ratio.
EBX Bits 31 - 00: An unsigned integer which is the numerator of the TSC/"core crystal clock” ratio.
ECX Bits 31 - 00: Reserved = 0.
EDX Bits 31 - 00: Reserved = 0.
Processor Frequency Information Leaf
16H EAX Bits 15 - 00: Processor Base Frequency (in MHz).
Bits 31 - 16: Reserved =0.
EBX Bits 15 - 00: Maximum Frequency (in MHz).
Bits 31 - 16: Reserved = 0.
ECX Bits 15 - 00: Bus (Reference) Frequency (in MHz).
Bits 31 - 16: Reserved = 0.
EDX Reserved.
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Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
NOTES:
* Data is returned from this interface in accordance with the processor’s specification and does not reflect
actual values. Suitable use of this data includes the display of processor information in like manner to the
processor brand string and for determining the appropriate range to use when displaying processor
information e.g. frequency history graphs. The returned information should not be used for any other
purpose as the returned information does not accurately correlate to information / counters returned by
other processor interfaces.
While a processor may support the Processor Frequency Information leaf, fields that return a value of
zero are not supported.
System-On-Chip Vendor Attribute Enumeration Main Leaf (EAX = 17H, ECX = 0)
17H NOTES:
Leaf 17H main leaf (ECX = Q).
Leaf 17H output depends on the initial value in ECX.
Leaf 17H sub-leaves 1 through 3 reports SOC Vendor Brand String.
Leaf 17H is valid if MaxSOCID_Index >= 3.
Leaf 17H sub-leaves 4 and above are reserved.
EAX Bits 31 - 00: MaxSOCID_Index. Reports the maximum input value of supported sub-leaf in leaf 17H.
EBX Bits 15 - 00: SOC Vendor ID.
Bit 16: IsVendorScheme. If 1, the SOC Vendor ID field is assigned via an industry standard enumeration
scheme. Otherwise, the SOC Vendor ID field is assigned by Intel.
Bits 31 - 17: Reserved = 0.
ECX Bits 31 - 00: Project ID. A unique number an SOC vendor assigns to its SOC projects.
EDX Bits 31 - 00: Stepping ID. A unique number within an SOC project that an SOC vendor assigns.
System-On-Chip Vendor Attribute Enumeration Sub-leaf (EAX = 17H, ECX = 1..3)
17H EAX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.
EBX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.
ECX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.
EDX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.
NOTES:
Leaf 17H output depends on the initial value in ECX.
SOC Vendor Brand String is a UTF-8 encoded string padded with trailing bytes of O0H.
The complete SOC Vendor Brand String is constructed by concatenating in ascending order of
EAX:EBX:ECX:EDX and from the sub-leaf 1 fragment towards sub-leaf 3.
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Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
System-0On-Chip Vendor Attribute Enumeration Sub-leaves (EAX = 17H, ECX > MaxSOCID_Index)
17H NOTES:
Leaf 17H output depends on the initial value in ECX.
EAX Bits 31 - 00: Reserved = 0.
EBX Bits 31 - 00: Reserved = 0.
ECX Bits 31 - 00: Reserved = 0.
EDX Bits 31 - 00: Reserved = 0.
Unimplemented CPUID Leaf Functions
40000000H Invalid. No existing or future CPU will return processor identification or feature information if the initial
- EAX value is in the range 40000000H to 4FFFFFFFH.
4FFFFFFFH
Extended Function CPUID Information
80000000H | EAX Maximum Input Value for Extended Function CPUID Information.
EBX Reserved.
ECX Reserved.
EDX Reserved.
80000001H | EAX Extended Processor Signature and Feature Bits.
EBX Reserved.
ECX Bit 00: LAHF/SAHF available in 64-bit mode.
Bits 04 - 01: Reserved.
Bit 05: LZCNT.
Bits 07 - 06: Reserved.
Bit 08: PREFETCHW.
Bits 31 - 09: Reserved.
EDX Bits 10 - 00: Reserved.
Bit 11: SYSCALL/SYSRET available in 64-bit mode.
Bits 19 - 12: Reserved = 0.
Bit 20: Execute Disable Bit available.
Bits 25 - 21: Reserved = 0.
Bit 26: 1-GByte pages are available if 1.
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1.
Bit 28: Reserved = 0.
Bit 29: Intel® 64 Architecture available if 1.
Bits 31 - 30: Reserved = 0.
80000002H | EAX Processor Brand String.
EBX Processor Brand String Continued.
ECX Processor Brand String Continued.
EDX Processor Brand String Continued.
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Table 3-17 Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
80000003H | EAX Processor Brand String Continued.
EBX Processor Brand String Continued.
ECX Processor Brand String Continued.
EDX Processor Brand String Continued.
80000004H | EAX Processor Brand String Continued.
EBX Processor Brand String Continued.
ECX Processor Brand String Continued.
EDX Processor Brand String Continued.
80000005H | EAX Reserved = 0.
EBX Reserved = 0.
ECX Reserved = 0.
EDX Reserved = 0.
80000006H | EAX Reserved = 0.
EBX Reserved = 0.
ECX Bits 07 - 00: Cache Line size in bytes.
Bits 11 - 08: Reserved.
Bits 15 - 12: L2 Associativity field *.
Bits 31 - 16: Cache size in 1K units.
EDX Reserved = 0.
NOTES:
* L2 associativity field encodings:
OOH - Disabled.
O01H - Direct mapped.
02H - 2-way.
04H - 4-way.
O6H - 8-way.
08H - 16-way.
OFH - Fully associative.
80000007H | EAX Reserved = 0.
EBX Reserved = 0.
ECX Reserved = 0.
EDX Bits 07 - 00: Reserved = 0.
Bit 08: Invariant TSC available if 1.
Bits 31 - 09: Reserved = 0.
80000008H | EAX Linear/Physical Address size.
Bits 07 - 00: #Physical Address Bits*.
Bits 15 - 08: #Linear Address Bits.
Bits 31 - 16: Reserved = 0.
EBX Reserved = 0.
ECX Reserved = 0.
EDX Reserved = 0.
NOTES:
* |f CPUID.8B0000008H:EAX[7:0] is supported, the maximum physical address number supported should
come from this field.
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INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and the Vendor Identification
String

When CPUID executes with EAX set to 0, the processor returns the highest value the CPUID recognizes for
returning basic processor information. The value is returned in the EAX register and is processor specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the string is “Genuin-
elntel” and is expressed:

EBX « 756e6547h (* "Genu”, with G in the low eight bits of BL *)
EDX « 49656e69n (* “inel”, with i in the low eight bits of DL *)
ECX « 6c65746eh (* "ntel”, with nin the low eight bits of CL *)

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Information

When CPUID executes with EAX set to 80000000H, the processor returns the highest value the processor recog-
nizes for returning extended processor information. The value is returned in the EAX register and is processor
specific.

IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is loaded with the
update signature whenever CPUID executes. The signature is returned in the upper DWORD. For details, see
Chapter 9 in the Intel® 64 and 1A-32 Architectures Software Developer’'s Manual, Volume 3A.

INPUT EAX = 0TH: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 01H, version information is returned in EAX (see Figure 3-6). For example:
model, family, and processor type for the Intel Xeon processor 5100 series is as follows:

e Model —1111B

e Family — 0101B

e Processor Type — 00B

See Table 3-18 for available processor type values. Stepping IDs are provided as needed.
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EAX

Processor Type

Model

D Reserved

31 28 27 20 19 16 15 14 13 12 11 8 7 4 3 0
Extended Extended Family Model Stepping
Family ID Model ID ID ID
Extended Family ID (0) |
Extended Model ID (0)
Family (OFH for the Pentium 4 Processor Family)
OM16525

Figure 3-6 Version Information Returned by CPUID in EAX

Table 3-18 Processor Type Field

Type Encoding
Original OEM Processor 00B
Intel OverDrive Processor 01B
Dual processor (not applicable to Intel486 processors) 10B
Intel reserved 11B

See Chapter 18 in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 1,

NOTE

for information on identifying earlier IA-32 processors.

The Extended Family ID needs to be examined only when the Family ID is OFH. Integrate the fields into a display

using the following rule:

IF Family_ID # OFH
THEN DisplayFamily = Family_ID;

ELSE DisplayFamily = Extended_Family_ID + Family_ID;

(* Right justify and zero-extend 4-bit field. *)

Fl;
(* Show DisplayFamily as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or OFH. Integrate the field into a

display using the following rule:

IF (Family_ID = O6H or Family_ID = OFH)
THEN DisplayModel = (Extended_Model_ID « 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
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ELSE DisplayModel = Model_ID;
Fl;
(* Show DisplayModel as HEX field. *)

INPUT EAX = 01H: Returns Additional Information in EBX

When CPUID executes with EAX set to 01H, additional information is returned to the EBX register:

e Brand index (low byte of EBX) — this number provides an entry into a brand string table that contains brand
strings for IA-32 processors. More information about this field is provided later in this section.

e CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the size of the cache line
flushed by the CLFLUSH and CLFLUSHOPT instructions in 8-byte increments. This field was introduced in the
Pentium 4 processor.

e Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the local APIC on the
processor during power up. This field was introduced in the Pentium 4 processor.

INPUT EAX = 01H: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 01H, feature information is returned in ECX and EDX.
e Figure 3-7 and Table 3-19 show encodings for ECX.
e Figure 3-8 and Table 3-20 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret feature flags.

NOTE

Software must confirm that a processor feature is present using feature flags returned by CPUID
prior to using the feature. Software should not depend on future offerings retaining all features.
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AVX
OSXSAVE ——————
XSAVE
AES
TSC-Deadline
POPCNT
MOVBE
Xx2APIC
SSE4_2 — SSE4.2
SSE4 1 — SSE4.1
DCA — Direct Cache Access
PCID — Process-context Identifiers
PDCM — Perf/Debug Capability MSR
XTPR Update Control
CMPXCHG16B

FMA — Fused Multiply Add

CNXT-ID — L1 Context ID
SSSE3 — SSSE3 Extensions
TM2 — Thermal Monitor 2
EIST — Enhanced Intel SpeedStep® Technology
SMX — Safer Mode Extensions
VMX — Virtual Machine Extensions
DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT
DTES64 — 64-bit DS Area
PCLMULQDQ — Carryless Multiplication

SSE3 — SSE3 Extensions
D Reserved OM16524b
Figure 3-7 Feature Information Returned in the ECX Register
Table 3-19 Feature Information Returned in the ECX Register

Bit # Mnemonic Description
0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor supports this

technology.
1 PCLMULQDQ PCLMULQDAQ. A value of 1 indicates the processor supports the PCLMULQDQ instruction.
2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout.
3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature.
4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the

Debug Store feature to allow for branch message storage qualified by CPL.

VMX Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology.

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See

Chapter 5, “Safer Mode Extensions Reference”.
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Table 3-19 Feature Information Returned in the ECX Register (Contd.)

Bit # Mnemonic Description

7 EIST Enhanced Intel SpeedStep°® technology. A value of 1 indicates that the processor supports this
technology.

8 T™M2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology.

9 SSSE3 A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A
value of O indicates the instruction extensions are not present in the processor.

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode
or shared mode. A value of O indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.

11 SDBG A value of 1 indicates the processor supports IA32_DEBUG_INTERFACE MSR for silicon debug.

12 FMA A value of 1 indicates the processor supports FMA extensions using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is available. See the
“CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes” section in this chapter for a
description.

14 xTPR Update XTPR Update Control. A value of 1 indicates that the processor supports changing

Control IA32_MISC_ENABLE[bit 23].

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the processor supports the performance
and debug feature indication MSR IA32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that
software may set CR4.PCIDE to 1.

18 DCA A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped
device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1.

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2.

21 x2APIC A value of 1 indicates that the processor supports x2APIC feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT instruction.

24 TSC-Deadline A value of 1 indicates that the processor's local APIC timer supports one-shot operation using a
TSC deadline value.

25 AESNI A value of 1 indicates that the processor supports the AESNI instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the XSAVE/XRSTOR processor extended states
feature, the XSETBV/XGETBV instructions, and XCRO.

27 OSXSAVE A value of 1 indicates that the OS has set CR4.0SXSAVE[bit 18] to enable XSETBV/XGETBV
instructions to access XCRO and to support processor extended state management using XSAVE/
XRSTOR.

28 AVX A value of 1 indicates the processor supports the AVX instruction extensions.

29 F16C A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.

30 RDRAND A value of 1 indicates that processor supports RDRAND instruction.

31 Not Used Always returns 0.
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MCE-Machine Check Exception

PAE-Physical Address Extensions
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TSC-Time Stamp Counter
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VME-Virtual-8086 Mode Enhancement

FPU-x87 FPU on Chip

D Reserved

OM16523

Figure 3-8 Feature Information Returned in the EDX Register

Table 3-20 More on Feature Information Returned in the EDX Register

Bit# | Mnemonic | Description
0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling the
feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the TSS
with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/0 breakpoints, including CR4.DE for controlling the feature, and optional
trapping of accesses to DR4 and DR5.

3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the
feature, the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs, and
PTEs.
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Table 3-20 More on Feature Information Returned in the EDX Register (Contd.)

Bit #

Mnemonic

Description

TSC

Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege.

MSR

Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are
supported. Some of the MSRs are implementation dependent.

PAE

Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table
entry formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead of
4 Mbyte pages if PAE bitis 1.

MCE

Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling the
feature. This feature does not define the model-specific implementations of machine-check error logging,
reporting, and processor shutdowns. Machine Check exception handlers may have to depend on processor
version to do model specific processing of the exception, or test for the presence of the Machine Check feature.

CX8

CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly
locked and atomic).

APIC

APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding to
memory mapped commands in the physical address range FFFEOOOOH to FFFEOFFFH (by default - some
processors permit the APIC to be relocated).

10

Reserved

Reserved

11

SEP

SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported.

12

MTRR

Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that describe
what memory types are supported, how many variable MTRRs are supported, and whether fixed MTRRs are
supported.

13

PGE

Page Global Bit. The global bit is supported in paging-structure entries that map a page, indicating TLB entries
that are common to different processes and need not be flushed. The CR4.PGE bit controls this feature.

14

MCA

Machine Check Architecture. The Machine Check Architecture, which provides a compatible mechanism for
error reporting in P6 family, Pentium 4, Intel Xeon processors, and future processors, is supported. The
MCG_CAP MSR contains feature bits describing how many banks of error reporting MSRs are supported.

15

cMovV

Conditional Move Instructions. The conditional move instruction CMOV is supported. In addition, if x87 FPU is
present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported

16

PAT

Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range
Registers (MTRRs), allowing an operating system to specify attributes of memory accessed through a linear
address on a 4KB granularity.

17

PSE-36

36-Bit Page Size Extension. 4-MByte pages addressing physical memory beyond 4 GBytes are supported with
32-bit paging. This feature indicates that upper bits of the physical address of a 4-MByte page are encoded in
bits 20:13 of the page-directory entry. Such physical addresses are limited by MAXPHYADDR and may be up to
40 bits in size.

18

PSN

Processor Serial Number. The processor supports the 96-bit processor identification number feature and the
feature is enabled.

19

CLFSH

CLFLUSH Instruction. CLFLUSH Instruction is supported.

20

Reserved

Reserved

21

DS

Debug Store. The processor supports the ability to write debug information into a memory resident buffer.
This feature is used by the branch trace store (BTS) and precise event-based sampling (PEBS) facilities (see
Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel” 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3().
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Table 3-20 More on Feature Information Returned in the EDX Register (Contd.)
Bit# | Mnemonic | Description

22 | ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that
allow processor temperature to be monitored and processor performance to be modulated in predefined duty
cycles under software control.

23 | MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 | FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save and
restore of the floating point context. Presence of this bit also indicates that CR4.0SFXSR is available for an
operating system to indicate that it supports the FXSAVE and FXRSTOR instructions.

25 | SSE SSE. The processor supports the SSE extensions.
26 | SSE2 SSE2. The processor supports the SSE2 extensions.
27 |SS Self Snoop. The processor supports the management of conflicting memory types by performing a snoop of its

own cache structure for transactions issued to the bus.

28 |HTT Max APIC IDs reserved field is Valid. A value of O for HTT indicates there is only a single logical processor in

the package and software should assume only a single APIC ID is reserved. A value of 1 for HTT indicates the

value in CPUID.1.EBX[23:16] (the Maximum number of addressable IDs for logical processors in this package) is
valid for the package.

29 |TM Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC).

30 | Reserved | Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in the
stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the
processor should return to normal operation to handle the interrupt. Bit 10 (PBE enable) in the
IA32_MISC_ENABLE MSR enables this capability.

INPUT EAX = 02H: TLB/Cache/Prefetch Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 02H, the processor returns information about the processor’s internal TLBs,
cache and prefetch hardware in the EAX, EBX, ECX, and EDX registers. The information is reported in encoded
form and fall into the following categories:

e The least-significant byte in register EAX (register AL) will always return 01H. Software should ignore this
value and not interpret it as an informational descriptor.

e The most significant bit (bit 31) of each register indicates whether the register contains valid information (set
to 0) oris reserved (set to 1).

e If aregister contains valid information, the information is contained in 1 byte descriptors. There are four types
of encoding values for the byte descriptor, the encoding type is noted in the second column of Table 3-21.
Table 3-21 lists the encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, ECX, and
EDX registers is not defined; that is, specific bytes are not designated to contain descriptors for specific cache,
prefetch, or TLB types. The descriptors may appear in any order. Note also a processor may report a general
descriptor type (FFH) and not report any byte descriptor of “cache type” via CPUID leaf 2.

Table 3-21 Encoding of CPUID Leaf 2 Descriptors

Value Type Description
OOH General | Null descriptor, this byte contains no information

O1H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries
02H TLB Instruction TLB: 4 MByte pages, fully associative, 2 entries

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 49



Table 3-21 €Encoding of CPUID Leaf 2 Descriptors (Contd.)

Value Type Description
03H TLB Data TLB: 4 KByte pages, 4-way set associative, 64 entries
04H TLB Data TLB: 4 MByte pages, 4-way set associative, 8 entries
O5H TLB Data TLB1: 4 MByte pages, 4-way set associative, 32 entries
O6H Cache | 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size
08H Cache | 1st-levelinstruction cache: 16 KBytes, 4-way set associative, 32 byte line size
OSH Cache | 1st-level instruction cache; 32KBytes, 4-way set associative, 64 byte line size
OAH Cache | 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size
OBH TLB Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries
OCH Cache | 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size
ODH Cache | 1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size
OEH Cache | 1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size
1DH Cache | 2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size
21H Cache | 2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size
22H Cache | 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector
23H Cache | 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector
24H Cache | 2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size
25H Cache | 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector
29H Cache | 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector
2CH Cache | 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size
30H Cache | 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size
40H Cache |No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache
41H Cache | 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size
42H Cache | 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size
43H Cache | 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size
44H Cache | 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size
45H Cache | 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size
46H Cache | 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size
47H Cache | 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size
48H Cache | 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size
49H Cache |3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family OFH, Model
06H);
2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size
4AH Cache | 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size
4BH Cache | 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size
4CH Cache | 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size
4DH Cache | 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size
4€EH Cache | 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size
4FH TLB Instruction TLB: 4 KByte pages, 32 entries
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Table 3-21 €Encoding of CPUID Leaf 2 Descriptors (Contd.)

Value Type Description

50H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

55H TLB Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries

56H TLB Data TLBO: 4 MByte pages, 4-way set associative, 16 entries

57H TLB Data TLBO: 4 KByte pages, 4-way associative, 16 entries

59H TLB Data TLBO: 4 KByte pages, fully associative, 16 entries

5AH TLB Data TLBO: 2-MByte or 4 MByte pages, 4-way set associative, 32 entries

5BH TLB Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH TLB Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH TLB Data TLB: 4 KByte and 4 MByte pages,256 entries

60H Cache | 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

61H TLB Instruction TLB: 4 KByte pages, fully associative, 48 entries

63H TLB Data TLB: 1 GByte pages, 4-way set associative, 4 entries

66H Cache | 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H Cache | 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H Cache | 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

6AH Cache |uTLB: 4 KByte pages, 8-way set associative, 64 entries

6BH Cache |DTLB: 4 KByte pages, 8-way set associative, 256 entries

6CH Cache |DTLB: 2M/4M pages, 8-way set associative, 128 entries

6DH Cache |DTLB: 1 GByte pages, fully associative, 16 entries

70H Cache |Trace cache: 12 K-uop, 8-way set associative

71H Cache |Trace cache: 16 K-pop, 8-way set associative

72H Cache |Trace cache: 32 K-uop, 8-way set associative

76H TLB Instruction TLB: 2M/4M pages, fully associative, 8 entries

78H Cache | 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H Cache | 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector
7AH Cache | 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector
7BH Cache | 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector
7CH Cache |2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector
7DH Cache | 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH Cache | 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

80H Cache | 2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size

82H Cache | 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H Cache | 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H Cache | 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H Cache | 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H Cache | 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size
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Table 3-21 €Encoding of CPUID Leaf 2 Descriptors (Contd.)
Value Type Description

87H Cache |Z2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size
AOH DTLB | DTLB: 4k pages, fully associative, 32 entries
BOH TLB Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B1H TLB Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B2H TLB Instruction TLB: 4KByte pages, 4-way set associative, 64 entries
B3H TLB Data TLB: 4 KByte pages, 4-way set associative, 128 entries
B4H TLB Data TLB1: 4 KByte pages, 4-way associative, 256 entries

B5H TLB Instruction TLB: 4KByte pages, 8-way set associative, 64 entries

B6H TLB Instruction TLB: 4KByte pages, 8-way set associative, 128 entries

BAH TLB Data TLB1: 4 KByte pages, 4-way associative, 64 entries

COH TLB Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries

C1H STLB | Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries
C2H DTLB | DTLB: 4 KByte/2 MByte pages, 4-way associative, 16 entries

C3H STLB Shared 2nd-Level TLB: 4 KByte /2 MByte pages, 6-way associative, 1536 entries. Also 1GBbyte pages, 4-way,
16 entries.

CAH STLB | Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries
DOH Cache | 3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size

D1H Cache | 3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size

D2H Cache | 3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size

D6H Cache | 3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size

D7H Cache | 3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size

D8H Cache | 3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size

DCH Cache | 3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size

DDH Cache | 3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size

DEH Cache | 3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size

E2H Cache | 3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size

E3H Cache | 3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size

E4H Cache | 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size

EAH Cache | 3rd-level cache: 12MByte, 24-way set associative, 64 byte line size

EBH Cache | 3rd-level cache: 18MByte, 24-way set associative, 64 byte line size

ECH Cache | 3rd-level cache: 24MByte, 24-way set associative, 64 byte line size

FOH Prefetch |64-Byte prefetching

F1H Prefetch |128-Byte prefetching

FFH General |CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters

Example 3-1 Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following information about caches and TLBs
when the CPUID executes with an input value of 2:
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EAX 66 5B 50 01H
EBX OH
ECX OH
EDX 00 7A 70 OOH

Which means:
e The least-significant byte (byte 0) of register EAX is set to 01H. This value should be ignored.

e The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, indicating that each register
contains valid 1-byte descriptors.

e Bytes 1, 2, and 3 of register EAX indicate that the processor has:
— B50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte pages.
— B5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.
— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache line size.
e The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
e Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:
— O0OH - NULL descriptor.
— 70H - Trace cache: 12 K-pop, 8-way set associative.
— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte cache line size.
— O0OH - NULL descriptor.

INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 04H and ECX contains an index value, the processor returns encoded data
that describe a set of deterministic cache parameters (for the cache level associated with the input in ECX). Valid
index values start from 0.

Software can enumerate the deterministic cache parameters for each level of the cache hierarchy starting with an
index value of 0, until the parameters report the value associated with the cache type field is 0. The architecturally
defined fields reported by deterministic cache parameters are documented in Table 3-17.

This Cache Size in Bytes
= (Ways + 1) * (Partitions + 1) * (Line_Size + 1) * (Sets + 1)
= (EBX[31:22] + 1) * (EBX[21:12] + 1) * (EBX[11:0] + 1) * (ECX + 1)

The CPUID leaf 04H also reports data that can be used to derive the topology of processor cores in a physical
package. This information is constant for all valid index values. Software can query the raw data reported by
executing CPUID with EAX=04H and ECX=0 and use it as part of the topology enumeration algorithm described in
Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 3A.

INPUT EAX = O5H: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 05H, the processor returns information about features available to
MONITOR/MWALIT instructions. The MONITOR instruction is used for address-range monitoring in conjunction with
MWAIT instruction. The MWAIT instruction optionally provides additional extensions for advanced power manage-
ment. See Table 3-17.
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INPUT EAX = 06H: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 06H, the processor returns information about thermal and power manage-
ment features. See Table 3-17.

INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 07H and ECX = 0, the processor returns information about the maximum
input value for sub-leaves that contain extended feature flags. See Table 3-17.

When CPUID executes with EAX set to 07H and the input value of ECX is invalid (see leaf 07H entry in Table 3-
17), the processor returns 0 in EAX/EBX/ECX/EDX. In subleaf 0, EAX returns the maximum input value of the
highest leaf 7 sub-leaf, and EBX, ECX & EDX contain information of extended feature flags.

INPUT EAX = 09H: Returns Direct Cache Access Information

When CPUID executes with EAX set to 09H, the processor returns information about Direct Cache Access capabil-
ities. See Table 3-17.

INPUT EAX = OAH: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 0AH, the processor returns information about support for architectural
performance monitoring capabilities. Architectural performance monitoring is supported if the version ID (see
Table 3-17) is greater than Pn 0. See Table 3-17.

For each version of architectural performance monitoring capability, software must enumerate this leaf to
discover the programming facilities and the architectural performance events available in the processor. The
details are described in Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 3C.

INPUT EAX = OBH: Returns Extended Topology Information

When CPUID executes with EAX set to OBH, the processor returns information about extended topology enumer-
ation data. Software must detect the presence of CPUID leaf OBH by verifying (a) the highest leaf index supported
by CPUID is >= 0BH, and (b) CPUID.0BH:EBX[15:0] reports a non-zero value. See Table 3-17.

INPUT EAX = ODH: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 0DH and ECX = 0, the processor returns information about the bit-vector
representation of all processor state extensions that are supported in the processor and storage size require-
ments of the XSAVE/XRSTOR area. See Table 3-17.

When CPUID executes with EAX set to ODH and ECX = n (n > 1, and is a valid sub-leaf index), the processor
returns information about the size and offset of each processor extended state save area within the XSAVE/
XRSTOR area. See Table 3-17. Software can use the forward-extendable technique depicted below to query the
valid sub-leaves and obtain size and offset information for each processor extended state save area:

For i =2 to 62 // sub-leaf 1 is reserved
IF (CPUID.(EAX=0DH, ECX=0):VECTOR[i] = 1) // VECTOR is the 64-bit value of EDX:EAX
Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i;
Fl;

INPUT EAX = OFH: Returns Platform Quality of Service (PQoS) Monitoring Enumeration Information

When CPUID executes with EAX set to OFH and ECX = 0, the processor returns information about the bit-vector
representation of QoS monitoring resource types that are supported in the processor and maximum range of
RMID values the processor can use to monitor of any supported resource types. Each bit, starting from bit 1,
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corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or
ResID) that software must use to query QoS monitoring capability available for that type. See Table 3-17.

When CPUID executes with EAX set to OFH and ECX = n (n >= 1, and is a valid ResID), the processor returns
information software can use to program IA32_PQR_ASSOC, IA32_QM_EVTSEL MSRs before reading QoS data
from the IA32_QM_CTR MSR.

INPUT EAX = 10H: Returns Platform Quality of Service (PQoS) Enforcement Enumeration Information

When CPUID executes with EAX set to 10H and ECX = 0, the processor returns information about the bit-vector
representation of QoS Enforcement resource types that are supported in the processor. Each bit, starting from bit
1, corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or

ResID) that software must use to query QoS enforcement capability available for that type. See Table 3-17.

When CPUID executes with EAX set to 10H and ECX = n (n >= 1, and is a valid ResID), the processor returns
information about available classes of service and range of QoS mask MSRs that software can use to configure
each class of services using capability bit masks in the QoS Mask registers, IA32_resourceType_Mask_n.

INPUT EAX = 14H: Returns Intel Processor Trace Enumeration Information

When CPUID executes with EAX set to 14H and ECX = OH, the processor returns information about Intel Processor
Trace extensions. See Table 3-17.

When CPUID executes with EAX set to 14H and ECX = n (n > 0 and less than the number of non-zero bits in
CPUID.(EAX=14H, ECX= OH).EAX), the processor returns information about packet generation in Intel Processor
Trace. See Table 3-17.

INPUT EAX = 15H: Returns Time Stamp Counter/Core Crystal Clock Information

When CPUID executes with EAX set to 15H and ECX = OH, the processor returns information about Time Stamp
Counter/Core Crystal Clock. See Table 3-17.

INPUT EAX = 16H: Returns Processor Frequency Information

When CPUID executes with EAX set to 16H, the processor returns information about Processor Frequency Infor-
mation. See Table 3-17.

INPUT EAX = 17H: Returns System-On-Chip Information

When CPUID executes with EAX set to 17H, the processor returns information about the System-On-Chip Vendor
Attribute Enumeration. See Table 3-17.

METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method.

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are available in early processors, see
Section: “Identification of Earlier IA-32 Processors” in Chapter 18 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

The Processor Brand String Method

Figure 3-9 describes the algorithm used for detection of the brand string. Processor brand identification software
should execute this algorithm on all Intel 64 and IA-32 processors.
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This method (introduced with Pentium 4 processors) returns an ASCII brand identification string and the
Processor Base frequency of the processor to the EAX, EBX, ECX, and EDX registers.

Input: EAX=
0x80000000
False Processor Brand
IF (EAX & 0x80000000) String Not
Supported
CPUID
. True=
Function
Supported Extended
EAX Return Value =
Max. Extended CPUID
Function Index
IF (EAX Return Value True Processor Brand
= 0x80000004) String Supported
OM15194

Figure 3-9 Determination of Support for the Processor Brand String

How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through 80000004H. For each input
value, CPUID returns 16 ASCII characters using EAX, EBX, ECX, and EDX. The returned string will be NULL-termi-

nated.
Table 3-22 shows the brand string that is returned by the first processor in the Pentium 4 processor family.

Table 3-22 Processor Brand String Returned with Pentium 4 Processor
EAX Input Value Return Values ASCII Equivalent

80000002H EAX =20202020H
EBX =20202020H
ECX =20202020H
EDX = 6E492020H “nl "
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Table 3-22 Processor Brand String Returned with Pentium 4 Processor (Contd.)

EAX Input Value Return Values ASCII Equivalent
80000003H EAX = 286(6574H “(let”
EBX = 50202952H “P)R"
ECX =69746€E65H “itne”
EDX = 52286D75H “R(mu”
80000004H EAX =20342029H "4y
EBX = 20555043H “UPC”
ECX =30303531H “0051"
EDX = 007A484DH “\OzHM"

Extracting the Processor Frequency from Brand Strings

Figure 3-10 provides an algorithm which software can use to extract the Processor Base frequency from the

processor brand string.

Scan "Brand String" in
Reverse Byte Order

Determine "Freq"

"zHM", or
"zHG", or
M HT"

Match
Substring

False
IF Substring Matched

True

Report Error

Multiplier = 1 x 10°

Multiplier = 1 x 10°

Multiplier = 1 x 102

and "Multiplier"
/ If "ZHG"
Determine "Multiplier" / If "zHT"
Scan Digits
Until Blank

A

Determine "Freq"
In Reverse Order

Processor Base
Frequency =
"Freq" x "Multiplier"

Reverse Digits
To Decimal Value

"Freq" = X.YZ if
Digits = "ZY.X"

OM15195
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The Processor Brand Index Method

The brand index method (introduced with Pentium® 11l Xeon® processors) provides an entry point into a brand
identification table that is maintained in memory by system software and is accessible from system- and user-
level code. In this table, each brand index is associate with an ASCII brand identification string that identifies the
official Intel family and model number of a processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the low byte in EBX. Software can
then use this index to locate the brand identification string for the processor in the brand identification table. The
first entry (brand index 0) in this table is reserved, allowing for backward compatibility with processors that do not
support the brand identification feature. Starting with processor signature family ID = OFH, model = 03H, brand
index method is no longer supported. Use brand string method instead.

Table 3-23 shows brand indices that have identification strings associated with them.
Table 3-23 Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String
OOH This processor does not support the brand identification feature
01H Intel(R) Celeron(R) processor1
02H Intel(R) Pentium(R) Ill processor1
O03H Intel(R) Pentium(R) Ill Xeon(R) processor; If processor signature = 000006B1h, then Intel(R) Celeron(R)
processor
04H Intel(R) Pentium(R) Il processor
06H Mobile Intel(R) Pentium(R) Ill processor-M
07H Mobile Intel(R) Celeron(R) processor1
08H Intel(R) Pentium(R) 4 processor
O%H Intel(R) Pentium(R) 4 processor
OAH Intel(R) Celeron(R) process.or1
O0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor MP
OCH Intel(R) Xeon(R) processor MP
OEH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor
OFH Mobile Intel(R) Celeron(R) processor1
11H Mobile Genuine Intel(R) processor
12H Intel(R) Celeron(R) M processor
13H Mobile Intel(R) Celeron(R) processor1
14H Intel(R) Celeron(R) processor
15H Mobile Genuine Intel(R) processor
16H Intel(R) Pentium(R) M processor
17H Mobile Intel(R) Celeron(R) processor1
18H - OFFH RESERVED
NOTES:

1. Indicates versions of these processors that were introduced after the Pentium Il
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IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor earlier than the
Intel486 processor.

Operation
IA32_BIOS_SIGN_ID MSR « Update with installed microcode revision number;

CASE (EAX) OF
EAX=0:
EAX « Highest basic function input value understood by CPUID;
EBX « Vendor identification string;
EDX « Vendor identification string;
ECX « Vendor identification string;
BREAK;
EAX = 1H:
EAX[3:0] « Stepping ID;
EAX[7:4] < Model;
EAX[11:8] « Family;
EAX[13:12] <« Processor type;
EAX[15:14] < Reserved;
EAX[19:16] « Extended Model;
EAX[27:20] < Extended Family;
EAX[31:28] «<— Reserved;
EBX[7:0] < Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] «— CLFLUSH Line Size;
EBX[16:23] «— Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] « Initial APIC ID;
ECX « Feature flags; (* See Figure 3-7. %)
EDX « Feature flags; (* See Figure 3-8. *)
BREAK;
EAX = 2H:
EAX « Cache and TLB information;
EBX « Cache and TLB information;
ECX « Cache and TLB information;
EDX « Cache and TLB information;
BREAK;
EAX = 3H:
EAX « Reserved;
EBX « Reserved;
ECX < ProcessorSerialNumber[31:0];
(* Pentium Il processors only, otherwise reserved. *)
EDX «— ProcessorSerialNumber[63:32];
(* Pentium Il processors only, otherwise reserved. *
BREAK
EAX =4H:
EAX « Deterministic Cache Parameters Leaf; (* See Table 3-17. %)
EBX « Deterministic Cache Parameters Leaf;
ECX «— Deterministic Cache Parameters Leaf;
EDX <« Deterministic Cache Parameters Leaf;
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BREAK;
EAX = 5H:
EAX < MONITOR/MWAIT Leaf; (* See Table 3-17. *)
EBX <~ MONITOR/MWAIT Leaf;
ECX <~ MONITOR/MWAIT Leaf;
EDX <~ MONITOR/MWAIT Leaf;
BREAK;
EAX = 6H:
EAX < Thermal and Power Management Leaf; (* See Table 3-17. %)
EBX « Thermal and Power Management Leaf;
ECX < Thermal and Power Management Leaf;
EDX « Thermal and Power Management Leaf;
BREAK;
EAX = 7H:
EAX « Structured Extended Feature Flags Enumeration Leaf; (* See Table 3-17.*)
EBX « Structured Extended Feature Flags Enumeration Leaf;
ECX « Structured Extended Feature Flags Enumeration Leaf;
EDX « Structured Extended Feature Flags Enumeration Leaf;
BREAK;
EAX = 8H:
EAX < Reserved = 0;
EBX « Reserved = 0;
ECX < Reserved = 0;
EDX «— Reserved = 0;
BREAK;
EAX = 9H:
EAX « Direct Cache Access Information Leaf; (* See Table 3-17.*)
EBX « Direct Cache Access Information Leaf;
ECX « Direct Cache Access Information Leaf;
EDX « Direct Cache Access Information Leaf;
BREAK;
EAX = AH:
EAX « Architectural Performance Monitoring Leaf; (* See Table 3-17. *)
EBX « Architectural Performance Monitoring Leaf;
ECX <« Architectural Performance Monitoring Leaf;
EDX « Architectural Performance Monitoring Leaf;
BREAK
EAX = BH:
EAX « Extended Topology Enumeration Leaf; (* See Table 3-17. %)
EBX « Extended Topology Enumeration Leaf;
ECX « Extended Topology Enumeration Leaf;
EDX « Extended Topology Enumeration Leaf;
BREAK;
EAX =CH:
EAX < Reserved = 0;
EBX < Reserved = Q;
ECX < Reserved = 0;
EDX «— Reserved = 0;
BREAK;
EAX = DH:
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EAX « Processor Extended State Enumeration Leaf; (* See Table 3-17. %)
EBX « Processor Extended State Enumeration Leaf;
ECX «— Processor Extended State Enumeration Leaf;
EDX « Processor Extended State Enumeration Leaf;
BREAK;
EAX = EH:
EAX < Reserved = 0;
EBX « Reserved = 0;
ECX « Reserved = 0;
EDX < Reserved = 0;
BREAK;
EAX =FH:
EAX « Platform Quality of Service Monitoring Enumeration Leaf; (* See Table 3-17. *)
EBX « Platform Quality of Service Monitoring Enumeration Leaf;
ECX « Platform Quality of Service Monitoring Enumeration Leaf;
EDX « Platform Quality of Service Monitoring Enumeration Leaf;
BREAK;
EAX = 10H:
EAX « Platform Quality of Service Enforcement Enumeration Leaf; (* See Table 3-17.*)
EBX « Platform Quality of Service Enforcement Enumeration Leaf;
ECX « Platform Quality of Service Enforcement Enumeration Leaf;
EDX « Platform Quality of Service Enforcement Enumeration Leaf;
BREAK;
EAX = 14H:
EAX « Intel Processor Trace Enumeration Leaf; (* See Table 3-17. *)
EBX « Intel Processor Trace Enumeration Leaf;
ECX « Intel Processor Trace Enumeration Leaf;
EDX « Intel Processor Trace Enumeration Leaf;
BREAK;
EAX = 15H:
EAX « Time Stamp Counter/Core Crystal Clock Information Leaf; (* See Table 3-17.*)
EBX « Time Stamp Counter/Core Crystal Clock Information Leaf;
ECX « Time Stamp Counter/Core Crystal Clock Information Leaf;
EDX « Time Stamp Counter/Core Crystal Clock Information Leaf;
BREAK;
EAX = 16H:
EAX « Processor Frequency Information Enumeration Leaf; (* See Table 3-17. *)
EBX « Processor Frequency Information Enumeration Leaf;
ECX « Processor Frequency Information Enumeration Leaf;
EDX <« Processor Frequency Information Enumeration Leaf;
BREAK;
EAX =17H:
EAX < System-On-Chip Vendor Attribute Enumeration Leaf; (* See Table 3-17. *)
EBX « System-On-Chip Vendor Attribute Enumeration Leaf;
ECX « System-On-Chip Vendor Attribute Enumeration Leaf;
EDX < System-On-Chip Vendor Attribute Enumeration Leaf;
BREAK;
EAX = 80000000H:
EAX « Highest extended function input value understood by CPUID;
EBX « Reserved;
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ECX < Reserved;
EDX <« Reserved;
BREAK;
EAX =80000001H:
EAX < Reserved;
EBX < Reserved;
ECX < Extended Feature Bits (* See Table 3-17.%);
EDX «— Extended Feature Bits (* See Table 3-17. *);
BREAK;
EAX = 80000002H:
EAX « Processor Brand String;
EBX « Processor Brand String, continued;
ECX « Processor Brand String, continued;
EDX « Processor Brand String, continued;
BREAK;
EAX = 80000003H:
EAX « Processor Brand String, continued;
EBX « Processor Brand String, continued;
ECX « Processor Brand String, continued;
EDX « Processor Brand String, continued;
BREAK;
EAX = 80000004H:
EAX « Processor Brand String, continued;
EBX « Processor Brand String, continued;
ECX « Processor Brand String, continued;
EDX « Processor Brand String, continued;
BREAK;
EAX = 80000005H:
EAX < Reserved = 0;
EBX < Reserved = 0;
ECX < Reserved = 0;
EDX «— Reserved = 0;
BREAK;
EAX = 80000006H:
EAX < Reserved = 0;
EBX < Reserved = 0;
ECX « Cache information;
EDX «— Reserved = 0;
BREAK;
EAX = 80000007H:
EAX < Reserved = 0;
EBX < Reserved = 0;
ECX < Reserved = 0;
EDX « Reserved = Misc Feature Flags;
BREAK;
EAX = 80000008H:
EAX <« Reserved = Physical Address Size Information;
EBX < Reserved = Virtual Address Size Information;
ECX < Reserved = 0;
EDX «— Reserved = 0;
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BREAK;

EAX >=40000000H and EAX <= 4FFFFFFFH:

DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)
(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX < Reserved; (* Information returned for highest basic information leaf. *)
EBX « Reserved; (* Information returned for highest basic information leaf. *)
ECX « Reserved; (* Information returned for highest basic information leaf. *)
EDX « Reserved; (* Information returned for highest basic information leaf. *)

BREAK;

ESAC

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

In earlier IA-32 processors that do not support the CPUID instruction, execution of the
instruction results in an invalid opcode (#UD) exception being generated.

FXSAVE—Save x87 FPU, MMX Technology, and SSE State

Opcode/ Op/ 64-Bit Compat/ Description

Instruction En  Mode Leg Mode

OF AE /O M Valid Valid Save the x87 FPU, MMX, XMM, and MXCSR
FXSAVE m512byte register state to m572byte.

REX.W+ OF AE /0 M Valid N.E. Save the x87 FPU, MMX, XMM, and MXCSR
FXSAVEG4 m512byte register state to m572byte.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRM:r/m (w) NA NA NA
Description

Saves the current state of the x87 FPU, MMX technology, XMM, and MXCSR registers to a 512-byte memory loca-
tion specified in the destination operand. The content layout of the 512 byte region depends on whether the
processor is operating in non-64-bit operating modes or 64-bit sub-mode of IA-32e mode.

Bytes 464:511 are available to software use. The processor does not write to bytes 464:511 of an FXSAVE area.
The operation of FXSAVE in non-64-bit modes is described first.
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Non-64-Bit Mode Operation
Table 3-52 shows the layout of the state information in memory when the processor is operating in legacy modes.

Table 3-52 Non-64-bit-Mode Layout of FXSAVE and FXRSTOR
Memory Region

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rsvd FCS FIP[31:0] FOP Rsvd | FTW FSW FCw 0
MXCSR_MASK MXCSR Rsrvd FDS FDP[31:0] 16
Reserved STO/MMO 32
Reserved ST1/MM1 48
Reserved ST2/MM2 64
Reserved ST3/MM3 80
Reserved ST4/MM4 96
Reserved ST5/MM5 112
Reserved ST6/MM6 128
Reserved ST7/MM7 144
XMMO 160
XMM1 176
XMM2 192
XMM3 208
XMM4 224
XMM5 240
XMM6 256
XMM7 272
Reserved 288
Reserved 304
Reserved 320
Reserved 336
Reserved 352
Reserved 368
Reserved 384
Reserved 400
Reserved 416
Reserved 432
Reserved 448
Available 464
Available 480
Available 496
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The destination operand contains the first byte of the memory image, and it must be aligned on a 16-byte
boundary. A misaligned destination operand will result in a general-protection (#GP) exception being generated
(or in some cases, an alignment check exception [#AC]).

The FXSAVE instruction is used when an operating system needs to perform a context switch or when an excep-
tion handler needs to save and examine the current state of the x87 FPU, MMX technology, and/or XMM and
MXCSR registers.

The fields in Table 3-52 are defined in Table 3-53.

Table 3-53 Field Definitions

Field Definition

FCw x87 FPU Control Word (16 bits). See Figure 8-6 in the Intel” 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for the layout of the x87 FPU control word.

FSW x87 FPU Status Word (16 bits). See Figure 8-4 in the Intel 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for the layout of the x87 FPU status word.

Abridged FTW x87 FPU Tag Word (8 bits). The tag information saved here is abridged, as described in the following
paragraphs.

FOP x87 FPU Opcode (16 bits). The lower 11 bits of this field contain the opcode, upper 5 bits are reserved.

See Figure 8-8 in the Intel 64 and IA-32 Architectures Software Developer's Manual, Volume 1, for
the layout of the x87 FPU opcode field.

FIP x87 FPU Instruction Pointer Offset (64 bits). The contents of this field differ depending on the current
addressing mode (32-bit, 16-bit, or 64-bit) of the processor when the FXSAVE instruction was
executed:

32-bit mode — 32-bit IP offset.

16-bit mode — low 16 bits are IP offset; high 16 bits are reserved.
64-bit mode with REX.W — 64-bit IP offset.

64-bit mode without REX.W — 32-bit IP offset.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the Intel 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for a description of the x87 FPU instruction

pointer.

FCS x87 FPU Instruction Pointer Selector (16 bits). If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the
processor deprecates FCS and FDS, and this field is saved as 0000H.

FDP x87 FPU Instruction Operand (Data) Pointer Offset (64 bits). The contents of this field differ

depending on the current addressing mode (32-bit, 16-bit, or 64-bit) of the processor when the
FXSAVE instruction was executed:

32-bit mode — 32-bit DP offset.

16-bit mode — low 16 bits are DP offset; high 16 bits are reserved.
64-bit mode with REX.W — 64-bit DP offset.

64-bit mode without REX.W — 32-bit DP offset.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the Intel” 64 and IA-32
Architectures Software Developer's Manual, Volume 1, for a description of the x87 FPU operand
pointer.

FDS x87 FPU Instruction Operand (Data) Pointer Selector (16 bits). If CPUID.(EAX=07H,ECX=0H):EBX[bit
13] = 1, the processor deprecates FCS and FDS, and this field is saved as 0000H.
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Table 3-53 Field Definitions (Contd.)

Field Definition

MXCSR MXCSR Register State (32 bits). See Figure 10-3 in the Intel” 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for the layout of the MXCSR register. If the OSFXSR bit in control
register CR4 is not set, the FXSAVE instruction may not save this register. This behavior is
implementation dependent.

MXCSR_ MXCSR_MASK (32 bits). This mask can be used to adjust values written to the MXCSR register,

MASK ensuring that reserved bits are set to 0. Set the mask bits and flags in MXCSR to the mode of
operation desired for SSE and SSEZ SIMD floating-point instructions. See “Guidelines for Writing to the
MXCSR Register” in Chapter 11 of the Intel” 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for instructions for how to determine and use the MXCSR_MASK value.

STO/MMO through ST7/ x87 FPU or MMX technology registers. These 80-bit fields contain the x87 FPU data registers or the
MM7 MMX technology registers, depending on the state of the processor prior to the execution of the
FXSAVE instruction. If the processor had been executing x87 FPU instruction prior to the FXSAVE
instruction, the x87 FPU data registers are saved; if it had been executing MMX instructions (or SSE or
SSEZ instructions that operated on the MMX technology registers), the MMX technology registers are
saved. When the MMX technology registers are saved, the high 16 bits of the field are reserved.

XMMO through XMM7 XMM registers (128 bits per field). If the OSFXSR bit in control register CR4 is not set, the FXSAVE
instruction may not save these registers. This behavior is implementation dependent.

The FXSAVE instruction saves an abridged version of the x87 FPU tag word in the FTW field (unlike the FSAVE
instruction, which saves the complete tag word). The tag information is saved in physical register order (RO
through R7), rather than in top-of-stack (TOS) order. With the FXSAVE instruction, however, only a single bit (1
for valid or O for empty) is saved for each tag. For example, assume that the tag word is currently set as follows:

R7 R6 R5 R4 R3 R2 R1 RO
11T xx xx xx 11 11 11 11

Here, 11B indicates empty stack elements and “xx” indicates valid (00B), zero (01B), or special (10B).

For this example, the FXSAVE instruction saves only the following 8 bits of information:

R7 R6 R5 R4 R3 R2 R1T RO
o 1 1 1 0 0 0O O

Here, a 1 is saved for any valid, zero, or special tag, and a 0 is saved for any empty tag.
The operation of the FXSAVE instruction differs from that of the FSAVE instruction, the as follows:

e FXSAVE instruction does not check for pending unmasked floating-point exceptions. (The FXSAVE operation in
this regard is similar to the operation of the FNSAVE instruction).

e After the FXSAVE instruction has saved the state of the x87 FPU, MMX technology, XMM, and MXCSR registers,
the processor retains the contents of the registers. Because of this behavior, the FXSAVE instruction cannot be
used by an application program to pass a “clean” x87 FPU state to a procedure, since it retains the current
state. To clean the x87 FPU state, an application must explicitly execute an FINIT instruction after an FXSAVE
instruction to reinitialize the x87 FPU state.

¢ The format of the memory image saved with the FXSAVE instruction is the same regardless of the current
addressing mode (32-bit or 16-bit) and operating mode (protected, real address, or system management).
This behavior differs from the FSAVE instructions, where the memory image format is different depending on
the addressing mode and operating mode. Because of the different image formats, the memory image saved
with the FXSAVE instruction cannot be restored correctly with the FRSTOR instruction, and likewise the state
saved with the FSAVE instruction cannot be restored correctly with the FXRSTOR instruction.
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The FSAVE format for FTW can be recreated from the FTW valid bits and the stored 80-bit FP data (assuming the
stored data was not the contents of MMX technology registers) using Table 3-54.

Table 3-54 Recreating FSAVE Format

Exponent Exponent Fraction Jand M FTW valid bit
all 1's all 0's all 0's bits x87 FTW
0 0 0 0x 1 Special 10
0 0 0 1x 1 Valid 00
0 0 1 00 1 Special 10
0 0 1 10 1 Valid 00
0 1 0 0x 1 Special 10
0 1 0 1x 1 Special 10
0 1 1 00 1 Zero 01
0 1 1 10 1 Special 10
1 0 0 1x 1 Special 10
1 0 0 1Xx 1 Special 10
1 0 1 00 1 Special 10
1 0 1 10 1 Special 10
For all legal combinations above. 0 Empty 11

The J-bit is defined to be the 1-bit binary integer to the left of the decimal place in the significand. The M-bit is
defined to be the most significant bit of the fractional portion of the significand (i.e., the bit immediately to the
right of the decimal place).

When the M-bit is the most significant bit of the fractional portion of the significand, it must be 0 if the fraction is
all 0’s.

IA-32e Mode Operation

In compatibility sub-mode of IA-32e mode, legacy SSE registers, XMMO through XMM7, are saved according to
the legacy FXSAVE map. In 64-bit mode, all of the SSE registers, XMMO through XMM15, are saved. Additionally,
there are two different layouts of the FXSAVE map in 64-bit mode, corresponding to FXSAVE64 (which requires
REX.W=1) and FXSAVE (REX.W=0). In the FXSAVE64 map (Table 3-55), the FPU IP and FPU DP pointers are 64-
bit wide. In the FXSAVE map for 64-bit mode (Table 3-56), the FPU IP and FPU DP pointers are 32-bits.

Table 3-55 Layout of the 64-bit-mode FXSAVE64 Map
(requires REX.W = 1)

15 14 | 13 12 | 11 10 | 9 8 7 6 5 4 3 2 1 0
FIP FOP Reserved | FTW FSW FCW 0
MXCSR_MASK | MXCSR FDP 16
Reserved STO/MMO 32
Reserved ST1/MM1 48
Reserved ST2/MM2 64
Reserved ST3/MM3 80
Reserved ST4/MM4 96
Reserved ST5/MM5 112
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Table 3-55 Layout of the 64-bit-mode FXSAVE64 Map

(requires REX.W = 1) (Contd.)

15 14 13 12 11 10 9 |7 6 | s | a4 | 3 2 0
Reserved ST6/MM6 128
Reserved ST7/MM7 144
XMMO 160
XMM1 176
XMM2 192
XMM3 208
XMM4 224
XMM5 240
XMM6 256
XMM7 272
XMM8 288
XMM9 304
XMM10 320
XMM11 336
XMM12 352
XMM13 368
XMM14 384
XMM15 400
Reserved 416
Reserved 432
Reserved 448
Available 464
Available 480
Available 496

Table 3-56 Layout of the 64-bit-mode FXSAVE Map (REX.W = 0)
15 14 13 12 11 10 | 9 8 7 6 5 4 3 2 1 0
Reserved FCS FIP[31:0] FOP Reserved FTW FSW FCW 0

MXCSR_MASK MXCSR Reserved FDS FDP[31:0] 16
Reserved STO/MMO 32
Reserved ST1/MMA1 48
Reserved ST2/MM2 64
Reserved ST3/MM3 80
Reserved ST4/MM4 96
Reserved ST5/MM5 112
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Table 3-56 Layout of the 64-bit-mode FXSAVE Map (REX.W = 0) (Contd.)

15 14 13 12 1 10 9 8 7 6 s | 4 | 32 | 10

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMMO 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496

Operation
IF 64-Bit Mode
THEN
IF REX.W =1
THEN
DEST « Save64BitPromotedFxsave(x87 FPU, MMX, XMM15-XMMO,
MXCSR);
ELSE

DEST « Save64BitDefaultFxsave(x87 FPU, MMX, XMM15-XMMO, MXCSR);

Fl;
ELSE

DEST « SavelegacyFxsave(x87 FPU, MMX, XMM7-XMMO, MXCSR);

Fl;
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Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of segment. (See the
description of the alignment check exception [#AC] below.)

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
If CRO.EM[bit 2] = 1.
#UD If CPUID.O1H:EDX.FXSR[bit 24] = 0.
#UD If the LOCK prefix is used.
#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory

operand is not aligned on a 16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary, regardless of segment.
If any part of the operand lies outside the effective address space from 0 to FFFFH.
#NM If CRO.TS[bit 3] = 1.
If CRO.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC For unaligned memory reference.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.
If CRO.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.
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If the LOCK prefix is used.

If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

#AC

Implementation Note

The order in which the processor signals general-protection (#GP) and page-fault (#PF) exceptions when they
both occur on an instruction boundary is given in Table 5-2 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B. This order vary for FXSAVE for different processor implementations.

MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values

Opcode/ Op/ 64/32-bit CPUID Description
Instruction En  Mode Feature

Flag
OF10/r RM VNV SSE Move packed single-precision floating-point
MOVUPS xmm1, xmm2/m128 values from xmm2/m128 to xmm1.
VEX.128.0FWIG 10 /r RM VNV AVX Move unaligned packed single-precision
VMOVUPS xmm1, xmm2/m128 floating-point from xmm2/mem to xmm1.
VEX.256.0FWIG 10 /r RM VNV AVX Move unaligned packed single-precision
VMOVUPS ymm1, ymm2/m256 floating-point from ymmZ2/mem to ymm1.
OF11/r MR VNV SSE Move packed single-precision floating-point
MOVUPS xmm2/m128, xmm1 values from xmm1 to xmmZ2/m128.
VEX.128.0FWIG 11 /r MR VNV AVX Move unaligned packed single-precision
VMOVUPS xmm2/m128, xmm1 floating-point from xmm1 to xmmZ2/mem.
VEX.256.0FWIG 11 /r MR VNV AVX Move unaligned packed single-precision
VMOVUPS ymm2/m256, ymm1 floating-point from ymm1 to ymmZ2/mem.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (w) ModRM:r/m (r) NA NA
MR ModRM:r/m (w) ModRM:reg (r) NA NA

Description

128-bit versions: Moves a double quadword containing four packed single-precision floating-point values from the
source operand (second operand) to the destination operand (first operand). This instruction can be used to load
an XMM register from a 128-bit memory location, store the contents of an XMM register into a 128-bit memory
location, or move data between two XMM registers.
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In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain
unchanged.

When the source or destination operand is a memory operand, the operand may be unaligned on a 16-byte
boundary without causing a general-protection exception (#GP) to be generated.!

To move packed single-precision floating-point values to and from memory locations that are known to be aligned
on 16-byte boundaries, use the MOVAPS instruction.

While executing in 16-bit addressing mode, a linear address for a 128-bit data access that overlaps the end of a
16-bit segment is not allowed and is defined as reserved behavior. A specific processor implementation may or

may not generate a general-protection exception (#GP) in this situation, and the address that spans the end of
the segment may or may not wrap around to the beginning of the segment.

VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

VEX.256 encoded version: Moves 256 bits of packed single-precision floating-point values from the source
operand (second operand) to the destination operand (first operand). This instruction can be used to load a YMM
register from a 256-bit memory location, to store the contents of a YMM register into a 256-bit memory location,
or to move data between two YMM registers.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

MOVUPS (128-bit load and register-copy form Legacy SSE version)
DEST[127:0] € SRC[127:0]
DEST[VLMAX-1:128] (Unmodified)

(V)MOVUPS (128-bit store form)
DEST[127:0] € SRC[127:0]

VMOVUPS (VEX.128 encoded load-form)
DEST[127:0] € SRC[127:0]
DEST[VLMAX-1:128] ¢« 0

VMOVUPS (VEX.256 encoded version)
DEST[255:0] € SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVUPS: __m128 _mm_loadu_ps(float * p)
MOVUPS: void _mm_storeu_ps(float *p, __m128 a)
VMOVUPS: __m256 _mm256_loadu_ps (__m256 * p);

VMOVUPS: _mm256_storeu_ps(_m256 *p, __m256 a);

SIMD Floating-Point Exceptions
None.

1. If alignment checking is enabled (CRO.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check exception (#AC) may or may not be
generated (depending on processor implementation) when the operand is not aligned on an 8-byte boundary.
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Other Exceptions

See Exceptions Type 4

Note treatment of #AC varies; additionally
#UD If VEX.vvvv # 1111B.

9. Updates to Chapter 4, Volume 2B

Change bars show changes to Chapter 4 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 2B: Instruction Set Reference, N-Z.

RDPKRU—Read Protection Key Rights for User Pages

Opcode* Instruction Op/ 64/32bit CPUID Description
En  Mode Feature
Support  Flag
OF 01 EE RDPKRU NP V/V OSPKE Reads PKRU into EAX.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
Description

The RDPKRU instruction loads the value of PKRU into EAX and clears EDX. ECX must be 0 when RDPKRU is
executed; otherwise, a general-protection exception (#GP) occurs.

RDPKRU can be executed only if CR4.PKE = 1; otherwise, a general-protection exception (#GP) occurs. Software
can discover the value of CR4.PKE by examining CPUID.(EAX=07H,ECX=0H):ECX.OSPKE [bit 4].

In 64-bit mode, bits 63:32 of RCX are ignored, and RDPKRU clears bits 63:32 of each of RDX and RAX.

Operation

IF (ECX=0)
THEN
EAX « PKRU;
EDX « O;
ELSE #GP(0);
Fl;

Flags Affected
None.

C/C++ Compiler Intrinsic Equivalent
RDPKRU: uint32_t _rdpkru_u32(void);
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Protected Mode Exceptions

#GP(0) IfFECX#0
#UD If the LOCK prefix is used.
If CR4.PKE = 0.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

RSM—Resume from System Management Mode

Opcode* Instruction Op/ 64-Bit Compat/ Description
En  Mode Leg Mode
OF AA RSM NP  Valid Valid Resume operation of interrupted program.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
Description

Returns program control from system management mode (SMM) to the application program or operating-system
procedure that was interrupted when the processor received an SMM interrupt. The processor’s state is restored
from the dump created upon entering SMM. If the processor detects invalid state information during state resto-
ration, it enters the shutdown state. The following invalid information can cause a shutdown:

e Any reserved bit of CR4 is set to 1.
¢ Any illegal combination of bits in CRO, such as (PG=1 and PE=0) or (NW=1 and CD=0).

e (Intel Pentium and Intel486™ processors only.) The value stored in the state dump base field is not a
32-KByte aligned address.

The contents of the model-specific registers are not affected by a return from SMM.
The SMM state map used by RSM supports resuming processor context for non-64-bit modes and 64-bit mode.

See Chapter 34, “System Management Mode,” in the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 3C, for more information about SMM and the behavior of the RSM instruction.
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Operation

ReturnFromSMM;
IF (IA-32e mode supported) or (CPUID DisplayFamily_DisplayModel = 06H_OCH )
THEN
ProcessorState < Restore(SMMDump(IA-32e SMM STATE MAP));
Else
ProcessorState « Restore(SMMDump(Non-32-Bit-Mode SMM STATE MAP));
Fl
Flags Affected
All.

Protected Mode Exceptions
#UD If an attempt is made to execute this instruction when the processor is not in SMM.
If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

SYSRET—Return From Fast System Call

Opcode Instruction Op/ 64-Bit Compat/ Description
En  Mode Leg Mode
OF 07 SYSRET NP  Valid Invalid Return to compatibility mode from fast
system call
REX.W + OF 07 SYSRET NP  Valid Invalid Return to 64-bit mode from fast system call

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
Description

SYSRET is a companion instruction to the SYSCALL instruction. It returns from an OS system-call handler to user
code at privilege level 3. It does so by loading RIP from RCX and loading RFLAGS from R11.1 With a 64-bit
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operand size, SYSRET remains in 64-bit mode; otherwise, it enters compatibility mode and only the low 32 bits of
the registers are loaded.

SYSRET loads the CS and SS selectors with values derived from bits 63:48 of the IA32_STAR MSR. However, the
CS and SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by those selectors.
Instead, the descriptor caches are loaded with fixed values. See the Operation section for details. It is the respon-
sibility of OS software to ensure that the descriptors (in GDT or LDT) referenced by those selector values corre-
spond to the fixed values loaded into the descriptor caches; the SYSRET instruction does not ensure this
correspondence.

The SYSRET instruction does not modify the stack pointer (ESP or RSP). For that reason, it is necessary for soft-
ware to switch to the user stack. The OS may load the user stack pointer (if it was saved after SYSCALL) before
executing SYSRET,; alternatively, user code may load the stack pointer (if it was saved before SYSCALL) after
receiving control from SYSRET.

If the OS loads the stack pointer before executing SYSRET, it must ensure that the handler of any interrupt or
exception delivered between restoring the stack pointer and successful execution of SYSRET is not invoked with
the user stack. It can do so using approaches such as the following:

e External interrupts. The OS can prevent an external interrupt from being delivered by clearing EFLAGS.IF
before loading the user stack pointer.

e Nonmaskable interrupts (NMIs). The OS can ensure that the NMI handler is invoked with the correct stack by
using the interrupt stack table (IST) mechanism for gate 2 (NMI) in the IDT (see Section 6.14.5, “Interrupt
Stack Table,” in Intel® 64 and 1A-32 Architectures Software Developer’'s Manual, Volume 3A).

e General-protection exceptions (#GP). The SYSRET instruction generates #GP(0) if the value of RCX is not
canonical. The OS can address this possibility using one or more of the following approaches:

— Confirming that the value of RCX is canonical before executing SYSRET.
— Using paging to ensure that the SYSCALL instruction will never save a non-canonical value into RCX.
— Using the IST mechanism for gate 13 (#GP) in the IDT.

Operation

IF(CS.L#1)or (IA32_EFERLMA # 1) or (IA32_EFER.SCE # 1)

(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)
THEN #UD; FI;

IF (CPL # 0) OR (RCX is not canonical) THEN #GP(0); FI;

IF (operand size is 64-bit)
THEN (* Return to 64-Bit Mode *)
RIP « RCX;
ELSE (* Return to Compatibility Mode *)
RIP « ECX;
Fl;
RFLAGS « (R11 & 3C7FD7H) | 2; (* Clear RF, VM, reserved bits; set bit 2 *)

IF (operand size is 64-bit)
THEN CS.Selector «— IA32_STAR[63:48]+16;
ELSE CS.Selector « IA32_STAR[63:48];
Fl;
CS.Selector « CS.Selector OR 3; (* RPL forced to 3 *)
(* Set rest of CS to a fixed value *)

1. Regardless of the value of R11, the RF and VM flags are always 0 in RFLAGS after execution of SYSRET. In addition, all reserved
bits in RFLAGS retain the fixed values.
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CS.Base « 0; (* Flat segment *)

CS.Limit « FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
(S.Type « 11; (* Execute/read code, accessed *)

CSS«1;

CSDPL « 3;

CSP«1;

IF (operand size is 64-bit)
THEN (* Return to 64-Bit Mode *)

CSL«1; (* 64-bit code segment *)
CSD«Q; (* Required if CS.L=1%)
ELSE (* Return to Compatibility Mode *)
CSL«O; (* Compatibility mode *)
CSD«1; (* 32-bit code segment *)
Fl;
CSG«T; (* 4-KByte granularity *)
CPL « 3;

SS.Selector « (IA32_STAR[63:48]+8) OR 3; (* RPL forced to 3 *)
(* Set rest of SS to a fixed value *)

SS.Base « O; (* Flat segment *)

SS.Limit < FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
SS.Type « 3; (* Read/write data, accessed *)

SSS«1;

SS.DPL « 3;

SSP«1;

SSB«1; (* 32-bit stack segment*)

SSG«1; (* 4-KByte granularity *)

Flags Affected

All.

Protected Mode Exceptions
#UD The SYSRET instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The SYSRET instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The SYSRET instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The SYSRET instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions

#UD If IA32_EFER.SCE = 0.
If the LOCK prefix is used.
#GP(0) If CPL #0.

If RCX contains a non-canonical address.
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WRPKRU—Write Data to User Page Key Register

Opcode* Instruction Op/ 64/32bit CPUID Description
En  Mode Feature
Support  Flag
OF 01 EF WRPKRU NP VIV OSPKE Writes EAX into PKRU.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
Description

The WRPKRU instruction loads the value of EAX into PKRU. ECX and EDX must be 0 when WRPKRU is executed;
otherwise, a general-protection exception (#GP) occurs.

WRPKRU can be executed only if CR4.PKE = 1; otherwise, a general-protection exception (#GP) occurs. Software
can discover the value of CR4.PKE by examining CPUID.(EAX=07H,ECX=0H):ECX.OSPKE [bit 4].

In 64-bit mode, WRPKRU ignores bits 63:32 of each of RAX, RCX, and RDX.

Operation

IF (ECX =0 AND EDX = 0)
THEN PKRU « EAX;
ELSE #GP(0);

Fl;

Flags Affected

None.

C/C++ Compiler Intrinsic Equivalent
WRPKRU: void _wrpkru(uint32_t);

Protected Mode Exceptions

#GP(0) If ECX # 0.
If EDX # 0.

#UD If the LOCK prefix is used.
If CR4.PKE = 0.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

10.Updates to Chapter 1, Volume 3A

Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:

e Pentium® processors

e P6 family processors

e Pentium® 4 processors

e Pentium® M processors

e Intel® Xeon® processors

e Pentium® D processors

e Pentium® processor Extreme Editions

e 64-bit Intel® Xeon® processors

e Intel® Core™ Duo processor

e Intel® Core™ Solo processor

e Dual-Core Intel® Xeon® processor LV

e Intel® Core™2 Duo processor

e Intel® Core™2 Quad processor Q6000 series

o Intel® Xeon® processor 3000, 3200 series

e Intel® Xeon® processor 5000 series

e Intel® Xeon® processor 5100, 5300 series

e Intel® Core™2 Extreme processor X7000 and X6800 series
e Intel® Core™2 Extreme processor QX6000 series
e Intel® Xeon® processor 7100 series

e Intel® Pentium® Dual-Core processor

o Intel® Xeon® processor 7200, 7300 series

e Intel® Core™2 Extreme processor QX9000 and X9000 series
e Intel® Core™2 Quad processor Q9000 series

e Intel® Core™2 Duo processor ES000, T9000 series
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e Intel® Atom™ processor family

e Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,
C1000 series are built from 45 nm and 32 nm processes

e Intel® Core™ i7 processor

e Intel® Core™i5 processor

e Intel® Xeon® processor E7-8800/4800/2800 product families

e Intel® Core™ i7-3930K processor

e 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
e Intel® Xeon® processor E3-1200 product family

e Intel® Xeon® processor E5-2400/1400 product family

e Intel® Xeon® processor E5-4600/2600/1600 product family

e 3rd generation Intel® Core™ processors

e Intel® Xeon® processor E3-1200 v2 product family

o Intel® Xeon® processor E5-2400/1400 v2 product families

e Intel® Xeon® processor E5-4600/2600/1600 v2 product families
o Intel® Xeon® processor E7-8800/4800/2800 v2 product families
e 4th generation Intel® Core™ processors

e The Intel® Core™ M processor family

e Intel® Core™ i7-59xx Processor Extreme Edition

e Intel® Core™ i7-49xx Processor Extreme Edition

e Intel® Xeon® processor E3-1200 v3 product family

o Intel® Xeon® processor E5-2600/1600 v3 product families

e Intel® Xeon® processor 5200, 5400, 7400 series

e 5th generation Intel® Core™ processors

e Intel® Atom™ processor X7-Z8000 and X5-Z8000 series

e Intel® Atom™ processor Z3400 series

e Intel® Atom™ processor Z3500 series

e 6th generation Intel® Core™ processors

e Intel® Xeon® processor E3-1500m v5 product family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® II, Pentium® I, and Pentium® IIl Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel® Pentium® dual-core, Intel®
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel®
Core™2 Extreme processor QX9000, X9000 series, Intel® Core™2 processor EB000 series are based on Enhanced
Intel® Core™ microarchitecture.
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The Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,
C1000 series are based on the Intel® Atom™ microarchitecture and supports Intel 64 architecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel®
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32 nm version of
Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and
various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These
processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, Intel®
Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2
product family and the 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code
name Ivy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Intel® microarchitecture
code name Ivy Bridge-E and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

The Intel® Core™ M processor family and 5th generation Intel® Core™ processors are based on the Intel® micro-
architecture code name Broadwell and support Intel 64 architecture.

The Intel® Xeon® processor E3-1500m v5 product family and 6th generation Intel® Core™ processors are based
on the Intel® microarchitecture code name Skylake and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Intel® microarchitecture code name Haswell-E and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Intel microarchitecture code name Airmont.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Intel
microarchitecture code name Silvermont.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors,
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel®
64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is a
superset of and compatible with IA-32 architecture.

11.Updates to Chapter 2, Volume 3A

Change bars show changes to Chapter 2 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.
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2.1.4.1 Interrupt and Exception Handling IA-32e Mode

In IA-32e mode, interrupt gate descriptors are expanded to 16 bytes to support 64-bit base addresses. This is
true for 64-bit mode and compatibility mode.

The IDTR register is expanded to hold a 64-bit base address. Task gates are not supported.

2.1.6.1 System Registers in IA-32e Mode

In IA-32e mode, the four system-descriptor-table registers (GDTR, IDTR, LDTR, and TR) are expanded in hard-
ware to hold 64-bit base addresses. EFLAGS becomes the 64-bit RFLAGS register. CRO-CR4 are expanded to 64
bits. CR8 becomes available. CR8 provides read-write access to the task priority register (TPR) so that the oper-
ating system can control the priority classes of external interrupts.

In 64-bit mode, debug registers DRO-DR7 are 64 bits. In compatibility mode, address-matching in DRO-DR3 is
also done at 64-bit granularity.

On systems that support IA-32e mode, the extended feature enable register (IA32_EFER) is available. This
model-specific register controls activation of IA-32e mode and other IA-32e mode operations. In addition, there
are several model-specific registers that govern IA-32e mode instructions:

¢ 1A32_KERNAL_GS_BASE — Used by SWAPGS instruction.
e 1A32 LSTAR — Used by SYSCALL instruction.

¢ 1A32_FMASK — Used by SYSCALL instruction.

e 1A32_STAR — Used by SYSCALL and SYSRET instruction.

2.5 CONTROL REGISTERS

Control registers (CR0O, CR1, CR2, CR3, and CR4; see Figure 2-7) determine operating mode of the processor and
the characteristics of the currently executing task. These registers are 32 bits in all 32-bit modes and compati-
bility mode.

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions are used to manipulate the
register bits. Operand-size prefixes for these instructions are ignored. The following is also true:

e The control registers can be read and loaded (or modified) using the move-to-or-from-control-registers forms
of the MOV instruction. In protected mode, the MOV instructions allow the control registers to be read or
loaded (at privilege level 0 only). This restriction means that application programs or operating-system
procedures (running at privilege levels 1, 2, or 3) are prevented from reading or loading the control registers.

e Bits 63:32 of CRO and CR4 are reserved and must be written with zeros. Writing a nonzero value to any of the
upper 32 bits results in a general-protection exception, #GP(0).

e All 64 bits of CR2 are writable by software.
e Bits 51:40 of CR3 are reserved and must be 0.

e The MOV CRn instructions do not check that addresses written to CR2 and CR3 are within the linear-address
or physical-address limitations of the implementation.

e Register CR8 is available in 64-bit mode only.

The control registers are summarized below, and each architecturally defined control field in these control regis-
ters is described individually. In Figure 2-7, the width of the register in 64-bit mode is indicated in parenthesis
(except for CRO).

e CRO — Contains system control flags that control operating mode and states of the processor.
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e CR1 — Reserved.
e CR2 — Contains the page-fault linear address (the linear address that caused a page fault).

e CR3 — Contains the physical address of the base of the paging-structure hierarchy and two flags (PCD and
PWT). Only the most-significant bits (less the lower 12 bits) of the base address are specified; the lower 12
bits of the address are assumed to be 0. The first paging structure must thus be aligned to a page (4-KByte)
boundary. The PCD and PWT flags control caching of that paging structure in the processor’s internal data
caches (they do not control TLB caching of page-directory information).

When using the physical address extension, the CR3 register contains the base address of the page-directory-
pointer table. In IA-32e mode, the CR3 register contains the base address of the PML4 table.

See also: Chapter 4, “Paging.”

e CR4 — Contains a group of flags that enable several architectural extensions, and indicate operating system
or executive support for specific processor capabilities.

e CR8 — Provides read and write access to the Task Priority Register (TPR). It specifies the priority threshold
value that operating systems use to control the priority class of external interrupts allowed to interrupt the
processor. This register is available only in 64-bit mode. However, interrupt filtering continues to apply in
compatibility mode.

31(63) 222120 181716151413 121110 9 8 7 6 5 4 3 2 1 0
PIS|S S|V PIPIM|P|P|,|T|P|V
Reserved KM M )’\é")\(" cla|c|als|2|s|v|m| CR4
Elplp g ElE|E|E|E|E|D|I|E
J |—FSGSBASE L|—OSFXSR
OSXSAVE PCIDE OSXMMEXCPT
31(63) 121 54 32
PP
. CR3
- clw
Page-Directory Base olT (PDBR)
31(63) 0
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CR1
313029 28 1918 17 16 15 6543210
P[C|N Al |w N|E|T|E|M|P
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Figure 2-7 Control Registers

When loading a control register, reserved bits should always be set to the values previously read. The flags in
control registers are:

PG Paging (bit 31 of CRO) — Enables paging when set; disables paging when clear. When paging is
disabled, all linear addresses are treated as physical addresses. The PG flag has no effect if the PE flag (bit
0 of register CRO) is not also set; setting the PG flag when the PE flag is clear causes a general-protection
exception (#GP). See also: Chapter 4, “Paging.”
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On Intel 64 processors, enabling and disabling IA-32e mode operation also requires modifying CRO.PG.

Cache Disable (bit 30 of CRO) — When the CD and NW flags are clear, caching of memory locations for
the whole of physical memory in the processor’s internal (and external) caches is enabled. When the CD
flag is set, caching is restricted as described in Table 11-5. To prevent the processor from accessing and
updating its caches, the CD flag must be set and the caches must be invalidated so that no cache hits can
oCcCur.

See also: Section 11.5.3, “Preventing Caching,” and Section 11.5, “Cache Control.”

Not Write-through (bit 29 of CRO) — When the NW and CD flags are clear, write-back (for Pentium 4,
Intel Xeon, P6 family, and Pentium processors) or write-through (for Intel486 processors) is enabled for
writes that hit the cache and invalidation cycles are enabled. See Table 11-5 for detailed information
about the effect of the NW flag on caching for other settings of the CD and NW flags.

Alignment Mask (bit 18 of CRO) — Enables automatic alignment checking when set; disables align-
ment checking when clear. Alignment checking is performed only when the AM flag is set, the AC flag in
the EFLAGS register is set, CPL is 3, and the processor is operating in either protected or virtual-8086
mode.

Write Protect (bit 16 of CRO) — When set, inhibits supervisor-level procedures from writing into read-
only pages; when clear, allows supervisor-level procedures to write into read-only pages (regardless of
the U/S bit setting; see Section 4.1.3 and Section 4.6). This flag facilitates implementation of the copy-
on-write method of creating a new process (forking) used by operating systems such as UNIX.

Numeric Error (bit 5 of CRO) — Enables the native (internal) mechanism for reporting x87 FPU errors
when set; enables the PC-style x87 FPU error reporting mechanism when clear. When the NE flag is clear
and the IGNNE# input is asserted, x87 FPU errors are ignored. When the NE flag is clear and the IGNNE#
input is deasserted, an unmasked x87 FPU error causes the processor to assert the FERR# pin to generate
an external interrupt and to stop instruction execution immediately before executing the next waiting
floating-point instruction or WAIT/FWAIT instruction.

The FERR# pin is intended to drive an input to an external interrupt controller (the FERR# pin emulates
the ERROR# pin of the Intel 287 and Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and
FERR# pin are used with external logic to implement PC-style error reporting. Using FERR# and IGNNE#
to handle floating-point exceptions is deprecated by modern operating systems; this non-native approach
also limits newer processors to operate with one logical processor active.

See also: Section 8.7, "Handling x87 FPU Exceptions in Software” in Chapter 8, “Programming with the
x87 FPU,” and Appendix A, “EFLAGS Cross-Reference,” in the Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 1.

Extension Type (bit 4 of CRO) — Reserved in the Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors. In the Pentium 4, Intel Xeon, and P6 family processors, this flag is hardcoded to 1. In the Intel386
and Intel486 processors, this flag indicates support of Intel 387 DX math coprocessor instructions when
set.

Task Switched (bit 3 of CRO) — Allows the saving of the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4
context on a task switch to be delayed until an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is
actually executed by the new task. The processor sets this flag on every task switch and tests it when
executing x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

e Ifthe TS flag is set and the EM flag (bit 2 of CRO) is clear, a device-not-available exception (#NM) is
raised prior to the execution of any x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction; with the
exception of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and
POPCNT. See the paragraph below for the special case of the WAIT/FWAIT instructions.

e Ifthe TS flag is set and the MP flag (bit 1 of CRO) and EM flag are clear, an #NM exception is not raised
prior to the execution of an x87 FPU WAIT/FWAIT instruction.

e If the EM flag is set, the setting of the TS flag has no effect on the execution of x87 FPU/MMX/SSE/
SSE2/SSE3/SSSE3/SSE4 instructions.
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Table 2-2 shows the actions taken when the processor encounters an x87 FPU instruction based on the
settings of the TS, EM, and MP flags. Table 12-1 and 13-1 show the actions taken when the processor
encounters an MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction.

The processor does not automatically save the context of the x87 FPU, XMM, and MXCSR registers on a
task switch. Instead, it sets the TS flag, which causes the processor to raise an #NM exception whenever
it encounters an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction in the instruction stream for the
new task (with the exception of the instructions listed above).

The fault handler for the #NM exception can then be used to clear the TS flag (with the CLTS instruction)
and save the context of the x87 FPU, XMM, and MXCSR registers. If the task never encounters an x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction, the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4
context is never saved.

Table 2-2 Action Taken By x87 FPU Instructions for Different Combinations of EM, MP, and TS

CRO Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT
0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.

1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.

1 1 1 #NM Exception #NM exception.

EM Emulation (bit 2 of CRO) — Indicates that the processor does not have an internal or external x87 FPU

when set; indicates an x87 FPU is present when clear. This flag also affects the execution of MMX/SSE/
SSE2/SSE3/SSSE3/SSE4 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a device-not-available exception
(#NM). This flag must be set when the processor does not have an internal x87 FPU or is not connected
to an external math coprocessor. Setting this flag forces all floating-point instructions to be handled by
software emulation. Table 9-2 shows the recommended setting of this flag, depending on the IA-32
processor and x87 FPU or math coprocessor present in the system. Table 2-2 shows the interaction of the
EM, MP, and TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an invalid-opcode exception (#UD)
to be generated (see Table 12-1). Thus, if an IA-32 or Intel 64 processor incorporates MMX technology,
the EM flag must be set to O to enable execution of MMX instructions.

Similarly for SSE/SSE2/SSE3/SSSE3/SSE4 extensions, when the EM flag is set, execution of most SSE/
SSE2/SSE3/SSSE3/SSE4 instructions causes an invalid opcode exception (#UD) to be generated (see
Table 13-1). If an IA-32 or Intel 64 processor incorporates the SSE/SSE2/SSE3/SSSE3/SSE4 extensions,
the EM flag must be set to 0 to enable execution of these extensions. SSE/SSE2/SSE3/SSSE3/SSE4
instructions not affected by the EM flag include: PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE,
MOVNTI, CLFLUSH, CRC32, and POPCNT.

MP Monitor Coprocessor (bit 1 of CRO) — Controls the interaction of the WAIT (or FWAIT) instruction with the
TS flag (bit 3 of CRO). If the MP flag is set, a WAIT instruction generates a device-not-available exception
(#NM) if the TS flag is also set. If the MP flag is clear, the WAIT instruction ignores the setting of the TS
flag. Table 9-2 shows the recommended setting of this flag, depending on the IA-32 processor and x87 FPU
or math coprocessor present in the system. Table 2-2 shows the interaction of the MP, EM, and TS flags.
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Protection Enable (bit O of CRO) — Enables protected mode when set; enables real-address mode
when clear. This flag does not enable paging directly. It only enables segment-level protection. To enable
paging, both the PE and PG flags must be set.

See also: Section 9.9, “Mode Switching.”

Page-level Cache Disable (bit 4 of CR3) — Controls the memory type used to access the first paging
structure of the current paging-structure hierarchy. See Section 4.9, “Paging and Memory Typing”. This
bit is not used if paging is disabled, with PAE paging, or with IA-32e paging if CR4.PCIDE=1.

Page-level Write-Through (bit 3 of CR3) — Controls the memory type used to access the first paging
structure of the current paging-structure hierarchy. See Section 4.9, “Paging and Memory Typing”. This
bit is not used if paging is disabled, with PAE paging, or with IA-32e paging if CR4.PCIDE=1.

Virtual-8086 Mode Extensions (bit O of CR4) — Enables interrupt- and exception-handling exten-
sions in virtual-8086 mode when set; disables the extensions when clear. Use of the virtual mode exten-
sions can improve the performance of virtual-8086 applications by eliminating the overhead of calling the
virtual-8086 monitor to handle interrupts and exceptions that occur while executing an 8086 program
and, instead, redirecting the interrupts and exceptions back to the 8086 program’s handlers. It also
provides hardware support for a virtual interrupt flag (VIF) to improve reliability of running 8086
programs in multitasking and multiple-processor environments.

See also: Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode.”

Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware support for a virtual interrupt
flag (VIF) in protected mode when set; disables the VIF flag in protected mode when clear.

See also: Section 20.4, “Protected-Mode Virtual Interrupts.”

Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the RDTSC instruction to procedures
running at privilege level 0 when set; allows RDTSC instruction to be executed at any privilege level when
clear. This bit also applies to the RDTSCP instruction if supported (if CPUID.80000001H:EDX[27] = 1).

Debugging Extensions (bit 3 of CR4) — References to debug registers DR4 and DR5 cause an unde-
fined opcode (#UD) exception to be generated when set; when clear, processor aliases references to
registers DR4 and DR5 for compatibility with software written to run on earlier IA-32 processors.

See also: Section 17.2.2, "Debug Registers DR4 and DR5.”

Page Size Extensions (bit 4 of CR4) — Enables 4-MByte pages with 32-bit paging when set; restricts
32-bit paging to pages of 4 KBytes when clear.

See also: Section 4.3, “32-Bit Paging.”

Physical Address Extension (bit 5 of CR4) — When set, enables paging to produce physical addresses
with more than 32 bits. When clear, restricts physical addresses to 32 bits. PAE must be set before
entering IA-32e mode.

See also: Chapter 4, “Paging.”

Machine-Check Enable (bit 6 of CR4) — Enables the machine-check exception when set; disables the
machine-check exception when clear.

See also: Chapter 15, “Machine-Check Architecture.”

Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family processors.) Enables the global page
feature when set; disables the global page feature when clear. The global page feature allows frequently
used or shared pages to be marked as global to all users (done with the global flag, bit 8, in a page-direc-
tory or page-table entry). Global pages are not flushed from the translation-lookaside buffer (TLB) on a
task switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting the PG flag in control register
CRO) before the PGE flag is set. Reversing this sequence may affect program correctness, and processor
performance will be impacted.
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See also: Section 4.10, “Caching Translation Information.”

PCE Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables execution of the RDPMC instruc-
tion for programs or procedures running at any protection level when set; RDPMC instruction can be
executed only at protection level 0 when clear.

OSFXSR
Operating System Support for FXSAVE and FXRSTOR instructions (bit 9 of CR4) — When set, this
flag: (1) indicates to software that the operating system supports the use of the FXSAVE and FXRSTOR
instructions, (2) enables the FXSAVE and FXRSTOR instructions to save and restore the contents of the
XMM and MXCSR registers along with the contents of the x87 FPU and MMX registers, and (3) enables the
processor to execute SSE/SSE2/SSE3/SSSE3/SSE4 instructions, with the exception of the PAUSE,
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT.

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and restore the contents of the x87
FPU and MMX registers, but they may not save and restore the contents of the XMM and MXCSR registers.
Also, the processor will generate an invalid opcode exception (#UD) if it attempts to execute any SSE/
SSE2/SSE3 instruction, with the exception of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI,
CLFLUSH, CRC32, and POPCNT. The operating system or executive must explicitly set this flag.

NOTE

CPUID feature flag FXSR indicates availability of the FXSAVE/FXRSTOR instructions. The OSFXSR
bit provides operating system software with a means of enabling FXSAVE/FXRSTOR to save/
restore the contents of the X87 FPU, XMM and MXCSR registers. Consequently OSFXSR bit
indicates that the operating system provides context switch support for SSE/SSE2/SSE3/SSSE3/
SSE4.

OSXMMEXCPT
Operating System Support for Unmasked SIMD Floating-Point Exceptions (bit 10 of CR4) —
When set, indicates that the operating system supports the handling of unmasked SIMD floating-point
exceptions through an exception handler that is invoked when a SIMD floating-point exception (#XM) is
generated. SIMD floating-point exceptions are only generated by SSE/SSE2/SSE3/SSE4.1 SIMD floating-
point instructions.

The operating system or executive must explicitly set this flag. If this flag is not set, the processor will
generate an invalid opcode exception (#UD) whenever it detects an unmasked SIMD floating-point
exception.

VMXE
VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See Chapter 23, “Introduction to
Virtual-Machine Extensions.”

SMXE
SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See Chapter 5, “"Safer Mode Exten-
sions Reference” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C.

FSGSBASE
FSGSBASE-Enable Bit (bit 16 of CR4) — Enables the instructions RDFSBASE, RDGSBASE, WRFSBASE,
and WRGSBASE.

PCIDE
PCID-Enable Bit (bit 17 of CR4) — Enables process-context identifiers (PCIDs) when set. See Section
4.10.1, “Process-Context Identifiers (PCIDs)"”. Can be set only in IA-32e mode (if IA32_EFER.LMA = 1).

OSXSAVE
XSAVE and Processor Extended States-Enable Bit (bit 18 of CR4) — When set, this flag: (1) indi-
cates (via CPUID.01H:ECX.OSXSAVE[bit 27]) that the operating system supports the use of the XGETBYV,
XSAVE and XRSTOR instructions by general software; (2) enables the XSAVE and XRSTOR instructions to
save and restore the x87 FPU state (including MMX registers), the SSE state (XMM registers and MXCSR),
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along with other processor extended states enabled in XCRO; (3) enables the processor to execute
XGETBV and XSETBYV instructions in order to read and write XCRO. See Section 2.6 and Chapter 13,
“System Programming for Instruction Set Extensions and Processor Extended States”.

SMEP
SMEP-Enable Bit (bit 20 of CR4) — Enables supervisor-mode execution prevention (SMEP) when set.
See Section 4.6, “Access Rights”.

SMAP
SMAP-Enable Bit (bit 21 of CR4) — Enables supervisor-mode access prevention (SMAP) when set. See
Section 4.6, “Access Rights.”

PKE
Protection-Key-Enable Bit (bit 22 of CR4) — Enables IA-32e paging to associate each linear address
with a protection key. The PKRU register specifies, for each protection key, whether user-mode linear
addresses with that protection key can be read or written. This bit also enables access to the PKRU
register using the RDPKRU and WRPKRU instructions.

TPL

Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corresponding to the highest-
priority interrupt to be blocked. A value of 0 means all interrupts are enabled. This field is available in 64-
bit mode. A value of 15 means all interrupts will be disabled.

2.8.1 Loading and Storing System Registers

The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for loading data into and storing
data from the register:

e LGDT (Load GDTR Register) — Loads the GDT base address and limit from memory into the GDTR register.

e SGDT (Store GDTR Register) — Stores the GDT base address and limit from the GDTR register into
memory.

e LIDT (Load IDTR Register) — Loads the IDT base address and limit from memory into the IDTR register.
e SIDT (Store IDTR Register) — Stores the IDT base address and limit from the IDTR register into memory.

e LLDT (Load LDTR Register) — Loads the LDT segment selector and segment descriptor from memory into
the LDTR. (The segment selector operand can also be located in a general-purpose register.)

e SLDT (Store LDTR Register) — Stores the LDT segment selector from the LDTR register into memory or a
general-purpose register.

e LTR (Load Task Register) — Loads segment selector and segment descriptor for a TSS from memory into
the task register. (The segment selector operand can also be located in a general-purpose register.)

e STR (Store Task Register) — Stores the segment selector for the current task TSS from the task register
into memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word) instructions operate on bits 0
through 15 of control register CRO. These instructions are provided for compatibility with the 16-bit Intel 286
processor. Programs written to run on 32-bit IA-32 processors should not use these instructions. Instead, they
should access the control register CRO using the MOV instruction.

The CLTS (clear TS flag in CRO) instruction is provided for use in handling a device-not-available exception (#NM)
that occurs when the processor attempts to execute a floating-point instruction when the TS flag is set. This
instruction allows the TS flag to be cleared after the x87 FPU context has been saved, preventing further #NM
exceptions. See Section 2.5, “Control Registers,” for more information on the TS flag.
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The control registers (CR0O, CR1, CR2, CR3, CR4, and CR8) are loaded using the MOV instruction. The instruction
loads a control register from a general-purpose register or stores the content of a control register in a general-
purpose register.

2.8.6 Reading Performance-Monitoring and Time-Stamp Counters

The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp counter) instructions allow
application programs to read the processor’s performance-monitoring and time-stamp counters, respectively.
Processors based on Intel NetBurst® microarchitecture have eighteen 40-bit performance-monitoring counters;
P6 family processors have two 40-bit counters. Intel® Atom™ processors and most of the processors based on the
Intel Core microarchitecture support two types of performance monitoring counters: programmable performance
counters similar to those available in the P6 family, and three fixed-function performance monitoring counters.
Details of programmable and fixed-function performance monitoring counters for each processor generation are
described in Chapter 18, “Performance Monitoring”.

The programmable performance counters can support counting either the occurrence or duration of events.
Events that can be monitored on programmable counters generally are model specific (except for architectural
performance events enumerated by CPUID leaf 0AH); they may include the number of instructions decoded,
interrupts received, or the number of cache loads. Individual counters can be set up to monitor different events.
Use the system instruction WRMSR to set up values in one of the IA32_PERFEVTSELx MSR, in one of the 45 ESCRs
and one of the 18 CCCR MSRs (for Pentium 4 and Intel Xeon processors); or in the PerfEvtSelO or the PerfEvtSell
MSR (for the P6 family processors). The RDPMC instruction loads the current count from the selected counter into
the EDX:EAX registers.

Fixed-function performance counters record only specific events that are defined in Chapter 19, “Performance
Monitoring Events”, and the width/number of fixed-function counters are enumerated by CPUID leaf OAH.

The time-stamp counter is a model-specific 64-bit counter that is reset to zero each time the processor is reset.
If not reset, the counter will increment ~9.5 x 1018 times per year when the processor is operating at a clock
rate of 3GHz. At this clock frequency, it would take over 190 years for the counter to wrap around. The RDTSC
instruction loads the current count of the time-stamp counter into the EDX:EAX registers.

See Section 18.1, “Performance Monitoring Overview,” and Section 17.14, “"Time-Stamp Counter,” for more infor-
mation about the performance monitoring and time-stamp counters.

The RDTSC instruction was introduced into the IA-32 architecture with the Pentium processor. The RDPMC
instruction was introduced into the IA-32 architecture with the Pentium Pro processor and the Pentium processor
with MMX technology. Earlier Pentium processors have two performance-monitoring counters, but they can be
read only with the RDMSR instruction, and only at privilege level 0.

12. Updates to Chapter 4, Volume 3A

Change bars show changes to Chapter 4 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

4.4.2 Linear-Address Translation with PAE Paging

PAE paging may map linear addresses to either 4-KByte pages or 2-MByte pages. Figure 4-5 illustrates the trans-
lation process when it produces a 4-KByte page; Figure 4-6 covers the case of a 2-MByte page. The following
items describe the PAE paging process in more detail as well has how the page size is determined:
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e Bits 31:30 of the linear address select a PDPTE register (see Section 4.4.1); this is PDPTEi, where i is the value
of bits 31:30.1 Because a PDPTE register is identified using bits 31:30 of the linear address, it controls access
to a 1-GByte region of the linear-address space. If the P flag (bit 0) of PDPTEi is 0, the processor ignores bits
63:1, and there is no mapping for the 1-GByte region controlled by PDPTEi. A reference using a linear address
in this region causes a page-fault exception (see Section 4.7).

o Ifthe Pflag of PDPTEi is 1, 4-KByte naturally aligned page directory is located at the physical address specified
in bits 51:12 of PDPTEi (see Table 4-8 in Section 4.4.1). A page directory comprises 512 64-bit entries
(PDEs). A PDE is selected using the physical address defined as follows:

— Bits 51:12 are from PDPTEi.
— Bits 11:3 are bits 29:21 of the linear address.
— Bits 2:0 are 0.

Because a PDE is identified using bits 31:21 of the linear address, it controls access to a 2-Mbyte region of the
linear-address space. Use of the PDE depends on its PS flag (bit 7):

e Ifthe PDE’s PSflagis 1, the PDE maps a 2-MByte page (see Table 4-9). The final physical address is computed
as follows:

— Bits 51:21 are from the PDE.
— Bits 20:0 are from the original linear address.

e Ifthe PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical address specified in
bits 51:12 of the PDE (see Table 4-10). A page table comprises 512 64-bit entries (PTEs). A PTE is selected
using the physical address defined as follows:

— Bits 51:12 are from the PDE.
— Bits 11:3 are bits 20:12 of the linear address.
— Bits 2:0 are 0.

e Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a 4-KByte page (see
Table 4-11). The final physical address is computed as follows:

— Bits 51:12 are from the PTE.
— Bits 11:0 are from the original linear address.

If the P flag (bit 0) of a PDE or a PTE is 0 or if a PDE or a PTE sets any reserved bit, the entry is used neither to
reference another paging-structure entry nor to map a page. There is no translation for a linear address whose
translation would use such a paging-structure entry; a reference to such a linear address causes a page-fault
exception (see Section 4.7).

The following bits are reserved with PAE paging:
e Ifthe P flag (bit 0) of a PDE or a PTE is 1, bits 62:MAXPHYADDR are reserved.
e Ifthe P flag and the PS flag (bit 7) of a PDE are both 1, bits 20:13 are reserved.
e IfIA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) is reserved.
e If the PAT is not supported:?
— Ifthe P flag of a PTE is 1, bit 7 is reserved.
— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

A reference using a linear address that is successfully translated to a physical address is performed only if allowed
by the access rights of the translation; see Section 4.6.

1. With PAE paging, the processor does not use CR3 when translating a linear address (as it does in the other paging modes). It does
not access the PDPTEs in the page-directory-pointer table during linear-address translation.

2. See Section 4.1.4 for how to determine whether the PAT is supported.
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Figure 4-5 Linear-Address Translation to a 4-KByte Page using PAE Paging
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Figure 4-6 Linear-Address Translation to a 2-MByte Page using PAE Paging
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4.5

IA-32€ PAGING

A logical processor uses IA-32e paging if CRO.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 1. With IA-32e
paging, linear address are translated using a hierarchy of in-memory paging structures located using the contents
of CR3. IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses.! Although 52 bits corre-
sponds to 4 PBytes, linear addresses are limited to 48 bits; at most 256 TBytes of linear-address space may be
accessed at any given time.

IA-32e paging uses a hierarchy of paging structures to produce a translation for a linear address. CR3 is used to
locate the first paging-structure, the PML4 table. Use of CR3 with IA-32e paging depends on whether process-
context identifiers (PCIDs) have been enabled by setting CR4.PCIDE:

e Table 4-14 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 0.

Table 4-14 Use of CR3 with IA-32e Paging and CR4.PCIDE = 0

Bit Contents
Position(s)
2.0 Ignored
3 (PWT) Page-level write-through; indirectly determines the memory type used to access the PML4 table during linear-
address translation (see Section 4.9.2)
4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the PML4 table during linear-address
translation (see Section 4.9.2)
11:5 Ignored
M-1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address translation’
63:M Reserved (must be 0)
NOTES:

1. Mis an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

e Table 4-15 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 1.

Table 4-15 Use of CR3 with IA-32e Paging and CR4.PCIDE = 1

Bit Contents

Position(s)

11:0 PCID (see Section 4.10.1)’

M-1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address translation?
63:M Reserved (must be 0)3
NOTES:

1. Section 4.9.2 explains how the processor determines the memory type used to access the PML4 table during linear-address transla-
tion with CR4.PCIDE = 1.

2. Mis an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.
3. See Section 4.10.4.1 for use of bit 63 of the source operand of the MOV to CR3 instruction.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used by IA-32e paging. (The corre-
sponding bits are reserved in the paging-structure entries.) See Section 4.1.4 for how to determine MAXPHYADDR.
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After software modifies the value of CR4.PCIDE, the logical processor immediately begins using CR3 as specified
for the new value. For example, if software changes CR4.PCIDE from 1 to 0, the current PCID immediately
changes from CR3[11:0] to O00H (see also Section 4.10.4.1). In addition, the logical processor subsequently
determines the memory type used to access the PML4 table using CR3.PWT and CR3.PCD, which had been

bits 4:3 of the PCID.

IA-32e paging may map linear addresses to 4-KByte pages, 2-MByte pages, or 1-GByte pages.! Figure 4-8 illus-
trates the translation process when it produces a 4-KByte page; Figure 4-9 covers the case of a 2-MByte page,
and Figure 4-10 the case of a 1-GByte page.

Linear Address
47 39 38 30 29 2120 12 11 0
| PML4 ‘ Directory Ptr Directory Table Offset

] | 9 .

9 12 4-KByte Page
Physical Addr

PTE >
Page-Directory- PDE with PS=0 > 40
Pointer Table 40 Page Table
Page-Directory
> PDPTE 40
9
40
> PML4E
40
CR3

Figure 4-8 Linear-Address Translation to a 4-KByte Page using IA-32e Paging

1. Not all processors support 1-GByte pages; see Section 4.1.4.
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Figure 4-9 Linear-Address Translation to a 2-MByte Page using IA-32e Paging
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Figure 4-10 Linear-Address Translation to a 1-GByte Page using IA-32e Paging
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If CR4.PKE = 1, IA-32e paging associates with each linear address a protection key. Section 4.6 explains how
the processor uses the protection key in its determination of the access rights of each linear address.

The following items describe the IA-32e paging process in more detail as well has how the page size and protec-
tion key are determined.

e A 4-KByte naturally aligned PML4 table is located at the physical address specified in bits 51:12 of CR3 (see
Table 4-14). A PML4 table comprises 512 64-bit entries (PML4Es). A PMLA4E is selected using the physical
address defined as follows:

— Bits 51:12 are from CR3.
— Bits 11:3 are bits 47:39 of the linear address.
— Bits 2:0 are all 0.

Because a PMLA4E is identified using bits 47:39 of the linear address, it controls access to a 512-GByte region
of the linear-address space.

e A 4-KByte naturally aligned page-directory-pointer table is located at the physical address specified in
bits 51:12 of the PML4E (see Table 4-14). A page-directory-pointer table comprises 512 64-bit entries
(PDPTEs). A PDPTE is selected using the physical address defined as follows:

— Bits 51:12 are from the PML4E.
— Bits 11:3 are bits 38:30 of the linear address.
— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the linear address, it controls access to a 1-GByte region of the
linear-address space. Use of the PDPTE depends on its PS flag (bit 7):1

e If the PDPTE’s PS flag is 1, the PDPTE maps a 1-GByte page (see Table 4-15). The final physical address is
computed as follows:

— Bits 51:30 are from the PDPTE.
— Bits 29:0 are from the original linear address.
If CR4.PKE = 1, the linear address’s protection key is the value of bits 62:59 of the PDPTE.

e If the PDPTE’s PS flag is 0, a 4-KByte naturally aligned page directory is located at the physical address
specified in bits 51:12 of the PDPTE (see Table 4-16). A page directory comprises 512 64-bit entries (PDEs).
A PDE is selected using the physical address defined as follows:

— Bits 51:12 are from the PDPTE.
— Bits 11:3 are bits 29:21 of the linear address.
— Bits 2:0 are all 0.

Because a PDE is identified using bits 47:21 of the linear address, it controls access to a 2-MByte region of the
linear-address space. Use of the PDE depends on its PS flag:

e Ifthe PDE's PS flag is 1, the PDE maps a 2-MByte page (see Table 4-17). The final physical address is
computed as follows:

— Bits 51:21 are from the PDE.
— Bits 20:0 are from the original linear address.
If CR4.PKE = 1, the linear address’s protection key is the value of bits 62:59 of the PDE.

e Ifthe PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical address specified in
bits 51:12 of the PDE (see Table 4-18). A page table comprises 512 64-bit entries (PTEs). A PTE is selected
using the physical address defined as follows:

1. The PS flag of a PDPTE is reserved and must be O (if the P flag is 1) if 1-GByte pages are not supported. See Section 4.1.4 for how
to determine whether 1-GByte pages are supported.
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— Bits 51:12 are from the PDE.
— Bits 11:3 are bits 20:12 of the linear address.
— Bits 2:0 are all 0.

Because a PTE is identified using bits 47:12 of the linear address, every PTE maps a 4-KByte page (see
Table 4-19). The final physical address is computed as follows:

— Bits 51:12 are from the PTE.
— Bits 11:0 are from the original linear address.
If CR4.PKE = 1, the linear address’s protection key is the value of bits 62:59 of the PTE.

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the entry is used neither to
reference another paging-structure entry nor to map a page. There is no translation for a linear address whose
translation would use such a paging-structure entry; a reference to such a linear address causes a page-fault
exception (see Section 4.7).

The following bits are reserved with IA-32e paging:

If the P flag of a paging-structure entry is 1, bits 51:MAXPHYADDR are reserved.

If the P flag of a PML4E is 1, the PS flag is reserved.

If 1-GByte pages are not supported and the P flag of a PDPTE is 1, the PS flag is reserved.!

If the P flag and the PS flag of a PDPTE are both 1, bits 29:13 are reserved.

If the P flag and the PS flag of a PDE are both 1, bits 20:13 are reserved.

If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, the XD flag (bit 63) is reserved.

A reference using a linear address that is successfully translated to a physical address is performed only if allowed
by the access rights of the translation; see Section 4.6.

4.10.4.1 Operations that Invalidate TLBs and Paging-Structure Caches

The following instructions invalidate entries in the TLBs and the paging-structure caches:

INVLPG. This instruction takes a single operand, which is a linear address. The instruction invalidates any TLB
entries that are for a page number corresponding to the linear address and that are associated with the
current PCID. It also invalidates any global TLB entries with that page number, regardless of PCID (see
Section 4.10.2.4).2 INVLPG also invalidates all entries in all paging-structure caches associated with the
current PCID, regardless of the linear addresses to which they correspond.

INVPCID. The operation of this instruction is based on instruction operands, called the INVPCID type and the
INVPCID descriptor. Four INVPCID types are currently defined:

— Individual-address. If the INVPCID type is 0, the logical processor invalidates mappings—except global
translations—associated with the PCID specified in the INVPCID descriptor and that would be used to
translate the linear address specified in the INVPCID descriptor.3 (The instruction may also invalidate
global translations, as well as mappings associated with other PCIDs and for other linear addresses.)

. See Section 4.1.4 for how to determine whether 1-GByte pages are supported.

If the paging structures map the linear address using a page larger than 4 KBytes and there are multiple TLB entries for that page
(see Section 4.10.2.3), the instruction invalidates all of them.

If the paging structures map the linear address using a page larger than 4 KBytes and there are multiple TLB entries for that page
(see Section 4.10.2.3), the instruction invalidates all of them.
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— Single-context. If the INVPCID type is 1, the logical processor invalidates all mappings—except global
translations—associated with the PCID specified in the INVPCID descriptor. (The instruction may also
invalidate global translations, as well as mappings associated with other PCIDs.)

— All-context, including globals. If the INVPCID type is 2, the logical processor invalidates mappings—
including global translations—associated with all PCIDs.

— All-context. If the INVPCID type is 3, the logical processor invalidates mappings—except global transla-
tions—associated with all PCIDs. (The instruction may also invalidate global translations.)

See Chapter 3 of the Intel 64 and 1A-32 Architecture Software Developer’s Manual, Volume 2A for details of
the INVPCID instruction.

e MOV to CRO. The instruction invalidates all TLB entries (including global entries) and all entries in all paging-
structure caches (for all PCIDs) if it changes the value of CRO.PG from 1 to 0.

e MOV to CR3. The behavior of the instruction depends on the value of CR4.PCIDE:

— If CR4.PCIDE = 0, the instruction invalidates all TLB entries associated with PCID 000H except those for
global pages. It also invalidates all entries in all paging-structure caches associated with PCID 000H.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 0, the instruction invalidates all TLB
entries associated with the PCID specified in bits 11:0 of the instruction’s source operand except those for
global pages. It also invalidates all entries in all paging-structure caches associated with that PCID. It is
not required to invalidate entries in the TLBs and paging-structure caches that are associated with other
PCIDs.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 1, the instruction is not required to
invalidate any TLB entries or entries in paging-structure caches.

e MOV to CR4. The behavior of the instruction depends on the bits being modified:

— The instruction invalidates all TLB entries (including global entries) and all entries in all paging-structure
caches (for all PCIDs) if (1) it changes the value of CR4.PGE;! or (2) it changes the value of the
CR4.PCIDE from 1 to 0.

— The instruction invalidates all TLB entries and all entries in all paging-structure caches for the current
PCID if (1) it changes the value of CR4.PAE; or (2) it changes the value of CR4.SMEP from 0 to 1.

e Task switch. If a task switch changes the value of CR3, it invalidates all TLB entries associated with PCID 000H
exceptzthose for global pages. It also invalidates all entries in all paging-structure caches associated with PCID
000H.

e VMX transitions. See Section 4.11.1.

The processor is always free to invalidate additional entries in the TLBs and paging-structure caches. The
following are some examples:

e INVLPG may invalidate TLB entries for pages other than the one corresponding to its linear-address operand.
It may invalidate TLB entries and paging-structure-cache entries associated with PCIDs other than the current
PCID.

e INVPCID may invalidate TLB entries for pages other than the one corresponding to the specified linear
address. It may invalidate TLB entries and paging-structure-cache entries associated with PCIDs other than
the specified PCID.

e MOV to CRO may invalidate TLB entries even if CRO.PG is not changing. For example, this may occur if either
CRO.CD or CR0O.NW is modified.

1. If CR4.PGE is changing from O to 1, there were no global TLB entries before the execution; if CR4.PGE is changing from 1 to O,
there will be no global TLB entries after the execution.

2. Task switches do not occur in IA-32e mode and thus cannot occur with IA-32e paging. Since CR4.PCIDE can be set only with |A-32e
paging, task switches occur only with CR4.PCIDE = 0.
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e MOV to CR3 may invalidate TLB entries for global pages. If CR4.PCIDE = 1 and bit 63 of the instruction’s
source operand is 0, it may invalidate TLB entries and entries in the paging-structure caches associated with
PCIDs other than the PCID it is establishing. It may invalidate entries if CR4.PCIDE = 1 and bit 63 of the
instruction’s source operand is 1.

e MOV to CR4 may invalidate TLB entries when changing CR4.PSE or when changing CR4.SMEP from 1 to 0.

e On aprocessor supporting Hyper-Threading Technology, invalidations performed on one logical processor may
invalidate entries in the TLBs and paging-structure caches used by other logical processors.

(Other instructions and operations may invalidate entries in the TLBs and the paging-structure caches, but the
instructions identified above are recommended.)

In addition to the instructions identified above, page faults invalidate entries in the TLBs and paging-structure
caches. In particular, a page-fault exception resulting from an attempt to use a linear address will invalidate any
TLB entries that are for a page number corresponding to that linear address and that are associated with the
current PCID. It also invalidates all entries in the paging-structure caches that would be used for that linear
address and that are associated with the current PCID.! These invalidations ensure that the page-fault exception
will not recur (if the faulting instruction is re-executed) if it would not be caused by the contents of the paging
structures in memory (and if, therefore, it resulted from cached entries that were not invalidated after the paging
structures were modified in memory).

As noted in Section 4.10.2, some processors may choose to cache multiple smaller-page TLB entries for a trans-
lation specified by the paging structures to use a page larger than 4 KBytes. There is no way for software to be
aware that multiple translations for smaller pages have been used for a large page. The INVLPG instruction and
page faults provide the same assurances that they provide when a single TLB entry is used: they invalidate all TLB
entries corresponding to the translation specified by the paging structures.

13. Updates to Chapter 5, Volume 3A

Change bars show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

5.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND
PAGE-LEVEL PROTECTION

The processor’s protection mechanism uses the following fields and flags in the system data structures to control
access to segments and pages:

e Descriptor type (S) flag — (Bit 12 in the second doubleword of a segment descriptor.) Determines if the
segment descriptor is for a system segment or a code or data segment.

e Type field — (Bits 8 through 11 in the second doubleword of a segment descriptor.) Determines the type of
code, data, or system segment.

e Limit field — (Bits O through 15 of the first doubleword and bits 16 through 19 of the second doubleword of
a segment descriptor.) Determines the size of the segment, along with the G flag and E flag (for data
segments).

1. Unlike INVLPG, page faults need not invalidate all entries in the paging-structure caches, only those that would be used to trans-
late the faulting linear address.
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e G flag — (Bit 23 in the second doubleword of a segment descriptor.) Determines the size of the segment,
along with the limit field and E flag (for data segments).

e Eflag— (Bit 10 in the second doubleword of a data-segment descriptor.) Determines the size of the segment,
along with the limit field and G flag.

e Descriptor privilege level (DPL) field — (Bits 13 and 14 in the second doubleword of a segment
descriptor.) Determines the privilege level of the segment.

e Requested privilege level (RPL) field — (Bits 0 and 1 of any segment selector.) Specifies the requested
privilege level of a segment selector.

e Currentprivilege level (CPL) field — (Bits 0 and 1 of the CS segment register.) Indicates the privilege level
of the currently executing program or procedure. The term current privilege level (CPL) refers to the setting
of this field.

e User/supervisor (U/S) flag — (Bit 2 of paging-structure entries.) Determines the type of page: user or
supervisor.

e Read/write (R/W) flag — (Bit 1 of paging-structure entries.) Determines the type of access allowed to a
page: read-only or read/write.

e Execute-disable (XD) flag — (Bit 63 of certain paging-structure entries.) Determines the type of access
allowed to a page: executable or not-executable.

Figure 5-1 shows the location of the various fields and flags in the data-, code-, and system-segment descriptors;
Figure 3-6 shows the location of the RPL (or CPL) field in a segment selector (or the CS register); and Chapter 4
identifies the locations of the U/S, R/W, and XD flags in the paging-structure entries.
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Data-Segment Descriptor

31 242322 212019 161514 13 12 11 8 7 0
A L D Type
Base3124  |o|lo|v| HML |p| p P Base 23:16
L : L |10 | E |W| A
31 16 15 0
Base Address 15:00 Segment Limit 15:00

Code-Segment Descriptor

31 2423 22 212019 1615141312 11 8 7 0
A . D Type
Base3124  |G[p|o|v| LML lp| p P Base 23:16
L : L[4 1|C|R|A
31 16 15 0
Base Address 15:00 Segment Limit 15:00

System-Segment Descriptor

D Reserved

31 242322 212019 16 15 14 13 12 11 8 7 0
- D
Base 3124 |G| |0 Limit el P o] Type Base 23:16
: L
31 1615 0
Base Address 15:00 Segment Limit 15:00
A Accessed E Expansion Direction
AVL Available to Sys. Programmers G Granularity
B Big R Readable
C Conforming LIMIT Segment Limit
D Default w Writable
DPL Descriptor Privilege Level P Present

Figure 5-1 Descriptor Fields Used for Protection

Many different styles of protection schemes can be implemented with these fields and flags. When the operating
system creates a descriptor, it places values in these fields and flags in keeping with the particular protection style
chosen for an operating system or executive. Application programs do not generally access or modify these fields

and flags.

The following sections describe how the processor uses these fields and flags to perform the various categories of

checks described in the introduction to this chapter.
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14.

Updates to Chapter 6, Volume 3A

Change bars show changes to Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

Interrupt 1—Debug Exception (#DB)

Exception Class Trap or Fault. The exception handler can distinguish between traps or faults by
examining the contents of DR6 and the other debug registers.

Description

Indicates that one or more of several debug-exception conditions has been detected. Whether the exception is a
fault or a trap depends on the condition (see Table 6-3). See Chapter 17, “"Debug, Branch Profile, TSC, and
Resource Monitoring Features,” for detailed information about the debug exceptions.

Table 6-3 Debug Exception Conditions and Corresponding Exception Classes

Exception Condition Exception Class
Instruction fetch breakpoint Fault
Data read or write breakpoint Trap
I/0 read or write breakpoint Trap
General detect condition (in conjunction with in-circuit emulation) Fault
Single-step Trap
Task-switch Trap

Exception Error Code
None. An exception handler can examine the debug registers to determine which condition caused the exception.

Saved Instruction Pointer
Fault — Saved contents of CS and EIP registers point to the instruction that generated the exception.

Trap — Saved contents of CS and EIP registers point to the instruction following the instruction that generated the
exception.

Program State Change

Fault — A program-state change does not accompany the debug exception, because the exception occurs before
the faulting instruction is executed. The program can resume normal execution upon returning from the debug
exception handler.

Trap — A program-state change does accompany the debug exception, because the instruction or task switch
being executed is allowed to complete before the exception is generated. However, the new state of the program
is not corrupted and execution of the program can continue reliably.

Any debug exception inside an RTM region causes a transactional abort and, by default, redirects control flow to
the fallback instruction address. If advanced debugging of RTM transactional regions has been enabled, any
transactional abort due to a debug exception instead causes execution to roll back to just before the XBEGIN
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instruction and then delivers a #DB. See Section 15.3.7, “RTM-Enabled Debugger Support,” of Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 1.

Interrupt 3—Breakpoint Exception (#BP)

Exception Class Trap.

Description

Indicates that a breakpoint instruction (INT 3, opcode CCH) was executed, causing a breakpoint trap to be gener-
ated. Typically, a debugger sets a breakpoint by replacing the first opcode byte of an instruction with the opcode
for the INT 3 instruction. (The INT 3 instruction is one byte long, which makes it easy to replace an opcode in a
code segment in RAM with the breakpoint opcode.) The operating system or a debugging tool can use a data
segment mapped to the same physical address space as the code segment to place an INT 3 instruction in places
where it is desired to call the debugger.

With the P6 family, Pentium, Intel486, and Intel386 processors, it is more convenient to set breakpoints with the
debug registers. (See Section 17.3.2, “"Breakpoint Exception (#BP)—Interrupt Vector 3,” for information about
the breakpoint exception.) If more breakpoints are needed beyond what the debug registers allow, the INT 3
instruction can be used.

Any breakpoint exception inside an RTM region causes a transactional abort and, by default, redirects control flow
to the fallback instruction address. If advanced debugging of RTM transactional regions has been enabled, any
transactional abort due to a break exception instead causes execution to roll back to just before the XBEGIN
instruction and then delivers a debug exception (#DB) — not a breakpoint exception. See Section 15.3.7,
“RTM-Enabled Debugger Support,” of Intel® 64 and I1A-32 Architectures Software Developer’s Manual, Volume 1.

A breakpoint exception can also be generated by executing the INT n instruction with an operand of 3. The action
of this instruction (INT 3) is slightly different than that of the INT 3 instruction (see "INTn/INTO/INT3—Call to
Interrupt Procedure” in Chapter 3 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume
2A).

Exception Error Code
None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction following the INT 3 instruction.

Program State Change

Even though the EIP points to the instruction following the breakpoint instruction, the state of the program is
essentially unchanged because the INT 3 instruction does not affect any register or memory locations. The
debugger can thus resume the suspended program by replacing the INT 3 instruction that caused the breakpoint
with the original opcode and decrementing the saved contents of the EIP register. Upon returning from the
debugger, program execution resumes with the replaced instruction.
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15.

Updates to Chapter 10, Volume 3A

Change bars show changes to Chapter 10 of the Intel® 64 and I1A-32 Architectures Software Developer’'s Manual,
Volume 3A: System Programming Guide, Part 1.

10.5.4.1 TSC-Deadline Mode

The mode of operation of the local-APIC timer is determined by the LVT Timer Register. Specifically, if
CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, the mode is determined by bit 17 of the register; if
CPUID.01H:ECX.TSC_Deadline[bit 24] = 1, the mode is determined by bits 18:17. See Figure 10-8. (If
CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, bit 18 of the register is reserved.) A write to the LVT Timer Register
that changes the timer mode disarms the local APIC timer. The supported timer modes are given in Table 10-2.
The three modes of the local APIC timer are mutually exclusive.

Table 10-2 Local APIC Timer Modes

LVT Bits [18:17] Timer Mode

00b One-shot mode, program count-down value in an initial-count register. See Section 10.5.4
01b Periodic mode, program interval value in an initial-count register. See Section 10.5.4

10b TSC-Deadline mode, program target value in IA32_TSC_DEADLINE MSR.

11b Reserved

Inte

TSC-deadline mode allows software to use the local APIC timer to signal an interrupt at an absolute time. In TSC-
deadline mode, writes to the initial-count register are ignored; and current-count register always reads 0.
Instead, timer behavior is controlled using the IA32_TSC_DEADLINE MSR.

The IA32_TSC_DEADLINE MSR (MSR address 6EQH) is a per-logical processor MSR that specifies the time at
which a timer interrupt should occur. Writing a non-zero 64-bit value into IA32_TSC_DEADLINE arms the timer.
An interrupt is generated when the logical processor’s time-stamp counter equals or exceeds the target value in
the IA32_TSC_DEADLINE MSR.! When the timer generates an interrupt, it disarms itself and clears the
IA32_TSC_DEADLINE MSR. Thus, each write to the IA32_TSC_DEADLINE MSR generates at most one timer inter-
rupt.

In TSC-deadline mode, writing 0 to the IA32_TSC_DEADLINE MSR disarms the local-APIC timer. Transitioning
between TSC-deadline mode and other timer modes also disarms the timer.

The hardware reset value of the IA32_TSC_DEADLINE MSR is 0. In other timer modes (LVT bit 18 = 0), the
IA32_TSC_DEADLINE MSR reads zero and writes are ignored.

Software can configure the TSC-deadline timer to deliver a single interrupt using the following algorithm:
1. Detect support for TSC-deadline mode by verifying CPUID.1:ECX.24 = 1.
2. Select the TSC-deadline mode by programming bits 18:17 of the LVT Timer register with 10b.

3. Program the IA32_TSC_DEADLINE MSR with the target TSC value at which the timer interrupt is desired. This
causes the processor to arm the timer.

1. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using either RDMSR, RDTSC, or RDTSCP)
may not return the actual value of the time-stamp counter; see Chapter 27 of the Intel 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C. It is the responsibility of software operating in VMX root operation to coordinate the virtualization
of the time-stamp counter and the IA32_TSC_DEADLINE MSR.
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5.

The processor generates a timer interrupt when the value of time-stamp counter is greater than or equal to
that of IA32_TSC_DEADLINE. It then disarms the timer and clear the IA32_TSC_DEADLINE MSR. (Both the
time-stamp counter and the IA32_TSC_DEADLINE MSR are 64-bit unsigned integers.)

Software can re-arm the timer by repeating step 3.

The following are usage guidelines for TSC-deadline mode:

16.

Writes to the IA32_TSC_DEADLINE MSR are not serialized. Therefore, system software should not use
WRMSR to the IA32_TSC_DEADLINE MSR as a serializing instruction. Read and write accesses to the
IA32_TSC_DEADLINE and other MSR registers will occur in program order.

Software can disarm the timer at any time by writing 0 to the IA32_TSC_DEADLINE MSR.

If timer is armed, software can change the deadline (forward or backward) by writing a new value to the
IA32_TSC_DEADLINE MSR.

If software disarms the timer or postpones the deadline, race conditions may result in the delivery of a
spurious timer interrupt. Software is expected to detect such spurious interrupts by checking the current
value of the time-stamp counter to confirm that the interrupt was desired.!

In XAPIC mode (in which the local-APIC registers are memory-mapped), software must order the memory-
mapped write to the LVT entry that enables TSC-deadline mode and any subsequent WRMSR to the
IA32_TSC_DEADLINE MSR. Software can assure proper ordering by executing the MFENCE instruction after
the memory-mapped write and before any WRMSR. (In x2APIC mode, the WRMSR instruction is used to write
to the LVT entry. The processor ensures the ordering of this write and any subsequent WRMSR to the
deadline; no fencing is required.)

Updates to Chapter 14, Volume 3B

Change bars show changes to Chapter 14 of the Intel® 64 and 1A-32 Architectures Software Developer’'s Manual,
Volume 3B: System Programming Guide, Part 2.

14.9.4 PPO/PP1 RAPL Domains

The MSR interfaces defined for the PPO and PP1 domains are identical in layout. Generally, PPO refers to the
processor cores. The availability of PP1 RAPL domain interface is platform-specific. For a client platform, the PP1
domain refers to the power plane of a specific device in the uncore. For server platforms, the PP1 domain is not
supported, but its PPO domain supports the MSR_PPO_PERF_STATUS interface.

MSR_PPO_POWER_LIMIT/MSR_PP1_POWER_LIMIT allow software to set power limits for the respective
power plane domain.

MSR_PPO_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS report actual energy usage on a power plane.
MSR_PPO_POLICY/MSR_PP1_POLICY allow software to adjust balance for respective power plane.

If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using either RDMSR, RDTSC, or RDTSCP)
may not return the actual value of the time-stamp counter; see Chapter 27 of the Intel 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C. It is the responsibility of software operating in VMX root operation to coordinate the virtualization
of the time-stamp counter and the IA32_TSC_DEADLINE MSR.
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MSR_PPO_PERF_STATUS can report the performance impact of power limiting, but it is not available in client plat-
forms.

63 323130 24 23 171615 14 0
T
¢ Fimevinden
K
L Enable limit
Clamping limit

Figure 14-37 MSR_PPO_POWER_LIMIT/MSR_PP1_POWER_LIMIT Register

MSR_PPO_POWER_LIMIT/MSR_PP1_POWER_LIMIT allow a software agent to define power limitation for the
respective power plane domain. A lock mechanism in each power plane domain allows the software agent to
enforce power limit settings independently. Once a lock bit is set, the power limit settings in that power plane are
static and un-modifiable until next RESET.

The bit fields of MSR_PPO_POWER_LIMIT/MSR_PP1_POWER_LIMIT (Figure 14-37) are:

Power Limit (bits 14:0): Sets the average power usage limit of the respective power plane domain. The unit
of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

Enable Power Limit (bit 15): 0 = disabled; 1 = enabled.

Clamping Limitation (bit 16): Allow going below OS-requested P/T state setting during time window
specified by bits 23:17.

Time Window for Power Limit (bits 23:17): Indicates the length of time window over which the power limit
#1 will be used by the processor. The numeric value encoded by bits 23:17 is represented by the product of
27Y *F; where F is a single-digit decimal floating-point value between 1.0 and 1.3 with the fraction digit
represented by bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit of this field is specified
by the “Time Units” field of MSR_RAPL_POWER_UNIT.

Lock (bit 31): If set, all write attempts to the MSR and corresponding policy MSR_PPO_POLICY/
MSR_PP1_POLICY are ignored until next RESET.

MSR_PPO_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS are read-only MSRs. They report the actual energy use
for the respective power plane domains. These MSRs are updated every ~1msec.

63 32 31 0

Reserved

]

Total Energy Consumed

|:| Reserved
Figure 14-38 MSR_PPO_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS MSR

Total Energy Consumed (bits 31:0): The unsigned integer value represents the total amount of energy
consumed since the last time this register was cleared. The unit of this field is specified by the “Energy Status
Units” field of MSR_RAPL_POWER_UNIT.

MSR_PPO_POLICY/MSR_PP1_POLICY provide balance power policy control for each power plane by providing
inputs to the power budgeting management algorithm. On platforms that support PPO (IA cores) and PP1 (uncore
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graphic device), the default values give priority to the non-IA power plane. These MSRs enable the PCU to balance
power consumption between the IA cores and uncore graphic device.

63 5 4 0

Priority Level

Figure 14-39 MSR_PPO_POLICY/MSR_PP1_POLICY Register

e Priority Level (bits 4:0): Priority level input to the PCU for respective power plane. PPO covers the IA
processor cores, PP1 covers the uncore graphic device. The value 31 is considered highest priority.

MSR_PPO_PERF_STATUS is a read-only MSR. It reports the total time for which the PPO domain was throttled due
to the power limits. This MSR is supported only in server platform. Throttling in this context is defined as going
below the OS-requested P-state or T-state.

63 32 31 0

Reserved

Accumulated PPO throttled time Q

|:| Reserved
Figure 14-40 MSR_PPO_PERF_STATUS MSR

e Accumulated PPO Throttled Time (bits 31:0): The unsigned integer value represents the cumulative time
(since the last time this register is cleared) that the PPO domain has throttled. The unit of this field is specified
by the “Time Units” field of MSR_RAPL_POWER_UNIT.

14.9.5 DRAM RAPL Domain

The MSR interfaces defined for the DRAM domains are supported only in the server platform. The MSR interfaces
are:

e MSR_DRAM_POWER_LIMIT allows software to set power limits for the DRAM domain and measurement
attributes associated with each limit.

e MSR_DRAM_ENERGY_STATUS reports measured actual energy usage.
e MSR_DRAM_POWER_INFO reports the DRAM domain power range information for RAPL usage.
e MSR_DRAM_PERF_STATUS can report the performance impact of power limiting.
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Figure 14-41 MSR_DRAM_POWER_LIMIT Register

MSR_DRAM_POWER_LIMIT allows a software agent to define power limitation for the DRAM domain. Power limi-
tation is defined in terms of average power usage (Watts) over a time window specified in
MSR_DRAM_POWER_LIMIT. A power limit can be specified along with a time window. A lock mechanism allow the
software agent to enforce power limit settings. Once the lock bit is set, the power limit settings are static and un-
modifiable until next RESET.

The bit fields of MSR_DRAM_POWER_LIMIT (Figure 14-41) are:

DRAM Power Limit #1(bits 14:0): Sets the average power usage limit of the DRAM domain corresponding
to time window # 1. The unit of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.

Time Window for Power Limit (bits 23:17): Indicates the length of time window over which the power limit
will be used by the processor. The numeric value encoded by bits 23:17 is represented by the product of 2/Y
*F; where F is a single-digit decimal floating-point value between 1.0 and 1.3 with the fraction digit
represented by bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit of this field is specified
by the “Time Units” field of MSR_RAPL_POWER_UNIT.

Lock (bit 31): If set, all write attempts to this MSR are ignored until next RESET.

MSR_DRAM_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for the DRAM domain. This
MSR is updated every ~1msec.

63 3231 0

Reserved

]

Total Energy Consumed

D Reserved
Figure 14-42 MSR_DRAM_ENERGY_STATUS MSR

Total Energy Consumed (bits 31:0): The unsigned integer value represents the total amount of energy
consumed since that last time this register is cleared. The unit of this field is specified by the “Energy Status
Units” field of MSR_RAPL_POWER_UNIT.
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MSR_DRAM_POWER_INFO is a read-only MSR. It reports the DRAM power range information for RAPL usage. This
MSR provides maximum/minimum values (derived from electrical specification), thermal specification power of
the DRAM domain. It also provides the largest possible time window for software to program the RAPL interface.

63 54 53 48 47 46 3231 30 1615 14 0

Maximum Time window Maximum Power Minimum Power Thermal Spec Power

Figure 14-43 MSR_DRAM_POWER_INFO Register

e Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent of thermal specification
power of the DRAM domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

e Minimum Power (bits 30:16): The unsigned integer value is the equivalent of minimum power derived from
electrical spec of the DRAM domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

e Maximum Power (bits 46:32): The unsigned integer value is the equivalent of maximum power derived
from the electrical spec of the DRAM domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

e Maximum Time Window (bits 53:48): The unsigned integer value is the equivalent of largest acceptable
value to program the time window of MSR_DRAM_POWER_LIMIT. The unit of this field is specified by the
“Time Units” field of MSR_RAPL_POWER_UNIT.

MSR_DRAM_PERF_STATUS is a read-only MSR. It reports the total time for which the package was throttled due
to the RAPL power limits. Throttling in this context is defined as going below the OS-requested P-state or T-state.
It has a wrap-around time of many hours. The availability of this MSR is platform specific (see Chapter 35).

63 32 31 0
Reserved
Accumulated DRAM throttled time—‘
|:| Reserved

Figure 14-44 MSR_DRAM_PERF_STATUS MSR

¢ Accumulated Package Throttled Time (bits 31:0): The unsigned integer value represents the cumulative
time (since the last time this register is cleared) that the DRAM domain has throttled. The unit of this field is
specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.
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17. Updates to Chapter 15, Volume 3B

Change bars show changes to Chapter 15 of the Intel® 64 and IA-32 Architectures Software Developer’'s Manual,
Volume 3B: System Programming Guide, Part 2.

15.3.2.2 1A32_MCi_STATUS MSRS

Each IA32_MCi_STATUS MSR contains information related to a machine-check error if its VAL (valid) flag is set
(see Figure 15-6). Software is responsible for clearing IA32_MCi_STATUS MSRs by explicitly writing Os to them;
writing 1s to them causes a general-protection exception.

NOTE

Figure 15-6 depicts the IA32_MCi_STATUS MSR when IA32_MCG_CAP[24] =1,
IA32_MCG_CAP[11] = 1 and IA32_MCG_CAP[10] = 1. When IA32_MCG_CAP[24] = 0 and
IA32_MCG_CAP[11] = 1, bits 56:55 is reserved and bits 54:53 for threshold-based error
reporting. When IA32_MCG_CAP[11] = 0, bits 56:53 are part of the "Other Information” field. The
use of bits 54:53 for threshold-based error reporting began with Intel Core Duo processors, and is
currently used for cache memory. See Section 15.4, “Enhanced Cache Error reporting,” for more
information. When IA32_MCG_CAP[10] = 0, bits 52:38 are part of the “"Other Information” field.
The use of bits 52:38 for corrected MC error count is introduced with Intel 64 processor on which
CPUID reports DisplayFamily_DisplayModel as 06H_1AH.

63626160595857 56555453 52 383736 32 31 1615 0
/\_\/ \‘/3 g E (F:’ S Q Corrected Error Other | MSCOD Model MCA Error Code
UlE ¢ Count Info | Specific Error Code

R

L Firmware updated error status indicator (37)*
Threshold-based error status (54:53)**

AR — Recovery action required for UCR error (55)***
S — Signaling an uncorrected recoverable (UCR) error (56)***
PCC — Processor context corrupted (57)

ADDRV — MCi_ADDR register valid (58)

MISCV — MCi_MISC register valid (59)

EN — Error reporting enabled (60)

UC — Uncorrected error (61)

OVER — Error overflow (62)

VAL — MCi_STATUS register valid (63)

* When 1A32_MCG_CAP[25] (MCG_EMC_P) is set, bit 37 is not part of “Other Information”.

** When I1A32_MCG_CAP[11] (MCG_TES_P) is not set, these bits are model-specific
(part of “Other Information”).

*** When IA32_MCG_CAP[11] or IA32_MCG_CAP[24] are not set, these bits are reserved, or
model-specific (part of “Other Information”).

Figure 15-6 IA32_MCi_STATUS Register

Where:

e MCA (machine-check architecture) error code field, bits 15:0 — Specifies the machine-check archi-
tecture-defined error code for the machine-check error condition detected. The machine-check architecture-
defined error codes are guaranteed to be the same for all IA-32 processors that implement the machine-check
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architecture. See Section 15.9, “Interpreting the MCA Error Codes,” and Chapter 16, “Interpreting Machine-
Check Error Codes”, for information on machine-check error codes.

e Model-specific error code field, bits 31:16 — Specifies the model-specific error code that uniquely
identifies the machine-check error condition detected. The model-specific error codes may differ among IA-32
processors for the same machine-check error condition. See Chapter 16, “Interpreting Machine-Check Error
Codes”for information on model-specific error codes.

e Reserved, Error Status, and Other Information fields, bits 56:32 —

If IA32_MCG_CAP.MCG_EMC_P[bit 25] is 0, bits 37:32 contain “Other Information” that is implemen-
tation-specific and is not part of the machine-check architecture.

If IA32_MCG_CAP.MCG_EMC_P is 1, “Other Information” is in bits 36:32. If bit 37 is 0, system
firmware has not changed the contents of IA32_MCi_STATUS. If bit 37 is 1, system firmware may have
edited the contents of IA32_MCi_STATUS.

If IA32_MCG_CAP.MCG_CMCI_P[bit 10] is 0, bits 52:38 also contain “Other Information” (in the same
sense as bits 37:32).

If IA32_MCG_CAP[10] is 1, bits 52:38 are architectural (not model-specific). In this case, bits 52:38
reports the value of a 15 bit counter that increments each time a corrected error is observed by the
MCA recording bank. This count value will continue to increment until cleared by software. The most
significant bit, 52, is a sticky count overflow bit.

If IA32_MCG_CAP[11] is 0, bits 56:53 also contain “Other Information” (in the same sense).

If IA32_MCG_CAP[11] is 1, bits 56:53 are architectural (not model-specific). In this case, bits 56:53
have the following functionality:

e IfIA32_MCG_CAP[24] is 0, bits 56:55 are reserved.
e IfIA32_MCG_CAP[24] is 1, bits 56:55 are defined as follows:

e S (Signaling) flag, bit 56 - Signals the reporting of UCR errors in this MC bank. See Section 15.6.2
for additional detail.

. AR (Action Required) flag, bit 55 - Indicates (when set) that MCA error code specific recovery
action must be performed by system software at the time this error was signaled. See Section
15.6.2 for additional detail.

e If the UC bit (Figure 15-6) is 1, bits 54:53 are undefined.

e If the UC bit (Figure 15-6) is 0, bits 54:53 indicate the status of the hardware structure that
reported the threshold-based error. See Table 15-1.

Table 15-1 Bits 54:53 in IA32_MCi_STATUS MSRs when IA32_MCG_CAP[11]=1andUC=0

Bits 54:53 | Meaning
00 No tracking - No hardware status tracking is provided for the structure reporting this event.
01 Green - Status tracking is provided for the structure posting the event; the current status is green (below threshold).
For more information, see Section 15.4, “Enhanced Cache Error reporting”.
10 Yellow - Status tracking is provided for the structure posting the event; the current status is yellow (above threshold).
For more information, see Section 15.4, “Enhanced Cache Error reporting”.
11 Reserved

e PCC (processor context corrupt) flag, bit 57 — Indicates (when set) that the state of the processor might
have been corrupted by the error condition detected and that reliable restarting of the processor may not be
possible. When clear, this flag indicates that the error did not affect the processor’s state, and software may
be able to restart. When system software supports recovery, consult Section 15.10.4, “"Machine-Check
Software Handler Guidelines for Error Recovery” for additional rules that apply.
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e ADDRYV (1A32_MCi_ADDR register valid) flag, bit 58 — Indicates (when set) that the IA32_MCi_ADDR
register contains the address where the error occurred (see Section 15.3.2.3, "IA32_MCi_ADDR MSRs").
When clear, this flag indicates that the IA32_MCi_ADDR register is either not implemented or does not contain
the address where the error occurred. Do not read these registers if they are not implemented in the
processor.

e MISCV (1A32_MCi_MISC register valid) flag, bit 59 — Indicates (when set) that the IA32_MCi_MISC
register contains additional information regarding the error. When clear, this flag indicates that the
IA32_MCi_MISC register is either not implemented or does not contain additional information regarding the
error. Do not read these registers if they are not implemented in the processor.

e EN (error enabled) flag, bit 60 — Indicates (when set) that the error was enabled by the associated EEj bit
of the IA32_MCi_CTL register.

e UC (error uncorrected) flag, bit 61 — Indicates (when set) that the processor did not or was not able to
correct the error condition. When clear, this flag indicates that the processor was able to correct the error
condition.

e OVER (machine check overflow) flag, bit 62 — Indicates (when set) that a machine-check error occurred
while the results of a previous error were still in the error-reporting register bank (that is, the VAL bit was
already set in the IA32_MCi_STATUS register). The processor sets the OVER flag and software is responsible
for clearing it. In general, enabled errors are written over disabled errors, and uncorrected errors are written
over corrected errors. Uncorrected errors are not written over previous valid uncorrected errors. When
MCG_CMCI_P is set, corrected errors may not set the OVER flag. Software can rely on corrected error count
in IA32_MCi_Status[52:38] to determine if any additional corrected errors may have occurred. For more
information, see Section 15.3.2.2.1, “"Overwrite Rules for Machine Check Overflow”.

e VAL (IA32_MCi_STATUS register valid) flag, bit 63 — Indicates (when set) that the information within
the IA32_MCi_STATUS register is valid. When this flag is set, the processor follows the rules given for the
OVER flag in the IA32_MCi_STATUS register when overwriting previously valid entries. The processor sets the
VAL flag and software is responsible for clearing it.

15.3.2.2.1 Overwrite Rules for Machine Check Overflow

Table 15-2 shows the overwrite rules for how to treat a second event if the cache has already posted an event to
the MC bank - that is, what to do if the valid bit for an MC bank already is set to 1. When more than one structure
posts events in a given bank, these rules specify whether a new event will overwrite a previous posting or not.
These rules define a priority for uncorrected (highest priority), yellow, and green/unmonitored (lowest priority)
status.

In Table 15-2, the values in the two left-most columns are IA32_MCi_STATUS[54:53].
Table 15-2 Overwrite Rules for Enabled Errors

First Event Second Event UC bit Color MCA Info
00/green 00/green 0 00/green either
00/green yellow 0 yellow second error
yellow 00/green 0 yellow first error
vellow yellow 0 yellow either
00/green/yellow uc 1 undefined second

uc 00/green/yellow 1 undefined first

If a second event overwrites a previously posted event, the information (as guarded by individual valid bits) in the
MCi bank is entirely from the second event. Similarly, if a first event is retained, all of the information previously
posted for that event is retained. In general, when the logged error or the recent error is a corrected error, the
OVER bit (MCi_Status[62]) may be set to indicate an overflow. When MCG_CMCI_P is set in IA32_MCG_CAP,
system software should consult IA32_MCi_STATUS[52:38] to determine if additional corrected errors may have
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occurred. Software may re-read IA32_MCi_STATUS, IA32_MCi_ADDR and IA32_MCi_MISC appropriately to
ensure data collected represent the last error logged.

After software polls a posting and clears the register, the valid bit is no longer set and therefore the meaning of
the rest of the bits, including the yellow/green/00 status field in bits 54:53, is undefined. The yellow/green indi-
cation will only be posted for events associated with monitored structures — otherwise the unmonitored (00) code
will be posted in IA32_MCi_STATUS[54:53].

15.5 CORRECTED MACHINE CHECK ERROR INTERRUPT

Corrected machine-check error interrupt (CMCI) is an architectural enhancement to the machine-check architec-
ture. It provides capabilities beyond those of threshold-based error reporting (Section 15.4). With threshold-
based error reporting, software is limited to use periodic polling to query the status of hardware corrected MC
errors. CMCI provides a signaling mechanism to deliver a local interrupt based on threshold values that software
can program using the IA32_MCi_CTL2 MSRs.

CMCI is disabled by default. System software is required to enable CMCI for each IA32_MCi bank that support the
reporting of hardware corrected errors if IA32_MCG_CAP[10] = 1.

System software use IA32_MCi_CTL2 MSR to enable/disable the CMCI capability for each bank and program
threshold values into IA32_MCi_CTL2 MSR. CMCI is not affected by the CR4.MCE bit, and it is not affected by the
IA32_MCi_CTL MSRs.

To detect the existence of thresholding for a given bank, software writes only bits 14:0 with the threshold value.
If the bits persist, then thresholding is available (and CMCI is available). If the bits are all 0's, then no thresh-
olding exists. To detect that CMCI signaling exists, software writes a 1 to bit 30 of the MCi_CTL2 register. Upon
subsequent read, if bit 30 = 0, no CMCI is available for this bank and no corrected or UCNA errors will be reported
on this bank. If bit 30 = 1, then CMCI is available and enabled.

15.6.3  UCR Error Classification
With the S and AR flag encoding in the IA32_MCi_STATUS register, UCR errors can be classified as:

e Uncorrected no action required (UCNA) - is a UCR error that is not signaled via a machine check exception
and, instead, is reported to system software as a corrected machine check error. UCNA errors indicate that
some data in the system is corrupted, but the data has not been consumed and the processor state is valid
and you may continue execution on this processor. UCNA errors require no action from system software to
continue execution. A UNCA error is indicated with UC=1, PCC=0, S=0 and AR=0 in the IA32_MCi_STATUS
register.

e Software recoverable action optional (SRAO) - a UCR error is signaled either via a machine check exception or
CMCI. System software recovery action is optional and not required to continue execution from this machine
check exception. SRAO errors indicate that some data in the system is corrupt, but the data has not been
consumed and the processor state is valid. SRAO errors provide the additional error information for system
software to perform a recovery action. An SRAO error when signaled as a machine check is indicated with
UC=1, PCC=0, S=1, EN=1 and AR=0 in the IA32_MCi_STATUS register. In cases when SRAO is signaled via
CMCI the error signature is indicated via UC=1, PCC=0, S=0. Recovery actions for SRAO errors are MCA error
code specific. The MISCV and the ADDRYV flags in the IA32_MCi_STATUS register are set when the additional
error information is available from the IA32_MCi_MISC and the IA32_MCi_ADDR registers. System software
needs to inspect the MCA error code fields in the IA32_MCi_STATUS register to identify the specific recovery
action for a given SRAO error. If MISCV and ADDRYV are not set, it is recommended that no system software
error recovery be performed however, system software can resume execution.
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e Software recoverable action required (SRAR) - a UCR error that requires system software to take a recovery
action on this processor before scheduling another stream of execution on this processor. SRAR errors indicate
that the error was detected and raised at the point of the consumption in the execution flow. An SRAR error is
indicated with UC=1, PCC=0, S=1, EN=1 and AR=1 in the IA32_MCi_STATUS register. Recovery actions are
MCA error code specific. The MISCV and the ADDRYV flags in the IA32_MCi_STATUS register are set when the
additional error information is available from the IA32_MCi_MISC and the IA32_MCi_ADDR registers. System
software needs to inspect the MCA error code fields in the IA32_MCi_STATUS register to identify the specific
recovery action for a given SRAR error. If MISCV and ADDRYV are not set, it is recommended that system
software shutdown the system.

Table 15-6 summarizes UCR, corrected, and uncorrected errors.
Table 15-6 MC Error Classifications
Type of Error! UC |EN |[PCC |S |AR |Signaling |Software Action Example

Uncorrected Error (UC) |1 1 1 X |[x MCE If EN=1, reset the system, else log
and OK to keep the system running.

SRAR 1 1 0 1 |1 MCE For known MCACQOD, take specific Cache to processor load
recovery action; error.

For unknown MCACOD, must
bugcheck.

If OVER=1, reset system, else take
specific recovery action.

SRAO 1 X? 0 xZ [0 MCE/CMC | For known MCACOD, take specific Patrol scrub and explicit
recovery action; writeback poison errors.

For unknown MCACOD, OK to keep
the system running.

UCNA 1 X 0 0 |0 cMC Log the error and Ok to keep the Poison detection error.
system running.

Corrected Error (CE) 0 X X X |[x CMC Log the error and no corrective €CCin caches and
action required. memory.

NOTES:

1. SRAR, SRAO and UCNA errors are supported by the processor only when IA32_MCG_CAP[24] (MCG_SER_P) is set.
2. EN=1, S=1 when signaled via MCE. EN=x, S=0 when signaled via CMC.

15.9.3.1 Architecturally Defined SRAO Errors

The following two SRAO errors are architecturally defined.

e UCR Errors detected by memory controller scrubbing; and

e UCR Errors detected during L3 cache (L3) explicit writebacks.

The MCA error code encodings for these two architecturally-defined UCR errors corresponds to sub-classes of
compound MCA error codes (see Table 15-9). Their values and compound encoding format are given in Table 15-
15.
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Table 15-15 MCA Compound Error Code Encoding for SRAO Errors

Type MCACOD Value |MCA Error Code Encoding’

Memory Scrubbing | COH - CFH 0000_0000_1100_CcCcc
000F 0000 1MMM CCCC (Memory Controller Error), where
Memory subfield MMM = 100B (memory scrubbing)
Channel subfield CCCC = channel # or generic

L3 Explicit Writeback | 17AH 0000_0001_0111_1010

000F 0001 RRRR TTLL (Cache Hierarchy Error) where
Request subfields RRRR = 0111B (Eviction)
Transaction Type subfields TT = 10B (Generic)

Level subfields LL = 10B

NOTES:

1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error must be ignored.

Table 15-16 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally defined SRAO errors.

Table 15-16 [1A32_MCi_STATUS Values for SRAO Errors
SRAO Error Valid OVER Uc |EN |MiISCV ADDRV PCC AR |MCACOD
Memory Scrubbing 1 0 X! 1 1 0 0 COH-CFH
L3 Explicit Writeback 1 0 1 x' |1 1 0 0 17AH
NOTES:

1. When signaled as MCE, EN=1 and S=1 If error was signaled via CMC, then EN=x, and S=0.

For both the memory scrubbing and L3 explicit writeback errors, the ADDRV and MISCV flags in the
IA32_MCIi_STATUS register are set to indicate that the offending physical address information is available from
the IA32_MCi_MISC and the IA32_MCi_ADDR registers. For the memory scrubbing and L3 explicit writeback
errors, the address mode in the IA32_MCi_MISC register should be set as physical address mode (010b) and the
address LSB information in the IA32_MCi_MISC register should indicate the lowest valid address bit in the
address information provided from the IA32_MCi_ADDR register.

MCE signal is broadcast to all logical processors as outlined in Section 15.10.4.1. If LMCE is supported and
enabled, some errors (not limited to UCR errors) may be delivered to only a single logical processor. System soft-
ware should consult IA32_MCG_STATUS.LMCE_S to determine if the MCE signaled is only to this logical processor.

IA32_MCi_STATUS banks can be shared by logical processors within a core or within the same package. So
several logical processors may find an SRAO error in the shared IA32_MCi_STATUS bank but other processors do
not find it in any of the IA32_MCi_STATUS banks. Table 15-17 shows the RIPV and EIPV flag indication in the
IA32_MCG_STATUS register for the memory scrubbing and L3 explicit writeback errors on both the reporting and
non-reporting logical processors.

Table 15-17 1A32_MCG_STATUS Flag Indication for SRAO Errors
SRAO Type Reporting Logical Processors Non-reporting Logical Processors
RIPV EIPV RIPV EIPV
Memory Scrubbing 1 0 1 0
L3 Explicit Writeback 1 0 1 0
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15.10.4.2 Corrected Machine-Check Handler for Error Recovery

When writing a corrected machine check handler, which is invoked as a result of CMCI or called from an OS CMC
Polling dispatcher, consider the following:

e The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error information in the register
is valid. If this flag is clear, the registers in that bank does not contain valid error information and does not
need to be checked.

e The CMCI or CMC polling handler is responsible for logging and clearing corrected errors. The UC flag in each
IA32_MCi_Status register indicates whether the reported error was corrected (UC=0) or not (UC=1).

e When IA32_MCG_CAP [24] is one, the CMC handler is also responsible for logging and clearing uncorrected
no-action required (UCNA) errors. When the UC flag is one but the PCC, S, and AR flags are zero in the
IA32_MCi_STATUS register, the reported error in this bank is an uncorrected no-action required (UCNA) error.
In cases when SRAO error are signaled as UCNA error via CMCI, software can perform recovery for those
errors identified in Table 15-15.

e In addition to corrected errors and UCNA errors, the CMC handler optionally logs uncorrected (UC=1 and
PCC=1), software recoverable machine check errors (UC=1, PCC=0 and S=1), but should avoid clearing
those errors from the MC banks. Clearing these errors may result in accidentally removing these errors before
these errors are actually handled and processed by the MCE handler for attempted software error recovery.

Example 15-5 gives pseudocode for a CMCI handler with UCR support.

Example 15-5 Corrected Error Handler Pseudocode with UCR Support

Corrected Error HANDLER: (* Called from CMCI handler or OS CMC Polling Dispatcher*)
IF CPU supports MCA
THEN
FOR each bank of machine-check registers
DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS =1

THEN
IF UC Flag in IA32_MCi_STATUS = 0 (* It is a corrected error *)
THEN
GOTO LOG CMC ERROR;
ELSE
IF Bit 24 in IA32_MCG_CAP =0
THEN
GOTO CONTINUE;
Fl;
IF S Flag in IA32_MCi_STATUS = 0 AND AR Flag in IA32_MCi_STATUS = 0
THEN (* It is a uncorrected no action required error *)
GOTO LOG CMC ERROR
Fl
IF EN Flag in IA32_MCi_STATUS =0
THEN (* It is a spurious MCA error *)
GOTO LOG CMC ERROR
Fl;
Fl;
Fl;
GOTO CONTINUE;
LOG CMC ERROR:

SAVE IA32_MCi_STATUS;
If MISCV Flag in IA32_MCi_STATUS
THEN
SAVE IA32_MCi_MISC;
SET all 0 to IA32_MCi_MISC;
Fl;
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IF ADDRV Flag in IA32_MCi_STATUS
THEN
SAVE IA32_MCi_ADDR;
SET all 0 to IA32_MCi_ADDR
Fl;
SET all 0 to IA32_MCi_STATUS;
CONTINUE:
0D;
(*END FOR *)
Fl;

Updates to Chapter 16, Volume 3B

Change bars show changes to Chapter 16 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

16.6 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH
CPUID DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_3FH, MACHINE
ERROR CODES FOR MACHINE CHECK

Intel Xeon processor E5 v3 family is based on the Haswell-E microarchitecture and can be identified with CPUID
DisplayFamily_DisplaySignature 06_3FH. Incremental error codes for internal machine check error from PCU
controller is reported in the register bank IA32_MC4, Table 16-20 lists model-specific fields to interpret error
codes applicable to IA32_MC4_STATUS. Incremental MC error codes related to the Intel QPI links are reported in
the register banks IA32_MC5, IA32_MC20, and IA32_MC21. Information listed in Table 16-21 for QPI MC error
codes. Incremental error codes for the memory controller unit is reported in the register banks IA32_MC9-
IA32_MC16. Table 16-22 lists model-specific error codes apply to IA32_MCi_STATUS, i = 9-16.

16.6.1 Internal Machine Check Errors

Table 16-20 Machine Check Error Codes for IA32_MC4_STATUS

Type BitNo. | Bit Function Bit Description
MCA error codes’ 15:0 MCACOD
MCACOD? 15.0 internal Errors 0402h - PCU internal Errors
0403h - PCU internal Errors
0406h - Intel TXT Errors
0407h - Other UBOX internal Errors.
On an IERR caused by a core 3-strike the IA32_MC3_STATUS (MLC) is copied
to the IA32_MC4_STATUS (After a 3-strike, the core MCA banks will be
unavailable).
Model specific errors | 19:16 | Reserved except for | 0000b - No Error
the following 00xxb - PCU internal error
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Type BitNo. | Bit Function Bit Description

23-20 | Reserved Reserved
31-24 | Reserved except for | O0h - No Error
the following 09h - MC_MESSAGE_CHANNEL_TIMEOUT

13h - MC_DMI_TRAINING_TIMEOUT

15h - MC_DMI_CPU_RESET_ACK_TIMEOUT

1€h - MC_VR_ICC_MAX_LT_FUSED_ICC_MAX
25h - MC_SVID_COMMAND_TIMEOUT

29h - MC_VR_VOUT_MAC_LT_FUSED_SVID

2Bh - MC_PKGC_WATCHDOG_HANG_CBZ_DOWN
2Ch - MC_PKGC_WATCHDOG_HANG_CBZ_UP

44h - MC_CRITICAL_VR_FAILED

46h - MC_VID_RAMP_DOWN_FAILED

49h - MC_SVID_WRITE_REG_VOUT_MAX_FAILED
4Bh - MC_BOOT_VID_TIMEQUT. Timeout setting boot VID for DRAM 0.
4Fh - MC_SVID_COMMAND_ERROR.

52h - MC_FIVR_CATAS_OVERVOL_FAULT.

53h - MC_FIVR_CATAS_OVERCUR_FAULT.

57h - MC_SVID_PKGC_REQUEST_FAILED

58h - MC_SVID_IMON_REQUEST_FAILED

59h - MC_SVID_ALERT_REQUEST_FAILED

62h - MC_INVALID_PKGS_RSP_QPI

64h - MC_INVALID_PKG_STATE_CONFIG

67h - MC_HA_IMC_RW_BLOCK_ACK_TIMEOUT

6Ah - MC_MSGCH_PMREQ_CMP_TIMEOUT

72h - MC_WATCHDG_TIMEOUT_PKGS_MASTER

81h - MC_RECOVERABLE_DIE_THERMAL_TOQ_HOT

56-32 | Reserved Reserved
Status register 57-63
validity indicators®
NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.
2. The internal error codes may be model-specific.

16.7 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH
CPUID DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_56H, MACHINE
ERROR CODES FOR MACHINE CHECK

Intel Xeon processor D family is based on the Broadwell microarchitecture and can be identified with CPUID
DisplayFamily_DisplaySignature 06_56H. Incremental error codes for internal machine check error from PCU
controller is reported in the register bank IA32_MC4, Table 16-24 lists model-specific fields to interpret error
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codes applicable to IA32_MC4_STATUS. Incremental error codes for the memory controller unit is reported in the
register banks IA32_MC9-IA32_MC10. Table 16-18 lists model-specific error codes apply to IA32_MCi_STATUS, i
= 9-10.

16.7.1  Internal Machine Check Errors

Table 16-24 Machine Check Error Codes for IA32_MC4_STATUS

Type BitNo. | Bit Function Bit Description
MCA error codes’ 15:.0 MCACOD
MCACOD? 15:.0 internal Errors 0402h - PCU internal Errors

0403h - internal Errors
0406h - Intel TXT Errors
0407h - Other UBOX internal Errors.

On an |ERR caused by a core 3-strike the IA32_MC3_STATUS (MLC) is copied
to the IA32_MC4_STATUS (After a 3-strike, the core MCA banks will be
unavailable).

Model specific errors | 19:16 | Reserved except for | 0000b - No Error
the following 00x1b - PCU internal error
001xb - PCU internal error

23-20 | Reserved except for | x1xxb - UBOX error

the following
31-24 | Reserved except for | O0h - No Error
the following 09h - MC_MESSAGE_CHANNEL_TIMEOUT

13h - MC_DMI_TRAINING_TIMEOUT

15h - MC_DMI_CPU_RESET_ACK_TIMEOUT

1€h - MC_VR_ICC_MAX_LT_FUSED_ICC_MAX
25h - MC_SVID_COMMAND_TIMEOUT

26h - MCA_PKGC_DIRECT_WAKE_RING_TIMEOUT
29h - MC_VR_VOUT_MAC_LT_FUSED_SVID

2Bh - MC_PKGC_WATCHDOG_HANG_CBZ_DOWN
2Ch - MC_PKGC_WATCHDOG_HANG_CBZ_UP
44h - MC_CRITICAL_VR_FAILED

46h - MC_VID_RAMP_DOWN_FAILED

49h - MC_SVID_WRITE_REG_VOUT_MAX_FAILED
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Type

BitNo.

Bit Function

Bit Description

4Bh - MC_PP1_BOOT_VID_TIMEQUT. Timeout setting boot VID for DRAM 0.
4Fh - MC_SVID_COMMAND_ERROR.

52h - MC_FIVR_CATAS_OVERVOL_FAULT.

53h - MC_FIVR_CATAS_OVERCUR_FAULT.

57h - MC_SVID_PKGC_REQUEST_FAILED

58h - MC_SVID_IMON_REQUEST_FAILED

59h - MC_SVID_ALERT_REQUEST_FAILED

62h - MC_INVALID_PKGS_RSP_QPI

64h - MC_INVALID_PKG_STATE_CONFIG

67h - MC_HA_IMC_RW_BLOCK_ACK_TIMEOUT

6Ah - MC_MSGCH_PMREQ_CMP_TIMEOUT

72h - MC_WATCHDG_TIMEOUT_PKGS_MASTER

81h - MC_RECOVERABLE_DIE_THERMAL_TOQ_HOT

56-32

Reserved

Reserved

Status register
validity indicators®

57-63

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.
2. The internal error codes may be model-specific.

16.7.2 Integrated Memory Controller Machine Check Errors

MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC9_STATUS-
IA32_MC10_STATUS. The supported error codes follow the architectural MCACOD definition type 1IMMMCCCC
(see Chapter 15, "Machine-Check Architecture,”).

MSR_ERROR_CONTROL.[bit 1] can enable additional information logging of the IMC. The additional error infor-
mation logged by the IMC is stored in IA32_MCi_STATUS and IA32_MCi_MISC; (i = 9-10).

Table 16-25 Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 9-10)

Type BitNo. | Bit Function Bit Description
MCA error codes' 0-15 MCACOD Memory Controller error format: 0000 0000 TMMM CCCC
Model specific 31:16 | Reserved except for | 0001H - DDR3 address parity error
errors the following 0002H - Uncorrected HA write data error

0004H - Uncorrected HA data byte enable error

0008H - Corrected patrol scrub error

0010H - Uncorrected patrol scrub error

0100H - iMC, write data buffer parity errors

0200H - DDR4 command address parity error

36-32 | Other info Reserved
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Type BitNo. | Bit Function Bit Description

37 Reserved Reserved

56-38 See Chapter 15, “Machine-Check Architecture,”
Status register 57-63

validity indicators®

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16.8

INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH

CPUID DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_4FH, MACHINE

ERROR CODES FOR MACHINE CHECK

Next Generation Intel Xeon processor E5 family is based on the Broadwell microarchitecture and can be identified
with CPUID DisplayFamily_DisplaySignature 06_4FH. Incremental error codes for internal machine check error
from PCU controller is reported in the register bank IA32_MC4, Table 16-20 in Section 16.6.1lists model-specific
fields to interpret error codes applicable to IA32_MC4_STATUS.

Incremental MC error codes related to the Intel QPI links are reported in the register banks IA32_MC5,
IA32_MC20, and IA32_MC21. Information listed in Table 16-21 of Section 16.6.1 covers QPI MC error codes.

16.8.1 Integrated Memory Controller Machine Check Errors

MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC9_STATUS-
IA32_MC16_STATUS. The supported error codes follow the architectural MCACOD definition type 1IMMMCCCC
(see Chapter 15, “Machine-Check Architecture,”).

Table 16-26 lists model-specific error codes apply to IA32_MCi_STATUS, i = 9-16.

Table 16-26 Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 9-16)

Type BitNo. | Bit Function Bit Description
MCA error codes’ 0-15 MCACOD Memory Controller error format: 0000 0000 1MMM CCCC
Model specific 31:16 | Reserved except for | 0001H - DDR3 address parity error
errors the following 0002H - Uncorrected HA write data error

0004H - Uncorrected HA data byte enable error

0008H - Corrected patrol scrub error

0010H - Uncorrected patrol scrub error

0020H - Corrected spare error

0040H - Uncorrected spare error

0100H - iMC, write data buffer parity errors

0200H - DDR4 command address parity error

36-32 | Other info Reserved
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Type BitNo. | Bit Function Bit Description

37 Reserved Reserved

56-38 See Chapter 15, “Machine-Check Architecture,”
Status register 57-63
validity indicators®
NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

16.9 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY OFH
MACHINE ERROR CODES FOR MACHINE CHECK

Table 16-27 provides information for interpreting additional family OFH model-specific fields for external bus
errors. These errors are reported in the IA32_MCi_STATUS MSRs. They are reported architecturally as compound
errors with a general form of 0000 1PPT RRRR IILL in the MCA error code field. See Chapter 15 for information on
the interpretation of compound error codes.

Table 16-27 Incremental Decoding Information: Processor Family OFH Machine Error Codes For Machine Check

Type BitNo. | Bit Function Bit Description
MCA error 0-15
codes’
Model-specific | 16 FSB address parity Address parity error detected:
error codes 1 = Address parity error detected
0 = No address parity error
17 Response hard fail Hardware failure detected on response
18 Response parity Parity error detected on response
19 PIC and FSB data parity Data Parity detected on either PIC or FSB access
20 Processor Signature = Processor Signature = 00000F04H. Indicates error due to an invalid PIC
00000FO04H: Invalid PIC request access was made to PIC space with WB memory):
request 1 = Invalid PIC request error
0 = No Invalid PIC request error
Reserved

All other processors:

Reserved
21 Pad state machine The state machine that tracks P and N data-strobe relative timing has
become unsynchronized or a glitch has been detected.

22 Pad strobe glitch Data strobe glitch

23 Pad address glitch Address strobe glitch
Other 24-56 |Reserved Reserved
Information
Status register | 57-63
validity
indicators®
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NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

19. Updates to Chapter 17, Volume 3B

Change bars show changes to Chapter 17 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

17.2.3  Debug Status Register (DR6)

The debug status register (DR6) reports debug conditions that were sampled at the time the last debug exception
was generated (see Figure 17-1). Updates to this register only occur when an exception is generated. The flags in
this register show the following information:

e BO through B3 (breakpoint condition detected) flags (bits O through 3) — Indicates (when set) that
its associated breakpoint condition was met when a debug exception was generated. These flags are set if the
condition described for each breakpoint by the LENn, and R/Wn flags in debug control register DR7 is true.
They may or may not be set if the breakpoint is not enabled by the Ln or the Gn flags in register DR7.
Therefore on a #DB, a debug handler should check only those B0-B3 bits which correspond to an enabled
breakpoint.

e BD (debug register access detected) flag (bit 13) — Indicates that the next instruction in the instruction
stream accesses one of the debug registers (DRO through DR7). This flag is enabled when the GD (general
detect) flag in debug control register DR7 is set. See Section 17.2.4, "Debug Control Register (DR7),” for
further explanation of the purpose of this flag.

e BS (single step) flag (bit 14) — Indicates (when set) that the debug exception was triggered by the single-
step execution mode (enabled with the TF flag in the EFLAGS register). The single-step mode is the highest-
priority debug exception. When the BS flag is set, any of the other debug status bits also may be set.

e BT (task switch) flag (bit 15) — Indicates (when set) that the debug exception resulted from a task switch
where the T flag (debug trap flag) in the TSS of the target task was set. See Section 7.2.1, “Task-State
Segment (TSS),” for the format of a TSS. There is no flag in debug control register DR7 to enable or disable
this exception; the T flag of the TSS is the only enabling flag.

< RTM (restricted transactional memory) flag (bit 16) — Indicates (when clear) that a debug exception
(#DB) or breakpoint exception (#BP) occurred inside an RTM region while advanced debugging of RTM trans-
actional regions was enabled (see Section 17.3.3). This bit is set for any other debug exception (including all
those that occur when advanced debugging of RTM transactional regions is not enabled). This bit is always 1
if the processor does not support RTM.

Certain debug exceptions may clear bits 0-3. The remaining contents of the DR6 register are never cleared by the
processor. To avoid confusion in identifying debug exceptions, debug handlers should clear the register (except
bit 16, which they should set) before returning to the interrupted task.

17.2.4 Debug Control Register (DR7)

The debug control register (DR7) enables or disables breakpoints and sets breakpoint conditions (see
Figure 17-1). The flags and fields in this register control the following things:

e LO through L3 (local breakpoint enable) flags (bits O, 2, 4, and 6) — Enables (when set) the breakpoint
condition for the associated breakpoint for the current task. When a breakpoint condition is detected and its
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associated Ln flag is set, a debug exception is generated. The processor automatically clears these flags on
every task switch to avoid unwanted breakpoint conditions in the new task.

e GO through G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7) — Enables (when set) the
breakpoint condition for the associated breakpoint for all tasks. When a breakpoint condition is detected and
its associated Gn flag is set, a debug exception is generated. The processor does not clear these flags on a
task switch, allowing a breakpoint to be enabled for all tasks.

e LE and GE (local and global exact breakpoint enable) flags (bits 8, 9) — This feature is not supported
in the P6 family processors, later IA-32 processors, and Intel 64 processors. When set, these flags cause the
processor to detect the exact instruction that caused a data breakpoint condition. For backward and forward
compatibility with other Intel processors, we recommend that the LE and GE flags be set to 1 if exact
breakpoints are required.

e RTM (restricted transactional memory) flag (bit 11) — Enables (when set) advanced debugging of RTM
transactional regions (see Section 17.3.3). This advanced debugging is enabled only if IA32_DEBUGCTL.RTM
is also set.

e GD (general detect enable) flag (bit 13) — Enables (when set) debug-register protection, which causes a
debug exception to be generated prior to any MOV instruction that accesses a debug register. When such a
condition is detected, the BD flag in debug status register DR6 is set prior to generating the exception. This
condition is provided to support in-circuit emulators.

When the emulator needs to access the debug registers, emulator software can set the GD flag to prevent
interference from the program currently executing on the processor.

The processor clears the GD flag upon entering to the debug exception handler, to allow the handler access to
the debug registers.

¢ R/WO through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28, and 29) — Specifies the
breakpoint condition for the corresponding breakpoint. The DE (debug extensions) flag in control register CR4
determines how the bits in the R/Wn fields are interpreted. When the DE flag is set, the processor interprets
bits as follows:

00 — Break on instruction execution only.

01 — Break on data writes only.

10 — Break on I/0O reads or writes.

11 — Break on data reads or writes but not instruction fetches.

When the DE flag is clear, the processor interprets the R/Wn bits the same as for the Intel386™ and Intel486™
processors, which is as follows:

00 — Break on instruction execution only.

01 — Break on data writes only.

10 — Undefined.

11 — Break on data reads or writes but not instruction fetches.

e LENO through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and 31) — Specify the size of the

memory location at the address specified in the corresponding breakpoint address register (DRO through
DR3). These fields are interpreted as follows:

00 — 1-byte length.

01 — 2-byte length.

10 — Undefined (or 8 byte length, see note below).

11 — 4-byte length.

If the corresponding RWn field in register DR7 is 00 (instruction execution), then the LENN field should also be 00.
The effect of using other lengths is undefined. See Section 17.2.5, “Breakpoint Field Recognition,” below.
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NOTES

For Pentium® 4 and Intel® Xeon® processors with a CPUID signature corresponding to family 15
(model 3, 4, and 6), break point conditions permit specifying 8-byte length on data read/write
with an of encoding 10B in the LENnN field.

Encoding 10B is also supported in processors based on Intel Core microarchitecture or enhanced
Intel Core microarchitecture, the respective CPUID signatures corresponding to family 6, model
15, and family 6, DisplayModel value 23 (see CPUID instruction in Chapter 3, “Instruction Set
Reference, A-M” in the Intel® 64 and IA-32 Architectures Software Developer’'s Manual, Volume
2A). The Encoding 10B is supported in processors based on Intel® Atom™ microarchitecture, with
CPUID signature of family 6, DisplayModel value 1CH. The encoding 10B is undefined for other
processors.

17.4.4 Branch Trace Messages

Setting the TR flag (bit 6) in the IA32_DEBUGCTL MSR enables branch trace messages (BTMs). Thereafter, when
the processor detects a branch, exception, or interrupt, it sends a branch record out on the system bus as a BTM.
A debugging device that is monitoring the system bus can read these messages and synchronize operations with
taken branch, interrupt, and exception events.

When interrupts or exceptions occur in conjunction with a taken branch, additional BTMs are sent out on the bus,
as described in Section 17.4.2, “"Monitoring Branches, Exceptions, and Interrupts.”

For P6 processor family, Pentium M processor family, processors based on Intel Core microarchitecture, TR and
LBR bits can not be set at the same time due to hardware limitation. The content of LBR stack is undefined when
TR is set.

For processors with Intel NetBurst microarchitecture, Intel Atom processors, and Intel Core and related Intel Xeon
processors both starting with the Nehalem microarchitecture, the processor can collect branch records in the LBR
stack and at the same time send/store BTMs when both the TR and LBR flags are set in the IA32_DEBUGCTL MSR
(or the equivalent MSR_DEBUGCTLA, MSR_DEBUGCTLB).

The following exception applies:

e BTM may not be observable on Intel Atom processor families that do not provide an externally visible system
bus (i.e., processors based on the Silvermont microarchitecture or later).

17.4.9.1 64 Bit Format of the DS Save Area
When DTES64 = 1 (CPUID.1.ECX[2] = 1), the structure of the DS save area is shown in Figure 17-8.

When DTES64 = 0 (CPUID.1.ECX[2] = 0) and IA-32e mode is active, the structure of the DS save area is shown
in Figure 17-8. If IA-32e mode is not active the structure of the DS save area is as shown in Figure 17-6.
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IA32_DS_AREA MSR

DS Buffer Management Area BTS Buffer
BTS Buffer Base OH———>
Branch Record 0
BTS Index 8H
BTS Absolute
Maximum 10H
BTS Interrupt Branch Record 1
Threshold 18H
PEBS Buffer Base| 20H
PEBS Index 28H — ]
PEBS Absolute
Maximum 30H—
Branch Record n
PEBS Interrupt | 3g4
Threshold >
40H
PEBS
Counter Reset 48H PEBS Buffer
R d
eserve 50H PEBS Record 0
PEBS Record 1
PEBS Record n
—>

Figure 17-8 1A-32e Mode DS Save Area

The IA32_DS_AREA MSR holds the 64-bit linear address of the first byte of the DS buffer management area. The
structure of a branch trace record is similar to that shown in Figure 17-6, but each field is 8 bytes in length. This
makes each BTS record 24 bytes (see Figure 17-9). The structure of a PEBS record is similar to that shown in
Figure 17-7, but each field is 8 bytes in length and architectural states include register R8 through R15. This
makes the size of a PEBS record in 64-bit mode 144 bytes (see Figure 17-10).

63 4 0
Last Branch From OH
Last Branch To 8H
10H
Branch Predicted 4*

Figure 17-9 64-bit Branch Trace Record Format
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63 0

RFLAGS OH
RIP 8H
RAX 10H
RBX 18H
RCX 20H
RDX 28H
RSI 30H
RDI 38H
RBP 40H
RSP 48H
R8 50H
R15 88H

Figure 17-10 64-bit PEBS Record Format

Fields in the buffer management area of a DS save area are described in Section 17.4.9.

The format of a branch trace record and a PEBS record are the same as the 64-bit record formats shown in Figure
17-9 and Figure 17-10, with the exception that the branch predicted bit is not supported by Intel Core microarchi-
tecture or Intel Atom microarchitecture. The 64-bit record formats for BTS and PEBS apply to DS save area for all
operating modes.

The procedures used to program IA32_DEBUGCTL MSR to set up a BTS buffer or a CPL-qualified BTS are described
in Section 17.4.9.3 and Section 17.4.9.4.

Required elements for writing a DS interrupt service routine are largely the same on processors that support
using DS Save area for BTS or PEBS records. However, on processors based on Intel NetBurst® microarchitecture,
re-enabling counting requires writing to CCCRs. But a DS interrupt service routine on processors supporting
architectural performance monitoring should:

e Re-enable the enable bits in IA32_PERF_GLOBAL_CTRL MSR if it is servicing an overflow PMI due to PEBS.

e Clear overflow indications by writing to IA32_PERF_GLOBAL_OVF_CTRL when a counting configuration is
changed. This includes bit 62 (ClrOvfBuffer) and the overflow indication of counters used in either PEBS or
general-purpose counting (specifically: bits 0 or 1; see Figures 18-3).

175  LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™
2 DUO AND INTEL® ATOM™ PROCESSORS)

The Intel Core 2 Duo processor family and Intel Xeon processors based on Intel Core microarchitecture or
enhanced Intel Core microarchitecture provide last branch interrupt and exception recording. The facilities
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described in this section also apply to 45 nm and 32 nm Intel Atom processors. These capabilities are similar to
those found in Pentium 4 processors, including support for the following facilities:

Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR provide bit fields for software to
configure mechanisms related to debug trace, branch recording, branch trace store, and performance counter
operations. See Section 17.4.1 for a description of the flags. See Figure 17-3 for the MSR layout.

Last branch record (LBR) stack — There are a collection of MSR pairs that store the source and destination
addresses related to recently executed branches. See Section 17.5.1.

Monitoring and single-stepping of branches, exceptions, and interrupts

— See Section 17.4.2 and Section 17.4.3. In addition, the ability to freeze the LBR stack on a PMI request is
available.

— 45 nm and 32 nm Intel Atom processors clear the TR flag when the FREEZE_LBRS_ON_PMI flag is set.
Branch trace messages — See Section 17.4.4.

Last exception records — See Section 17.10.3.

Branch trace store and CPL-qualified BTS — See Section 17.4.5.

FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 17.4.7 for legacy Freeze_LBRs_On_PMI operation.

FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 17.4.7 for legacy Freeze_Perfmon_On_PMI
operation.

FREEZE_WHILE_SMM_EN (bit 14) — FREEZE_WHILE_SMM_EN is supported if
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 17.4.1.

17.5.1  LBR Stack

The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across Intel Core 2, Intel Xeon
and Intel Atom processor families.

Four pairs of MSRs are supported in the LBR stack for Intel Core 2 and Intel Xeon processor families:

Last Branch Record (LBR) Stack

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through MSR_LASTBRANCH_3_FROM_IP (address 43H)
store source addresses

— MSR_LASTBRANCH_O0_TO_IP (address 60H) through MSR_LASTBRANCH_3_TO_IP (address 63H) store
destination addresses

Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 2 bits of the TOS Pointer MSR
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the
most recent branch, interrupt, or exception recorded.

Eight pairs of MSRs are supported in the LBR stack for Intel Atom processors:

Last Branch Record (LBR) Stack

— MSR_LASTBRANCH_O_FROM_IP (address 40H) through MSR_LASTBRANCH_7_FROM_IP (address 47H)
store source addresses

— MSR_LASTBRANCH_O0_TO_IP (address 60H) through MSR_LASTBRANCH_7_TO_IP (address 67H) store
destination addresses

Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 3 bits of the TOS Pointer MSR
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the
most recent branch, interrupt, or exception recorded.

For compatibility, the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) duplicate functions of the LastEx-
ceptionToIP and LastExceptionFromIP MSRs found in P6 family processors.
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20.

Inte

Updates to Chapter 18, Volume 3B

Change bars show changes to Chapter 18 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

18.1 PERFORMANCE MONITORING OVERVIEW

Performance monitoring was introduced in the Pentium processor with a set of model-specific performance-moni-
toring counter MSRs. These counters permit selection of processor performance parameters to be monitored and
measured. The information obtained from these counters can be used for tuning system and compiler perfor-
mance.

In Intel P6 family of processors, the performance monitoring mechanism was enhanced to permit a wider selec-
tion of events to be monitored and to allow greater control events to be monitored. Next, Pentium 4 and Intel
Xeon processors introduced a new performance monitoring mechanism and new set of performance events.

The performance monitoring mechanisms and performance events defined for the Pentium, P6 family, Pentium 4,
and Intel Xeon processors are not architectural. They are all model specific (not compatible among processor
families). Intel Core Solo and Intel Core Duo processors support a set of architectural performance events and a
set of non-architectural performance events. Newer Intel processor generations support enhanced architectural
performance events and non-architectural performance events.

Starting with Intel Core Solo and Intel Core Duo processors, there are two classes of performance monitoring
capabilities. The first class supports events for monitoring performance using counting or sampling usage. These
events are non-architectural and vary from one processor model to another. They are similar to those available in
Pentium M processors. These non-architectural performance monitoring events are specific to the microarchitec-
ture and may change with enhancements. They are discussed in Section 18.3, “Performance Monitoring (Intel®
Core™ Solo and Intel® Core™ Duo Processors).” Non-architectural events for a given microarchitecture can not
be enumerated using CPUID; and they are listed in Chapter 19, “Performance-Monitoring Events.”

The second class of performance monitoring capabilities is referred to as architectural performance monitoring.
This class supports the same counting and sampling usages, with a smaller set of available events. The visible
behavior of architectural performance events is consistent across processor implementations. Availability of
architectural performance monitoring capabilities is enumerated using the CPUID.0OAH. These events are
discussed in Section 18.2.

See also:
— Section 18.2, “Architectural Performance Monitoring”
— Section 18.3, “Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors)”
— Section 18.4, “Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture)”
— Section 18.5, “Performance Monitoring (45nm and 32 nm Intel® Atom™ Processors)”
— Section 18.6, “Performance Monitoring for Silvermont Microarchitecture”

— Section 18.7, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Nehalem”

— Section 18.7.4, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Westmere”
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— Section 18.8, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name
Sandy Bridge”

— Section 18.8.8, “Intel® Xeon® Processor E5 Family Uncore Performance Monitoring Facility”

— Section 18.9, “3rd Generation Intel® Core™ Processor Performance Monitoring Facility”

— Section 18.10, “4th Generation Intel® Core™ Processor Performance Monitoring Facility”

— Section 18.11, “Intel® Core™ M Processor Performance Monitoring Facility”

— Section 18.12, “Sixth Generation Intel® Core™ Processor Performance Monitoring Facility”

— Section 18.13, “Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture)”

— Section 18.14, “Performance Monitoring and Intel Hyper-Threading Technology in Processors Based on
Intel NetBurst® Microarchitecture”

— Section 18.17, “Performance Monitoring and Dual-Core Technology”

”

— Section 18.18, “Performance Monitoring on 64-bit Intel Xeon Processor MP with Up to 8-MByte L3 Cache
— Section 18.20, “Performance Monitoring (P6 Family Processor)”

— Section 18.21, “Performance Monitoring (Pentium Processors)”

18.2 ARCHITECTURAL PERFORMANCE MONITORING

Performance monitoring events are architectural when they behave consistently across microarchitectures. Intel
Core Solo and Intel Core Duo processors introduced architectural performance monitoring. The feature provides
a mechanism for software to enumerate performance events and provides configuration and counting facilities for
events.

Architectural performance monitoring does allow for enhancement across processor implementations. The
CPUID.0AH leaf provides version ID for each enhancement. Intel Core Solo and Intel Core Duo processors support
base level functionality identified by version ID of 1. Processors based on Intel Core microarchitecture support, at
a minimum, the base level functionality of architectural performance monitoring. Intel Core 2 Duo processor T
7700 and newer processors based on Intel Core microarchitecture support both the base level functionality and
enhanced architectural performance monitoring identified by version ID of 2.

45 nm and 32 nm Intel Atom processors and Intel Atom processors based on the Silvermont microarchitecture
support the functionality provided by versionID 1, 2, and 3; CPUID.0AH:EAX[7:0] reports versionID = 3 to indi-
cate the aggregate of architectural performance monitoring capabilities. Intel Atom processors based on the
Airmont microarchitecture support the same performance monitoring capabilities as those based on the Silver-
mont microarchitecture.

Intel Core processors and related Intel Xeon processor families based on the Nehalem through Broadwell micro-
architectures support version ID 1, 2, and 3. Processors based on the Skylake microarchitecture support
versionlID 1, 2, 3, and 4; CPUID.OAh:EAX.[7:0] reports versionID = 4 to indicate the aggregate of capabilities.

18.2.3  Architectural Performance Monitoring Version 3

Processors supporting architectural performance monitoring version 3 also supports version 1 and 2, as well as
capability enumerated by CPUID leaf O0AH. Specifically, version 3 provides the following enhancement in perfor-
mance monitoring facilities if a processor core comprising of more than one logical processor, i.e. a processor core
supporting Intel Hyper-Threading Technology or simultaneous multi-threading capability:

e Anythread counting for processor core supporting two or more logical processors. The interface that supports
AnyThread counting include:
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— Each IA32_PERFEVTSELx MSR (starting at MSR address 186H) support the bit field layout defined in
Figure 18-6.

63 31 24232221201918171615 87 0

>

Counter Mask nIE p
(CMASK) |y|N|y|T|C

INV—Invert counter maskJ

EN—Enable counters
ANY—Any Thread
INT—APIC interrupt enable
PC—Pin control
E—Edge detect
OS—Operating system mode ——— D Reserved
USR—User Mode

E CS) Unit Mask (UMASK) Event Select

TncC

Figure 18-6 Layout of IA32_PERFEVTSELXx MSRs Supporting Architectural Performance Monitoring Version 3

Bit 21 (AnyThread) of IA32_PERFEVTSELx is supported in architectural performance monitoring version 3
for processor core comprising of two or more logical processors. When set to 1, it enables counting the
associated event conditions (including matching the thread’s CPL with the OS/USR setting of
IA32_PERFEVTSELX) occurring across all logical processors sharing a processor core. When bit 21 is 0, the
counter only increments the associated event conditions (including matching the thread’s CPL with the OS/
USR setting of IA32_PERFEVTSELX) occurring in the logical processor which programmed the
IA32_PERFEVTSELx MSR.

— Each fixed-function performance counter IA32_FIXED_CTRXx (starting at MSR address 309H) is configured
by a 4-bit control block in the IA32_PERF_FIXED_CTR_CTRL MSR. The control block also allow thread-
specificity configuration using an AnyThread bit. The layout of IA32_PERF_FIXED_CTR_CTRL MSR is
shown.

63 121 987 54321 0
pIA P A P|A
MIN EMiN| B IMN| R
Iy Iy 1Y

Cntr2 — Controls for IA32_FIXED_CTR2 —LIJ

Cntr1 — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow on |IA32_FIXED_CTRO
AnyThread — AnyThread for IA32_FIXED_CTRO
ENABLE — IA32_FIXED_CTRO. 0: disable; 1: OS; 2: User; 3: All ring levels

I:l Reserved

Figure 18-7 1A32_FIXED_CTR_CTRL MSR Supporting Architectural Performance Monitoring Version 3

Each control block for a fixed-function performance counter provides a AnyThread (bit position 2 + 4*N, N=
0, 1, etc.) bit. When set to 1, it enables counting the associated event conditions (including matching the
thread’s CPL with the ENABLE setting of the corresponding control block of IA32_PERF_FIXED_CTR_CTRL)
occurring across all logical processors sharing a processor core. When an AnyThread bit is 0 in
IA32_PERF_FIXED_CTR_CTRL, the corresponding fixed counter only increments the associated event
conditions occurring in the logical processor which programmed the IA32_PERF_FIXED_CTR_CTRL MSR.
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e The IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, IA32_PERF_GLOBAL_OVF_CTRL MSRs
provide single-bit controls/status for each general-purpose and fixed-function performance counter. Figure
18-8 and Figure 18-9 show the layout of these MSRs for N general-purpose performance counters (where N is

reported by CPUID.0OAH:EAX[15:8]) and three fixed-function counters.

Note: The number of general-purpose performance monitoring counters (i.e. N in Figure 18-9) can vary
across processor generations within a processor family, across processor families, or could be different
depending on the configuration chosen at boot time in the BIOS regarding Intel Hyper Threading Technology,
(e.g. N=2 for 45 nm Intel Atom processors; N =4 for processors based on the Nehalem microarchitecture; for
processors based on the Sandy Bridge microarchitecture, N = 4 if Intel Hyper Threading Technology is active

and N=8 if not active).

63

Global Enable Controls I1A32_PERF_GLOBAL_CTRL
3534333231

.10

.................... enable
IA32_PMC1 enable
1A32_PMCO enable

IA32_FIXED_CTR2 enable [ Reserved
IA32_FIXED_CTR1 enable
IA32_FIXED_CTRO enable
IA32_PMC(N-1) enable

Figure 18-8 Layout of Global Performance Monitoring Control MSR
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Global Overflow Status IA32_PERF_GLOBAL_STATUS
636261 3534333231 N. .10

CondChgd J

OvfDSBuffer——

OvfUncore

IA32_FIXED_CTR2 Overfow ——Mm IA32_PMC(N-1) Overflow——————
|A32_F|XED_CTR1 Overflow ———— 1 | e Overflow—mmm—

IA32_FIXED_CTRO Overflow
IA32_PMC1 Overflow
IA32_PMCO Overflow

Global Overflow Status 1A32_PERF_GLOBAL_OVF_CTRL
6362 3534333231 N. .10

ClrCondChgd J
ClrOvfDSBuffer

ClrOvfUncore
1A32_FIXED_CTR2 CIrOverflow
IA32_FIXED_CTR1 CIrOverflow
1A32_FIXED_CTRO CIrOverflow
IA32_PMC1 CIrOverflow
IA32_PMCO CIrOverflow

1A32_PMC(N-1) CIrOverflow
........................ ClrOverflown——

Figure 18-9 Global Performance Monitoring Overflow Status and Control MSRs

18.5 PERFORMANCE MONITORING (45 NM AND 32 NM INTEL® ATOM™
PROCESSORS)

45 nm and 32 nm Intel Atom processors report architectural performance monitoring versionID = 3 (supporting
the aggregate capabilities of versionID 1, 2, and 3; see Section 18.2.3) and a host of hon-architectural monitoring
capabilities. These 45 nm and 32 nm Intel Atom processors provide two general-purpose performance counters
(IA32_PMCO0, IA32_PMC1) and three fixed-function performance counters (IA32_FIXED_CTRO,
IA32_FIXED_CTR1, IA32_FIXED_CTR2).

Non-architectural performance monitoring in Intel Atom processor family uses the IA32_PERFEVTSELx MSR to
configure a set of non-architecture performance monitoring events to be counted by the corresponding general-
purpose performance counter. The list of non-architectural performance monitoring events is listed in Table
19-25.

Architectural and non-architectural performance monitoring events in 45 nm and 32 nm Intel Atom processors
support thread qualification using bit 21 (AnyThread) of IA32_PERFEVTSELx MSR, i.e. if
IA32_PERFEVTSELx.AnyThread =1, event counts include monitored conditions due to either logical processors in
the same processor core.

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in Section 18.2.1.1
and Section 18.2.3.
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Valid event mask (Umask) bits are listed in Chapter 19. The UMASK field may contain sub-fields that provide the
same qualifying actions like those listed in Table 18-2, Table 18-3, Table 18-4, and Table 18-5. One or more of
these sub-fields may apply to specific events on an event-by-event basis. Details are listed in Table 19-25 in
Chapter 19, “Performance-Monitoring Events.” Precise Event Based Monitoring is supported using IA32_PMCO
(see also Section 17.4.9, "BTS and DS Save Area”).

18.6 PERFORMANCE MONITORING FOR SILVERMONT MICROARCHITECTURE

Intel processors based on the Silvermont microarchitecture report architectural performance monitoring
versionID = 3 (see Section 18.2.3) and a host of non-architectural monitoring capabilities. Intel processors based
on the Silvermont microarchitecture provide two general-purpose performance counters (IA32_PMCO,
IA32_PMC1) and three fixed-function performance counters (IA32_FIXED_CTRO, IA32_FIXED_CTR1,
IA32_FIXED_CTR2). Intel Atom processors based on the Airmont microarchitecture support the same perfor-
mance monitoring capabilities as those based on the Silvermont microarchitecture.

Non-architectural performance monitoring in the Silvermont microarchitecture uses the IA32_PERFEVTSELx
MSR to configure a set of non-architecture performance monitoring events to be counted by the corresponding
general-purpose performance counter. The list of non-architectural performance monitoring events is listed in
Table 19-24.

The bit fields (except bit 21) within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in
Section 18.2.1.1 and Section 18.2.3. Architectural and non-architectural performance monitoring events in the
Silvermont microarchitecture ignore the AnyThread qualification regardless of its setting in IA32_PERFEVTSELx
MSR.

18.6.1.1 Precise Event Based Sampling (PEBS)

Processors based on the Silvermont microarchitecture supports precise event based sampling (PEBS). PEBS is
supported using IA32_PMCO (see also Section 17.4.9, "BTS and DS Save Area”).

PEBS uses a debug store mechanism to store a set of architectural state information for the processor. The infor-
mation provides architectural state of the instruction executed after the instruction that caused the event (See
Section 18.4.4).

The list of PEBS events supported in the Silvermont microarchitecture is shown in Table 18-12.

Table 18-12 PEBS Performance Events for the Silvermont Microarchitecture

Event Name Event Select Sub-event UMask

BR_INST_RETIRED C4H ALL_BRANCHES OOH
JcC 7EH
TAKEN_JCC FEH
CALL FIOH
REL_CALL FDH
IND_CALL FBH
NON_RETURN_IND EBH
FAR_BRANCH BFH
RETURN F7H
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Table 18-12 PEBS Performance Events for the Silvermont Microarchitecture (Contd.)

Event Name Event Select Sub-event UMask
BR_MISP_RETIRED C5H ALL_BRANCHES OOH
JcC 7EH
TAKEN_]JCC FEH
IND_CALL FBH
NON_RETURN_IND EBH
RETURN F7H
MEM_UOPS_RETIRED 04H L2_HIT_LOADS 02H
L2_MISS_LOADS 04H
DLTB_MISS_LOADS 08H
HITM 20H
REHABQ 03H LD_BLOCK_ST_FORWARD O1H
LD_SPLITS 08H

PEBS Record Format The PEBS record format supported by processors based on the Intel Silvermont microarchi-
tecture is shown in Table 18-13, and each field in the PEBS record is 64 bits long.

Table 18-13 PEBS Record Format for the Silvermont Microarchitecture

Byte Offset Field Byte Offset Field

00H R/EFLAGS 60H R10

08H R/EIP 68H R11

10H R/EAX 70H R12

18H R/EBX 78H R13

20H R/ECX 80H R14

28H R/EDX 88H R15

30H R/ESI 90H IA32_PERF_GLOBAL_STATUS
38H R/EDI 98H Reserved
40H R/EBP AOH Reserved
48H R/ESP A8H Reserved
50H R8 80H EventingRIP
58H R9 BSH Reserved
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21. Updates to Chapter 19, Volume 3B

Change bars show changes to Chapter 19 of the Intel® 64 and IA-32 Architectures Software Developer’'s Manual,
Volume 3B: System Programming Guide, Part 2.

This chapter lists the performance-monitoring events that can be monitored with the Intel 64 or IA-32 processors.
The ability to monitor performance events and the events that can be monitored in these processors are mostly
model-specific, except for architectural performance events, described in Section 19.1.

Non-architectural performance events (i.e. model-specific events) are listed for each generation of microarchitec-
ture:

e Section 19.2 - Processors based on Skylake microarchitecture

e Section 19.3 - Processors based on Broadwell microarchitecture

e Section 19.4 - Processors based on Haswell microarchitecture

e Section 19.4.1 - Processors based on Haswell-E microarchitecture

e Section 19.5 - Processors based on Ivy Bridge microarchitecture

e Section 19.5.1 - Processors based on Ivy Bridge-E microarchitecture

e Section 19.6 - Processors based on Sandy Bridge microarchitecture

e Section 19.7 - Processors based on Intel® microarchitecture code name Nehalem
e Section 19.8 - Processors based on Intel® microarchitecture code name Westmere
e Section 19.9 - Processors based on Enhanced Intel® Core™ microarchitecture

e Section 19.10 - Processors based on Intel® Core™ microarchitecture

e Section 19.11 - Processors based on the Silvermont microarchitecture

e Section 19.11.1 - Processors based on the Airmont microarchitecture

e Section 19.12 - 45 nm and 32 nm Intel® Atom™ Processors

e Section 19.13 - Intel® Core™ Solo and Intel® Core™ Duo processors

e Section 19.14 - Processors based on Intel NetBurst® microarchitecture

e Section 19.15 - Pentium® M family processors

e Section 19.16 - P6 family processors

e Section 19.17 - Pentium® processors

NOTE

These performance-monitoring events are intended to be used as guides for performance tuning.
The counter values reported by the performance-monitoring events are approximate and believed
to be useful as relative guides for tuning software. Known discrepancies are documented where
applicable.

All performance event encodings not documented in the appropriate tables for the given
processor are considered reserved, and their use will result in undefined counter updates with
associated overflow actions.

The event tables listed this chapter provide information for tool developers to support architec-
tural and non-architectural performance monitoring events. The tables are up to date at processor
launch, but are subject to changes. The most up to date event tables and additional details of
performance event implementation for end-user (including additional details beyond event code/
umask) can found at the “perfmon” repository provided by The Intel Open Source Technology
Center (https://download.01.org/perfmon/).
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19.12 PERFORMANCE MONITORING EVENTS FOR 45 NM AND 32 NM
INTEL® ATOM™ PROCESSORS

45 nm and 32 nm processors based on the Intel® Atom™ microarchitecture support the architectural perfor-
mance-monitoring events listed in Table 19-1 and fixed-function performance events using fixed counter listed in
Table 19-22. In addition, they also support the following non-architectural performance-monitoring events listed
in Table 19-25.

Table 19-25 Non-Architectural Performance Events for 45 nm, 32 nm Intel® Atom™ Processors
Event |Umask

Num. |Value |EventName Definition Description and Comment

02H 81H STORe_FORWARDS.GO | Good store forwards. | This event counts the number of times store data was
oD forwarded directly to a load.

06H OOH SEGMENT_REG_ Number of segment This event counts the number of segment register load
LOADS.ANY register loads. operations. Instructions that load new values into segment

registers cause a penalty. This event indicates performance
issues in 16-bit code. If this event occurs frequently, it may be
useful to calculate the number of instructions retired per
segment register load. If the resulting calculation is low (on
average a small number of instructions are executed between
segment register loads), then the code’s segment register
usage should be optimized.

As a result of branch misprediction, this event is speculative and
may include segment register loads that do not actually occur.
However, most segment register loads are internally serialized
and such speculative effects are minimized.

07H O1H PREFETCH.PREFETCHT | Streaming SIMD This event counts the number of times the SSE instruction
0 Extensions (SSE) prefetchTO is executed. This instruction prefetches the data to
PrefetchTO the L1 data cache and L2 cache.
instructions executed.
07H 06H PREFETCH.SW_L2 Streaming SIMD This event counts the number of times the SSE instructions
Extensions (SSE) prefetchT1 and prefetchTZ2 are executed. These instructions
PrefetchT1 and prefetch the data to the L2 cache.
PrefetchT2
instructions executed.
07H 0O8H PREFETCH.PREFETCHN | Streaming SIMD This event counts the number of times the SSE instruction
TA Extensions (SSE) prefetchNTA is executed. This instruction prefetches the data
Prefetch NTA to the L1 data cache.

instructions executed.

08H 07H DATA_TLB_MISSES.DT |Memory accesses that | This event counts the number of Data Table Lookaside Buffer
LB_MISS missed the DTLB. (DTLB) misses. The count includes misses detected as a result
of speculative accesses. Typically a high count for this event
indicates that the code accesses a large number of data pages.

08H O5H DATA_TLB_MISSES.DT |DTLB misses due to This event counts the number of Data Table Lookaside Buffer
LB_MISS_LD load operations. (DTLB) misses due to load operations. This count includes
misses detected as a result of speculative accesses.
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Table 19-25 Non-Architectural Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)

Event
Num.

Umask
Value

Event Name

Definition

Description and Comment

08H

0SH

DATA_TLB_MISSES.LO

_DTLB_MISS_LD

LO_DTLB misses due to
load operations.

This event counts the number of LO_DTLB misses due to load
operations. This count includes misses detected as a result of
speculative accesses.

08H

06H

DATA_TLB_MISSES.DT
LB_MISS_ST

DTLB misses due to
store operations.

This event counts the number of Data Table Lookaside Buffer
(DTLB) misses due to store operations. This count includes
misses detected as a result of speculative accesses.

OCH

03H

PAGE_WALKS.WALKS

Number of page-walks
executed.

This event counts the number of page-walks executed due to
either a DTLB or ITLB miss. The page walk duration,
PAGE_WALKS.CYCLES, divided by number of page walks is the
average duration of a page walk. This can hint to whether most
of the page-walks are satisfied by the caches or cause an L2
cache miss.

Edge trigger bit must be set.

OCH

03H

PAGE_WALKS.CYCLES

Duration of page-walks
in core cycles.

This event counts the duration of page-walks in core cycles. The
paging mode in use typically affects the duration of page walks.
Page walk duration divided by number of page walks is the
average duration of page-walks. This can hint at whether most
of the page-walks are satisfied by the caches or cause an L2
cache miss.

Edge trigger bit must be cleared.

10H

01H

X87_COMP_OPS_EXE.
ANY.S

Floating point
computational micro-
ops executed.

This event counts the number of x87 floating point
computational micro-ops executed.

10H

81H

X87_COMP_OPS_EXE.
ANY.AR

Floating point
computational micro-
ops retired.

This event counts the number of x87 floating point
computational micro-ops retired.

11H

01H

FP_ASSIST

Floating point assists.

This event counts the number of floating point operations
executed that required micro-code assist intervention. These
assists are required in the following cases:

X87 instructions:

1. NaN or denormal are loaded to a register or used as input
from memory

2. Division by O
3. Underflow output

11H

81H

FP_ASSISTAR

Floating point assists.

This event counts the number of floating point operations
executed that required micro-code assist intervention. These
assists are required in the following cases:

X87 instructions:

1. NaN or denormal are loaded to a register or used as input
from memory

2. Division by O
3. Underflow output

12H

01H

MULS

Multiply operations
executed.

This event counts the number of multiply operations executed.
This includes integer as well as floating point multiply
operations.
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Table 19-25 Non-Architectural Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)

Event |Umask
Num. |Value |Event Name Definition Description and Comment
12H 81H MULAR Multiply operations This event counts the number of multiply operations retired.
retired. This includes integer as well as floating point multiply
operations.
13H O01H DIV.S Divide operations This event counts the number of divide operations executed.
executed. This includes integer divides, floating point divides and square-
root operations executed.
13H 81H DIV.AR Divide operations This event counts the number of divide operations retired. This
retired. includes integer divides, floating point divides and square-root
operations executed.
14H OTH CYCLES_DIV_BUSY Cycles the driver is This event counts the number of cycles the divider is busy
busy. executing divide or square root operations. The divide can be
integer, X87 or Streaming SIMD Extensions (SSE). The square
root operation can be either X87 or SSE.
21H See L2_ADS Cycles L2 address bus | This event counts the number of cycles the L2 address bus is
Table 1 is in use. being used for accesses to the L2 cache or bus queue.
8-2 This event can count occurrences for this core or both cores.
22H See L2_DBUS_BUSY Cycles the L2 cache This event counts core cycles during which the L2 cache data
Table 1 data bus is busy. bus is busy transferring data from the L2 cache to the core. It
8-2 counts for all L1 cache misses (data and instruction) that hit the
L2 cache. The count will increment by two for a full cache-line
request.
24H See LZ2_LINES_IN L2 cache misses. This event counts the number of cache lines allocated in the L2
Table 1 cache. Cache lines are allocated in the L2 cache as a result of
8-2 and requests from the L1 data and instruction caches and the L2
Table hardware prefetchers to cache lines that are missing in the L2
18-4 cache.
This event can count occurrences for this core or both cores.
This event can also count demand requests and L2 hardware
prefetch requests together or separately.
25H See L2_M_LINES_IN L2 cache line This event counts whenever a modified cache line is written
Table 1 modifications. back from the L1 data cache to the L2 cache.
8-2 This event can count occurrences for this core or both cores.
26H See L2_LINES_OUT L2 cache lines evicted. | This event counts the number of L2 cache lines evicted.
Table 1 This event can count occurrences for this core or both cores.
8-2 and This event can also count evictions due to demand requests and
Iasbf L2 hardware prefetch requests together or separately.
27H See L2_M_LINES_OUT Modified lines evicted | This event counts the number of L2 modified cache lines
Table 1 from the L2 cache. evicted. These lines are written back to memory unless they
8-2 and also exist in a shared-state in one of the L1 data caches.
Table This event can count occurrences for this core or both cores.
18-4 This event can also count evictions due to demand requests and
L2 hardware prefetch requests together or separately.
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Table 19-25 Non-Architectural Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)

Event |Umask
Num. |Value |Event Name Definition Description and Comment
28H See L2_IFETCH L2 cacheable This event counts the number of instruction cache line requests
Table 1 instruction fetch from the ICache. It does not include fetch requests from
8-2 and requests. uncacheable memory. It does not include ITLB miss accesses.
Table This event can count occurrences for this core or both cores.
18-5 This event can also count accesses to cache lines at different
MESI states.
29H See L2_LD L2 cache reads. This event counts L2 cache read requests coming from the L1
Table 1 data cache and L2 prefetchers.
8-2, This event can count occurrences for this core or both cores.
1Te;3bl4e This event can count occurrences
an d - for this core or both cores.
Table - due to demand requests and L2 hardware prefetch requests
18-5 together or separately.
- of accesses to cache lines at different MESI states.
2AH See L2_ST L2 store requests. This event counts all store operations that miss the L1 data
Table 1 cache and request the data
_?_'ila”d from the L2 cache.
1%_5(3 This event can count occurrences for this core or both cores.
This event can also count accesses to cache lines at different
MESI states.
2BH See L2_LOCK L2 locked accesses. This event counts all locked accesses to cache lines that miss
Table 1 the L1 data cache.
8-2 and This event can count occurrences for this core or both cores.
Table This event can also count accesses to cache lines at different
18-5 MESI states.
2EH See L2_RQSTS L2 cache requests. This event counts all completed L2 cache requests. This
Table 1 includes L1 data cache reads, writes, and locked accesses, L1
8-2, data prefetch requests, instruction fetches, and all L2 hardware
Table prefetch requests.
18('14 This event can count occurrences
?'gbl e - for this core or both cores.
18-5 - due to demand requests and L2 hardware prefetch requests
together, or separately.
- of accesses to cache lines at different MESI states.
2EH 41H L2_RQSTS.SELFDEMA | L2 cache demand This event counts all completed L2 cache demand requests
ND.I_STATE requests from this core | from this core that miss the L2 cache. This includes L1 data
that missed the L2. cache reads, writes, and locked accesses, L1 data prefetch
requests, and instruction fetches.
This is an architectural performance event.
2EH 4FH L2_RQSTS.SELF.DEMA | L2 cache demand This event counts all completed L2 cache demand requests
ND.MESI requests from this from this core. This includes L1 data cache reads, writes, and
core. locked accesses, L1 data prefetch requests, and instruction
fetches.
This is an architectural performance event.
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Table 19-25 Non-Architectural Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)

Event
Num.

Umask
Value

Event Name

Definition

Description and Comment

30H

See
Table 1
8-2,
Table
18-4
and
Table
18-5

L2_REJECT_BUSQ

Rejected L2 cache
requests.

This event indicates that a pending L2 cache request that
requires a bus transaction is delayed from moving to the bus
queue. Some of the reasons for this event are:

- The bus queue is full.

- The bus queue already holds an entry for a cache line in the
same set.

The number of events is greater or equal to the number of
requests that were rejected.

- for this core or both cores.

- due to demand requests and L2 hardware prefetch requests
together, or separately.

- of accesses to cache lines at different MESI states.

32H

See
Table 1
8-2

LZ2_NO_REQ

Cycles no L2 cache

requests are pending.

This event counts the number of cycles that no L2 cache
requests are pending.

3AH

OOH

EIST_TRANS

Number of Enhanced
Intel SpeedStep(R)
Technology (EIST)
transitions.

This event counts the number of Enhanced Intel SpeedStep(R)
Technology (EIST) transitions that include a frequency change,
either with or without VID change. This event is incremented
only while the counting core is in CO state. In situations where
an EIST transition was caused by hardware as a result of CxE
state transitions, those EIST transitions will also be registered
in this event.

Enhanced Intel Speedstep Technology transitions are commonly
initiated by OS, but can be initiated by HW internally. For
example: CxE states are C-states (C1,C2,C3...) which not only
place the CPU into a sleep state by turning off the clock and
other components, but also lower the voltage (which reduces
the leakage power consumption). The same is true for thermal
throttling transition which uses Enhanced Intel Speedstep
Technology internally.

3BH

COH

THERMAL_TRIP

Number of thermal
trips.

This event counts the number of thermal trips. A thermal trip
occurs whenever the processor temperature exceeds the
thermal trip threshold temperature. Following a thermal trip,
the processor automatically reduces frequency and voltage.
The processor checks the temperature every millisecond, and
returns to normal when the temperature falls below the
thermal trip threshold temperature.
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Table 19-25 Non-Architectural Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)

Event
Num.

Umask
Value

Event Name

Definition

Description and Comment

3CH

OOH

CPU_CLK_UNHALTED.C
ORE_P

Core cycles when core
is not halted.

This event counts the number of core cycles while the core is
not in a halt state. The core enters the halt state when it is
running the HLT instruction. This event is a component in many
key event ratios.

In mobile systems the core frequency may change from time to
time. For this reason this event may have a changing ratio with
regards to time. In systems with a constant core frequency, this
event can give you a measurement of the elapsed time while
the core was not in halt state by dividing the event count by the
core frequency.

-This is an architectural performance event.
- The event CPU_CLK_UNHALTED.CORE_P is counted by a
programmable counter.

- The event CPU_CLK_UNHALTED.CORE is counted by a
designated fixed counter, leaving the two programmable
counters available for other events.

3CH

01H

CPU_CLK_UNHALTED.B
us

Bus cycles when core is
not halted.

This event counts the number of bus cycles while the core is not
in the halt state. This event can give you a measurement of the
elapsed time while the core was not in the halt state, by
dividing the event count by the bus frequency. The core enters
the halt state when it is running the HLT instruction.

The event also has a constant ratio with
CPU_CLK_UNHALTED.REF event, which is the maximum bus to
processor frequency ratio.

Non-halted bus cycles are a component in many key event
ratios.

3CH

02H

CPU_CLK_UNHALTED.
NO_OTHER

Bus cycles when core is
active and the other is
halted.

This event counts the number of bus cycles during which the
core remains non-halted, and the other core on the processor is
halted.

This event can be used to determine the amount of parallelism
exploited by an application or a system. Divide this event count
by the bus frequency to determine the amount of time that
only one core was in use.

40H

21H

L1D_CACHE.LD

L1 Cacheable Data
Reads.

This event counts the number of data reads from cacheable
memory.

40H

22H

L1D_CACHEST

L1 Cacheable Data
Writes.

This event counts the number of data writes to cacheable
memory.

60H

See
Table 1
8-2 and
Table 1
8-3

BUS_REQUEST_OUTST
ANDING

Outstanding cacheable
data read bus requests
duration.

This event counts the number of pending full cache line read
transactions on the bus occurring in each cycle. A read
transaction is pending from the cycle it is sent on the bus until
the full cache line is received by the processor. NOTE: This
event is thread-independent and will not provide a count per
logical processor when AnyThr is disabled.
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Table 19-25 Non-Architectural Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)

Event |Umask
Num. |Value |EventName Definition Description and Comment
61H See BUS_BNR_DRV Number of Bus Not This event counts the number of Bus Not Ready (BNR) signals
Table 1 Ready signals asserted. | that the processor asserts on the bus to suspend additional bus
8-3 requests by other bus agents. A bus agent asserts the BNR
signal when the number of data and snoop transactions is close
to the maximum that the bus can handle.
While this signal is asserted, new transactions cannot be
submitted on the bus. As a result, transaction latency may have
higher impact on program performance. NOTE: This event is
thread-independent and will not provide a count per logical
processor when AnyThr is disabled.
62H See BUS_DRDY_CLOCKS Bus cycles when data | This event counts the number of bus cycles during which the
Table 1 is sent on the bus. DRDY (Data Ready) signal is asserted on the bus. The DRDY
8-3 signal is asserted when data is sent on the bus.
This event counts the number of bus cycles during which this
agent (the processor) writes data on the bus back to memory or
to other bus agents. This includes all explicit and implicit data
writebacks, as well as partial writes.
NOTE: This event is thread-independent and will not provide a
count per logical processor when AnyThr is disabled.
63H See BUS_LOCK_CLOCKS Bus cycles when a This event counts the number of bus cycles, during which the
Table 1 LOCK signal is asserted. | LOCK signal is asserted on the bus. A LOCK signal is asserted
8-2 and when there is a locked memory access, due to:
gagle 1 - Uncacheable memory
i - Locked operation that spans two cache lines
- Page-walk from an uncacheable page table.
Bus locks have a very high performance penalty and it is highly
recommended to avoid such accesses. NOTE: This event is
thread-independent and will not provide a count per logical
processor when AnyThr is disabled.
64H See BUS_DATA_RCV Bus cycles while This event counts the number of cycles during which the
Table 1 processor receives processor is busy receiving data. NOTE: This event is thread-
8-2 data. independent and will not provide a count per logical processor
when AnyThr is disabled.
65H See BUS_TRANS_BRD Burst read bus This event counts the number of burst read transactions
Table 1 transactions. including:
8-2 and - L1 data cache read misses (and L1 data cache hardware
'Elg'agle 1 prefetches)
i - L2 hardware prefetches by the DPL and L2 streamer
- IFU read misses of cacheable lines.
It does not include RFO transactions.
66H See BUS_TRANS_RFO RFO bus transactions. | This event counts the number of Read For Ownership (RFO) bus
Table 1 transactions, due to store operations that miss the L1 data
8-2 and cache and the L2 cache. This event also counts RFO bus
Table 1 transactions due to locked operations.
8-3
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Table 19-25 Non-Architectural Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)

Event |Umask
Num. |Value |Event Name Definition Description and Comment
67H See BUS_TRANS_WB Explicit writeback bus | This event counts all explicit writeback bus transactions due to
Table 1 transactions. dirty line evictions. It does not count implicit writebacks due to
8-2 and invalidation by a snoop request.
Table 1
8-3
68H See BUS_TRANS_IFETCH |Instruction-fetch bus | This event counts all instruction fetch full cache line bus
Table 1 transactions. transactions.
8-2 and
Table 1
8-3
69H See BUS_TRANS_INVAL Invalidate bus This event counts all invalidate transactions. Invalidate
Table 1 transactions. transactions are generated when:
_?_'ila”f - A store operation hits a shared line in the L2 cache.
ave - A full cache line write misses the L2 cache or hits a shared line
8-3 .
in the L2 cache.
6AH See BUS_TRANS_PWR Partial write bus This event counts partial write bus transactions.
Table 1 transaction.
8-2 and
Table 1
8-3
6BH See BUS_TRANS_P Partial bus This event counts all (read and write) partial bus transactions.
Table 1 transactions.
8-2 and
Table 1
8-3
6CH See BUS_TRANS_IO 10 bus transactions. This event counts the number of completed I/0 bus
Table 1 transactions as a result of IN and OUT instructions. The count
8-2 and does not include memory mapped 0.
Table 1
8-3
6DH See BUS_TRANS_DEF Deferred bus This event counts the number of deferred transactions.
Table 1 transactions.
8-2 and
Table 1
8-3
6€EH See BUS_TRANS_BURST | Burst (full cache-line) | This event counts burst (full cache line) transactions including:
Table 1 bus transactions. - Burst reads
8-2 and
Table 1 -RFOs
8-3 - Explicit writebacks
- Write combine lines
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Table 19-25 Non-Architectural Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)

Event |Umask
Num. |Value |Event Name Definition Description and Comment
6FH See BUS_TRANS_MEM Memory bus This event counts all memory bus transactions including:
Table 1 transactions. - burst transactions
8-2 and - partial reads and writ
Table 1 partial reads and writes
8-3 - invalidate transactions
The BUS_TRANS_MEM count is the sum of
BUS_TRANS_BURST, BUS_TRANS_P and BUS_TRANS_INVAL.
70H See BUS_TRANS_ANY All bus transactions. This event counts all bus transactions. This includes:
Table 1 - Memory transactions
8-2 and .
Table 1 - 10 transactions (non memory-mapped)
8-3 - Deferred transaction completion
- Other less frequent transactions, such as interrupts
77H See EXT_SNOOP External snoops. This event counts the snoop responses to bus transactions.
Table Responses can be counted separately by type and by bus agent.
18-2 NOTE: This event is thread-independent and will not provide a
and count per logical processor when AnyThr is disabled.
Table
18-5
7AH See BUS_HIT_DRV HIT signal asserted. This event counts the number of bus cycles during which the
Table 1 processor drives the HIT# pin to signal HIT snoop response.
8-3 NOTE: This event is thread-independent and will not provide a
count per logical processor when AnyThr is disabled.
7BH See BUS_HITM_DRV HITM signal asserted. | This event counts the number of bus cycles during which the
Table 1 processor drives the HITM# pin to signal HITM snoop response.
8-3 NOTE: This event is thread-independent and will not provide a
count per logical processor when AnyThr is disabled.
7DH See BUSQ_EMPTY Bus queue is empty. This event counts the number of cycles during which the core
Table 1 did not have any pending transactions in the bus queue.
8-2 NOTE: This event is thread-independent and will not provide a
count per logical processor when AnyThr is disabled.
7EH See SNOOP_STALL_DRV Bus stalled for snoops. | This event counts the number of times that the bus snoop stall
Table 1 signal is asserted. During the snoop stall cycles no new bus
8-2 and transactions requiring a snoop response can be initiated on the
Table 1 bus. NOTE: This event is thread-independent and will not
8-3 provide a count per logical processor when AnyThr is disabled.
7FH See BUS_IO_WAIT 10 requests waiting in | This event counts the number of core cycles during which 10
Table 1 the bus queue. requests wait in the bus queue. This event counts 10 requests
8-2 from the core.
80H O03H ICACHE.ACCESSES Instruction fetches. This event counts all instruction fetches, including uncacheable
fetches.
80H 02H ICACHE.MISSES Icache miss. This event counts all instruction fetches that miss the
Instruction cache or produce memory requests. This includes
uncacheable fetches. An instruction fetch miss is counted only
once and not once for every cycle it is outstanding.
82H 04H ITLB.FLUSH ITLB flushes. This event counts the number of ITLB flushes.
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Table 19-25 Non-Architectural Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)

Event |Umask

Num. |Value |EventName Definition Description and Comment

82H 02H ITLB.MISSES ITLB misses. This event counts the number of instruction fetches that miss

the ITLB.

AAH 02H MACRO_INSTS.CISC_DE | CISCmacro instructions | This event counts the number of complex instructions decoded,

CODED decoded. but not necessarily executed or retired. Only one complex
instruction can be decoded at a time.

AAH O3H MACRO_INSTS.ALL_DE | All Instructions This event counts the number of instructions decoded.

CODED decoded.
BOH OOH SIMD_UOPS_EXECS SIMD micro-ops This event counts all the SIMD micro-ops executed. This event
executed (excluding does not count MOVQ and MOVD stores from register to
stores). memory.
BOH 80H SIMD_UOPS_EXEC.AR | SIMD micro-ops retired | This event counts the number of SIMD saturated arithmetic
(excluding stores). micro-ops executed.
B1H O0H SIMD_SAT_UOP_EXEC. |SIMD saturated This event counts the number of SIMD saturated arithmetic
S arithmetic micro-ops | micro-ops executed.
executed.

B1H 80H SIMD_SAT_UOP_EXEC. |SIMD saturated This event counts the number of SIMD saturated arithmetic

AR arithmetic micro-ops micro-ops retired.
retired.

B3H O01H SIMD_UOP_TYPE_EXE |SIMD packed multiply | This event counts the number of SIMD packed multiply micro-
CMULS micro-ops executed. ops executed.

B3H 81H SIMD_UOP_TYPE_EXE |SIMD packed multiply | This event counts the number of SIMD packed multiply micro-
CMULAR micro-ops retired. ops retired.

B3H 02H SIMD_UOP_TYPE_EXE | SIMD packed shift This event counts the number of SIMD packed shift micro-ops
CSHIFTS micro-ops executed. executed.

B3H 82H SIMD_UOP_TYPE_EXE | SIMD packed shift This event counts the number of SIMD packed shift micro-ops
CSHIFT.AR micro-ops retired. retired.

B3H 04H SIMD_UOP_TYPE_EXE | SIMD pack micro-ops This event counts the number of SIMD pack micro-ops executed.
CPACK.S executed.

B3H 84H SIMD_UOP_TYPE_EXE | SIMD pack micro-ops This event counts the number of SIMD pack micro-ops retired.
C.PACK.AR retired.

B3H 08H SIMD_UOP_TYPE_EXE | SIMD unpack micro-ops | This event counts the number of SIMD unpack micro-ops
C.UNPACK.S executed. executed.

B3H 88H SIMD_UOP_TYPE_EXE |SIMD unpack micro-ops | This event counts the number of SIMD unpack micro-ops retired.
CUNPACK.AR retired.

B3H 10H SIMD_UOP_TYPE_EXE |SIMD packed logical This event counts the number of SIMD packed logical micro-ops
C.LOGICALS micro-ops executed. executed.

B3H 90H SIMD_UOP_TYPE_EXE |SIMD packed logical This event counts the number of SIMD packed logical micro-ops
C.LOGICAL.AR micro-ops retired. retired.

B3H 20H SIMD_UOP_TYPE_EXE | SIMD packed arithmetic | This event counts the number of SIMD packed arithmetic micro-
C.ARITHMETIC.S micro-ops executed. ops executed.

B3H AOH SIMD_UOP_TYPE_EXE | SIMD packed arithmetic | This event counts the number of SIMD packed arithmetic micro-
C.ARITHMETICAR micro-ops retired. ops retired.
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Table 19-25 Non-Architectural Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)

Event |Umask

Num. |Value |Event Name Definition Description and Comment

COH OOH INST_RETIRED.ANY_P |Instructions retired This event counts the number of instructions that retire

(precise event). execution. For instructions that consist of multiple micro-ops,
this event counts the retirement of the last micro-op of the
instruction. The counter continues counting during hardware
interrupts, traps, and inside interrupt handlers.

N/A O0H INST_RETIRED.ANY Instructions retired. This event counts the number of instructions that retire
execution. For instructions that consist of multiple micro-ops,
this event counts the retirement of the last micro-op of the
instruction. The counter continues counting during hardware
interrupts, traps, and inside interrupt handlers.

C2H 10H UOPS_RETIRED.ANY Micro-ops retired. This event counts the number of micro-ops retired. The
processor decodes complex macro instructions into a sequence
of simpler micro-ops. Most instructions are composed of one or
two micro-ops. Some instructions are decoded into longer
sequences such as repeat instructions, floating point
transcendental instructions, and assists. In some cases micro-op
sequences are fused or whole instructions are fused into one
micro-op. See other UOPS_RETIRED events for differentiating
retired fused and non-fused micro-ops.

C3H O1H MACHINE_CLEARS.SMC | Self-Modifying Code This event counts the number of times that a program writes to

detected. a code section. Self-modifying code causes a severe penalty in
all Intel® architecture processors.

C4H OOH BR_INST_RETIRED.AN | Retired branch This event counts the number of branch instructions retired.

Y Instructions. This is an architectural performance event.
C4H OTH BR_INST_RETIRED.PRE | Retired branch This event counts the number of branch instructions retired
D_NOT_TAKEN instructions that were | that were correctly predicted to be not-taken.

predicted not-taken.

C4H 02H BR_INST_RETIRED.MIS | Retired branch This event counts the number of branch instructions retired

PRED_NOT_TAKEN instructions that were | that were mispredicted and not-taken.

mispredicted not-

taken.

C4H 04H BR_INST_RETIRED.PRE | Retired branch This event counts the number of branch instructions retired

D_TAKEN instructions that were | that were correctly predicted to be taken.

predicted taken.

C4H 08H BR_INST_RETIRED.MIS | Retired branch This event counts the number of branch instructions retired

PRED_TAKEN instructions that were | that were mispredicted and taken.
mispredicted taken.
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Table 19-25 Non-Architectural Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)

Event
Num.

Umask
Value

Event Name

Definition

Description and Comment

C4H

OAH

BR_INST_RETIRED.MIS
PRED

Retired mispredicted
branch instructions
(precise event).

This event counts the number of retired branch instructions
that were mispredicted by the processor. A branch
misprediction occurs when the processor predicts that the
branch would be taken, but it is not, or vice-versa. Mispredicted
branches degrade the performance because the processor
starts executing instructions along a wrong path it predicts.
When the misprediction is discovered, all the instructions
executed in the wrong path must be discarded, and the
processor must start again on the correct path.

Using the Profile-Guided Optimization (PGO) features of the
Intel® C++ compiler may help reduce branch mispredictions. See
the compiler documentation for more information on this
feature.

To determine the branch misprediction ratio, divide the
BR_INST_RETIRED.MISPRED event count by the number of
BR_INST_RETIRED.ANY event count. To determine the number
of mispredicted branches per instruction, divide the number of
mispredicted branches by the INST_RETIRED.ANY event count.
To measure the impact of the branch mispredictions use the
event RESOURCE_STALLS.BR_MISS_CLEAR.

Tips:
- See the optimization guide for tips on reducing branch
mispredictions.

- PGO's purpose is to have straight line code for the most
frequent execution paths, reducing branches taken and
increasing the “basic block” size, possibly also reducing the code
footprint or working-set.

C4H

OCH

BR_INST_RETIRED.TAK
EN

Retired taken branch
instructions.

This event counts the number of branches retired that were
taken.

C4H

OFH

BR_INST_RETIRED.AN
Y1

Retired branch
instructions.

This event counts the number of branch instructions retired
that were mispredicted. This event is a duplicate of
BR_INST_RETIRED.MISPRED.

C5H

OOH

BR_INST_RETIRED.MIS
PRED

Retired mispredicted
branch instructions
(precise event).

This event counts the number of retired branch instructions
that were mispredicted by the processor. A branch
misprediction occurs when the processor predicts that the
branch would be taken, but it is not, or vice-versa. Mispredicted
branches degrade the performance because the processor
starts executing instructions along a wrong path it predicts.
When the misprediction is discovered, all the instructions
executed in the wrong path must be discarded, and the
processor must start again on the correct path.
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Table 19-25 Non-Architectural Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)

Event |Umask
Num. |Value |Event Name Definition Description and Comment
Using the Profile-Guided Optimization (PGO) features of the
Intel® C++ compiler may help reduce branch mispredictions. See
the compiler documentation for more information on this
feature.
To determine the branch misprediction ratio, divide the
BR_INST_RETIRED.MISPRED event count by the number of
BR_INST_RETIRED.ANY event count. To determine the number
of mispredicted branches per instruction, divide the number of
mispredicted branches by the INST_RETIRED.ANY event count.
To measure the impact of the branch mispredictions use the
event RESOURCE_STALLS.BR_MISS_CLEAR.
Tips:
- See the optimization guide for tips on reducing branch
mispredictions.
- PGO's purpose is to have straight line code for the most
frequent execution paths, reducing branches taken and
increasing the “basic block” size, possibly also reducing the code
footprint or working-set.
C6H O1H CYCLES_INT_MASKED. | Cycles during which This event counts the number of cycles during which interrupts
CYCLES_INT_MASKED |interrupts are disabled. | are disabled.
C6H 02H CYCLES_INT_MASKED. | Cycles during which This event counts the number of cycles during which there are
CYCLES_INT_PENDING |interrupts are pending | pending interrupts but interrupts are disabled.
_AND_MASKED and disabled.
C7H O01H SIMD_INST_RETIRED.P |Retired Streaming This event counts the number of SSE packed-single instructions
ACKED_SINGLE SIMD Extensions (SSE) | retired.
packed-single
instructions.
C7H 02H SIMD_INST_RETIRED.S |Retired Streaming This event counts the number of SSE scalar-single instructions
CALAR_SINGLE SIMD Extensions (SSE) | retired.
scalar-single
instructions.
C7H 04H SIMD_INST_RETIRED.P |Retired Streaming This event counts the number of SSE2 packed-double
ACKED_DOUBLE SIMD Extensions 2 instructions retired.
(SSE2) packed-double
instructions.
C7H 08H SIMD_INST_RETIRED.S |Retired Streaming This event counts the number of SSE2 scalar-double
CALAR_DOUBLE SIMD Extensions 2 instructions retired.
(SSE2) scalar-double
instructions.
C7H 10H SIMD_INST_RETIRED.V | Retired Streaming This event counts the number of SSE2 vector instructions
ECTOR SIMD Extensions 2 retired.
(SSE2) vector
instructions.
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Table 19-25 Non-Architectural Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)

Event |Umask
Num. |Value |Event Name Definition Description and Comment
C7H 1FH SIMD_INST_RETIRED.A | Retired Streaming This event counts the overall number of SIMD instructions
NY SIMD instructions. retired. To count each type of SIMD instruction separately, use
the following events:
SIMD_INST_RETIRED.PACKED_SINGLE,
SIMD_INST_RETIRED.SCALAR_SINGLE,
SIMD_INST_RETIRED.PACKED_DOUBLE,
SIMD_INST_RETIRED.SCALAR_DOUBLE, and
SIMD_INST_RETIRED.VECTOR.
C8H OO0H HW_INT_RCV Hardware interrupts This event counts the number of hardware interrupts received
received. by the processor. This event will count twice for dual-pipe
micro-ops.
CAH 01H SIMD_COMP_INST_RET | Retired computational | This event counts the number of computational SSE packed-
IRED.PACKED_SINGLE | Streaming SIMD single instructions retired. Computational instructions perform
Extensions (SSE) arithmetic computations, like add, multiply and divide.
packed-single Instructions that perform load and store operations or logical
instructions. operations, like XOR, OR, and AND are not counted by this
event.
CAH 02H SIMD_COMP_INST_RET | Retired computational | This event counts the number of computational SSE scalar-
IRED.SCALAR_SINGLE | Streaming SIMD single instructions retired. Computational instructions perform
Extensions (SSE) arithmetic computations, like add, multiply and divide.
scalar-single Instructions that perform load and store operations or logical
instructions. operations, like XOR, OR, and AND are not counted by this
event.
CAH 04H SIMD_COMP_INST_RET | Retired computational | This event counts the number of computational SSE2 packed-
IRED.PACKED_DOUBLE | Streaming SIMD double instructions retired. Computational instructions perform
Extensions 2 (SSE2) arithmetic computations, like add, multiply and divide.
packed-double Instructions that perform load and store operations or logical
instructions. operations, like XOR, OR, and AND are not counted by this
event.
CAH 08H SIMD_COMP_INST_RET | Retired computational | This event counts the number of computational SSE2 scalar-
IRED.SCALAR_DOUBLE | Streaming SIMD double instructions retired. Computational instructions perform
Extensions 2 (SSE2) arithmetic computations, like add, multiply and divide.
scalar-double Instructions that perform load and store operations or logical
instructions. operations, like XOR, OR, and AND are not counted by this
event.
CBH O01H MEM_LOAD_RETIRED.L | Retired loads that hit | This event counts the number of retired load operations that
2_HIT the L2 cache (precise | missed the L1 data cache and hit the L2 cache.
event).
CBH 02H MEM_LOAD_RETIRED.L | Retired loads that miss | This event counts the number of retired load operations that
2_MISS the L2 cache (precise | missed the L2 cache.
event).
CBH 04H MEM_LOAD_RETIRED.D | Retired loads that miss | This event counts the number of retired loads that missed the
TLB_MISS the DTLB (precise DTLB. The DTLB miss is not counted if the load operation causes
event). a fault.
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Table 19-25 Non-Architectural Performance Events for 45 nm, 32 nm Intel® Atom™ Processors (Contd.)
Event |Umask
Num. |Value |Event Name Definition Description and Comment

CDH OOH SIMD_ASSIST SIMD assists invoked. | This event counts the number of SIMD assists invoked. SIMD
assists are invoked when an EMMS instruction is executed after
MMX™ technology code has changed the MMX state in the
floating point stack. For example, these assists are required in
the following cases:

Streaming SIMD Extensions (SSE) instructions:

1. Denormal input when the DAZ (Denormals Are Zeros) flag is
off

2. Underflow result when the FTZ (Flush To Zero) flag is off

CEH OOH SIMD_INSTR_RETIRED |SIMD Instructions This event counts the number of SIMD instructions that retired.
retired.

CFH OOH SIMD_SAT_INSTR_RETI | Saturated arithmetic This event counts the number of saturated arithmetic SIMD
RED instructions retired. instructions that retired.

EOH O1H BR_INST_DECODED Branch instructions This event counts the number of branch instructions decoded.
decoded.

E4H O1H BOGUS_BR Bogus branches. This event counts the number of byte sequences that were
mistakenly detected as taken branch instructions. This results
in a3 BACLEAR event and the BTB is flushed. This occurs mainly
after task switches.

E6H OTH BACLEARS.ANY BACLEARS asserted. This event counts the number of times the front end is
redirected for a branch prediction, mainly when an early branch
prediction is corrected by other branch handling mechanisms in
the front-end. This can occur if the code has many branches
such that they cannot be consumed by the branch predictor.
Each Baclear asserted costs approximately 7 cycles. The effect
on total execution time depends on the surrounding code.

22. Updates to Chapter 22, Volume 3C

Change bars show changes to Chapter 22 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2.

22.1  PROCESSOR FAMILIES AND CATEGORIES

IA-32 processors are referred to in several different ways in this chapter, depending on the type of compatibility
information being related, as described in the following:

e 1A-32 Processors — All the Intel processors based on the Intel IA-32 Architecture, which include the 8086/
88, Intel 286, Intel386, Intel486, Pentium, Pentium Pro, Pentium II, Pentium Ill, Pentium 4, and Intel Xeon
processors.

e 32-bit Processors — All the IA-32 processors that use a 32-bit architecture, which include the Intel386,
Intel486, Pentium, Pentium Pro, Pentium II, Pentium lll, Pentium 4, and Intel Xeon processors.
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e 16-bit Processors — All the IA-32 processors that use a 16-bit architecture, which include the 8086/88 and
Intel 286 processors.

e P6 Family Processors — All the IA-32 processors that are based on the P6 microarchitecture, which include
the Pentium Pro, Pentium II, and Pentium lll processors.

e Pentium® 4 Processors — A family of IA-32 and Intel 64 processors that are based on the Intel NetBurst®
microarchitecture.

e Intel® Pentium® M Processors — A family of IA-32 processors that are based on the Intel Pentium M
processor microarchitecture.

e Intel® Core™ Duo and Solo Processors — Families of IA-32 processors that are based on an improved
Intel Pentium M processor microarchitecture.

e Intel® Xeon® Processors — A family of IA-32 and Intel 64 processors that are based on the Intel NetBurst
microarchitecture. This family includes the Intel Xeon processor and the Intel Xeon processor MP based on the
Intel NetBurst microarchitecture. Intel Xeon processors 3000, 3100, 3200, 3300, 3200, 5100, 5200, 5300,
5400, 7200, 7300 series are based on Intel Core microarchitectures and support Intel 64 architecture.

e Pentium® D Processors — A family of dual-core Intel 64 processors that provides two processor cores in a
physical package. Each core is based on the Intel NetBurst microarchitecture.

e Pentium® Processor Extreme Editions — A family of dual-core Intel 64 processors that provides two
processor cores in a physical package. Each core is based on the Intel NetBurst microarchitecture and
supports Intel Hyper-Threading Technology.

e Intel® Core™ 2 Processor family— A family of Intel 64 processors that are based on the Intel Core micro-
architecture. Intel Pentium Dual-Core processors are also based on the Intel Core microarchitecture.

e Intel® Atom™ Processors — A family of IA-32 and Intel 64 processors. 45 nm Intel Atom processors are
based on the Intel Atom microarchitecture. 32 nm Intel Atom processors are based on newer microarchitec-
tures including the Silvermont microarchitecture and the Airmont microarchitecture. Each generation of Intel
Atom processors can be identified by the CPUID’s DisplayFamily_DisplayModel signature; see Table 35-1
“CPUID Signature Values of DisplayFamily_DisplayModel”.

22.10 INTEL HYPER-THREADING TECHNOLOGY

Intel Hyper-Threading Technology provides two logical processors that can execute two separate code streams
(called threads) concurrently by using shared resources in a single processor core or in a physical package.

This feature was introduced in the Intel Xeon processor MP and later steppings of the Intel Xeon processor, and
Pentium 4 processors supporting Intel Hyper-Threading Technology. The feature is also found in the Pentium
processor Extreme Edition. See also: Section 8.7, “"Intel® Hyper-Threading Technology Architecture.”

45 nm and 32 nm Intel Atom processors support Intel Hyper-Threading Technology.

Intel Atom processors based on Silvermont and Airmont microarchitectures do not support Intel Hyper-Threading
Technology.

23. Updates to Chapter 24, Volume 3C

Change bars show changes to Chapter 24 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.
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24.4.2 Guest Non-Register State

In addition to the register state described in Section 24.4.1, the guest-state area includes the following fields that
characterize guest state but which do not correspond to processor registers:

Activity state (32 bits). This field identifies the logical processor’s activity state. When a logical processor is
executing instructions normally, it is in the active state. Execution of certain instructions and the occurrence
of certain events may cause a logical processor to transition to an inactive state in which it ceases to execute
instructions.

The following activity states are defined:?
— 0: Active. The logical processor is executing instructions normally.
— 1: HLT. The logical processor is inactive because it executed the HLT instruction.

— 2: Shutdown. The logical processor is inactive because it incurred a triple fault? or some other serious
error.

— 3: Wait-for-SIPI. The logical processor is inactive because it is waiting for a startup-IPI (SIPI).

Future processors may include support for other activity states. Software should read the VMX capability MSR
IA32_VMX_MISC (see Appendix A.6) to determine what activity states are supported.

Interruptibility state (32 bits). The IA-32 architecture includes features that permit certain events to be
blocked for a period of time. This field contains information about such blocking. Details and the format of this
field are given in Table 24-3.

Table 24-3 Format of Interruptibility State

Bit

Position(s)

Bit Name Notes

0

Blocking by STI | See the “STI—Set Interrupt Flag” section in Chapter 4 of the Intel 64 and IA-32 Architectures
Software Developer's Manual, Volume 2B.

Execution of STl with RFLAGS.IF = O blocks interrupts (and, optionally, other events) for one
instruction after its execution. Setting this bit indicates that this blocking is in effect.

Blocking by See the “MOV—Move a Value from the Stack” from Chapter 3 of the Intel” 64 and IA-32

MOV SS Architectures Software Developer’s Manual, Volume 2A, and "POP—Pop a Value from the
Stack” from Chapter 4 of the Intel” 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B, and Section 6.8.3 in the Intel 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

Execution of a MOV to SS or a POP to SS blocks interrupts for one instruction after its

execution. In addition, certain debug exceptions are inhibited between a MOV to SS or a POP to
SS and a subsequent instruction. Setting this bit indicates that the blocking of all these events
is in effect. This document uses the term “blocking by MOV SS,” but it applies equally to POP SS.

Blocking by SMI | See Section 34.2. System-management interrupts (SMIs) are disabled while the processor is in
system-management mode (SMM). Setting this bit indicates that blocking of SMis is in effect.

1.

2.

Execution of the MWAIT instruction may put a logical processor into an inactive state. However, this VMCS field never reflects this
state. See Section 27.1.

A triple fault occurs when a logical processor encounters an exception while attempting to deliver a double fault.
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Table 24-3 Format of Interruptibility State (Contd.)

Bit Bit Name Notes
Position(s)
3 Blocking by NMI | See Section 6.7.1 in the Intel 64 and IA-32 Architectures Software Developer’s Manual,

Volume 3A and Section 34.8.

Delivery of a non-maskable interrupt (NMI) or a system-management interrupt (SMI) blocks
subsequent NMIs until the next execution of IRET. See Section 25.3 for how this behavior of
IRET may change in VMX non-root operation. Setting this bit indicates that blocking of NMiIs is
in effect. Clearing this bit does not imply that NMIs are not (temporarily) blocked for other
reasons.

If the “virtual NMIs" VM-execution control (see Section 24.6.1) is 1, this bit does not control the
blocking of NMis. Instead, it refers to “virtual-NMI blocking” (the fact that guest software is not
ready for an NMI).

31:4 Reserved VM entry will fail if these bits are not 0. See Section 26.3.1.5.

e Pending debug exceptions (64 bits; 32 bits on processors that do not support Intel 64 architecture). IA-32
processors may recognize one or more debug exceptions without immediately delivering them.! This field
contains information about such exceptions. This field is described in Table 24-4.

Table 24-4 Format of Pending-Debug-Exceptions

Bit Bit Name Notes

Position(s)

3.0 B3-B0 When set, each of these bits indicates that the corresponding breakpoint condition was met.
Any of these bits may be set even if the corresponding enabling bit in DR7 is not set.

11:4 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5.

12 Enabled When set, this bit indicates that at least one data or I/0 breakpoint was met and was enabled in

breakpoint DR7.

13 Reserved VM entry fails if this bit is not 0. See Section 26.3.1.5.

14 BS When set, this bit indicates that a debug exception would have been triggered by single-step
execution mode.

15 Reserved VM entry fails if this bit is not 0. See Section 26.3.1.5.

16 RTM When set, this bit indicates that a debug exception (#DB) or a breakpoint exception (#BP)

occurred inside an RTM region while advanced debugging of RTM transgctional regions was
enabled (see Section 15.3.7, “"RTM-Enabled Debugger Support,” of Intel 64 and IA-32
Architectures Software Developer’s Manual, Volume 1).!

63:17 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5. Bits 63:32 exist only on processors
that support Intel 64 architecture.

1. For example, execution of a MOV to SS or a POP to SS may inhibit some debug exceptions for one instruction. See Section 6.8.3 of
Intel” 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In addition, certain events incident to an instruction
(for example, an INIT signal) may take priority over debug traps generated by that instruction. See Table 6-2 in the Intel 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.
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NOTES:
1. In general, the format of this field matches that of DR6. However, DR6 clears bit 16 to indicate an RTM-related exception, while this

field sets the bit to indicate that condition.

e VMCS link pointer (64 bits). If the "VMCS shadowing” VM-execution control is 1, the VMREAD and VMWRITE
instructions access the VMCS referenced by this pointer (see Section 24.10). Otherwise, software should set
this field to FFFFFFFF_FFFFFFFFH to avoid VM-entry failures (see Section 26.3.1.5).

e VMX-preemption timer value (32 bits). This field is supported only on processors that support the 1-
setting of the “activate VMX-preemption timer” VM-execution control. This field contains the value that the
VMX-preemption timer will use following the next VM entry with that setting. See Section 25.5.1 and Section
26.6.4.

e Page-directory-pointer-table entries (PDPTEs; 64 bits each). These four (4) fields (PDPTEO, PDPTE1,
PDPTE2, and PDPTE3) are supported only on processors that support the 1-setting of the “enable EPT” VM-
execution control. They correspond to the PDPTEs referenced by CR3 when PAE paging is in use (see Section
4.4 in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A). They are used only if
the “enable EPT” VM-execution control is 1.

e Guest interrupt status (16 bits). This field is supported only on processors that support the 1-setting of the
“virtual-interrupt delivery” VM-execution control. It characterizes part of the guest’s virtual-APIC state and
does not correspond to any processor or APIC registers. It comprises two 8-bit subfields:

— Requesting virtual interrupt (RVI). This is the low byte of the guest interrupt status. The processor
treats this value as the vector of the highest priority virtual interrupt that is requesting service. (The value
0 implies that there is no such interrupt.)

— Servicing virtual interrupt (SVI). This is the high byte of the guest interrupt status. The processor
treats this value as the vector of the highest priority virtual interrupt that is in service. (The value 0 implies
that there is no such interrupt.)

See Chapter 29 for more information on the use of this field.

e PML index (16 bits). This field is supported only on processors that support the 1-setting of the “enable PML"
VM-execution control. It contains the logical index of the next entry in the page-modification log. Because the
page-modification log comprises 512 entries, the PML index is typically a value in the range 0-511. Details of
the page-modification log and use of the PML index are given in Section 28.2.5.

24.6.2 Processor-Based VM-Execution Controls

The processor-based VM-execution controls constitute two 32-bit vectors that govern the handling of synchro-
nous events, mainly those caused by the execution of specific instructions.! These are the primary processor-
based VM-execution controls and the secondary processor-based VM-execution controls.

Table 24-7 lists the primary processor-based VM-execution controls. See Chapter 25 for more details of how these
controls affect processor behavior in VMX non-root operation.

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs
TIA32_VMX_PROCBASED_CTLS and IA32_VMX_TRUE_PROCBASED_CTLS (see Appendix A.3.2) to determine how
to set reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section
26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 1, 4-6, 8, 13-
16, and 26. The VMX capability MSR IA32_VMX_PROCBASED_CTLS will always report that these bits must be 1.

1. Some instructions cause VM exits regardless of the settings of the processor-based VM-execution controls (see Section 25.1.2), as
do task switches (see Section 25.2).
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Table 24-7 Definitions of Primary Processor-Based VM-Execution Controls

Bit Position(s) | Name Description
2 Interrupt-window | If this control is 1, a VM exit occurs at the beginning of any instruction if RFLAGS.IF = 1 and
exiting there are no other blocking of interrupts (see Section 24.4.2).
3 Use TSC offsetting | This control determines whether executions of RDTSC, executions of RDTSCP, and executions
of RDMSR that read from the IA32_TIME_STAMP_COUNTER MSR return a value modified by
the TSC offset field (see Section 24.6.5 and Section 25.3).
7 HLT exiting This control determines whether executions of HLT cause VM exits.
9 INVLPG exiting This determines whether executions of INVLPG cause VM exits.
10 MWAIT exiting This control determines whether executions of MWAIT cause VM exits.
11 RDPMC exiting This control determines whether executions of RDPMC cause VM exits.
12 RDTSC exiting This control determines whether executions of RDTSC and RDTSCP cause VM exits.
15 CR3-load exiting In conjunction with the CR3-target controls (see Section 24.6.7), this control determines
whether executions of MOV to CR3 cause VM exits. See Section 25.1.3.
The first processors to support the virtual-machine extensions supported only the 1-setting
of this control.
16 CR3-store exiting | This control determines whether executions of MOV from CR3 cause VM exits.
The first processors to support the virtual-machine extensions supported only the 1-setting
of this control.
19 CR8-load exiting This control determines whether executions of MOV to CR8 cause VM exits.
20 CR8-store exiting | This control determines whether executions of MOV from CR8 cause VM exits.
21 Use TPR shadow | Setting this control to 1 enables TPR virtualization and other APIC-virtualization features. See
Chapter 29.
22 NMI-window If this control is 1, a VM exit occurs at the beginning of any instruction if there is no virtual-
exiting NMI blocking (see Section 24.4.2).
23 MOV-DR exiting This control determines whether executions of MOV DR cause VM exits.
24 Unconditional I/0 | This control determines whether executions of I/0 instructions (IN, INS/INSB/INSW/INSD, OUT,
exiting and OUTS/OUTSB/OUTSW/OUTSD) cause VM exits.
25 Use 1/0 bitmaps This control determines whether 1/0 bitmaps are used to restrict executions of I/0 instructions
(see Section 24.6.4 and Section 25.1.3).
For this control, “0" means “do not use I/0 bitmaps” and “1"” means “use |/0 bitmaps.” If the I/0
bitmaps are used, the setting of the “unconditional I/0 exiting” control is ignored.
27 Monitor trap flag If this control is 1, the monitor trap flag debugging feature is enabled. See Section 25.5.2.
28 Use MSR bitmaps | This control determines whether MSR bitmaps are used to control execution of the RDMSR
and WRMSR instructions (see Section 24.6.9 and Section 25.1.3).
For this control, “0" means “do not use MSR bitmaps” and “1” means “use MSR bitmaps.” If the
MSR bitmaps are not used, all executions of the RDMSR and WRMSR instructions cause
VM exits.
29 MONITOR exiting | This control determines whether executions of MONITOR cause VM exits.
30 PAUSE exiting This control determines whether executions of PAUSE cause VM exits.
31 Activate secondary | This control determines whether the secondary processor-based VVM-execution controls are
controls used. If this control is 0, the logical processor operates as if all the secondary processor-based
VVM-execution controls were also O.
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Logical processors that support the 0-settings of any of these bits will support the VMX capability MSR
IA32_VMX_TRUE_PROCBASED_CTLS MSR, and software should consult this MSR to discover support for the 0-
settings of these bits. Software that is not aware of the functionality of any one of these bits should set that bit to
1.

Bit 31 of the primary processor-based VM-execution controls determines whether the secondary processor-based
VM-execution controls are used. If that bit is 0, VM entry and VMX non-root operation function as if all the

secondary processor-based VM-execution controls were 0. Processors that support only the 0-setting of bit 31 of
the primary processor-based VM-execution controls do not support the secondary processor-based VM-execution

controls.

Table 24-8 lists the secondary processor-based VM-execution controls. See Chapter 25 for more details of how
these controls affect processor behavior in VMX non-root operation.

Table 24-8 Definitions of Secondary Processor-Based VM-Execution Controls

Bit Position(s) | Name Description
0 Virtualize APIC If this control is 1, the logical processor treats specially accesses to the page with the APIC-
accesses access address. See Section 29.4.
1 Enable EPT If this control is 1, extended page tables (EPT) are enabled. See Section 28.2.
2 Descriptor-table This control determines whether executions of LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, and
exiting STR cause VM exits.
3 Enable RDTSCP If this control is 0, any execution of RDTSCP causes an invalid-opcode exception (#UD).
4 Virtualize x2APIC | If this control is 1, the logical processor treats specially RDMSR and WRMSR to APIC MSRs (in
mode the range 800H-8FFH). See Section 29.5.
5 Enable VPID If this control is 1, cached translations of linear addresses are associated with a virtual-
processor identifier (VPID). See Section 28.1.
6 WBINVD exiting This control determines whether executions of WBINVD cause VM exits.
7 Unrestricted guest | This control determines whether guest software may run in unpaged protected mode or in real-
address mode.
8 APIC-register If this control is 1, the logical processor virtualizes certain APIC accesses. See Section 29.4 and
virtualization Section 29.5.
9 Virtual-interrupt This controls enables the evaluation and delivery of pending virtual interrupts as well as the
delivery emulation of writes to the APIC registers that control interrupt prioritization.
10 PAUSE-loop exiting | This control determines whether a series of executions of PAUSE can cause a VM exit (see
Section 24.6.13 and Section 25.1.3).
11 RDRAND exiting This control determines whether executions of RDRAND cause VM exits.
12 Enable INVPCID If this control is O, any execution of INVPCID causes a #UD.
13 Enable Setting this control to 1 enables use of the VMFUNC instruction in VMX non-root operation. See
VM functions Section 25.5.5.
14 VMCS shadowing | If this control is 1, executions of VMREAD and VMWRITE in VMX non-root operation may access
a shadow VMCS (instead of causing VM exits). See Section 24.10 and Section 30.3.
16 RDSEED exiting This control determines whether executions of RDSEED cause VM exits.
17 Enable PML If this control is 1, an access to a guest-physical address that sets an EPT dirty bit first adds an
entry to the page-modification log. See Section 28.2.5.
18 EPT-violation #VE | If this control is 1, EPT violations may cause virtualization exceptions (#VE) instead of VM exits.
See Section 25.5.6.
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Table 24-8 Definitions of Secondary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) | Name Description

20 Enable XSAVES/ If this control is 0, any execution of XSAVES or XRSTORS causes a #UD.
XRSTORS
25 Use TSC scaling This control determines whether executions of RDTSC, executions of RDTSCP, and executions

of RDMSR that read from the IA32_TIME_STAMP_COUNTER MSR return a value modified by the
TSC multiplier field (see Section 24.6.5 and Section 25.3).

All other bits in this field are reserved to 0. Software should consult the VMX capability MSR
IA32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3) to determine which bits may be set to 1. Failure to clear
reserved bits causes subsequent VM entries to fail (see Section 26.2.1.1).

24.6.14 Control Field for Page-Modification Logging

The PML address is a 64-bit field. It is the 4-KByte aligned address of the page-modification log. The page-
modification log consists of 512 64-bit entries. It is used for the page-modification logging feature. Details of the
page-modification logging are given in Section 28.2.5.

If the “enable PML" VM-execution control is 1, VM entry ensures that the PML address is 4-KByte aligned. The PML
address exists only on processors that support the 1-setting of the “enable PML"” VM-execution control.

24. Updates to Chapter 25, Volume 3C

Change bars show changes to Chapter 25 of the Intel® 64 and IA-32 Architectures Software Developer’'s Manual,
Volume 3C: System Programming Guide, Part 3.

25.5.2 Monitor Trap Flag

The monitor trap flag is a debugging feature that causes VM exits to occur on certain instruction boundaries in
VMX non-root operation. Such VM exits are called MTF VM exits. An MTF VM exit may occur on an instruction
boundary in VMX non-root operation as follows:

o If the “monitor trap flag” VM-execution control is 1 and VM entry is injecting a vectored event (see Section
26.5.1), an MTF VM exit is pending on the instruction boundary before the first instruction following the
VM entry.

e If VM entry is injecting a pending MTF VM exit (see Section 26.5.2), an MTF VM exit is pending on the
instruction boundary before the first instruction following the VM entry. This is the case even if the “monitor
trap flag” VM-execution control is 0.

e If the “"monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and a pending event
(e.g., debug exception or interrupt) is delivered before an instruction can execute, an MTF VM exit is pending
on the instruction boundary following delivery of the event (or any nested exception).

e Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and the
first instruction following VM entry is a REP-prefixed string instruction:

— If thefirst iteration of the instruction causes a fault, an MTF VM exit is pending on the instruction boundary
following delivery of the fault (or any nested exception).
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— If the first iteration of the instruction does not cause a fault, an MTF VM exit is pending on the instruction
boundary after that iteration.

e Suppose that the "monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and the
first instruction following VM entry is the XBEGIN instruction. In this case, an MTF VM exit is pending at the
fallback instruction address of the XBEGIN instruction. This behavior applies regardless of whether advanced
debugging of RTM transactional regions has been enabled (see Section 15.3.7, "RTM-Enabled Debugger
Support,” of Intel® 64 and I1A-32 Architectures Software Developer’s Manual, Volume 1).

e Suppose that the "monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and the
first instruction following VM entry is neither a REP-prefixed string instruction or the XBEGIN instruction:

— If the instruction causes a fault, an MTF VM exit is pending on the instruction boundary following delivery
of the fault (or any nested exception).!

— If the instruction does not cause a fault, an MTF VM exit is pending on the instruction boundary following
execution of that instruction. If the instruction is INT3 or INTO, this boundary follows delivery of any
software exception. If the instruction is INT n, this boundary follows delivery of a software interrupt. If the
instruction is HLT, the MTF VM exit will be from the HLT activity state.

No MTF VM exit occurs if another VM exit occurs before reaching the instruction boundary on which an MTF
VM exit would be pending (e.g., due to an exception or triple fault).

An MTF VM exit occurs on the instruction boundary on which it is pending unless a higher priority event takes
precedence or the MTF VM exit is blocked due to the activity state:

e System-management interrupts (SMIs), INIT signals, and higher priority events take priority over MTF
VM exits. MTF VM exits take priority over debug-trap exceptions and lower priority events.

e No MTF VM exit occurs if the processor is in either the shutdown activity state or wait-for-SIPI activity state.
If a non-maskable interrupt subsequently takes the logical processor out of the shutdown activity state
without causing a VM exit, an MTF VM exit is pending after delivery of that interrupt.

25.5.3  Translation of Guest-Physical Addresses Using EPT

The extended page-table mechanism (EPT) is a feature that can be used to support the virtualization of physical
memory. When EPT is in use, certain physical addresses are treated as guest-physical addresses and are not used
to access memory directly. Instead, guest-physical addresses are translated by traversing a set of EPT paging
structures to produce physical addresses that are used to access memory.

Details of the EPT mechanism are given in Section 28.2.

25. Updates to Chapter 26, Volume 3C

Change bars show changes to Chapter 26 of the Intel® 64 and I1A-32 Architectures Software Developer’'s Manual,
Volume 3C: System Programming Guide, Part 3.

1. This item includes the cases of an invalid opcode exception—#UD— generated by the UDZ2 instruction and a BOUND-range
exceeded exception—#BR—generated by the BOUND instruction.
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26.2.1.1 VM-Execution Control Fields

VM entries perform the following checks on the VM-execution control fields:!

e Reserved bits in the pin-based VM-execution controls must be set properly. Software may consult the VMX
capability MSRs to determine the proper settings (see Appendix A.3.1).

e Reserved bits in the primary processor-based VM-execution controls must be set properly. Software may
consult the VMX capability MSRs to determine the proper settings (see Appendix A.3.2).

e If the “activate secondary controls” primary processor-based VM-execution control is 1, reserved bits in the

secondary processor-based VM-execution controls must be cleared. Software may consult the VMX capability
MSRs to determine which bits are reserved (see Appendix A.3.3).

If the “activate secondary controls” primary processor-based VM-execution control is 0 (or if the processor
does not support the 1-setting of that control), no checks are performed on the secondary processor-based
VM-execution controls. The logical processor operates as if all the secondary processor-based VM-execution
controls were 0.

e The CR3-target count must not be greater than 4. Future processors may support a different number of CR3-
target values. Software should read the VMX capability MSR IA32_VMX_MISC to determine the number of
values supported (see Appendix A.6).

e If the “use I/O bitmaps” VM-execution control is 1, bits 11:0 of each I/O-bitmap address must be 0. Neither
address should set any bits beyond the processor’s physical-address width.2:3

e If the “use MSR bitmaps” VM-execution control is 1, bits 11:0 of the MSR-bitmap address must be 0. The
address should not set any bits beyond the processor’s physical-address width.*

e Ifthe“use TPR shadow” VM-execution control is 1, the virtual-APIC address must satisfy the following checks:
— Bits 11:0 of the address must be 0.
— The address should not set any bits beyond the processor’s physical-address width.>

If all of the above checks are satisfied and the “use TPR shadow” VM-execution control is 1, bytes 3:1 of
VTPR (see Section 29.1.1) may be cleared (behavior may be implementation-specific).

The clearing of these bytes may occur even if the VM entry fails. This is true either if the failure causes
control to pass to the instruction following the VM-entry instruction or if it causes processor state to be
loaded from the host-state area of the VMCS.

e Ifthe“use TPR shadow” VM-execution control is 1 and the “virtual-interrupt delivery” VM-execution control is
0, bits 31:4 of the TPR threshold VM-execution control field must be 0.6

¢ The following check is performed if the “use TPR shadow” VM-execution control is 1 and the “virtualize APIC
accesses” and “virtual-interrupt delivery” VM-execution controls are both 0: the value of bits 3:0 of the TPR
threshold VM-execution control field should not be greater than the value of bits 7:4 of VTPR (see Section
29.1.1).

e If the "NMI exiting” VM-execution control is 0, the “virtual NMIs” VM-execution control must be 0.
e If the “virtual NMIs” VM-execution control is 0, the "NMI-window exiting” VM-execution control must be 0.

1. If the “activate secondary controls” primary processor-based VM-execution control is 0, VM entry operates as if each secondary
processor-based VM-execution control were O.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

If IA32_VMX_BASIC[48] is read as 1, these addresses must not set any bits in the range 63:32; see Appendix A.1.
If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.
If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

“Virtual-interrupt delivery” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-exe-
cution controls is 0, VM entry functions as if the “virtual-interrupt delivery” VM-execution control were 0. See Section 24.6.2.

o v~ w
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e Ifthe “virtualize APIC-accesses” VM-execution control is 1, the APIC-access address must satisfy the following
checks:

— Bits 11:0 of the address must be 0.
— The address should not set any bits beyond the processor’s physical-address width.!

e If the “use TPR shadow” VM-execution control is 0, the following VM-execution controls must also be 0:
“virtualize x2APIC mode”, "APIC-register virtualization”, and “virtual-interrupt delivery”.2

e Ifthe“virtualize x2APIC mode” VM-execution control is 1, the “virtualize APIC accesses” VM-execution control
must be 0.

e If the “virtual-interrupt delivery” VM-execution control is 1, the “external-interrupt exiting” VM-execution
control must be 1.

e If the “process posted interrupts” VM-execution control is 1, the following must be true:3
— The “virtual-interrupt delivery” VM-execution control is 1.
— The “acknowledge interrupt on exit” VM-exit control is 1.
— The posted-interrupt notification vector has a value in the range 0-255 (bits 15:8 are all 0).
— Bits 5:0 of the posted-interrupt descriptor address are all 0.

— The po45ted—interrupt descriptor address does not set any bits beyond the processor's physical-address
width.

e If the “enable VPID” VM-execution control is 1, the value of the VPID VM-execution control field must not be
0000H.>

e If the “enable EPT” VM-execution control is 1, the EPTP VM-execution control field (see Table 24-8 in Section
24.6.11) must satisfy the following checks:®

— The EPT memory type (bits 2:0) must be a value supported by the processor as indicated in the
IA32_VMX_EPT_VPID_CAP MSR (see Appendix A.10).

— Bits 5:3 (1 less than the EPT page-walk length) must be 3, indicating an EPT page-walk length of 4; see
Section 28.2.2.

— Bit 6 (enable bit for accessed and dirty flags for EPT) must be 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP
MSR (see Appendix A.10) is read as 0, indicating that the processor does not support accessed and dirty
flags for EPT.

— Reserved bits 11:7 and 63:N (where N is the processor’s physical-address width) must all be 0.

e If the “enable PML" VM-execution control is 1, the “enable EPT” VM-execution control must also be 1.7 In
addition, the PML address must satisfy the following checks:

— Bits 11:0 of the address must be 0.

—_

If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

2. "Virtualize x2APIC mode” and “APIC-register virtualization” are secondary processor-based VM-execution controls. If bit 31 of the
primary processor-based VM-execution controls is 0, VM entry functions as if these controls were 0. See Section 24.6.2.

3. “Process posted interrupts” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-
execution controls is 0, VM entry functions as if the “process posted interrupts” VM-execution control were 0. See Section 24.6.2.

4, IfIA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

5. "Enable VPID" is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution con-
trols is 0, VM entry functions as if the “enable VPID" VM-execution control were 0. See Section 24.6.2.

6. "Enable EPT" is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls
is 0, VM entry functions as if the “enable EPT" VM-execution control were 0. See Section 24.6.2.

7. "Enable PML" and “enable EPT" are both secondary processor-based VM-execution controls. If bit 31 of the primary processor-
based VM-execution controls is 0, VM entry functions as if both these controls were 0. See Section 24.6.2.
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— The address should not set any bits beyond the processor’s physical-address width.!
e If the “unrestricted guest” VM-execution control is 1, the “enable EPT” VM-execution control must also be 1.2

e If the “enable VM functions” processor-based VM-execution control is 1, reserved bits in the VM-function
controls must be clear.3 Software may consult the VMX capability MSRs to determine which bits are reserved
(see Appendix A.11). In addition, the following check is performed based on the setting of bits in the VM-
function controls (see Section 24.6.15):

— If “EPTP switching” VM-function control is 1, the “enable EPT” VM-execution control must also be 1. In
addition, the EPTP-list address must satisfy the following checks:

e Bits 11:0 of the address must be 0.
e The address must not set any bits beyond the processor’s physical-address width.

If the “enable VM functions” processor-based VM-execution control is 0, no checks are performed on the VM-
function controls.

e If the "WMCS shadowing” VM-execution control is 1, the VMREAD-bitmap and VMWRITE-bitmap addresses
must each satisfy the following checks:*

— Bits 11:0 of the address must be 0.
— The address must not set any bits beyond the processor’s physical-address width.

e If the “EPT-violation #VE"” VM-execution control is 1, the virtualization-exception information address must
satisfy the following checks:?

— Bits 11:0 of the address must be 0.
— The address must not set any bits beyond the processor’s physical-address width.

26.3.1.5 Checks on Guest Non-Register State

The following checks are performed on fields in the guest-state area corresponding to non-register state:
e Activity state.
— The activity-state field must contain a value in the range 0 - 3, indicating an activity state supported by
the implementation (see Section 24.4.2). Future processors may include support for other activity states.

Software should read the VMX capability MSR IA32_VMX_MISC (see Appendix A.6) to determine what
activity states are supported.

— The acti\éity-state field must not indicate the HLT state if the DPL (bits 6:5) in the access-rights field for SS
is not 0.

— The activity-state field must indicate the active state if the interruptibility-state field indicates blocking by
either MOV-SS or by STI (if either bit 0 or bit 1 in that field is 1).

—_

If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

2. "Unrestricted guest” and “enable EPT" are both secondary processor-based VM-execution controls. If bit 31 of the primary proces-
sor-based VM-execution controls is 0, VM entry functions as if both these controls were 0. See Section 24.6.2.

3. “Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execu-
tion controls is 0, VM entry functions as if the "enable VM functions” VM-execution control were 0. See Section 24.6.2.

4, "VMCS shadowing” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “VMCS shadowing” VM-execution control were 0. See Section 24.6.2.

5. "EPT-violation #VE" is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is O, VM entry functions as if the “EPT-violation #VE" VM-execution control were 0. See Section 24.6.2.

6. As noted in Section 24.4.1, SS.DPL corresponds to the logical processor’s current privilege level (CPL).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 161



If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the interruption to be delivered
(as defined by interruption type and vector) must not be one that would normally be blocked while a
logical processor is in the activity state corresponding to the contents of the activity-state field. The
following items enumerate the interruptions (as specified in the VM-entry interruption-information field)
whose injection is allowed for the different activity states:

e Active. Any interruption is allowed.
e HLT. The only events allowed are the following:
— Those with interruption type external interrupt or non-maskable interrupt (NMI).

— Those with interruption type hardware exception and vector 1 (debug exception) or vector 18
(machine-check exception).

— Those with interruption type other event and vector 0 (pending MTF VM exit).

See Table 24-13 in Section 24.8.3 for details regarding the format of the VM-entry interruption-
information field.

e Shutdown. Only NMIs and machine-check exceptions are allowed.
e Wait-for-SIPI. No interruptions are allowed.

The activity-state field must not indicate the wait-for-SIPI state if the “entry to SMM” VM-entry control is
1.

e Interruptibility state.

The reserved bits (bits 31:4) must be 0.
The field cannot indicate blocking by both STI and MOV SS (bits 0 and 1 cannot both be 1).
Bit 0 (blocking by STI) must be 0 if the IF flag (bit 9) is 0 in the RFLAGS field.

Bit 0 (blocking by STI) and bit 1 (blocking by MOV-SS) must both be 0 if the valid bit (bit 31) in the
VM-entry interruption-information field is 1 and the interruption type (bits 10:8) in that field has value 0,
indicating external interrupt.

Bit 1 (blocking by MOV-SS) must be 0 if the valid bit (bit 31) in the VM-entry interruption-information field
is 1 and the interruption type (bits 10:8) in that field has value 2, indicating non-maskable interrupt
(NMI).

Bit 2 (blocking by SMI) must be 0 if the processor is not in SMM.

Bit 2 (blocking by SMI) must be 1 if the “entry to SMM” VM-entry control is 1.

A processor may require bit 0 (blocking by STI) to be 0 if the valid bit (bit 31) in the VM-entry inter-
ruption-information field is 1 and the interruption type (bits 10:8) in that field has value 2, indicating NMI.
Other processors may not make this requirement.

Bit 3 (blocking by NMI) must be 0 if the “virtual NMIs” VM-execution control is 1, the valid bit (bit 31) in
the VM-entry interruption-information field is 1, and the interruption type (bits 10:8) in that field has
value 2 (indicating NMI).

NOTE

If the “virtual NMIs” VM-execution control is 0, there is no requirement that bit 3 be 0 if the valid
bit in the VM-entry interruption-information field is 1 and the interruption type in that field has
value 2.

e Pending debug exceptions.

Bits 11:4, bit 13, bit 15, and bits 63:17 (bits 31:17 on processors that do not support Intel 64 archi-
tecture) must be 0.
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The following checks are performed if any of the following holds: (1) the interruptibility-state field
indicates blocking by STI (bit 0 in that field is 1); (2) the interruptibility-state field indicates blocking by
MOV SS (bit 1 in that field is 1); or (3) the activity-state field indicates HLT:

e Bit 14 (BS) must be 1 if the TF flag (bit 8) in the RFLAGS field is 1 and the BTF flag (bit 1) in the
IA32_DEBUGCTL field is 0.

e Bit 14 (BS) must be 0 if the TF flag (bit 8) in the RFLAGS field is 0 or the BTF flag (bit 1) in the
IA32_DEBUGCTL field is 1.

The following checks are performed if bit 16 (RTM) is 1:

e Bits 11:0, bits 15:13, and bits 63:17 (bits 31:17 on processors that do not support Intel 64 archi-
tecture) must be 0; bit 12 must be 1.

e The processor must support for RTM by enumerating CPUID.(EAX=07H,ECX=0):EBX[11] as 1.
e The interruptibility-state field must not indicate blocking by MOV SS (bit 1 in that field must be 0).

e VMCS link pointer. The following checks apply if the field contains a value other than FFFFFFFF_FFFFFFFFH:

26.

Bits 11:0 must be 0.
Bits beyond the processor’s physical-address width must be 0.1/2

The 4 bytes located in memory referenced by the value of the field (as a physical address) must satisfy the
following:

e Bits 30:0 must contain the processor’s VMCS revision identifier (see Section 24.2).3

e Bit 31 must contain the setting of the “VMCS shadowing” VM-execution control.* This implies that the
referenced VMCS is a shadow VMCS (see Section 24.10) if and only if the "VMCS shadowing” VM-
execution control is 1.

If the processor is not in SMM or the “entry to SMM” VM-entry control is 1, the field must not contain the
current VMCS pointer.

If the processor is in SMM and the “entry to SMM” VM-entry control is 0, the field must differ from the
executive-VMCS pointer.

Updates to Chapter 27, Volume 3C

Change bars show changes to Chapter 27 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

If IA32_VMX_BASIC[48] is read as 1, this field must not set any bits in the range 63:32; see Appendix A.1.

3. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field. For all processors produced prior to
this change, bit 31 of the VMCS revision identifier was 0.

4, "VMCS shadowing” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “VMCS shadowing” VM-execution control were 0. See Section 24.6.2.
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27.1 ARCHITECTURAL STATE BEFORE A VM EXIT

This section describes the architectural state that exists before a VM exit, especially for VM exits caused by events
that would normally be delivered through the IDT. Note the following:

e An exception causes a VM exit directly if the bit corresponding to that exception is set in the exception
bitmap. A non-maskable interrupt (NMI) causes a VM exit directly if the "NMI exiting” VM-execution control is
1. An external interrupt causes a VM exit directly if the “external-interrupt exiting” VM-execution control is 1.
A start-up IPI (SIPI) that arrives while a logical processor is in the wait-for-SIPI activity state causes a VM exit
directly. INIT signals that arrive while the processor is not in the wait-for-SIPI activity state cause VM exits
directly.

e An exception, NMI, external interrupt, or software interrupt causes a VM exit indirectly if it does not do so
directly but delivery of the event causes a nested exception, double fault, task switch, APIC access (see
Section 27.4), EPT violation, EPT misconfiguration, or page-modification log-full event that causes a VM exit.

e An eventresultsin a VM exit if it causes a VM exit (directly or indirectly).
The following bullets detail when architectural state is and is not updated in response to VM exits:

e If an event causes a VM exit directly, it does not update architectural state as it would have if it had it not
caused the VM exit:

— A debug exception does not update DR6, DR7.GD, or IA32_DEBUGCTL.LBR. (Information about the
nature of the debug exception is saved in the exit qualification field.)

— A page fault does not update CR2. (The linear address causing the page fault is saved in the exit-qualifi-
cation field.)

— An NMI causes subsequent NMIs to be blocked, but only after the VM exit completes.

— An external interrupt does not acknowledge the interrupt controller and the interrupt remains pending,
unless the “acknowledge interrupt on exit” VM-exit control is 1. In such a case, the interrupt controller is
acknowledged and the interrupt is no longer pending.

— Theflags LO - L3 in DR7 (bit 0, bit 2, bit 4, and bit 6) are not cleared when a task switch causes a VM exit.

— If a task switch causes a VM exit, none of the following are modified by the task switch: old task-state
segment (TSS); new TSS; old TSS descriptor; new TSS descriptor; RFLAGS.NT?; or the TR register.

— No last-exception record is made if the event that would do so directly causes a VM exit.

— If a machine-check exception causes a VM exit directly, this does not prevent machine-check MSRs from
being updated. These are updated by the machine-check event itself and not the resulting machine-check
exception.

— If the logical processor is in an inactive state (see Section 24.4.2) and not executing instructions, some
events may be blocked but others may return the logical processor to the active state. Unblocked events
may cause VM exits.2 If an unblocked event causes a VM exit directly, a return to the active state occurs
only after the VM exit completes.3 The VM exit generates any special bus cycle that is normally generated
when the active state is entered from that activity state.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX
operation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the
32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to
lower 32 bits of the indicated register.

2. If a VM exit takes the processor from an inactive state resulting from execution of a specific instruction (HLT or MWAIT), the value
saved for RIP by that VM exit will reference the following instruction.

3. An exception is made if the logical processor had been inactive due to execution of MWAIT; in this case, it is considered to have
become active before the VM exit.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 164



MTF VM exits (see Section 25.5.2 and Section 26.6.8) are not blocked in the HLT activity state. If an MTF
VM exit occurs in the HLT activity state, the logical processor returns to the active state only after the
VM exit completes. MTF VM exits are blocked the shutdown state and the wait-for-SIPI state.

e If an event causes a VM exit indirectly, the event does update architectural state:

— A debug exception updates DR6, DR7, and the IA32_DEBUGCTL MSR. No debug exceptions are
considered pending.

— A page fault updates CR2.
— An NMI causes subsequent NMIs to be blocked before the VM exit commences.
— An external interrupt acknowledges the interrupt controller and the interrupt is no longer pending.

— If the logical processor had been in an inactive state, it enters the active state and, before the VM exit
commences, generates any special bus cycle that is normally generated when the active state is entered
from that activity state.

— There is no blocking by STI or by MOV SS when the VM exit commences.

— Processor state that is normally updated as part of delivery through the IDT (CS, RIP, SS, RSP, RFLAGS) is
not modified. However, the incomplete delivery of the event may write to the stack.

— The treatment of last-exception records is implementation dependent:

e Some processors make a last-exception record when beginning the delivery of an event through the
IDT (before it can encounter a nested exception). Such processors perform this update even if the
event encounters a nested exception that causes a VM exit (including the case where nested
exceptions lead to a triple fault).

e Other processors delay making a last-exception record until event delivery has reached some event
handler successfully (perhaps after one or more nested exceptions). Such processors do not update
the last-exception record if a VM exit or triple fault occurs before an event handler is reached.

e If the “virtual NMIs” VM-execution control is 1, VM entry injects an NMI, and delivery of the NMI causes a
nested exception, double fault, task switch, or APIC access that causes a VM exit, virtual-NMI blocking is in
effect before the VM exit commences.

e Ifa VM exit results from a fault, EPT violation, EPT misconfiguration, or page-modification log-full event is
encountered during execution of IRET and the “"NMI exiting” VM-execution control is 0, any blocking by NMI is
cleared before the VM exit commences. However, the previous state of blocking by NMI may be recorded in
the VM-exit interruption-information field; see Section 27.2.2.

e If a VM exit results from a fault, EPT violation, EPT misconfiguration, or page-modification log-full event is
encountered during execution of IRET and the “virtual NMIs” VM-execution control is 1, virtual-NMI blocking
is cleared before the VM exit commences. However, the previous state of virtual-NMI blocking may be
recorded in the VM-exit interruption-information field; see Section 27.2.2.

e Suppose that a VM exit is caused directly by an x87 FPU Floating-Point Error (#MF) or by any of the following
events if the event was unblocked due to (and given priority over) an x87 FPU Floating-Point Error: an INIT
signal, an external interrupt, an NMI, an SMI; or a machine-check exception. In these cases, there is no
blocking by STI or by MOV SS when the VM exit commences.

e Normally, a last-branch record may be made when an event is delivered through the IDT. However, if such an
event results in a VM exit before delivery is complete, no last-branch record is made.

e If machine-check exception results in a VM exit, processor state is suspect and may result in suspect state
being saved to the guest-state area. A VM monitor should consult the RIPV and EIPV bits in the
IA32_MCG_STATUS MSR before resuming a guest that caused a VM exit resulting from a machine-check
exception.

e Ifa VM exit results from a fault, APIC access (see Section 29.4), EPT violation, EPT misconfiguration, or page-
modification log-full event is encountered while executing an instruction, data breakpoints due to that
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instruction may have been recognized and information about them may be saved in the pending debug
exceptions field (see Section 27.3.4).

e The following VM exits are considered to happen after an instruction is executed:
— VM exits resulting from debug traps (single-step, I/O breakpoints, and data breakpoints).
— VM exits resulting from debug exceptions whose recognition was delayed by blocking by MOV SS.
— VM exits resulting from some machine-check exceptions.

— Trap-like VM exits due to execution of MOV to CR8 when the "CR8-load exiting” VM-execution control is 0
and the “use TPR shadow” VM-execution control is 1 (see Section 29.3). (Such VM exits can occur only
from 64-bit mode and thus only on processors that support Intel 64 architecture.)

— Trap-like VM exits due to execution of WRMSR when the “use MSR bitmaps” VM-execution control is 1; the
value of ECX is in the range 800H-8FFH; and the bit corresponding to the ECX value in write bitmap for
low MSRs is 0; and the “virtualize x2APIC mode” VM-execution control is 1. See Section 29.5.

— VM exits caused by APIC-write emulation (see Section 29.4.3.2) that result from APIC accesses as part of
instruction execution.

For these VM exits, the instruction’s modifications to architectural state complete before the VM exit occurs.
Such modifications include those to the logical processor’s interruptibility state (see Table 24-3). If there had
been blocking by MOV SS, POP SS, or STI before the instruction executed, such blocking is no longer in effect.

27.2.1 Basic VM-Exit Information

Section 24.9.1 defines the basic VM-exit information fields. The following items detail their use.
- Exitreason.

— Bits 15:0 of this field contain the basic exit reason. It is loaded with a number indicating the general cause
of the VM exit. Appendix C lists the numbers used and their meaning.

— The remainder of the field (bits 31:16) is cleared to 0 (certain SMM VM exits may set some of these bits;
see Section 34.15.2.3).1

e Exit qualification. This field is saved for VM exits due to the following causes: debug exceptions; page-fault
exceptions; start-up IPIs (SIPIs); system-management interrupts (SMIs) that arrive immediately after the
retirement of I/0 instructions; task switches; INVEPT; INVLPG; INVPCID; INVVPID; LGDT; LIDT,; LLDT, LTR;
SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON; XRSTORS; XSAVES;
control-register accesses; MOV DR; I/0 instructions; MWAIT; accesses to the APIC-access page (see Section
29.4); EPT violations; EOI virtualization (see Section 29.1.4); APIC-write emulation (see Section 29.4.3.3);
and page-modification log full (see Section 28.2.5). For all other VM exits, this field is cleared. The following
items provide details:

1. Bit 31 of this field is set on certain VM-entry failures; see Section 26.7.
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— For a debug exception, the exit qualification contains information about the debug exception. The
information has the format given in Table 24-4.

Table 27-1 Exit Qualification for Debug Exceptions

Bit Position(s) Contents

3.0 B3 - BO. When set, each of these bits indicates that the corresponding breakpoint condition was met. Any of
these bits may be set even if its corresponding enabling bit in DR7 is not set.

12:4 Reserved (cleared to 0).

13 BD. When set, this bit indicates that the cause of the debug exception is “debug register access detected.”

14 BS. When set, this bit indicates that the cause of the debug exception is either the execution of a single

instruction (if RFLAGS.TF = 1 and IA32_DEBUGCTL.BTF = 0) or a taken branch (if
RFLAGS.TF = DEBUGCTL.BTF = 1).

63:15 Reserved (cleared to 0). Bits 63:32 exist only on processors that support Intel 64 architecture.

— For a page-fault exception, the exit qualification contains the linear address that caused the page fault. On
processors that support Intel 64 architecture, bits 63:32 are cleared if the logical processor was not in 64-
bit mode before the VM exit.

— For a start-up IPI (SIPI), the exit qualification contains the SIPI vector information in bits 7:0. Bits 63:8
of the exit qualification are cleared to 0.

— For a task switch, the exit qualification contains details about the task switch, encoded as shown in Table
27-2.

— For INVLPG, the exit qualification contains the linear-address operand of the instruction.

e On processors that support Intel 64 architecture, bits 63:32 are cleared if the logical processor was
not in 64-bit mode before the VM exit.

e If the INVLPG source operand specifies an unusable segment, the linear address specified in the exit
qualification will match the linear address that the INVLPG would have used if no VM exit occurred.
This address is not architecturally defined and may be implementation-specific.

Table 27-2 Exit Qualification for Task Switch

Bit Position(s) Contents

15:.0 Selector of task-state segment (TSS) to which the guest attempted to switch
29:16 Reserved (cleared to 0)

31:30 Source of task switch initiation:

0: CALL instruction
1: IRET instruction
2: JMP instruction

3: Task gate in IDT

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 64 architecture.

— For INVEPT, INVPCID, INVVPID, LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR, VMCLEAR, VMPTRLD,
VMPTRST, VMREAD, VMWRITE, VMXON, XRSTORS, and XSAVES, the exit qualification receives the value
of the instruction’s displacement field, which is sign-extended to 64 bits if necessary (32 bits on
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processors that do not support Intel 64 architecture). If the instruction has no displacement (for example,
has a register operand), zero is stored into the exit qualification.

On processors that support Intel 64 architecture, an exception is made for RIP-relative addressing (used
only in 64-bit mode). Such addressing causes an instruction to use an address that is the sum of the
displacement field and the value of RIP that references the following instruction. In this case, the exit
qualification is loaded with the sum of the displacement field and the appropriate RIP value.

In all cases, bits of this field beyond the instruction’s address size are undefined. For example, suppose
that the address-size field in the VM-exit instruction-information field (see Section 24.9.4 and Section
27.2.4) reports an n-bit address size. Then bits 63:n (bits 31:n on processors that do not support Intel
64 architecture) of the instruction displacement are undefined.

— For a control-register access, the exit qualification contains information about the access and has the
format given in Table 27-3.

— For MOV DR, the exit qualification contains information about the instruction and has the format given in
Table 27-4.

— For an I/0O instruction, the exit qualification contains information about the instruction and has the format
given in Table 27-5.

— For MWAIT, the exit qualification contains a value that indicates whether address-range monitoring
hardware was armed. The exit qualification is set either to 0 (if address-range monitoring hardware is not
armed) or to 1 (if address-range monitoring hardware is armed).

— For an APIC-access VM exit resulting from a linear access or a guest-physical access to the APIC-access
page (see Section 29.4), the exit qualification contains information about the access and has the format
given in Table 27-6.1

Such a VM exit that set bits 15:12 of the exit qualification to 0000b (data read during instruction
execution) or 0001b (data write during instruction execution) set bit 12—which distinguishes data read
from data write—to that which would have been stored in bit 1—W/R—of the page-fault error code had the
access caused a page fault instead of an APIC-access VM exit. This implies the following:

e For an APIC-access VM exit caused by the CLFLUSH and CLFLUSHOPT instructions, the access type is
“data read during instruction execution.”

e For an APIC-access VM exit caused by the ENTER instruction, the access type is “data write during
instruction execution.”

Table 27-3 E&xit Qualification for Control-Register Accesses

Bit Positions Contents

3.0 Number of control register (0 for CLTS and LMSW). Bit 3 is always O on processors that do not support Intel 64
architecture as they do not support CR8.

5:4 Access type:

0=MOV toCR

1 =MOV from CR
2 =CLTS

3 = LMSW

1. The exit qualification is undefined if the access was part of the logging of a branch record or a precise-event-based-sampling
(PEBS) record to the DS save area. It is recommended that software configure the paging structures so that no address in the DS
save area translates to an address on the APIC-access page.
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Table 27-3 €&xit Qualification for Control-Register Accesses (Contd.)

Bit Positions Contents

6 LMSW operand type:

0 =register
1 = memory

For CLTS and MOV CR, cleared to O

7 Reserved (cleared to 0)

11:8 For MOV CR, the general-purpose register:

0 =RAX

1 =RCX

2 =RDX

3 =RBX

4 = RSP

5=RBP

6 =RSI

7 =RDI

8-15 represent R8-R15, respectively (used only on processors that support Intel 64 architecture)

For CLTS and LMSW, cleared to O

1512 Reserved (cleared to 0)

31:16 For LMSW, the LMSW source data
For CLTS and MOV CR, cleared to O

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 64 architecture.

e For an APIC-access VM exit caused by the MASKMOVQ instruction or the MASKMOVDQU instruction,
the access type is “data write during instruction execution.”

e For an APIC-access VM exit caused by the MONITOR instruction, the access type is “data read during
instruction execution.”

Such a VM exit stores 1 for bit 31 for IDT-vectoring information field (see Section 27.2.3) if and only if it
sets bits 15:12 of the exit qualification to 0011b (linear access during event delivery) or 1010b (guest-
physical access during event delivery).

See Section 29.4.4 for further discussion of these instructions and APIC-access VM exits.

For APIC-access VM exits resulting from physical accesses to the APIC-access page (see Section 29.4.6),
the exit qualification is undefined.

— For an EPT violation, the exit qualification contains information about the access causing the EPT violation
and has the format given in Table 27-7.
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An EPT violation that occurs during as a result of execution of a read-modify-write operation sets bit 1
(data write). Whether it also sets bit 0 (data read) is implementation-specific and, for a given implemen-
tation, may differ for different kinds of read-modify-write operations.

Table 27-4 Exit Qualification for MOV DR

Bit Position(s)

Contents

2.0

Number of debug register

3

Reserved (cleared to 0)

4

Direction of access (0 = MOV to DR; 1 = MOV from DR)

75

Reserved (cleared to 0)

118

General-purpose register:

0=RAX

1=RCX

2 = RDX

3 =RBX

4 =RSP

5=RBP

6 =RSI

7 =RDI

8-15 =R8 - R15, respectively

63:12

Reserved (cleared to 0)

Table 27-5 Exit Qualification for I/0 Instructions

Bit Position(s)

Contents

2.0

Size of access:
0 = 1-byte
1 =2-byte
3 =4-byte

Other values not used

Direction of the attempted access (0 = OUT, 1T =IN)

String instruction (O = not string; 1 = string)

REP prefixed (0 = not REP; 1 = REP)

| L | W

Operand encoding (0 = DX, 1 = immediate)

15:7

Reserved (cleared to 0)

31:16

Port number (as specified in DX or in an immediate operand)

63:32

Reserved (cleared to Q). These bits exist only on processors that support Intel 64 architecture.

Bit 12 is undefined in any of the following cases:

e If the "NMI exiting” VM-execution control is 1 and the “virtual NMIs” VM-execution control is 0.
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e If the VM exit sets the valid bit in the IDT-vectoring information field (see Section 27.2.3).
Otherwise, bit 12 is defined as follows:

e If the “virtual NMIs” VM-execution control is 0, the EPT violation was caused by a memory access as
part of execution of the IRET instruction, and blocking by NMI (see Table 24-3) was in effect before
execution of IRET, bit 12 is set to 1.

Table 27-6 Exit Qualification for APIC-Access VM Exits from Linear Accesses and Guest-Physical Accesses

Bit Position(s) Contents

11:.0

= |f the APIC-access VM exit is due 1o a linear access, the offset of access within the APIC page.
= Undefined if the APIC-access VM exit is due a guest-physical access

15112

Access type:

0 = linear access for a data read during instruction execution

1 = linear access for a data write during instruction execution

2 = linear access for an instruction fetch

3 = linear access (read or write) during event delivery

10 = guest-physical access during event delivery

15 = guest-physical access for an instruction fetch or during instruction execution

Other values not used

63:16

Reserved (cleared to 0). Bits 63:32 exist only on processors that support Intel 64 architecture.

e If the “virtual NMIs” VM-execution control is 1,the EPT violation was caused by a memory access as
part of execution of the IRET instruction, and virtual-NMI blocking was in effect before execution of
IRET, bit 12 is set to 1.

e For all other relevant VM exits, bit 12 is cleared to 0.

For VM exits caused as part of EOI virtualization (Section 29.1.4), bits 7:0 of the exit qualification are set
to vector of the virtual interrupt that was dismissed by the EOI virtualization. Bits above bit 7 are cleared.

For APIC-write VM exits (Section 29.4.3.3), bits 11:0 of the exit qualification are set to the page offset of
the write access that caused the VM exit.! Bits above bit 11 are cleared.

For a VM exit due to a page-modification log-full event (Section 28.2.5), only bit 12 of the exit qualifi-
cation is defined, and only in some cases. It is undefined in the following cases:

e If the "NMI exiting” VM-execution control is 1 and the “virtual NMIs” VM-execution control is 0.
o If the VM exit sets the valid bit in the IDT-vectoring information field (see Section 27.2.3).
Otherwise, it is defined as follows:

e If the “virtual NMIs” VM-execution control is 0, the page-maodification log-full event was caused by a
memory access as part of execution of the IRET instruction, and blocking by NMI (see Table 24-3) was
in effect before execution of IRET, bit 12 is set to 1.

e If the “virtual NMIs” VM-execution control is 1,the page-modification log-full event was caused by a
memory access as part of execution of the IRET instruction, and virtual-NMI blocking was in effect
before execution of IRET, bit 12 is set to 1.

e For all other relevant VM exits, bit 12 is cleared to 0.
For these VM exits, all bits other than bit 12 are undefined.

1. Execution of WRMSR with ECX = 83FH (self-IPI MSR) can lead to an APIC-write VM exit; the exit qualification for such an APIC-
write VM exit is 3FOH.
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e Guest-linear address. For some VM exits, this field receives a linear address that pertains to the VM exit.
The field is set for different VM exits as follows:

— VM exits due to attempts to execute LMSW with a memory operand. In these cases, this field receives the
linear address of that operand. Bits 63:32 are cleared if the logical processor was not in 64-bit mode
before the VM exit.

— VM exits due to attempts to execute INS or OUTS for which the relevant segment is usable (if the relevant
segment is not usable, the value is undefined). (ES is always the relevant segment for INS; for OUTS, the
relevant segment is DS unless overridden by an instruction prefix.) The linear address is the base address
of relevant segment plus (E)DI (for INS) or (E)SI (for OUTS). Bits 63:32 are cleared if the logical
processor was not in 64-bit mode before the VM exit.

Table 27-7 Exit Qualification for EPT Violations

Bit Position(s) Contents

0 Set if the access causing the EPT violation was a data read.!

1 Set if the access causing the EPT violation was a data write.!

2 Set if the access causing the EPT violation was an instruction fetch.

3 The logical-AND of bit O in the EPT paging-structure entries used to translate the guest-physical address of the
access causing the EPT violation (indicates that the guest-physical address was readable).?

4 The logical-AND of bit 1 in the EPT paging-structure entries used to translate the guest-physical address of the
access causing the EPT violation (indicates that the guest-physical address was writeable).

5 The logical-AND of bit 2 in the EPT paging-structure entries used to translate the guest-physical address of the
access causing the EPT violation (indicates that the guest-physical address was executable).

6 Reserved (cleared to 0).

7 Set if the guest linear-address field is valid.

The guest linear-address field is valid for all EPT violations except those resulting from an attempt to load the
guest PDPTEs as part of the execution of the MOV CR instruction.

8 If bit 7 is 1:

= Set if the access causing the EPT violation is to a guest-physical address that is the translation of a linear
address.

= C(lear if the access causing the EPT violation is to a paging-structure entry as part of a page walk or the
update of an accessed or dirty bit.

Reserved if bit 7 is O (cleared to 0).

11:9 Reserved (cleared to 0).

12 NMI unblocking due to IRET
63:13 Reserved (cleared to 0).
NOTES:

1. If accessed and dirty flags for EPT are enabled, processor accesses to guest paging-structure entries are treated as writes with
regard to EPT violations (see Section 28.2.3.2). If such an access causes an EPT violation, the processor sets both bit 0 and bit 1 of
the exit qualification.

2. Bits 5:3 are cleared to O if any of EPT paging-structure entries used to translate the guest-physical address of the access causing the
EPT violation is not present (see Section 28.2.2).
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— VM exits due to EPT violations that set bit 7 of the exit qualification (see Table 27-7; these are all EPT
violations except those resulting from an attempt to load the PDPTEs as of execution of the MOV CR
instruction). The linear address may translate to the guest-physical address whose access caused the EPT
violation. Alternatively, translation of the linear address may reference a paging-structure entry whose
access caused the EPT violation. Bits 63:32 are cleared if the logical processor was not in 64-bit mode
before the VM exit.

— For all other VM exits, the field is undefined.

Guest-physical address. For a VM exit due to an EPT violation or an EPT misconfiguration, this field receives
the guest-physical address that caused the EPT violation or EPT misconfiguration. For all other VM exits, the
field is undefined.

27.2.3 Information for VM Exits During Event Delivery

Section 24.9.3 defined fields containing information for VM exits that occur while delivering an event through the
IDT and as a result of any of the following cases:!

A fault occurs during event delivery and causes a VM exit (because the bit associated with the fault is set to 1
in the exception bitmap).

A task switch is invoked through a task gate in the IDT. The VM exit occurs due to the task switch only after
the initial checks of the task switch pass (see Section 25.4.2).

Event delivery causes an APIC-access VM exit (see Section 29.4).
An EPT violation, EPT misconfiguration, or page-modification log-full event that occurs during event delivery.

These fields are used for VM exits that occur during delivery of events injected as part of VM entry (see Section
26.5.1.2).

A VM exit is not considered to occur during event delivery in any of the following circumstances:

The original event causes the VM exit directly (for example, because the original event is a non-maskable
interrupt (NMI) and the “"NMI exiting” VM-execution control is 1).

The original event results in a double-fault exception that causes the VM exit directly.
The VM exit occurred as a result of fetching the first instruction of the handler invoked by the event delivery.
The VM exit is caused by a triple fault.

The following items detail the use of these fields:

IDT-vectoring information (format given in Table 24-16). The following items detail how this field is
established for VM exits that occur during event delivery:

— Ifthe VM exit occurred during delivery of an exception, bits 7:0 receive the exception vector (at most 31).
If the VM exit occurred during delivery of an NMI, bits 7:0 are set to 2. If the VM exit occurred during
delivery of an external interrupt, bits 7:0 receive the vector.

— Bits 10:8 are set to indicate the type of event that was being delivered when the VM exit occurred: 0
(external interrupt), 2 (non-maskable interrupt), 3 (hardware exception), 4 (software interrupt), 5
(privileged software interrupt), or 6 (software exception).

Hardware exceptions comprise all exceptions except breakpoint exceptions (#BP; generated by INT3) and
overflow exceptions (#0F; generated by INTO); these are software exceptions. BOUND-range exceeded
exceptions (#BR; generated by BOUND) and invalid opcode exceptions (#UD) generated by UD2 are
hardware exceptions.

1.

This includes the case in which a VM exit occurs while delivering a software interrupt (INT n) through the 16-bit IVT (interrupt vec-
tor table) that is used in virtual-8086 mode with virtual-machine extensions (if RFLAGS.VM = CR4.VME = 1).
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Bits 10:8 may indicate privileged software interrupt if such an event was injected as part of VM entry.

Bit 11 is set to 1 if the VM exit occurred during delivery of a hardware exception that would have delivered
an error code on the stack. This bit is always 0 if the VM exit occurred while the logical processor was in
real-address mode (CRO.PE=0).! If bit 11 is set to 1, the error code is placed in the IDT-vectoring error
code (see below).

Bit 12 is undefined.
Bits 30:13 are always set to 0.
Bit 31 is always set to 1.

For other VM exits, the field is marked invalid (by clearing bit 31) and the remainder of the field is undefined.

e IDT-vectoring error code.

27.2.4

For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the IDT-vectoring information field,
this field receives the error code that would have been pushed on the stack by the event that was being
delivered through the IDT at the time of the VM exit. The EXT bit is set in this field when it would be set
normally.

For other VM exits, the value of this field is undefined.

Information for VM Exits Due to Instruction Execution

Section 24.9.4 defined fields containing information for VM exits that occur due to instruction execution. (The VM-
exit instruction length is also used for VM exits that occur during the delivery of a software interrupt or software
exception.) The following items detail their use.

e VM-exit instruction length. This field is used in the following cases:

For fault-like VM exits due to attempts to execute one of the following instructions that cause VM exits
unconditionally (see Section 25.1.2) or based on the settings of VM-execution controls (see Section
25.1.3): CLTS, CPUID, GETSEC, HLT, IN, INS, INVD, INVEPT, INVLPG, INVPCID, INVVPID, LGDT, LIDT,
LLDT, LMSW, LTR, MONITOR, MOV CR, MOV DR, MWAIT, OUT, OUTS, PAUSE, RDMSR, RDPMC, RDRAND,
RDSEED, RDTSC, RDTSCP, RSM, SGDT, SIDT, SLDT, STR, VMCALL, VMCLEAR, VMLAUNCH, VMPTRLD,
VMPTRS'E, VMREAD, VMRESUME, VMWRITE, VMXOFF, VMXON, WBINVD, WRMSR, XRSTORS, XSETBV, and
XSAVES.

For VM exits due to software exceptions (those generated by executions of INT3 or INTO).

For VM exits due to faults encountered during delivery of a software interrupt, privileged software
exception, or software exception.

For VM exits due to attempts to effect a task switch via instruction execution. These are VM exits that
produce an exit reason indicating task switch and either of the following:

e An exit qualification indicating execution of CALL, IRET, or JMP instruction.

e An exit qualification indicating a task gate in the IDT and an IDT-vectoring information field indicating
that the task gate was encountered during delivery of a software interrupt, privileged software
exception, or software exception.

1. If the capability MSR IA32_VMX_CRO_FIXEDO reports that CRO.PE must be 1 in VMX operation, a logical processor cannot be in
real-address mode unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution
controls are both 1.

2. This item applies only to fault-like VM exits. It does not apply to trap-like VM exits following executions of the MOV to CR8 instruc-
tion when the “use TPR shadow” VM-execution control is 1 or to those following executions of the WRMSR instruction when the
“virtualize x2APIC mode” VM-execution control is 1.
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— For APIC-access VM exits resulting from accesses (see Section 29.4) during delivery of a software
interrupt, privileged software exception, or software exception.?

— For VM exits due executions of VMFUNC that fail because one of the following is true:

e EAX indicates a VM function that is not enabled (the bit at position EAX is 0 in the VM-function
controls; see Section 25.5.5.2).

e EAX = 0 and either ECX > 512 or the value of ECX selects an invalid tentative EPTP value (see Section
25.5.5.3).

In all the above cases, this field receives the length in bytes (1-15) of the instruction (including any
instruction prefixes) whose execution led to the VM exit (see the next paragraph for one exception).

The cases of VM exits encountered during delivery of a software interrupt, privileged software exception, or
software exception include those encountered during delivery of events injected as part of VM entry (see
Section 26.5.1.2). If the original event was injected as part of VM entry, this field receives the value of the
VM-entry instruction length.

All VM exits other than those listed in the above items leave this field undefined.

Table 27-8 Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS

Bit Position(s) | Content

6.0

Undefined.

9.7

Address size:

0: 16-bit

1: 32-bit

2: 64-bit (used only on processors that support Intel 64 architecture)
Other values not used.

14:10 Undefined.

17:15 Segment register:

0: €S
1:CS
2:SS
3:DS
4. FS
5:GS
Other values not used. Undefined for VM exits due to execution of INS.

31:18 Undefined.

VM-exit instruction information. For VM exits due to attempts to execute INS, INVEPT, INVPCID, INVVPID,
LIDT, LGDT, LLDT, LTR, OUTS, RDRAND, RDSEED, SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST,
VMREAD, VMWRITE, VMXON, XRSTORS, or XSAVES, this field receives information about the instruction that
caused the VM exit. The format of the field depends on the identity of the instruction causing the VM exit:

— For VM exits due to attempts to execute INS or OUTS, the field has the format is given in Table 27-8.2

— For VM exits due to attempts to execute INVEPT, INVPCID, or INVVPID, the field has the format is given in
Table 27-9.

. The VM-exit instruction-length field is not defined following APIC-access VM exits resulting from physical accesses (see Section

29.4.6) even if encountered during delivery of a software interrupt, privileged software exception, or software exception.

The format of the field was undefined for these VM exits on the first processors to support the virtual-machine extensions. Soft-
ware can determine whether the format specified in Table 27-8 is used by consulting the VMX capability MSR IA32_VMX_BASIC
(see Appendix A.1).
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For VM exits due to attempts to execute LIDT, LGDT, SIDT, or SGDT, the field has the format is given in
Table 27-10.

For VM exits due to attempts to execute LLDT, LTR, SLDT, or STR, the field has the format is given in
Table 27-11.

For VM exits due to attempts to execute RDRAND or RDSEED, the field has the format is given in
Table 27-12.

For VM exits due to attempts to execute VMCLEAR, VMPTRLD, VMPTRST, VMXON, XRSTORS, or XSAVES,
the field has the format is given in Table 27-13.

For VM exits due to attempts to execute VMREAD or VMWRITE, the field has the format is given in
Table 27-14.

For all other VM exits, the field is undefined.

e 1/0RCX, I/O RSI, I/0 RDI, 1/0 RIP. These fields are undefined except for SMM VM exits due to system-
management interrupts (SMIs) that arrive immediately after retirement of I/O instructions. See Section
34.15.2.3.

27.3.3

Saving RIP, RSP, and RFLAGS

The contents of the RIP, RSP, and RFLAGS registers are saved as follows:
e The value saved in the RIP field is determined by the nature and cause of the VM exit:

If the VM exit occurs due to by an attempt to execute an instruction that causes VM exits unconditionally
or that has been configured to cause a VM exit via the VM-execution controls, the value saved references
that instruction.

If the VM exit is caused by an occurrence of an INIT signal, a start-up IPI (SIPI), or system-management
interrupt (SMI), the value saved is that which was in RIP before the event occurred.

If the VM exit occurs due to the 1-setting of either the “interrupt-window exiting” VM-execution control or
the "NMI-window exiting” VM-execution control, the value saved is that which would be in the register had
the VM exit not occurred.

If the VM exit is due to an external interrupt, non-maskable interrupt (NMI), or hardware exception (as
defined in Section 27.2.2), the value saved is the return pointer that would have been saved (either on the
stack had the event been delivered through a trap or interrupt gate,! or into the old task-state segment
had the event been delivered through a task gate).

If the VM exit is due to a triple fault, the value saved is the return pointer that would have been saved
(either on the stack had the event been delivered through a trap or interrupt gate, or into the old task-
state segment had the event been delivered through a task gate) had delivery of the double fault not
encountered the nested exception that caused the triple fault.

If the VM exit is due to a software exception (due to an execution of INT3 or INTO), the value saved
references the INT3 or INTO instruction that caused that exception.

Suppose that the VM exit is due to a task switch that was caused by execution of CALL, IRET, or JMP or by
execution of a software interrupt (INT n) or software exception (due to execution of INT3 or INTO) that
encountered a task gate in the IDT. The value saved references the instruction that caused the task switch
(CALL, IRET, JMP, INT n, INT3, or INTO).

1. The reference here is to the full value of RIP before any truncation that would occur had the stack width been only 32 bits or 16

bits.
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— Suppose that the VM exit is due to a task switch that was caused by a task gate in the IDT that was
encountered for any reason except the direct access by a software interrupt or software exception. The
value saved is that which would have been saved in the old task-state segment had the task switch
completed normally.

— If the VM exit is due to an execution of MOV to CR8 or WRMSR that reduced the value of bits 7:4 of VTPR
(see Section 29.1.1) below that of TPR threshold VM-execution control field (see Section 29.1.2), the
value saved references the instruction following the MOV to CR8 or WRMSR.

— If the VM exit was caused by APIC-write emulation (see Section 29.4.3.2) that results from an APIC
access as part of instruction execution, the value saved references the instruction following the one whose
execution caused the APIC-write emulation.

¢ The contents of the RSP register are saved into the RSP field.

e With the exception of the resume flag (RF; bit 16), the contents of the RFLAGS register is saved into the
RFLAGS field. RFLAGS.RF is saved as follows:

— If the VM exit is caused directly by an event that would normally be delivered through the IDT, the value
saved is that which would appear in the saved RFLAGS image (either that which would be saved on the
stack had the event been delivered through a trap or interrupt gate! or into the old task-state segment
had the event been delivered through a task gate) had the event been delivered through the IDT. See
below for VM exits due to task switches caused by task gates in the IDT.

— Ifthe VM exit is caused by a triple fault, the value saved is that which the logical processor would have in
RF in the RFLAGS register had the triple fault taken the logical processor to the shutdown state.

— Ifthe VM exit is caused by a task switch (including one caused by a task gate in the IDT), the value saved
is that which would have been saved in the RFLAGS image in the old task-state segment (TSS) had the
task switch completed normally without exception.

— If the VM exit is caused by an attempt to execute an instruction that unconditionally causes VM exits or
one that was configured to do with a VM-execution control, the value saved is 0.2

— For APIC-access VM exits and for VM exits caused by EPT violations EPT misconfigurations, and page-
modification log-full events, the value saved depends on whether the VM exit occurred during delivery of
an event through the IDT:

e Ifthe VM exit stored O for bit 31 for IDT-vectoring information field (because the VM exit did not occur
during delivery of an event through the IDT; see Section 27.2.3), the value saved is 1.

e If the VM exit stored 1 for bit 31 for IDT-vectoring information field (because the VM exit did occur
during delivery of an event through the IDT), the value saved is the value that would have appeared
in the saved RFLAGS image had the event been delivered through the IDT (see above).

— For all other VM exits, the value saved is the value RFLAGS.RF had before the VM exit occurred.

27.3.4 Saving Non-Register State

Information corresponding to guest non-register state is saved as follows:

e The activity-state field is saved with the logical processor’s activity state before the VM exit.3 See Section 27.1
for details of how events leading to a VM exit may affect the activity state.

1. The reference here is to the full value of RFLAGS before any truncation that would occur had the stack width been only 32 bits or
16 bits.

2. Thisis true even if RFLAGS.RF was 1 before the instruction was executed. If, in response to such a VM exit, a VM monitor re-enters
the guest to re-execute the instruction that caused the VM exit (for example, after clearing the VM-execution control that caused
the VM exit), the instruction may encounter a code breakpoint that has already been processed. A VM monitor can avoid this by
setting the guest value of RFLAGS.RF to 1 before resuming guest software.
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e The interruptibility-state field is saved to reflect the logical processor’s interruptibility before the VM exit. See
Section 27.1 for details of how events leading to a VM exit may affect this state. VM exits that end outside
system-management mode (SMM) save bit 2 (blocking by SMI) as 0 regardless of the state of such blocking
before the VM exit.

Bit 3 (blocking by NMI) is treated specially if the “virtual NMIs” VM-execution control is 1. In this case, the
value saved for this field does not indicate the blocking of NMIs but rather the state of virtual-NMI blocking.

e The pending debug exceptions field is saved as clear for all VM exits except the following:

— A VM exit caused by an INIT signal, a machine-check exception, or a system-management interrupt
(SMI).

— A VM exit with basic exit reason “TPR below threshold”,1 “virtualized EOI”, “APIC write”, or “monitor trap
flag.”

— VM exits that are not caused by debug exceptions and that occur while there is MOV-SS blocking of debug
exceptions.

For VM exits that do not clear the field, the value saved is determined as follows:

— Each of bits 3:0 may be set if it corresponds to a matched breakpoint. This may be true even if the corre-
sponding breakpoint is not enabled in DR7.

— Suppose that a VM exit is due to an INIT signal, a machine-check exception, or an SMI; or that a VM exit
has basic exit reason “TPR below threshold” or *monitor trap flag.” In this case, the value saved sets bits
corresponding to the causes of any debug exceptions that were pending at the time of the VM exit.

If the VM exit occurs immediately after VM entry, the value saved may match that which was loaded on
VM entry (see Section 26.6.3). Otherwise, the following items apply:

e Bit 12 (enabled breakpoint) is set to 1 in any of the following cases:
— If there was at least one matched data or I/O breakpoint that was enabled in DR7.

— If it had been set on VM entry, causing there to be valid pending debug exceptions (see Section
26.6.3) and the VM exit occurred before those exceptions were either delivered or lost.

— If the XBEGIN instruction was executed immediately before the VM exit and advanced debugging
of RTM transactional regions had been enabled (see Section 15.3.7, "RTM-Enabled Debugger
Support,” of Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 1). (This
does not apply to VM exits with basic exit reason “monitor trap flag.”)

In other cases, bit 12 is cleared to 0.
e Bit 14 (BS) is set if RFLAGS.TF = 1 in either of the following cases:

— IA32_DEBUGCTL.BTF = 0 and the cause of a pending debug exception was the execution of a
single instruction.

— IA32_DEBUGCTL.BTF = 1 and the cause of a pending debug exception was a taken branch.

e Bit 16 (RTM) is set if a debug exception (#DB) or a breakpoint exception (#BP) occurred inside an RTM
region while advanced debugging of RTM transactional regions had been enabled. (This does not apply
to VM exits with basic exit reason “monitor trap flag.”)

— Suppose that a VM exit is due to another reason (but not a debug exception) and occurs while there is
MOV-SS blocking of debug exceptions. In this case, the value saved sets bits corresponding to the causes
of any debug exceptions that were pending at the time of the VM exit. If the VM exit occurs immediately
after VM entry (no instructions were executed in VMX non-root operation), the value saved may match
that which was loaded on VM entry (see Section 26.6.3). Otherwise, the following items apply:

3. If this activity state was an inactive state resulting from execution of a specific instruction (HLT or MWAIT), the value saved for RIP
by that VM exit will reference the following instruction.

1. This item includes VM exits that occur as a result of certain VM entries (Section 26.6.7).
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27.

Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched data or I/O breakpoint that
was enabled in DR7. Bit 12 is also set if it had been set on VM entry, causing there to be valid pending
debug exceptions (see Section 26.6.3) and the VM exit occurred before those exceptions were either
delivered or lost. In other cases, bit 12 is cleared to 0.

The setting of bit 14 (BS) is implementation-specific. However, it is not set if RFLAGS.TF = 0 or
IA32_DEBUGCTL.BTF = 1.

The reserved bits in the field are cleared.

If the “save VMX-preemption timer value” VM-exit control is 1, the value of timer is saved into the VMX-
preemption timer-value field. This is the value loaded from this field on VM entry as subsequently
decremented (see Section 25.5.1). VM exits due to timer expiration save the value 0. Other VM exits may also
save the value 0 if the timer expired during VM exit. (If the “save VMX-preemption timer value” VM-exit
control is 0, VM exit does not modify the value of the VMX-preemption timer-value field.)

If the logical processor supports the 1-setting of the “enable EPT” VM-execution control, values are saved into
the four (4) PDPTE fields as follows:

If the “enable EPT” VM-execution control is 1 and the logical processor was using PAE paging at the time
of the VM exit, the PDPTE values currently in use are saved:?!

The values saved into bits 11:9 of each of the fields is undefined.

If the value saved into one of the fields has bit 0 (present) clear, the value saved into bits 63:1 of that
field is undefined. That value need not correspond to the value that was loaded by VM entry or to any
value that might have been loaded in VMX non-root operation.

If the value saved into one of the fields has bit 0 (present) set, the value saved into bits 63:12 of the
field is a guest-physical address.

If the “enable EPT” VM-execution control is 0 or the logical processor was not using PAE paging at the time
of the VM exit, the values saved are undefined.

Updates to Chapter 28, Volume 3C

Change bars show changes to Chapter 28 of the Intel® 64 and IA-32 Architectures Software Developer’'s Manual,
Volume 3C: System Programming Guide, Part 3.

28.2.3

Accesses using guest-physical addresses may cause VM exits due to EPT misconfigurations, EPT violations, and
page-modification log-full events. An EPT misconfiguration occurs when, in the course of translating a guest-
physical address, the logical processor encounters an EPT paging-structure entry that contains an unsupported
value (see Section 28.2.3.1). An EPT violation occurs when there is no EPT misconfiguration but the EPT paging-
structure entries disallow an access using the guest-physical address (see Section 28.2.3.2). A page-modifica-
tion log-full event occurs when the logical processor determines a need to create a page-modification log entry
and the current log is full (see Section 28.2.5).

EPT-Induced VM Exits

1.

A logical processor uses PAE paging if CRO.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel” 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A. “Enable EPT" is a secondary processor-based \VM-execution control. If

bit 31 of the primary processor-based \VM-execution controls is 0, VM exit functions as if the “enable EPT" VM-execution control
were 0. See Section 24.6.2.
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These events occur only due to an attempt to access memory with a guest-physical address. Loading CR3 with a
guest-physical address with the MOV to CR3 instruction can cause neither an EPT configuration nor an EPT viola-
tion until that address is used to access a paging structure.!

If the “EPT-violation #VE"” VM-execution control is 1, certain EPT violations may cause virtualization exceptions
instead of VM exits. See Section 25.5.6.1.

28.2.3.3 Prioritization of EPT Misconfigurations and EPT Violations

The translation of a linear address to a physical address requires one or more translations of guest-physical
addresses using EPT (see Section 28.2.1). This section specifies the relative priority of EPT-induced VM exits with
respect to each other and to other events that may be encountered when accessing memory using a linear
address.

For an access to a guest-physical address, determination of whether an EPT misconfiguration or an EPT violation
occurs is based on an iterative process:2

1. An EPT paging-structure entry is read (initially, this is an EPT PML4 entry):
a. If the entry is not present (bits 2:0 are all 0), an EPT violation occurs.

b. If the entry is present but its contents are not configured properly (see Section 28.2.3.1), an EPT miscon-
figuration occurs.

c. If the entry is present and its contents are configured properly, operation depends on whether the entry
references another EPT paging structure (whether it is an EPT PDE with bit 7 set to 1 or an EPT PTE):

i) If the entry does reference another EPT paging structure, an entry from that structure is accessed;
step 1 is executed for that other entry.

ii) Otherwise, the entry is used to produce the ultimate physical address (the translation of the original
guest-physical address); step 2 is executed.

2. Once the ultimate physical address is determined, the privileges determined by the EPT paging-structure
entries are evaluated:

a. If the access to the guest-physical address is not allowed by these privileges (see Section 28.2.3.2), an
EPT violation occurs.

b. If the access to the guest-physical address is allowed by these privileges, memory is accessed using the
ultimate physical address.

If CRO.PG = 1, the translation of a linear address is also an iterative process, with the processor first accessing an
entry in the guest paging structure referenced by the guest-physical address in CR3 (or, if PAE paging is in use,
the guest-physical address in the appropriate PDPTE register), then accessing an entry in another guest paging
structure referenced by the guest-physical address in the first guest paging-structure entry, etc. Each guest-
physical address is itself translated using EPT and may cause an EPT-induced VM exit. The following items detail
how page faults and EPT-induced VM exits are recognized during this iterative process:

1. An attempt is made to access a guest paging-structure entry with a guest-physical address (initially, the
address in CR3 or PDPTE register).

a. If the access fails because of an EPT misconfiguration or an EPT violation (see above), an EPT-induced
VM exit occurs.

1. If the logical processor is using PAE paging—because CRO.PG = CR4.PAE = 1 and IA32_EFER.LMA = 0—the MOV to CR3 instruction
loads the PDPTEs from memory using the guest-physical address being loaded into CR3. In this case, therefore, the MOV to CR3
instruction may cause an EPT misconfiguration, an EPT violation, or a page-modification log-full event.

2. This is a simplification of the more detailed description given in Section 28.2.2.
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b. If the access does not cause an EPT-induced VM exit, bit 0 (the present flag) of the entry is consulted:
i) If the present flag is 0 or any reserved bit is set, a page fault occurs.

ii) If the present flag is 1, no reserved bit is set, operation depends on whether the entry references
another guest paging structure (whether it is a guest PDE with PS = 1 or a guest PTE):

e If the entry does reference another guest paging structure, an entry from that structure is
accessed; step 1 is executed for that other entry.

e Otherwise, the entry is used to produce the ultimate guest-physical address (the translation of the
original linear address); step 2 is executed.

2. Once the ultimate guest-physical address is determined, the privileges determined by the guest paging-
structure entries are evaluated:

a. If the access to the linear address is not allowed by these privileges (e.g., it was a write to a read-only
page), a page fault occurs.

b. If the access to the linear address is allowed by these privileges, an attempt is made to access memory at
the ultimate guest-physical address:

i) If the access fails because of an EPT misconfiguration or an EPT violation (see above), an EPT-induced
VM exit occurs.

ii) If the access does not cause an EPT-induced VM exit, memory is accessed using the ultimate physical
address (the translation, using EPT, of the ultimate guest-physical address).

If CRO.PG = 0, a linear address is treated as a guest-physical address and is translated using EPT (see above).
This process, if it completes without an EPT violation or EPT misconfiguration, produces a physical address and
determines the privileges allowed by the EPT paging-structure entries. If these privileges do not allow the access
to the physical address (see Section 28.2.3.2), an EPT violation occurs. Otherwise, memory is accessed using the
physical address.

28.2.5 Page-Modification Logging

When accessed and dirty flags for EPT are enabled, software can track writes to guest-physical addresses using a
feature called page-modification logging.

Software can enable page-modification logging by setting the “enable PML" VM-execution control (see Table 24-7
in Section 24.6.2). When this control is 1, the processor adds entries to the page-modification log as described
below. The page-modification log is a 4-KByte region of memory located at the physical address in the PML
address VM-execution control field. The page-modification log consists of 512 64-bit entries; the PML index VM-
execution control field indicates the next entry to use.

Before allowing a guest-physical access, the processor may determine that it first needs to set an accessed or
dirty flag for EPT (see Section 28.2.4). When this happens, the processor examines the PML index. If the PML
index is not in the range 0-511, there is a page-modification log-full event and a VM exit occurs. In this case,
the accessed or dirty flag is not set, and the guest-physical access that triggered the event does not occur.

If instead the PML index is in the range 0-511, the processor proceeds to update accessed or dirty flags for EPT
as described in Section 28.2.4. If the processor updated a dirty flag for EPT (changing it from 0 to 1), it then oper-
ates as follows:

1. The guest-physical address of the access is written to the page-modification log. Specifically, the guest-
physical address is written to physical address determined by adding 8 times the PML index to the PML
address. Bits 11:0 of the value written are always 0 (the guest-physical address written is thus 4-KByte
aligned).

2. The PML index is decremented by 1 (this may cause the value to transition from 0 to FFFFH).
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Because the processor decrements the PML index with each log entry, the value may transition from 0 to FFFFH.
At that point, no further logging will occur, as the processor will determine that the PML index is not in the range
0-511 and will generate a page-modification log-full event (see above).

28. Updates to Chapter 34, Volume 3C

Change bars show changes to Chapter 34 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 3C: System Programming Guide, Part 3.

34.4.1.1 SMRAM State Save Map and Intel 64 Architecture

When the processor initially enters SMM, it writes its state to the state save area of the SMRAM. The state save
area on an Intel 64 processor at [SMBASE + 8000H + 7FFFH] and extends to [SMBASE + 8000H + 7COO0H].

Support for Intel 64 architecture is reported by CPUID.80000001:EDX[29] = 1. The layout of the SMRAM state
save map is shown in Table 34-3.

Additionally, the SMRAM state save map shown in Table 34-3 also applies to processors with the following CPUID
signatures listed in Table 34-2, irrespective of the value in CPUID.80000001:EDX[29].

Table 34-2 Processor Signatures and 64-bit SMRAM State Save Map Format
DisplayFamily_DisplayModel | Processor Families/Processor Number Series

06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad processor Q9xxx, Intel Core 2 Duo
processors E8000, T9000,

06_0OFH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad, Intel Core 2 Extreme,
Intel Core 2 Duo processors, Intel Pentium dual-core processors

06_1CH 45 nm Intel® Atom™ processors

29. Updates to Chapter 35, Volume 3C

Change bars show changes to Chapter 35 of the Intel® 64 and I1A-32 Architectures Software Developer’'s Manual,
Volume 3C: System Programming Guide, Part 3.

This chapter lists MSRs across Intel processor families. All MSRs listed can be read with the RDMSR and written
with the WRMSR instructions.

Register addresses are given in both hexadecimal and decimal. The register name is the mnemonic register name
and the bit description describes individual bits in registers.

Model specific registers and its bit-fields may be supported for a finite range of processor families/models. To
distinguish between different processor family and/or models, software must use CPUID.01H leaf function to
query the combination of DisplayFamily and DisplayModel to determine model-specific availability of MSRs (see
CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64 and 1A-32 Architectures Soft-
ware Developer’s Manual, Volume 2A). Table 34-2 lists the signature values of DisplayFamily and DisplayModel for
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various processor families or processor number series.

Table 35-1 CPUID Signature Values of DisplayFamily_DisplayModel

DisplayFamily_DisplayModel

Processor Families/Processor Number Series

06_57H

Next Generation Intel® Xeon Phi™ Processor Family

06_4€H, 06_5€EH

6th generation Intel Core processors and Intel Xeon processor €3-1500m v5 product family and €3-
1200 v5 product family based on Skylake microarchitecture

06_56H Intel Xeon processor D-1500 product family based on Broadwell microarchitecture

06_4FH Next Generation Intel Xeon processor based on Broadwell microarchitecture

06_47H 5th generation Intel Core processors, Intel Xeon processor £3-1200 v4 product family based on
Broadwell microarchitecture

06_3DH Intel Core M-5xxx Processor, 5th generation Intel Core processors based on Broadwell
microarchitecture

06_3FH Intel Xeon processor E5-4600/2600/1600 v3 product families, Intel Xeon processor €7 v3 product

families based on Haswell-E microarchitecture, Intel Core i7-59xx Processor Extreme Edition

06_3CH, 06_45H, 06_46H

4th Generation Intel Core processor and Intel Xeon processor £3-1200 v3 product family based on
Haswell microarchitecture

06_3€EH Intel Xeon processor E7-8800/4800/2800 v2 product families based on lvy Bridge-€
microarchitecture

06_3€H Intel Xeon processor E5-2600/1600 v2 product families and Intel Xeon processor €5-2400 v2
product family based on Ivy Bridge-E microarchitecture, Intel Core i7-49xx Processor Extreme Edition

06_3AH 3rd Generation Intel Core Processor and Intel Xeon processor €3-1200 v2 product family based on lvy
Bridge microarchitecture

06_2DH Intel Xeon processor €5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core
i7-39xx Processor Extreme Edition

06_2FH Intel Xeon Processor €7 Family

06_2AH Intel Xeon processor E3-1200 product family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx
Series

06_2€H Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH

Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors

06_1€EH, 06_1FH

Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series

06_1DH Intel Xeon processor MP 7400 series

06_17H Intel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000
series

06_0FH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series,
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel
Pentium dual-core processors

06_0€EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_4CH Intel® Atom™ processor X7-Z8000 and X5-Z8000 series based on Airmont Microarchitecture

06_5DH Intel® Atom™ processor X3-C3000 based on Silvermont Microarchitecture

06_5AH Intel Atom processor Z3500 series
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Table 35-1 CPUID Signature Values of DisplayFamily_DisplayModel (Contd.)

DisplayFamily_DisplayModel

Processor Families/Processor Number Series

06_4AH

Intel Atom processor 23400 series

06_37H Intel Atom processor E3000 series, Z3600 series, Z3700 series
06_4DH Intel Atom processor C2000 series
06_36H Intel Atom processor S1000 Series

06_1CH, 06_26H, 06_27H,
06_35H, 06_36H

Intel Atom processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series

OF_O6H

Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D
processors

OF_O03H, OF_04H

Intel Xeon processor, Intel Xeon processor MP, Intel Pentium 4, Pentium D processors

06_0SH

Intel Pentium M processor

0F_02H

Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

OF_OH, OF_01H

Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium 11l Xeon processor, Intel Pentium 11l processor

06_03H, 06_05H

Intel Pentium 1l Xeon processor, Intel Pentium Il processor

06_01H

Intel Pentium Pro processor

05_01H, 05_02H, 05_04H

Intel Pentium processor, Intel Pentium processor with MMX Technology

35.3 MSRS IN THE 45 NM AND 32 NM INTEL® ATOM™ PROCESSOR FAMILY

Table 35-4 lists model-specific registers (MSRs) for 45 nm and 32 nm Intel Atom processors, architectural MSR
addresses are also included in Table 35-4. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_1CH, 06_26H, 06_27H, 06_35H and 06_36H; see Table 34-2.

The column “Shared/Unique” applies to logical processors sharing the same core in processors based on the Intel

Atom microarchitecture. “"Unique” means each logical processor has a separate MSR, or a bit field in an MSR

governs only a logical processor. "Shared” means the MSR or the bit field in an MSR address governs the operation
of both logical processors in the same core.

Table 35-4 MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family

Register Shared/
Address Register Name Unique Bit Description
Hex Dec
OH 0 IA32_P5_MC_ADDR Shared See Section 35.20, “MSRs in Pentium Processors.”
TH 1 IA32_P5_MC_TYPE Shared See Section 35.20, “MSRs in Pentium Processors.”
6H 6 IA32_MONITOR_FILTER_ Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
SIZE andTable 35-2
10H 16 IA32_TIME_STAMP_ Unique See Section 17.14, “Time-Stamp Counter,” and see Table 35-2.
COUNTER
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Table 35-4 MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register Shared/
Address Register Name Unique Bit Description
Hex Dec
17H 23 IA32_PLATFORM_ID Shared Platform ID (R)
See Table 35-2.
17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R)
7.0 Reserved.
12:8 Maximum Qualified Ratio (R)
The maximum allowed bus ratio.
63:13 Reserved.
1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location,” and
Table 35-2.
2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W) Enables and

disables processor features;
(R) indicates current processor configuration.

0 Reserved.
1 Data Error Checking Enable (R/W)
1 = Enabled; O = Disabled
Always 0.
2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.
3 AERR# Drive Enable (R/W)
1 = Enabled; O = Disabled
Always 0.
4 BERR# Enable for initiator bus requests (R/W)
1 = Enabled; 0 = Disabled
Always 0.
Reserved.
Reserved.
BINIT# Driver Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.
Reserved.
Execute BIST (R/0)
1 = Enabled; 0 = Disabled
10 AERR# Observation Enabled (R/0)
1 = Enabled; 0 = Disabled
Always 0.
11 Reserved.
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Table 35-4 MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register Shared/
Address Register Name Unique Bit Description
Hex Dec
12 BINIT# Observation Enabled (R/0)
1 = Enabled; O = Disabled
Always 0.
13 Reserved.
14 1 MByte Power on Reset Vector (R/0)
1 =1 MByte; 0 = 4 GBytes
15 Reserved
17:16 APIC Cluster ID (R/0)
Always 00B.
19:18 Reserved.
21:20 Symmetric Arbitration ID (R/0)
Always 00B.
26:22 Integer Bus Frequency Ratio (R/0)
3AH 58 IA32_FEATURE_CONTROL | Unique Control Features in Intel 64Processor (R/W)
See Table 35-2.
40H 64 MSR_ Unique Last Branch Record O From IP (R/W)
LASTBRANCH_O_FROM_IP One of eight pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the source
instruction for one of the last eight branches, exceptions, or
interrupts taken by the processor. See also:
= Last Branch Record Stack TOS at 1C9H
= Section 17.12, “Last Branch, Interrupt, and Exception Recording
(Pentium M Processors)."
41H 65 MSR_ Unique Last Branch Record 1 From IP (R/W)
LASTBRANCH_1_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.
42H 66 MSR_ Unique Last Branch Record 2 From IP (R/W)
LASTBRANCH_2_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.
43H 67 MSR_ Unique Last Branch Record 3 From IP (R/W)
LASTBRANCH_3_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.
44H 68 MSR_ Unique Last Branch Record 4 From IP (R/W)
LASTBRANCH_4_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.
45H 69 MSR_ Unique Last Branch Record 5 From IP (R/W)
LASTBRANCH_5_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.
46H 70 MSR_ Unique Last Branch Record 6 From IP (R/W)
LASTBRANCH_6_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.
47H 71 MSR_ Unique Last Branch Record 7 From IP (R/W)
LASTBRANCH_7_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.
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Table 35-4 MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register Shared/

Address Register Name Unique Bit Description
Hex Dec
60H 96 MSR_ Unique Last Branch Record 0 To IP (R/W)

LASTBRANCH_O_TO_IP One of eight pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the
destination instruction for one of the last eight branches,
exceptions, or interrupts taken by the processor.

61H 97 MSR_ Unique Last Branch Record 1 To IP (R/W)

LASTBRANCH_1_TO_IP See description of MSR_LASTBRANCH_0_TO_IP.

62H 98 MSR_ Unique Last Branch Record 2 To IP (R/W)
LASTBRANCH_2_TO_IP See description of MSR_LASTBRANCH_0_TO_IP.
63H 99 MSR_ Unique Last Branch Record 3 To IP (R/W)
LASTBRANCH_3_TO_IP See description of MSR_LASTBRANCH_0_TO_IP.
64H 100 | MSR_ Unique Last Branch Record 4 To IP (R/W)
LASTBRANCH_4_TO_IP See description of MSR_LASTBRANCH_0_TO_IP.
65H 101 | MSR_ Unique Last Branch Record 5 To IP (R/W)
LASTBRANCH_5_TO_IP See description of MSR_LASTBRANCH_0_TO_IP.
66H 102 | MSR_ Unique Last Branch Record 6 To IP (R/W)
LASTBRANCH_6_TO_IP See description of MSR_LASTBRANCH_0_TO_IP.
67H 103 | MSR_ Unique Last Branch Record 7 To IP (R/W)
LASTBRANCH_7_TO_IP See description of MSR_LASTBRANCH_0_TO_IP.
79H 121 | IA32_BIOS_UPDT_TRIG Shared BIOS Update Trigger Register (W)
See Table 35-2.
8BH 139 | IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)
See Table 35-2.
CH 193 | I1A32_PMCO Unique Performance counter register
See Table 35-2.
C2H 194 | 1A32_PMC1 Unique Performance Counter Register
See Table 35-2.
CDH 205 | MSR_FSB_FREQ Shared Scaleable Bus Speed(R0O)
This field indicates the intended scaleable bus clock speed for
processors based on Intel Atom microarchitecture:

2.0 = 111B: 083 MHz (FSB 333)
= 101B: 100 MHz (FSB 400)
= 001B: 133 MHz (FSB 533)
= 011B: 167 MHz (FSB 667)
133.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 001B.
166.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 011B.

63:3 Reserved.
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Table 35-4 MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register Shared/
Address Register Name Unique Bit Description
Hex Dec
E7H 231 | IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW)
See Table 35-2.
€sH 232 | IA32_APERF Unique Actual Performance Frequency Clock Count (RW)
See Table 35-2.
FEH 254 | IA32_MTRRCAP Shared Memory Type Range Register (R)
See Table 35-2.
11€H 281 | MSR_BBL_CR_CTL3 Shared
0 L2 Hardware Enabled (RO)
1= If the L2 is hardware-enabled
0= Indicates if the L2 is hardware-disabled
71 Reserved.
8 L2 Enabled. (R/W)
1= L2 cache has been initialized
0= Disabled (default)
Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.
22:9 Reserved.
23 L2 Not Present (RO)
0= L2 Present
1= L2 Not Present
63:24 Reserved.
174H 372 | IA32_SYSENTER_CS Unique See Table 35-2.
175H 373 | IA32_SYSENTER_ESP Unique See Table 35-2.
176H 374 | IA32_SYSENTER_EIP Unique See Table 35-2.
179H 377 | IA32_MCG_CAP Unique See Table 35-2.
17AH 378 | IA32_MCG_STATUS Unique
0 RIPV
When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted
1 EIPV
When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.
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Table 35-4 MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register Shared/
Address Register Name Unique Bit Description
Hex Dec
2 MCIP
When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to 0 after processing a machine check exception.
63:3 Reserved.
186H 390 |IA32_PERFEVTSELO Unique See Table 35-2.
187H 391 | 1A32_PERFEVTSEL1 Unique See Table 35-2.
198H 408 | IA32_PERF_STATUS Shared See Table 35-2.
198H 408 | MSR_PERF_STATUS Shared
15:0 Current Performance State Value.
39:16 Reserved.
44:40 Maximum Bus Ratio (R/0)
Indicates maximum bus ratio configured for the processor.
63:45 Reserved.
199H 409 |IA32_PERF_CTL Unique See Table 35-2.
19AH 410 |IA32_CLOCK_MODULATION | Unique Clock Modulation (R/W)
See Table 35-2.
IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.
19BH 411 | IA32_THERM_INTERRUPT | Unique Thermal Interrupt Control (R/W)
See Table 35-2.
19CH 412 | IA32_THERM_STATUS Unique Thermal Monitor Status (R/W)
See Table 35-2.
19DH 413 | MSR_THERM2_CTL Shared
15:.0 Reserved.
16 TM_SELECT (R/W)
Mode of automatic thermal monitor:
0= Thermal Monitor 1 (thermally-initiated on-die modulation of
the stop-clock duty cycle)
1= Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT
has no effect. Neither TM1 nor TM2 are enabled.
63:17 Reserved.
1AOH 416 | IA32_MISC_ENABLE Unique Enable Misc. Processor Features (R/W)
Allows a variety of processor functions to be enabled and disabled.
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Table 35-4 MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address

Hex

Dec

Register Name

Shared/
Unique

Bit Description

Fast-Strings Enable
See Table 35-2.

Reserved.

Unique

Automatic Thermal Control Circuit Enable (R/W)
See Table 35-2.

Reserved.

Shared

Performance Monitoring Available (R)
See Table 35-2.

Reserved.

Reserved.

Shared

FERR# Multiplexing Enable (R/W)

1= FERR# asserted by the processor to indicate a pending break
event within the processor

0= Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

11

Shared

Branch Trace Storage Unavailable (RO)
See Table 35-2.

12

Shared

Precise Event Based Sampling Unavailable (RO)
See Table 35-2.

13

Shared

TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the
die temperature is at the pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core
ratio and voltage according to the value last written to
MSR_THERMZ_CTL bits 15:0.

When this bit is clear (O, default), the processor does not change
the VID signals or the bus to core ratio when the processor enters
a thermally managed state.

The BIOS must enable this feature if the TM2 feature flag
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, this
feature is not supported and BIOS must not alter the contents of
the TMZ2 bit location.

The processor is operating out of specification if both this bit and
the TM1 bit are set to 0.

15:14

Reserved.

16

Shared

Enhanced Intel SpeedStep Technology Enable (R/W)
See Table 35-2.

18

Shared

ENABLE MONITOR FSM (R/W)
See Table 35-2.
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Table 35-4 MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register Shared/
Address Register Name Unique Bit Description
Hex Dec
19 Reserved.
20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WO0)
When set, this bit causes the following bits to become read-only:
* Enhanced Intel SpeedStep Technology Select Lock (this bit),
= Enhanced Intel SpeedStep Technology Enable bit.
The bit must be set before an Enhanced Intel SpeedStep
Technology transition is requested. This bit is cleared on reset.
21 Reserved.
22 Unique Limit CPUID Maxval (R/W)
See Table 35-2.
23 Shared XTPR Message Disable (R/W)
See Table 35-2.
33:24 Reserved.
34 Unique XD Bit Disable (R/W)
See Table 35-2.
63:35 Reserved.
1C9H 457 | MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W)
Contains an index (bits 0-2) that points to the MSR containing the
most recent branch record.
See MSR_LASTBRANCH_O_FROM_IP (at 40H).
1DSH 473 | IA32_DEBUGCTL Unique Debug Control (R/W)
See Table 35-2.
1DDH 477 | MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R)
Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.
1DEH 478 | MSR_LER_TOQ_LIP Unique Last Exception Record To Linear IP (R)
This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.
200H 512 | 1A32_MTRR_PHYSBASEO Shared See Table 35-2.
201H 513 | 1A32_MTRR_PHYSMASKO | Shared See Table 35-2.
202H 514 | 1A32_MTRR_PHYSBASE1 Shared See Table 35-2.
203H 515 | I1A32_MTRR_PHYSMASK1 | Shared See Table 35-2.
204H 516 |1A32_MTRR_PHYSBASE?2 Shared See Table 35-2.
205H 517 |1A32_MTRR_PHYSMASK?2 | Shared See Table 35-2.
206H 518 |IA32_MTRR_PHYSBASE3 Shared See Table 35-2.
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Table 35-4 MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register Shared/
Address Register Name Unique Bit Description
Hex Dec
207H 519 |I1A32_MTRR_PHYSMASK3 | Shared See Table 35-2.
208H 520 |IA32_MTRR_PHYSBASE4 Shared See Table 35-2.
209H 521 | 1A32_MTRR_PHYSMASK4 | Shared See Table 35-2.
20AH 522 |1A32_MTRR_PHYSBASES Shared See Table 35-2.
20BH 523 | 1A32_MTRR_PHYSMASK5 | Shared See Table 35-2.
20CH 524 | 1A32_MTRR_PHYSBASEG Shared See Table 35-2.
20DH 525 |1A32_MTRR_PHYSMASK6 | Shared See Table 35-2.
20€H 526 |I1A32_MTRR_PHYSBASE7 Shared See Table 35-2.
20FH 527 | 1A32_MTRR_PHYSMASK7 | Shared See Table 35-2.
250H 592 |I1A32_MTRR_FIX64K_ Shared See Table 35-2.
00000
258H 600 |IA32_MTRR_FIX16K_ Shared See Table 35-2.
80000
259H 601 | IA32_MTRR_FIX16K_ Shared See Table 35-2.
A0000
268H 616 | IA32_MTRR_FIX4K_C0000 | Shared See Table 35-2.
269H 617 | IA32_MTRR_FIX4K_C8000 | Shared See Table 35-2.
26AH 618 | IA32_MTRR_FIX4K_D0O00O | Shared See Table 35-2.
26BH 619 | IA32_MTRR_FIX4K_D8000 | Shared See Table 35-2.
26CH 620 |1A32_MTRR_FIX4K_EOO0O | Shared See Table 35-2.
26DH 621 |1A32_MTRR_FIX4K_EBO0O | Shared See Table 35-2.
26€EH 622 | 1A32_MTRR_FIX4K_F0O000 | Shared See Table 35-2.
26FH 623 | I1A32_MTRR_FIX4K_F8000 | Shared See Table 35-2.
277H 631 |IA32_PAT Unique See Table 35-2.
309H 777 | IA32_FIXED_CTRO Unique Fixed-Function Performance Counter Register 0 (R/W)
See Table 35-2.
30AH 778 | IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W)
See Table 35-2.
30BH 779 | IA32_FIXED_CTRZ2 Unique Fixed-Function Performance Counter Register 2 (R/W)
See Table 35-2.
345H 837 | IA32_PERF_CAPABILITIES | Shared See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR”
38DH 909 |IA32_FIXED_CTR_CTRL Unique Fixed-Function-Counter Control Register (R/W)
See Table 35-2.
38EH 910 | IA32_PERF_GLOBAL_ Unique See Table 35-2. See Section 18.4.2, “Global Counter Control
STAUS Facilities.”
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Register Shared/
Address Register Name Unique Bit Description
Hex Dec

38FH 911 | IA32_PERF_GLOBAL_CTRL | Unique See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”

390H 912 | IA32_PERF_GLOBAL_OVF_ | Unique See Table 35-2. See Section 18.4.2, “Global Counter Control

CTRL Facilities.”

3FTH | 1009 | MSR_PEBS_ENABLE Unique See Table 35-2. See Section 18.4.4, “Precise Event Based Sampling

(PEBS)."
0 Enable PEBS on IA32_PMCO. (R/W)

400H | 1024 |IA32_MCO_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs."

401H | 1025 |IA32_MCO_STATUS Shared See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."

402H | 1026 |IA32_MCO_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs."
The IA32_MCO_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MCO_STATUS
register is clear.
When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

404H | 1028 |IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs."

405H | 1029 |IA32_MC1_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS."

408H | 1032 |IA32_MC2_CTL Shared See Section 15.3.2.1, "IA32_MCi_CTL MSRs."

409H | 1033 |IA32_MC2_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH | 1034 |IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs."
The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.
When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40CH | 1036 | MSR_MC3_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs."

40DH | 1037 | MSR_MC3_STATUS Shared See Section 15.3.2.2, "IA32_MCi_STATUS MSRS.”

40€H | 1038 | MSR_MC3_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs."
The MSR_MC(3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.
When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

410H | 1040 | MSR_MC4_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs."

411H | 1041 | MSR_MC4_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS."
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Address

Hex

Dec

Register Name

Shared/
Unique

Bit Description

41¢2H

1042

MSR_MC4_ADDR

Shared

See Section 15.3.2.3, “IA32_MCi_ADDR MSRs."
The MSR_MC4_ADDR register is either not implemented or

contains no address if the ADDRV flag in the MSR_MC4_STATUS

register is clear.

When not implemented in the processor, all reads and writes to this

MSR will cause a general-protection exception.

480H

1152

IA32_VMX_BASIC

Unique

Reporting Register of Basic VMX Capabilities (R/0)
See Table 35-2.
See Appendix A.1, “Basic VMX Information.”

481H

1153

IA32_VMX_PINBASED_
CTLS

Unique

Capability Reporting Register of Pin-based VM-execution
Controls (R/0)

See Table 35-2.
See Appendix A.3, “VM-Execution Controls.”

482H

1154

IA32_VMX_PROCBASED
CTLS

Unique

Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/0)

See Appendix A.3, “VM-Execution Controls.”

483H

1155

IA32_VMX_EXIT_CTLS

Unique

Capability Reporting Register of VM-exit Controls (R/0)
See Table 35-2.
See Appendix A4, “VM-Exit Controls.”

484H

1156

IA32_VMX_ENTRY_CTLS

Unique

Capability Reporting Register of VM-entry Controls (R/0)
See Table 35-2.
See Appendix A.5, “VM-Entry Controls.”

485H

1157

IA32_VMX_MISC

Unique

Reporting Register of Miscellaneous VMX Capabilities (R/0)
See Table 35-2.
See Appendix A.6, “Miscellaneous Data.”

486H

1158

IA32_VMX_CRO_FIXEDO

Unique

Capability Reporting Register of CRO Bits Fixed to 0 (R/0)
See Table 35-2.
See Appendix A.7, “"VMX-Fixed Bits in CRO."

487H

1159

IA32_VMX_CRO_FIXED1

Unique

Capability Reporting Register of CRO Bits Fixed to 1 (R/0)
See Table 35-2.
See Appendix A.7, “VMX-Fixed Bits in CRO."

488H

1160

IA32_VMX_CR4_FIXEDO

Unique

Capability Reporting Register of CR4 Bits Fixed to 0 (R/0)
See Table 35-2.
See Appendix A.8, “VMX-Fixed Bits in CR4."

489H

1161

IA32_VMX_CR4_FIXED1

Unique

Capability Reporting Register of CR4 Bits Fixed to 1 (R/0)
See Table 35-2.
See Appendix A.8, “VMX-Fixed Bits in CR4."
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Register Shared/
Address Register Name Unique Bit Description
Hex Dec
48AH | 1162 |IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/0)
See Table 35-2.
See Appendix A.9, “VMCS Enumeration.”
48BH | 1163 |[IA32_VMX_PROCBASED_ Unique Capability Reporting Register of Secondary Processor-based
CTLS2 VM-execution Controls (R/0)
See Appendix A.3, “VM-Execution Controls.”
600H | 1536 |IA32_DS_AREA Unique DS Save Area (R/W)
See Table 35-2.
See Section 18.12.4, “Debug Store (DS) Mechanism.”
C000_ IA32_EFER Unique Extended Feature Enables
0080H See Table 35-2.
C000_ IA32_STAR Unique System Call Target Address (R/W)
0081H See Table 35-2.
C000_ IA32_LSTAR Unique IA-32e Mode System Call Target Address (R/W)
0082H See Table 35-2.
C000_ IA32_FMASK Unique System Call Flag Mask (R/W)
0084H See Table 35-2.
C000_ IA32_FS_BASE Unique Map of BASE Address of FS (R/W)
0700H See Table 35-2.
C000_ IA32_GS_BASE Unique Map of BASE Address of GS (R/W)
0101H See Table 35-2.
C000_ IA32_KERNEL_GSBASE Unique Swap Target of BASE Address of GS (R/W) See Table 35-2.
0102H
35.4 MSRS IN INTEL PROCESSORS BASED ON SILVERMONT

MICROARCHITECTURE

Table 35-6 lists model-specific registers (MSRs) for Intel processors based on the Silvermont microarchitecture

These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_37H, 06_4AH, 06_4DH,
06_5AH, and 06_5DH; see Table 35-1.

The column “Scope” lists the core/shared/package granularity of sharing in the Silvermont microarchitecture.
“Core” means each processor core has a separate MSR, or a bit field not shared with another processor core.
“Shared” means the MSR or the bit field is shared by more than one processor cores in the physical package.
“Package” means all processor cores in the physical package share the same MSR or bit interface.
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Address Scope
Hex Dec Register Name Bit Description
OH 0 IA32_P5_MC_ADDR Shared See Section 35.20, “MSRs in Pentium Processors.”
H 1 IA32_P5_MC_TYPE Shared See Section 35.20, “MSRs in Pentium Processors.”
6H 6 IA32_MONITOR_FILTER_ Core See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
SIZE andTable 35-2
10H 16 IA32_TIME_STAMP_ Core See Section 17.14, “Time-Stamp Counter,” and see Table 35-2.
COUNTER
17H 23 | IA32_PLATFORM_ID Shared Platform ID (R)
See Table 35-2.
17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R)
7:0 Reserved.
12:8 Maximum Qualified Ratio (R)
The maximum allowed bus ratio.
49:13 Reserved.
52:50 See Table 35-2
63:33 Reserved.
1BH 27 IA32_APIC_BASE Core See Section 10.4.4, “Local APIC Status and Location,” and
Table 35-2.
2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W) Enables and

disables processor features;
(R) indicates current processor configuration.

Reserved.

Data Error Checking Enable (R/W)
1 = Enabled; O = Disabled

Always 0.

Response Error Checking Enable (R/W)
1 = Enabled; O = Disabled

Always 0.

AERRi# Drive Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

BERR# Enable for initiator bus requests (R/W)
1 = Enabled; O = Disabled
Always 0.

Reserved.

Reserved.
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Address Scope
Hex Dec Register Name Bit Description
7 BINIT# Driver Enable (R/W)
1 = Enabled; O = Disabled
Always 0.
Reserved.
Execute BIST (R/0)
1 = Enabled; 0 = Disabled
10 AERR# Observation Enabled (R/0)
1 = Enabled; 0 = Disabled
Always 0.
11 Reserved.
12 BINIT# Observation Enabled (R/0)
1 = Enabled; O = Disabled
Always 0.
13 Reserved.
14 1 MByte Power on Reset Vector (R/0)
1 =1 MByte; 0 = 4 GBytes
15 Reserved
17:16 APIC Cluster ID (R/0)
Always 00B.
19:18 Reserved.
21:20 Symmetric Arbitration ID (R/0)
Always 00B.
26:22 Integer Bus Frequency Ratio (R/0)
34H 52 | MSR_SMI_COUNT Core SMI Counter (R/0)
310 SMI Count (R/0)
Running count of SMI events since last RESET.
63:32 Reserved.
3AH 58 IA32_FEATURE_CONTROL | Core Control Features in Intel 64Processor (R/W)
See Table 35-2.
0 Lock (R/WL)
Reserved
2 Enable VMX outside SMX operation (R/WL)
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Address Scope
Hex Dec Register Name Bit Description
40H 64 MSR_ Core Last Branch Record 0 From IP (R/W)

LASTBRANCH_O_FROM_IP One of eight pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the source
instruction for one of the last eight branches, exceptions, or
interrupts taken by the processor. See also:
= Last Branch Record Stack TOS at 1C9H
= Section 17.12, “Last Branch, Interrupt, and Exception Recording

(Pentium M Processors).”
41H 65 MSR_ Core Last Branch Record 1 From IP (R/W)
LASTBRANCH_1_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.
42H 66 MSR_ Core Last Branch Record 2 From IP (R/W)
LASTBRANCH_2_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.
43H 67 MSR_ Core Last Branch Record 3 From IP (R/W)
LASTBRANCH_3_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.
44H 68 MSR_ Core Last Branch Record 4 From IP (R/W)
LASTBRANCH_4_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.
45H 69 MSR_ Core Last Branch Record 5 From IP (R/W)
LASTBRANCH_5_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.
46H 70 MSR_ Core Last Branch Record 6 From IP (R/W)
LASTBRANCH_6_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.
47H 71 MSR_ Core Last Branch Record 7 From IP (R/W)
LASTBRANCH_7_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.
60H 96 MSR_ Core Last Branch Record 0 To IP (R/W)

LASTBRANCH_O_TO_IP One of eight pairs of last branch record registers on the last branch
record stack. This part of the stack contains pointers to the
destination instruction for one of the last eight branches,
exceptions, or interrupts taken by the processor.

61H 97 MSR_ Core Last Branch Record 1 To IP (R/W)

LASTBRANCH_1_TO_IP See description of MSR_LASTBRANCH_O_TO_IP.

62H 98 MSR_ Core Last Branch Record 2 To IP (R/W)
LASTBRANCH_2_TO_IP See description of MSR_LASTBRANCH_O_TO_IP.
63H 99 MSR_ Core Last Branch Record 3 To IP (R/W)
LASTBRANCH_3_TO_IP See description of MSR_LASTBRANCH_O_TO_IP.
64H 100 | MSR_ Core Last Branch Record 4 To IP (R/W)
LASTBRANCH_4_TO_IP See description of MSR_LASTBRANCH_O_TO_IP.
65H 101 | MSR_ Core Last Branch Record 5 To IP (R/W)
LASTBRANCH_5_TO_IP See description of MSR_LASTBRANCH_O_TO_IP.
66H 102 | MSR_ Core Last Branch Record 6 To IP (R/W)
LASTBRANCH_6_TO_IP See description of MSR_LASTBRANCH_O_TO_IP.
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Hex

Dec

Register Name
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Bit Description

67H

103

MSR_
LASTBRANCH_7_TO_IP

Core

Last Branch Record 7 To IP (R/W)
See description of MSR_LASTBRANCH_Q_TO_IP.

79H

121

IA32_BIOS_UPDT_TRIG

Core

BIOS Update Trigger Register (W)
See Table 35-2.

8BH

139

IA32_BIOS_SIGN_ID

Core

BIOS Update Signature ID (RO)
See Table 35-2.

C1H

193

IA32_PMCO

Core

Performance counter register
See Table 35-2.

C2H

194

IA32_PMC1

Core

Performance Counter Register
See Table 35-2.

CDH

205

MSR_FSB_FREQ

Shared

Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Silvermont microarchitecture:

2.0

1008B: 080.0 MHz
000B: 083.3 MHz
001B: 100.0 MHz
010B: 133.3 MHz
011B:116.7 MHz

63:3

Reserved.

E2H

226

MSR_PKG_CST_CONFIG_

CONTROL

Shared

C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2.0

Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.

The following C-state code name encodings are supported:
000b: CO (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

100b: C4

110b: C6

111b: C7 (Silvermont only).

9:3

Reserved.

10

1/0 MWAIT Redirection Enable (R/W)

When set, will map 10_read instructions sent to 10 register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11

Reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 199



Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address

Hex

Dec

Register Name

Scope

Bit Description

15

CFG Lock (R/WO)
When set, lock bits 15:0 of this register until next reset.

63:16

Reserved.

E4H

228

MSR_PMG_IO_CAPTURE_
BASE

Shared

Power Management 10 Redirection in C-state (R/W)
See http://biosbits.org.

15:.0

LVL_2 Base Address (R/W)

Specifies the base address visible to software for |0 redirection. If

10 MWAIT Redirection is enabled, reads to this address will be

consumed by the power management logic and decoded to MWAIT
instructions. When |0 port address redirection is enabled, this is the

10 port address reported to the 0S/software.

18:16

C-state Range (R/W)

Specifies the encoding value of the maximum C-State code name to

be included when I0 read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

100b - C4 is the max C-State to include
110b - C6 is the max C-State to include
111b - C7 is the max C-State to include

63:19

Reserved.

E7H

231

IA32_MPERF

Core

Maximum Performance Frequency Clock Count (RW)
See Table 35-2.

€8H

232

IA32_APERF

Core

Actual Performance Frequency Clock Count (RW)
See Table 35-2.

FEH

254

IA32_MTRRCAP

Core

Memory Type Range Register (R)
See Table 35-2.

11€H

281

MSR_BBL_CR_CTL3

Shared

0

L2 Hardware Enabled (RO)
1= If the L2 is hardware-enabled
0= Indicates if the L2 is hardware-disabled

Reserved.

L2 Enabled. (R/W)
1= L2 cache has been initialized
0= Disabled (default)

Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.

229

Reserved.

23

L2 Not Present (RO)
0= L2 Present
1= L2 Not Present
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Address Scope
Hex Dec Register Name Bit Description
63:24 Reserved.
13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)
Privileged post-BIOS agent must provide a #GP handler to handle
unsuccessful read of this MSR.
1.0 AES Configuration (RW-L)
Upon a successful read of this MSR, the configuration of AES
instruction set availability is as follows:
11b: AES instructions are not available until next RESET.
otherwise, AES instructions are available.
Note, AES instruction set is not available if read is unsuccessful. If
the configuration is not 01b, AES instruction can be mis-configured
if a privileged agent unintentionally writes 11b.
63:2 Reserved.
174H 372 | IA32_SYSENTER_CS Core See Table 35-2.
175H 373 | IA32_SYSENTER_ESP Core See Table 35-2.
176H 374 | IA32_SYSENTER_EIP Core See Table 35-2.
179H 377 | IA32_MCG_CAP Core See Table 35-2.
17AH 378 | IA32_MCG_STATUS Core
0 RIPV
When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted
1 EIPV
When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.
2 MCIP
When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to O after processing a machine check exception.
63:3 Reserved.
186H 390 | IA32_PERFEVTSELO Core See Table 35-2.
7.0 Event Select
15:8 UMask
16 USR
17 0s
18 Edge
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Address Scope
Hex Dec Register Name Bit Description
19 PC
20 INT
21 Reserved
22 EN
23 INV
31:24 CMASK
63:32 Reserved.
187H 391 | IA32_PERFEVTSEL1T Core See Table 35-2.
198H 408 | IA32_PERF_STATUS Shared See Table 35-2.
199H 409 | IA32_PERF_CTL Core See Table 35-2.
19AH 410 |IA32_CLOCK_MODULATION | Core Clock Modulation (R/W)
See Table 35-2.
IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.
19BH 411 | IA32_THERM_INTERRUPT | Core Thermal Interrupt Control (R/W)
See Table 35-2.
19CH 412 | IA32_THERM_STATUS Core Thermal Monitor Status (R/W)
See Table 35-2.
1AOH 416 | IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)
Allows a variety of processor functions to be enabled and disabled.
0 Core Fast-Strings Enable
See Table 35-2.
2:1 Reserved.
3 Shared Automatic Thermal Control Circuit Enable (R/W)
See Table 35-2.
6:4 Reserved.
Core Performance Monitoring Available (R)
See Table 35-2.
108 Reserved.
11 Core Branch Trace Storage Unavailable (RO)
See Table 35-2.
12 Core Precise Event Based Sampling Unavailable (RO)
See Table 35-2.
15:13 Reserved.
16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

See Table 35-2.
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Address Scope
Hex Dec Register Name Bit Description
18 Core ENABLE MONITOR FSM (R/W)
See Table 35-2.
21:19 Reserved.
22 Core Limit CPUID Maxval (R/W)
See Table 35-2.
23 Shared XTPR Message Disable (R/W)
See Table 35-2.
33:24 Reserved.
34 Core XD Bit Disable (R/W)
See Table 35-2.
37:35 Reserved.
38 Shared Turbo Mode Disable (R/W)
When set to 1 on processors that support Intel Turbo Boost
Technology, the turbo mode feature is disabled and the IDA_Enable
feature flag will be clear (CPUID.O6H: EAX[1]=0).
When set to a 0 on processors that support IDA, CPUID.O6H:
EAX[1] reports the processor's support of turbo mode is enabled.
Note: the power-on default value is used by BIOS to detect
hardware support of turbo mode. If power-on default value is 1,
turbo mode is available in the processor. If power-on default value
is 0, turbo mode is not available.
63:39 Reserved.
1A2H 418 | MSR_ Package
TEMPERATURE_TARGET
15:.0 Reserved.
23:16 Temperature Target (R)
The default thermal throttling or PROCHOT# activation
temperature in degree C, The effective temperature for thermal
throttling or PROCHOT# activation is “Temperature Target” +
“Target Offset”
29:24 Target Offset (R/W)
Specifies an offset in degrees C to adjust the throttling and
PROCHOT# activation temperature from the default target
specified in TEMPERATURE_TARGET (bits 23:16).
63:30 Reserved.
1A6H 422 | MSR_OFFCORE_RSP_0 Shared Offcore Response Event Select Register (R/W)
1A7H 423 | MSR_OFFCORE_RSP_1 Shared Offcore Response Event Select Register (R/W)
1ADH 429 | MSR_TURBO_RATIO_LIMIT | Package Maximum Ratio Limit of Turbo Mode (RW)
7.0 Package Maximum Ratio Limit for 1C
Maximum turbo ratio limit of 1 core active.
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15:8 Package Maximum Ratio Limit for 2C
Maximum turbo ratio limit of 2 core active.
23:16 Package Maximum Ratio Limit for 3C
Maximum turbo ratio limit of 3 core active.
31:24 Package Maximum Ratio Limit for 4C
Maximum turbo ratio limit of 4 core active.
63:32 Reserved
1BOH 432 | IA32_ENERGY_PERF_BIAS | Core See Table 35-2.
1CSH 457 | MSR_LASTBRANCH_TOS Core Last Branch Record Stack TOS (R/W)
Contains an index (bits 0-2) that points to the MSR containing the
most recent branch record.
See MSR_LASTBRANCH_O_FROM_IP (at 40H).
1DSH 473 | IA32_DEBUGCTL Core Debug Control (R/W)
See Table 35-2.
1DDH 477 | MSR_LER_FROM_LIP Core Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH 478 | MSR_LER_TO_LIP Core Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.

1F2H 498 | IA32_SMRR_PHYSBASE Core See Table 35-2.
1F3H 499 | IA32_SMRR_PHYSMASK Core See Table 35-2.
200H 512 | 1A32_MTRR_PHYSBASEO Core See Table 35-2.
201H 513 |I1A32_MTRR_PHYSMASKO | Core See Table 35-2.
202H 514 | 1A32_MTRR_PHYSBASE1 Core See Table 35-2.
203H 515 | I1A32_MTRR_PHYSMASK1 Core See Table 35-2.
204H 516 |IA32_MTRR_PHYSBASEZ Core See Table 35-2.
205H 517 |1A32_MTRR_PHYSMASKZ2 | Core See Table 35-2.
206H 518 |I1A32_MTRR_PHYSBASE3 Core See Table 35-2.
207H 519 |I1A32_MTRR_PHYSMASK3 | Core See Table 35-2.
208H 520 |1A32_MTRR_PHYSBASE4 Core See Table 35-2.
209H 521 |1A32_MTRR_PHYSMASK4 | Core See Table 35-2.
20AH 522 | IA32_MTRR_PHYSBASES Core See Table 35-2.
20BH 523 |1A32_MTRR_PHYSMASKS5 | Core See Table 35-2.
20CH 524 | 1A32_MTRR_PHYSBASEG Core See Table 35-2.
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20DH 525 |1A32_MTRR_PHYSMASK6 | Core See Table 35-2.
20€H 526 |I1A32_MTRR_PHYSBASE7 Core See Table 35-2.
20FH 527 | 1A32_MTRR_PHYSMASK7 | Core See Table 35-2.
250H 592 | 1A32_MTRR_FIX64K_ Core See Table 35-2.
00000
258H 600 |IA32_MTRR_FIX16K_ Core See Table 35-2.
80000
259H 601 | IA32_MTRR_FIX16K_ Core See Table 35-2.
A0000
268H 616 | IA32_MTRR_FIX4K_C0000 | Core See Table 35-2.
269H 617 | IA32_MTRR_FIX4K_C8000 | Core See Table 35-2.
26AH 618 | 1A32_MTRR_FIX4K_DO0O00O | Core See Table 35-2.
26BH 619 |1A32_MTRR_FIX4K_D8000 | Core See Table 35-2.
26CH 620 |IA32_MTRR_FIX4K_EOO0O | Core See Table 35-2.
26DH 621 |1A32_MTRR_FIX4K_EBOOO | Core See Table 35-2.
26€EH 622 |1A32_MTRR_FIX4K_F0000 | Core See Table 35-2.
26FH 623 | IA32_MTRR_FIX4K_FB8000 | Core See Table 35-2.
277H 631 | IA32_PAT Core See Table 35-2.
2FFH 767 | 1A32_MTRR_DEF_TYPE Core Default Memory Types (R/W)
See Table 35-2.
309H 777 | IA32_FIXED_CTRO Core Fixed-Function Performance Counter Register 0 (R/W)
See Table 35-2.
30AH 778 | IA32_FIXED_CTR1 Core Fixed-Function Performance Counter Register 1 (R/W)
See Table 35-2.
30BH 779 | IA32_FIXED_CTRZ2 Core Fixed-Function Performance Counter Register 2 (R/W)
See Table 35-2.
345H 837 | IA32_PERF_CAPABILITIES | Core See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR""
38DH 909 | IA32_FIXED_CTR_CTRL Core Fixed-Function-Counter Control Register (R/W)
See Table 35-2.
38EH 910 |IA32_PERF_GLOBAL_ Core See Table 35-2. See Section 18.4.2, “Global Counter Control
STAUS Facilities.”
38FH 911 IA32_PERF_GLOBAL_CTRL | Core See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”
390H 912 | IA32_PERF_GLOBAL_OVF_ | Core See Table 35-2. See Section 18.4.2, “Global Counter Control
CTRL Facilities.”
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Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address

Hex

Dec

Register Name

Scope

Bit Description

3F1H

1009

MSR_PEBS_ENABLE

Core

See Table 35-2. See Section 18.4.4, “Precise Event Based Sampling
(PEBS)”

0

Enable PEBS on IA32_PMCO. (R/W)

3FAH

1018

MSR_PKG_C6_RESIDENCY

Package

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0

Package C6 Residency Counter. (R/0)

Value since last reset that this package is in processor-specific C6
states. Counts at the TSC Frequency.

3FDH

1021

MSR_CORE_C6_RESIDENCY

Core

Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0

CORE C6 Residency Counter. (R/0)

Value since last reset that this core is in processor-specific C6
states. Counts at the TSC Frequency.

400H

1024

IA32_MCO_CTL

Shared

See Section 15.3.2.1, “IA32_MCi_CTL MSRs."

401H

1025

IA32_MCO_STATUS

Shared

See Section 15.3.2.2, “IA32_MCi_STATUS MSRS."

402H

1026

IA32_MCO_ADDR

Shared

See Section 15.3.2.3, “IA32_MCi_ADDR MSRs."

The IA32_MCO_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MCO_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

404H

1028

IA32_MC1_CTL

Shared

See Section 15.3.2.1, "IA32_MCi_CTL MSRs."

405H

1029

IA32_MC1_STATUS

Shared

See Section 15.3.2.2, “IA32_MCi_STATUS MSRS."

408H

1032

IA32_MC2_CTL

Shared

See Section 15.3.2.1, "IA32_MCi_CTL MSRs."

409H

1033

IA32_MC2_STATUS

Shared

See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."

40AH

1034

IA32_MC2_ADDR

Shared

See Section 15.3.2.3, “IA32_MCi_ADDR MSRs."

The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40CH

1036

MSR_MC3_CTL

Core

See Section 15.3.2.1, “IA32_MCi_CTL MSRs."

40DH

1037

MSR_MC3_STATUS

Core

See Section 15.3.2.2, “IA32_MCi_STATUS MSRS."

40€H

1038

MSR_MC3_ADDR

Core

See Section 15.3.2.3, “IA32_MCi_ADDR MSRs."

The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.
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Address

Hex

Dec

Register Name

Scope

Bit Description

410H

1040

MSR_MC4_CTL

Core

See Section 15.3.2.1, "IA32_MCi_CTL MSRs."

411H

1041

MSR_MC4_STATUS

Core

See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."

41¢2H

1042

MSR_MC4_ADDR

Core

See Section 15.3.2.3, “IA32_MCi_ADDR MSRs."

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

414H

1044

MSR_MC5_CTL

Package

See Section 15.3.2.1, “IA32_MCi_CTL MSRs."

415H

1045

MSR_MC5_STATUS

Package

See Section 15.3.2.2, "IA32_MCi_STATUS MSRS."

416H

1046

MSR_MC5_ADDR

Package

See Section 15.3.2.3, “IA32_MCi_ADDR MSRs."

The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC4_STATUS
register is clear.

When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

480H

1152

IA32_VMX_BASIC

Core

Reporting Register of Basic VMX Capabilities (R/0)
See Table 35-2.
See Appendix A.1, “Basic VMX Information.”

481H

1153

IA32_VMX_PINBASED_
CTLS

Core

Capability Reporting Register of Pin-based VM-execution
Controls (R/0)

See Table 35-2.
See Appendix A.3, “VM-Execution Controls.”

482H

1154

IA32_VMX_PROCBASED_

CTLS

Core

Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/0)

See Appendix A.3, “VM-Execution Controls.”

483H

1155

IA32_VMX_EXIT_CTLS

Core

Capability Reporting Register of VM-exit Controls (R/0)
See Table 35-2.
See Appendix A.4, “VM-Exit Controls.”

484H

1156

IA32_VMX_ENTRY_CTLS

Core

Capability Reporting Register of VM-entry Controls (R/0)
See Table 35-2.
See Appendix A.5, “VM-Entry Controls.”

485H

1157

IA32_VMX_MISC

Core

Reporting Register of Miscellaneous VMX Capabilities (R/0)
See Table 35-2.
See Appendix A.6, “Miscellaneous Data.”

486H

1158

IA32_VMX_CRO_FIXEDO

Core

Capability Reporting Register of CRO Bits Fixed to 0 (R/0)
See Table 35-2.
See Appendix A.7, “VMX-Fixed Bits in CRO."
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Address Scope
Hex Dec Register Name Bit Description
487H | 1159 |IA32_VMX_CRO_FIXED1 Core Capability Reporting Register of CRO Bits Fixed to 1 (R/0)
See Table 35-2.
See Appendix A.7, “"VMX-Fixed Bits in CRO."
488H 1160 | IA32_VMX_CR4_FIXEDO Core Capability Reporting Register of CR4 Bits Fixed to 0 (R/0)
See Table 35-2.
See Appendix A.8, "VMX-Fixed Bits in CR4.”
489H 1161 | 1A32_VMX_CR4_FIXED1 Core Capability Reporting Register of CR4 Bits Fixed to 1 (R/0)
See Table 35-2.
See Appendix A.8, “VMX-Fixed Bits in CR4."
48AH | 1162 |IA32_VMX_VMCS_ENUM Core Capability Reporting Register of VMCS Field Enumeration (R/0)
See Table 35-2.
See Appendix A.9, “VMCS Enumeration.”
48BH | 1163 |[IA32_VMX_PROCBASED_ Core Capability Reporting Register of Secondary Processor-based
CTLS2 VM-execution Controls (R/0)
See Appendix A.3, “VM-Execution Controls.”
48CH 1164 | 1A32_VMX_EPT_VPID_ENU | Core Capability Reporting Register of EPT and VPID (R/0)
M See Table 35-2
48DH | 1165 |IA32_VMX_TRUE_PINBASE | Core Capability Reporting Register of Pin-based VM-execution Flex
D_CTLS Controls (R/0)
See Table 35-2
48EH | 1166 |IA32_VMX_TRUE_PROCBA | Core Capability Reporting Register of Primary Processor-based
SED_CTLS VM-execution Flex Controls (R/0)
See Table 35-2
48FH 1167 | 1A32_VMX_TRUE_EXIT_CT | Core Capability Reporting Register of VM-exit Flex Controls (R/0)
LS See Table 35-2
490H | 1168 |IA32_VMX_TRUE_ENTRY_C | Core Capability Reporting Register of VM-entry Flex Controls (R/0)
TS See Table 35-2
491H | 1169 |IA32_VMX_FMFUNC Core Capability Reporting Register of VM-function Controls (R/0)
See Table 35-2
4C1H 1217 | 1A32_A_PMCO Core See Table 35-2.
4C2H | 1218 |IA32_A_PMC1 Core See Table 35-2.
600H | 1536 |IA32_DS_AREA Core DS Save Area (R/W)
See Table 35-2.
See Section 18.12.4, “Debug Store (DS) Mechanism.”
660H 1632 | MSR_CORE_C1_RESIDENCY | Core Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.
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Table 35-6 Common MSRs in Intel Processors Based on the Silvermont Microarchitecture

Address Scope
Hex Dec Register Name Bit Description
63:.0 CORE C1 Residency Counter. (R/0)
Value since last reset that this core is in processor-specific C1
states. Counts at the TSC frequency.
6EOH | 1760 |IA32_TSC_DEADLINE Core TSC Target of Local APIC’'s TSC Deadline Mode (R/W)

See Table 35-2

C000_ IA32_EFER Core Extended Feature Enables

0080H See Table 35-2.

C000_ IA32_STAR Core System Call Target Address (R/W)

0081H See Table 35-2.

C000_ IA32_LSTAR Core IA-32e Mode System Call Target Address (R/W)

0082H See Table 35-2.

C000_ IA32_FMASK Core System Call Flag Mask (R/W)

0084H See Table 35-2.

C000_ IA32_FS_BASE Core Map of BASE Address of FS (R/W)

0100H See Table 35-2.

C000_ IA32_GS_BASE Core Map of BASE Address of GS (R/W)

0101H See Table 35-2.

C000_ IA32_KERNEL_GSBASE Core Swap Target of BASE Address of GS (R/W) See Table 35-2.

0102H

C000_ IA32_TSC_AUX Core AUXILIARY TSC Signature. (R/W) See Table 35-2

0103H

35.4.1 MSRs In Intel Atom Processors Based on Airmont Microarchitecture

Intel Atom processor X7-Z8000 and X5-Z8000 series are based on the Airmont microarchitecture. These proces-
sors support MSRs listed in Table 35-6, Table 35-7, and Table 35-10. These processors have a CPUID signature
with DisplayFamily_DisplayModel including 06_4CH; see Table 34-2.

Table 35-10 MSRs in Intel Atom Processors Based on the Airmont Microarchitecture

Address Scope
Hex Dec Register Name Bit Description
CDH 205 | MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Airmont microarchitecture:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 209



Table 35-10 MSRs in Intel Atom Processors Based on the Airmont Microarchitecture (Contd.)

Address Scope
Hex Dec Register Name Bit Description
3:0 = 0000B: 083.3 MHz
= 0001B: 100.0 MHz
= 0010B:133.3 MHz
= 0011B:116.7 MHz
= 0100B: 080.0 MHz
= 0101B:093.3 MHz
= 0110B: 090.0 MHz
= 0111B:088.9 MHz
= 10sure00B: 087.5 MHz
63:5 Reserved.
€2H 226 | MSR_PKG_CST_CONFIG_ Shared C-State Configuration Control (R/W)
CONTROL Note: C-state values are processor specific C-state code names,
unrelated to MWAIT extension C-state parameters or ACPI C-
States.
See http://biosbits.org.
2.0 Package C-State Limit (R/W)
Specifies the lowest processor-specific C-state code name
(consuming the least power). for the package. The default is set as
factory-configured package C-state limit.
The following C-state code name encodings are supported:
000b: No limit
001b: C1
010b: C2
110b: C6
111b: C7
9:3 Reserved.
10 1/0 MWAIT Redirection Enable (R/W)
When set, will map 10_read instructions sent to |0 register
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions
14:11 Reserved.
15 CFG Lock (R/WO)
When set, lock bits 15:0 of this register until next reset.
63:16 Reserved.
E4H 228 | MSR_PMG_IO_CAPTURE_ Shared Power Management 10 Redirection in C-state (R/W)
BASE See http://biosbits.org.
15:.0 LVL_2 Base Address (R/W)
Specifies the base address visible to software for |0 redirection. If
10 MWAIT Redirection is enabled, reads to this address will be
consumed by the power management logic and decoded to MWAIT
instructions. When |0 port address redirection is enabled, this is the
10 port address reported to the 0S/software.
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Address Scope
Hex Dec Register Name Bit Description

18:16 C-state Range (R/W)
Specifies the encoding value of the maximum C-State code name to
be included when I0 read to MWAIT redirection is enabled by
MSR_PKG_CST_CONFIG_CONTROL[bit10]:
000b - C3 is the max C-State to include
001b - Deep Power Down Technology is the max C-State
010b - C7 is the max C-State to include

63:19 Reserved.

638H | 1592 | MSR_PPO_POWER_LIMIT Package PPO RAPL Power Limit Control (R/W)

14.0 PPO Power Limit #1. (R/W)
See Section 14.9.4, "PPO/PP1 RAPL Domains.” and
MSR_RAPL_POWER_UNIT in Table 35-7.

15 Enable Power Limit #1. (R/W)
See Section 14.9.4, "PPO/PP1 RAPL Domains.”

16 Reserved

2317 Ti