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Preface

This document is an update to the specifications contained in the Affected Documents table below. This 
document is a compilation of device and documentation errata, specification clarifications and changes. It is 
intended for hardware system manufacturers and software developers of applications, operating systems, or 
tools.

Affected Documents

Nomenclature
Documentation Changes include typos, errors, or omissions from the current published specifications. These 
will be incorporated in any new release of the specification.

Document Title Document Number/
Location

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture 253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A: Instruction Set 
Reference, A-M 253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B: Instruction Set 
Reference, N-Z 253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C: Instruction Set 
Reference 326018

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System 
Programming Guide, Part 1 253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: System 
Programming Guide, Part 2 253669

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C: System 
Programming Guide, Part 3 326019

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3D: System 
Programming Guide, Part 4 332831
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Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and IA-32 architectures. This 
table uses the following notations:

Codes Used in Summary Tables
Change bar to left of table row indicates this erratum is either new or modified from the previous version of the 
document.

Documentation Changes(Sheet 1 of 2)
No. DOCUMENTATION CHANGES

1 Updates to Chapter 1, Volume 1

2 Updates to Chapter 10, Volume 1

3 Updates to Chapter 12, Volume 1

4 Updates to Chapter 14, Volume 1

5 Updates to Chapter 1, Volume 2A

6 Updates to Chapter 3, Volume 2A

7 Updates to Chapter 4, Volume 2B

8 Updates to Appendix A, Volume 2C

9 Updates to Chapter 1, Volume 3A

10 Updates to Chapter 2, Volume 3A

11 Updates to Chapter 6, Volume 3A

12 Updates to Chapter 7, Volume 3A

13 Updates to Chapter 9, Volume 3A

14 Updates to Chapter 10, Volume 3A

15 Updates to Chapter 14, Volume 3B

16 Updates to Chapter 16, Volume 3B

17 Updates to Chapter 17, Volume 3B

18 Updates to Chapter 18, Volume 3B

19 Updates to Chapter 19, Volume 3B

20 Updates to Chapter 23, Volume 3B

21 Updates to Chapter 24, Volume 3B

22 Updates to Chapter 25, Volume 3C

23 Updates to Chapter 26, Volume 3C

24 Updates to Chapter 27, Volume 3C

25 Updates to Chapter 29, Volume 3C

26 Updates to Chapter 30, Volume 3C

27 Updates to Chapter 35, Volume 3C
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28 Updates to Chapter 36, Volume 3C

29 Updates to Chapter 37, Volume 3D

30 Updates to Chapter 38, Volume 3D

31 Updates to Chapter 39, Volume 3D

32 Updates to Chapter 40, Volume 3D

33 Updates to Chapter 41, Volume 3D

34 Updates to Chapter 42, Volume 3D

35 Updates to Chapter 43, Volume 3D

36 Updates to Appendix A, Volume 3D

37 Updates to Appendix B, Volume 3D

38 Updates to Appendix C, Volume 3D

Documentation Changes(Sheet 2 of 2)
No. DOCUMENTATION CHANGES
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Documentation Changes

1. Updates to Chapter 1, Volume 1
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1: Basic Architecture.

------------------------------------------------------------------------------------------

...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which 
include: 
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
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• Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000, 
C1000 series are built from 45 nm and 32 nm processes

• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families 
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• The Intel® Core™ M processor family 
• Intel® Core™ i7-59xx Processor Extreme Edition
• Intel® Core™ i7-49xx Processor Extreme Edition
• Intel® Xeon® processor E3-1200 v3 product family
• Intel® Xeon® processor E5-2600/1600 v3 product families
• 5th generation Intel® Core™ processors
• Intel® Xeon® processor D-1500 product family
• Intel® Xeon® processor E5 v4 family
• Intel® Atom™ processor X7-Z8000 and X5-Z8000 series
• Intel® Atom™ processor Z3400 series
• Intel® Atom™ processor Z3500 series
• 6th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1500m v5 product family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium® 
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors. 

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon 
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved 
Pentium® M processor microarchitecture. 

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel® Pentium® dual-core, Intel® 
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel® 
Core™2 Extreme processor QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced 
Intel® Core™ microarchitecture.
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The Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000, 
C1000 series are based on the Intel® Atom™ microarchitecture and supports Intel 64 architecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel® 
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32 nm version of 
Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and 
various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These 
processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® CoreTM i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, Intel® 
Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name 
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 
product family and the 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code 
name Ivy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2 
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Intel® microarchitecture 
code name Ivy Bridge-E and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based 
on the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

The Intel® Core™ M processor family, 5th generation Intel® Core™ processors, Intel® Xeon® processor D-1500 
product family and the Intel® Xeon® processor E5 v4 family are based on the Intel® microarchitecture code name 
Broadwell and support Intel 64 architecture. 

The Intel® Xeon® processor E3-1500m v5 product family and 6th generation Intel® Core™ processors are based 
on the Intel® microarchitecture code name Skylake and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme 
Edition are based on the Intel® microarchitecture code name Haswell-E and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Intel microarchitecture code name Airmont.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Intel 
microarchitecture code name Silvermont.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV, 
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™ 
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel® 
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors, 
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 
64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is the 
superset of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

...
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2. Updates to Chapter 10, Volume 1
Change bars show changes to Chapter 10 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1: Basic Architecture.

------------------------------------------------------------------------------------------
...

10.4.6.2  Caching of Temporal vs. Non-Temporal Data
Data referenced by a program can be temporal (data will be used again) or non-temporal (data will be referenced 
once and not reused in the immediate future). For example, program code is generally temporal, whereas, multi-
media data, such as the display list in a 3-D graphics application, is often non-temporal. To make efficient use of 
the processor’s caches, it is generally desirable to cache temporal data and not cache non-temporal data. Over-
loading the processor’s caches with non-temporal data is sometimes referred to as “polluting the caches.” The 
SSE and SSE2 cacheability control instructions enable a program to write non-temporal data to memory in a 
manner that minimizes pollution of caches. 

These SSE and SSE2 non-temporal store instructions minimize cache pollutions by treating the memory being 
accessed as the write combining (WC) type. If a program specifies a non-temporal store with one of these instruc-
tions and the memory type of the destination region is write back (WB), write through (WT), or write combining 
(WC), the processor will do the following:
• If the memory location being written to is present in the cache hierarchy, the data in the caches is evicted.1

• The non-temporal data is written to memory with WC semantics.

See also: Chapter 11, “Memory Cache Control,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

Using the WC semantics, the store transaction will be weakly ordered, meaning that the data may not be written 
to memory in program order, and the store will not write allocate (that is, the processor will not fetch the corre-
sponding cache line into the cache hierarchy, prior to performing the store). Also, different processor implemen-
tations may choose to collapse and combine these stores.

The memory type of the region being written to can override the non-temporal hint, if the memory address spec-
ified for the non-temporal store is in uncacheable memory. Uncacheable as referred to here means that the region 
being written to has been mapped with either an uncacheable (UC) or write protected (WP) memory type.

In general, WC semantics require software to ensure coherence, with respect to other processors and other 
system agents (such as graphics cards). Appropriate use of synchronization and fencing must be performed for 
producer-consumer usage models. Fencing ensures that all system agents have global visibility of the stored 
data; for instance, failure to fence may result in a written cache line staying within a processor and not being 
visible to other agents. 

The memory type visible on the bus in the presence of memory type aliasing is implementation specific. As one 
possible example, the memory type written to the bus may reflect the memory type for the first store to this line, 
as seen in program order; other alternatives are possible. This behavior should be considered reserved, and 
dependence on the behavior of any particular implementation risks future incompatibility.

NOTE
Some older CPU implementations (e.g., Pentium M) may implement non-temporal stores by 
updating in place data that already reside in the cache hierarchy. For such processors, the 
destination region should also be mapped as WC. If mapped as WB or WT, there is the potential 
for speculative processor reads to bring the data into the caches; in this case, non-temporal 

1. Some older CPU implementations (e.g., Pentium M) allowed addresses being written with a non-temporal store instruction to be 
updated in-place if the memory type was not WC and line was already in the cache.
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stores would then update in place, and data would not be flushed from the processor by a 
subsequent fencing operation.

...

3. Updates to Chapter 12, Volume 1
Change bars show changes to Chapter 12 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1: Basic Architecture.

------------------------------------------------------------------------------------------

...

12.10.3 Streaming Load Hint Instruction
Historically, CPU read accesses of WC memory type regions have significantly lower throughput than accesses to 
cacheable memory. 

The streaming load instruction in SSE4.1, MOVNTDQA, provides a non-temporal hint that can cause adjacent 16-
byte items within an aligned 64-byte region of WC memory type (a streaming line) to be fetched and held in a 
small set of temporary buffers (“streaming load buffers”). Subsequent streaming loads to other aligned 16-byte 
items in the same streaming line may be satisfied from the streaming load buffer and can improve throughput.

Programmers are advised to use the following practices to improve the efficiency of MOVNTDQA streaming loads 
from WC memory:
• Streaming loads must be 16-byte aligned.
• Temporally group streaming loads of the same streaming cache line for effective use of the small number of 

streaming load buffers. If loads to the same streaming line are excessively spaced apart, it may cause the 
streaming line to be re-fetched from memory.

• Temporally group streaming loads from at most a few streaming lines together. The number of streaming load 
buffers is small; grouping a modest number of streams will avoid running out of streaming load buffers and 
the resultant re-fetching of streaming lines from memory.

• Avoid writing to a streaming line until all 16-byte-aligned reads from the streaming line have occurred. 
Reading a 16-byte item from a streaming line that has been written, may cause the streaming line to be re-
fetched.

• Avoid reading a given 16-byte item within a streaming line more than once; repeated loads of a particular 16-
byte item are likely to cause the streaming line to be re-fetched.

• The streaming load buffers, reflecting the WC memory type characteristics, are not required to be snooped by 
operations from other agents. Software should not rely upon such coherency actions to provide any data 
coherency with respect to other logical processors or bus agents. Rather, software must insure the 
consistency of WC memory accesses between producers and consumers.

• Streaming loads may be weakly ordered and may appear to software to execute out of order with respect to 
other memory operations. Software must explicitly use MFENCE if it needs to preserve order among 
streaming loads or between streaming loads and other memory operations.

• Streaming loads must not be used to reference memory addresses that are mapped to I/O devices having side 
effects or when reads to these devices are destructive. This is because MOVNTDQA is speculative in nature.

Example 12-1 provides a sketch of the basic assembly sequences that illustrate the principles of using 
MOVNTDQA in a situation with a producer-consumer accessing a WC memory region.
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...

Example 12-1    Sketch of MOVNTDQA Usage of a Consumer and a PCI Producer 
// P0: producer is a PCI device writing into the WC space
# the PCI device updates status through a UC flag, "u_dev_status" . 
# the protocol for "u_dev_status" : 0: produce; 1: consume; 2: all done

mov eax, $0
mov [u_dev_status], eax

producerStart:
mov eax, [u_dev_status]     # poll status flag to see if consumer is requestion data
cmp eax, $0                           # 
jne done                                # I no longer need to produce                       
commence PCI writes to WC region..

mov eax, $1  # producer ready to notify the consumer via status flag
mov  [u_dev_status], eax     

# now wait for consumer to signal its status
spinloop:

cmp [u_dev_status], $1      # did I get a signal from the consumer ?
jne producerStart                  # yes I did 
jmp spinloop                         # check again

done:
// producer is finished at this point 

// P1: consumer check PCI status flag to consume WC data
mov eax, $0  # request to the producer 
mov [u_dev_status], eax

consumerStart:
mov; eax, [u_dev_status]  # reads the value of the PCI status 
cmp eax, $1                                 # has producer written
jne consumerStart                       # tight loop; make it more efficient with pause, etc. 
mfence # producer finished device writes to WC, ensure WC region is coherent

ntread:
movntdqa xmm0, [addr]
movntdqa xmm1, [addr + 16]
movntdqa xmm2, [addr + 32]
movntdqa xmm3, [addr + 48]
…  # do any more NT reads as needed
mfence  # ensure PCI device reads the correct value of [u_dev_status]  

# now decide whether we are done or we need the producer to produce more data
# if we are done write a 2 into the variable, otherwise write a 0 into the variable

mov eax, $0/$2            # end or continue producing
mov [u_dev_status], eax

# if I want to consume again I will jump back to consumerStart after storing a 0 into eax
# otherwise I am done
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4. Updates to Chapter 14, Volume 1
Change bars show changes to Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1: Basic Architecture.

------------------------------------------------------------------------------------------

...

14.9 MEMORY ALIGNMENT 
Memory alignment requirements on VEX-encoded instruction differs from non-VEX-encoded instructions. Memory 
alignment applies to non-VEX-encoded SIMD instructions in three categories:
• Explicitly-aligned SIMD load and store instructions accessing 16 bytes of memory (e.g. MOVAPD, MOVAPS, 

MOVDQA, etc.). These instructions always require memory address to be aligned on 16-byte boundary.
• Explicitly-unaligned SIMD load and store instructions accessing 16 bytes or less of data from memory (e.g. 

MOVUPD, MOVUPS, MOVDQU, MOVQ, MOVD, etc.). These instructions do not require memory address to be 
aligned on 16-byte boundary.

• The vast majority of arithmetic and data processing instructions in legacy SSE instructions (non-VEX-encoded 
SIMD instructions) support memory access semantics. When these instructions access 16 bytes of data from 
memory, the memory address must be aligned on 16-byte boundary.

Most arithmetic and data processing instructions encoded using the VEX prefix and performing memory accesses 
have more flexible memory alignment requirements than instructions that are encoded without the VEX prefix. 
Specifically, 
• With the exception of explicitly aligned 16 or 32 byte SIMD load/store instructions, most VEX-encoded, 

arithmetic and data processing instructions operate in a flexible environment regarding memory address 
alignment, i.e. VEX-encoded instruction with 32-byte or 16-byte load semantics will support unaligned load 
operation by default. Memory arguments for most instructions with VEX prefix operate normally without 
causing #GP(0) on any byte-granularity alignment (unlike Legacy SSE instructions). The instructions that 
require explicit memory alignment requirements are listed in Table 14-22.

Software may see performance penalties when unaligned accesses cross cacheline boundaries, so reasonable 
attempts to align commonly used data sets should continue to be pursued.
Atomic memory operation in Intel 64 and IA-32 architecture is guaranteed only for a subset of memory operand 
sizes and alignment scenarios. The list of guaranteed atomic operations are described in Section 8.1.1 of IA-32 
Intel® Architecture Software Developer’s Manual, Volumes 3A. AVX and FMA instructions do not introduce any 
new guaranteed atomic memory operations.
AVX instructions can generate an #AC(0) fault on misaligned 4 or 8-byte memory references in Ring-3 when 
CR0.AM=1. 16 and 32-byte memory references will not generate #AC(0) fault. See Table 14-21 for details.
Certain AVX instructions always require 16- or 32-byte alignment (see the complete list of such instructions in 
Table 14-22). These instructions will #GP(0) if not aligned to 16-byte boundaries (for 16-byte granularity loads 
and stores) or 32-byte boundaries (for 32-byte loads and stores).
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Table 14-21    Alignment Faulting Conditions when Memory Access is Not Aligned 

...

5. Updates to Chapter 1, Volume 2A
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A: Instruction Set Reference, A-M.

------------------------------------------------------------------------------------------
...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which 
include: 

This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which 
include: 

EFLAGS.AC==1 && Ring-3 && CR0.AM == 1 0 1

In
st
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Ty
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AV
X

, F
M

A
,

16- or 32-byte “explicitly unaligned” loads and stores (see Table 
14-23)

no fault no fault

VEX op YMM, m256 no fault no fault

VEX op XMM, m128 no fault no fault

“explicitly aligned” loads and stores (see Table 14-22) #GP(0) #GP(0)

2, 4, or 8-byte loads and stores no fault #AC(0)

SS
E

16 byte “explicitly unaligned” loads and stores (see Table 14-23) no fault no fault

op XMM, m128 #GP(0) #GP(0)

“explicitly aligned” loads and stores (see Table 14-22) #GP(0) #GP(0)

2, 4, or 8-byte loads and stores no fault #AC(0)

Table 14-22    Instructions Requiring Explicitly Aligned Memory

Require 16-byte alignment Require 32-byte alignment

(V)MOVDQA xmm, m128 VMOVDQA ymm, m256

(V)MOVDQA m128, xmm VMOVDQA m256, ymm

(V)MOVAPS xmm, m128 VMOVAPS ymm, m256

(V)MOVAPS m128, xmm VMOVAPS m256, ymm

(V)MOVAPD xmm, m128 VMOVAPD ymm, m256

(V)MOVAPD m128, xmm VMOVAPD m256, ymm

(V)MOVNTPS m128, xmm VMOVNTPS m256, ymm

(V)MOVNTPD m128, xmm VMOVNTPD m256, ymm

(V)MOVNTDQ m128, xmm VMOVNTDQ m256, ymm

(V)MOVNTDQA xmm, m128 VMOVNTDQA ymm, m256
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• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000, 

C1000 series are built from 45 nm and 32 nm processes
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families 
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
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• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• The Intel® Core™ M processor family 
• Intel® Core™ i7-59xx Processor Extreme Edition
• Intel® Core™ i7-49xx Processor Extreme Edition
• Intel® Xeon® processor E3-1200 v3 product family
• Intel® Xeon® processor E5-2600/1600 v3 product families
• 5th generation Intel® Core™ processors
• Intel® Xeon® processor D-1500 product family
• Intel® Xeon® processor E5 v4 family
• Intel® Atom™ processor X7-Z8000 and X5-Z8000 series
• Intel® Atom™ processor Z3400 series
• Intel® Atom™ processor Z3500 series
• 6th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1500m v5 product family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium® 
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors. 

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon 
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved 
Pentium® M processor microarchitecture. 

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel® 
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel® 
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on 
Enhanced Intel® Core™ microarchitecture.

The Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000, 
C1000 series are based on the Intel® Atom™ microarchitecture and supports Intel 64 architecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel® 
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32 nm version of 
Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and 
various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These 
processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, Intel® 
CoreTM i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name 
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 
product family and 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code name 
Ivy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2 
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Intel® microarchitecture 
code name Ivy Bridge-E and support Intel 64 architecture.
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The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based 
on the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

The Intel® Core™ M processor family, 5th generation Intel® Core™ processors, Intel® Xeon® processor D-1500 
product family and the Intel® Xeon® processor E5 v4 family are based on the Intel® microarchitecture code name 
Broadwell and support Intel 64 architecture. 

The Intel® Xeon® processor E3-1500m v5 product family and 6th generation Intel® Core™ processors are based 
on the Intel® microarchitecture code name Skylake and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme 
Edition are based on the Intel® microarchitecture code name Haswell-E and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Intel microarchitecture code name Airmont.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Intel 
microarchitecture code name Silvermont.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV, 
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® AtomTM 
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel® 
Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors, Pentium® Dual-
Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is the 
superset of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

...

6. Updates to Chapter 3, Volume 2A
Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A: Instruction Set Reference, A-M.

------------------------------------------------------------------------------------------
...

3.1.1.10  Intel® C/C++ Compiler Intrinsics Equivalents Section
The Intel C/C++ compiler intrinsic functions give access to the full power of the Intel Architecture Instruction Set, 
while allowing the compiler to optimize register allocation and instruction scheduling for faster execution. Most of 
these functions are associated with a single IA instruction, although some may generate multiple instructions or 
different instructions depending upon how they are used. In particular, these functions are used to invoke instruc-
tions that perform operations on vector registers that can hold multiple data elements. These SIMD instructions 
use the following data types.
• __m128, __m256 and __m512 can represent 4, 8 or 16 packed single-precision floating-point values, and are 

used with the vector registers and SSE, AVX, or AVX-512 instruction set extension families. The __m128 data 
type is also used with various single-precision floating-point scalar instructions that perform calculations 
using only the lowest 32 bits of a vector register; the remaining bits of the result come from one of the sources 
or are set to zero depending upon the instruction.

• __m128d, __m256d and __m512d can represent 2, 4 or 8 packed double-precision floating-point values, and 
are used with the vector registers and SSE, AVX, or AVX-512 instruction set extension families. The __m128d 
data type is also used with various double-precision floating-point scalar instructions that perform calculations 
using only the lowest 64 bits of a vector register; the remaining bits of the result come from one of the sources 
or are set to zero depending upon the instruction.
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• __m128i, __m256i and __m512i can represent integer data in bytes, words, doublewords, quadwords, and 
occasionally larger data types.

Each of these data types incorporates in its name the number of bits it can hold. For example, the __m128 type 
holds 128 bits, and because each single-precision floating-point value is 32 bits long the __m128 type holds (128/
32) or four values. Normally the compiler will allocate memory for these data types on an even multiple of the size 
of the type. Such aligned memory locations may be faster to read and write than locations at other addresses.

These SIMD data types are not basic Standard C data types or C++ objects, so they may be used only with the 
assignment operator, passed as function arguments, and returned from a function call. If you access the internal 
members of these types directly, or indirectly by using them in a union, there may be side effects affecting opti-
mization, so it is recommended to use them only with the SIMD instruction intrinsic functions described in this 
manual or the Intel C/C++ compiler documentation.

Many intrinsic functions names are prefixed with an indicator of the vector length and suffixed by an indicator of 
the vector element data type, although some functions do not follow the rules below. The prefixes are:
• _mm_ indicates that the function operates on 128-bit (or sometimes 64-bit) vectors.
• _mm256_ indicates the function operates on 256-bit vectors.
• _mm512_ indicates that the function operates on 512-bit vectors.

The suffixes include:
• _ps, which indicates a function that operates on packed single-precision floating-point data. Packed single-

precision floating-point data corresponds to arrays of the C/C++ type float with either 4, 8 or 16 elements. 
Values of this type can be loaded from an array using the _mm_loadu_ps, _mm256_loadu_ps, or 
_mm512_loadu_ps functions, or created from individual values using _mm_set_ps, _mm256_set_ps, or 
_mm512_set_ps functions, and they can be stored in an array using _mm_storeu_ps, _mm256_storeu_ps, 
or _mm512_storeu_ps.

• _ss, which indicates a function that operates on scalar single-precision floating-point data. Single-precision 
floating-point data corresponds to the C/C++ type float, and values of type float can be converted to type 
__m128 for use with these functions using the _mm_set_ss function, and converted back using the 
_mm_cvtss_f32 function. When used with functions that operate on packed single-precision floating-point 
data the scalar element corresponds with the first packed value.

• _pd, which indicates a function that operates on packed double-precision floating-point data. Packed double-
precision floating-point data corresponds to arrays of the C/C++ type double with either 2, 4, or 8 elements. 
Values of this type can be loaded from an array using the _mm_loadu_pd, _mm256_loadu_pd, or 
_mm512_loadu_pd functions, or created from individual values using _mm_set_pd, _mm2566_set_pd, or 
_mm512_set_pd functions, and they can be stored in an array using _mm_storeu_pd, _mm256_storeu_pd, 
or _mm512_storeu_pd.

• _sd, which indicates a function that operates on scalar double-precision floating-point data. Double-precision 
floating-point data corresponds to the C/C++ type double, and values of type double can be converted to type 
__m128d for use with these functions using the _mm_set_sd function, and converted back using the 
_mm_cvtsd_f64 function. When used with functions that operate on packed double-precision floating-point 
data the scalar element corresponds with the first packed value.

• _epi8, which indicates a function that operates on packed 8-bit signed integer values. Packed 8-bit signed 
integers correspond to an array of signed char with 16, 32 or 64 elements. Values of this type can be created 
from individual elements using _mm_set_epi8, _mm256_set_epi8, or _mm512_set_epi8 functions.

• _epi16, which indicates a function that operates on packed 16-bit signed integer values. Packed 16-bit signed 
integers correspond to an array of short with 8, 16 or 32 elements. Values of this type can be created from 
individual elements using _mm_set_epi16, _mm256_set_epi16, or _mm512_set_epi16 functions.

• _epi32, which indicates a function that operates on packed 32-bit signed integer values. Packed 32-bit signed 
integers correspond to an array of int with 4, 8 or 16 elements. Values of this type can be created from 
individual elements using _mm_set_epi32, _mm256_set_epi32, or _mm512_set_epi32 functions.
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• _epi64, which indicates a function that operates on packed 64-bit signed integer values. Packed 64-bit signed 
integers correspond to an array of long long (or long if it is a 64-bit data type) with 2, 4 or 8 elements. Values 
of this type can be created from individual elements using _mm_set_epi32, _mm256_set_epi32, or 
_mm512_set_epi32 functions.

• _epu8, which indicates a function that operates on packed 8-bit unsigned integer values. Packed 8-bit 
unsigned integers correspond to an array of unsigned char with 16, 32 or 64 elements.

• _epu16, which indicates a function that operates on packed 16-bit unsigned integer values. Packed 16-bit 
unsigned integers correspond to an array of unsigned short with 8, 16 or 32 elements.

• _epu32, which indicates a function that operates on packed 32-bit unsigned integer values. Packed 32-bit 
unsigned integers correspond to an array of unsigned with 4, 8 or 16 elements.

• _epu64, which indicates a function that operates on packed 64-bit unsigned integer values. Packed 64-bit 
unsigned integers correspond to an array of unsigned long long (or unsigned long if it is a 64-bit data type) 
with 2, 4 or 8 elements.

• _si128, which indicates a function that operates on a single 128-bit value of type __m128i.
• _si256, which indicates a function that operates on a single a 256-bit value of type __m256i.
• _si512, which indicates a function that operates on a single a 512-bit value of type __m512i.

Values of any packed integer type can be loaded from an array using the _mm_loadu_si128, 
_mm256_loadu_si256, or _mm512_loadu_si512 functions, and they can be stored in an array using 
_mm_storeu_si128, _mm256_storeu_si256, or _mm512_storeu_si512.

These functions and data types are used with the SSE, AVX, and AVX-512 instruction set extension families. In 
addition there are similar functions that correspond to MMX instructions. These are less frequently used because 
they require additional state management, and only operate on 64-bit packed integer values.

The declarations of Intel C/C++ compiler intrinsic functions may reference some non-standard data types, such as 
__int64. The C Standard header stdint.h defines similar platform-independent types, and the documentation for 
that header gives characteristics that apply to corresponding non-standard types according to the following table. 

For a more detailed description of each intrinsic function and additional information related to its usage, refer to 
the online Intel Intrinsics Guide, https://software.intel.com/sites/landingpage/IntrinsicsGuide.
...

Table 3-3    Standard and Non-standard Data Types

Non-standard Type Standard Type (from stdint.h)

__int64 int64_t

unsigned __int64 uint64_t

__int32 int32_t

unsigned __int32 uint32_t

__int16 int16_t

unsigned __int16 uint16_t

https://software.intel.com/sites/landingpage/IntrinsicsGuide
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ADD—Add

Instruction Operand Encoding

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

04 ib ADD AL, imm8 I Valid Valid Add imm8 to AL.

05 iw ADD AX, imm16 I Valid Valid Add imm16 to AX.

05 id ADD EAX, imm32 I Valid Valid Add imm32 to EAX.

REX.W + 05 id ADD RAX, imm32 I Valid N.E. Add imm32 sign-extended to 64-bits to RAX.

80 /0 ib ADD r/m8, imm8 MI Valid Valid Add imm8 to r/m8.

REX + 80 /0 ib ADD r/m8*, imm8 MI Valid N.E. Add sign-extended imm8 to r/m64.

81 /0 iw ADD r/m16, imm16 MI Valid Valid Add imm16 to r/m16.

81 /0 id ADD r/m32, imm32 MI Valid Valid Add imm32 to r/m32.

REX.W + 81 /0 id ADD r/m64, imm32 MI Valid N.E. Add imm32 sign-extended to 64-bits to r/
m64.

83 /0 ib ADD r/m16, imm8 MI Valid Valid Add sign-extended imm8 to r/m16.

83 /0 ib ADD r/m32, imm8 MI Valid Valid Add sign-extended imm8 to r/m32.

REX.W + 83 /0 ib ADD r/m64, imm8 MI Valid N.E. Add sign-extended imm8 to r/m64.

00 /r ADD r/m8, r8 MR Valid Valid Add r8 to r/m8.

REX + 00 /r ADD r/m8*, r8* MR Valid N.E. Add r8 to r/m8.

01 /r ADD r/m16, r16 MR Valid Valid Add r16 to r/m16.

01 /r ADD r/m32, r32 MR Valid Valid Add r32 to r/m32.

REX.W + 01 /r ADD r/m64, r64 MR Valid N.E. Add r64 to r/m64.

02 /r ADD r8, r/m8 RM Valid Valid Add r/m8 to r8.

REX + 02 /r ADD r8*, r/m8* RM Valid N.E. Add r/m8 to r8.

03 /r ADD r16, r/m16 RM Valid Valid Add r/m16 to r16.

03 /r ADD r32, r/m32 RM Valid Valid Add r/m32 to r32.

REX.W + 03 /r ADD r64, r/m64 RM Valid N.E. Add r/m64 to r64.

NOTES:
*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

I AL/AX/EAX/RAX imm8 NA NA
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Description

Adds the destination operand (first operand) and the source operand (second operand) and then stores the result 
in the destination operand. The destination operand can be a register or a memory location; the source operand 
can be an immediate, a register, or a memory location. (However, two memory operands cannot be used in one 
instruction.) When an immediate value is used as an operand, it is sign-extended to the length of the destination 
operand format.

The ADD instruction performs integer addition. It evaluates the result for both signed and unsigned integer oper-
ands and sets the OF and CF flags to indicate a carry (overflow) in the signed or unsigned result, respectively. The 
SF flag indicates the sign of the signed result.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. 
See the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST ← DEST + SRC;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
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64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
...

CPUID—CPU Identification

Instruction Operand Encoding

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can 
set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction 
operates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.1 The 
instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well). 
For example, the following pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value 
and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Table 3-18 shows information returned, depending on the initial value loaded into the EAX register. 

Two types of information are returned: basic and extended function information. If a value entered for CPUID.EAX 
is higher than the maximum input value for basic or extended function for that processor then the data for the 
highest basic information leaf is returned. For example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *) 
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *) 
CPUID.EAX = 0BH (* Returns Extended Topology Enumeration leaf. *) 
CPUID.EAX = 0CH (* INVALID: Returns the same information as CPUID.EAX = 0BH. *) 
CPUID.EAX = 80000008H (* Returns linear/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0BH. *)

If a value entered for CPUID.EAX is less than or equal to the maximum input value and the leaf is not supported 
on that processor then 0 is returned in all the registers.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F A2 CPUID NP Valid Valid Returns processor identification and feature 
information to the EAX, EBX, ECX, and EDX 
registers, as determined by input entered in 
EAX (in some cases, ECX as well).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.
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When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence 
on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution 
guarantees that any modifications to flags, registers, and memory for previous instructions are completed before 
the next instruction is fetched and executed.

See also: 

“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A.

“Caching Translation Information” in Chapter 4, “Paging,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A.

Table 3-18    Information Returned by CPUID Instruction

Initial EAX 
Value Information Provided about the Processor

Basic CPUID Information

0H EAX Maximum Input Value for Basic CPUID Information.

EBX “Genu”

ECX “ntel”

EDX “ineI”

01H EAX Version Information: Type, Family, Model, and Stepping ID (see Figure 3-6).

EBX Bits 07 - 00: Brand Index.
Bits 15 - 08: CLFLUSH line size (Value ∗ 8 = cache line size in bytes; used also by CLFLUSHOPT).
Bits 23 - 16: Maximum number of addressable IDs for logical processors in this physical package*. 
Bits 31 - 24: Initial APIC ID.

ECX Feature Information (see Figure 3-7 and Table 3-20).

EDX Feature Information (see Figure 3-8 and Table 3-21).

NOTES: 
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the number of unique initial APIC

IDs reserved for addressing different logical processors in a physical package. This field is only valid if
CPUID.1.EDX.HTT[bit 28]= 1.

02H EAX Cache and TLB Information (see Table 3-22).

EBX Cache and TLB Information.

ECX Cache and TLB Information.

EDX Cache and TLB Information.

03H EAX Reserved.

EBX Reserved.

ECX Bits 00 - 31 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the 
value in this register is reserved.)

EDX Bits 32 - 63 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the 
value in this register is reserved.)

NOTES: 
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models, use
the PSN flag (returned using CPUID) to check for PSN support before accessing the feature. 
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CPUID leaves above 2 and below 80000000H are visible only when IA32_MISC_ENABLE[bit 22] has its default value of 0.

Deterministic Cache Parameters Leaf 

04H NOTES:
Leaf 04H output depends on the initial value in ECX.* 
See also: “INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level” on page 50.

EAX Bits 04 - 00: Cache Type Field.
0 = Null - No more caches.
1 = Data Cache. 
2 = Instruction Cache.
3 = Unified Cache.
4-31 = Reserved.

Bits 07 - 05: Cache Level (starts at 1). 
Bit 08: Self Initializing cache level (does not need SW initialization).
Bit 09: Fully Associative cache.

Bits 13 - 10: Reserved.
Bits 25 - 14: Maximum number of addressable IDs for logical processors sharing this cache**, ***. 
Bits 31 - 26: Maximum number of addressable IDs for processor cores in the physical 
package**, ****, *****.

EBX Bits 11 - 00: L = System Coherency Line Size**.
Bits 21 - 12: P = Physical Line partitions**.
Bits 31 - 22: W = Ways of associativity**.

ECX Bits 31-00: S = Number of Sets**.

EDX Bit 00: Write-Back Invalidate/Invalidate.
0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads sharing this 
cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads sharing 
this cache.

Bit 01: Cache Inclusiveness.
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 02: Complex Cache Indexing.
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using all address bits.

Bits 31 - 03: Reserved = 0.

NOTES:
* If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n+1 is invalid if sub-

leaf n returns EAX[4:0] as 0.
** Add one to the return value to get the result. 
***The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique ini-

tial APIC IDs reserved for addressing different logical processors sharing this cache.
**** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of unique 

Core_IDs reserved for addressing different processor cores in a physical package. Core ID is a subset of 
bits of the initial APIC ID. 

***** The returned value is constant for valid initial values in ECX. Valid ECX values start from 0. 

Table 3-18    Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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MONITOR/MWAIT Leaf 

05H EAX Bits 15 - 00: Smallest monitor-line size in bytes (default is processor's monitor granularity). 
Bits 31 - 16: Reserved = 0.

EBX Bits 15 - 00: Largest monitor-line size in bytes (default is processor's monitor granularity). 
Bits 31 - 16: Reserved = 0.

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported.

Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled.

Bits 31 - 02: Reserved. 

EDX Bits 03 - 00: Number of C0* sub C-states supported using MWAIT.
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT.
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT.
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT.
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT.
Bits 23 - 20: Number of C5* sub C-states supported using MWAIT.
Bits 27 - 24: Number of C6* sub C-states supported using MWAIT.
Bits 31 - 28: Number of C7* sub C-states supported using MWAIT.
NOTE:
* The definition of C0 through C7 states for MWAIT extension are processor-specific C-states, not ACPI C-

states.

Thermal and Power Management Leaf 

06H EAX Bit 00: Digital temperature sensor is supported if set.
Bit 01: Intel Turbo Boost Technology Available (see description of IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved.
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bit 07: HWP. HWP base registers (IA32_PM_ENABLE[bit 0], IA32_HWP_CAPABILITIES, 
IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set.
Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set.
Bit 09: HWP_Activity_Window. IA32_HWP_REQUEST[bits 41:32] is supported if set.
Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUEST[bits 31:24] is supported if set.
Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set.
Bit 12: Reserved.
Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs are 
supported if set.
Bits 31 - 15: Reserved.

EBX Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor.
Bits 31 - 04: Reserved. 

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The 
capability to provide a measure of delivered processor performance (since last reset of the counters), as 
a percentage of the expected processor performance when running at the TSC frequency.
Bits 02 - 01: Reserved = 0.
Bit 03: The processor supports performance-energy bias preference if CPUID.06H:ECX.SETBH[bit 3] is set 
and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H).
Bits 31 - 04: Reserved = 0.

Table 3-18    Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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EDX Reserved = 0.

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)

07H Sub-leaf 0 (Input ECX = 0). *

EAX Bits 31 - 00: Reports the maximum input value for supported leaf 7 sub-leaves.

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01: IA32_TSC_ADJUST MSR is supported if 1.
Bit 02: SGX. Supports Intel® Software Guard Extensions (Intel® SGX Extensions) if 1.
Bit 03: BMI1.
Bit 04: HLE.
Bit 05: AVX2.
Bit 06: FDP_EXCPTN_ONLY. x87 FPU Data Pointer updated only on x87 exceptions if 1.
Bit 07: SMEP. Supports Supervisor-Mode Execution Prevention if 1.
Bit 08: BMI2.
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software that manages process-context 
identifiers.
Bit 11: RTM.
Bit 12: Supports Intel® Resource Director Technology (Intel® RDT) Monitoring capability if 1. (RDT-M)
Bit 13: Deprecates FPU CS and FPU DS values if 1.
Bit 14: MPX. Supports Intel® Memory Protection Extensions if 1.
Bit 15: Supports Intel® Resource Director Technology (Intel® RDT) Allocation capability if 1. (RDT-A)
Bits 17 - 16: Reserved.
Bit 18: RDSEED.
Bit 19: ADX.
Bit 20: SMAP. Supports Supervisor-Mode Access Prevention (and the CLAC/STAC instructions) if 1.
Bits 22 - 21: Reserved.
Bit 23: CLFLUSHOPT.
Bit 24: Reserved.
Bit 25: Intel Processor Trace.
Bits 28 - 26: Reserved.
Bit 29: SHA. supports Intel® Secure Hash Algorithm Extensions (Intel® SHA Extensions) if 1.
Bits 31 - 30: Reserved.

ECX Bit 00: PREFETCHWT1.
Bit 01: Reserved.
Bit 02: UMIP. Supports user-mode instruction prevention if 1.
Bit 03: PKU. Supports protection keys for user-mode pages if 1.
Bit 04: OSPKE. If 1, OS has set CR4.PKE to enable protection keys (and the RDPKRU/WRPKRU instruc-
tions).
Bits 21 - 05: Reserved.
Bit 22: RDPID. Supports Read Processor ID if 1.
Bits 29 - 23: Reserved.
Bit 30: SGX_LC. Supports SGX Launch Configuration if 1.
Bit 31: Reserved. 

Table 3-18    Information Returned by CPUID Instruction (Contd.)
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EDX Reserved.

NOTE:
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n 

exceeds the value that sub-leaf 0 returns in EAX.

Direct Cache Access Information Leaf 

09H EAX Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H).

EBX Reserved. 

ECX Reserved.

EDX Reserved. 

Architectural Performance Monitoring Leaf 

0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring.
Bits 15 - 08: Number of general-purpose performance monitoring counter per logical processor.
Bits 23 - 16: Bit width of general-purpose, performance monitoring counter.
Bits 31 - 24: Length of EBX bit vector to enumerate architectural performance monitoring events.

EBX Bit 00: Core cycle event not available if 1.
Bit 01: Instruction retired event not available if 1.
Bit 02: Reference cycles event not available if 1.
Bit 03: Last-level cache reference event not available if 1.
Bit 04: Last-level cache misses event not available if 1.
Bit 05: Branch instruction retired event not available if 1.
Bit 06: Branch mispredict retired event not available if 1.
Bits 31 - 07: Reserved = 0.

ECX Reserved = 0.

EDX Bits 04 - 00: Number of fixed-function performance counters (if Version ID > 1).
Bits 12 - 05: Bit width of fixed-function performance counters (if Version ID > 1).
Reserved = 0.

Extended Topology Enumeration Leaf 

0BH NOTES:
Most of Leaf 0BH output depends on the initial value in ECX. 
The EDX output of leaf 0BH is always valid and does not vary with input value in ECX.
Output value in ECX[7:0] always equals input value in ECX[7:0].
For sub-leaves that return an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0.

 If an input value n in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with ECX > 
n also return 0 in ECX[15:8].

EAX Bits 04 - 00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type*. 
All logical processors with the same next level ID share current level.
Bits 31 - 05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as shipped 
by Intel**.
Bits 31- 16: Reserved.

Table 3-18    Information Returned by CPUID Instruction (Contd.)
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ECX Bits 07 - 00: Level number. Same value in ECX input.
Bits 15 - 08: Level type***.
Bits 31 - 16: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in this 
field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical processors 
available to BIOS/OS/Applications may be different from the value of EBX[15:0], depending on software 
and platform hardware configurations. 

*** The value of the “level type” field is not related to level numbers in any way, higher “level type” val-
ues do not mean higher levels. Level type field has the following encoding:
0: Invalid.
1: SMT.
2: Core.
3-255: Reserved.

Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0). 

EAX Bits 31 - 00: Reports the supported bits of the lower 32 bits of XCR0. XCR0[n] can be set to 1 only if 
EAX[n] is 1.
Bit 00: x87 state. 
Bit 01: SSE state.
Bit 02: AVX state.
Bits 04 - 03: MPX state.
Bits 07 - 05: AVX-512 state.
Bit 08: Used for IA32_XSS.
Bit 09: PKRU state.
Bits 31 - 10: Reserved.

EBX Bits 31 - 00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by 
enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save area 
are not enabled.

ECX Bit 31 - 00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the XSAVE/
XRSTOR save area required by all supported features in the processor, i.e all the valid bit fields in XCR0. 

EDX Bit 31 - 00: Reports the supported bits of the upper 32 bits of XCR0. XCR0[n+32] can be set to 1 only if 
EDX[n] is 1.
Bits 31 - 00: Reserved.

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

0DH EAX Bit 00: XSAVEOPT is available.
Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set.
Bit 02: Supports XGETBV with ECX = 1 if set.
Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set.
Bits 31 - 04: Reserved.

EBX Bits 31 - 00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.

Table 3-18    Information Returned by CPUID Instruction (Contd.)
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ECX Bits 31 - 00: Reports the supported bits of the lower 32 bits of the IA32_XSS MSR. IA32_XSS[n] can be 
set to 1 only if ECX[n] is 1.
Bits 07 - 00: Used for XCR0.
Bit 08: PT state.
Bit 09: Used for XCR0.
Bits 31 - 10: Reserved.

EDX Bits 31 - 00: Reports the supported bits of the upper 32 bits of the IA32_XSS MSR. IA32_XSS[n+32] can 
be set to 1 only if EDX[n] is 1.
Bits 31 - 00: Reserved.

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX. 
Each sub-leaf index (starting at position 2) is supported if it corresponds to a supported bit in either the 
XCR0 register or the IA32_XSS MSR.
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf n (0 ≤ n ≤ 31) is invalid 

if sub-leaf 0 returns 0 in EAX[n] and sub-leaf 1 returns 0 in ECX[n]. Sub-leaf n (32 ≤ n ≤ 63) is invalid if 
sub-leaf 0 returns 0 in EDX[n-32] and sub-leaf 1 returns 0 in EDX[n-32].

EAX Bits 31 - 0: The size in bytes (from the offset specified in EBX) of the save area for an extended state 
feature associated with a valid sub-leaf index, n.

EBX Bits 31 - 0: The offset in bytes of this extended state component’s save area from the beginning of the 
XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, does not map to a valid bit in the XCR0 register*.

ECX Bit 00 is set if the bit n (corresponding to the sub-leaf index) is supported in the IA32_XSS MSR; it is clear 
if bit n is instead supported in XCR0.
Bit 01 is set if, when the compacted format of an XSAVE area is used, this extended state component 
located on the next 64-byte boundary following the preceding state component (otherwise, it is located 
immediately following the preceding state component).
Bits 31 - 02 are reserved.
This field reports 0 if the sub-leaf index, n, is invalid*.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Intel Resource Director Technology (Intel RDT) Monitoring Enumeration Sub-leaf (EAX = 0FH, ECX = 0)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX. 
Sub-leaf index 0 reports valid resource type starting at bit position 1 of EDX.

EAX Reserved.

EBX Bits 31 - 00: Maximum range (zero-based) of RMID within this physical processor of all types.

ECX Reserved.

EDX Bit 00: Reserved.
Bit 01: Supports L3 Cache Intel RDT Monitoring if 1.
Bits 31 - 02: Reserved.

L3 Cache Intel RDT Monitoring Capability Enumeration Sub-leaf (EAX = 0FH, ECX = 1)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX. 

Table 3-18    Information Returned by CPUID Instruction (Contd.)
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EAX Reserved.

EBX Bits 31 - 00: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes).

ECX Maximum range (zero-based) of RMID of this resource type.

EDX Bit 00: Supports L3 occupancy monitoring if 1.
Bit 01: Supports L3 Total Bandwidth monitoring if 1.
Bit 02: Supports L3 Local Bandwidth monitoring if 1.
Bits 31 - 03: Reserved.

Intel Resource Director Technology (Intel RDT) Allocation Enumeration Sub-leaf (EAX = 10H, ECX = 0)

10H NOTES:
Leaf 10H output depends on the initial value in ECX. 
Sub-leaf index 0 reports valid resource identification (ResID) starting at bit position 1 of EBX.

EAX Reserved.

EBX Bit 00: Reserved.
Bit 01: Supports L3 Cache Allocation Technology if 1.
Bit 02: Supports L2 Cache Allocation Technology if 1.
Bits 31 - 03: Reserved.

ECX Reserved.

EDX Reserved.

L3 Cache Allocation Technology Enumeration Sub-leaf (EAX = 10H, ECX = ResID =1)

10H NOTES:
Leaf 10H output depends on the initial value in ECX. 

EAX Bits 4 - 00: Length of the capacity bit mask for the corresponding ResID using minus-one notation.
Bits 31 - 05: Reserved.

EBX Bits 31 - 00: Bit-granular map of isolation/contention of allocation units.

ECX Bit 00: Reserved.
Bit 01: Updates of COS should be infrequent if 1.
Bit 02: Code and Data Prioritization Technology supported if 1.
Bits 31 - 03: Reserved.

EDX Bits 15 - 00: Highest COS number supported for this ResID.
Bits 31 - 16: Reserved.

L2 Cache Allocation Technology Enumeration Sub-leaf (EAX = 10H, ECX = ResID =2)

10H NOTES:
Leaf 10H output depends on the initial value in ECX. 

EAX Bits 4 - 00: Length of the capacity bit mask for the corresponding ResID using minus-one notation.
Bits 31 - 05: Reserved.

EBX Bits 31 - 00: Bit-granular map of isolation/contention of allocation units.

ECX Bits 31 - 00: Reserved.

EDX Bits 15 - 00: Highest COS number supported for this ResID.
Bits 31 - 16: Reserved.

Intel SGX Capability Enumeration Leaf, sub-leaf 0 (EAX = 12H, ECX = 0)

Table 3-18    Information Returned by CPUID Instruction (Contd.)
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12H NOTES:
Leaf 12H sub-leaf 0 (ECX = 0) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1. 

EAX Bit 00: SGX1. If 1, Indicates Intel SGX supports the collection of SGX1 leaf functions.
Bit 01: SGX2. If 1, Indicates Intel SGX supports the collection of SGX2 leaf functions.
Bit 31 - 02: Reserved. 

EBX Bit 31 - 00: MISCSELECT. Bit vector of supported extended SGX features.

ECX Bit 31 - 00: Reserved.

EDX Bit 07 - 00: MaxEnclaveSize_Not64. The maximum supported enclave size in non-64-bit mode is 
2^(EDX[7:0]).
Bit 15 - 08: MaxEnclaveSize_64. The maximum supported enclave size in 64-bit mode is 2^(EDX[15:8]).
Bits 31 - 16: Reserved.

Intel SGX Attributes Enumeration Leaf, sub-leaf 1 (EAX = 12H, ECX = 1)

12H NOTES:
Leaf 12H sub-leaf 1 (ECX = 1) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1. 

EAX Bit 31 - 00: Reports the valid bits of SECS.ATTRIBUTES[31:0] that software can set with ECREATE.

EBX Bit 31 - 00: Reports the valid bits of SECS.ATTRIBUTES[63:32] that software can set with ECREATE.

ECX Bit 31 - 00: Reports the valid bits of SECS.ATTRIBUTES[95:64] that software can set with ECREATE.

EDX Bit 31 - 00: Reports the valid bits of SECS.ATTRIBUTES[127:96] that software can set with ECREATE.

Intel SGX EPC Enumeration Leaf, sub-leaves (EAX = 12H, ECX = 2 or higher)

12H NOTES:
Leaf 12H sub-leaf 2 or higher (ECX >= 2) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1. 
For sub-leaves (ECX = 2 or higher), definition of EDX,ECX,EBX,EAX[31:4] depends on the sub-leaf type
listed below. 

EAX Bit 03 - 00: Sub-leaf Type
0000b: Indicates this sub-leaf is invalid. 
0001b: This sub-leaf enumerates an EPC section. EBX:EAX and EDX:ECX provide information on the 
Enclave Page Cache (EPC) section.
All other type encodings are reserved.

Type 0000b. This sub-leaf is invalid. 

EDX:ECX:EBX:EAX return 0.

Table 3-18    Information Returned by CPUID Instruction (Contd.)
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Type 0001b. This sub-leaf enumerates an EPC sections with EDX:ECX, EBX:EAX defined as follows. 

EAX[11:04]: Reserved (enumerate 0). 
EAX[31:12]: Bits 31:12 of the physical address of the base of the EPC section. 

EBX[19:00]: Bits 51:32 of the physical address of the base of the EPC section. 
EBX[31:20]: Reserved.

ECX[03:00]: EPC section property encoding defined as follows: 
If EAX[3:0] 0000b, then all bits of the EDX:ECX pair are enumerated as 0.
If EAX[3:0] 0001b, then this section has confidentiality and integrity protection.
All other encodings are reserved.

ECX[11:04]: Reserved (enumerate 0). 
ECX[31:12]: Bits 31:12 of the size of the corresponding EPC section within the Processor Reserved 
Memory.

EDX[19:00]: Bits 51:32 of the size of the corresponding EPC section within the Processor Reserved 
Memory. 
EDX[31:20]: Reserved.

Intel Processor Trace Enumeration Main Leaf (EAX = 14H, ECX = 0)

14H NOTES:
Leaf 14H main leaf (ECX = 0). 

EAX Bits 31 - 00: Reports the maximum sub-leaf supported in leaf 14H.

EBX Bit 00: If 1, Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that IA32_RTIT_CR3_MATCH 
MSR can be accessed.
Bit 01: If 1, Indicates support of Configurable PSB and Cycle-Accurate Mode.
Bit 02: If 1, Indicates support of IP Filtering, TraceStop filtering, and preservation of Intel PT MSRs across 
warm reset.
Bit 03: If 1, Indicates support of MTC timing packet and suppression of COFI-based packets.
Bit 31 - 04: Reserved. 

ECX Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output 
scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
Bit 01: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the Mas-
kOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.
Bit 02: If 1, Indicates support of Single-Range Output scheme.
Bit 03: If 1, Indicates support of output to Trace Transport subsystem.
Bit 30 - 04: Reserved.
Bit 31: If 1, Generated packets which contain IP payloads have LIP values, which include the CS base com-
ponent.

EDX Bits 31 - 00: Reserved.

Intel Processor Trace Enumeration Sub-leaf (EAX = 14H, ECX = 1)

14H EAX Bits 02 - 00: Number of configurable Address Ranges for filtering.
Bits 15 - 03: Reserved.
Bits 31 - 16: Bitmap of supported MTC period encodings.

EBX Bits 15 - 00: Bitmap of supported Cycle Threshold value encodings.
Bit 31 - 16: Bitmap of supported Configurable PSB frequency encodings.
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ECX Bits 31 - 00: Reserved.

EDX Bits 31 - 00: Reserved.

Time Stamp Counter/Core Crystal Clock Information-leaf 

15H NOTES:
If EBX[31:0] is 0, the TSC/”core crystal clock” ratio is not enumerated.
EBX[31:0]/EAX[31:0] indicates the ratio of the TSC frequency and the core crystal clock frequency.
“TSC frequency” = “core crystal clock frequency” * EBX/EAX.
The core crystal clock may differ from the reference clock, bus clock, or core clock frequencies.

EAX Bits 31 - 00: An unsigned integer which is the denominator of the TSC/”core crystal clock” ratio.

EBX Bits 31 - 00: An unsigned integer which is the numerator of the TSC/”core crystal clock” ratio.

ECX Bits 31 - 00: Reserved = 0.

EDX Bits 31 - 00: Reserved = 0.

Processor Frequency Information Leaf 

16H EAX Bits 15 - 00: Processor Base Frequency (in MHz).
Bits 31 - 16: Reserved =0.

EBX Bits 15 - 00: Maximum Frequency (in MHz).
Bits 31 - 16: Reserved = 0.

ECX Bits 15 - 00: Bus (Reference) Frequency (in MHz).
Bits 31 - 16: Reserved = 0.

EDX Reserved.

NOTES:
* Data is returned from this interface in accordance with the processor's specification and does not reflect 
actual values. Suitable use of this data includes the display of processor information in like manner to the 
processor brand string and for determining the appropriate range to use when displaying processor 
information e.g. frequency history graphs. The returned information should not be used for any other 
purpose as the returned information does not accurately correlate to information / counters returned by 
other processor interfaces. 

While a processor may support the Processor Frequency Information leaf, fields that return a value of 
zero are not supported.

System-On-Chip Vendor Attribute Enumeration Main Leaf (EAX = 17H, ECX = 0)

17H NOTES:
Leaf 17H main leaf (ECX = 0).
Leaf 17H output depends on the initial value in ECX.
Leaf 17H sub-leaves 1 through 3 reports SOC Vendor Brand String.
Leaf 17H is valid if MaxSOCID_Index >= 3.
Leaf 17H sub-leaves 4 and above are reserved.

EAX Bits 31 - 00: MaxSOCID_Index. Reports the maximum input value of supported sub-leaf in leaf 17H.

Table 3-18    Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 37

EBX Bits 15 - 00: SOC Vendor ID.
Bit 16: IsVendorScheme. If 1, the SOC Vendor ID field is assigned via an industry standard enumeration
scheme. Otherwise, the SOC Vendor ID field is assigned by Intel.
Bits 31 - 17: Reserved = 0.

ECX Bits 31 - 00: Project ID. A unique number an SOC vendor assigns to its SOC projects.

EDX Bits 31 - 00: Stepping ID. A unique number within an SOC project that an SOC vendor assigns.

System-On-Chip Vendor Attribute Enumeration Sub-leaf (EAX = 17H, ECX = 1..3)

17H EAX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.

EBX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.

ECX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.

EDX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.

NOTES:
Leaf 17H output depends on the initial value in ECX.
SOC Vendor Brand String is a UTF-8 encoded string padded with trailing bytes of 00H.
The complete SOC Vendor Brand String is constructed by concatenating in ascending order of
EAX:EBX:ECX:EDX and from the sub-leaf 1 fragment towards sub-leaf 3.

System-On-Chip Vendor Attribute Enumeration Sub-leaves (EAX = 17H, ECX > MaxSOCID_Index)

17H NOTES:
Leaf 17H output depends on the initial value in ECX.

EAX Bits 31 - 00: Reserved = 0.

EBX Bits 31 - 00: Reserved = 0.

ECX Bits 31 - 00: Reserved = 0.

EDX Bits 31 - 00: Reserved = 0.

Unimplemented CPUID Leaf Functions

40000000H 
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or feature information if the initial 
EAX value is in the range 40000000H to 4FFFFFFFH.

Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information.

EBX Reserved.

ECX Reserved.

EDX Reserved.

80000001H EAX Extended Processor Signature and Feature Bits.

EBX Reserved.

Table 3-18    Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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ECX Bit 00: LAHF/SAHF available in 64-bit mode.
Bits 04 - 01: Reserved.
Bit 05: LZCNT.
Bits 07 - 06: Reserved.
Bit 08: PREFETCHW.
Bits 31 - 09: Reserved.

EDX Bits 10 - 00: Reserved.
Bit 11: SYSCALL/SYSRET available in 64-bit mode.
Bits 19 - 12: Reserved = 0.
Bit 20: Execute Disable Bit available.
Bits 25 - 21: Reserved = 0.
Bit 26: 1-GByte pages are available if 1.
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1.
Bit 28: Reserved = 0.
Bit 29: Intel® 64 Architecture available if 1.
Bits 31 - 30: Reserved = 0.

80000002H EAX
EBX
ECX
EDX

Processor Brand String.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000005H EAX
EBX
ECX
EDX

Reserved = 0.
Reserved = 0.
Reserved = 0.
Reserved = 0.

80000006H EAX
EBX

Reserved = 0.
Reserved = 0.

ECX

EDX

Bits 07 - 00: Cache Line size in bytes.
Bits 11 - 08: Reserved.
Bits 15 - 12: L2 Associativity field *.
Bits 31 - 16: Cache size in 1K units.
Reserved = 0.

Table 3-18    Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 39

INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and the Vendor Identification 
String

When CPUID executes with EAX set to 0, the processor returns the highest value the CPUID recognizes for 
returning basic processor information. The value is returned in the EAX register and is processor specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the string is “Genuin-
eIntel” and is expressed:

EBX ← 756e6547h (* "Genu", with G in the low eight bits of BL *)
EDX ← 49656e69h (* "ineI", with i in the low eight bits of DL *)
ECX ← 6c65746eh (* "ntel", with n in the low eight bits of CL *)

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Information

When CPUID executes with EAX set to 80000000H, the processor returns the highest value the processor recog-
nizes for returning extended processor information. The value is returned in the EAX register and is processor 
specific.

NOTES:
* L2 associativity field encodings:

00H - Disabled.
01H - Direct mapped.
02H - 2-way.
04H - 4-way.
06H - 8-way.
08H - 16-way.
0FH - Fully associative.

80000007H EAX
EBX
ECX
EDX

Reserved = 0.
Reserved = 0.
Reserved = 0.
Bits 07 - 00: Reserved = 0.
Bit 08: Invariant TSC available if 1.
Bits 31 - 09: Reserved = 0.

80000008H EAX Linear/Physical Address size.
Bits 07 - 00: #Physical Address Bits*.
Bits 15 - 08: #Linear Address Bits.
Bits 31 - 16: Reserved = 0.

EBX
ECX
EDX

Reserved = 0.
Reserved = 0.
Reserved = 0.

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported should 

come from this field.

Table 3-18    Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is loaded with the 
update signature whenever CPUID executes. The signature is returned in the upper DWORD. For details, see 
Chapter 9 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. 

INPUT EAX = 01H: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 01H, version information is returned in EAX (see Figure 3-6). For example: 
model, family, and processor type for the Intel Xeon processor 5100 series is as follows:
• Model — 1111B
• Family — 0101B
• Processor Type — 00B

See Table 3-19 for available processor type values. Stepping IDs are provided as needed.

NOTE
See Chapter 18 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
for information on identifying earlier IA-32 processors.

Figure 3-6    Version Information Returned by CPUID in EAX
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Table 3-19    Processor Type Field
Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor (not applicable to Intel486 processors) 10B

Intel reserved 11B
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The Extended Family ID needs to be examined only when the Family ID is 0FH. Integrate the fields into a display 
using the following rule:

IF Family_ID ≠ 0FH
THEN DisplayFamily = Family_ID;
ELSE DisplayFamily = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

FI;
(* Show DisplayFamily as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH. Integrate the field into a 
display using the following rule:

IF (Family_ID = 06H or Family_ID = 0FH)
THEN DisplayModel = (Extended_Model_ID « 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE DisplayModel = Model_ID;

FI;
(* Show DisplayModel as HEX field. *)

INPUT EAX = 01H: Returns Additional Information in EBX

When CPUID executes with EAX set to 01H, additional information is returned to the EBX register: 
• Brand index (low byte of EBX) — this number provides an entry into a brand string table that contains brand 

strings for IA-32 processors. More information about this field is provided later in this section. 
• CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the size of the cache line 

flushed by the CLFLUSH and CLFLUSHOPT instructions in 8-byte increments. This field was introduced in the 
Pentium 4 processor.

• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the local APIC on the 
processor during power up. This field was introduced in the Pentium 4 processor.

INPUT EAX = 01H: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 01H, feature information is returned in ECX and EDX.
• Figure 3-7 and Table 3-20 show encodings for ECX.
• Figure 3-8 and Table 3-21 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret feature flags.

NOTE
Software must confirm that a processor feature is present using feature flags returned by CPUID 
prior to using the feature. Software should not depend on future offerings retaining all features.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 42

Figure 3-7    Feature Information Returned in the ECX Register
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Table 3-20    Feature Information Returned in the ECX Register 

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor supports this 
technology.

1 PCLMULQDQ PCLMULQDQ. A value of 1 indicates the processor supports the PCLMULQDQ instruction.

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout.

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature. 

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the 
Debug Store feature to allow for branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology.

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See 
Chapter 5, “Safer Mode Extensions Reference”.
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7 EIST Enhanced Intel SpeedStep® technology. A value of 1 indicates that the processor supports this 
technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology. 

9 SSSE3 A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A 
value of 0 indicates the instruction extensions are not present in the processor.

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode 
or shared mode. A value of 0 indicates this feature is not supported. See definition of the 
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.

11 SDBG A value of 1 indicates the processor supports IA32_DEBUG_INTERFACE MSR for silicon debug.

12 FMA A value of 1 indicates the processor supports FMA extensions using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is available. See the 
“CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes” section in this chapter for a 
description.

14 xTPR Update 
Control

xTPR Update Control. A value of 1 indicates that the processor supports changing 
IA32_MISC_ENABLE[bit 23]. 

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the processor supports the performance 
and debug feature indication MSR IA32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that 
software may set CR4.PCIDE to 1.

18 DCA  A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped 
device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1. 

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2. 

21 x2APIC A value of 1 indicates that the processor supports x2APIC feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT instruction.

24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer supports one-shot operation using a 
TSC deadline value.

25 AESNI A value of 1 indicates that the processor supports the AESNI instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the XSAVE/XRSTOR processor extended states 
feature, the XSETBV/XGETBV instructions, and XCR0.

27 OSXSAVE A value of 1 indicates that the OS has set CR4.OSXSAVE[bit 18] to enable XSETBV/XGETBV 
instructions to access XCR0 and to support processor extended state management using XSAVE/
XRSTOR.

28 AVX A value of 1 indicates the processor supports the AVX instruction extensions.

29 F16C A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.

30 RDRAND A value of 1 indicates that processor supports RDRAND instruction.

31 Not Used Always returns 0.

Table 3-20    Feature Information Returned in the ECX Register  (Contd.)

Bit # Mnemonic Description
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Figure 3-8    Feature Information Returned in the EDX Register
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Table 3-21    More on Feature Information Returned in the EDX Register

Bit # Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling the 
feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the TSS 
with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags. 

2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for controlling the feature, and optional 
trapping of accesses to DR4 and DR5. 
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3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the 
feature, the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs, and 
PTEs. 

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are 
supported. Some of the MSRs are implementation dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table 
entry formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead of 
4 Mbyte pages if PAE bit is 1. 

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling the 
feature. This feature does not define the model-specific implementations of machine-check error logging, 
reporting, and processor shutdowns. Machine Check exception handlers may have to depend on processor 
version to do model specific processing of the exception, or test for the presence of the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly 
locked and atomic). 

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding to 
memory mapped commands in the physical address range FFFE0000H to FFFE0FFFH (by default - some 
processors permit the APIC to be relocated). 

10 Reserved Reserved 

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported. 

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that describe 
what memory types are supported, how many variable MTRRs are supported, and whether fixed MTRRs are 
supported. 

13 PGE Page Global Bit. The global bit is supported in paging-structure entries that map a page, indicating TLB entries 
that are common to different processes and need not be flushed. The CR4.PGE bit controls this feature. 

14 MCA Machine Check Architecture. A value of 1 indicates the Machine Check Architecture of reporting machine 
errors is supported. The MCG_CAP MSR contains feature bits describing how many banks of error reporting 
MSRs are supported. 

15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is supported. In addition, if x87 FPU is 
present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported 

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range 
Registers (MTRRs), allowing an operating system to specify attributes of memory accessed through a linear 
address on a 4KB granularity.

17 PSE-36 36-Bit Page Size Extension. 4-MByte pages addressing physical memory beyond 4 GBytes are supported with 
32-bit paging. This feature indicates that upper bits of the physical address of a 4-MByte page are encoded in 
bits 20:13 of the page-directory entry. Such physical addresses are limited by MAXPHYADDR and may be up to 
40 bits in size.

18 PSN Processor Serial Number. The processor supports the 96-bit processor identification number feature and the 
feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved

Table 3-21    More on Feature Information Returned in the EDX Register (Contd.)

Bit # Mnemonic Description
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INPUT EAX = 02H: TLB/Cache/Prefetch Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 02H, the processor returns information about the processor’s internal TLBs, 
cache and prefetch hardware in the EAX, EBX, ECX, and EDX registers. The information is reported in encoded 
form and fall into the following categories:
• The least-significant byte in register EAX (register AL) will always return 01H. Software should ignore this 

value and not interpret it as an informational descriptor.
• The most significant bit (bit 31) of each register indicates whether the register contains valid information (set 

to 0) or is reserved (set to 1).
• If a register contains valid information, the information is contained in 1 byte descriptors. There are four types 

of encoding values for the byte descriptor, the encoding type is noted in the second column of Table 3-22. 
Table 3-22 lists the encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, ECX, and 
EDX registers is not defined; that is, specific bytes are not designated to contain descriptors for specific cache, 
prefetch, or TLB types. The descriptors may appear in any order. Note also a processor may report a general 
descriptor type (FFH) and not report any byte descriptor of “cache type” via CPUID leaf 2.

21 DS Debug Store. The processor supports the ability to write debug information into a memory resident buffer. 
This feature is used by the branch trace store (BTS) and precise event-based sampling (PEBS) facilities (see 
Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3C).

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that 
allow processor temperature to be monitored and processor performance to be modulated in predefined duty 
cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save and 
restore of the floating point context. Presence of this bit also indicates that CR4.OSFXSR is available for an 
operating system to indicate that it supports the FXSAVE and FXRSTOR instructions.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting memory types by performing a snoop of its 
own cache structure for transactions issued to the bus.

28 HTT Max APIC IDs reserved field is Valid. A value of 0 for HTT indicates there is only a single logical processor in 
the package and software should assume only a single APIC ID is reserved.  A value of 1 for HTT indicates the 
value in CPUID.1.EBX[23:16] (the Maximum number of addressable IDs for logical processors in this package) is 
valid for the package.

29 TM Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC).

30 Reserved Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in the 
stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the 
processor should return to normal operation to handle the interrupt. Bit 10 (PBE enable) in the 
IA32_MISC_ENABLE MSR enables this capability.

Table 3-21    More on Feature Information Returned in the EDX Register (Contd.)

Bit # Mnemonic Description

Table 3-22    Encoding of CPUID Leaf 2 Descriptors 
 Value Type Description

00H General Null descriptor, this byte contains no information

01H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries
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02H TLB Instruction TLB: 4 MByte pages, fully associative, 2 entries

03H TLB Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H TLB Data TLB: 4 MByte pages, 4-way set associative, 8 entries

05H TLB Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H Cache 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H Cache 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

09H Cache 1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size

0AH Cache 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH TLB Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

0CH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

0DH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size

0EH Cache 1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size

1DH Cache 2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size

21H Cache 2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size

22H Cache 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector

23H Cache 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

24H Cache 2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size

25H Cache 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

29H Cache 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

2CH Cache 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H Cache 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size

40H Cache No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache

41H Cache 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H Cache 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H Cache 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H Cache 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H Cache 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H Cache 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H Cache 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

48H Cache 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size

49H Cache 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model 
06H);

2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH Cache 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH Cache 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH Cache 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

4DH Cache 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

4EH Cache 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

Table 3-22    Encoding of CPUID Leaf 2 Descriptors  (Contd.)
 Value Type Description
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4FH TLB Instruction TLB: 4 KByte pages, 32 entries

50H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

55H TLB Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries

56H TLB Data TLB0: 4 MByte pages, 4-way set associative, 16 entries

57H TLB Data TLB0: 4 KByte pages, 4-way associative, 16 entries

59H TLB Data TLB0: 4 KByte pages, fully associative, 16 entries

5AH TLB Data TLB0: 2 MByte or 4 MByte pages, 4-way set associative, 32 entries

5BH TLB Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH TLB Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH TLB Data TLB: 4 KByte and 4 MByte pages,256 entries

60H Cache 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

61H TLB Instruction TLB: 4 KByte pages, fully associative, 48 entries

63H TLB Data TLB: 2 MByte or 4 MByte pages, 4-way set associative, 32 entries and a separate array with 1 GByte 
pages, 4-way set associative, 4 entries

64H TLB Data TLB: 4 KByte pages, 4-way set associative, 512 entries

66H Cache 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H Cache 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H Cache 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

6AH Cache uTLB: 4 KByte pages, 8-way set associative, 64 entries

6BH Cache DTLB: 4 KByte pages, 8-way set associative, 256 entries

6CH Cache DTLB: 2M/4M pages, 8-way set associative, 128 entries

6DH Cache DTLB: 1 GByte pages, fully associative, 16 entries

70H Cache Trace cache: 12 K-μop, 8-way set associative

71H Cache Trace cache: 16 K-μop, 8-way set associative

72H Cache Trace cache: 32 K-μop, 8-way set associative

76H TLB Instruction TLB: 2M/4M pages, fully associative, 8 entries 

78H Cache 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H Cache 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7AH Cache 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7BH Cache 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7CH Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector

7DH Cache 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH Cache 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

80H Cache 2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size

82H Cache 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H Cache 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

Table 3-22    Encoding of CPUID Leaf 2 Descriptors  (Contd.)
 Value Type Description



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 49

84H Cache 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H Cache 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H Cache 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

A0H DTLB DTLB: 4k pages, fully associative, 32 entries

B0H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B1H TLB Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B2H TLB Instruction TLB: 4KByte pages, 4-way set associative, 64 entries

B3H TLB Data TLB: 4 KByte pages, 4-way set associative, 128 entries

B4H TLB Data TLB1: 4 KByte pages, 4-way associative, 256 entries

B5H TLB Instruction TLB: 4KByte pages, 8-way set associative, 64 entries

B6H TLB Instruction TLB: 4KByte pages, 8-way set associative, 128 entries

BAH TLB Data TLB1: 4 KByte pages, 4-way associative, 64 entries

C0H TLB Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries

C1H STLB Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries

C2H DTLB DTLB: 4 KByte/2 MByte pages, 4-way associative, 16 entries

C3H STLB Shared 2nd-Level TLB: 4 KByte /2 MByte pages, 6-way associative, 1536 entries. Also 1GBbyte pages, 4-way, 
16 entries.

C4H DTLB DTLB: 2M/4M Byte pages, 4-way associative, 32 entries

CAH STLB Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries

D0H Cache 3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size

D1H Cache 3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size

D2H Cache 3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size

D6H Cache 3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size

D7H Cache 3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size

D8H Cache 3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size

DCH Cache 3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size

DDH Cache 3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size

DEH Cache 3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size

E2H Cache 3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size

E3H Cache 3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size

E4H Cache 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size

EAH Cache 3rd-level cache: 12MByte, 24-way set associative, 64 byte line size

EBH Cache 3rd-level cache: 18MByte, 24-way set associative, 64 byte line size

ECH Cache 3rd-level cache: 24MByte, 24-way set associative, 64 byte line size

F0H Prefetch 64-Byte prefetching

F1H Prefetch 128-Byte prefetching

FFH General CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters

Table 3-22    Encoding of CPUID Leaf 2 Descriptors  (Contd.)
 Value Type Description
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Example 3-1    Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following information about caches and TLBs 
when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

Which means:
• The least-significant byte (byte 0) of register EAX is set to 01H. This value should be ignored.
• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, indicating that each register 

contains valid 1-byte descriptors.
• Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte pages.

— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache line size.
• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— 00H - NULL descriptor.

— 70H - Trace cache: 12 K-μop, 8-way set associative.

— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte cache line size.

— 00H - NULL descriptor.

INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 04H and ECX contains an index value, the processor returns encoded data 
that describe a set of deterministic cache parameters (for the cache level associated with the input in ECX). Valid 
index values start from 0.

Software can enumerate the deterministic cache parameters for each level of the cache hierarchy starting with an 
index value of 0, until the parameters report the value associated with the cache type field is 0. The architecturally 
defined fields reported by deterministic cache parameters are documented in Table 3-18.

This Cache Size in Bytes

= (Ways + 1) * (Partitions + 1) * (Line_Size + 1) * (Sets + 1)

= (EBX[31:22] + 1) * (EBX[21:12] + 1) * (EBX[11:0] + 1) * (ECX + 1)

The CPUID leaf 04H also reports data that can be used to derive the topology of processor cores in a physical 
package. This information is constant for all valid index values. Software can query the raw data reported by 
executing CPUID with EAX=04H and ECX=0 and use it as part of the topology enumeration algorithm described in 
Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

INPUT EAX = 05H: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 05H, the processor returns information about features available to 
MONITOR/MWAIT instructions. The MONITOR instruction is used for address-range monitoring in conjunction with 
MWAIT instruction. The MWAIT instruction optionally provides additional extensions for advanced power manage-
ment. See Table 3-18. 
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INPUT EAX = 06H: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 06H, the processor returns information about thermal and power manage-
ment features. See Table 3-18. 

INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 07H and ECX = 0, the processor returns information about the maximum 
input value for sub-leaves that contain extended feature flags. See Table 3-18. 

When CPUID executes with EAX set to 07H and the input value of ECX is invalid (see leaf 07H entry in Table 3-
18), the processor returns 0 in EAX/EBX/ECX/EDX. In subleaf 0, EAX returns the maximum input value of the 
highest leaf 7 sub-leaf, and EBX, ECX & EDX contain information of extended feature flags.

INPUT EAX = 09H: Returns Direct Cache Access Information

When CPUID executes with EAX set to 09H, the processor returns information about Direct Cache Access capabil-
ities. See Table 3-18. 

INPUT EAX = 0AH: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 0AH, the processor returns information about support for architectural 
performance monitoring capabilities. Architectural performance monitoring is supported if the version ID (see 
Table 3-18) is greater than Pn 0. See Table 3-18.

For each version of architectural performance monitoring capability, software must enumerate this leaf to 
discover the programming facilities and the architectural performance events available in the processor. The 
details are described in Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3C.

INPUT EAX = 0BH: Returns Extended Topology Information

When CPUID executes with EAX set to 0BH, the processor returns information about extended topology enumer-
ation data. Software must detect the presence of CPUID leaf 0BH by verifying (a) the highest leaf index supported 
by CPUID is >= 0BH, and (b) CPUID.0BH:EBX[15:0] reports a non-zero value. See Table 3-18.

INPUT EAX = 0DH: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 0DH and ECX = 0, the processor returns information about the bit-vector 
representation of all processor state extensions that are supported in the processor and storage size require-
ments of the XSAVE/XRSTOR area. See Table 3-18. 

When CPUID executes with EAX set to 0DH and ECX = n (n > 1, and is a valid sub-leaf index), the processor 
returns information about the size and offset of each processor extended state save area within the XSAVE/
XRSTOR area. See Table 3-18. Software can use the forward-extendable technique depicted below to query the 
valid sub-leaves and obtain size and offset information for each processor extended state save area:

For i = 2 to 62 // sub-leaf 1 is reserved
IF (CPUID.(EAX=0DH, ECX=0):VECTOR[i] = 1 ) // VECTOR is the 64-bit value of EDX:EAX

Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i; 
FI;

INPUT EAX = 0FH: Returns Intel Resource Director Technology (Intel RDT) Monitoring Enumeration Information

When CPUID executes with EAX set to 0FH and ECX = 0, the processor returns information about the bit-vector 
representation of QoS monitoring resource types that are supported in the processor and maximum range of 
RMID values the processor can use to monitor of any supported resource types. Each bit, starting from bit 1, 
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corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or 
ResID) that software must use to query QoS monitoring capability available for that type. See Table 3-18.

When CPUID executes with EAX set to 0FH and ECX = n (n >= 1, and is a valid ResID), the processor returns 
information software can use to program IA32_PQR_ASSOC, IA32_QM_EVTSEL MSRs before reading QoS data 
from the IA32_QM_CTR MSR.

INPUT EAX = 10H: Returns Intel Resource Director Technology (Intel RDT) Allocation Enumeration Information

When CPUID executes with EAX set to 10H and ECX = 0, the processor returns information about the bit-vector 
representation of QoS Enforcement resource types that are supported in the processor. Each bit, starting from bit 
1, corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or 
ResID) that software must use to query QoS enforcement capability available for that type. See Table 3-18.

When CPUID executes with EAX set to 10H and ECX = n (n >= 1, and is a valid ResID), the processor returns 
information about available classes of service and range of QoS mask MSRs that software can use to configure 
each class of services using capability bit masks in the QoS Mask registers, IA32_resourceType_Mask_n.

INPUT EAX = 12H: Returns Intel SGX Enumeration Information

When CPUID executes with EAX set to 12H and ECX = 0H, the processor returns information about Intel SGX 
capabilities. See Table 3-18. 

When CPUID executes with EAX set to 12H and ECX = 1H, the processor returns information about Intel SGX 
attributes. See Table 3-18. 

When CPUID executes with EAX set to 12H and ECX = n (n > 1), the processor returns information about Intel 
SGX Enclave Page Cache. See Table 3-18.

INPUT EAX = 14H: Returns Intel Processor Trace Enumeration Information

When CPUID executes with EAX set to 14H and ECX = 0H, the processor returns information about Intel Processor 
Trace extensions. See Table 3-18. 

When CPUID executes with EAX set to 14H and ECX = n (n > 0 and less than the number of non-zero bits in 
CPUID.(EAX=14H, ECX= 0H).EAX), the processor returns information about packet generation in Intel Processor 
Trace. See Table 3-18. 

INPUT EAX = 15H: Returns Time Stamp Counter/Core Crystal Clock Information

When CPUID executes with EAX set to 15H and ECX = 0H, the processor returns information about Time Stamp 
Counter/Core Crystal Clock. See Table 3-18.

INPUT EAX = 16H: Returns Processor Frequency Information

When CPUID executes with EAX set to 16H, the processor returns information about Processor Frequency Infor-
mation. See Table 3-18. 

INPUT EAX = 17H: Returns System-On-Chip Information

When CPUID executes with EAX set to 17H, the processor returns information about the System-On-Chip Vendor 
Attribute Enumeration. See Table 3-18. 
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METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method.

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are available in early processors, see 
Section: “Identification of Earlier IA-32 Processors” in Chapter 18 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

The Processor Brand String Method

Figure 3-9 describes the algorithm used for detection of the brand string. Processor brand identification software 
should execute this algorithm on all Intel 64 and IA-32 processors. 

This method (introduced with Pentium 4 processors) returns an ASCII brand identification string and the 
Processor Base frequency of the processor to the EAX, EBX, ECX, and EDX registers.

Figure 3-9    Determination of Support for the Processor Brand String
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How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through 80000004H. For each input 
value, CPUID returns 16 ASCII characters using EAX, EBX, ECX, and EDX. The returned string will be NULL-termi-
nated.

Table 3-23 shows the brand string that is returned by the first processor in the Pentium 4 processor family.

Table 3-23    Processor Brand String Returned with Pentium 4 Processor 

EAX Input Value Return Values ASCII Equivalent

80000002H EAX = 20202020H

EBX = 20202020H

ECX = 20202020H

EDX = 6E492020H

“  ” 

“ ”

“ ”

“nI  ”

80000003H EAX = 286C6574H

EBX = 50202952H

ECX = 69746E65H

EDX = 52286D75H

“(let”

“P )R”

“itne”

“R(mu”

80000004H EAX = 20342029H

EBX = 20555043H

ECX = 30303531H

EDX = 007A484DH

“ 4 )”

“ UPC”

“0051”

“\0zHM”
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Extracting the Processor Frequency from Brand Strings

Figure 3-10 provides an algorithm which software can use to extract the Processor Base frequency from the 
processor brand string.

The Processor Brand Index Method

The brand index method (introduced with Pentium® III Xeon® processors) provides an entry point into a brand 
identification table that is maintained in memory by system software and is accessible from system- and user-
level code. In this table, each brand index is associate with an ASCII brand identification string that identifies the 
official Intel family and model number of a processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the low byte in EBX. Software can 
then use this index to locate the brand identification string for the processor in the brand identification table. The 
first entry (brand index 0) in this table is reserved, allowing for backward compatibility with processors that do not 
support the brand identification feature. Starting with processor signature family ID = 0FH, model = 03H, brand 
index method is no longer supported. Use brand string method instead.

Table 3-24 shows brand indices that have identification strings associated with them.

Figure 3-10    Algorithm for Extracting Processor Frequency
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IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor earlier than the 
Intel486 processor.

Operation

IA32_BIOS_SIGN_ID MSR ← Update with installed microcode revision number;

CASE (EAX) OF
EAX = 0:

EAX ← Highest basic function input value understood by CPUID;
EBX ← Vendor identification string;
EDX ← Vendor identification string;
ECX ← Vendor identification string;

Table 3-24    Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String

00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) III processor1

03H Intel(R) Pentium(R) III Xeon(R) processor; If processor signature = 000006B1h, then Intel(R) Celeron(R) 
processor

04H Intel(R) Pentium(R) III processor

06H Mobile Intel(R) Pentium(R) III processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

0AH Intel(R) Celeron(R) processor1

0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor MP

0CH Intel(R) Xeon(R) processor MP

0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor

0FH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H – 0FFH RESERVED

NOTES:
1. Indicates versions of these processors that were introduced after the Pentium III 
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BREAK;
EAX = 1H:

EAX[3:0] ← Stepping ID; 
EAX[7:4] ← Model; 
EAX[11:8] ← Family; 
EAX[13:12] ← Processor type; 
EAX[15:14] ← Reserved;
EAX[19:16] ← Extended Model;
EAX[27:20] ← Extended Family;
EAX[31:28] ← Reserved;
EBX[7:0] ← Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] ← CLFLUSH Line Size;
EBX[16:23] ← Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] ← Initial APIC ID;
ECX ← Feature flags; (* See Figure 3-7. *)
EDX ← Feature flags; (* See Figure 3-8. *)

BREAK;
EAX = 2H:

EAX ← Cache and TLB information; 
 EBX ← Cache and TLB information; 
 ECX ← Cache and TLB information; 

EDX ← Cache and TLB information; 
BREAK;
EAX = 3H:

EAX ← Reserved; 
 EBX ← Reserved; 
 ECX ← ProcessorSerialNumber[31:0]; 

(* Pentium III processors only, otherwise reserved. *)
EDX ← ProcessorSerialNumber[63:32]; 
(* Pentium III processors only, otherwise reserved. *

BREAK
EAX = 4H:

EAX ← Deterministic Cache Parameters Leaf; (* See Table 3-18. *)
EBX ← Deterministic Cache Parameters Leaf; 

 ECX ← Deterministic Cache Parameters Leaf; 
EDX ← Deterministic Cache Parameters Leaf; 

BREAK;
EAX = 5H:

EAX ← MONITOR/MWAIT Leaf; (* See Table 3-18. *)
 EBX ← MONITOR/MWAIT Leaf; 
 ECX ← MONITOR/MWAIT Leaf; 

EDX ← MONITOR/MWAIT Leaf; 
BREAK;
EAX = 6H:

EAX ← Thermal and Power Management Leaf; (* See Table 3-18. *)
 EBX ← Thermal and Power Management Leaf; 
 ECX ← Thermal and Power Management Leaf; 

EDX ← Thermal and Power Management Leaf; 
BREAK;
EAX = 7H:
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EAX ← Structured Extended Feature Flags Enumeration Leaf; (* See Table 3-18. *)
EBX ← Structured Extended Feature Flags Enumeration Leaf; 

 ECX ← Structured Extended Feature Flags Enumeration Leaf; 
EDX ← Structured Extended Feature Flags Enumeration Leaf; 

BREAK;
EAX = 8H:

EAX ← Reserved = 0;
 EBX ← Reserved = 0; 
 ECX ← Reserved = 0; 

EDX ← Reserved = 0; 
BREAK;
EAX = 9H:

EAX ← Direct Cache Access Information Leaf; (* See Table 3-18. *)
 EBX ← Direct Cache Access Information Leaf; 
 ECX ← Direct Cache Access Information Leaf; 

EDX ← Direct Cache Access Information Leaf; 
BREAK;
EAX = AH:

EAX ← Architectural Performance Monitoring Leaf; (* See Table 3-18. *)
 EBX ← Architectural Performance Monitoring Leaf; 
 ECX ← Architectural Performance Monitoring Leaf; 

EDX ← Architectural Performance Monitoring Leaf; 
BREAK

EAX = BH:
EAX ← Extended Topology Enumeration Leaf; (* See Table 3-18. *)
EBX ← Extended Topology Enumeration Leaf; 

 ECX ← Extended Topology Enumeration Leaf; 
EDX ← Extended Topology Enumeration Leaf; 

BREAK;
EAX = CH:

EAX ← Reserved = 0;
 EBX ← Reserved = 0; 
 ECX ← Reserved = 0; 

EDX ← Reserved = 0; 
BREAK;
EAX = DH:

EAX ← Processor Extended State Enumeration Leaf; (* See Table 3-18. *)
 EBX ← Processor Extended State Enumeration Leaf; 
 ECX ← Processor Extended State Enumeration Leaf; 

EDX ← Processor Extended State Enumeration Leaf; 
BREAK;
EAX = EH:

EAX ← Reserved = 0;
 EBX ← Reserved = 0; 
 ECX ← Reserved = 0; 

EDX ← Reserved = 0; 
BREAK;
EAX = FH:

EAX ← Intel Resource Director Technology Monitoring Enumeration Leaf; (* See Table 3-18. *)
 EBX ← Intel Resource Director Technology Monitoring Enumeration Leaf; 



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 59

 ECX ← Intel Resource Director Technology Monitoring Enumeration Leaf; 
EDX ← Intel Resource Director Technology Monitoring Enumeration Leaf; 

BREAK;
EAX = 10H:

EAX ← Intel Resource Director Technology Allocation Enumeration Leaf; (* See Table 3-18. *)
 EBX ← Intel Resource Director Technology Allocation Enumeration Leaf; 
 ECX ← Intel Resource Director Technology Allocation Enumeration Leaf; 

EDX ← Intel Resource Director Technology Allocation Enumeration Leaf; 
BREAK;

EAX = 12H:
EAX ← Intel SGX Enumeration Leaf; (* See Table 3-18. *)

 EBX ← Intel SGX Enumeration Leaf; 
 ECX ← Intel SGX Enumeration Leaf; 

EDX ← Intel SGX Enumeration Leaf; 
BREAK;
EAX = 14H:

EAX ← Intel Processor Trace Enumeration Leaf; (* See Table 3-18. *)
 EBX ← Intel Processor Trace Enumeration Leaf; 
 ECX ← Intel Processor Trace Enumeration Leaf; 

EDX ← Intel Processor Trace Enumeration Leaf; 
BREAK;
EAX = 15H:

EAX ← Time Stamp Counter/Core Crystal Clock Information Leaf; (* See Table 3-18. *)
 EBX ← Time Stamp Counter/Core Crystal Clock Information Leaf; 
 ECX ← Time Stamp Counter/Core Crystal Clock Information Leaf; 

EDX ← Time Stamp Counter/Core Crystal Clock Information Leaf; 
BREAK;
EAX = 16H:

EAX ← Processor Frequency Information Enumeration Leaf; (* See Table 3-18. *)
 EBX ← Processor Frequency Information Enumeration Leaf; 
 ECX ← Processor Frequency Information Enumeration Leaf; 

EDX ← Processor Frequency Information Enumeration Leaf; 
BREAK;
EAX = 17H:

EAX ← System-On-Chip Vendor Attribute Enumeration Leaf; (* See Table 3-18. *)
 EBX ← System-On-Chip Vendor Attribute Enumeration Leaf; 
 ECX ← System-On-Chip Vendor Attribute Enumeration Leaf; 

EDX ← System-On-Chip Vendor Attribute Enumeration Leaf; 
BREAK;
EAX = 80000000H:

EAX ← Highest extended function input value understood by CPUID;
EBX ← Reserved; 
ECX ← Reserved; 
EDX ← Reserved; 

BREAK;
EAX = 80000001H:

EAX ← Reserved; 
EBX ← Reserved; 
ECX ← Extended Feature Bits (* See Table 3-18.*); 
EDX ← Extended Feature Bits (* See Table 3-18. *); 
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BREAK;
EAX = 80000002H:

EAX ← Processor Brand String; 
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued; 
EDX ← Processor Brand String, continued; 

BREAK;
EAX = 80000003H:

EAX ← Processor Brand String, continued; 
EBX ← Processor Brand String, continued; 
ECX ← Processor Brand String, continued; 
EDX ← Processor Brand String, continued; 

BREAK;
EAX = 80000004H:

EAX ← Processor Brand String, continued; 
EBX ← Processor Brand String, continued; 
ECX ← Processor Brand String, continued; 
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000005H:

EAX ← Reserved = 0; 
EBX ← Reserved = 0; 
ECX ← Reserved = 0; 
EDX ← Reserved = 0; 

BREAK;
EAX = 80000006H:

EAX ← Reserved = 0; 
EBX ← Reserved = 0; 
ECX ← Cache information; 
EDX ← Reserved = 0; 

BREAK;
EAX = 80000007H:

EAX ← Reserved = 0; 
EBX ← Reserved = 0; 
ECX ← Reserved = 0; 
EDX ← Reserved = Misc Feature Flags; 

BREAK;
EAX = 80000008H:

EAX ← Reserved = Physical Address Size Information; 
EBX ← Reserved = Virtual Address Size Information; 
ECX ← Reserved = 0; 
EDX ← Reserved = 0; 

BREAK;
EAX >= 40000000H and EAX <= 4FFFFFFFH:
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)

(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX ← Reserved; (* Information returned for highest basic information leaf. *)
EBX ← Reserved; (* Information returned for highest basic information leaf. *)
ECX ← Reserved; (* Information returned for highest basic information leaf. *)
EDX ← Reserved; (* Information returned for highest basic information leaf. *)
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BREAK;
ESAC;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

In earlier IA-32 processors that do not support the CPUID instruction, execution of the 
instruction results in an invalid opcode (#UD) exception being generated.

...

FCLEX/FNCLEX—Clear Exceptions

Description

Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the exception summary status flag (ES), 
the stack fault flag (SF), and the busy flag (B) in the FPU status word. The FCLEX instruction checks for and 
handles any pending unmasked floating-point exceptions before clearing the exception flags; the FNCLEX instruc-
tion does not.

The assembler issues two instructions for the FCLEX instruction (an FWAIT instruction followed by an FNCLEX 
instruction), and the processor executes each of these instructions separately. If an exception is generated for 
either of these instructions, the save EIP points to the instruction that caused the exception.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS* compatibility mode, it is possible (under unusual 
circumstances) for an FNCLEX instruction to be interrupted prior to being executed to handle a pending FPU 
exception. See the section titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of these circum-
stances. An FNCLEX instruction cannot be interrupted in this way on later Intel processors, except for the Intel 
QuarkTM X1000 processor.

This instruction affects only the x87 FPU floating-point exception flags. It does not affect the SIMD floating-point 
exception flags in the MXCRS register.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode* Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B DB E2 FCLEX Valid Valid Clear floating-point exception flags after checking for 
pending unmasked floating-point exceptions.

DB E2 FNCLEX* Valid Valid Clear floating-point exception flags without checking for 
pending unmasked floating-point exceptions.

NOTES:
* See IA-32 Architecture Compatibility section below.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 62

Operation

FPUStatusWord[0:7] ← 0;
FPUStatusWord[15] ← 0;

FPU Flags Affected

The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared. The C0, C1, C2, and C3 flags 
are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

...

FINIT/FNINIT—Initialize Floating-Point Unit

Description

Sets the FPU control, status, tag, instruction pointer, and data pointer registers to their default states. The FPU 
control word is set to 037FH (round to nearest, all exceptions masked, 64-bit precision). The status word is 
cleared (no exception flags set, TOP is set to 0). The data registers in the register stack are left unchanged, but 
they are all tagged as empty (11B). Both the instruction and data pointers are cleared.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B DB E3 FINIT Valid Valid Initialize FPU after checking for pending unmasked 
floating-point exceptions.

DB E3 FNINIT* Valid Valid Initialize FPU without checking for pending unmasked 
floating-point exceptions.

NOTES:
* See IA-32 Architecture Compatibility section below.
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The FINIT instruction checks for and handles any pending unmasked floating-point exceptions before performing 
the initialization; the FNINIT instruction does not.

The assembler issues two instructions for the FINIT instruction (an FWAIT instruction followed by an FNINIT 
instruction), and the processor executes each of these instructions in separately. If an exception is generated for 
either of these instructions, the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible (under unusual 
circumstances) for an FNINIT instruction to be interrupted prior to being executed to handle a pending FPU excep-
tion. See the section titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of these circum-
stances. An FNINIT instruction cannot be interrupted in this way on later Intel processors, except for the Intel 
QuarkTM X1000 processor.

In the Intel387 math coprocessor, the FINIT/FNINIT instruction does not clear the instruction and data pointers.

This instruction affects only the x87 FPU. It does not affect the XMM and MXCSR registers.

Operation

FPUControlWord ← 037FH;
FPUStatusWord ← 0;
FPUTagWord ← FFFFH;
FPUDataPointer ← 0;
FPUInstructionPointer ← 0;
FPULastInstructionOpcode ← 0;

FPU Flags Affected

C0, C1, C2, C3 set to 0.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.
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64-Bit Mode Exceptions
Same exceptions as in protected mode.

...

FSAVE/FNSAVE—Store x87 FPU State

Description

Stores the current FPU state (operating environment and register stack) at the specified destination in memory, 
and then re-initializes the FPU. The FSAVE instruction checks for and handles pending unmasked floating-point 
exceptions before storing the FPU state; the FNSAVE instruction does not.

The FPU operating environment consists of the FPU control word, status word, tag word, instruction pointer, data 
pointer, and last opcode. Figures 8-9 through 8-12 in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, show the layout in memory of the stored environment, depending on the operating mode of 
the processor (protected or real) and the current operand-size attribute (16-bit or 32-bit). In virtual-8086 mode, 
the real mode layouts are used. The contents of the FPU register stack are stored in the 80 bytes immediately 
follow the operating environment image.

The saved image reflects the state of the FPU after all floating-point instructions preceding the FSAVE/FNSAVE 
instruction in the instruction stream have been executed.

After the FPU state has been saved, the FPU is reset to the same default values it is set to with the FINIT/FNINIT 
instructions (see “FINIT/FNINIT—Initialize Floating-Point Unit” in this chapter).

The FSAVE/FNSAVE instructions are typically used when the operating system needs to perform a context switch, 
an exception handler needs to use the FPU, or an application program needs to pass a “clean” FPU to a procedure.

The assembler issues two instructions for the FSAVE instruction (an FWAIT instruction followed by an FNSAVE 
instruction), and the processor executes each of these instructions separately. If an exception is generated for 
either of these instructions, the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

For Intel math coprocessors and FPUs prior to the Intel Pentium processor, an FWAIT instruction should be 
executed before attempting to read from the memory image stored with a prior FSAVE/FNSAVE instruction. This 
FWAIT instruction helps ensure that the storage operation has been completed.

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible (under unusual 
circumstances) for an FNSAVE instruction to be interrupted prior to being executed to handle a pending FPU 
exception. See the section titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of these circum-

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B DD /6 FSAVE m94/108byte Valid Valid Store FPU state to m94byte or m108byte after 
checking for pending unmasked floating-point 
exceptions. Then re-initialize the FPU.

DD /6 FNSAVE* m94/108byte Valid Valid Store FPU environment to m94byte or m108byte 
without checking for pending unmasked floating-
point exceptions. Then re-initialize the FPU.

NOTES:
* See IA-32 Architecture Compatibility section below.
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stances. An FNSAVE instruction cannot be interrupted in this way on later Intel processors, except for the Intel 
QuarkTM X1000 processor.

Operation

(* Save FPU State and Registers *)

DEST[FPUControlWord] ← FPUControlWord;
DEST[FPUStatusWord] ← FPUStatusWord;
DEST[FPUTagWord] ← FPUTagWord;
DEST[FPUDataPointer] ← FPUDataPointer;
DEST[FPUInstructionPointer] ← FPUInstructionPointer;
DEST[FPULastInstructionOpcode] ← FPULastInstructionOpcode;

DEST[ST(0)] ← ST(0);
DEST[ST(1)] ← ST(1);
DEST[ST(2)] ← ST(2);
DEST[ST(3)] ← ST(3);
DEST[ST(4)]← ST(4);
DEST[ST(5)] ← ST(5);
DEST[ST(6)] ← ST(6);
DEST[ST(7)] ← ST(7);

(* Initialize FPU *)

FPUControlWord ← 037FH;
FPUStatusWord ← 0;
FPUTagWord ← FFFFH;
FPUDataPointer ← 0;
FPUInstructionPointer ← 0;
FPULastInstructionOpcode ← 0;

FPU Flags Affected

The C0, C1, C2, and C3 flags are saved and then cleared.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) If destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.

...

FSTCW/FNSTCW—Store x87 FPU Control Word

Description

Stores the current value of the FPU control word at the specified destination in memory. The FSTCW instruction 
checks for and handles pending unmasked floating-point exceptions before storing the control word; the FNSTCW 
instruction does not.

The assembler issues two instructions for the FSTCW instruction (an FWAIT instruction followed by an FNSTCW 
instruction), and the processor executes each of these instructions in separately. If an exception is generated for 
either of these instructions, the save EIP points to the instruction that caused the exception.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B D9 /7 FSTCW m2byte Valid Valid Store FPU control word to m2byte after checking for 
pending unmasked floating-point exceptions.

D9 /7 FNSTCW* m2byte Valid Valid Store FPU control word to m2byte without checking for 
pending unmasked floating-point exceptions.

NOTES:
* See IA-32 Architecture Compatibility section below.
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This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible (under unusual 
circumstances) for an FNSTCW instruction to be interrupted prior to being executed to handle a pending FPU 
exception. See the section titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of these circum-
stances. An FNSTCW instruction cannot be interrupted in this way on later Intel processors, except for the Intel 
QuarkTM X1000 processor.

Operation

DEST ← FPUControlWord;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

...

FSTENV/FNSTENV—Store x87 FPU Environment

Description

Saves the current FPU operating environment at the memory location specified with the destination operand, and 
then masks all floating-point exceptions. The FPU operating environment consists of the FPU control word, status 
word, tag word, instruction pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, show the layout in memory of the stored environ-
ment, depending on the operating mode of the processor (protected or real) and the current operand-size attri-
bute (16-bit or 32-bit). In virtual-8086 mode, the real mode layouts are used.

The FSTENV instruction checks for and handles any pending unmasked floating-point exceptions before storing 
the FPU environment; the FNSTENV instruction does not. The saved image reflects the state of the FPU after all 
floating-point instructions preceding the FSTENV/FNSTENV instruction in the instruction stream have been 
executed.

These instructions are often used by exception handlers because they provide access to the FPU instruction and 
data pointers. The environment is typically saved in the stack. Masking all exceptions after saving the environ-
ment prevents floating-point exceptions from interrupting the exception handler.

The assembler issues two instructions for the FSTENV instruction (an FWAIT instruction followed by an FNSTENV 
instruction), and the processor executes each of these instructions separately. If an exception is generated for 
either of these instructions, the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B D9 /6 FSTENV m14/28byte Valid Valid Store FPU environment to m14byte or m28byte 
after checking for pending unmasked floating-point 
exceptions. Then mask all floating-point exceptions.

D9 /6 FNSTENV* m14/28byte Valid Valid Store FPU environment to m14byte or m28byte 
without checking for pending unmasked floating-
point exceptions. Then mask all floating-
point exceptions.

NOTES:
* See IA-32 Architecture Compatibility section below.
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IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible (under unusual 
circumstances) for an FNSTENV instruction to be interrupted prior to being executed to handle a pending FPU 
exception. See the section titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of these circum-
stances. An FNSTENV instruction cannot be interrupted in this way on later Intel processors, except for the Intel 
QuarkTM X1000 processor.

Operation

DEST[FPUControlWord] ← FPUControlWord;
DEST[FPUStatusWord] ← FPUStatusWord;
DEST[FPUTagWord] ← FPUTagWord;
DEST[FPUDataPointer] ← FPUDataPointer;
DEST[FPUInstructionPointer] ← FPUInstructionPointer;
DEST[FPULastInstructionOpcode] ← FPULastInstructionOpcode;

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.
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Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

...

FSTSW/FNSTSW—Store x87 FPU Status Word

Description

Stores the current value of the x87 FPU status word in the destination location. The destination operand can be 
either a two-byte memory location or the AX register. The FSTSW instruction checks for and handles pending 
unmasked floating-point exceptions before storing the status word; the FNSTSW instruction does not.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B DD /7 FSTSW m2byte Valid Valid Store FPU status word at m2byte after checking 
for pending unmasked floating-point exceptions.

9B DF E0 FSTSW AX Valid Valid Store FPU status word in AX register after 
checking for pending unmasked floating-point 
exceptions.

DD /7 FNSTSW* m2byte Valid Valid Store FPU status word at m2byte without 
checking for pending unmasked floating-point 
exceptions.

DF E0 FNSTSW* AX Valid Valid Store FPU status word in AX register without 
checking for pending unmasked floating-point 
exceptions.

NOTES:
* See IA-32 Architecture Compatibility section below.
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The FNSTSW AX form of the instruction is used primarily in conditional branching (for instance, after an FPU 
comparison instruction or an FPREM, FPREM1, or FXAM instruction), where the direction of the branch depends on 
the state of the FPU condition code flags. (See the section titled “Branching and Conditional Moves on FPU Condi-
tion Codes” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.) This 
instruction can also be used to invoke exception handlers (by examining the exception flags) in environments that 
do not use interrupts. When the FNSTSW AX instruction is executed, the AX register is updated before the 
processor executes any further instructions. The status stored in the AX register is thus guaranteed to be from the 
completion of the prior FPU instruction. 

The assembler issues two instructions for the FSTSW instruction (an FWAIT instruction followed by an FNSTSW 
instruction), and the processor executes each of these instructions separately. If an exception is generated for 
either of these instructions, the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible (under unusual 
circumstances) for an FNSTSW instruction to be interrupted prior to being executed to handle a pending FPU 
exception. See the section titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of these circum-
stances. An FNSTSW instruction cannot be interrupted in this way on later Intel processors, except for the Intel 
QuarkTM X1000 processor.

Operation

DEST ← FPUStatusWord;

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

...
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IMUL—Signed Multiply

Instruction Operand Encoding

Description

Performs a signed multiplication of two operands. This instruction has three forms, depending on the number of 
operands. 
• One-operand form — This form is identical to that used by the MUL instruction. Here, the source operand (in 

a general-purpose register or memory location) is multiplied by the value in the AL, AX, EAX, or RAX register 
(depending on the operand size) and the product (twice the size of the input operand) is stored in the AX, 
DX:AX, EDX:EAX, or RDX:RAX registers, respectively.

• Two-operand form — With this form the destination operand (the first operand) is multiplied by the source 
operand (second operand). The destination operand is a general-purpose register and the source operand is 
an immediate value, a general-purpose register, or a memory location. The intermediate product (twice the 
size of the input operand) is truncated and stored in the destination operand location.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F6 /5 IMUL r/m8* M Valid Valid AX← AL ∗ r/m byte.

F7 /5 IMUL r/m16 M Valid Valid DX:AX ← AX ∗ r/m word.

F7 /5 IMUL r/m32 M Valid Valid EDX:EAX ← EAX ∗ r/m32.

REX.W + F7 /5 IMUL r/m64 M Valid N.E. RDX:RAX ← RAX ∗ r/m64.

0F AF /r IMUL r16, r/m16 RM Valid Valid word register ← word register ∗ r/m16.

0F AF /r IMUL r32, r/m32 RM Valid Valid doubleword register ← doubleword register ∗ 
r/m32.

REX.W + 0F AF /r IMUL r64, r/m64 RM Valid N.E. Quadword register ← Quadword register ∗ r/
m64.

6B /r ib IMUL r16, r/m16, imm8 RMI Valid Valid word register ← r/m16 ∗ sign-extended 
immediate byte.

6B /r ib IMUL r32, r/m32, imm8 RMI Valid Valid doubleword register ← r/m32 ∗ sign-
extended immediate byte.

REX.W + 6B /r ib IMUL r64, r/m64, imm8 RMI Valid N.E. Quadword register ← r/m64 ∗ sign-extended 
immediate byte.

69 /r iw IMUL r16, r/m16, imm16 RMI Valid Valid word register ← r/m16 ∗ immediate word.

69 /r id IMUL r32, r/m32, imm32 RMI Valid Valid doubleword register ← r/m32 ∗ immediate 
doubleword.

REX.W + 69 /r id IMUL r64, r/m64, imm32 RMI Valid N.E. Quadword register ← r/m64 ∗ immediate 
doubleword.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8/16/32 NA
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• Three-operand form — This form requires a destination operand (the first operand) and two source 
operands (the second and the third operands). Here, the first source operand (which can be a general-
purpose register or a memory location) is multiplied by the second source operand (an immediate value). The 
intermediate product (twice the size of the first source operand) is truncated and stored in the destination 
operand (a general-purpose register).

When an immediate value is used as an operand, it is sign-extended to the length of the destination operand 
format.

The CF and OF flags are set when the signed integer value of the intermediate product differs from the sign 
extended operand-size-truncated product, otherwise the CF and OF flags are cleared.

The three forms of the IMUL instruction are similar in that the length of the product is calculated to twice the 
length of the operands. With the one-operand form, the product is stored exactly in the destination. With the two- 
and three- operand forms, however, the result is truncated to the length of the destination before it is stored in 
the destination register. Because of this truncation, the CF or OF flag should be tested to ensure that no significant 
bits are lost. 

The two- and three-operand forms may also be used with unsigned operands because the lower half of the 
product is the same regardless if the operands are signed or unsigned. The CF and OF flags, however, cannot be 
used to determine if the upper half of the result is non-zero.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. Use of REX.W modifies the three 
forms of the instruction as follows.
• One-operand form —The source operand (in a 64-bit general-purpose register or memory location) is 

multiplied by the value in the RAX register and the product is stored in the RDX:RAX registers.
• Two-operand form — The source operand is promoted to 64 bits if it is a register or a memory location. The 

destination operand is promoted to 64 bits.
• Three-operand form — The first source operand (either a register or a memory location) and destination 

operand are promoted to 64 bits. If the source operand is an immediate, it is sign extended to 64 bits. 

Operation

IF (NumberOfOperands = 1)
THEN IF (OperandSize = 8)

THEN
TMP_XP ← AL ∗ SRC (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC *); 
AX ← TMP_XP[15:0];
SF ← TMP_XP[7];
IF SignExtend(TMP_XP[7:0]) = TMP_XP

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

ELSE IF OperandSize = 16
THEN 

TMP_XP ← AX ∗ SRC (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC *) 
DX:AX ← TMP_XP[31:0];
SF ← TMP_XP[15];
IF SignExtend(TMP_XP[15:0]) = TMP_XP

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

ELSE IF OperandSize = 32 
THEN 

TMP_XP ← EAX ∗ SRC (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC*) 
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EDX:EAX ← TMP_XP[63:0];
SF ← TMP_XP[31];
IF SignExtend(TMP_XP[31:0]) = TMP_XP

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

ELSE (* OperandSize = 64 *)
TMP_XP ← RAX ∗ SRC (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC *)
EDX:EAX ← TMP_XP[127:0];
SF ← TMP_XP[63];
IF SignExtend(TMP_XP[63:0]) = TMP_XP

THEN CF ← 0; OF ← 0;
ELSE CF ← 1; OF ← 1; FI;

FI;
FI;

ELSE IF (NumberOfOperands = 2)
THEN 

TMP_XP ← DEST ∗ SRC (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC *)
DEST ← TruncateToOperandSize(TMP_XP);
SF ← MSB(DEST);
IF SignExtend(DEST) ≠ TMP_XP

THEN CF ← 1; OF ← 1;
ELSE CF ← 0; OF ← 0; FI;

ELSE (* NumberOfOperands = 3 *)
TMP_XP ← SRC1 ∗ SRC2 (* Signed multiplication; TMP_XP is a signed integer at twice the width of the SRC1 *)
DEST ← TruncateToOperandSize(TMP_XP);
SF ← MSB(DEST);
IF SignExtend(DEST) ≠ TMP_XP

THEN CF ← 1; OF ← 1;
ELSE CF ← 0; OF ← 0; FI;

FI;
FI;

Flags Affected

SF is updated according to the most significant bit of the operand-size-truncated result in the destination. For the 
one operand form of the instruction, the CF and OF flags are set when significant bits are carried into the upper 
half of the result and cleared when the result fits exactly in the lower half of the result. For the two- and three-
operand forms of the instruction, the CF and OF flags are set when the result must be truncated to fit in the desti-
nation operand size and cleared when the result fits exactly in the destination operand size. The ZF, AF, and PF 
flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL NULL 
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

...

LMSW—Load Machine Status Word

Instruction Operand Encoding

Description

Loads the source operand into the machine status word, bits 0 through 15 of register CR0. The source operand 
can be a 16-bit general-purpose register or a memory location. Only the low-order 4 bits of the source operand 
(which contains the PE, MP, EM, and TS flags) are loaded into CR0. The PG, CD, NW, AM, WP, NE, and ET flags of 
CR0 are not affected. The operand-size attribute has no effect on this instruction.

If the PE flag of the source operand (bit 0) is set to 1, the instruction causes the processor to switch to protected 
mode. While in protected mode, the LMSW instruction cannot be used to clear the PE flag and force a switch back 
to real-address mode.

The LMSW instruction is provided for use in operating-system software; it should not be used in application 
programs. In protected or virtual-8086 mode, it can only be executed at CPL 0.

This instruction is provided for compatibility with the Intel 286 processor; programs and procedures intended to 
run on IA-32 and Intel 64 processors beginning with Intel386 processors should use the MOV (control registers) 
instruction to load the whole CR0 register. The MOV CR0 instruction can be used to set and clear the PE flag in 
CR0, allowing a procedure or program to switch between protected and real-address modes.

This instruction is a serializing instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Note that the operand size is fixed 
at 16 bits.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 /6 LMSW r/m16 M Valid Valid Loads r/m16 in machine status word of CR0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in 
VMX non-root operation.

Operation

CR0[0:3] ← SRC[0:3];

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The LMSW instruction is not recognized in real-address mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

...
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LOCK—Assert LOCK# Signal Prefix

Instruction Operand Encoding

Description

Causes the processor’s LOCK# signal to be asserted during execution of the accompanying instruction (turns the 
instruction into an atomic instruction). In a multiprocessor environment, the LOCK# signal ensures that the 
processor has exclusive use of any shared memory while the signal is asserted.

In most IA-32 and all Intel 64 processors, locking may occur without the LOCK# signal being asserted. See the 
“IA-32 Architecture Compatibility” section below for more details.

The LOCK prefix can be prepended only to the following instructions and only to those forms of the instructions 
where the destination operand is a memory operand: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCH8B, 
CMPXCHG16B, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, and XCHG. If the LOCK prefix is used with one of 
these instructions and the source operand is a memory operand, an undefined opcode exception (#UD) may be 
generated. An undefined opcode exception will also be generated if the LOCK prefix is used with any instruction 
not in the above list. The XCHG instruction always asserts the LOCK# signal regardless of the presence or absence 
of the LOCK prefix.

The LOCK prefix is typically used with the BTS instruction to perform a read-modify-write operation on a memory 
location in shared memory environment.

The integrity of the LOCK prefix is not affected by the alignment of the memory field. Memory locking is observed 
for arbitrarily misaligned fields.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

Beginning with the P6 family processors, when the LOCK prefix is prefixed to an instruction and the memory area 
being accessed is cached internally in the processor, the LOCK# signal is generally not asserted. Instead, only the 
processor’s cache is locked. Here, the processor’s cache coherency mechanism ensures that the operation is 
carried out atomically with regards to memory. See “Effects of a Locked Operation on Internal Processor Caches” 
in Chapter 8 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, the for more infor-
mation on locking of caches.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F0 LOCK NP Valid Valid Asserts LOCK# signal for duration of the 
accompanying instruction.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 79

Operation

AssertLOCK#(DurationOfAccompaningInstruction);

Flags Affected

None.

Protected Mode Exceptions
#UD If the LOCK prefix is used with an instruction not listed: ADD, ADC, AND, BTC, BTR, BTS, 

CMPXCHG, CMPXCH8B, CMPXCHG16B, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, 
XCHG.
Other exceptions can be generated by the instruction when the LOCK prefix is applied.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

...
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MOV—Move
Opcode Instruction Op/ 

En
64-Bit 
Mode

Compat/
Leg Mode

Description

88 /r MOV r/m8,r8 MR Valid Valid Move r8 to r/m8.

REX + 88 /r MOV r/m8***,r8*** MR Valid N.E. Move r8 to r/m8.

89 /r MOV r/m16,r16 MR Valid Valid Move r16 to r/m16.

89 /r MOV r/m32,r32 MR Valid Valid Move r32 to r/m32.

REX.W + 89 /r MOV r/m64,r64 MR Valid N.E. Move r64 to r/m64.

8A /r MOV r8,r/m8 RM Valid Valid Move r/m8 to r8.

REX + 8A /r MOV r8***,r/m8*** RM Valid N.E. Move r/m8 to r8.

8B /r MOV r16,r/m16 RM Valid Valid Move r/m16 to r16.

8B /r MOV r32,r/m32 RM Valid Valid Move r/m32 to r32.

REX.W + 8B /r MOV r64,r/m64 RM Valid N.E. Move r/m64 to r64.

8C /r MOV r/m16,Sreg** MR Valid Valid Move segment register to r/m16.

REX.W + 8C /r MOV r/m64,Sreg** MR Valid Valid Move zero extended 16-bit segment register 
to r/m64.

8E /r MOV Sreg,r/m16** RM Valid Valid Move r/m16 to segment register.

REX.W + 8E /r MOV Sreg,r/m64** RM Valid Valid Move lower 16 bits of r/m64 to segment 
register.

A0 MOV AL,moffs8* FD Valid Valid Move byte at (seg:offset) to AL.

REX.W + A0 MOV AL,moffs8* FD  Valid N.E. Move byte at (offset) to AL.

A1 MOV AX,moffs16* FD Valid Valid Move word at (seg:offset) to AX.

A1 MOV EAX,moffs32* FD Valid Valid Move doubleword at (seg:offset) to EAX.

REX.W + A1 MOV RAX,moffs64* FD Valid N.E. Move quadword at (offset) to RAX.

A2 MOV moffs8,AL TD  Valid Valid Move AL to (seg:offset).

REX.W + A2 MOV moffs8***,AL TD Valid N.E. Move AL to (offset).

A3 MOV moffs16*,AX TD Valid Valid Move AX to (seg:offset).

A3 MOV moffs32*,EAX TD Valid Valid Move EAX to (seg:offset).

REX.W + A3 MOV moffs64*,RAX TD Valid N.E. Move RAX to (offset).

B0+ rb ib MOV r8, imm8 OI Valid Valid Move imm8 to r8.

REX + B0+ rb ib MOV r8***, imm8 OI Valid N.E. Move imm8 to r8.

B8+ rw iw MOV r16, imm16 OI Valid Valid Move imm16 to r16.

B8+ rd id MOV r32, imm32 OI Valid Valid Move imm32 to r32.

REX.W + B8+ rd io MOV r64, imm64 OI Valid N.E. Move imm64 to r64.

C6 /0 ib MOV r/m8, imm8 MI Valid Valid Move imm8 to r/m8.

REX + C6 /0 ib MOV r/m8***, imm8 MI Valid N.E. Move imm8 to r/m8.

C7 /0 iw MOV r/m16, imm16 MI Valid Valid Move imm16 to r/m16.

C7 /0 id MOV r/m32, imm32 MI Valid Valid Move imm32 to r/m32.

REX.W + C7 /0 io MOV r/m64, imm32 MI Valid N.E. Move imm32 sign extended to 64-bits to r/
m64.
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Instruction Operand Encoding

Description

Copies the second operand (source operand) to the first operand (destination operand). The source operand can 
be an immediate value, general-purpose register, segment register, or memory location; the destination register 
can be a general-purpose register, segment register, or memory location. Both operands must be the same size, 
which can be a byte, a word, a doubleword, or a quadword.

The MOV instruction cannot be used to load the CS register. Attempting to do so results in an invalid opcode 
exception (#UD). To load the CS register, use the far JMP, CALL, or RET instruction.

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source operand must be a valid 
segment selector. In protected mode, moving a segment selector into a segment register automatically causes 
the segment descriptor information associated with that segment selector to be loaded into the hidden (shadow) 
part of the segment register. While loading this information, the segment selector and segment descriptor infor-
mation is validated (see the “Operation” algorithm below). The segment descriptor data is obtained from the GDT 
or LDT entry for the specified segment selector. 

A NULL segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS registers without causing 
a protection exception. However, any subsequent attempt to reference a segment whose corresponding segment 
register is loaded with a NULL value causes a general protection exception (#GP) and no memory reference 
occurs.

Loading the SS register with a MOV instruction inhibits all interrupts until after the execution of the next instruc-
tion. This operation allows a stack pointer to be loaded into the ESP register with the next instruction (MOV ESP, 
stack-pointer value) before an interrupt occurs1. Be aware that the LSS instruction offers a more efficient 
method of loading the SS and ESP registers.

When executing MOV Reg, Sreg, the processor copies the content of Sreg to the 16 least significant bits of the 
general-purpose register. The upper bits of the destination register are zero for most IA-32 processors (Pentium 
Pro processors and later) and all Intel 64 processors, with the exception that bits 31:16 are undefined for Intel 
Quark X1000 processors, Pentium and earlier processors.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the 
beginning of this section for encoding data and limits.

NOTES:
* The moffs8, moffs16, moffs32 and moffs64 operands specify a simple offset relative to the segment base, where 8, 16, 32 and 64 

refer to the size of the data. The address-size attribute of the instruction determines the size of the offset, either 16, 32 or 64 
bits.

** In 32-bit mode, the assembler may insert the 16-bit operand-size prefix with this instruction (see the following “Description” sec-
tion for further information).

***In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA

FD AL/AX/EAX/RAX Moffs NA NA

TD Moffs (w) AL/AX/EAX/RAX NA NA

OI opcode + rd (w) imm8/16/32/64 NA NA

MI ModRM:r/m (w) imm8/16/32/64 NA NA
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Operation

DEST ← SRC;

Loading a segment register while in protected mode results in special checks and actions, as described in the 
following listing. These checks are performed on the segment selector and the segment descriptor to which it 
points.

IF SS is loaded
THEN

IF segment selector is NULL
THEN #GP(0); FI;

IF segment selector index is outside descriptor table limits 
or segment selector's RPL ≠ CPL
or segment is not a writable data segment
or DPL ≠ CPL

THEN #GP(selector); FI;
IF segment not marked present 

THEN #SS(selector); 
ELSE

SS ← segment selector;
SS ← segment descriptor; FI;

FI;

IF DS, ES, FS, or GS is loaded with non-NULL selector
THEN

IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
or ((RPL > DPL) and (CPL > DPL))

THEN #GP(selector); FI;
IF segment not marked present

THEN #NP(selector);
ELSE

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor; FI;

FI;

IF DS, ES, FS, or GS is loaded with NULL selector
THEN

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after a MOV SS instruction, the break-
point may not be triggered. However, in a sequence of instructions that load the SS register, only the first instruction in the 
sequence is guaranteed to delay an interrupt.

In the following sequence, interrupts may be recognized before MOV ESP, EBP executes:

MOV SS, EDX
MOV SS, EAX
MOV ESP, EBP
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Flags Affected

None.

Protected Mode Exceptions
#GP(0) If attempt is made to load SS register with NULL segment selector.

If the destination operand is in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#GP(selector) If segment selector index is outside descriptor table limits. 
If the SS register is being loaded and the segment selector's RPL and the segment 
descriptor’s DPL are not equal to the CPL. 
If the SS register is being loaded and the segment pointed to is a 
non-writable data segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is not a data or 
readable code segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is a data or 
nonconforming code segment, but both the RPL and the CPL are greater than the DPL.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#SS(selector) If the SS register is being loaded and the segment pointed to is marked not present.
#NP If the DS, ES, FS, or GS register is being loaded and the segment pointed to is marked not 

present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.
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Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If an attempt is made to load SS register with NULL segment selector when CPL = 3.
If an attempt is made to load SS register with NULL segment selector when CPL < 3 and CPL 
≠ RPL.

#GP(selector) If segment selector index is outside descriptor table limits. 
If the memory access to the descriptor table is non-canonical.
If the SS register is being loaded and the segment selector's RPL and the segment 
descriptor’s DPL are not equal to the CPL.
If the SS register is being loaded and the segment pointed to is a nonwritable data segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is not a data or 
readable code segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is a data or 
nonconforming code segment, but both the RPL and the CPL are greater than the DPL.

#SS(0) If the stack address is in a non-canonical form.
#SS(selector) If the SS register is being loaded and the segment pointed to is marked not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

...

MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint
Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 2A /r

MOVNTDQA xmm1, m128

RM V/V SSE4_1 Move double quadword from m128 to xmm 
using non-temporal hint if WC memory type.

VEX.128.66.0F38.WIG 2A /r

VMOVNTDQA xmm1, m128

RM V/V AVX Move double quadword from m128 to xmm 
using non-temporal hint if WC memory type.

VEX.256.66.0F38.WIG 2A /r

VMOVNTDQA ymm1, m256

RM V/V AVX2 Move 256-bit data from m256 to ymm using 
non-temporal hint if WC memory type.
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Instruction Operand Encoding

Description

(V)MOVNTDQA loads a double quadword from the source operand (second operand) to the destination operand 
(first operand) using a non-temporal hint. A processor implementation may make use of the non-temporal hint 
associated with this instruction if the memory source is WC (write combining) memory type. An implementation 
may also make use of the non-temporal hint associated with this instruction if the memory source is WB (write 
back) memory type.
A processor’s implementation of the non-temporal hint does not override the effective memory type semantics, 
but the implementation of the hint is processor dependent. For example, a processor implementation may choose 
to ignore the hint and process the instruction as a normal MOVDQA for any memory type. Another implementa-
tion of the hint for WC memory type may optimize data transfer throughput of WC reads. A third implementation 
may optimize cache reads generated by (V)MOVNTDQA on WB memory type to reduce cache evictions.

WC Streaming Load Hint

For WC memory type in particular, the processor never appears to read the data into the cache hierarchy. Instead, 
the non-temporal hint may be implemented by loading a temporary internal buffer with the equivalent of an 
aligned cache line without filling this data to the cache. Any memory-type aliased lines in the cache will be 
snooped and flushed. Subsequent MOVNTDQA reads to unread portions of the WC cache line will receive data 
from the temporary internal buffer if data is available. The temporary internal buffer may be flushed by the 
processor at any time for any reason, for example:
• A load operation other than a (V)MOVNTDQA which references memory already resident in a temporary 

internal buffer.
• A non-WC reference to memory already resident in a temporary internal buffer.
• Interleaving of reads and writes to memory currently residing in a single temporary internal buffer.
• Repeated (V)MOVNTDQA loads of a particular 16-byte item in a streaming line.
• Certain micro-architectural conditions including resource shortages, detection of a mis-speculation condition, 

and various fault conditions
The memory type of the region being read can override the non-temporal hint, if the memory address specified 
for the non-temporal read is not a WC memory region. Information on non-temporal reads and writes can be 
found in Chapter 11, “Memory Cache Control” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A. 
Because the WC protocol uses a weakly-ordered memory consistency model, an MFENCE should be used in 
conjunction with MOVNTDQA instructions if multiple processors might reference the same WC memory locations 
or in order to synchronize reads of a processor with writes by other agents in the system. Because of the specu-
lative nature of fetching due to MOVNTDQA, Streaming loads must not be used to reference memory addresses 
that are mapped to I/O devices having side effects or when reads to these devices are destructive. For additional 
information on MOVNTDQA usages, see Section 12.10.3 in Chapter 12, “Programming with SSE3, SSSE3 and 
SSE4” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.
The 128-bit (V)MOVNTDQA addresses must be 16-byte aligned or the instruction will cause a #GP.
The 256-bit VMOVNTDQA addresses must be 32-byte aligned or the instruction will cause a #GP.
Note: In VEX-128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L must be 0; otherwise 
instructions will #UD.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Operation

MOVNTDQA (128bit- Legacy SSE form)
DEST  SRC
DEST[VLMAX-1:128] (Unmodified)

VMOVNTDQA (VEX.128 encoded form)
DEST  SRC
DEST[VLMAX-1:128]  0

VMOVNTDQA (VEX.256 encoded form)
DEST[255:0]  SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

(V)MOVNTDQA: __m128i _mm_stream_load_si128 (__m128i *p);

VMOVNTDQA:  __m256i _mm256_stream_load_si256 (const __m256i *p);

Flags Affected

None

Other Exceptions
See Exceptions Type 1.SSE4.1; additionally
#UD If VEX.L= 1.

If VEX.vvvv ≠ 1111B.
...
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7. Updates to Chapter 4, Volume 2B
Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2B: Instruction Set Reference, N-Z.

------------------------------------------------------------------------------------------
...

4.2 COMMON TRANSFORMATION AND PRIMITIVE FUNCTIONS FOR SHA1XXX 
AND SHA256XXX

The following primitive functions and transformations are used in the algorithmic descriptions of SHA1 and 
SHA256 instruction extensions SHA1NEXTE, SHA1RNDS4, SHA1MSG1, SHA1MSG2, SHA256RNDS4, 
SHA256MSG1 and SHA256MSG2. The operands of these primitives and transformation are generally 32-bit 
DWORD integers.
• f0(): A bit oriented logical operation that derives a new dword from three SHA1 state variables (dword). This 

function is used in SHA1 round 1 to 20 processing.
f0(B,C,D)  (B AND C) XOR ((NOT(B) AND D)

• f1(): A bit oriented logical operation that derives a new dword from three SHA1 state variables (dword). This 
function is used in SHA1 round 21 to 40 processing.
f1(B,C,D)  B XOR C XOR D

• f2(): A bit oriented logical operation that derives a new dword from three SHA1 state variables (dword). This 
function is used in SHA1 round 41 to 60 processing.
f2(B,C,D)  (B AND C) XOR (B AND D) XOR (C AND D)

• f3(): A bit oriented logical operation that derives a new dword from three SHA1 state variables (dword). This 
function is used in SHA1 round 61 to 80 processing. It is the same as f1().
f3(B,C,D)  B XOR C XOR D

• Ch(): A bit oriented logical operation that derives a new dword from three SHA256 state variables (dword).
Ch(E,F,G)  (E AND F) XOR ((NOT E) AND G)

• Maj(): A bit oriented logical operation that derives a new dword from three SHA256 state variables (dword).
Maj(A,B,C)  (A AND B) XOR (A AND C) XOR (B AND C)

ROR is rotate right operation
 (A ROR N)  A[N-1:0] || A[Width-1:N]

ROL is rotate left operation
 (A ROL N)  A ROR (Width-N)
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SHR is the right shift operation
(A SHR N)  ZEROES[N-1:0] || A[Width-1:N]

• Σ0( ): A bit oriented logical and rotational transformation performed on a dword SHA256 state variable.
Σ0(A)  (A ROR 2) XOR (A ROR 13) XOR (A ROR 22) 

• Σ1( ): A bit oriented logical and rotational transformation performed on a dword SHA256 state variable.
Σ1(E)  (E ROR 6) XOR (E ROR 11) XOR (E ROR 25) 

• σ0( ): A bit oriented logical and rotational transformation performed on a SHA256 message dword used in the 
message scheduling.
σ0(W)  (W ROR 7) XOR (W ROR 18) XOR (W SHR 3) 

• σ1( ): A bit oriented logical and rotational transformation performed on a SHA256 message dword used in the 
message scheduling.
σ1(W)  (W ROR 17) XOR (W ROR 19) XOR (W SHR 10) 

• Ki: SHA1 Constants dependent on immediate i.
K0 = 0x5A827999
K1 = 0x6ED9EBA1
K2 = 0X8F1BBCDC
K3 = 0xCA62C1D6

4.3 INSTRUCTIONS (N-Z)
Chapter 4 continues an alphabetical discussion of Intel® 64 and IA-32 instructions (N-Z). See also: Chapter 3, 
“Instruction Set Reference, A-M,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A.
...
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POP—Pop a Value from the Stack

Instruction Operand Encoding

Description

Loads the value from the top of the stack to the location specified with the destination operand (or explicit 
opcode) and then increments the stack pointer. The destination operand can be a general-purpose register, 
memory location, or segment register.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

8F /0 POP r/m16 M Valid Valid Pop top of stack into m16; increment stack 
pointer.

8F /0 POP r/m32 M N.E. Valid Pop top of stack into m32; increment stack 
pointer.

8F /0 POP r/m64 M Valid N.E. Pop top of stack into m64; increment stack 
pointer. Cannot encode 32-bit operand size.

58+ rw POP r16 O Valid Valid Pop top of stack into r16; increment stack 
pointer.

58+ rd POP r32 O N.E. Valid Pop top of stack into r32; increment stack 
pointer.

58+ rd POP r64 O Valid N.E. Pop top of stack into r64; increment stack 
pointer. Cannot encode 32-bit operand size.

1F POP DS NP Invalid Valid Pop top of stack into DS; increment stack 
pointer.

07 POP ES NP Invalid Valid Pop top of stack into ES; increment stack 
pointer.

17 POP SS NP Invalid Valid Pop top of stack into SS; increment stack 
pointer.

0F A1 POP FS NP Valid Valid Pop top of stack into FS; increment stack 
pointer by 16 bits. 

0F A1 POP FS NP N.E. Valid Pop top of stack into FS; increment stack 
pointer by 32 bits. 

0F A1 POP FS NP Valid N.E. Pop top of stack into FS; increment stack 
pointer by 64 bits. 

0F A9 POP GS NP Valid Valid Pop top of stack into GS; increment stack 
pointer by 16 bits. 

0F A9 POP GS NP N.E. Valid Pop top of stack into GS; increment stack 
pointer by 32 bits. 

0F A9 POP GS NP Valid N.E. Pop top of stack into GS; increment stack 
pointer by 64 bits. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

O opcode + rd (w) NA NA NA

NP NA NA NA NA
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Address and operand sizes are determined and used as follows:
• Address size. The D flag in the current code-segment descriptor determines the default address size; it may 

be overridden by an instruction prefix (67H).
The address size is used only when writing to a destination operand in memory.

• Operand size. The D flag in the current code-segment descriptor determines the default operand size; it may 
be overridden by instruction prefixes (66H or REX.W).
The operand size (16, 32, or 64 bits) determines the amount by which the stack pointer is incremented (2,
4 or 8).

• Stack-address size. Outside of 64-bit mode, the B flag in the current stack-segment descriptor determines the 
size of the stack pointer (16 or 32 bits); in 64-bit mode, the size of the stack pointer is always 64 bits.
The stack-address size determines the width of the stack pointer when reading from the stack in memory
and when incrementing the stack pointer. (As stated above, the amount by which the stack pointer is
incremented is determined by the operand size.)

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the value loaded into the register 
must be a valid segment selector. In protected mode, popping a segment selector into a segment register auto-
matically causes the descriptor information associated with that segment selector to be loaded into the hidden 
(shadow) part of the segment register and causes the selector and the descriptor information to be validated (see 
the “Operation” section below).

A NULL value (0000-0003) may be popped into the DS, ES, FS, or GS register without causing a general protec-
tion fault. However, any subsequent attempt to reference a segment whose corresponding segment register is 
loaded with a NULL value causes a general protection exception (#GP). In this situation, no memory reference 
occurs and the saved value of the segment register is NULL.

The POP instruction cannot pop a value into the CS register. To load the CS register from the stack, use the RET 
instruction.

If the ESP register is used as a base register for addressing a destination operand in memory, the POP instruction 
computes the effective address of the operand after it increments the ESP register. For the case of a 16-bit stack 
where ESP wraps to 0H as a result of the POP instruction, the resulting location of the memory write is processor-
family-specific.

The POP ESP instruction increments the stack pointer (ESP) before data at the old top of stack is written into the 
destination.

A POP SS instruction inhibits all interrupts, including the NMI interrupt, until after execution of the next instruc-
tion. This action allows sequential execution of POP SS and MOV ESP, EBP instructions without the danger of 
having an invalid stack during an interrupt1. However, use of the LSS instruction is the preferred method of 
loading the SS and ESP registers.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). When in 
64-bit mode, POPs using 32-bit operands are not encodable and POPs to DS, ES, SS are not valid. See the 
summary chart at the beginning of this section for encoding data and limits.

Operation

IF StackAddrSize = 32

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after a POP SS instruction, the break-
point may not be triggered. However, in a sequence of instructions that POP the SS register, only the first instruction in the 
sequence is guaranteed to delay an interrupt.

In the following sequence, interrupts may be recognized before POP ESP executes:

POP SS
POP SS
POP ESP
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THEN
IF OperandSize = 32

THEN
DEST ← SS:ESP; (* Copy a doubleword *)
ESP ← ESP + 4;

ELSE (* OperandSize = 16*)
DEST ← SS:ESP; (* Copy a word *)
ESP ← ESP + 2;

FI;
ELSE IF StackAddrSize = 64

THEN
IF OperandSize = 64

THEN
DEST ← SS:RSP; (* Copy quadword *)
RSP ← RSP + 8;

ELSE (* OperandSize = 16*)
DEST ← SS:RSP; (* Copy a word *)
RSP ← RSP + 2;

FI;
FI;

ELSE StackAddrSize = 16
THEN

IF OperandSize = 16
THEN

DEST ← SS:SP; (* Copy a word *)
SP ← SP + 2;

ELSE (* OperandSize = 32 *)
DEST ← SS:SP; (* Copy a doubleword *)
SP ← SP + 4;

FI;

FI;

Loading a segment register while in protected mode results in special actions, as described in the following listing. 
These checks are performed on the segment selector and the segment descriptor it points to.

64-BIT_MODE
IF FS, or GS is loaded with non-NULL selector;

THEN
IF segment selector index is outside descriptor table limits

OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)

AND (both RPL and CPL > DPL))
THEN #GP(selector);

IF segment not marked present
THEN #NP(selector);

ELSE
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;
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FI;
IF FS, or GS is loaded with a NULL selector;

THEN
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

PREOTECTED MODE OR COMPATIBILITY MODE;

IF SS is loaded;
THEN

IF segment selector is NULL
THEN #GP(0); 

FI;
IF segment selector index is outside descriptor table limits 

or segment selector's RPL ≠ CPL
or segment is not a writable data segment
or DPL ≠ CPL

THEN #GP(selector); 
FI;
IF segment not marked present 

THEN #SS(selector); 
ELSE

SS ← segment selector;
SS ← segment descriptor; 

FI;
FI;

IF DS, ES, FS, or GS is loaded with non-NULL selector;
THEN

IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
and (both RPL and CPL > DPL))

THEN #GP(selector); 
FI;
IF segment not marked present

THEN #NP(selector);
ELSE

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

 FI;
FI;

IF DS, ES, FS, or GS is loaded with a NULL selector
THEN

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;
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Flags Affected

None.

Protected Mode Exceptions
#GP(0) If attempt is made to load SS register with NULL segment selector.

If the destination operand is in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#GP(selector) If segment selector index is outside descriptor table limits. 
If the SS register is being loaded and the segment selector's RPL and the segment 
descriptor’s DPL are not equal to the CPL. 
If the SS register is being loaded and the segment pointed to is a
non-writable data segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is not a data or 
readable code segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is a data or 
nonconforming code segment, but both the RPL and the CPL are greater than the DPL.

#SS(0) If the current top of stack is not within the stack segment.
If a memory operand effective address is outside the SS segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not present.
#NP If the DS, ES, FS, or GS register is being loaded and the segment pointed to is marked not 

present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current privilege level is 3 and alignment 

checking is enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#GP(selector) If the descriptor is outside the descriptor table limit.
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If the FS or GS register is being loaded and the segment pointed to is not a data or readable 
code segment.
If the FS or GS register is being loaded and the segment pointed to is a data or noncon-
forming code segment, but both the RPL and the CPL are greater than the DPL.

#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#PF(fault-code) If a page fault occurs.
#NP If the FS or GS register is being loaded and the segment pointed to is marked not present.
#UD If the LOCK prefix is used.
...

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

Instruction Operand Encoding

Description

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size attribute is 32) and stores the 
value in the EFLAGS register, or pops a word from the top of the stack (if the operand-size attribute is 16) and 
stores it in the lower 16 bits of the EFLAGS register (that is, the FLAGS register). These instructions reverse the 
operation of the PUSHF/PUSHFD instructions. 

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same opcode. The POPF instruction 
is intended for use when the operand-size attribute is 16; the POPFD instruction is intended for use when the 
operand-size attribute is 32. Some assemblers may force the operand size to 16 for POPF and to 32 for POPFD. 
Others may treat the mnemonics as synonyms (POPF/POPFD) and use the setting of the operand-size attribute to 
determine the size of values to pop from the stack.

The effect of POPF/POPFD on the EFLAGS register changes, depending on the mode of operation. See the Table 4-
12 and key below for details.

When operating in protected, compatibility, or 64-bit mode at privilege level 0 (or in real-address mode, the 
equivalent to privilege level 0), all non-reserved flags in the EFLAGS register except RF1, VIP, VIF, and VM may be 
modified. VIP, VIF and VM remain unaffected.

When operating in protected, compatibility, or 64-bit mode with a privilege level greater than 0, but less than or 
equal to IOPL, all flags can be modified except the IOPL field and RF1, IF, VIP, VIF, and VM; these remain unaf-
fected. The AC and ID flags can only be modified if the operand-size attribute is 32. The interrupt flag (IF) is 
altered only when executing at a level at least as privileged as the IOPL. If a POPF/POPFD instruction is executed 
with insufficient privilege, an exception does not occur but privileged bits do not change.

When operating in virtual-8086 mode (EFLAGS.VM = 1) without the virtual-8086 mode extensions (CR4.VME = 
0), the POPF/POPFD instructions can be used only if IOPL = 3; otherwise, a general-protection exception (#GP) 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

9D POPF NP Valid Valid Pop top of stack into lower 16 bits of EFLAGS.

9D POPFD NP N.E. Valid Pop top of stack into EFLAGS.

9D POPFQ NP Valid N.E. Pop top of stack and zero-extend into RFLAGS. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. RF is always zero after the execution of POPF. This is because POPF, like all instructions, clears RF as it begins to execute.
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occurs. If the virtual-8086 mode extensions are enabled (CR4.VME = 1), POPF (but not POPFD) can be executed 
in virtual-8086 mode with IOPL < 3.

In 64-bit mode, the mnemonic assigned is POPFQ (note that the 32-bit operand is not encodable). POPFQ pops 64 
bits from the stack. Reserved bits of RFLAGS (including the upper 32 bits of RFLAGS) are not affected.

See Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more infor-
mation about the EFLAGS registers.

Table 4-12    Effect of POPF/POPFD on the EFLAGS Register 

Mode Operand 
Size

CPL IOPL
Flags

Notes
21 20 19 18 17 16 14 13:12 11 10 9 8 7 6 4 2 0

ID VIP VIF AC VM RF NT IOPL OF DF IF TF SF ZF AF PF CF

Real-Address 
Mode (CR0.PE 

= 0)

16 0 0-3 N N N N N 0 S S S S S S S S S S S

32 0 0-3 S N N S N 0 S S S S S S S S S S S

Protected, 
Compatibility, 

and 64-Bit 
Modes

(CR0.PE = 1, 
EFLAGS.VM = 

0)

16 0 0-3 N N N N N 0 S S S S S S S S S S S

16 1-3 <CPL N N N N N 0 S N S S N S S S S S S

16 1-3 ≥CPL N N N N N 0 S N S S S S S S S S S

32, 64 0 0-3 S N N S N 0 S S S S S S S S S S S

32, 64 1-3 <CPL S N N S N 0 S N S S N S S S S S S

32, 64 1-3 ≥CPL S N N S N 0 S N S S S S S S S S S

Virtual-8086
(CR0.PE = 1,
EFLAGS.VM = 

1,
CR4.VME = 0)

16 3 0-2 X X X X X X X X X X X X X X X X X 1

16 3 3 N N N N N 0 S N S S S S S S S S S

32 3 0-2 X X X X X X X X X X X X X X X X X 1

32 3 3 S N N S N 0 S N S S S S S S S S S

VME
(CR0.PE = 1,
EFLAGS.VM = 

1,
CR4.VME = 1)

16 3 0-2 N/
X

N/
X

SV/
X

N/
X

N/
X

0/
X

S/
X

N/X S/
X

S/
X

N/
X

S/
X

S/
X

S/
X

S/
X

S/
X

S/
X

2

16 3 3 N N N N N 0 S N S S S S S S S S S

32 3 0-2 X X X X X X X X X X X X X X X X X 1

32 3 3 S N N S N 0 S N S S S S S S S S S

NOTES:
1. #GP fault - no flag update
2. #GP fault with no flag update if VIP=1 in EFLAGS register and IF=1 in FLAGS value on stack

Key

S Updated from stack

SV Updated from IF (bit 9) in FLAGS value on stack

N No change in value

X No EFLAGS update

0 Value is cleared
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Operation

IF VM = 0 (* Not in Virtual-8086 Mode *)
THEN IF CPL = 0

THEN
IF OperandSize = 32;

THEN 
EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified; 
VIP, VIF, VM, and all reserved bits are unaffected. RF is cleared. *)

ELSE IF (Operandsize = 64)
RFLAGS = Pop(); (* 64-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified; 
VIP, VIF, VM, and all reserved bits are unaffected. RF is cleared. *)

ELSE (* OperandSize = 16 *)
EFLAGS[15:0] ← Pop(); (* 16-bit pop *)
(* All non-reserved flags can be modified. *)

FI;
ELSE (* CPL > 0 *)

IF OperandSize = 32
THEN 

IF CPL > IOPL
THEN

EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved bits except IF, IOPL, VIP, VIF, VM and RF can be modified; 
IF, IOPL, VIP, VIF, VM and all reserved bits are unaffected; RF is cleared. *)

ELSE
EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved bits except IOPL, VIP, VIF, VM and RF can be modified; 
IOPL, VIP, VIF, VM and all reserved bits are unaffected; RF is cleared. *)

FI;
ELSE IF (Operandsize = 64)

IF CPL > IOPL
THEN

RFLAGS ← Pop(); (* 64-bit pop *)
(* All non-reserved bits except IF, IOPL, VIP, VIF, VM and RF can be modified; 
IF, IOPL, VIP, VIF, VM and all reserved bits are unaffected; RF is cleared. *)

ELSE
RFLAGS ← Pop(); (* 64-bit pop *)
(* All non-reserved bits except IOPL, VIP, VIF, VM and RF can be modified; 
IOPL, VIP, VIF, VM and all reserved bits are unaffected; RF is cleared. *)

FI;
ELSE (* OperandSize = 16 *)

EFLAGS[15:0] ← Pop(); (* 16-bit pop *)
(* All non-reserved bits except IOPL can be modified; IOPL and all
reserved bits are unaffected. *)

FI;
FI;

ELSE IF CR4.VME = 1 (* In Virtual-8086 Mode with VME Enabled *)
IF IOPL = 3 

THEN IF OperandSize = 32 
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THEN 
EFLAGS ← Pop();
(* All non-reserved bits except IOPL, VIP, VIF, VM, and RF can be modified; 
VIP, VIF, VM, IOPL and all reserved bits are unaffected. RF is cleared. *)

ELSE 
EFLAGS[15:0] ← Pop(); FI;
(* All non-reserved bits except IOPL can be modified; 
IOPL and all reserved bits are unaffected. *)

FI;
ELSE (* IOPL < 3 *)

IF (Operandsize = 32)
THEN

#GP(0);  (* Trap to virtual-8086 monitor. *)
ELSE (* Operandsize = 16 *)

tempFLAGS ← Pop();
IF EFLAGS.VIP = 1 AND tempFLAGS[9] = 1

      THEN #GP(0);
      ELSE
                  EFLAGS.VIF ← tempFLAGS[9];
                  EFLAGS[15:0] ← tempFLAGS;
                  (* All non-reserved bits except IOPL and IF can be modified;
                  IOPL, IF, and all reserved bits are unaffected. *)

FI;
FI;

FI;
ELSE  (* In Virtual-8086 Mode *)

IF IOPL = 3 
THEN IF OperandSize = 32 

THEN 
EFLAGS ← Pop();
(* All non-reserved bits except IOPL, VIP, VIF, VM, and RF can be modified; 
VIP, VIF, VM, IOPL and all reserved bits are unaffected. RF is cleared. *)

ELSE 
EFLAGS[15:0] ← Pop(); FI;
(* All non-reserved bits except IOPL can be modified; 
IOPL and all reserved bits are unaffected. *)

ELSE (* IOPL < 3 *)
#GP(0);  (* Trap to virtual-8086 monitor. *)

FI;
FI;

FI;

Flags Affected

All flags may be affected; see the Operation section for details.

Protected Mode Exceptions
#SS(0) If the top of stack is not within the stack segment.
#PF(fault-code) If a page fault occurs.
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#AC(0) If an unaligned memory reference is made while the current privilege level is 3 and alignment 
checking is enabled.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#SS If the top of stack is not within the stack segment.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the I/O privilege level is less than 3.

If an attempt is made to execute the POPF/POPFD instruction with an operand-size override 
prefix.

#SS(0) If the top of stack is not within the stack segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

...
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PREFETCHh—Prefetch Data Into Caches

Instruction Operand Encoding

Description

Fetches the line of data from memory that contains the byte specified with the source operand to a location in the 
cache hierarchy specified by a locality hint:
• T0 (temporal data)—prefetch data into all levels of the cache hierarchy.
• T1 (temporal data with respect to first level cache misses)—prefetch data into level 2 cache and higher.
• T2 (temporal data with respect to second level cache misses)—prefetch data into level 3 cache and higher, or 

an implementation-specific choice.
• NTA (non-temporal data with respect to all cache levels)—prefetch data into non-temporal cache structure 

and into a location close to the processor, minimizing cache pollution.

The source operand is a byte memory location. (The locality hints are encoded into the machine level instruction 
using bits 3 through 5 of the ModR/M byte.)

If the line selected is already present in the cache hierarchy at a level closer to the processor, no data movement 
occurs. Prefetches from uncacheable or WC memory are ignored.

The PREFETCHh instruction is merely a hint and does not affect program behavior. If executed, this instruction 
moves data closer to the processor in anticipation of future use.

The implementation of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by 
a processor implementation. The amount of data prefetched is also processor implementation-dependent. It will, 
however, be a minimum of 32 bytes. Additional details of the implementation-dependent locality hints are 
described in Section 7.4 of Intel® 64 and IA-32 Architectures Optimization Reference Manual.

It should be noted that processors are free to speculatively fetch and cache data from system memory regions 
that are assigned a memory-type that permits speculative reads (that is, the WB, WC, and WT memory types). A 
PREFETCHh instruction is considered a hint to this speculative behavior. Because this speculative fetching can 
occur at any time and is not tied to instruction execution, a PREFETCHh instruction is not ordered with respect to 
the fence instructions (MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHh instruction is 
also unordered with respect to CLFLUSH and CLFLUSHOPT instructions, other PREFETCHh instructions, or any 
other general instruction. It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT, and 
MOV CR.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 18 /1 PREFETCHT0 m8 M Valid Valid Move data from m8 closer to the processor 
using T0 hint.

0F 18 /2 PREFETCHT1 m8 M Valid Valid Move data from m8 closer to the processor 
using T1 hint.

0F 18 /3 PREFETCHT2 m8 M Valid Valid Move data from m8 closer to the processor 
using T2 hint.

0F 18 /0 PREFETCHNTA m8 M Valid Valid Move data from m8 closer to the processor 
using NTA hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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Operation

FETCH (m8);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch(char *p, int i)

The argument “*p” gives the address of the byte (and corresponding cache line) to be prefetched. The value “i” 
gives a constant (_MM_HINT_T0, _MM_HINT_T1, _MM_HINT_T2, or _MM_HINT_NTA) that specifies the type of 
prefetch operation to be performed.

Numeric Exceptions

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

...

PREFETCHW—Prefetch Data into Caches in Anticipation of a Write

Instruction Operand Encoding

Description

Fetches the cache line of data from memory that contains the byte specified with the source operand to a location 
in the 1st or 2nd level cache and invalidates other cached instances of the line.
The source operand is a byte memory location. If the line selected is already present in the lowest level cache and 
is already in an exclusively owned state, no data movement occurs. Prefetches from non-writeback memory are 
ignored.
The PREFETCHW instruction is merely a hint and does not affect program behavior. If executed, this instruction 
moves data closer to the processor and invalidates other cached copies in anticipation of the line being written to 
in the future.
The characteristic of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by a 
processor implementation. The amount of data prefetched is also processor implementation-dependent. It will, 
however, be a minimum of 32 bytes. Additional details of the implementation-dependent locality hints are 
described in Section 7.4 of Intel® 64 and IA-32 Architectures Optimization Reference Manual.
It should be noted that processors are free to speculatively fetch and cache data with exclusive ownership from 
system memory regions that permit such accesses (that is, the WB memory type). A PREFETCHW instruction is 
considered a hint to this speculative behavior. Because this speculative fetching can occur at any time and is not 
tied to instruction execution, a PREFETCHW instruction is not ordered with respect to the fence instructions 
(MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHW instruction is also unordered with 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 0D /1
PREFETCHW m8

A V/V PRFCHW Move data from m8 closer to the processor in anticipation of a 
write.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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respect to CLFLUSH and CLFLUSHOPT instructions, other PREFETCHW instructions, or any other general instruc-
tion
It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT, and MOV CR.
This instruction's operation is the same in non-64-bit modes and 64-bit mode.

Operation

FETCH_WITH_EXCLUSIVE_OWNERSHIP (m8);

Flags Affected

All flags are affected

C/C++ Compiler Intrinsic Equivalent

void _m_prefetchw( void * );

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

...
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PSHUFB — Packed Shuffle Bytes

Instruction Operand Encoding

Description 

PSHUFB performs in-place shuffles of bytes in the destination operand (the first operand) according to the shuffle 
control mask in the source operand (the second operand). The instruction permutes the data in the destination 
operand, leaving the shuffle mask unaffected. If the most significant bit (bit[7]) of each byte of the shuffle control 
mask is set, then constant zero is written in the result byte. Each byte in the shuffle control mask forms an index 
to permute the corresponding byte in the destination operand. The value of each index is the least significant 4 
bits (128-bit operation) or 3 bits (64-bit operation) of the shuffle control byte. When the source operand is a 128-
bit memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception 
(#GP) will be generated. 

In 64-bit mode, use the REX prefix to access additional registers. 
Legacy SSE version: Both operands can be MMX registers.

128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-
1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: The destination operand is the first operand, the first source operand is the second 
operand, the second source operand is the third operand. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. 
VEX.256 encoded version: Bits (255:128) of the destination YMM register stores the 16-byte shuffle result of the 
upper 16 bytes of the first source operand, using the upper 16-bytes of the second source operand as control 
mask. The value of each index is for the high 128-bit lane is the least significant 4 bits of the respective shuffle 
control byte. The index value selects a source data element within each 128-bit lane.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 00 /r1 

PSHUFB mm1, mm2/m64

RM V/V SSSE3 Shuffle bytes in mm1 according to contents of 
mm2/m64. 

66 0F 38 00 /r 

PSHUFB xmm1, xmm2/m128

RM V/V SSSE3 Shuffle bytes in xmm1 according to contents 
of xmm2/m128.

VEX.NDS.128.66.0F38.WIG 00 /r

VPSHUFB xmm1, xmm2, xmm3/m128

RVM V/V AVX Shuffle bytes in xmm2 according to contents 
of xmm3/m128.

VEX.NDS.256.66.0F38.WIG 00 /r

VPSHUFB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Shuffle bytes in ymm2 according to contents 
of ymm3/m256.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation 

PSHUFB (with 64 bit operands)
TEMP ← DEST
for i = 0 to 7 { 

if (SRC[(i * 8)+7] = 1 ) then
DEST[(i*8)+7...(i*8)+0] ← 0;

else 
index[2..0] ← SRC[(i*8)+2 .. (i*8)+0];
DEST[(i*8)+7...(i*8)+0] ← TEMP[(index*8+7)..(index*8+0)];

endif;
}

PSHUFB (with 128 bit operands)
TEMP ← DEST
for i = 0 to 15 { 

if (SRC[(i * 8)+7] = 1 ) then
DEST[(i*8)+7..(i*8)+0] ← 0;

 else 
index[3..0] ← SRC[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0] ← TEMP[(index*8+7)..(index*8+0)];

endif
}

VPSHUFB (VEX.128 encoded version)
for i = 0 to 15 {

if (SRC2[(i * 8)+7] = 1) then
DEST[(i*8)+7..(i*8)+0]  0;
else
index[3..0]  SRC2[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0]  SRC1[(index*8+7)..(index*8+0)];

endif
}
DEST[VLMAX-1:128]  0

VPSHUFB (VEX.256 encoded version)
for i = 0 to 15 {

if (SRC2[(i * 8)+7] == 1 ) then
DEST[(i*8)+7..(i*8)+0]  0;
else
index[3..0]  SRC2[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0]  SRC1[(index*8+7)..(index*8+0)];

endif
if (SRC2[128 + (i * 8)+7] == 1 ) then

DEST[128 + (i*8)+7..(i*8)+0]  0;
else
index[3..0]  SRC2[128 + (i*8)+3 .. (i*8)+0];
DEST[128 + (i*8)+7..(i*8)+0]  SRC1[128 + (index*8+7)..(index*8+0)];

endif
}
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Intel C/C++ Compiler Intrinsic Equivalent

PSHUFB:  __m64 _mm_shuffle_pi8 (__m64 a, __m64 b)

(V)PSHUFB:  __m128i _mm_shuffle_epi8 (__m128i a, __m128i b)

VPSHUFB: __m256i _mm256_shuffle_epi8(__m256i a, __m256i b)

SIMD Floating-Point Exceptions

None.

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.L = 1.

...

RDPID—Read Processor ID

Instruction Operand Encoding

Figure 4-11    PSHUFB with 64-Bit Operands

07H         07H              FFH               80H               01H           00H               00H            00H

04H         01H              07H               03H               02H           02H               FFH            01H

04H         04H              00H               00H               FFH           01H               01H            01H

MM2

MM1

MM1

Opcode/
Instruction

Op/ 
En

64/32-
bit 
Mode

CPUID
Feature Flag

Description

F3 0F C7 /7
RDPID r32

M N.E./V RDPID Read IA32_TSC_AUX into r32.

F3 0F C7 /7
RDPID r64

M V/N.E. RDPID Read IA32_TSC_AUX into r64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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Description

Reads the value of the IA32_TSC_AUX MSR (address C0000103H) into the destination register. The value of CS.D 
and operand-size prefixes (66H and REX.W) do not affect the behavior of the RDPID instruction.

Operation

DEST ← IA32_TSC_AUX 

Flags Affected

None.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If the F2 prefix is used.
If CPUID.7H.0:ECX.RDPID[bit 22] = 0.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...

RDPKRU—Read Protection Key Rights for User Pages

Instruction Operand Encoding

Description

Reads the value of PKRU into EAX and clears EDX. ECX must be 0 when RDPKRU is executed; otherwise, a 
general-protection exception (#GP) occurs.

RDPKRU can be executed only if CR4.PKE = 1; otherwise, an invalid-opcode exception (#UD) occurs. Software 
can discover the value of CR4.PKE by examining CPUID.(EAX=07H,ECX=0H):ECX.OSPKE [bit 4].

Opcode* Instruction Op/ 
En

64/32bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 01 EE RDPKRU NP V/V OSPKE Reads PKRU into EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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On processors that support the Intel 64 Architecture, the high-order 32-bits of RCX are ignored and the high-
order 32-bits of RDX and RAX are cleared.

Operation

IF (ECX = 0) 
THEN

EAX ← PKRU;
EDX ← 0;

ELSE #GP(0); 
FI;

Flags Affected

None.

C/C++ Compiler Intrinsic Equivalent

RDPKRU: uint32_t _rdpkru_u32(void);

Protected Mode Exceptions
#GP(0) If ECX ≠ 0 
#UD If the LOCK prefix is used.

If CR4.PKE = 0.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...
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RDPMC—Read Performance-Monitoring Counters

Instruction Operand Encoding

Description

The EAX register is loaded with the low-order 32 bits. The EDX register is loaded with the supported high-order 
bits of the counter. The number of high-order bits loaded into EDX is implementation specific on processors that 
do no support architectural performance monitoring. The width of fixed-function and general-purpose perfor-
mance counters on processors supporting architectural performance monitoring are reported by CPUID 0AH leaf. 
See below for the treatment of the EDX register for “fast” reads.

The ECX register specifies the counter type (if the processor supports architectural performance monitoring) and 
counter index. Counter type is specified in ECX[30] to select one of two type of performance counters. If the 
processor does not support architectural performance monitoring, ECX[30:0] specifies the counter index; other-
wise ECX[29:0] specifies the index relative to the base of each counter type. ECX[31] selects “fast” read mode if 
supported. The two counter types are : 
• General-purpose or special-purpose performance counters are specified with ECX[30] = 0: The number of 

general-purpose performance counters on processor supporting architectural performance monitoring are 
reported by CPUID 0AH leaf. The number of general-purpose counters is model specific if the processor does 
not support architectural performance monitoring, see Chapter 18, “Performance Monitoring” of Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3B. Special-purpose counters are available only in 
selected processor members, see Table 4-13.

• Fixed-function performance counter are specified with ECX[30] = 1. The number fixed-function performance 
counters is enumerated by CPUID 0AH leaf. See Chapter 30 of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3B. This counter type is selected if ECX[30] is set.

The width of fixed-function performance counters and general-purpose performance counters on processor 
supporting architectural performance monitoring are reported by CPUID 0AH leaf. The width of general-purpose 
performance counters are 40-bits for processors that do not support architectural performance monitoring coun-
ters. The width of special-purpose performance counters are implementation specific. 

Table 4-13 lists valid indices of the general-purpose and special-purpose performance counters according to the 
DisplayFamily_DisplayModel values of CPUID encoding for each processor family (see CPUID instruction in 
Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A). 

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 33 RDPMC NP Valid Valid Read performance-monitoring counter 
specified by ECX into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Processors based on Intel NetBurst microarchitecture support “fast” (32-bit) and “slow” (40-bit) reads on the first 
18 performance counters. Selected this option using ECX[31]. If bit 31 is set, RDPMC reads only the low 32 bits 
of the selected performance counter. If bit 31 is clear, all 40 bits are read. A 32-bit result is returned in EAX and 
EDX is set to 0. A 32-bit read executes faster on these processors than a full 40-bit read.

On processors based on Intel NetBurst microarchitecture with L3, performance counters with indices 18-25 are 
32-bit counters. EDX is cleared after executing RDPMC for these counters. 

In Intel Core 2 processor family, Intel Xeon processor 3000, 5100, 5300 and 7400 series, the fixed-function 
performance counters are 40-bits wide; they can be accessed by RDMPC with ECX between from 4000_0000H 
and 4000_0002H.

On Intel Xeon processor 7400 series, there are eight 32-bit special-purpose counters addressable with indices 2-
9, ECX[30]=0. 

Table 4-13    Valid General and Special Purpose Performance Counter Index Range for RDPMC

Processor Family DisplayFamily_DisplayModel/ 
Other Signatures

Valid PMC Index 
Range

General-purpose 
Counters

P6 06H_01H, 06H_03H, 06H_05H, 
06H_06H, 06H_07H, 06H_08H, 
06H_0AH, 06H_0BH

0, 1 0, 1

Processors Based on Intel NetBurst 
microarchitecture (No L3)

0FH_00H, 0FH_01H, 0FH_02H, 
0FH_03H, 0FH_04H, 0FH_06H

≥ 0 and ≤ 17 ≥ 0 and ≤ 17

Pentium M processors 06H_09H, 06H_0DH 0, 1 0, 1

Processors Based on Intel NetBurst 
microarchitecture (No L3)

0FH_03H, 0FH_04H) and (L3 is 
present)

≥ 0 and ≤ 25 ≥ 0 and ≤ 17

Intel® Core™ Solo and Intel® Core™ Duo 
processors, Dual-core Intel® Xeon® 
processor LV

06H_0EH 0, 1 0, 1

Intel® Core™2 Duo processor, Intel Xeon 
processor 3000, 5100, 5300, 7300 Series - 
general-purpose PMC

06H_0FH 0, 1 0, 1

Intel® Core™2 Duo processor family, Intel 
Xeon processor 3100, 3300, 5200, 5400 
series - general-purpose PMC

06H_17H 0, 1 0, 1

Intel Xeon processors 7400 series (06H_1DH) ≥ 0 and ≤ 9 0, 1
45 nm and 32 nm Intel® Atom™ processors 06H_1CH, 06_26H, 06_27H, 

06_35H, 06_36H
0, 1 0, 1

Intel® Atom™ processors based on 
Silvermont or Airmont microarchitectures

06H_37H, 06_4AH, 06_4DH, 
06_5AH, 06_5DH, 06_4CH

0, 1 0, 1

Next Generation Intel® Atom™ processors 
based on Goldmont microarchitecture

06H_5CH, 06_5FH 0-3 0-3

Intel® processors based on the Nehalem, 
Westmere microarchitectures

06H_1AH, 06H_1EH, 06H_1FH, 
06_25H, 06_2CH, 06H_2EH, 
06_2FH

0-3 0-3 

Intel® processors based on the Sandy 
Bridge, Ivy Bridge microarchitecture

06H_2AH, 06H_2DH, 06H_3AH, 
06H_3EH

0-3 (0-7 if 
HyperThreading is off)

0-3 (0-7 if 
HyperThreading is off)

Intel® processors based on the Haswell, 
Broadwell, SkyLake microarchitectures

06H_3CH, 06H_45H, 06H_46H, 
06H_3FH, 06_3DH, 06_47H, 
4FH, 06_56H, 06_4EH, 06_5EH

0-3 (0-7 if 
HyperThreading is off)

0-3 (0-7 if 
HyperThreading is off)
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When in protected or virtual 8086 mode, the performance-monitoring counters enabled (PCE) flag in register CR4 
restricts the use of the RDPMC instruction as follows. When the PCE flag is set, the RDPMC instruction can be 
executed at any privilege level; when the flag is clear, the instruction can only be executed at privilege level 0. 
(When in real-address mode, the RDPMC instruction is always enabled.)

The performance-monitoring counters can also be read with the RDMSR instruction, when executing at privilege 
level 0.

The performance-monitoring counters are event counters that can be programmed to count events such as the 
number of instructions decoded, number of interrupts received, or number of cache loads. Chapter 19, “Perfor-
mance Monitoring Events,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, 
lists the events that can be counted for various processors in the Intel 64 and IA-32 architecture families.

The RDPMC instruction is not a serializing instruction; that is, it does not imply that all the events caused by the 
preceding instructions have been completed or that events caused by subsequent instructions have not begun. If 
an exact event count is desired, software must insert a serializing instruction (such as the CPUID instruction) 
before and/or after the RDPMC instruction.

Performing back-to-back fast reads are not guaranteed to be monotonic. To guarantee monotonicity on back-to-
back reads, a serializing instruction must be placed between the two RDPMC instructions.

The RDPMC instruction can execute in 16-bit addressing mode or virtual-8086 mode; however, the full contents 
of the ECX register are used to select the counter, and the event count is stored in the full EAX and EDX registers. 
The RDPMC instruction was introduced into the IA-32 Architecture in the Pentium Pro processor and the Pentium 
processor with MMX technology. The earlier Pentium processors have performance-monitoring counters, but they 
must be read with the RDMSR instruction.

Operation

(* Intel processors that support architectural performance monitoring *)

Most significant counter bit (MSCB) = 47

IF ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))
THEN IF (ECX[30] = 1 and ECX[29:0] in valid fixed-counter range)

EAX ← IA32_FIXED_CTR(ECX)[30:0];
EDX ← IA32_FIXED_CTR(ECX)[MSCB:32];

ELSE IF (ECX[30] = 0 and ECX[29:0] in valid general-purpose counter range)
EAX ← PMC(ECX[30:0])[31:0];
EDX ← PMC(ECX[30:0])[MSCB:32];

ELSE (* ECX is not valid or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)
#GP(0); 

FI;

(* Intel Core 2 Duo processor family and Intel Xeon processor 3000, 5100, 5300, 7400 series*)

Most significant counter bit (MSCB) = 39

IF ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))
THEN IF (ECX[30] = 1 and ECX[29:0] in valid fixed-counter range)

EAX ← IA32_FIXED_CTR(ECX)[30:0];
EDX ← IA32_FIXED_CTR(ECX)[MSCB:32];

ELSE IF (ECX[30] = 0 and ECX[29:0] in valid general-purpose counter range)
EAX ← PMC(ECX[30:0])[31:0];
EDX ← PMC(ECX[30:0])[MSCB:32];

ELSE IF (ECX[30] = 0 and ECX[29:0] in valid special-purpose counter range)
EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)
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ELSE (* ECX is not valid or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)
#GP(0); 

FI;

(* P6 family processors and Pentium processor with MMX technology *)

IF (ECX = 0 or 1) and ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))
THEN 

EAX ← PMC(ECX)[31:0];
EDX ← PMC(ECX)[39:32];

ELSE (* ECX is not 0 or 1 or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)
#GP(0); 

FI;
(* Processors based on Intel NetBurst microarchitecture *)
IF ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))

THEN IF (ECX[30:0] = 0:17)
THEN IF ECX[31] = 0

THEN
EAX ← PMC(ECX[30:0])[31:0]; (* 40-bit read *)
EDX ← PMC(ECX[30:0])[39:32];

ELSE (* ECX[31] = 1*)
THEN

EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX ← 0;

FI;
ELSE IF (*64-bit Intel processor based on Intel NetBurst microarchitecture with L3 *)

THEN IF (ECX[30:0] = 18:25 )
EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX ← 0;

FI;
ELSE (* Invalid PMC index in ECX[30:0], see Table 4-16. *)

GP(0); 
FI;

ELSE (* CR4.PCE = 0 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)
#GP(0); 

FI; 

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified (see Table 4-13).
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If an invalid performance counter index is specified (see Table 4-13).
#UD If the LOCK prefix is used.
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Virtual-8086 Mode Exceptions
#GP(0) If the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified (see Table 4-13).
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified (see Table 4-13).
#UD If the LOCK prefix is used.
...

RDTSC—Read Time-Stamp Counter

Instruction Operand Encoding

Description

Reads the current value of the processor’s time-stamp counter (a 64-bit MSR) into the EDX:EAX registers. The 
EDX register is loaded with the high-order 32 bits of the MSR and the EAX register is loaded with the low-order 32 
bits. (On processors that support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are 
cleared.)

The processor monotonically increments the time-stamp counter MSR every clock cycle and resets it to 0 when-
ever the processor is reset. See “Time Stamp Counter” in Chapter 17 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3B, for specific details of the time stamp counter behavior.

The time stamp disable (TSD) flag in register CR4 restricts the use of the RDTSC instruction as follows. When the 
flag is clear, the RDTSC instruction can be executed at any privilege level; when the flag is set, the instruction can 
only be executed at privilege level 0.

The time-stamp counter can also be read with the RDMSR instruction, when executing at privilege level 0.

The RDTSC instruction is not a serializing instruction. It does not necessarily wait until all previous instructions 
have been executed before reading the counter. Similarly, subsequent instructions may begin execution before 
the read operation is performed. If software requires RDTSC to be executed only after all previous instructions 
have completed locally, it can either use RDTSCP (if the processor supports that instruction) or execute the 
sequence LFENCE;RDTSC.

This instruction was introduced by the Pentium processor.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in 
VMX non-root operation.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 31 RDTSC NP Valid Valid Read time-stamp counter into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CR0.PE = 0) 
THEN EDX:EAX ← TimeStampCounter;
ELSE (* CR4.TSD = 1 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)

#GP(0);
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...
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RDTSCP—Read Time-Stamp Counter and Processor ID

Instruction Operand Encoding

Description

Reads the current value of the processor’s time-stamp counter (a 64-bit MSR) into the EDX:EAX registers and also 
reads the value of the IA32_TSC_AUX MSR (address C0000103H) into the ECX register. The EDX register is loaded 
with the high-order 32 bits of the IA32_TSC MSR; the EAX register is loaded with the low-order 32 bits of the 
IA32_TSC MSR; and the ECX register is loaded with the low-order 32-bits of IA32_TSC_AUX MSR. On processors 
that support the Intel 64 architecture, the high-order 32 bits of each of RAX, RDX, and RCX are cleared.

The processor monotonically increments the time-stamp counter MSR every clock cycle and resets it to 0 when-
ever the processor is reset. See “Time Stamp Counter” in Chapter 17 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3B, for specific details of the time stamp counter behavior.

The time stamp disable (TSD) flag in register CR4 restricts the use of the RDTSCP instruction as follows. When the 
flag is clear, the RDTSCP instruction can be executed at any privilege level; when the flag is set, the instruction 
can only be executed at privilege level 0.

The RDTSCP instruction waits until all previous instructions have been executed before reading the counter. 
However, subsequent instructions may begin execution before the read operation is performed.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in 
VMX non-root operation.

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CR0.PE = 0) 
THEN 

EDX:EAX ← TimeStampCounter;
ECX ← IA32_TSC_AUX[31:0];

ELSE (* CR4.TSD = 1 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)
#GP(0);

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than 0.
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 F9 RDTSCP NP Valid Valid Read 64-bit time-stamp counter and 
IA32_TSC_AUX value into EDX:EAX and ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Virtual-8086 Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set.
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...

ROUNDPD — Round Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the 2 double-precision floating-point values in the source operand (second operand) using the rounding 
mode specified in the immediate operand (third operand) and place the results in the destination operand (first 
operand). The rounding process rounds each input floating-point value to an integer value and returns the integer 
result as a double-precision floating-point value. 

The immediate operand specifies control fields for the rounding operation, three bit fields are defined and shown 
in Figure 4-20. Bit 3 of the immediate byte controls processor behavior for a precision exception, bit 2 selects the 
source of rounding mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-15 lists the encoded 
values for rounding-mode field). 

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 09 /r ib
ROUNDPD xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Round packed double precision floating-point 
values in xmm2/m128 and place the result in 
xmm1.  The rounding mode is determined by 
imm8.

VEX.128.66.0F3A.WIG 09 /r ib
VROUNDPD xmm1, xmm2/m128, imm8

RMI V/V AVX Round packed double-precision floating-point 
values in xmm2/m128 and place the result in 
xmm1. The rounding mode is determined by 
imm8.

VEX.256.66.0F3A.WIG 09 /r ib
VROUNDPD ymm1, ymm2/m256, imm8

RMI V/V AVX Round packed double-precision floating-point 
values in ymm2/m256 and place the result in 
ymm1. The rounding mode is determined by 
imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 115

The Precision Floating-Point Exception is signaled according to the immediate operand. If any source operand is 
an SNaN then it will be converted to a QNaN. If DAZ is set to ‘1 then denormals will be converted to zero before 
rounding.
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit memory location. The destina-
tion is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM 
register destination are unmodified.
VEX.128 encoded version: the source operand second source operand or a 128-bit memory location. The destina-
tion operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

IF (imm[2] = ‘1) 
THEN // rounding mode is determined by MXCSR.RC 

DEST[63:0]  ConvertDPFPToInteger_M(SRC[63:0]);
DEST[127:64]  ConvertDPFPToInteger_M(SRC[127:64]);

ELSE // rounding mode is determined by IMM8.RC
DEST[63:0]  ConvertDPFPToInteger_Imm(SRC[63:0]);
DEST[127:64]  ConvertDPFPToInteger_Imm(SRC[127:64]);

FI

Figure 4-20    Bit Control Fields of Immediate Byte for ROUNDxx Instruction

8

RS — Rounding select; 1: MXCSR.RC, 0: Imm8.RC
RC — Rounding mode

3 2 1 0

P — Precision Mask; 0: normal, 1: inexact

Reserved

Table 4-15    Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding 
Mode

RC Field 
Setting

Description

Round to 
nearest (even)

00B Rounded result is the closest to the infinitely precise result. If two values are equally close, the result is 
the even value (i.e., the integer value with the least-significant bit of zero). 

Round down 
(toward −∞)

01B Rounded result is closest to but no greater than the infinitely precise result.

Round up 
(toward +∞)

10B Rounded result is closest to but no less than the infinitely precise result.

Round toward 
zero (Truncate)

11B Rounded result is closest to but no greater in absolute value than the infinitely precise result.
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ROUNDPD (128-bit Legacy SSE version)
DEST[63:0]  RoundToInteger(SRC[63:0]], ROUND_CONTROL)
DEST[127:64]  RoundToInteger(SRC[127:64]], ROUND_CONTROL)
DEST[VLMAX-1:128] (Unmodified)

VROUNDPD (VEX.128 encoded version)
DEST[63:0]  RoundToInteger(SRC[63:0]], ROUND_CONTROL)
DEST[127:64]  RoundToInteger(SRC[127:64]], ROUND_CONTROL)
DEST[VLMAX-1:128]  0

VROUNDPD (VEX.256 encoded version)
DEST[63:0]  RoundToInteger(SRC[63:0], ROUND_CONTROL)
DEST[127:64]  RoundToInteger(SRC[127:64]], ROUND_CONTROL)
DEST[191:128]  RoundToInteger(SRC[191:128]], ROUND_CONTROL)
DEST[255:192]  RoundToInteger(SRC[255:192] ], ROUND_CONTROL)

Intel C/C++ Compiler Intrinsic Equivalent

__m128 _mm_round_pd(__m128d s1, int iRoundMode);

__m128 _mm_floor_pd(__m128d s1);

__m128 _mm_ceil_pd(__m128d s1)

__m256 _mm256_round_pd(__m256d s1, int iRoundMode);

__m256 _mm256_floor_pd(__m256d s1);

__m256 _mm256_ceil_pd(__m256d s1)

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN)
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the MXSCSR is ignored and 
precision exception is not signaled.)
Note that Denormal is not signaled by ROUNDPD.

Other Exceptions
See Exceptions Type 2; additionally
#UD If VEX.vvvv ≠ 1111B.
...
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SGDT—Store Global Descriptor Table Register

Instruction Operand Encoding

Description

Stores the content of the global descriptor table register (GDTR) in the destination operand. The destination 
operand specifies a memory location. 

In legacy or compatibility mode, the destination operand is a 6-byte memory location. If the operand-size attri-
bute is 16 bits, the limit is stored in the low 2 bytes and the 24-bit base address is stored in bytes 3-5, and byte 
6 is zero-filled. If the operand-size attribute is 32 bits, the 16-bit limit field of the register is stored in the low 2 
bytes of the memory location and the 32-bit base address is stored in the high 4 bytes.

In IA-32e mode, the operand size is fixed at 8+2 bytes. The instruction stores an 8-byte base and a 2-byte limit.

SGDT is useful only by operating-system software. However, it can be used in application programs without 
causing an exception to be generated if CR4.UMIP = 0. See “LGDT/LIDT—Load Global/Interrupt Descriptor Table 
Register” in Chapter 3, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for informa-
tion on loading the GDTR and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of the SGDT is compatible with the Intel 286 processor if the upper 8 bits are not referenced. The 
Intel 286 processor fills these bits with 1s; processor generations later than the Intel 286 processor fill these bits 
with 0s.

Operation

IF instruction is SGDT
IF OperandSize = 16

THEN 
DEST[0:15] ← GDTR(Limit);
DEST[16:39] ← GDTR(Base); (* 24 bits of base address stored *)
DEST[40:47] ← 0;

ELSE IF (32-bit Operand Size)
DEST[0:15] ← GDTR(Limit);
DEST[16:47] ← GDTR(Base); (* Full 32-bit base address stored *)
FI;

ELSE (* 64-bit Operand Size *)
DEST[0:15] ← GDTR(Limit);
DEST[16:79] ← GDTR(Base); (* Full 64-bit base address stored *)

FI; 
FI;

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 /0 SGDT m M Valid Valid Store GDTR to m.

NOTES:
* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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Flags Affected

None.

Protected Mode Exceptions
#UD If the destination operand is a register.

If the LOCK prefix is used.
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If CR4.UMIP = 1 and CPL > 0.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL = 3.

Real-Address Mode Exceptions
#UD If the destination operand is a register.

If the LOCK prefix is used.
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#UD If the destination operand is a register.

If the LOCK prefix is used.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If CR4.UMIP = 1.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#UD If the destination operand is a register.

If the LOCK prefix is used.
#GP(0) If the memory address is in a non-canonical form.

If CR4.UMIP = 1 and CPL > 0.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL = 3.

...
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SHA1RNDS4—Perform Four Rounds of SHA1 Operation

Instruction Operand Encoding

Description

The SHA1RNDS4 instruction performs four rounds of SHA1 operation using an initial SHA1 state (A,B,C,D) from 
the first operand (which is a source operand and the destination operand) and some pre-computed sum of the 
next 4 round message dwords, and state variable E from the second operand (a source operand). The updated 
SHA1 state (A,B,C,D) after four rounds of processing is stored in the destination operand.

Operation

SHA1RNDS4 
The function f() and Constant K are dependent on the value of the immediate.

IF ( imm8[1:0] = 0 )
THEN f()  f0(), K  K0; 

ELSE IF ( imm8[1:0] = 1 ) 
THEN f()  f1(), K  K1; 

ELSE IF ( imm8[1:0] = 2 ) 
THEN f()  f2(), K  K2; 

ELSE IF ( imm8[1:0] = 3 ) 
THEN f()  f3(), K  K3; 

FI;

A  SRC1[127:96]; 
B  SRC1[95:64]; 
C  SRC1[63:32]; 
D  SRC1[31:0]; 
W0E  SRC2[127:96]; 
W1  SRC2[95:64]; 
W2  SRC2[63:32]; 
W3  SRC2[31:0]; 

Round i = 0 operation:
A_1  f (B, C, D) + (A ROL 5) +W0E +K; 
B_1  A; 
C_1  B ROL 30; 
D_1  C; 
E_1  D; 

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

0F 3A CC /r ib RMI V/V SHA Performs four rounds of SHA1 operation operating on SHA1 state 
(A,B,C,D) from xmm1, with a pre-computed sum of the next 4 
round message dwords and state variable E from xmm2/m128. 
The immediate byte controls logic functions and round constants.

SHA1RNDS4 xmm1, xmm2/
m128, imm8

Op/En Operand 1 Operand 2 Operand 3

RMI ModRM:reg (r, w) ModRM:r/m (r) Imm8
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FOR i = 1 to 3
A_(i +1)  f (B_i, C_i, D_i) + (A_i ROL 5) +Wi+ E_i +K; 
B_(i +1)  A_i; 
C_(i +1)  B_i ROL 30; 
D_(i +1)  C_i; 
E_(i +1)  D_i; 

ENDFOR

DEST[127:96]  A_4; 
DEST[95:64]  B_4; 
DEST[63:32]  C_4; 
DEST[31:0]  D_4; 

Intel C/C++ Compiler Intrinsic Equivalent

SHA1RNDS4: __m128i _mm_sha1rnds4_epu32(__m128i, __m128i, const int);

Flags Affected

None

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4.

...

SHA1NEXTE—Calculate SHA1 State Variable E after Four Rounds

Instruction Operand Encoding

Description

The SHA1NEXTE calculates the SHA1 state variable E after four rounds of operation from the current SHA1 state 
variable A in the destination operand. The calculated value of the SHA1 state variable E is added to the source 
operand, which contains the scheduled dwords.

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 C8 /r RM V/V SHA Calculates SHA1 state variable E after four rounds of operation 
from the current SHA1 state variable A in xmm1. The calculated 
value of the SHA1 state variable E is added to the scheduled 
dwords in xmm2/m128, and stored with some of the scheduled 
dwords in xmm1.

SHA1NEXTE xmm1, xmm2/
m128

Op/En Operand 1 Operand 2 Operand 3

RM ModRM:reg (r, w) ModRM:r/m (r) NA
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Operation

SHA1NEXTE 

TMP  (SRC1[127:96] ROL 30); 

DEST[127:96]  SRC2[127:96] + TMP; 
DEST[95:64]  SRC2[95:64]; 
DEST[63:32]  SRC2[63:32]; 
DEST[31:0]  SRC2[31:0]; 

Intel C/C++ Compiler Intrinsic Equivalent

SHA1NEXTE: __m128i _mm_sha1nexte_epu32(__m128i, __m128i);

Flags Affected

None

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4.

...

SHA1MSG1—Perform an Intermediate Calculation for the Next Four SHA1 Message Dwords

Instruction Operand Encoding

Description

The SHA1MSG1 instruction is one of two SHA1 message scheduling instructions. The instruction performs an 
intermediate calculation for the next four SHA1 message dwords.

Operation

SHA1MSG1 

W0  SRC1[127:96] ; 
W1  SRC1[95:64] ; 
W2  SRC1[63: 32] ; 
W3  SRC1[31: 0] ; 

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 C9 /r RM V/V SHA Performs an intermediate calculation for the next four SHA1 
message dwords using previous message dwords from xmm1 and 
xmm2/m128, storing the result in xmm1.

SHA1MSG1 xmm1, xmm2/
m128

Op/En Operand 1 Operand 2 Operand 3

RM ModRM:reg (r, w) ModRM:r/m (r) NA
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W4  SRC2[127:96] ; 
W5  SRC2[95:64] ; 

DEST[127:96]  W2 XOR W0; 
DEST[95:64]  W3 XOR W1; 
DEST[63:32]  W4 XOR W2; 
DEST[31:0]  W5 XOR W3; 

Intel C/C++ Compiler Intrinsic Equivalent

SHA1MSG1: __m128i _mm_sha1msg1_epu32(__m128i, __m128i);

Flags Affected

None

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4.

...

SHA1MSG2—Perform a Final Calculation for the Next Four SHA1 Message Dwords

Instruction Operand Encoding

Description

The SHA1MSG2 instruction is one of two SHA1 message scheduling instructions. The instruction performs the 
final calculation to derive the next four SHA1 message dwords.

Operation

SHA1MSG2 

W13  SRC2[95:64] ; 
W14  SRC2[63: 32] ; 
W15  SRC2[31: 0] ; 
W16  (SRC1[127:96] XOR W13 ) ROL 1; 
W17  (SRC1[95:64] XOR W14) ROL 1; 
W18  (SRC1[63: 32] XOR W15) ROL 1; 

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 CA /r RM V/V SHA Performs the final calculation for the next four SHA1 message 
dwords using intermediate results from xmm1 and the previous 
message dwords from xmm2/m128, storing the result in xmm1.

SHA1MSG2 xmm1, xmm2/
m128

Op/En Operand 1 Operand 2 Operand 3

RM ModRM:reg (r, w) ModRM:r/m (r) NA
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W19  (SRC1[31: 0] XOR W16) ROL 1; 

DEST[127:96]  W16; 
DEST[95:64]  W17; 
DEST[63:32]  W18; 
DEST[31:0]  W19; 

Intel C/C++ Compiler Intrinsic Equivalent

SHA1MSG2: __m128i _mm_sha1msg2_epu32(__m128i, __m128i);

Flags Affected

None

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4.

...

SHA256RNDS2—Perform Two Rounds of SHA256 Operation

Instruction Operand Encoding

Description

The SHA256RNDS2 instruction performs 2 rounds of SHA256 operation using an initial SHA256 state (C,D,G,H) 
from the first operand, an initial SHA256 state (A,B,E,F) from the second operand, and a pre-computed sum of 
the next 2 round message dwords and the corresponding round constants from the implicit operand xmm0. Note 
that only the two lower dwords of XMM0 are used by the instruction.
The updated SHA256 state (A,B,E,F) is written to the first operand, and the second operand can be used as the 
updated state (C,D,G,H) in later rounds.

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 CB /r RM0 V/V SHA Perform 2 rounds of SHA256 operation using an initial SHA256 
state (C,D,G,H) from xmm1, an initial SHA256 state (A,B,E,F) from 
xmm2/m128, and a pre-computed sum of the next 2 round mes-
sage dwords and the corresponding round constants from the 
implicit operand XMM0, storing the updated SHA256 state 
(A,B,E,F) result in xmm1.

SHA256RNDS2 xmm1, 
xmm2/m128, <XMM0>

Op/En Operand 1 Operand 2 Operand 3

RMI ModRM:reg (r, w) ModRM:r/m (r) Implicit XMM0 (r)
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Operation

SHA256RNDS2 

A_0  SRC2[127:96]; 
B_0  SRC2[95:64]; 
C_0  SRC1[127:96]; 
D_0  SRC1[95:64]; 
E_0  SRC2[63:32]; 
F_0  SRC2[31:0]; 
G_0  SRC1[63:32]; 
H_0  SRC1[31:0]; 
WK0  XMM0[31: 0]; 
WK1  XMM0[63: 32]; 

FOR i = 0 to 1
A_(i +1)  Ch (E_i, F_i, G_i) +Σ1( E_i) +WKi+ H_i + Maj(A_i , B_i, C_i) +Σ0( A_i); 
B_(i +1)  A_i; 
C_(i +1)  B_i ; 
D_(i +1)  C_i; 
E_(i +1)  Ch (E_i, F_i, G_i) +Σ1( E_i) +WKi+ H_i + D_i; 
F_(i +1)  E_i ; 
G_(i +1)  F_i; 
H_(i +1)  G_i; 

ENDFOR

DEST[127:96]  A_2; 
DEST[95:64]  B_2; 
DEST[63:32]  E_2; 
DEST[31:0]  F_2; 

Intel C/C++ Compiler Intrinsic Equivalent

SHA256RNDS2: __m128i _mm_sha256rnds2_epu32(__m128i, __m128i, __m128i);

Flags Affected

None

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4.

...
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SHA256MSG1—Perform an Intermediate Calculation for the Next Four SHA256 Message 
Dwords

Instruction Operand Encoding

Description

The SHA256MSG1 instruction is one of two SHA256 message scheduling instructions. The instruction performs an 
intermediate calculation for the next four SHA256 message dwords.

Operation

SHA256MSG1 

W4  SRC2[31: 0] ; 
W3  SRC1[127:96] ; 
W2  SRC1[95:64] ; 
W1  SRC1[63: 32] ; 
W0  SRC1[31: 0] ; 

DEST[127:96]  W3 + σ0( W4); 
DEST[95:64]  W2 + σ0( W3); 
DEST[63:32]  W1 + σ0( W2); 
DEST[31:0]  W0 + σ0( W1); 

Intel C/C++ Compiler Intrinsic Equivalent

SHA256MSG1: __m128i _mm_sha256msg1_epu32(__m128i, __m128i);

Flags Affected

None

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4.

...

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 CC /r RM V/V SHA Performs an intermediate calculation for the next four SHA256 
message dwords using previous message dwords from xmm1 and 
xmm2/m128, storing the result in xmm1.

SHA256MSG1 xmm1, xmm2/
m128

Op/En Operand 1 Operand 2 Operand 3

RM ModRM:reg (r, w) ModRM:r/m (r) NA
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SHA256MSG2—Perform a Final Calculation for the Next Four SHA256 Message Dwords

Instruction Operand Encoding

Description

The SHA256MSG2 instruction is one of two SHA2 message scheduling instructions. The instruction performs the 
final calculation for the next four SHA256 message dwords.

Operation

SHA256MSG2 

W14  SRC2[95:64] ; 
W15  SRC2[127:96] ; 
W16  SRC1[31: 0] + σ1( W14) ; 
W17  SRC1[63: 32] + σ1( W15) ; 
W18  SRC1[95: 64] + σ1( W16) ; 
W19  SRC1[127: 96] + σ1( W17) ; 

DEST[127:96]  W19 ; 
DEST[95:64]  W18 ; 
DEST[63:32]  W17 ; 
DEST[31:0]  W16; 

Intel C/C++ Compiler Intrinsic Equivalent

SHA256MSG2 : __m128i _mm_sha256msg2_epu32(__m128i, __m128i);

Flags Affected

None

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4.

...

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 CD /r RM V/V SHA Performs the final calculation for the next four SHA256 message 
dwords using previous message dwords from xmm1 and xmm2/
m128, storing the result in xmm1.

SHA256MSG2 xmm1, xmm2/
m128

Op/En Operand 1 Operand 2 Operand 3

RM ModRM:reg (r, w) ModRM:r/m (r) NA
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SIDT—Store Interrupt Descriptor Table Register

Instruction Operand Encoding

Description

Stores the content the interrupt descriptor table register (IDTR) in the destination operand. The destination 
operand specifies a 6-byte memory location. 

In non-64-bit modes, if the operand-size attribute is 32 bits, the 16-bit limit field of the register is stored in the 
low 2 bytes of the memory location and the 32-bit base address is stored in the high 4 bytes. If the operand-size 
attribute is 16 bits, the limit is stored in the low 2 bytes and the 24-bit base address is stored in the third, fourth, 
and fifth byte, with the sixth byte filled with 0s.

In 64-bit mode, the operand size fixed at 8+2 bytes. The instruction stores 8-byte base and 2-byte limit values.

SIDT is only useful in operating-system software; however, it can be used in application programs without causing 
an exception to be generated if CR4.UMIP = 0. See “LGDT/LIDT—Load Global/Interrupt Descriptor Table Register” 
in Chapter 3, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for information on 
loading the GDTR and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of SIDT is compatible with the Intel 286 processor if the upper 8 bits are not referenced. The Intel 
286 processor fills these bits with 1s; processor generations later than the Intel 286 processor fill these bits with 
0s.

Operation

IF instruction is SIDT
THEN

IF OperandSize = 16
THEN 

DEST[0:15] ← IDTR(Limit);
DEST[16:39] ← IDTR(Base); (* 24 bits of base address stored; *)
DEST[40:47] ← 0;

ELSE IF (32-bit Operand Size)
DEST[0:15] ← IDTR(Limit);
DEST[16:47] ← IDTR(Base); FI; (* Full 32-bit base address stored *)

ELSE (* 64-bit Operand Size *)
DEST[0:15] ← IDTR(Limit);
DEST[16:79] ← IDTR(Base); (* Full 64-bit base address stored *)

FI;
FI;

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 /1 SIDT m M Valid Valid Store IDTR to m.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If CR4.UMIP = 1 and CPL > 0.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL = 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If CR4.UMIP = 1.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#UD If the destination operand is a register.

If the LOCK prefix is used.
#GP(0) If the memory address is in a non-canonical form.

If CR4.UMIP = 1 and CPL > 0.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL = 3.

...
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SLDT—Store Local Descriptor Table Register

Instruction Operand Encoding

Description

Stores the segment selector from the local descriptor table register (LDTR) in the destination operand. The desti-
nation operand can be a general-purpose register or a memory location. The segment selector stored with this 
instruction points to the segment descriptor (located in the GDT) for the current LDT. This instruction can only be 
executed in protected mode.

Outside IA-32e mode, when the destination operand is a 32-bit register, the 16-bit segment selector is copied into 
the low-order 16 bits of the register. The high-order 16 bits of the register are cleared for the Pentium 4, Intel 
Xeon, and P6 family processors. They are undefined for Pentium, Intel486, and Intel386 processors. When the 
destination operand is a memory location, the segment selector is written to memory as a 16-bit quantity, regard-
less of the operand size.

In compatibility mode, when the destination operand is a 32-bit register, the 16-bit segment selector is copied 
into the low-order 16 bits of the register. The high-order 16 bits of the register are cleared. When the destination 
operand is a memory location, the segment selector is written to memory as a 16-bit quantity, regardless of the 
operand size.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). The 
behavior of SLDT with a 64-bit register is to zero-extend the 16-bit selector and store it in the register. If the 
destination is memory and operand size is 64, SLDT will write the 16-bit selector to memory as a 16-bit quantity, 
regardless of the operand size.

Operation

DEST ← LDTR(SegmentSelector);

Flags Affected

None.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 00 /0 SLDT r/m16 M Valid Valid Stores segment selector from LDTR in r/m16.

REX.W + 0F 00 /0 SLDT r64/m16 M Valid Valid Stores segment selector from LDTR in r64/
m16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If CR4.UMIP = 1 and CPL > 0.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL = 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The SLDT instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The SLDT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If CR4.UMIP = 1 and CPL > 0.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL = 3.
#UD If the LOCK prefix is used.
...



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 131

SMSW—Store Machine Status Word

Instruction Operand Encoding

Description

Stores the machine status word (bits 0 through 15 of control register CR0) into the destination operand. The 
destination operand can be a general-purpose register or a memory location.

In non-64-bit modes, when the destination operand is a 32-bit register, the low-order 16 bits of register CR0 are 
copied into the low-order 16 bits of the register and the high-order 16 bits are undefined. When the destination 
operand is a memory location, the low-order 16 bits of register CR0 are written to memory as a 16-bit quantity, 
regardless of the operand size.

In 64-bit mode, the behavior of the SMSW instruction is defined by the following examples:
• SMSW r16 operand size 16, store CR0[15:0] in r16
• SMSW r32 operand size 32, zero-extend CR0[31:0], and store in r32
• SMSW r64 operand size 64, zero-extend CR0[63:0], and store in r64
• SMSW m16 operand size 16, store CR0[15:0] in m16
• SMSW m16 operand size 32, store CR0[15:0] in m16 (not m32)
• SMSW m16 operands size 64, store CR0[15:0] in m16 (not m64)

SMSW is only useful in operating-system software. However, it is not a privileged instruction and can be used in 
application programs if CR4.UMIP = 0. It is provided for compatibility with the Intel 286 processor. Programs and 
procedures intended to run on IA-32 and Intel 64 processors beginning with the Intel386 processors should use 
the MOV CR instruction to load the machine status word.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in 
VMX non-root operation.

Operation

DEST ← CR0[15:0]; 
(* Machine status word *)

Flags Affected

None.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 /4 SMSW r/m16 M Valid Valid Store machine status word to r/m16.

0F 01 /4 SMSW r32/m16 M Valid Valid Store machine status word in low-order 16 
bits of r32/m16; high-order 16 bits of r32 are 
undefined.

REX.W + 0F 01 /4 SMSW r64/m16 M Valid Valid Store machine status word in low-order 16 
bits of r64/m16; high-order 16 bits of r32 are 
undefined.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If CR4.UMIP = 1 and CPL > 0.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL = 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If CR4.UMIP = 1.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If CR4.UMIP = 1 and CPL > 0.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while CPL = 3.
#UD If the LOCK prefix is used.
...
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STR—Store Task Register

Instruction Operand Encoding

Description

Stores the segment selector from the task register (TR) in the destination operand. The destination operand can 
be a general-purpose register or a memory location. The segment selector stored with this instruction points to 
the task state segment (TSS) for the currently running task.

When the destination operand is a 32-bit register, the 16-bit segment selector is copied into the lower 16 bits of 
the register and the upper 16 bits of the register are cleared. When the destination operand is a memory location, 
the segment selector is written to memory as a 16-bit quantity, regardless of operand size.

In 64-bit mode, operation is the same. The size of the memory operand is fixed at 16 bits. In register stores, the 
2-byte TR is zero extended if stored to a 64-bit register.

The STR instruction is useful only in operating-system software. It can only be executed in protected mode.

Operation

DEST ← TR(SegmentSelector);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is a memory operand that is located in a non-writable segment or if the 

effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If CR4.UMIP = 1 and CPL > 0.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The STR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The STR instruction is not recognized in virtual-8086 mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 00 /1 STR r/m16 M Valid Valid Stores segment selector from TR in r/m16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If CR4.UMIP = 1 and CPL > 0.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
...

VEXTRACTI128 — Extract packed Integer Values

Instruction Operand Encoding

Description

Extracts 128-bits of packed integer values from the source operand (second operand) at a 128-bit offset from 
imm8[0] into the destination operand (first operand). The destination may be either an XMM register or a 128-bit 
memory location.
VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
The high 7 bits of the immediate are ignored.
An attempt to execute VEXTRACTI128 encoded with VEX.L= 0 will cause an #UD exception.

Operation

VEXTRACTI128 (memory destination form)
CASE (imm8[0]) OF

0: DEST[127:0]  SRC1[127:0]
1: DEST[127:0]  SRC1[255:128]

ESAC.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.256.66.0F3A.W0 39 /r ib MRI V/V AVX2 Extract 128 bits of integer data from ymm2 and 
store results in xmm1/mem.VEXTRACTI128 xmm1/m128, ymm2, 

imm8

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MRI ModRM:r/m (w) ModRM:reg (r) Imm8 NA
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VEXTRACTI128 (register destination form)
CASE (imm8[0]) OF

0: DEST[127:0]  SRC1[127:0]
1: DEST[127:0]  SRC1[255:128]

ESAC.
DEST[VLMAX-1:128]  0

Intel C/C++ Compiler Intrinsic Equivalent

VEXTRACTI128:  __m128i _mm256_extracti128_si256(__m256i a, int offset);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 6; additionally
#UD IF VEX.L = 0,

If VEX.W = 1.
...

VPGATHERDQ/VPGATHERQQ — Gather Packed Qword Values Using Signed Dword/Qword 
Indices 

Instruction Operand Encoding

Opcode/
Instruction

Op/ 
En

64/
32-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.128.66.0F38.W1 90 /r RMV V/V AVX2 Using dword indices specified in vm32x, gather qword val-
ues from memory conditioned on mask specified by 
xmm2. Conditionally gathered elements are merged into 
xmm1.

VPGATHERDQ xmm1, vm32x, xmm2

VEX.DDS.128.66.0F38.W1 91 /r RMV V/V AVX2 Using qword indices specified in vm64x, gather qword val-
ues from memory conditioned on mask specified by 
xmm2. Conditionally gathered elements are merged into 
xmm1.

VPGATHERQQ xmm1, vm64x, xmm2

VEX.DDS.256.66.0F38.W1 90 /r RMV V/V AVX2 Using dword indices specified in vm32x, gather qword val-
ues from memory conditioned on mask specified by 
ymm2. Conditionally gathered elements are merged into 
ymm1.

VPGATHERDQ ymm1, vm32x, ymm2

VEX.DDS.256.66.0F38.W1 91 /r RMV V/V AVX2 Using qword indices specified in vm64y, gather qword val-
ues from memory conditioned on mask specified by 
ymm2. Conditionally gathered elements are merged into 
ymm1.

VPGATHERQQ ymm1, vm64y, ymm2

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r,w) BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

VEX.vvvv (r, w) NA
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Description

The instruction conditionally loads up to 2 or 4 qword values from memory addresses specified by the memory 
operand (the second operand) and using qword indices. The memory operand uses the VSIB form of the SIB byte 
to specify a general purpose register operand as the common base, a vector register for an array of indices rela-
tive to the base and a constant scale factor.
The mask operand (the third operand) specifies the conditional load operation from each memory address and the 
corresponding update of each data element of the destination operand (the first operand). Conditionality is spec-
ified by the most significant bit of each data element of the mask register. If an element’s mask bit is not set, the 
corresponding element of the destination register is left unchanged. The width of data element in the destination 
register and mask register are identical. The entire mask register will be set to zero by this instruction unless the 
instruction causes an exception. 
Using dword indices in the lower half of the mask register, the instruction conditionally loads up to 2 or 4 qword 
values from the VSIB addressing memory operand, and updates the destination register. 
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception 
is triggered by an element other than the rightmost one with its mask bit set).  When this happens, the destina-
tion register and the mask operand are partially updated; those elements that have been gathered are placed into 
the destination register and have their mask bits set to zero.  If any traps or interrupts are pending from already 
gathered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an 
instruction breakpoint is not re-triggered when the instruction is continued.
If the data size and index size are different, part of the destination register and part of the mask register do not 
correspond to any elements being gathered.  This instruction sets those parts to zero.  It may do this to one or 
both of those registers even if the instruction triggers an exception, and even if the instruction triggers the excep-
tion before gathering any elements.
VEX.128 version: The instruction will gather two qword values.  For dword indices, only the lower two indices in 
the vector index register are used.
VEX.256 version: The instruction will gather four qword values.  For dword indices, only the lower four indices in 
the vector index register are used.
Note that:
• If any pair of the index, mask, or destination registers are the same, this instruction results a UD fault.
• The values may be read from memory in any order.  Memory ordering with other instructions follows the Intel-

64 memory-ordering model.
• Faults are delivered in a right-to-left manner.  That is, if a fault is triggered by an element and delivered, all 

elements closer to the LSB of the destination will be completed (and non-faulting).  Individual elements closer 
to the MSB may or may not be completed.  If a given element triggers multiple faults, they are delivered in the 
conventional order.

• Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements 
to the left of a faulting one may be gathered before the fault is delivered.  A given implementation of this 
instruction is repeatable - given the same input values and architectural state, the same set of elements to the 
left of the faulting one will be gathered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• This instruction will cause a #UD if the address size attribute is 16-bit.
• This instruction will cause a #UD if the memory operand is encoded without the SIB byte.
• This instruction should not be used to access memory mapped I/O as the ordering of the individual loads it 

does is implementation specific, and some implementations may use loads larger than the data element size 
or load elements an indeterminate number of times.

• The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-
bit mode, if the scale is greater than one).  In this case, the most significant bits beyond the number of 
address bits are ignored.
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Operation

DEST  SRC1;
BASE_ADDR: base register encoded in VSIB addressing;
VINDEX: the vector index register encoded by VSIB addressing;
SCALE: scale factor encoded by SIB:[7:6];
DISP: optional 1, 4 byte displacement;
MASK  SRC3;

VPGATHERDQ (VEX.128 version)
FOR j 0 to 1

i  j * 64;
IF MASK[63+i] THEN

MASK[i +63:i]  FFFFFFFF_FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +63:i]  0;
FI;

ENDFOR
FOR j 0 to 1

k  j * 32;
i  j * 64;
DATA_ADDR  BASE_ADDR + (SignExtend(VINDEX[k+31:k])*SCALE + DISP;
IF MASK[63+i] THEN

DEST[i +63:i]  FETCH_64BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +63:i]  0;

ENDFOR
MASK[VLMAX-1:128]  0;
DEST[VLMAX-1:128]  0;
(non-masked elements of the mask register have the content of respective element  cleared)

VPGATHERQQ (VEX.128 version)
FOR j 0 to 1

i  j * 64;
IF MASK[63+i] THEN

MASK[i +63:i]  FFFFFFFF_FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +63:i]  0;
FI;

ENDFOR
FOR j 0 to 1 

i j * 64;
DATA_ADDR  BASE_ADDR + (SignExtend(VINDEX1[i+63:i])*SCALE + DISP;
IF MASK[63+i] THEN

DEST[i +63:i]  FETCH_64BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +63:i]  0;

ENDFOR
MASK[VLMAX-1:128]  0;
DEST[VLMAX-1:128]  0;
(non-masked elements of the mask register have the content of respective element  cleared)



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 138

VPGATHERQQ (VEX.256 version)
FOR j 0 to 3

i  j * 64;
IF MASK[63+i] THEN

MASK[i +63:i]  FFFFFFFF_FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +63:i]  0;
FI;

ENDFOR
FOR j 0 to 3

i  j * 64;
DATA_ADDR  BASE_ADDR + (SignExtend(VINDEX1[i+63:i])*SCALE + DISP;
IF MASK[63+i] THEN

DEST[i +63:i]  FETCH_64BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +63:i]  0;

ENDFOR
(non-masked elements of the mask register have the content of respective element  cleared)

VPGATHERDQ (VEX.256 version)
FOR j 0 to 3

i  j * 64;
IF MASK[63+i] THEN

MASK[i +63:i]  FFFFFFFF_FFFFFFFFH; // extend from most significant bit
ELSE

MASK[i +63:i]  0;
FI;

ENDFOR
FOR j 0 to 3

k  j * 32;
i  j * 64;
DATA_ADDR  BASE_ADDR + (SignExtend(VINDEX1[k+31:k])*SCALE + DISP;
IF MASK[63+i] THEN

DEST[i +63:i]  FETCH_64BITS(DATA_ADDR); // a fault exits the instruction
FI;
MASK[i +63:i]  0;

ENDFOR
(non-masked elements of the mask register have the content of respective element  cleared)
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Intel C/C++ Compiler Intrinsic Equivalent

VPGATHERDQ: __m128i _mm_i32gather_epi64 (__int64 const * base, __m128i index, const int scale);

VPGATHERDQ: __m128i _mm_mask_i32gather_epi64 (__m128i src, __int64 const * base, __m128i index, __m128i mask, const int 
scale);

VPGATHERDQ: __m256i _mm256_i32gather_epi64 (__int64 const * base, __m128i index, const int scale);

VPGATHERDQ: __m256i _mm256_mask_i32gather_epi64 (__m256i src, __int64 const * base, __m128i index, __m256i mask, const 
int scale);

VPGATHERQQ: __m128i _mm_i64gather_epi64 (__int64 const * base, __m128i index, const int scale);

VPGATHERQQ: __m128i _mm_mask_i64gather_epi64 (__m128i src, __int64 const * base, __m128i index, __m128i mask, const int 
scale);

VPGATHERQQ: __m256i _mm256_i64gather_epi64 __(int64 const * base, __m256i index, const int scale);

VPGATHERQQ: __m256i _mm256_mask_i64gather_epi64 (__m256i src, __int64 const * base, __m256i index, __m256i mask, const 
int scale);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 12
...

WRPKRU—Write Data to User Page Key Register

Instruction Operand Encoding

Description

Writes the value of EAX into PKRU. ECX and EDX must be 0 when WRPKRU is executed; otherwise, a general-
protection exception (#GP) occurs.

WRPKRU can be executed only if CR4.PKE = 1; otherwise, an invalid-opcode exception (#UD) occurs. Software 
can discover the value of CR4.PKE by examining CPUID.(EAX=07H,ECX=0H):ECX.OSPKE [bit 4].

On processors that support the Intel 64 Architecture, the high-order 32-bits of RCX, RDX and RAX are ignored.

Opcode* Instruction Op/ 
En

64/32bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 01 EF WRPKRU NP V/V OSPKE Writes EAX into PKRU.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Operation

IF (ECX = 0 AND EDX = 0) 
THEN PKRU ← EAX;
ELSE #GP(0); 

FI;

Flags Affected

None.

C/C++ Compiler Intrinsic Equivalent

WRPKRU: void _wrpkru(uint32_t);

Protected Mode Exceptions
#GP(0) If ECX ≠ 0.

If EDX ≠ 0.
#UD If the LOCK prefix is used.

If CR4.PKE = 0.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
...
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XCHG—Exchange Register/Memory with Register

Instruction Operand Encoding

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

90+rw XCHG AX, r16 O Valid Valid Exchange r16 with AX.

90+rw XCHG r16, AX O Valid Valid Exchange AX with r16.

90+rd XCHG EAX, r32 O Valid Valid Exchange r32 with EAX.

REX.W + 90+rd XCHG RAX, r64 O Valid N.E. Exchange r64 with RAX.

90+rd XCHG r32, EAX O Valid Valid Exchange EAX with r32.

REX.W + 90+rd XCHG r64, RAX O Valid N.E. Exchange RAX with r64.

86 /r XCHG r/m8, r8 MR Valid Valid Exchange r8 (byte register) with byte from r/
m8.

REX + 86 /r XCHG r/m8*, r8* MR Valid N.E. Exchange r8 (byte register) with byte from r/
m8.

86 /r XCHG r8, r/m8 RM Valid Valid Exchange byte from r/m8 with r8 (byte 
register).

REX + 86 /r XCHG r8*, r/m8* RM Valid N.E. Exchange byte from r/m8 with r8 (byte 
register).

87 /r XCHG r/m16, r16 MR Valid Valid Exchange r16 with word from r/m16.

87 /r XCHG r16, r/m16 RM Valid Valid Exchange word from r/m16 with r16.

87 /r XCHG r/m32, r32 MR Valid Valid Exchange r32 with doubleword from r/m32.

REX.W + 87 /r XCHG r/m64, r64 MR Valid N.E. Exchange r64 with quadword from r/m64.

87 /r XCHG r32, r/m32 RM Valid Valid Exchange doubleword from r/m32 with r32.

REX.W + 87 /r XCHG r64, r/m64 RM Valid N.E. Exchange quadword from r/m64 with r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

O AX/EAX/RAX (r, w) opcode + rd (r, w) NA NA

O opcode + rd (r, w) AX/EAX/RAX (r, w) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Description

Exchanges the contents of the destination (first) and source (second) operands. The operands can be two 
general-purpose registers or a register and a memory location. If a memory operand is referenced, the 
processor’s locking protocol is automatically implemented for the duration of the exchange operation, regardless 
of the presence or absence of the LOCK prefix or of the value of the IOPL. (See the LOCK prefix description in this 
chapter for more information on the locking protocol.)

This instruction is useful for implementing semaphores or similar data structures for process synchronization. 
(See “Bus Locking” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3A, for more information on bus locking.) 

The XCHG instruction can also be used instead of the BSWAP instruction for 16-bit operands.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. 
See the summary chart at the beginning of this section for encoding data and limits.

NOTE
XCHG (E)AX, (E)AX (encoded instruction byte is 90H) is an alias for NOP regardless of data size 
prefixes, including REX.W.

Operation

TEMP ← DEST;
DEST ← SRC;
SRC ← TEMP;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If either operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
...

8. Updates to Appendix A, Volume 2C
Change bars show changes to Appendix A of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2C: Instruction Set Reference.

------------------------------------------------------------------------------------------
...
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...

Table A-4. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 38H) *

pfx 8 9 A B C D E F

0

psignb
Pq, Qq

psignw
Pq, Qq

psignd
Pq, Qq

pmulhrsw
Pq, Qq

66
vpsignb

Vx, Hx, Wx
vpsignw

Vx, Hx, Wx
vpsignd

Vx, Hx, Wx
vpmulhrsw 
Vx, Hx, Wx

vpermilpsv 
Vx,Hx,Wx

vpermilpdv 
Vx,Hx,Wx

vtestpsv 
Vx, Wx

vtestpdv 
Vx, Wx

1
pabsb
Pq, Qq

pabsw
Pq, Qq

pabsd
Pq, Qq

66
vbroadcastssv 

Vx, Wd
vbroadcastsdv Vqq, 

Wq
vbroadcastf128v Vqq, 

Mdq
vpabsb
Vx, Wx

vpabsw
Vx, Wx

vpabsd
Vx, Wx

2 66
vpmuldq

Vx, Hx, Wx
vpcmpeqq
Vx, Hx, Wx

vmovntdqa
Vx, Mx

vpackusdw
Vx, Hx, Wx

vmaskmovpsv 
Vx,Hx,Mx

vmaskmovpdv 
Vx,Hx,Mx

vmaskmovpsv 
Mx,Hx,Vx

vmaskmovpdv 
Mx,Hx,Vx

3 66
vpminsb

Vx, Hx, Wx
vpminsd

Vx, Hx, Wx
vpminuw

Vx, Hx, Wx
vpminud

Vx, Hx, Wx
vpmaxsb

Vx, Hx, Wx
vpmaxsd

Vx, Hx, Wx
vpmaxuw

Vx, Hx, Wx
vpmaxud

Vx, Hx, Wx

4

5 66
vpbroadcastdv 

Vx, Wx
vpbroadcastqv 

Vx, Wx
vbroadcasti128v 

Vqq, Mdq

6

7 66
vpbroadcastbv 

Vx, Wx
vpbroadcastwv 

Vx, Wx

8 66
vpmaskmovd/qv 

Vx,Hx,Mx
vpmaskmovd/qv 

Mx,Vx,Hx

9 66
vfmadd132ps/dv 

Vx, Hx, Wx
vfmadd132ss/dv 

Vx, Hx, Wx
vfmsub132ps/dv 

Vx, Hx, Wx
vfmsub132ss/dv 

Vx, Hx, Wx
vfnmadd132ps/dv 

Vx, Hx, Wx
vfnmadd132ss/dv 

Vx, Hx, Wx
vfnmsub132ps/dv 

Vx, Hx, Wx
vfnmsub132ss/dv 

Vx, Hx, Wx

A 66 vfmadd213ps/dv 
Vx, Hx, Wx

vfmadd213ss/dv 
Vx, Hx, Wx

vfmsub213ps/dv 
Vx, Hx, Wx

vfmsub213ss/dv 
Vx, Hx, Wx

vfnmadd213ps/dv 
Vx, Hx, Wx

vfnmadd213ss/dv 
Vx, Hx, Wx

vfnmsub213ps/dv 
Vx, Hx, Wx

vfnmsub213ss/dv 
Vx, Hx, Wx

B 66
vfmadd231ps/dv 

Vx, Hx, Wx
vfmadd231ss/dv 

Vx, Hx, Wx
vfmsub231ps/dv 

Vx, Hx, Wx
vfmsub231ss/dv 

Vx, Hx, Wx
vfnmadd231ps/dv 

Vx, Hx, Wx
vfnmadd231ss/dv 

Vx, Hx, Wx
vfnmsub231ps/dv 

Vx, Hx, Wx
vfnmsub231ss/dv 

Vx, Hx, Wx

C

sha1nexte
Vdq,Wdq

sha1msg1
Vdq,Wdq

sha1msg2
Vdq,Wdq

sha256rnds2
Vdq,Wdq

sha256msg1
Vdq,Wdq

sha256msg2
Vdq,Wdq

66

D 66
VAESIMC 
Vdq, Wdq

VAESENC 
Vdq,Hdq,Wdq

VAESENCLAST 
Vdq,Hdq,Wdq

VAESDEC 
Vdq,Hdq,Wdq

VAESDECLAST 
Vdq,Hdq,Wdq

E

F

66

F3

F2

66 & F2

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations. 



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 145

...

Table A-4. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 38H) *

pfx 8 9 A B C D E F

0

psignb
Pq, Qq

psignw
Pq, Qq

psignd
Pq, Qq

pmulhrsw
Pq, Qq

66
vpsignb

Vx, Hx, Wx
vpsignw

Vx, Hx, Wx
vpsignd

Vx, Hx, Wx
vpmulhrsw 
Vx, Hx, Wx

vpermilpsv 
Vx,Hx,Wx

vpermilpdv 
Vx,Hx,Wx

vtestpsv 
Vx, Wx

vtestpdv 
Vx, Wx

1
pabsb
Pq, Qq

pabsw
Pq, Qq

pabsd
Pq, Qq

66
vbroadcastssv 

Vx, Wd
vbroadcastsdv Vqq, 

Wq
vbroadcastf128v Vqq, 

Mdq
vpabsb
Vx, Wx

vpabsw
Vx, Wx

vpabsd
Vx, Wx

2 66
vpmuldq

Vx, Hx, Wx
vpcmpeqq
Vx, Hx, Wx

vmovntdqa
Vx, Mx

vpackusdw
Vx, Hx, Wx

vmaskmovpsv 
Vx,Hx,Mx

vmaskmovpdv 
Vx,Hx,Mx

vmaskmovpsv 
Mx,Hx,Vx

vmaskmovpdv 
Mx,Hx,Vx

3 66
vpminsb

Vx, Hx, Wx
vpminsd

Vx, Hx, Wx
vpminuw

Vx, Hx, Wx
vpminud

Vx, Hx, Wx
vpmaxsb

Vx, Hx, Wx
vpmaxsd

Vx, Hx, Wx
vpmaxuw

Vx, Hx, Wx
vpmaxud

Vx, Hx, Wx

4

5 66
vpbroadcastdv 

Vx, Wx
vpbroadcastqv 

Vx, Wx
vbroadcasti128v 

Vqq, Mdq

6

7 66
vpbroadcastbv 

Vx, Wx
vpbroadcastwv 

Vx, Wx

8 66
vpmaskmovd/qv 

Vx,Hx,Mx
vpmaskmovd/qv 

Mx,Vx,Hx

9 66
vfmadd132ps/dv 

Vx, Hx, Wx
vfmadd132ss/dv 

Vx, Hx, Wx
vfmsub132ps/dv 

Vx, Hx, Wx
vfmsub132ss/dv 

Vx, Hx, Wx
vfnmadd132ps/dv 

Vx, Hx, Wx
vfnmadd132ss/dv 

Vx, Hx, Wx
vfnmsub132ps/dv 

Vx, Hx, Wx
vfnmsub132ss/dv 

Vx, Hx, Wx

A 66 vfmadd213ps/dv 
Vx, Hx, Wx

vfmadd213ss/dv 
Vx, Hx, Wx

vfmsub213ps/dv 
Vx, Hx, Wx

vfmsub213ss/dv 
Vx, Hx, Wx

vfnmadd213ps/dv 
Vx, Hx, Wx

vfnmadd213ss/dv 
Vx, Hx, Wx

vfnmsub213ps/dv 
Vx, Hx, Wx

vfnmsub213ss/dv 
Vx, Hx, Wx

B 66
vfmadd231ps/dv 

Vx, Hx, Wx
vfmadd231ss/dv 

Vx, Hx, Wx
vfmsub231ps/dv 

Vx, Hx, Wx
vfmsub231ss/dv 

Vx, Hx, Wx
vfnmadd231ps/dv 

Vx, Hx, Wx
vfnmadd231ss/dv 

Vx, Hx, Wx
vfnmsub231ps/dv 

Vx, Hx, Wx
vfnmsub231ss/dv 

Vx, Hx, Wx

C

sha1nexte
Vdq,Wdq

sha1msg1
Vdq,Wdq

sha1msg2
Vdq,Wdq

sha256rnds2
Vdq,Wdq

sha256msg1
Vdq,Wdq

sha256msg2
Vdq,Wdq

66

D 66
VAESIMC 
Vdq, Wdq

VAESENC 
Vdq,Hdq,Wdq

VAESENCLAST 
Vdq,Hdq,Wdq

VAESDEC 
Vdq,Hdq,Wdq

VAESDECLAST 
Vdq,Hdq,Wdq

E

F

66

F3

F2

66 & F2

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations. 
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...

A.4.2  Opcode Extension Tables
See Table A-6 below.

Table A-5. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 3AH) *

pfx 8 9 A B C D E F

0
palignr

Pq, Qq, Ib

66
vroundps
Vx,Wx,Ib

vroundpd
Vx,Wx,Ib

vroundss
Vss,Wss,Ib

vroundsd
Vsd,Wsd,Ib

vblendps
Vx,Hx,Wx,Ib

vblendpd
Vx,Hx,Wx,Ib

vpblendw
Vx,Hx,Wx,Ib

vpalignr
Vx,Hx,Wx,Ib

1 66
vinsertf128v 

Vqq,Hqq,Wqq,Ib
vextractf128v 
Wdq,Vqq,Ib

vcvtps2phv

Wx, Vx, Ib

2

3 66
vinserti128v 

Vqq,Hqq,Wqq,Ib
vextracti128v 
Wdq,Vqq,Ib

4 66
vblendvpsv

 Vx,Hx,Wx,Lx
vblendvpdv 

Vx,Hx,Wx,Lx
vpblendvbv

Vx,Hx,Wx,Lx

5

6

7

8

9

A

B

C
sha1rnds4
Vdq,Wdq,Ib

D 66
VAESKEYGEN 
Vdq, Wdq, Ib

E

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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Table A-6    Opcode Extensions for One- and Two-byte Opcodes by Group Number *

Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
000 001 010 011 100 101 110 111

80-83 1 mem, 11B ADD OR ADC SBB AND SUB XOR CMP

8F 1A mem, 11B POP

C0,C1 reg, imm
D0, D1 reg, 1

D2, D3 reg, CL
2

mem, 11B ROL ROR RCL RCR SHL/SAL SHR SAR

F6, F7 3
mem, 11B TEST 

Ib/Iz
NOT NEG MUL

AL/rAX
IMUL

AL/rAX
DIV

AL/rAX
IDIV

AL/rAX

FE 4
mem, 11B INC

Eb
DEC
Eb

FF 5
mem, 11B INC

Ev
DEC
Ev

near CALLf64

Ev
far CALL

Ep 
near JMPf64

Ev
far JMP

Mp
PUSHd64

Ev

0F 00 6
mem, 11B SLDT

Rv/Mw
STR

Rv/Mw
LLDT
Ew

LTR
Ew 

VERR
Ew

VERW
Ew

0F 01 7

mem SGDT
Ms

SIDT
Ms

LGDT
Ms

LIDT
Ms 

SMSW
Mw/Rv

LMSW
Ew

INVLPG
Mb

11B VMCALL (001) 
VMLAUNCH 

(010) 
VMRESUME 

(011) VMXOFF 
(100) 

MONITOR 
(000)

MWAIT (001)
CLAC (010)
STAC (011)

ENCLS (111)

XGETBV (000)
XSETBV (001)

VMFUNC 
(100)

XEND (101)
XTEST (110)
ENCLU(111)

SWAPGS
o64(000)

RDTSCP (001)

0F BA 8 mem, 11B BT BTS BTR BTC

0F C7 9

mem

CMPXCH8B Mq
CMPXCHG16B

 Mdq

VMPTRLD
Mq

VMPTRST
Mq 

66 VMCLEAR
Mq 

F3 VMXON
Mq 

11B

RDRAND
Rv

RDSEED
Rv

F3 RDPID
Rv

0F B9 10
mem

11B

C6

11

mem MOV
Eb, Ib

11B XABORT (000) Ib

C7
mem MOV

Ev, Iz
11B XBEGIN (000) Jz

0F 71 12

mem

11B

psrlw
Nq, Ib

psraw
Nq, Ib

psllw
Nq, Ib

66 vpsrlw
Hx,Ux,Ib

vpsraw
Hx,Ux,Ib

vpsllw
Hx,Ux,Ib

0F 72 13

mem

11B

psrld
Nq, Ib

psrad
Nq, Ib

pslld
Nq, Ib

66 vpsrld
Hx,Ux,Ib

vpsrad
Hx,Ux,Ib

vpslld
Hx,Ux,Ib

0F 73 14

mem

11B

psrlq
Nq, Ib

psllq
Nq, Ib

66 vpsrlq
Hx,Ux,Ib

vpsrldq
Hx,Ux,Ib

vpsllq
Hx,Ux,Ib

vpslldq
Hx,Ux,Ib
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...

9. Updates to Chapter 1, Volume 3A
Change bars show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------
...

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which 
include: 
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series

Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
000 001 010 011 100 101 110 111

0F AE 15

mem fxsave fxrstor ldmxcsr stmxcsr XSAVE XRSTOR XSAVEOPT clflush

11B

lfence mfence sfence

F3 RDFSBASE  
Ry

RDGSBASE 
Ry

WRFSBASE  
Ry

WRGSBASE 
Ry

0F 18 16
mem

prefetch
NTA

prefetch
T0

prefetch
T1

prefetch
T2

11B

VEX.0F38 F3 17
mem BLSRv

By, Ey
BLSMSKv

By, Ey
BLSIv

By, Ey
11B

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-6    Opcode Extensions for One- and Two-byte Opcodes by Group Number * (Contd.)
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• Intel® Core™2 Extreme QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Core™2 Extreme QX9000 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000, 

C1000 series are built from 45 nm and 32 nm processes.
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families 
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• The Intel® Core™ M processor family 
• Intel® Core™ i7-59xx Processor Extreme Edition
• Intel® Core™ i7-49xx Processor Extreme Edition
• Intel® Xeon® processor E3-1200 v3 product family
• Intel® Xeon® processor E5-2600/1600 v3 product families
• 5th generation Intel® Core™ processors
• Intel® Xeon® processor D-1500 product family
• Intel® Xeon® processor E5 v4 family
• Intel® Atom™ processor X7-Z8000 and X5-Z8000 series
• Intel® Atom™ processor Z3400 series
• Intel® Atom™ processor Z3500 series
• 6th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1500m v5 product family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium® 
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors. 
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The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon 
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved 
Pentium® M processor microarchitecture. 

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel® 
Core™2 Duo, Intel® Core™2 Quad and Intel® Core™2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel® 
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on 
Enhanced Intel® Core™ microarchitecture.

The Intel® Atom™ processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000, 
C1000 series are based on the Intel® Atom™ microarchitecture and supports Intel 64 architecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel® 
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32 nm version of 
Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and 
various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These 
processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-8800/
4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, Intel® 
Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name 
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 
product family and 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code name 
Ivy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2 
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Intel® microarchitecture 
code name Ivy Bridge-E and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based 
on the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

The Intel® Core™ M processor family, 5th generation Intel® Core™ processors, Intel® Xeon® processor D-1500 
product family and the Intel® Xeon® processor E5 v4 family are based on the Intel® microarchitecture code name 
Broadwell and support Intel 64 architecture. 

The Intel® Xeon® processor E3-1500m v5 product family and 6th generation Intel® Core™ processors are based 
on the Intel® microarchitecture code name Skylake and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme 
Edition are based on the Intel® microarchitecture code name Haswell-E and support Intel 64 architecture.

The Intel® Atom™ processor Z8000 series is based on the Intel microarchitecture code name Airmont.

The Intel® Atom™ processor Z3400 series and the Intel® Atom™ processor Z3500 series are based on the Intel 
microarchitecture code name Silvermont.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV, 
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™ 
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel® 
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors, 
Pentium® Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 
64 architecture.
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IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit micropro-
cessors. Intel® 64 architecture is the instruction set architecture and programming environment which is a 
superset of and compatible with IA-32 architecture.

...

10.Updates to Chapter 2, Volume 3A
Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------
...

2.5 CONTROL REGISTERS
Control registers (CR0, CR1, CR2, CR3, and CR4; see Figure 2-7) determine operating mode of the processor and 
the characteristics of the currently executing task. These registers are 32 bits in all 32-bit modes and compati-
bility mode. 

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions are used to manipulate the 
register bits. Operand-size prefixes for these instructions are ignored. The following is also true:
• The control registers can be read and loaded (or modified) using the move-to-or-from-control-registers forms 

of the MOV instruction. In protected mode, the MOV instructions allow the control registers to be read or 
loaded (at privilege level 0 only). This restriction means that application programs or operating-system 
procedures (running at privilege levels 1, 2, or 3) are prevented from reading or loading the control registers.

• Bits 63:32 of CR0 and CR4 are reserved and must be written with zeros. Writing a nonzero value to any of the 
upper 32 bits results in a general-protection exception, #GP(0). 

• All 64 bits of CR2 are writable by software. 
• Bits 51:40 of CR3 are reserved and must be 0. 
• The MOV CRn instructions do not check that addresses written to CR2 and CR3 are within the linear-address 

or physical-address limitations of the implementation. 
• Register CR8 is available in 64-bit mode only. 

The control registers are summarized below, and each architecturally defined control field in these control regis-
ters is described individually. In Figure 2-7, the width of the register in 64-bit mode is indicated in parenthesis 
(except for CR0).
• CR0 — Contains system control flags that control operating mode and states of the processor. 
• CR1 — Reserved.
• CR2 — Contains the page-fault linear address (the linear address that caused a page fault).
• CR3 — Contains the physical address of the base of the paging-structure hierarchy and two flags (PCD and 

PWT). Only the most-significant bits (less the lower 12 bits) of the base address are specified; the lower 12 
bits of the address are assumed to be 0. The first paging structure must thus be aligned to a page (4-KByte) 
boundary. The PCD and PWT flags control caching of that paging structure in the processor’s internal data 
caches (they do not control TLB caching of page-directory information).

When using the physical address extension, the CR3 register contains the base address of the page-directory-
pointer table. In IA-32e mode, the CR3 register contains the base address of the PML4 table.

See also: Chapter 4, “Paging.”
• CR4 — Contains a group of flags that enable several architectural extensions, and indicate operating system 

or executive support for specific processor capabilities. 
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• CR8 — Provides read and write access to the Task Priority Register (TPR). It specifies the priority threshold 
value that operating systems use to control the priority class of external interrupts allowed to interrupt the 
processor. This register is available only in 64-bit mode. However, interrupt filtering continues to apply in 
compatibility mode.

When loading a control register, reserved bits should always be set to the values previously read. The flags in 
control registers are:

PG Paging (bit 31 of CR0) — Enables paging when set; disables paging when clear. When paging is 
disabled, all linear addresses are treated as physical addresses. The PG flag has no effect if the PE flag (bit 
0 of register CR0) is not also set; setting the PG flag when the PE flag is clear causes a general-protection 
exception (#GP). See also: Chapter 4, “Paging.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also requires modifying CR0.PG.

CD Cache Disable (bit 30 of CR0) — When the CD and NW flags are clear, caching of memory locations for 
the whole of physical memory in the processor’s internal (and external) caches is enabled. When the CD 
flag is set, caching is restricted as described in Table 11-5. To prevent the processor from accessing and 
updating its caches, the CD flag must be set and the caches must be invalidated so that no cache hits can 
occur.

See also: Section 11.5.3, “Preventing Caching,” and Section 11.5, “Cache Control.”

NW Not Write-through (bit 29 of CR0) — When the NW and CD flags are clear, write-back (for Pentium 4, 
Intel Xeon, P6 family, and Pentium processors) or write-through (for Intel486 processors) is enabled for 
writes that hit the cache and invalidation cycles are enabled. See Table 11-5 for detailed information 
about the effect of the NW flag on caching for other settings of the CD and NW flags.

Figure 2-7    Control Registers
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AM Alignment Mask (bit 18 of CR0) — Enables automatic alignment checking when set; disables align-
ment checking when clear. Alignment checking is performed only when the AM flag is set, the AC flag in 
the EFLAGS register is set, CPL is 3, and the processor is operating in either protected or virtual-8086 
mode.

WP Write Protect (bit 16 of CR0) — When set, inhibits supervisor-level procedures from writing into read-
only pages; when clear, allows supervisor-level procedures to write into read-only pages (regardless of 
the U/S bit setting; see Section 4.1.3 and Section 4.6). This flag facilitates implementation of the copy-
on-write method of creating a new process (forking) used by operating systems such as UNIX.

NE Numeric Error (bit 5 of CR0) — Enables the native (internal) mechanism for reporting x87 FPU errors 
when set; enables the PC-style x87 FPU error reporting mechanism when clear. When the NE flag is clear 
and the IGNNE# input is asserted, x87 FPU errors are ignored. When the NE flag is clear and the IGNNE# 
input is deasserted, an unmasked x87 FPU error causes the processor to assert the FERR# pin to generate 
an external interrupt and to stop instruction execution immediately before executing the next waiting 
floating-point instruction or WAIT/FWAIT instruction. 

The FERR# pin is intended to drive an input to an external interrupt controller (the FERR# pin emulates 
the ERROR# pin of the Intel 287 and Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and 
FERR# pin are used with external logic to implement PC-style error reporting. Using FERR# and IGNNE# 
to handle floating-point exceptions is deprecated by modern operating systems; this non-native approach 
also limits newer processors to operate with one logical processor active.

See also: Section 8.7, “Handling x87 FPU Exceptions in Software” in Chapter 8, “Programming with the 
x87 FPU,” and Appendix A, “EFLAGS Cross-Reference,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.

ET Extension Type (bit 4 of CR0) — Reserved in the Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors. In the Pentium 4, Intel Xeon, and P6 family processors, this flag is hardcoded to 1. In the Intel386 
and Intel486 processors, this flag indicates support of Intel 387 DX math coprocessor instructions when 
set.

TS Task Switched (bit 3 of CR0) — Allows the saving of the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 
context on a task switch to be delayed until an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is 
actually executed by the new task. The processor sets this flag on every task switch and tests it when 
executing x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

• If the TS flag is set and the EM flag (bit 2 of CR0) is clear, a device-not-available exception (#NM) is 
raised prior to the execution of any x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction; with the 
exception of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and 
POPCNT. See the paragraph below for the special case of the WAIT/FWAIT instructions.

• If the TS flag is set and the MP flag (bit 1 of CR0) and EM flag are clear, an #NM exception is not raised 
prior to the execution of an x87 FPU WAIT/FWAIT instruction.

• If the EM flag is set, the setting of the TS flag has no effect on the execution of x87 FPU/MMX/SSE/
SSE2/SSE3/SSSE3/SSE4 instructions.

Table 2-2 shows the actions taken when the processor encounters an x87 FPU instruction based on the 
settings of the TS, EM, and MP flags. Table 12-1 and 13-1 show the actions taken when the processor 
encounters an MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction.

The processor does not automatically save the context of the x87 FPU, XMM, and MXCSR registers on a 
task switch. Instead, it sets the TS flag, which causes the processor to raise an #NM exception whenever 
it encounters an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction in the instruction stream for the 
new task (with the exception of the instructions listed above). 

The fault handler for the #NM exception can then be used to clear the TS flag (with the CLTS instruction) 
and save the context of the x87 FPU, XMM, and MXCSR registers. If the task never encounters an x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction, the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 
context is never saved.
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EM Emulation (bit 2 of CR0) — Indicates that the processor does not have an internal or external x87 FPU 
when set; indicates an x87 FPU is present when clear. This flag also affects the execution of MMX/SSE/
SSE2/SSE3/SSSE3/SSE4 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a device-not-available exception 
(#NM). This flag must be set when the processor does not have an internal x87 FPU or is not connected 
to an external math coprocessor. Setting this flag forces all floating-point instructions to be handled by 
software emulation. Table 9-2 shows the recommended setting of this flag, depending on the IA-32 
processor and x87 FPU or math coprocessor present in the system. Table 2-2 shows the interaction of the 
EM, MP, and TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an invalid-opcode exception (#UD) 
to be generated (see Table 12-1). Thus, if an IA-32 or Intel 64 processor incorporates MMX technology, 
the EM flag must be set to 0 to enable execution of MMX instructions.

Similarly for SSE/SSE2/SSE3/SSSE3/SSE4 extensions, when the EM flag is set, execution of most SSE/
SSE2/SSE3/SSSE3/SSE4 instructions causes an invalid opcode exception (#UD) to be generated (see 
Table 13-1). If an IA-32 or Intel 64 processor incorporates the SSE/SSE2/SSE3/SSSE3/SSE4 extensions, 
the EM flag must be set to 0 to enable execution of these extensions. SSE/SSE2/SSE3/SSSE3/SSE4 
instructions not affected by the EM flag include: PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, 
MOVNTI, CLFLUSH, CRC32, and POPCNT.

MP Monitor Coprocessor (bit 1 of CR0) — Controls the interaction of the WAIT (or FWAIT) instruction with the 
TS flag (bit 3 of CR0). If the MP flag is set, a WAIT instruction generates a device-not-available exception 
(#NM) if the TS flag is also set. If the MP flag is clear, the WAIT instruction ignores the setting of the TS 
flag. Table 9-2 shows the recommended setting of this flag, depending on the IA-32 processor and x87 FPU 
or math coprocessor present in the system. Table 2-2 shows the interaction of the MP, EM, and TS flags.

PE Protection Enable (bit 0 of CR0) — Enables protected mode when set; enables real-address mode 
when clear. This flag does not enable paging directly. It only enables segment-level protection. To enable 
paging, both the PE and PG flags must be set. 

See also: Section 9.9, “Mode Switching.”

PCD Page-level Cache Disable (bit 4 of CR3) — Controls the memory type used to access the first paging 
structure of the current paging-structure hierarchy. See Section 4.9, “Paging and Memory Typing”. This 
bit is not used if paging is disabled, with PAE paging, or with IA-32e paging if CR4.PCIDE=1.

PWT Page-level Write-Through (bit 3 of CR3) — Controls the memory type used to access the first paging 
structure of the current paging-structure hierarchy. See Section 4.9, “Paging and Memory Typing”. This 
bit is not used if paging is disabled, with PAE paging, or with IA-32e paging if CR4.PCIDE=1.

Table 2-2    Action Taken By x87 FPU Instructions for Different Combinations of EM, MP, and TS

CR0 Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT

0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.

1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.

1 1 1 #NM Exception #NM exception.
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VME Virtual-8086 Mode Extensions (bit 0 of CR4) — Enables interrupt- and exception-handling exten-
sions in virtual-8086 mode when set; disables the extensions when clear. Use of the virtual mode exten-
sions can improve the performance of virtual-8086 applications by eliminating the overhead of calling the 
virtual-8086 monitor to handle interrupts and exceptions that occur while executing an 8086 program 
and, instead, redirecting the interrupts and exceptions back to the 8086 program’s handlers. It also 
provides hardware support for a virtual interrupt flag (VIF) to improve reliability of running 8086 
programs in multitasking and multiple-processor environments.

See also: Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode.”

PVI Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware support for a virtual interrupt 
flag (VIF) in protected mode when set; disables the VIF flag in protected mode when clear. 

See also: Section 20.4, “Protected-Mode Virtual Interrupts.”

TSD Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the RDTSC instruction to procedures 
running at privilege level 0 when set; allows RDTSC instruction to be executed at any privilege level when 
clear. This bit also applies to the RDTSCP instruction if supported (if CPUID.80000001H:EDX[27] = 1).

DE Debugging Extensions (bit 3 of CR4) — References to debug registers DR4 and DR5 cause an unde-
fined opcode (#UD) exception to be generated when set; when clear, processor aliases references to 
registers DR4 and DR5 for compatibility with software written to run on earlier IA-32 processors. 

See also: Section 17.2.2, “Debug Registers DR4 and DR5.”

PSE Page Size Extensions (bit 4 of CR4) — Enables 4-MByte pages with 32-bit paging when set; restricts 
32-bit paging to pages of 4 KBytes when clear.

See also: Section 4.3, “32-Bit Paging.”

PAE Physical Address Extension (bit 5 of CR4) — When set, enables paging to produce physical addresses 
with more than 32 bits. When clear, restricts physical addresses to 32 bits. PAE must be set before 
entering IA-32e mode.

See also: Chapter 4, “Paging.”

MCE Machine-Check Enable (bit 6 of CR4) — Enables the machine-check exception when set; disables the 
machine-check exception when clear.

See also: Chapter 15, “Machine-Check Architecture.”

PGE Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family processors.) Enables the global page 
feature when set; disables the global page feature when clear. The global page feature allows frequently 
used or shared pages to be marked as global to all users (done with the global flag, bit 8, in a page-direc-
tory or page-table entry). Global pages are not flushed from the translation-lookaside buffer (TLB) on a 
task switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting the PG flag in control register 
CR0) before the PGE flag is set. Reversing this sequence may affect program correctness, and processor 
performance will be impacted. 

See also: Section 4.10, “Caching Translation Information.”

PCE Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables execution of the RDPMC instruc-
tion for programs or procedures running at any protection level when set; RDPMC instruction can be 
executed only at protection level 0 when clear.

OSFXSR
Operating System Support for FXSAVE and FXRSTOR instructions (bit 9 of CR4) — When set, this 
flag: (1) indicates to software that the operating system supports the use of the FXSAVE and FXRSTOR 
instructions, (2) enables the FXSAVE and FXRSTOR instructions to save and restore the contents of the 
XMM and MXCSR registers along with the contents of the x87 FPU and MMX registers, and (3) enables the 
processor to execute SSE/SSE2/SSE3/SSSE3/SSE4 instructions, with the exception of the PAUSE, 
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT. 
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If this flag is clear, the FXSAVE and FXRSTOR instructions will save and restore the contents of the x87 
FPU and MMX registers, but they may not save and restore the contents of the XMM and MXCSR registers. 
Also, the processor will generate an invalid opcode exception (#UD) if it attempts to execute any SSE/
SSE2/SSE3 instruction, with the exception of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, 
CLFLUSH, CRC32, and POPCNT. The operating system or executive must explicitly set this flag.

NOTE
CPUID feature flag FXSR indicates availability of the FXSAVE/FXRSTOR instructions. The OSFXSR 
bit provides operating system software with a means of enabling FXSAVE/FXRSTOR to save/
restore the contents of the X87 FPU, XMM and MXCSR registers. Consequently OSFXSR bit 
indicates that the operating system provides context switch support for SSE/SSE2/SSE3/SSSE3/
SSE4.

OSXMMEXCPT
Operating System Support for Unmasked SIMD Floating-Point Exceptions (bit 10 of CR4) — 
When set, indicates that the operating system supports the handling of unmasked SIMD floating-point 
exceptions through an exception handler that is invoked when a SIMD floating-point exception (#XM) is 
generated. SIMD floating-point exceptions are only generated by SSE/SSE2/SSE3/SSE4.1 SIMD floating-
point instructions. 

The operating system or executive must explicitly set this flag. If this flag is not set, the processor will 
generate an invalid opcode exception (#UD) whenever it detects an unmasked SIMD floating-point 
exception.

UMIP
User-Mode Instruction Prevention (bit 11 of CR4) — When set, the following instructions cannot be 
executed if CPL > 0: SGDT, SIDT, SLDT, SMSW, and STR. An attempt at such execution causes a general-
protection exception (#GP).

VMXE
VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See Chapter 23, “Introduction to 
Virtual-Machine Extensions.”

SMXE
SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See Chapter 5, “Safer Mode Exten-
sions Reference” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C.

FSGSBASE
FSGSBASE-Enable Bit (bit 16 of CR4) — Enables the instructions RDFSBASE, RDGSBASE, WRFSBASE, 
and WRGSBASE.

PCIDE
PCID-Enable Bit (bit 17 of CR4) — Enables process-context identifiers (PCIDs) when set. See Section 
4.10.1, “Process-Context Identifiers (PCIDs)”. Can be set only in IA-32e mode (if IA32_EFER.LMA = 1).

OSXSAVE
XSAVE and Processor Extended States-Enable Bit (bit 18 of CR4) — When set, this flag: (1) indi-
cates (via CPUID.01H:ECX.OSXSAVE[bit 27]) that the operating system supports the use of the XGETBV, 
XSAVE and XRSTOR instructions by general software; (2) enables the XSAVE and XRSTOR instructions to 
save and restore the x87 FPU state (including MMX registers), the SSE state (XMM registers and MXCSR), 
along with other processor extended states enabled in XCR0; (3) enables the processor to execute 
XGETBV and XSETBV instructions in order to read and write XCR0. See Section 2.6 and Chapter 13, 
“System Programming for Instruction Set Extensions and Processor Extended States”.

SMEP
SMEP-Enable Bit (bit 20 of CR4) — Enables supervisor-mode execution prevention (SMEP) when set. 
See Section 4.6, “Access Rights”.
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SMAP
SMAP-Enable Bit (bit 21 of CR4) — Enables supervisor-mode access prevention (SMAP) when set. See 
Section 4.6, “Access Rights.”

PKE
Protection-Key-Enable Bit (bit 22 of CR4) — Enables IA-32e paging to associate each linear address 
with a protection key. The PKRU register specifies, for each protection key, whether user-mode linear 
addresses with that protection key can be read or written. This bit also enables access to the PKRU 
register using the RDPKRU and WRPKRU instructions.

TPL
Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corresponding to the highest-
priority interrupt to be blocked. A value of 0 means all interrupts are enabled. This field is available in 64-
bit mode. A value of 15 means all interrupts will be disabled.

...

2.8 SYSTEM INSTRUCTION SUMMARY
System instructions handle system-level functions such as loading system registers, managing the cache, 
managing interrupts, or setting up the debug registers. Many of these instructions can be executed only by oper-
ating-system or executive procedures (that is, procedures running at privilege level 0). Others can be executed at 
any privilege level and are thus available to application programs. 

Table 2-3 lists the system instructions and indicates whether they are available and useful for application 
programs. These instructions are described in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volumes 2A, 2B & 2C.

Table 2-3    Summary of System Instructions

Instruction Description
Useful to
Application?

Protected from
Application?

LLDT Load LDT Register No Yes

SLDT Store LDT Register No If CR4.UMIP = 1

LGDT Load GDT Register No Yes

SGDT Store GDT Register No If CR4.UMIP = 1

LTR Load Task Register No Yes

STR Store Task Register No If CR4.UMIP = 1

LIDT Load IDT Register No Yes

SIDT Store IDT Register No If CR4.UMIP = 1

MOV CRn Load and store control registers No Yes

SMSW Store MSW Yes If CR4.UMIP = 1

LMSW Load MSW No Yes

CLTS Clear TS flag in CR0 No Yes

ARPL Adjust RPL Yes1, 5 No

LAR Load Access Rights Yes No

LSL Load Segment Limit Yes No

VERR Verify for Reading Yes No
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2.8.1 Loading and Storing System Registers
The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for loading data into and storing 
data from the register:
• LGDT (Load GDTR Register) — Loads the GDT base address and limit from memory into the GDTR register.
• SGDT (Store GDTR Register) — Stores the GDT base address and limit from the GDTR register into 

memory.
• LIDT (Load IDTR Register) — Loads the IDT base address and limit from memory into the IDTR register.
• SIDT (Store IDTR Register) — Stores the IDT base address and limit from the IDTR register into memory.
• LLDT (Load LDTR Register) — Loads the LDT segment selector and segment descriptor from memory into 

the LDTR. (The segment selector operand can also be located in a general-purpose register.)
• SLDT (Store LDTR Register) — Stores the LDT segment selector from the LDTR register into memory or a 

general-purpose register.
• LTR (Load Task Register) — Loads segment selector and segment descriptor for a TSS from memory into 

the task register. (The segment selector operand can also be located in a general-purpose register.)

VERW Verify for Writing Yes No

MOV DRn Load and store debug registers No Yes

INVD Invalidate cache, no writeback No Yes

WBINVD Invalidate cache, with writeback No Yes

INVLPG Invalidate TLB entry No Yes

HLT Halt Processor No Yes

LOCK (Prefix) Bus Lock Yes No

RSM Return from system management mode No Yes

RDMSR3 Read Model-Specific Registers No Yes

WRMSR3 Write Model-Specific Registers No Yes

RDPMC4 Read Performance-Monitoring Counter Yes Yes2

RDTSC3 Read Time-Stamp Counter Yes Yes2

RDTSCP7 Read Serialized Time-Stamp Counter Yes Yes2

XGETBV Return the state of XCR0 Yes No

XSETBV Enable one or more processor extended states No6 Yes

NOTES:
1. Useful to application programs running at a CPL of 1 or 2.
2. The TSD and PCE flags in control register CR4 control access to these instructions by application programs running at a CPL of 3.
3. These instructions were introduced into the IA-32 Architecture with the Pentium processor.
4. This instruction was introduced into the IA-32 Architecture with the Pentium Pro processor and the Pentium processor with MMX technol-

ogy.
5. This instruction is not supported in 64-bit mode.
6. Application uses XGETBV to query which set of processor extended states are enabled.
7. RDTSCP is introduced in Intel Core i7 processor.

Table 2-3    Summary of System Instructions (Contd.)

Instruction Description
Useful to
Application?

Protected from
Application?
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• STR (Store Task Register) — Stores the segment selector for the current task TSS from the task register 
into memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word) instructions operate on bits 0 
through 15 of control register CR0. These instructions are provided for compatibility with the 16-bit Intel 286 
processor. Programs written to run on 32-bit IA-32 processors should not use these instructions. Instead, they 
should access the control register CR0 using the MOV CR instruction.

The CLTS (clear TS flag in CR0) instruction is provided for use in handling a device-not-available exception (#NM) 
that occurs when the processor attempts to execute a floating-point instruction when the TS flag is set. This 
instruction allows the TS flag to be cleared after the x87 FPU context has been saved, preventing further #NM 
exceptions. See Section 2.5, “Control Registers,” for more information on the TS flag.

The control registers (CR0, CR1, CR2, CR3, CR4, and CR8) are loaded using the MOV instruction. The instruction 
loads a control register from a general-purpose register or stores the content of a control register in a general-
purpose register.
...

11. Updates to Chapter 6, Volume 3A
Change bars show changes to Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

...

Interrupt 13—General Protection Exception (#GP)

Exception Class Fault.

Description

Indicates that the processor detected one of a class of protection violations called “general-protection violations.” 
The conditions that cause this exception to be generated comprise all the protection violations that do not cause 
other exceptions to be generated (such as, invalid-TSS, segment-not-present, stack-fault, or page-fault excep-
tions). The following conditions cause general-protection exceptions to be generated:
• Exceeding the segment limit when accessing the CS, DS, ES, FS, or GS segments.
• Exceeding the segment limit when referencing a descriptor table (except during a task switch or a stack 

switch).
• Transferring execution to a segment that is not executable.
• Writing to a code segment or a read-only data segment.
• Reading from an execute-only code segment.
• Loading the SS register with a segment selector for a read-only segment (unless the selector comes from a 

TSS during a task switch, in which case an invalid-TSS exception occurs).
• Loading the SS, DS, ES, FS, or GS register with a segment selector for a system segment.
• Loading the DS, ES, FS, or GS register with a segment selector for an execute-only code segment.
• Loading the SS register with the segment selector of an executable segment or a null segment selector.
• Loading the CS register with a segment selector for a data segment or a null segment selector.
• Accessing memory using the DS, ES, FS, or GS register when it contains a null segment selector.
• Switching to a busy task during a call or jump to a TSS.
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• Using a segment selector on a non-IRET task switch that points to a TSS descriptor in the current LDT. TSS 
descriptors can only reside in the GDT. This condition causes a #TS exception during an IRET task switch.

• Violating any of the privilege rules described in Chapter 5, “Protection.”
• Exceeding the instruction length limit of 15 bytes (this only can occur when redundant prefixes are placed 

before an instruction).
• Loading the CR0 register with a set PG flag (paging enabled) and a clear PE flag (protection disabled).
• Loading the CR0 register with a set NW flag and a clear CD flag.
• Referencing an entry in the IDT (following an interrupt or exception) that is not an interrupt, trap, or task 

gate.
• Attempting to access an interrupt or exception handler through an interrupt or trap gate from virtual-8086 

mode when the handler’s code segment DPL is greater than 0.
• Attempting to write a 1 into a reserved bit of CR4.
• Attempting to execute a privileged instruction when the CPL is not equal to 0 (see Section 5.9, “Privileged 

Instructions,” for a list of privileged instructions).
• Attempting to execute SGDT, SIDT, SLDT, SMSW, or STR when CR4.UMIP = 1 and the CPL is not equal to 0.
• Writing to a reserved bit in an MSR.
• Accessing a gate that contains a null segment selector.
• Executing the INT n instruction when the CPL is greater than the DPL of the referenced interrupt, trap, or task 

gate.
• The segment selector in a call, interrupt, or trap gate does not point to a code segment.
• The segment selector operand in the LLDT instruction is a local type (TI flag is set) or does not point to a 

segment descriptor of the LDT type.
• The segment selector operand in the LTR instruction is local or points to a TSS that is not available.
• The target code-segment selector for a call, jump, or return is null.
• If the PAE and/or PSE flag in control register CR4 is set and the processor detects any reserved bits in a page-

directory-pointer-table entry set to 1. These bits are checked during a write to control registers CR0, CR3, or 
CR4 that causes a reloading of the page-directory-pointer-table entry.

• Attempting to write a non-zero value into the reserved bits of the MXCSR register.
• Executing an SSE/SSE2/SSE3 instruction that attempts to access a 128-bit memory location that is not 

aligned on a 16-byte boundary when the instruction requires 16-byte alignment. This condition also applies to 
the stack segment.

A program or task can be restarted following any general-protection exception. If the exception occurs while 
attempting to call an interrupt handler, the interrupted program can be restartable, but the interrupt may be lost.

Exception Error Code

The processor pushes an error code onto the exception handler's stack. If the fault condition was detected while 
loading a segment descriptor, the error code contains a segment selector to or IDT vector number for the 
descriptor; otherwise, the error code is 0. The source of the selector in an error code may be any of the following:
• An operand of the instruction.
• A selector from a gate which is the operand of the instruction.
• A selector from a TSS involved in a task switch.
• IDT vector number.
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Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

In general, a program-state change does not accompany a general-protection exception, because the invalid 
instruction or operation is not executed. An exception handler can be designed to correct all of the conditions that 
cause general-protection exceptions and restart the program or task without any loss of program continuity.

If a general-protection exception occurs during a task switch, it can occur before or after the commit-to-new-task 
point (see Section 7.3, “Task Switching”). If it occurs before the commit point, no program state change occurs. 
If it occurs after the commit point, the processor will load all the state information from the new TSS (without 
performing any additional limit, present, or type checks) before it generates the exception. The general-protec-
tion exception handler should thus not rely on being able to use the segment selectors found in the CS, SS, DS, 
ES, FS, and GS registers without causing another exception. (See the Program State Change description for 
“Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information on how to handle this situ-
ation.)

General Protection Exception in 64-bit Mode

The following conditions cause general-protection exceptions in 64-bit mode:
• If the memory address is in a non-canonical form.
• If a segment descriptor memory address is in non-canonical form.
• If the target offset in a destination operand of a call or jmp is in a non-canonical form.
• If a code segment or 64-bit call gate overlaps non-canonical space.
• If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't have the L-bit set and the 

D-bit clear.
• If the EFLAGS.NT bit is set in IRET.
• If the stack segment selector of IRET is null when going back to compatibility mode.
• If the stack segment selector of IRET is null going back to CPL3 and 64-bit mode.
• If a null stack segment selector RPL of IRET is not equal to CPL going back to non-CPL3 and 64-bit mode.
• If the proposed new code segment descriptor of IRET has both the D-bit and the L-bit set.
• If the segment descriptor pointed to by the segment selector in the destination operand is a code segment and 

it has both the D-bit and the L-bit set.
• If the segment descriptor from a 64-bit call gate is in non-canonical space.
• If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-gate.
• If the type field of the upper 64 bits of a 64-bit call gate is not 0.
• If an attempt is made to load a null selector in the SS register in compatibility mode.
• If an attempt is made to load null selector in the SS register in CPL3 and 64-bit mode.
• If an attempt is made to load a null selector in the SS register in non-CPL3 and 64-bit mode where RPL is not 

equal to CPL.
• If an attempt is made to clear CR0.PG while IA-32e mode is enabled.
• If an attempt is made to set a reserved bit in CR3, CR4 or CR8.

...
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12. Updates to Chapter 7, Volume 3A
Change bars show changes to Chapter 7 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

...

7.2.4 Task Register
The task register holds the 16-bit segment selector and the entire segment descriptor (32-bit base address (64 
bits in IA-32e mode), 16-bit segment limit, and descriptor attributes) for the TSS of the current task (see 
Figure 2-6). This information is copied from the TSS descriptor in the GDT for the current task. Figure 7-5 shows 
the path the processor uses to access the TSS (using the information in the task register).

The task register has a visible part (that can be read and changed by software) and an invisible part (maintained 
by the processor and is inaccessible by software). The segment selector in the visible portion points to a TSS 
descriptor in the GDT. The processor uses the invisible portion of the task register to cache the segment descriptor 
for the TSS. Caching these values in a register makes execution of the task more efficient. The LTR (load task 
register) and STR (store task register) instructions load and read the visible portion of the task register: 

The LTR instruction loads a segment selector (source operand) into the task register that points to a TSS 
descriptor in the GDT. It then loads the invisible portion of the task register with information from the TSS 
descriptor. LTR is a privileged instruction that may be executed only when the CPL is 0. It’s used during system 
initialization to put an initial value in the task register. Afterwards, the contents of the task register are changed 
implicitly when a task switch occurs.

The STR (store task register) instruction stores the visible portion of the task register in a general-purpose 
register or memory. This instruction can be executed by code running at any privilege level in order to identify the 
currently running task. However, it is normally used only by operating system software. (If CR4.UMIP = 1, STR 
can be executed only when CPL = 0.)

On power up or reset of the processor, segment selector and base address are set to the default value of 0; the 
limit is set to FFFFH.

...

13. Updates to Chapter 9, Volume 3A
Change bars show changes to Chapter 9 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

...

9.1.2 Processor Built-In Self-Test (BIST)
Hardware may request that the BIST be performed at power-up. The EAX register is cleared (0H) if the processor 
passes the BIST. A nonzero value in the EAX register after the BIST indicates that a processor fault was detected. 
If the BIST is not requested, the contents of the EAX register after a hardware reset is 0H. 

The overhead for performing a BIST varies between processor families. For example, the BIST takes approximately 
30 million processor clock periods to execute on the Pentium 4 processor. This clock count is model-specific; Intel 
reserves the right to change the number of periods for any Intel 64 or IA-32 processor, without notification.
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Table 9-1    IA-32 Processor States Following Power-up, Reset, or INIT 

Register Pentium 4 and Intel Xeon 
Processor

P6 Family Processor (Including 
DisplayFamily = 06H)

Pentium Processor

EFLAGS1 00000002H 00000002H 00000002H

EIP 0000FFF0H 0000FFF0H 0000FFF0H

CR0 60000010H2 60000010H2 60000010H2

CR2, CR3, CR4 00000000H 00000000H 00000000H

CS Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

SS, DS, ES, FS, GS Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

EDX 00000FxxH  000n06xxH3 000005xxH 

EAX 04 04 04

EBX, ECX, ESI, EDI, EBP, 
ESP

00000000H 00000000H 00000000H

ST0 through ST75 Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

x87 FPU Control 
Word5

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

x87 FPU Status Word5 Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Tag Word5 Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

x87 FPU Data 
Operand and CS Seg. 
Selectors5

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Data 
Operand and Inst. 
Pointers5

Pwr up or Reset: 
   00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset: 
   00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset: 
   00000000H
FINIT/FNINIT: 00000000H

MM0 through MM75 Pwr up or Reset:
   0000000000000000H
INIT or FINIT/FNINIT:
   Unchanged

Pentium II and Pentium III 
Processors Only—

Pwr up or Reset:
   0000000000000000H
INIT or FINIT/FNINIT:
   Unchanged

Pentium with MMX Technology 
Only—

Pwr up or Reset:
   0000000000000000H
INIT or FINIT/FNINIT:
   Unchanged

XMM0 through XMM7 Pwr up or Reset: 0H
INIT: Unchanged

If CPUID.01H:SSE is 1 —

Pwr up or Reset: 0H
INIT: Unchanged

NA

MXCSR Pwr up or Reset: 1F80H
INIT: Unchanged

Pentium III processor only-

Pwr up or Reset: 1F80H
INIT: Unchanged

NA
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GDTR, IDTR Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

LDTR, Task Register Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

DR0, DR1, DR2, DR3 00000000H 00000000H 00000000H

DR6 FFFF0FF0H FFFF0FF0H FFFF0FF0H

DR7 00000400H 00000400H 00000400H

Time-Stamp Counter Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Perf. Counters and 
Event Select

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Intel® Processor 
Trace6

Power up or Cold Reset: 0H

Warm Reset: Unchanged, but 
IA32_RTIT_CTL.TraceEn[0] 
cleared7

INIT: Unchanged

N.A. N.A.

All Other MSRs Pwr up or Reset:
   Undefined
INIT: Unchanged

Pwr up or Reset:
   Undefined
INIT: Unchanged

Pwr up or Reset:
   Undefined
INIT: Unchanged

Data and Code Cache, 
TLBs

Invalid8 Invalid8 Invalid8

Fixed MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Variable MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Machine-Check 
Architecture

Pwr up or Reset:
    Undefined
INIT: Unchanged

Pwr up or Reset:
    Undefined
INIT: Unchanged

Not Implemented

APIC Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

R8-R159 0000000000000000H 0000000000000000H N.A.

Table 9-1    IA-32 Processor States Following Power-up, Reset, or INIT  (Contd.)

Register Pentium 4 and Intel Xeon 
Processor

P6 Family Processor (Including 
DisplayFamily = 06H)

Pentium Processor
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...

9.11.6 Microcode Update Loader
This section describes an update loader used to load an update into a P6 family or later processors. It also 
discusses the requirements placed on the BIOS to ensure proper loading. The update loader described contains 
the minimal instructions needed to load an update. The specific instruction sequence that is required to load an 
update is dependent upon the loader revision field contained within the update header. This revision is expected 
to change infrequently (potentially, only when new processor models are introduced).

Example 9-8 below represents the update loader with a loader revision of 00000001H. Note that the microcode 
update must be aligned on a 16-byte boundary and the size of the microcode update must be 1-KByte granular.

Example 9-8   Assembly Code Example of Simple Microcode Update Loader

mov ecx,79h ; MSR to write in ECX

xor eax,eax ; clear EAX

xor ebx,ebx ; clear EBX

mov ax,cs ; Segment of microcode update

shl eax,4

mov bx,offset Update ; Offset of microcode update

add eax,ebx ; Linear Address of Update in EAX

add eax,48d ; Offset of the Update Data within the Update

xor edx,edx ; Zero in EDX

WRMSR ; microcode update trigger

The loader shown in Example 9-8 assumes that update is the address of a microcode update (header and data) 
embedded within the code segment of the BIOS. It also assumes that the processor is operating in real mode. The 

XMM8-XMM159 Pwr up or Reset: 0H
INIT: Unchanged

Pwr up or Reset: 0H
INIT: Unchanged

N.A.

YMMn[128:VLMAX]10 N.A. Pwr up or Reset: 0H
INIT: Unchanged

N.A.

NOTES: 
1. The 10 most-significant bits of the EFLAGS register are undefined following a reset. Software should not depend on the states of 

any of these bits.
2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits are cleared.
3. Where “n” is the Extended Model Value for the respective processor.
4. If Built-In Self-Test (BIST) is invoked on power up or reset, EAX is 0 only if all tests passed. (BIST cannot be invoked during an INIT.)
5. The state of the x87 FPU and MMX registers is not changed by the execution of an INIT.
6. If the processor supports Intel® Processor Trace.
7. If CPUID(EAX=15H, ECX=0):EBX.IPFILT_WRSPRSV[bit 2] = 1.
8. Internal caches are invalid after power-up and RESET, but left unchanged with an INIT.
9. If the processor supports IA-32e mode.
10. If the processor supports AVX.

Table 9-1    IA-32 Processor States Following Power-up, Reset, or INIT  (Contd.)

Register Pentium 4 and Intel Xeon 
Processor

P6 Family Processor (Including 
DisplayFamily = 06H)

Pentium Processor
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data may reside anywhere in memory, aligned on a 16-byte boundary, that is accessible by the processor within 
its current operating mode.

Before the BIOS executes the microcode update trigger (WRMSR) instruction, the following must be true:
• In 64-bit mode, EAX contains the lower 32-bits of the microcode update linear address. In protected mode, 

EAX contains the full 32-bit linear address of the microcode update.
• In 64-bit mode, EDX contains the upper 32-bits of the microcode update linear address. In protected mode, 

EDX equals zero.
• ECX contains 79H (address of IA32_BIOS_UPDT_TRIG).

Other requirements are:
• If the update is loaded while the processor is in real mode, then the update data may not cross a segment 

boundary.
• If the update is loaded while the processor is in real mode, then the update data may not exceed a segment 

limit.
• If paging is enabled, pages that are currently present must map the update data.
• The microcode update data requires a 16-byte boundary alignment.

...

14. Updates to Chapter 10, Volume 3A
Change bars show changes to Chapter 10 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A: System Programming Guide, Part 1.

------------------------------------------------------------------------------------------

...

10.4.6 Local APIC ID
At power up, system hardware assigns a unique APIC ID to each local APIC on the system bus (for Pentium 4 and 
Intel Xeon processors) or on the APIC bus (for P6 family and Pentium processors). The hardware assigned APIC 
ID is based on system topology and includes encoding for socket position and cluster information (see 
Figure 8-2).

In MP systems, the local APIC ID is also used as a processor ID by the BIOS and the operating system. Some 
processors permit software to modify the APIC ID. However, the ability of software to modify the APIC ID is 
processor model specific. Because of this, operating system software should avoid writing to the local APIC ID 
register. The value returned by bits 31-24 of the EBX register (when the CPUID instruction is executed with a 
source operand value of 1 in the EAX register) is always the Initial APIC ID (determined by the platform initializa-
tion). This is true even if software has changed the value in the Local APIC ID register.

The processor receives the hardware assigned APIC ID (or Initial APIC ID) by sampling pins A11# and A12# and 
pins BR0# through BR3# (for the Pentium 4, Intel Xeon, and P6 family processors) and pins BE0# through BE3# 
(for the Pentium processor). The APIC ID latched from these pins is stored in the APIC ID field of the local APIC ID 
register (see Figure 10-6), and is used as the Initial APIC ID for the processor. 
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For the P6 family and Pentium processors, the local APIC ID field in the local APIC ID register is 4 bits. Encodings 
0H through EH can be used to uniquely identify 15 different processors connected to the APIC bus. For the 
Pentium 4 and Intel Xeon processors, the xAPIC specification extends the local APIC ID field to 8 bits. These can 
be used to identify up to 255 processors in the system.

...

10.5.4 APIC Timer
The local APIC unit contains a 32-bit programmable timer that is available to software to time events or opera-
tions. This timer is set up by programming four registers: the divide configuration register (see Figure 10-10), the 
initial-count and current-count registers (see Figure 10-11), and the LVT timer register (see Figure 10-8). 

If CPUID.06H:EAX.ARAT[bit 2] = 1, the processor’s APIC timer runs at a constant rate regardless of P-state tran-
sitions and it continues to run at the same rate in deep C-states.

If CPUID.06H:EAX.ARAT[bit 2] = 0 or if CPUID 06H is not supported, the APIC timer may temporarily stop while 
the processor is in deep C-states or during transitions caused by Enhanced Intel SpeedStep® Technology.

Figure 10-6    Local APIC ID Register

Figure 10-10    Divide Configuration Register

31 27 24 0

ReservedAPIC ID
Address: 0FEE0 0020H
Value after reset: 0000 0000H

P6 family and Pentium processors 

Pentium 4 processors, Xeon processors, and later processors
31 24 0

ReservedAPIC ID

MSR Address: 802H

31     0

x2APIC ID

x2APIC Mode

xAPIC Mode

Address: FEE0 03E0H
Value after reset: 0H

0

Divide Value (bits 0, 1 and 3)
000: Divide by 2
001: Divide by 4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

31 0

Reserved

1234
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The APIC timer frequency will be the processor’s bus clock or core crystal clock frequency (when TSC/core crystal 
clock ratio is enumerated in CPUID leaf 0x15) divided by the value specified in the divide configuration register.

The timer can be configured through the timer LVT entry for one-shot or periodic operation. In one-shot mode, 
the timer is started by programming its initial-count register. The initial count value is then copied into the 
current-count register and count-down begins. After the timer reaches zero, an timer interrupt is generated and 
the timer remains at its 0 value until reprogrammed. 

In periodic mode, the current-count register is automatically reloaded from the initial-count register when the 
count reaches 0 and a timer interrupt is generated, and the count-down is repeated. If during the count-down 
process the initial-count register is set, counting will restart, using the new initial-count value. The initial-count 
register is a read-write register; the current-count register is read only.

A write of 0 to the initial-count register effectively stops the local APIC timer, in both one-shot and periodic mode.

The LVT timer register determines the vector number that is delivered to the processor with the timer interrupt 
that is generated when the timer count reaches zero. The mask flag in the LVT timer register can be used to mask 
the timer interrupt.

...

15. Updates to Chapter 14, Volume 3B
Change bars show changes to Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

14.3.2.3  Required Changes to OS Power Management P-state Policy
Intel Dynamic Acceleration (IDA) and Intel Turbo Boost Technology can provide opportunistic performance 
greater than the performance level corresponding to the Processor Base frequency of the processor (see CPUID’s 
processor frequency information). System software can use a pair of MSRs to observe performance feedback. 
Software must query for the presence of IA32_APERF and IA32_MPERF (see Section 14.2). The ratio between 
IA32_APERF and IA32_MPERF is architecturally defined and a value greater than unity indicates performance 
increase occurred during the observation period due to IDA. Without incorporating such performance feedback, 
the target P-state evaluation algorithm can result in a non-optimal P-state target. 

There are other scenarios under which OS power management may want to disable IDA, some of these are listed 
below:
• When engaging ACPI defined passive thermal management, it may be more effective to disable IDA for the 

duration of passive thermal management.

 

Figure 10-11    Initial Count and Current Count Registers

31 0

Initial Count

Address: Initial Count

Value after reset: 0H

Current Count

Current Count FEE0 0390H
FEE0 0380H
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• When the user has indicated a policy preference of power savings over performance, OS power management 
may want to disable IDA while that policy is in effect.

...

14.4 HARDWARE-CONTROLLED PERFORMANCE STATES (HWP)
Intel processors may contain support for Hardware-Controlled Performance States (HWP), which autonomously 
selects performance states while utilizing OS supplied performance guidance hints. The Enhanced Intel Speed-
Step® Technology provides a means for the OS to control and monitor discrete frequency-based operating points 
via the IA32_PERF_CTL and IA32_PERF_STATUS MSRs. 

In contrast, HWP is an implementation of the ACPI-defined Collaborative Processor Performance Control (CPPC), 
which specifies that the platform enumerate a continuous, abstract unit-less, performance value scale that is not 
tied to a specific performance state / frequency by definition. While the enumerated scale is roughly linear in 
terms of a delivered integer workload performance result, the OS is required to characterize the performance 
value range to comprehend the delivered performance for an applied workload. 

When HWP is enabled, the processor autonomously selects performance states as deemed appropriate for the 
applied workload and with consideration of constraining hints that are programmed by the OS. These OS-provided 
hints include minimum and maximum performance limits, preference towards energy efficiency or performance, 
and the specification of a relevant workload history observation time window. The means for the OS to override 
HWP's autonomous selection of performance state with a specific desired performance target is also provided, 
however, the effective frequency delivered is subject to the result of energy efficiency and performance optimiza-
tions.

...

16. Updates to Chapter 16, Volume 3B
Change bars show changes to Chapter 16 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

16.9 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH 
CPUID DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_55H, MACHINE 
ERROR CODES FOR MACHINE CHECK

Future Intel Xeon processors with CPUID DisplayFamily_DisplaySignature 06_55H. Incremental error codes for 
internal machine check error from PCU controller is reported in the register bank IA32_MC4, Table 16-27 in 
Section 16.9.1 lists model-specific fields to interpret error codes applicable to IA32_MC4_STATUS. 
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16.9.1  Internal Machine Check Errors

Table 16-27    Machine Check Error Codes for IA32_MC4_STATUS

Type Bit No. Bit Function Bit Description

MCA error codes1 15:0 MCACOD

MCACOD2 15:0 internal Errors 0402h - PCU internal Errors

0403h - PCU internal Errors

0406h - Intel TXT Errors

0407h - Other UBOX internal Errors.

On an IERR caused by a core 3-strike the IA32_MC3_STATUS (MLC) is copied 
to the IA32_MC4_STATUS (After a 3-strike, the core MCA banks will be 
unavailable). 

Model specific errors 19:16 Reserved except for 
the following

0000b - No Error

00xxb - PCU internal error

23-20 Reserved Reserved

31-24 Reserved except for 
the following

00h - No Error

0Dh - MCA_DMI_TRAINING_TIMEOUT 

0Fh - MCA_DMI_CPU_RESET_ACK_TIMEOUT

10h - MCA_MORE_THAN_ONE_LT_AGENT

1Eh - MCA_BIOS_RST_CPL_INVALID_SEQ

1Fh - MCA_BIOS_INVALID_PKG_STATE_CONFIG

25h - MCA_MESSAGE_CHANNEL_TIMEOUT

27h - MCA_MSGCH_PMREQ_CMP_TIMEOUT

30h - MCA_PKGC_DIRECT_WAKE_RING_TIMEOUT

31h - MCA_PKGC_INVALID_RSP_PCH

33h - MCA_PKGC_WATCHDOG_HANG_CBZ_DOWN

34h - MCA_PKGC_WATCHDOG_HANG_CBZ_UP

38h - MCA_PKGC_WATCHDOG_HANG_C3_UP_SF

40h - MCA_SVID_VCCIN_VR_ICC_MAX_FAILURE

41h - MCA_SVID_COMMAND_TIMEOUT

42h - MCA_SVID_VCCIN_VR_VOUT_MAX_FAILURE

43h - MCA_SVID_CPU_VR_CAPABILITY_ERROR

44h - MCA_SVID_CRITICAL_VR_FAILED

45h - MCA_SVID_SA_ITD_ERROR

46h - MCA_SVID_READ_REG_FAILED

47h - MCA_SVID_WRITE_REG_FAILED

48h - MCA_SVID_PKGC_INIT_FAILED
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16.9.2  Interconnect Machine Check Errors
MC error codes associated with the link interconnect agents are reported in the MSRs IA32_MC5_STATUS, 
IA32_MC12_STATUS, IA32_MC19_STATUS. The supported error codes follow the architectural MCACOD definition 
type 1PPTRRRRIILL (see Chapter 15, “Machine-Check Architecture,”).

Table 16-28 lists model-specific fields to interpret error codes applicable to IA32_MCi_STATUS, i= 5, 12, 19.

49h - MCA_SVID_PKGC_CONFIG_FAILED

4Ah - MCA_SVID_PKGC_REQUEST_FAILED

4Bh - MCA_SVID_IMON_REQUEST_FAILED

4Ch - MCA_SVID_ALERT_REQUEST_FAILED

4Dh - MCA_SVID_MCP_VP_ABSENT_OR_RAMP_ERROR

4Eh - MCA_SVID_UNEXPECTED_MCP_VP_DETECTED

51h - MCA_FIVR_CATAS_OVERVOL_FAULT

52h - MCA_FIVR_CATAS_OVERCUR_FAULT

58h - MCA_WATCHDG_TIMEOUT_PKGC_SLAVE

59h - MCA_WATCHDG_TIMEOUT_PKGC_MASTER

5Ah - MCA_WATCHDG_TIMEOUT_PKGS_MASTER

61h - MCA_PKGS_CPD_UNPCD_TIMEOUT

63h - MCA_PKGS_INVALID_REQ_PCH

64h - MCA_PKGS_INVALID_REQ_INTERNAL

65h - MCA_PKGS_INVALID_RSP_INTERNAL

6Bh - MCA_PKGS_SMBUS_VPP_PAUSE_TIMEOUT

81h - MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

52-32 Reserved Reserved

54-53 CORR_ERR_STATUS Reserved

56-55 Reserved Reserved

Status register 
validity indicators1 

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.
2. The internal error codes may be model-specific.

Type Bit No. Bit Function Bit Description
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Table 16-28    Interconnect MC Error Codes for IA32_MCi_STATUS, i = 5, 12, 19

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

0-15 MCACOD Bus error format: 1PPTRRRRIILL

The two supported compound error codes:

- 0x0C0F - Unsupported/Undefined Packet

- 0x0E0F - For all other corrected and uncorrected errors

Model specific 
errors

21-16 MSCOD The encoding of Uncorrectable (UC) errors are:

00h - UC Phy Initialization Failure.

01h - UC Phy detected drift buffer alarm.

02h - UC Phy detected latency buffer rollover.

10h - UC link layer Rx detected CRC error: unsuccessful LLR entered abort state

11h - UC LL Rx unsupported or undefined packet.

12h - UC LL or Phy control error.

13h - UC LL Rx parameter exchange exception.

1fh - UC LL detected control error from the link-mesh interface

The encoding of correctable (COR) errors are:

20h - COR Phy initialization abort

21h - COR Phy reset

22h - COR Phy lane failure, recovery in x8 width.

23h - COR Phy L0c error corrected without Phy reset

24h - COR Phy L0c error triggering Phy reset

25h - COR Phy L0p exit error corrected with Phy reset

30h - COR LL Rx detected CRC error - successful LLR without Phy re-init.

31h - COR LL Rx detected CRC error - successful LLR with Phy re-init.

All other values are reserved.
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16.9.3  Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC13_STATUS-
IA32_MC16_STATUS. The supported error codes follow the architectural MCACOD definition type 1MMMCCCC 
(see Chapter 15, “Machine-Check Architecture”). 

31-22 MSCOD_SPARE The definition below applies to MSCOD 12h (UC LL or Phy Control Errors)

[Bit 22] : Phy Control Error

[Bit 23] : Unexpected Retry.Ack flit

[Bit 24] : Unexpected Retry.Req flit

[Bit 25] : RF parity error

[Bit 26] : Routeback Table error

[Bit 27] : unexpected Tx Protocol flit (EOP, Header or Data)

[Bit 28] : Rx Header-or-Credit BGF credit overflow/underflow

[Bit 29] : Link Layer Reset still in progress when Phy enters L0 (Phy training should 
not be enabled until after LL reset is complete as indicated by 
KTILCL.LinkLayerReset going back to 0).

[Bit 30] : Link Layer reset initiated while protocol traffic not idle

[Bit 31] : Link Layer Tx Parity Error

37-32 Reserved Reserved

52-38 Corrected Error Cnt

56-53 Reserved Reserved

Status register 
validity 
indicators1 

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Type Bit No. Bit Function Bit Description
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Table 16-29    Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 13-16)

16.9.4  M2M Machine Check Errors
MC error codes associated with M2M are reported in the MSRs IA32_MC7_STATUS, IA32_MC8_STATUS. The 
supported error codes follow the architectural MCACOD definition type 1MMMCCCC (see Chapter 15, “Machine-
Check Architecture”). 

Type Bit No. Bit Function Bit Description

MCA error codes1 0-15 MCACOD Memory Controller error format: 0000 0000 1MMM CCCC

Model specific 
errors

31:16 Reserved except for 
the following

0001H - Address parity error

0002H - HA write data parity error

0004H - HA write byte enable parity error

0008H - Corrected patrol scrub error

0010H - Uncorrected patrol scrub error

0020H - Corrected spare error

0040H - Uncorrected spare error

0080H - Any HA read error

0100H - WDB read parity error

0200H - DDR4 command address parity error

0400H - Uncorrected address parity error

0800H - Unrecognized request type

0801H - Read response to an invalid scoreboard entry

0802H - Unexpected read response

0803H - DDR4 completion to an invalid scoreboard entry

0804H - Completion to an invalid scoreboard entry

0805H - Completion FIFO overflow

0806H - Correctable parity error

0807H - Uncorrectable error

0808H - Interrupt received while outstanding interrupt was not ACKed

0809H - ERID FIFO overflow

080aH - Error on Write credits

080bH - Error on Read credits

080cH - Scheduler error

080dH - Error event

36-32 Other info MC logs the first error device. This is an encoded 5-bit value of the device.

37 Reserved Reserved

56-38 See Chapter 15, “Machine-Check Architecture,”

Status register 
validity indicators1 

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.
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Table 16-30    M2M MC Error Codes for IA32_MCi_STATUS (i= 7-8)

...

17. Updates to Chapter 17, Volume 3B
Change bars show changes to Chapter 17 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

17.4 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING OVERVIEW
P6 family processors introduced the ability to set breakpoints on taken branches, interrupts, and exceptions, and 
to single-step from one branch to the next. This capability has been modified and extended in the Pentium 4, Intel 
Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7 and Intel® Atom™ 
processors to allow logging of branch trace messages in a branch trace store (BTS) buffer in memory. 

See the following sections for processor specific implementation of last branch, interrupt and exception recording:

— Section 17.5, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ 2 Duo and Intel® Atom™ 
Processors)”

— Section 17.6, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on 
Goldmont Microarchitecture”

Type Bit No. Bit Function Bit Description

MCA error codes1 0-15 MCACOD Compound error format: 0000 0000 1MMM CCCC

Model specific 
errors

16 MscodDataRdErr Logged an MC read data error

17 Reserved Reserved

18 MscodPtlWrErr Logged an MC partial write data error

19 MscodFullWrErr Logged a full write data error

20 MscodBgfErr Logged an M2M clock-domain-crossing buffer (BGF) error

21 MscodTimeOut Logged an M2M time out

22 MscodParErr Logged an M2M tracker parity error 

23 MscodBucket1Err Logged a fatal Bucket1 error

31-24 Reserved Reserved

36-32 Other info MC logs the first error device. This is an encoded 5-bit value of the device.

37 Reserved Reserved

56-38 See Chapter 15, “Machine-Check Architecture,”

Status register 
validity indicators1 

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.
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— Section 17.7, “Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microar-
chitecture code name Nehalem”

— Section 17.8, “Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microar-
chitecture code name Sandy Bridge”

— Section 17.9, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on 
Haswell Microarchitecture”

— Section 17.10, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on 
Skylake Microarchitecture”

— Section 17.12, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ Solo and Intel® Core™ 

Duo Processors)”

— Section 17.13, “Last Branch, Interrupt, and Exception Recording (Pentium M Processors)”

— Section 17.14, “Last Branch, Interrupt, and Exception Recording (P6 Family Processors)”

The following subsections of Section 17.4 describe common features of profiling branches. These features are 
generally enabled using the IA32_DEBUGCTL MSR (older processor may have implemented a subset or model-
specific features, see definitions of MSR_DEBUGCTLA, MSR_DEBUGCTLB, MSR_DEBUGCTL).

...

17.4.2 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag (bit 0) in the IA32_DEBUGCTL MSR is set, the processor automatically begins recording branch 
records for taken branches, interrupts, and exceptions (except for debug exceptions) in the LBR stack MSRs.

When the processor generates a debug exception (#DB), it automatically clears the LBR flag before executing the 
exception handler. This action does not clear previously stored LBR stack MSRs.

A debugger can use the linear addresses in the LBR stack to re-set breakpoints in the breakpoint address registers 
(DR0 through DR3). This allows a backward trace from the manifestation of a particular bug toward its source.

On some processors, if the LBR flag is cleared and TR flag in the IA32_DEBUGCTL MSR remains set, the processor 
will continue to update LBR stack MSRs. This is because those processors use the entries in the LBR stack in the 
process of generating BTM/BTS records. A #DB does not automatically clear the TR flag.

...

17.4.8 LBR Stack 
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across Intel 64 and IA-32 
processor families. However, the number of MSRs in the LBR stack and the valid range of TOS pointer value can 
vary between different processor families. Table 17-4 lists the LBR stack size and TOS pointer range for several 
processor families according to the CPUID signatures of DisplayFamily_DisplayModel encoding (see CPUID 
instruction in Chapter 3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). 

Table 17-4    LBR Stack Size and TOS Pointer Range 
DisplayFamily_DisplayModel Size of LBR Stack Component of an LBR Entry Range of TOS Pointer

06_5CH, 06_5FH 32 FROM_IP, TO_IP 0 to 31

06_4EH, 06_5EH, 06_8EH, 06_9EH 32 FROM_IP, TO_IP, LBR_INFO1 0 to 31

06_3DH, 06_47H, 06_4FH, 06_56H 16 FROM_IP, TO_IP 0 to 15

06_3CH, 06_45H, 06_46H, 06_3FH 16 FROM_IP, TO_IP 0 to 15

06_2AH, 06_2DH, 06_3AH, 06_3EH 16 FROM_IP, TO_IP 0 to 15
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The last branch recording mechanism tracks not only branch instructions (like JMP, Jcc, LOOP and CALL instruc-
tions), but also other operations that cause a change in the instruction pointer (like external interrupts, traps and 
faults). The branch recording mechanisms generally employs a set of MSRs, referred to as last branch record 
(LBR) stack. The size and exact locations of the LBR stack are generally model-specific (see Chapter 35, “Model-
Specific Registers (MSRs)” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C for 
model-specific MSR addresses). 
• Last Branch Record (LBR) Stack — The LBR consists of N pairs of MSRs (N is listed in the LBR stack size 

column of Table 17-4) that store source and destination address of recent branches (see Figure 17-3): 

— MSR_LASTBRANCH_0_FROM_IP (address is model specific) through the next consecutive (N-1) MSR 
address store source addresses

— MSR_LASTBRANCH_0_TO_IP (address is model specific ) through the next consecutive (N-1) MSR 
address store destination addresses.

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant M bits of the TOS Pointer MSR 
(MSR_LASTBRANCH_TOS, address is model specific) contains an M-bit pointer to the MSR in the LBR stack 
that contains the most recent branch, interrupt, or exception recorded. The valid range of the M-bit POS 
pointer is given in Table 17-4.

17.4.8.1  LBR Stack and Intel® 64 Processors 
LBR MSRs are 64-bits. In 64-bit mode, last branch records store the full address. Outside of 64-bit mode, the 
upper 32-bits of branch addresses will be stored as 0. 

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 
06_2CH, 06_2FH

16 FROM_IP, TO_IP 0 to 15

06_17H, 06_1DH 4 FROM_IP, TO_IP 0 to 3

06_0FH 4 FROM_IP, TO_IP 0 to 3

06_37H, 06_4AH, 06_4CH, 06_4DH, 06_5AH, 
06_5DH

8 FROM_IP, TO_IP 0 to 7

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H 8 FROM_IP, TO_IP 0 to 7

NOTES:
1. See Section 17.10.

Figure 17-4    64-bit Address Layout of LBR MSR 

Table 17-4    LBR Stack Size and TOS Pointer Range  (Contd.)
DisplayFamily_DisplayModel Size of LBR Stack Component of an LBR Entry Range of TOS Pointer

63

Source Address

0

063

Destination Address

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_(N-1)_FROM_IP

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_(N-1)_TO_IP
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Software should query an architectural MSR IA32_PERF_CAPABILITIES[5:0] about the format of the address that 
is stored in the LBR stack. Four formats are defined by the following encoding:

— 000000B (32-bit record format) — Stores 32-bit offset in current CS of respective source/destination,

— 000001B (64-bit LIP record format) — Stores 64-bit linear address of respective source/destination,

— 000010B (64-bit EIP record format) — Stores 64-bit offset (effective address) of respective source/
destination.

— 000011B (64-bit EIP record format) and Flags — Stores 64-bit offset (effective address) of 
respective source/destination. Misprediction info is reported in the upper bit of 'FROM' registers in the LBR 
stack. See LBR stack details below for flag support and definition.

— 000100B (64-bit EIP record format), Flags and TSX — Stores 64-bit offset (effective address) of 
respective source/destination. Misprediction and TSX info are reported in the upper bits of ‘FROM’ 
registers in the LBR stack. 

— 000101B (64-bit EIP record format), Flags, TSX, LBR_INFO — Stores 64-bit offset (effective 
address) of respective source/destination. Misprediction, TSX, and elapsed cycles since the last LBR 
update are reported in the LBR_INFO MSR stack. 

— 000110B (64-bit EIP record format), Flags, Cycles — Stores 64-bit linear address (CS.Base + 
effective address) of respective source/destination. Misprediction info is reported in the upper bits of 
'FROM' registers in the LBR stack. Elapsed cycles since the last LBR update are reported in the upper 16 
bits of the 'TO' registers in the LBR stack (see Section 17.6). 

Processor’s support for the architectural MSR IA32_PERF_CAPABILITIES is provided by 
CPUID.01H:ECX[PERF_CAPAB_MSR] (bit 15).

...

17.4.9 BTS and DS Save Area
The Debug store (DS) feature flag (bit 21), returned by CPUID.1:EDX[21] indicates that the processor provides 
the debug store (DS) mechanism. The DS mechanism allows: 
• BTMs to be stored in a memory-resident BTS buffer. See Section 17.4.5, “Branch Trace Store (BTS).” 
• Processor event-based sampling (PEBS) also uses the DS save area provided by debug store mechanism. The 

capability of PEBS varies across different microarchitectures. See Section 18.4.4, “Processor Event Based 
Sampling (PEBS),” and the relevant PEBS sub-sections across the core PMU sections in Chapter 18, “Perfor-
mance Monitoring.”. 

When CPUID.1:EDX[21] is set:
• The BTS_UNAVAILABLE and PEBS_UNAVAILABLE flags in the IA32_MISC_ENABLE MSR indicate (when clear) 

the availability of the BTS and PEBS facilities, including the ability to set the BTS and BTINT bits in the 
appropriate DEBUGCTL MSR.

• The IA32_DS_AREA MSR exists and points to the DS save area. 

The debug store (DS) save area is a software-designated area of memory that is used to collect the following two 
types of information:
• Branch records — When the BTS flag in the IA32_DEBUGCTL MSR is set, a branch record is stored in the BTS 

buffer in the DS save area whenever a taken branch, interrupt, or exception is detected. 
• PEBS records — When a performance counter is configured for PEBS, a PEBS record is stored in the PEBS 

buffer in the DS save area after the counter overflow occurs. This record contains the architectural state of the 
processor (state of the 8 general purpose registers, EIP register, and EFLAGS register) at the next occurrence 
of the PEBS event that caused the counter to overflow. When the state information has been logged, the 
counter is automatically reset to a specified value, and event counting begins again. The content layout of a 
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PEBS record varies across different implementations that support PEBS. See Section 18.4.4.2 for details of 
enumerating PEBS record format.

NOTES

Prior to processors based on the Goldmont microarchitecture, PEBS facility only supports a subset 
of implementation-specific precise events. See Section 18.7.1 for a PEBS enhancement that can 
generate records for both precise and non-precise events.

The DS save area and recording mechanism are disabled on transition to system-management 
mode (SMM). Similarly, the recording mechanism is disabled on the generation of a machine-
check exception and is cleared on processor RESET and INIT. DS recording is available in real-
address mode.

The BTS and PEBS facilities may not be available on all processors. The availability of these 
facilities is indicated by the BTS_UNAVAILABLE and PEBS_UNAVAILABLE flags, respectively, in the 
IA32_MISC_ENABLE MSR (see Chapter 35).

The DS save area is divided into three parts (see Figure 17-5): buffer management area, branch trace store (BTS) 
buffer, and PEBS buffer. The buffer management area is used to define the location and size of the BTS and PEBS 
buffers. The processor then uses the buffer management area to keep track of the branch and/or PEBS records in 
their respective buffers and to record the performance counter reset value. The linear address of the first byte of 
the DS buffer management area is specified with the IA32_DS_AREA MSR.

The fields in the buffer management area are as follows: 
• BTS buffer base — Linear address of the first byte of the BTS buffer. This address should point to a natural 

doubleword boundary.
• BTS index — Linear address of the first byte of the next BTS record to be written to. Initially, this address 

should be the same as the address in the BTS buffer base field.
• BTS absolute maximum — Linear address of the next byte past the end of the BTS buffer. This address 

should be a multiple of the BTS record size (12 bytes) plus 1.
• BTS interrupt threshold — Linear address of the BTS record on which an interrupt is to be generated. This 

address must point to an offset from the BTS buffer base that is a multiple of the BTS record size. Also, it must 
be several records short of the BTS absolute maximum address to allow a pending interrupt to be handled 
prior to processor writing the BTS absolute maximum record.

• PEBS buffer base — Linear address of the first byte of the PEBS buffer. This address should point to a natural 
doubleword boundary.

• PEBS index — Linear address of the first byte of the next PEBS record to be written to. Initially, this address 
should be the same as the address in the PEBS buffer base field.

• PEBS absolute maximum — Linear address of the next byte past the end of the PEBS buffer. This address 
should be a multiple of the PEBS record size (40 bytes) plus 1.

• PEBS interrupt threshold — Linear address of the PEBS record on which an interrupt is to be generated. 
This address must point to an offset from the PEBS buffer base that is a multiple of the PEBS record size. Also, 
it must be several records short of the PEBS absolute maximum address to allow a pending interrupt to be 
handled prior to processor writing the PEBS absolute maximum record.

• PEBS counter reset value — A 40-bit value that the counter is to be reset to after state information has 
collected following counter overflow. This value allows state information to be collected after a preset number 
of events have been counted. 

...
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17.5 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™ 
2 DUO AND INTEL® ATOM™ PROCESSORS)

The Intel Core 2 Duo processor family and Intel Xeon processors based on Intel Core microarchitecture or 
enhanced Intel Core microarchitecture provide last branch interrupt and exception recording. The facilities 
described in this section also apply to 45 nm and 32 nm Intel Atom processors. These capabilities are similar to 
those found in Pentium 4 processors, including support for the following facilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR provide bit fields for software to 

configure mechanisms related to debug trace, branch recording, branch trace store, and performance counter 
operations. See Section 17.4.1 for a description of the flags. See Figure 17-3 for the MSR layout.

• Last branch record (LBR) stack — There are a collection of MSR pairs that store the source and destination 
addresses related to recently executed branches. See Section 17.5.1. 

• Monitoring and single-stepping of branches, exceptions, and interrupts

— See Section 17.4.2 and Section 17.4.3. In addition, the ability to freeze the LBR stack on a PMI request is 
available.

— 45 nm and 32 nm Intel Atom processors clear the TR flag when the FREEZE_LBRS_ON_PMI flag is set.
• Branch trace messages — See Section 17.4.4. 
• Last exception records — See Section 17.11.3. 
• Branch trace store and CPL-qualified BTS — See Section 17.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 17.4.7 for legacy Freeze_LBRs_On_PMI operation. 
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 17.4.7 for legacy Freeze_Perfmon_On_PMI 

operation. 
• FREEZE_WHILE_SMM_EN (bit 14) — FREEZE_WHILE_SMM_EN is supported if 

IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 17.4.1.

17.5.1 LBR Stack 
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across Intel Core 2, Intel Atom 
processor families, and Intel processors based on Intel NetBurst microarchitecture. 

Four pairs of MSRs are supported in the LBR stack for Intel Core 2 processors families and Intel processors based 
on Intel NetBurst microarchitecture:
• Last Branch Record (LBR) Stack 

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through MSR_LASTBRANCH_3_FROM_IP (address 43H) 
store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through MSR_LASTBRANCH_3_TO_IP (address 63H) store 
destination addresses

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 2 bits of the TOS Pointer MSR 
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the 
most recent branch, interrupt, or exception recorded.

Eight pairs of MSRs are supported in the LBR stack for 45 nm and 32 nm Intel Atom processors:
• Last Branch Record (LBR) Stack 

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through MSR_LASTBRANCH_7_FROM_IP (address 47H) 
store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through MSR_LASTBRANCH_7_TO_IP (address 67H) store 
destination addresses
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• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 3 bits of the TOS Pointer MSR 
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the 
most recent branch, interrupt, or exception recorded.

The address format written in the FROM_IP/TO_IP MSRS may differ between processors. Software should query 
IA32_PERF_CAPABILITIES[5:0] and consult Section 17.4.8.1. The behavior of the MSR_LER_TO_LIP and the 
MSR_LER_FROM_LIP MSRs corresponds to that of the LastExceptionToIP and LastExceptionFromIP MSRs found in 
P6 family processors. 

17.5.2 LBR Stack in Intel Atom Processors based on the Silvermont Microarchitecture
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported in Intel Atom processors based 
on the Silvermont and Airmont microarchitectures. Eight pairs of MSRs are supported in the LBR stack. 

LBR filtering is supported. Filtering of LBRs based on a combination of CPL and branch type conditions is 
supported. When LBR filtering is enabled, the LBR stack only captures the subset of branches that are specified by 
MSR_LBR_SELECT. The layout of MSR_LBR_SELECT is described in Table 17-11.

17.6 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING 
FOR PROCESSORS BASED ON GOLDMONT MICROARCHITECTURE

Next generation Intel Atom processors are based on the Goldmont microarchitecture. Processors based on the 
Goldmont microarchitecture extend the capabilities described in Section 17.5.2 with the following enhancements:
• Supports new LBR format encoding 00110b in IA32_PERF_CAPABILITIES[5:0]. 
• Size of LBR stack increased to 32. Each entry includes MSR_LASTBRANCH_x_FROM_IP (address 

0x680..0x69f) and MSR_LASTBRANCH_x_TO_IP (address 0x6c0..0x6df).

• LBR call stack filtering supported. The layout of MSR_LBR_SELECT is described in Table 17-13.

• Elapsed cycle information is added to MSR_LASTBRANCH_x_TO_IP. Format is shown in Table 17-7.
• Misprediction info is reported in the upper bits of MSR_LASTBRANCH_x_FROM_IP. MISPRED bit format is 

shown in Table 17-8.

• Streamlined Freeze_LBRs_On_PMI operation; see Section 17.10.2.

• LBR MSRs are cleared when software requests C6 or deeper sleep-state; see Section 17.10.3.

...

17.7.1 LBR Stack
Processors based on Intel microarchitecture code name Nehalem provide 16 pairs of MSR to record last branch 
record information. The layout of each MSR pair is shown in Table 17-8 and Table 17-9.

Table 17-7     MSR_LASTBRANCH_x_TO_IP for the Goldmont Microarchitecture
Bit Field Bit Offset Access Description

Data 47:0 R/O This is the “branch to“ address. See Section 17.4.8.1 for address format.
Cycle Count 
(Saturating)

63:48 R/0 Elapsed core clocks since last update to the LBR stack.
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Processors based on Intel microarchitecture code name Nehalem have an LBR MSR Stack as shown in Table 17-
10.

Table 17-10    LBR Stack Size and TOS Pointer Range

...

17.9.1 LBR Stack Enhancement
Processors based on Intel microarchitecture code name Haswell provide 16 pairs of MSR to record last branch 
record information. The layout of each MSR pair is enumerated by IA32_PERF_CAPABILITIES[5:0] = 04H, and is 
shown in Table 17-14 and Table 17-9.

Table 17-8     MSR_LASTBRANCH_x_FROM_IP 
Bit Field Bit Offset Access Description

Data 47:0 R/O This is the “branch from“ address. See Section 17.4.8.1 for address format.
SIGN_EXt 62:48 R/0 Signed extension of bit 47 of this register.

MISPRED 63 R/O When set, indicates either the target of the branch was mispredicted and/or the 
direction (taken/non-taken) was mispredicted; otherwise, the target branch was 
predicted.

Table 17-9     MSR_LASTBRANCH_x_TO_IP 
Bit Field Bit Offset Access Description

Data 47:0 R/O This is the “branch to“ address. See Section 17.4.8.1 for address format
SIGN_EXt 63:48 R/0 Signed extension of bit 47 of this register.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_1AH 16 0 to 15

Table 17-14     MSR_LASTBRANCH_x_FROM_IP with TSX Information
Bit Field Bit Offset Access Description

Data 47:0 R/O This is the “branch from“ address. See Section 17.4.8.1 for address format.
SIGN_EXT 60:48 R/0 Signed extension of bit 47 of this register.

TSX_ABORT 61 R/0 When set, indicates a TSX Abort entry
LBR_FROM: EIP at the time of the TSX Abort
LBR_TO: EIP of the start of HLE region, or EIP of the RTM Abort Handler

IN_TSX 62 R/0 When set, indicates the entry occurred in a TSX region

MISPRED 63 R/O When set, indicates either the target of the branch was mispredicted and/or the 
direction (taken/non-taken) was mispredicted; otherwise, the target branch was 
predicted.
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17.10 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING 
FOR PROCESSORS BASED ON SKYLAKE MICROARCHITECTURE

Processors based on the Skylake microarchitecture provide a number of enhancement with storing last branch 
records:
• Enumeration of new LBR format: encoding 00101b in IA32_PERF_CAPABILITIES[5:0] is supported, see 

Section 17.4.8.1. 
• Each LBR stack entry consists of a triplets of MSRs: 

— MSR_LASTBRANCH_x_FROM_IP, the layout is simplified, see Table 17-9.

— MSR_LASTBRANCH_x_TO_IP, the layout is the same as Table 17-9.

— MSR_LBR_INFO_x, stores branch prediction flag, TSX info, and elapsed cycle data.
• Size of LBR stack increased to 32. 

Processors based on the Skylake microarchitecture supports the same LBR filtering capabilities as described in 
Table 17-13.

Table 17-15    LBR Stack Size and TOS Pointer Range

...

17.10.3 LBR Behavior and Deep C-State
When MWAIT is used to request a C-state that is numerically higher than C1, then LBR state may be initialized to 
zero depending on optimized “waiting” state that is selected by the processor The affected LBR states include the 
FROM, TO, INFO, LAST_BRANCH, LER and LBR_TOS registers. The LBR enable bit and LBR_FROZEN bit are not 
affected. The LBR-time of the first LBR record inserted after an exit from such a C-state request will be zero. 

...

17.16 INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) MONITORING 
FEATURES

The Intel Resource Director Technology (Intel RDT) feature set provides a set of monitoring capabilities including 
Cache Monitoring Technology (CMT) and Memory Bandwidth Monitoring (MBM). The Intel® Xeon® processor E5 
v3 family introduced resource monitoring capability in each logical processor to measure specific platform shared 
resource metrics, for example, L3 cache occupancy. The programming interface for these monitoring features is 
described in this section. Two features within the monitoring feature set provided are described - Cache Moni-
toring Technology (CMT) and Memory Bandwidth Monitoring.

Cache Monitoring Technology (CMT) allows an Operating System, Hypervisor or similar system management 
agent to determine the usage of cache by applications running on the platform. The initial implementation is 
directed at L3 cache monitoring (currently the last level cache in most server platforms).   

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_4EH, 06_5EH 32 0 to 31
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Memory Bandwidth Monitoring (MBM), introduced in the Intel® Xeon® processor E5 v4 family, builds on the CMT 
infrastructure to allow monitoring of bandwidth from one level of the cache hierarchy to the next - in this case 
focusing on the L3 cache, which is typically backed directly by system memory. As a result of this implementation, 
memory bandwidth can be monitored.

The monitoring mechanisms described provide the following key shared infrastructure features:
• A mechanism to enumerate the presence of the monitoring capabilities within the platform (via a CPUID 

feature bit).
• A framework to enumerate the details of each sub-feature (including CMT and MBM, as discussed later, via 

CPUID leaves and sub-leaves). 
• A mechanism for the OS or Hypervisor to indicate a software-defined ID for each of the software threads 

(applications, virtual machines, etc.) that are scheduled to run on a logical processor. These identifiers are 
known as Resource Monitoring IDs (RMIDs). 

• Mechanisms in hardware to monitor cache occupancy and bandwidth statistics as applicable to a given 
product generation on a per software-id basis. 

• Mechanisms for the OS or Hypervisor to read back the collected metrics such as L3 occupancy or Memory 
Bandwidth for a given software ID at any point during runtime.

...

17.16.8 Monitoring Programming Considerations
Figure 17-23 illustrates how system software can program IA32_QOSEVTSEL and IA32_QM_CTR to perform 
resource monitoring.

Though the field provided in IA32_QM_CTR allows for up to 62 bits of data to be returned, often a subset of bits 
are used. With Cache Monitoring Technology for instance, the number of bits used will be proportional to the base-
two logarithm of the total cache size divided by the Upscaling Factor from CPUID.

In Memory Bandwidth Monitoring the initial counter size is 24 bits, and retrieving the value at 1Hz or faster is 
sufficient to ensure at most one rollover per sampling period. Any future changes to counter width will be enumer-
ated to software. 

...

Figure 17-25    Software Usage of Cache Monitoring Resources
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17.17 INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) ALLOCATION 
FEATURES

The Intel Resource Director Technology (Intel RDT) feature set provides a set of allocation (resource control) 
capabilities including Cache Allocation Technology (CAT) and Code and Data Prioritization (CDP). The Intel Xeon 
processor E5 v4 family (and subset of communication-focused Intel Xeon processors E5 v3 family) introduce 
capabilities to configure and make use of the Cache Allocation Technology (CAT) mechanisms on the L3 cache. 
Some future Intel platforms may also provide support for control over the L2 cache, with capabilities as described 
below. The programming interface for Cache Allocation Technology and for the more general allocation capabili-
ties are described in the rest of this chapter. 

Cache Allocation Technology enables an Operating System (OS), Hypervisor /Virtual Machine Manager (VMM) or 
similar system service management agent to specify the amount of cache space into which an application can fill 
(as a hint to hardware - certain features such as power management may override CAT settings). Specialized 
user-level implementations with minimal OS support are also possible, though not necessarily recommended (see 
notes below for OS/Hypervisor with respect to ring 3 software and virtual guests). Depending on the processor 
famility, L2 or L3 cache allocation capability may be provided, and the technology is designed to scale across 
multiple cache levels and technology generations.

Software can determine which levels are supported in a give platform programmatically using CPUID as described 
in the following sections.

The CAT mechanisms defined in this document provide the following key features:
• A mechanism to enumerate platform Cache Allocation Technology capabilities and available resource types 

that provides CAT control capabilities. For implementations that support Cache Allocation Technology, CPUID 
provides enumeration support to query which levels of the cache hierarchy are supported and specific CAT 
capabilities, such as the max allocation bitmask size, 

• A mechanism for the OS or Hypervisor to configure the amount of a resource available to a particular Class of 
Service via a list of allocation bitmasks, 

• Mechanisms for the OS or Hypervisor to signal the Class of Service to which an application belongs, and
• Hardware mechanisms to guide the LLC fill policy when an application has been designated to belong to a 

specific Class of Service.

Note that for many usages, an OS or Hypervisor may not want to expose Cache Allocation Technology mecha-
nisms to Ring3 software or virtualized guests.

The Cache Allocation Technology feature enables more cache resources (i.e. cache space) to be made available 
for high priority applications based on guidance from the execution environment as shown in Figure 17-26. The 
architecture also allows dynamic resource reassignment during runtime to further optimize the performance of 
the high priority application with minimal degradation to the low priority app. Additionally, resources can be rebal-
anced for system throughput benefit across uses cases of OSes, VMMs, containers and other scenarios by 
managing the CPUID and MSR interfaces. This section describes the hardware and software support required in 
the platform including what is required of the execution environment (i.e. OS/VMM) to support such resource 
control. Note that in Figure 17-26 the L3 Cache is shown as an example resource.
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17.17.1 Cache Allocation Technology Architecture
The fundamental goal of Cache Allocation Technology is to enable resource allocation based on application priority 
or Class of Service (COS or CLOS). The processor exposes a set of Classes of Service into which applications (or 
individual threads) can be assigned. Cache allocation for the respective applications or threads is then restricted 
based on the class with which they are associated. Each Class of Service can be configured using capacity 
bitmasks (CBMs) which represent capacity and indicate the degree of overlap and isolation between classes. For 
each logical processor there is a register exposed (referred to here as the IA32_PQR_ASSOC MSR or PQR) to allow 
the OS/VMM to specify a COS when an application, thread or VM is scheduled. 

The usage of Classes of Service (COS) are consistent across resources - and a COS may have multiple re-source 
control attributes attached, which reduces software overhead at context swap time. Rather than adding new 
types of COS tags per resource for instance, the COS management overhead is constant. Cache allocation for the 
indicated application/thread/VM is then controlled automatically by the hardware based on the class and the 
bitmask associated with that class. Bitmasks are configured via the IA32_resourceType_MASK_n MSRs, where 
resourceType indicates a resource type (e.g. “L3” for the L3 cache) and n indicates a COS number. 

The basic ingredients of Cache Allocation Technology are as follows:
• An architecturally exposed mechanism using CPUID to indicate whether CAT is supported, and what resource 

types are available which can be controlled,
• For each available resourceType, CPUID also enumerates the total number of Classes of Services and the 

length of the capacity bitmasks that can be used to enforce cache allocation to applications on the platform, 
• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to configure the 

behavior of different classes of service using the bitmasks available, 
• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to assign a COS to an 

executing software thread (i.e. associating the active CR3 of a logical processor with the COS in 
IA32_PQR_ASSOC), 

• Implementation-dependent mechanisms to indicate which COS is associated with a memory access and to 
enforce the cache allocation on a per COS basis.

A capacity bitmask (CBM) provides a hint to the hardware indicating the cache space an application should be 
limited to as well as providing an indication of overlap and isolation in the CAT-capable cache from other applica-
tions contending for the cache. The bitlength of the capacity mask available generally depends on the configura-
tion of the cache and is specified in the enumeration process for CAT in CPUID (this may vary between models in 
a processor family as well). Similarly, other parameters such as the number of supported COS may vary for each 
resource type, and these details can be enumerated via CPUID. 

Figure 17-26    Cache Allocation Technology Allocates More Resource to High Priority Applications
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Sample cache capacity bitmasks for a bitlength of 8 are shown in Figure 17-27. Please note that all (and only) 
contiguous '1' combinations are allowed (e.g. FFFFH, 0FF0H, 003CH, etc.). Attempts to program a value without 
contiguous '1's (including zero) will result in a general protection fault (#GP(0)). It is generally expected that in 
way-based implementations, one capacity mask bit corresponds to some number of ways in cache, but the 
specific mapping is implementation-dependent. In all cases, a mask bit set to '1' specifies that a particular Class 
of Service can allocate into the cache subset represented by that bit. A value of '0' in a mask bit specifies that a 
Class of Service cannot allocate into the given cache subset. In general, allocating more cache to a given applica-
tion is usually beneficial to its performance. 

Figure 17-27 also shows three examples of sets of Cache Capacity Bitmasks. For simplicity these are represented 
as 8-bit vectors, though this may vary depending on the implementation and how the mask is mapped to the 
available cache capacity. The first example shows the default case where all 4 Classes of Service (the total 
number of COS are implementation-dependent) have full access to the cache. The second case shows an over-
lapped case, which would allow some lower-priority threads share cache space with the highest priority threads. 
The third case shows various non-overlapped partitioning schemes. As a matter of software policy for extensibility 
COS0 should typically be considered and configured as the highest priority COS, followed by COS1, and so on, 
though there is no hardware restriction enforcing this mapping. When the system boots all threads are initialized 
to COS0, which has full access to the cache by default.

Though the representation of the CBMs looks similar to a way-based mapping they are independent of any specific 
enforcement implementation (e.g. way partitioning.) Rather, this is a convenient manner to represent capacity, 
overlap and isolation of cache space. For example, executing a POPCNT instruction (population count of set bits) 

Figure 17-27    Examples of Cache Capacity Bitmasks
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on the capacity bitmask can provide the fraction of cache space that a class of service can allocate into. In addition 
to the fraction, the exact location of the bits also shows whether the class of service overlaps with other classes 
of service or is entirely isolated in terms of cache space used. 

Figure 17-28 shows how the Cache Capacity Bitmasks and the per-logical-processor Class of Service are logically 
used to enable Cache Allocation Technology. All (and only) contiguous 1's in the CBM are permitted. The length of 
CBM may vary from resource to resource or between processor generations and can be enumerated using CPUID. 
From the available mask set and based on the goals of the OS/VMM (shared or isolated cache, etc.) bitmasks are 
selected and associated with different classes of service. For the available Classes of Service the associated CBMs 
can be programmed via the global set of CAT configuration registers (in the case of L3 CAT, via the 
IA32_L3_MASK_n MSRs, where “n” is the Class of Service, starting from zero). In all architectural implementa-
tions supporting CPUID it is possible to change the CBMs dynamically, during program execution, unless stated 
otherwise by Intel. 

The currently running application's Class of Service is communicated to the hardware through the per-logical-
processor PQR MSR (IA32_PQR_ASSOC MSR). When the OS schedules an application thread on a logical 
processor, the application thread is associated with a specific COS (i.e. the corresponding COS in the PQR) and all 
requests to the CAT-capable resource from that logical processor are tagged with that COS (in other words, the 
application thread is configured to belong to a specific COS). The cache subsystem uses this tagged request infor-
mation to enforce QoS. The capacity bitmask may be mapped into a way bitmask (or a similar enforcement entity 
based on the implementation) at the cache before it is applied to the allocation policy. For example, the capacity 
bitmask can be an 8-bit mask and the enforcement may be accomplished using a 16-way bitmask for a cache 
enforcement implementation based on way partitioning.

The following sections describe extensions of CAT such as Code and Data Prioritization (CDP), followed by details 
on specific features such as L3 CAT, L3 CDP, and L2 CAT. Depending on the specific processor a mix of features 

Figure 17-28    Class of Service and Cache Capacity Bitmasks
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may be supported, and CPUID provides enumeration capabilities to enable software to detect the set of supported 
features. 

...

17.17.3 Enabling Cache Allocation Technology Usage Flow
Figure 17-30 illustrates the key steps for OS/VMM to detect support of Cache Allocation Technology and enable 
priority-based resource allocation for a CAT-capable resource.

Enumeration and configuration of L2 CAT is similar to L3 CAT, however CPUID details and MSR addresses differ. 
Common CLOS are used across the features.

17.17.3.1  Enumeration and Detection Support of Cache Allocation Technology
Software can query processor support of CAT capabilities by executing CPUID instruction with EAX = 07H, ECX = 
0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQE[bit 15] reports 1, the processor supports software control 
over shared processor resources. Software must use CPUID leaf 10H to enumerate additional details of available 
resource types, classes of services and capability bitmasks. The programming interfaces provided by Cache Allo-
cation Technology include:
• CPUID leaf function 10H (Cache Allocation Technology Enumeration leaf) and its sub-functions provide 

information on available resource types, and CAT capability for each resource type (see Section 17.17.3.2).
• IA32_L3_MASK_n: A range of MSRs is provided for each resource type, each MSR within that range specifying 

a software-configured capacity bitmask for each class of service. For L3 with Cache Allocation support, the 
CBM is specified using one of the IA32_L3_QOS_MASK_n MSR, where 'n' corresponds to a number within the 
supported range of COS, i.e. the range between 0 and CPUID.(EAX=10H, ECX=ResID):EDX[15:0], inclusive. 
See Section 17.17.3.3 for details.

• IA32_L2_MASK_n: A range of MSRs is provided for L2 Cache Allocation Technology, enabling software control 
over the amount of L2 cache available for each CLOS. Similar to L3 CAT, a CBM is specified for each CLOS using 
the set of registers, IA32_L2_QOS_MASK_n MSR, where 'n' ranges from zero to the maximum CLOS number 
reported for L2 CAT in CPUID. See Section 17.17.3.3 for details.
The L2 mask MSRs are scoped at the same level as the L2 cache (similarly, the L3 mask MSRs are scoped at 
the same level as the L3 cache). Software may determine which logical processors share an MSR (for instance 
local to a core, or shared across multiple cores) by performing a write to one of these MSRs and noting which 
logical threads observe the change. Example flows for a similar method to determine register scope are 

Figure 17-30    Cache Allocation Technology Usage Flow
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described in Section 15.5.2, “System Software Recommendation for Managing CMCI and Machine Check 
Resources”. Software may also use CPUID leaf 4 to determine the maximum number of logical processor IDs 
that may share a given level of the cache.

• IA32_PQR_ASSOC.CLOS: The IA32_PQR_ASSOC MSR provides a COS field that OS/VMM can use to assign a 
logical processor to an available COS. The set of COS are common across all allocation features, meaning that 
multiple features may be supported in the same processor without additional software COS management 
overhead at context swap time. See Section 17.17.3.4 for details. 

17.17.3.2  Cache Allocation Technology: Resource Type and Capability Enumeration
CPUID leaf function 10H (Cache Allocation Technology Enumeration leaf) provides two or more sub-functions:
• CAT Enumeration leaf sub-function 0 enumerates available resource types that support allocation control, i.e. 

by executing CPUID with EAX=10H and ECX=0H. Each supported resource type is represented by a bit field in 
CPUID.(EAX=10H, ECX=0):EBX[31:1]. The bit position of each set bit corresponds to a Resource ID (ResID), 
for instance ResID=1 is used to indicate L3 CAT support, and ResID=2 indicates L2 CAT support. The ResID is 
also the sub-leaf index that software must use to query details of the CAT capability of that resource type (see 
Figure 17-31). 

— EAX[4:0] reports the length of the capacity bitmask length using minus-one notation, i.e. a value of 15 
corresponds to the capability bitmask having length of 16 bits. Bits 31:5 of EAX are reserved.

• Sub-functions of CPUID.EAX=10H with a non-zero ECX input matching a supported ResID enumerate the 
specific enforcement details of the corresponding ResID. The capabilities enumerated include the length of the 
capacity bitmasks and the number of Classes of Service for a given ResID. Software should query the 
capability of each available ResID that supports CAT from a sub-leaf of leaf 10H using the sub-leaf index 
reported by the corresponding non-zero bit in CPUID.(EAX=10H, ECX=0):EBX[31:1] in order to obtain 
additional feature details. 

• CAT capability for L3 is enumerated by CPUID.(EAX=10H, ECX=1H), see Figure 17-32. The specific CAT 
capabilities reported by CPUID.(EAX=10H, ECX=1) are:

Figure 17-31    CPUID.(EAX=10H, ECX=0H) Available Resource Type Identification
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— CPUID.(EAX=10H, ECX=ResID=1):EAX[4:0] reports the length of the capacity bitmask length using 
minus-one notation, i.e. a value of 15 corresponds to the capability bitmask having length of 16 bits. Bits 
31:5 of EAX are reserved.

— CPUID.(EAX=10H, ECX=1):EBX[31:0] reports a bit mask. Each set bit within the length of the CBM 
indicates the corresponding unit of the L3 allocation may be used by other entities in the platform (e.g. an 
integrated graphics engine or hardware units outside the processor core and have direct access to L3). 
Each cleared bit within the length of the CBM indicates the corresponding allocation unit can be configured 
to implement a priority-based allocation scheme chosen by an OS/VMM without interference with other 
hardware agents in the system. Bits outside the length of the CBM are reserved.

— CPUID.(EAX=10H, ECX=1):ECX.CDP[bit 2]: If 1, indicates Code and Data Prioritization Technology is 
supported (see Section 17.17.4). Other bits of CPUID.(EAX=10H, ECX=1):ECX are reserved.

— CPUID.(EAX=10H, ECX=1):EDX[15:0] reports the maximum COS supported for the resource (COS are 
zero-referenced, meaning a reported value of '15' would indicate 16 total supported COS). Bits 31:16 are 
reserved.

• CAT capability for L2 is enumerated by CPUID.(EAX=10H, ECX=2H), see Figure 17-33. The specific CAT 
capabilities reported by CPUID.(EAX=10H, ECX=2) are:

Figure 17-32    L3 Cache Allocation Technology and CDP Enumeration 
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— CPUID.(EAX=10H, ECX=ResID=2):EAX[4:0] reports the length of the capacity bitmask length using 
minus-one notation, i.e. a value of 15 corresponds to the capability bitmask having length of 16 bits. Bits 
31:5 of EAX are reserved.

— CPUID.(EAX=10H, ECX=2):EBX[31:0] reports a bit mask. Each set bit within the length of the CBM 
indicates the corresponding unit of the L2 allocation may be used by other entities in the platform. Each 
cleared bit within the length of the CBM indicates the corresponding allocation unit can be configured to 
implement a priority-based allocation scheme chosen by an OS/VMM without interference with other 
hardware agents in the system. Bits outside the length of the CBM are reserved.

— CPUID.(EAX=10H, ECX=2):ECX: reserved.

— CPUID.(EAX=10H, ECX=2):EDX[15:0] reports the maximum COS supported for the resource (COS are 
zero-referenced, meaning a reported value of '15' would indicate 16 total supported COS). Bits 31:16 are 
reserved.

A note on migration of Classes of Service (COS): Software should minimize migrations of COS across logical 
processors (across threads or cores), as a reduction in the performance of the Cache Allocation Technology 
feature may result if COS are migrated frequently. This is aligned with the industry-standard practice of mini-
mizing unnecessary thread migrations across processor cores in order to avoid excessive time spent warming up 
processor caches after a migration. In general, for best performance, minimize thread migration and COS migra-
tion across processor logical threads and processor cores.

17.17.3.3  Cache Allocation Technology: Cache Mask Configuration
After determining the length of the capacity bitmasks (CBM) and number of COS supported using CPUID (see 
Section 17.17.3.2), each COS needs to be programmed with a CBM to dictate its available cache via a write to the 
corresponding IA32_resourceType_MASK_n register, where 'n' corresponds to a number within the supported 
range of COS, i.e. the range between 0 and CPUID.(EAX=10H, ECX=ResID):EDX[15:0], inclusive, and 
'resourceType' corresponds to a specific resource as enumerated by the set bits of CPUID.(EAX=10H, 
ECX=0):EAX[31:1], for instance, ‘L2’ or ‘L3’ cache. 

A hierarchy of MSRs is reserved for Cache Allocation Technology registers of the form 
IA32_resourceType_MASK_n: 

Figure 17-33    L2 Cache Allocation Technology 
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• from 0C90H through 0D8FH (inclusive), providing support for multiple sub-ranges to support varying resource 
types. The first supported resourceType is 'L3', corresponding to the L3 cache in a platform. The MSRs range 
from 0C90H through 0D0FH (inclusive), enables support for up to 128 L3 CAT Classes of Service. 

• Within the same CAT range hierarchy, another set of registers is defined for resourceType 'L2', corresponding 
to the L2 cache in a platform, and MSRs IA32_L2_MASK_n are defined for n=[0,63] at addresses 0D10H 
through 0D4FH (inclusive). 

Figure 17-34 and Figure 17-35 provide an overview of the relevant registers. 

All CAT configuration registers can be accessed using the standard RDMSR / WRMSR instructions. 

Note that once L3 or L2 CAT masks are configured, threads can be grouped into Classes of Service (COS) using 
the IA32_PQR_ASSOC MSR as described in Section 17.17.3.4 (Class of Service (COS) to Cache Mask Associa-
tion: Common Across Allocation Features).

17.17.3.4  Class of Service to Cache Mask Association: Common Across Allocation Features
After configuring the available classes of service with the preferred set of capacity bitmasks, the OS/VMM can set 
the IA32_PQR_ASSOC.COS of a logical processor to the class of service with the desired CBM when a thread 
context switch occurs. This allows the OS/VMM to indicate which class of service an executing thread/VM belongs 
within. Each logical processor contains an instance of the IA32_PQR_ASSOC register at MSR location 0C8FH, and 
Figure 17-34 shows the bit field layout for this register. Bits[63:32] contain the COS field for each logical 
processor. 

Figure 17-34    IA32_PQR_ASSOC, IA32_L3_MASK_n MSRs
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Note that placing the RMID field within the same PQR register enables both RMID and CLOS to be swapped at 
context swap time for simultaneous use of monitoring and allocation features with a single register write for effi-
ciency. 

When CDP is enabled, Specifying a COS value in IA32_PQR_ASSOC.COS greater than MAX_COS_CDP =( 
CPUID.(EAX=10H, ECX=1):EDX[15:0] >> 1) will cause undefined performance impact to code and data fetches.

Note that if the IA32_PQR_ASSOC.COS is never written then the CAT capability defaults to using COS 0, which in 
turn is set to the default mask in IA32_L3_MASK_0 - which is all “1”s (on reset). This essentially disables the 
enforcement feature by default or for legacy operating systems and software.

See Section 17.17.5, “Cache Allocation Technology Programming Considerations” for important COS program-
ming considerations including maximum values when using CAT and CDP.

17.17.4 Code and Data Prioritization (CDP): Enumerating and Enabling L3 CDP Technology 
CDP is an extension of CAT. The presence of the CDP feature is enumerated via CPUID.(EAX=10H, 
ECX=1):ECX.CDP[bit 2] (see Figure 17-32). Most of the CPUID.(EAX=10H, ECX=1) sub-leaf data that applies to 
CAT also apply to CDP. However, CPUID.(EAX=10H, ECX=1):EDX.COS_MAX_CAT specifies the maximum COS 
applicable to CAT-only operation. For CDP operations, COS_MAX_CDP is equal to (CPUID.(EAX=10H, 
ECX=1):EDX.COS_MAX_CAT >>1). 

If CPUID.(EAX=10H, ECX=1):ECX.CDP[bit 2] =1, the processor supports CDP and provides a new MSR 
IA32_L3_QOS_CFG at address 0C81H. The layout of IA32_L3_QOS_CFG is shown in Figure 17-36. The bit field 
definition of IA32_L3_QOS_CFG are:
• Bit 0: L3 CDP Enable. If set, enables CDP, maps CAT mask MSRs into pairs of Data Mask and Code Mask MSRs. 

The maximum allowed value to write into IA32_PQR_ASSOC.COS is COS_MAX_CDP.
• Bits 63:1: Reserved. Attempts to write to reserved bits result in a #GP(0).

IA32_L3_QOS_CFG default values are all 0s at RESET, the mask MSRs are all 1s. Hence. all logical processors are 
initialized in COS0 allocated with the entire L3 with CDP disabled, until software programs CAT and CDP.

Before enabling or disabling CDP, software should write all 1's to all of the CAT/CDP masks to ensure proper 
behavior (e.g., the IA32_L3_QOS_Mask_n set of MSRs). When enabling CDP, software should also ensure that 
only COS number which are valid in CDP operation is used, otherwise undefined behavior may result. For instance 
in a case with 16 CAT COS, since COS are reduced by half when CDP is enabled, software should ensure that only 
COS 0-7 are in use before enabling CDP (along with writing 1's to all mask bits before enabling or disabling CDP). 

Software should also account for the fact that mask interpretations change when CDP is enabled or disabled, 
meaning for instance that a CAT mask for a given COS may become a code mask for a different Class of Service 
when CDP is enabled. In order to simplify this behavior and prevent unintended remapping software should 
consider resetting all threads to COS[0] before enabling or disabling CDP. 

Figure 17-36    Layout of IA32_L3_QOS_CFG
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17.17.4.1  Mapping Between L3 CDP Masks and CAT Masks
When CDP is enabled, the existing CAT mask MSR space is re-mapped to provide a code mask and a data mask 
per COS. The re-mapping is shown in 

Table 17-20    Re-indexing of COS Numbers and Mapping to CAT/CDP Mask MSRs

One can derive the MSR address for the data mask or code mask for a given COS number ‘n’ by:
• data_mask_address (n) = base + (n <<1), where base is the address of IA32_L3_QOS_MASK_0.
• code_mask_address (n) = base + (n <<1) +1.

When CDP is enabled, each COS is mapped 1:2 with mask MSRs, with one mask enabling programmatic control 
over data fill location and one mask enabling control over data placement. A variety of overlapped and isolated 
mask configurations are possible (see the example in Figure 17-29). 

Mask MSR field definitions remain the same. Capacity masks must be formed of contiguous set bits, with a length 
of 1 bit or longer and should not exceed the maximum mask length specified in CPUID. As examples, valid masks 
on a cache with max bitmask length of 16b (from CPUID) include 0xFFFF, 0xFF00, 0x00FF, 0x00F0, 0x0001, 
0x0003 and so on. Maximum valid mask lengths are unchanged whether CDP is enabled or disabled, and writes 
of invalid mask values may lead to undefined behavior. Writes to reserved bits will generate #GP(0). 

17.17.4.2  L3 CAT: Disabling CDP 
Before enabling or disabling CDP, software should write all 1's to all of the CAT/CDP masks to ensure proper 
behavior (e.g., the IA32_L3_QOS_Mask_n set of MSRs). 

Software should also account for the fact that mask interpretations change when CDP is enabled or disabled, 
meaning for instance that a CAT mask for a given COS may become a code mask for a different Class of Service 
when CDP is enabled. In order to simplify this behavior and prevent unintended remapping software should 
consider resetting all threads to COS[0] before enabling or disabling CDP. 

...

17.17.5.1  Cache Allocation Technology Dynamic Configuration 
Both the CAT masks and CQM registers are accessible and modifiable at any time during execution using RDMSR/
WRMSR unless otherwise noted. When writing to these MSRs a #GP(0) will be generated if any of the following 
conditions occur:
• A reserved bit is modified,

Mask MSR CAT-only Operation CDP Operation

IA32_L3_QOS_Mask_0 COS0 COS0.Data
IA32_L3_QOS_Mask_1 COS1 COS0.Code
IA32_L3_QOS_Mask_2 COS2 COS1.Data
IA32_L3_QOS_Mask_3 COS3 COS1.Code
IA32_L3_QOS_Mask_4 COS4 COS2.Data
IA32_L3_QOS_Mask_5 COS5 COS2.Code
.... .... ....

IA32_L3_QOS_Mask_’2n’ COS’2n’ COS’n’.Data
IA32_L3_QOS_Mask_’2n+1’ COS’2n+1’ COS’n’.Code
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• Accessing a QOS mask register outside the supported COS (the max COS number is specified in 
CPUID.(EAX=10H, ECX=ResID):EDX[15:0]), or

• Writing a COS greater than the supported maximum (specified as the maximum value of CPUID.(EAX=10H, 
ECX=ResID):EDX[15:0] for all valid ResID values) is written to the IA32_PQR_ASSOC.CLOS field.

When CDP is enabled, specifying a COS value in IA32_PQR_ASSOC.COS outside of the lower half of the COS space 
will cause undefined performance impact to code and data fetches due to MSR space re-indexing into code/data 
masks when CDP is enabled.

When reading the IA32_PQR_ASSOC register the currently programmed COS on the core will be returned. 

When reading an IA32_resourceType_MASK_n register the current capacity bit mask for COS 'n' will be returned.

As noted previously, software should minimize migrations of COS across logical processors (across threads or 
cores), as a reduction in the accuracy of the Cache Allocation feature may result if COS are migrated frequently. 
This is aligned with the industry standard practice of minimizing unnecessary thread migrations across processor 
cores in order to avoid excessive time spent warming up processor caches after a migration. In general, for best 
performance, minimize thread migration and COS migration across processor logical threads and processor cores.

...

18. Updates to Chapter 18, Volume 3B
Change bars show changes to Chapter 18 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...
Intel 64 and IA-32 architectures provide facilities for monitoring performance via a PMU (Performance Monitoring 
Unit).

18.1 PERFORMANCE MONITORING OVERVIEW
Performance monitoring was introduced in the Pentium processor with a set of model-specific performance-moni-
toring counter MSRs. These counters permit selection of processor performance parameters to be monitored and 
measured. The information obtained from these counters can be used for tuning system and compiler perfor-
mance. 

In Intel P6 family of processors, the performance monitoring mechanism was enhanced to permit a wider selec-
tion of events to be monitored and to allow greater control events to be monitored. Next, Intel processors based 
on Intel NetBurst microarchitecture introduced a distributed style of performance monitoring mechanism and 
performance events.

The performance monitoring mechanisms and performance events defined for the Pentium, P6 family, and Intel 
processors based on Intel NetBurst microarchitecture are not architectural. They are all model specific (not 
compatible among processor families). Intel Core Solo and Intel Core Duo processors support a set of architec-
tural performance events and a set of non-architectural performance events. Newer Intel processor generations 
support enhanced architectural performance events and non-architectural performance events.

Starting with Intel Core Solo and Intel Core Duo processors, there are two classes of performance monitoring 
capabilities. The first class supports events for monitoring performance using counting or interrupt-based event 
sampling usage. These events are non-architectural and vary from one processor model to another. They are 
similar to those available in Pentium M processors. These non-architectural performance monitoring events are 
specific to the microarchitecture and may change with enhancements. They are discussed in Section 18.3, 
“Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors).” Non-architectural events for a 
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given microarchitecture can not be enumerated using CPUID; and they are listed in Chapter 19, “Performance-
Monitoring Events.”

The second class of performance monitoring capabilities is referred to as architectural performance monitoring. 
This class supports the same counting and Interrupt-based event sampling usages, with a smaller set of available 
events. The visible behavior of architectural performance events is consistent across processor implementations. 
Availability of architectural performance monitoring capabilities is enumerated using the CPUID.0AH. These 
events are discussed in Section 18.2.

See also:

— Section 18.2, “Architectural Performance Monitoring”

— Section 18.3, “Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors)”

— Section 18.4, “Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture)”

— Section 18.5, “Performance Monitoring (45 nm and 32 nm Intel® Atom™ Processors)”

— Section 18.6, “Performance Monitoring for Silvermont Microarchitecture”

— Section 18.7, “Performance Monitoring for Goldmont Microarchitecture”

— Section 18.8, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name 
Nehalem”

— Section 18.8.4, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name 
Westmere”

— Section 18.9, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name 
Sandy Bridge”

— Section 18.9.8, “Intel® Xeon® Processor E5 Family Uncore Performance Monitoring Facility”

— Section 18.10, “3rd Generation Intel® Core™ Processor Performance Monitoring Facility”

— Section 18.11, “4th Generation Intel® Core™ Processor Performance Monitoring Facility”

— Section 18.12, “Intel® Core™ M Processor Performance Monitoring Facility”

— Section 18.13, “6th Generation Intel® Core™ Processor Performance Monitoring Facility”

— Section 18.14, “Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture)”

— Section 18.15, “Performance Monitoring and Intel Hyper-Threading Technology in Processors Based on 
Intel NetBurst® Microarchitecture”

— Section 18.18, “Performance Monitoring and Dual-Core Technology”

— Section 18.19, “Performance Monitoring on 64-bit Intel Xeon Processor MP with Up to 8-MByte L3 Cache”

— Section 18.21, “Performance Monitoring (P6 Family Processor)”

— Section 18.22, “Performance Monitoring (Pentium Processors)”

18.2 ARCHITECTURAL PERFORMANCE MONITORING
Performance monitoring events are architectural when they behave consistently across microarchitectures. Intel 
Core Solo and Intel Core Duo processors introduced architectural performance monitoring. The feature provides 
a mechanism for software to enumerate performance events and provides configuration and counting facilities for 
events.

Architectural performance monitoring does allow for enhancement across processor implementations. The 
CPUID.0AH leaf provides version ID for each enhancement. Intel Core Solo and Intel Core Duo processors support 
base level functionality identified by version ID of 1. Processors based on Intel Core microarchitecture support, at 
a minimum, the base level functionality of architectural performance monitoring. Intel Core 2 Duo processor T 
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7700 and newer processors based on Intel Core microarchitecture support both the base level functionality and 
enhanced architectural performance monitoring identified by version ID of 2.

45 nm and 32 nm Intel Atom processors and Intel Atom processors based on the Silvermont microarchitecture 
support the functionality provided by versionID 1, 2, and 3; CPUID.0AH:EAX[7:0] reports versionID = 3 to indi-
cate the aggregate of architectural performance monitoring capabilities. Intel Atom processors based on the 
Airmont microarchitecture support the same performance monitoring capabilities as those based on the Silver-
mont microarchitecture.

Intel Core processors and related Intel Xeon processor families based on the Nehalem through Broadwell micro-
architectures support version ID 1, 2, and 3. Intel processors based on the Skylake microarchitecture support 
versionID 4. 

Next generation Intel Atom processors is based on the Goldmont microarchitecture. Intel processors based on the 
Goldmont microarchitecture support versionID 4.

...

18.2.1.1  Architectural Performance Monitoring Version 1 Facilities
Architectural performance monitoring facilities include a set of performance monitoring counters and perfor-
mance event select registers. These MSRs have the following properties:
• IA32_PMCx MSRs start at address 0C1H and occupy a contiguous block of MSR address space; the number of 

MSRs per logical processor is reported using CPUID.0AH:EAX[15:8].
• IA32_PERFEVTSELx MSRs start at address 186H and occupy a contiguous block of MSR address space. Each 

performance event select register is paired with a corresponding performance counter in the 0C1H address 
block.

• The bit width of an IA32_PMCx MSR is reported using the CPUID.0AH:EAX[23:16]. This the number of valid 
bits for read operation. On write operations, the lower-order 32 bits of the MSR may be written with any value, 
and the high-order bits are sign-extended from the value of bit 31. 

• Bit field layout of IA32_PERFEVTSELx MSRs is defined architecturally.

See Figure 18-1 for the bit field layout of IA32_PERFEVTSELx MSRs. The bit fields are:
• Event select field (bits 0 through 7) — Selects the event logic unit used to detect microarchitectural 

conditions (see Table 18-1, for a list of architectural events and their 8-bit codes). The set of values for this 
field is defined architecturally; each value corresponds to an event logic unit for use with an architectural 
performance event. The number of architectural events is queried using CPUID.0AH:EAX. A processor may 
support only a subset of pre-defined values.

Figure 18-1    Layout of IA32_PERFEVTSELx MSRs
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• Unit mask (UMASK) field (bits 8 through 15) — These bits qualify the condition that the selected event 
logic unit detects. Valid UMASK values for each event logic unit are specific to the unit. For each architectural 
performance event, its corresponding UMASK value defines a specific microarchitectural condition. 
A pre-defined microarchitectural condition associated with an architectural event may not be applicable to a 
given processor. The processor then reports only a subset of pre-defined architectural events. Pre-defined 
architectural events are listed in Table 18-1; support for pre-defined architectural events is enumerated using 
CPUID.0AH:EBX. Architectural performance events available in the initial implementation are listed in Table 
19-1.

• USR (user mode) flag (bit 16) — Specifies that the selected microarchitectural condition is counted when 
the logical processor is operating at privilege levels 1, 2 or 3. This flag can be used with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that the selected microarchitectural condition is 
counted when the logical processor is operating at privilege level 0. This flag can be used with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of the selected microarchitectural 
condition. The logical processor counts the number of deasserted to asserted transitions for any condition that 
can be expressed by the other fields. The mechanism does not permit back-to-back assertions to be distin-
guished. 
This mechanism allows software to measure not only the fraction of time spent in a particular state, but also 
the average length of time spent in such a state (for example, the time spent waiting for an interrupt to be 
serviced).

• PC (pin control) flag (bit 19) — When set, the logical processor toggles the PMi pins and increments the 
counter when performance-monitoring events occur; when clear, the processor toggles the PMi pins when the 
counter overflows. The toggling of a pin is defined as assertion of the pin for a single bus clock followed by 
deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the logical processor generates an exception 
through its local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — When set, performance counting is enabled in the corresponding 
performance-monitoring counter; when clear, the corresponding counter is disabled. The event logic unit for 
a UMASK must be disabled by setting IA32_PERFEVTSELx[bit 22] = 0, before writing to IA32_PMCx.

• INV (invert) flag (bit 23) — When set, inverts the counter-mask (CMASK) comparison, so that both greater 
than or equal to and less than comparisons can be made (0: greater than or equal; 1: less than). Note if 
counter-mask is programmed to zero, INV flag is ignored.

• Counter mask (CMASK) field (bits 24 through 31) — When this field is not zero, a logical processor 
compares this mask to the events count of the detected microarchitectural condition during a single cycle. If 
the event count is greater than or equal to this mask, the counter is incremented by one. Otherwise the 
counter is not incremented. 
This mask is intended for software to characterize microarchitectural conditions that can count multiple 
occurrences per cycle (for example, two or more instructions retired per clock; or bus queue occupations). If 
the counter-mask field is 0, then the counter is incremented each cycle by the event count associated with 
multiple occurrences.

...

18.2.2 Architectural Performance Monitoring Version 2
The enhanced features provided by architectural performance monitoring version 2 include the following:
• Fixed-function performance counter register and associated control register — Three of the architec-

tural performance events are counted using three fixed-function MSRs (IA32_FIXED_CTR0 through 
IA32_FIXED_CTR2). Each of the fixed-function PMC can count only one architectural performance event. 
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Configuring the fixed-function PMCs is done by writing to bit fields in the MSR (IA32_FIXED_CTR_CTRL) 
located at address 38DH. Unlike configuring performance events for general-purpose PMCs (IA32_PMCx) via 
UMASK field in (IA32_PERFEVTSELx), configuring, programming IA32_FIXED_CTR_CTRL for fixed-function 
PMCs do not require any UMASK.

• Simplified event programming — Most frequent operation in programming performance events are 
enabling/disabling event counting and checking the status of counter overflows. Architectural performance 
event version 2 provides three architectural MSRs:

— IA32_PERF_GLOBAL_CTRL allows software to enable/disable event counting of all or any combination of 
fixed-function PMCs (IA32_FIXED_CTRx) or any general-purpose PMCs via a single WRMSR.

— IA32_PERF_GLOBAL_STATUS allows software to query counter overflow conditions on any combination of 
fixed-function PMCs or general-purpose PMCs via a single RDMSR.

— IA32_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow conditions on any combination 
of fixed-function PMCs or general-purpose PMCs via a single WRMSR.

• PMI Overhead Mitigation — Architectural performance monitoring version 2 introduces two bit field 
interface in IA32_DEBUGCTL for PMI service routine to accumulate performance monitoring data and LBR 
records with reduced perturbation from servicing the PMI. The two bit fields are:

— IA32_DEBUGCTL.Freeze_LBR_On_PMI(bit 11). In architectural performance monitoring version 2, only 
the legacy semantic behavior is supported. See Section 17.4.7 for details of the legacy Freeze LBRs on PMI 
control.

— IA32_DEBUGCTL.Freeze_PerfMon_On_PMI(bit 12). In architectural performance monitoring version 2, 
only the legacy semantic behavior is supported. See Section 17.4.7 for details of the legacy Freeze LBRs 
on PMI control.

The facilities provided by architectural performance monitoring version 2 can be queried from CPUID leaf 0AH by 
examining the content of register EDX:
• Bits 0 through 4 of CPUID.0AH.EDX indicates the number of fixed-function performance counters available per 

core,
• Bits 5 through 12 of CPUID.0AH.EDX indicates the bit-width of fixed-function performance counters. Bits 

beyond the width of the fixed-function counter are reserved and must be written as zeros.

NOTE
Early generation of processors based on Intel Core microarchitecture may report in 
CPUID.0AH:EDX of support for version 2 but indicating incorrect information of version 2 facilities.

The IA32_FIXED_CTR_CTRL MSR include multiple sets of 4-bit field, each 4 bit field controls the operation of 
a fixed-function performance counter. Figure 18-2 shows the layout of 4-bit controls for each fixed-function 
PMC. Two sub-fields are currently defined within each control. The definitions of the bit fields are:
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• Enable field (lowest 2 bits within each 4-bit control) — When bit 0 is set, performance counting is 

enabled in the corresponding fixed-function performance counter to increment while the target condition 
associated with the architecture performance event occurred at ring 0. When bit 1 is set, performance 
counting is enabled in the corresponding fixed-function performance counter to increment while the target 
condition associated with the architecture performance event occurred at ring greater than 0. Writing 0 to 
both bits stops the performance counter. Writing a value of 11B enables the counter to increment irrespective 
of privilege levels.

• PMI field (the fourth bit within each 4-bit control) — When set, the logical processor generates an 
exception through its local APIC on overflow condition of the respective fixed-function counter.

IA32_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting of each performance counter. 
Figure 18-3 shows the layout of IA32_PERF_GLOBAL_CTRL. Each enable bit in IA32_PERF_GLOBAL_CTRL is 
AND’ed with the enable bits for all privilege levels in the respective IA32_PERFEVTSELx or 
IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective counters. Counting is enabled if the 
AND’ed results is true; counting is disabled when the result is false.

The fixed-function performance counters supported by architectural performance version 2 is listed in Table 18-8, 
the pairing between each fixed-function performance counter to an architectural performance event is also 
shown.

Figure 18-2    Layout of IA32_FIXED_CTR_CTRL MSR

Figure 18-3    Layout of IA32_PERF_GLOBAL_CTRL MSR

Cntr2 — Controls for IA32_FIXED_CTR2
Cntr1 — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow
Cntr0 — Controls for IA32_FIXED_CTR0

8 7 0

ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels
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IA32_PERF_GLOBAL_STATUS MSR provides single-bit status for software to query the overflow condition of each 
performance counter. IA32_PERF_GLOBAL_STATUS[bit 62] indicates overflow conditions of the DS area data 
buffer. IA32_PERF_GLOBAL_STATUS[bit 63] provides a CondChgd bit to indicate changes to the state of perfor-
mance monitoring hardware. Figure 18-4 shows the layout of IA32_PERF_GLOBAL_STATUS. A value of 1 in bits 0, 
1, 32 through 34 indicates a counter overflow condition has occurred in the associated counter.

When a performance counter is configured for PEBS, overflow condition in the counter generates a performance-
monitoring interrupt signaling a PEBS event. On a PEBS event, the processor stores data records into the buffer 
area (see Section 18.15.5), clears the counter overflow status., and sets the “OvfBuffer” bit in 
IA32_PERF_GLOBAL_STATUS. 

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of any general-purpose or 
fixed-function counters via a single WRMSR. Software should clear overflow indications when
• Setting up new values in the event select and/or UMASK field for counting or interrupt-based event sampling.
• Reloading counter values to continue collecting next sample.
• Disabling event counting or interrupt-based event sampling.

The layout of IA32_PERF_GLOBAL_OVF_CTL is shown in Figure 18-5.

...

Figure 18-4    Layout of IA32_PERF_GLOBAL_STATUS MSR

Figure 18-5    Layout of IA32_PERF_GLOBAL_OVF_CTRL MSR
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18.2.5 Full-Width Writes to Performance Counter Registers
The general-purpose performance counter registers IA32_PMCx are writable via WRMSR instruction. However, 
the value written into IA32_PMCx by WRMSR is the signed extended 64-bit value of the EAX[31:0] input of 
WRMSR.

A processor that supports full-width writes to the general-purpose performance counters enumerated by 
CPUID.0AH:EAX[15:8] will set IA32_PERF_CAPABILITIES[13] to enumerate its full-width-write capability See 
Figure 18-49. 

If IA32_PERF_CAPABILITIES.FW_WRITE[bit 13] =1, each IA32_PMCi is accompanied by a corresponding alias 
address starting at 4C1H for IA32_A_PMC0. 

The bit width of the performance monitoring counters is specified in CPUID.0AH:EAX[23:16].

If IA32_A_PMCi is present, the 64-bit input value (EDX:EAX) of WRMSR to IA32_A_PMCi will cause IA32_PMCi to 
be updated by:

COUNTERWIDTH = CPUID.0AH:EAX[23:16] bit width of the performance monitoring counter
IA32_PMCi[COUNTERWIDTH-1:32] ← EDX[COUNTERWIDTH-33:0]);    
IA32_PMCi[31:0] ← EAX[31:0];
EDX[63:COUNTERWIDTH] are reserved

...

18.4.2 Global Counter Control Facilities
Processors based on Intel Core microarchitecture provides simplified performance counter control that simplifies 
the most frequent operations in programming performance events, i.e. enabling/disabling event counting and 
checking the status of counter overflows. This is done by the following three MSRs:
• MSR_PERF_GLOBAL_CTRL enables/disables event counting for all or any combination of fixed-function PMCs 

(MSR_PERF_FIXED_CTRx) or general-purpose PMCs via a single WRMSR.
• MSR_PERF_GLOBAL_STATUS allows software to query counter overflow conditions on any combination of 

fixed-function PMCs (MSR_PERF_FIXED_CTRx) or general-purpose PMCs via a single RDMSR.
• MSR_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow conditions on any combination of 

fixed-function PMCs (MSR_PERF_FIXED_CTRx) or general-purpose PMCs via a single WRMSR.

MSR_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting in each performance counter (see 
Figure 18-15). Each enable bit in MSR_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels 
in the respective IA32_PERFEVTSELx or MSR_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respec-
tive counters. Counting is enabled if the AND’ed results is true; counting is disabled when the result is false.
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MSR_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to query the overflow condition of 
each performance counter. MSR_PERF_GLOBAL_STATUS[bit 62] indicates overflow conditions of the DS area data 
buffer. MSR_PERF_GLOBAL_STATUS[bit 63] provides a CondChgd bit to indicate changes to the state of perfor-
mance monitoring hardware (see Figure 18-16). A value of 1 in bits 34:32, 1, 0 indicates an overflow condition 
has occurred in the associated counter. 

When a performance counter is configured for PEBS, an overflow condition in the counter will arm PEBS. On the 
subsequent event following overflow, the processor will generate a PEBS event. On a PEBS event, the processor 
will perform bounds checks based on the parameters defined in the DS Save Area (see Section 17.4.9). Upon 
successful bounds checks, the processor will store the data record in the defined buffer area, clear the counter 
overflow status, and reload the counter. If the bounds checks fail, the PEBS will be skipped entirely. In the event 
that the PEBS buffer fills up, the processor will set the OvfBuffer bit in MSR_PERF_GLOBAL_STATUS.

MSR_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators for general-purpose or fixed-
function counters via a single WRMSR (see Figure 18-17). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or interrupt-based event sampling.
• Reloading counter values to continue collecting next sample.
• Disabling event counting or interrupt-based event sampling.

Figure 18-15    Layout of MSR_PERF_GLOBAL_CTRL MSR

Figure 18-16    Layout of MSR_PERF_GLOBAL_STATUS MSR
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...

18.4.4 Processor Event Based Sampling (PEBS)
Processors based on Intel Core microarchitecture also support processor event based sampling (PEBS). This 
feature was introduced by processors based on Intel NetBurst microarchitecture.

PEBS uses a debug store mechanism and a performance monitoring interrupt to store a set of architectural state 
information for the processor. The information provides architectural state of the instruction executed after the 
instruction that caused the event (See Section 18.4.4.2 and Section 17.4.9). 

In cases where the same instruction causes BTS and PEBS to be activated, PEBS is processed before BTS are 
processed. The PMI request is held until the processor completes processing of PEBS and BTS.

For processors based on Intel Core microarchitecture, precise events that can be used with PEBS are listed in 
Table 18-10. The procedure for detecting availability of PEBS is the same as described in Section 18.14.7.1.

...

18.4.4.3  Writing a PEBS Interrupt Service Routine
The PEBS facilities share the same interrupt vector and interrupt service routine (called the DS ISR) with the 
Interrupt-based event sampling and BTS facilities. To handle PEBS interrupts, PEBS handler code must be 

Figure 18-17    Layout of MSR_PERF_GLOBAL_OVF_CTRL MSR

62
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Table 18-10    PEBS Performance Events for Intel Core Microarchitecture
Event Name UMask Event Select

INSTR_RETIRED.ANY_P 00H C0H

X87_OPS_RETIRED.ANY FEH C1H

BR_INST_RETIRED.MISPRED 00H C5H

SIMD_INST_RETIRED.ANY 1FH C7H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH
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included in the DS ISR. See Section 17.4.9.1, “64 Bit Format of the DS Save Area,” for guidelines when writing the 
DS ISR.

The service routine can query MSR_PERF_GLOBAL_STATUS to determine which counter(s) caused of overflow 
condition. The service routine should clear overflow indicator by writing to MSR_PERF_GLOBAL_OVF_CTL. 

A comparison of the sequence of requirements to program PEBS for processors based on Intel Core and Intel 
NetBurst microarchitectures is listed in Table 18-11.

...

18.6.1.1  Processor Event Based Sampling (PEBS)
In the Silvermont microarchitecture, the PEBS facility can be used with precise events. PEBS is supported using 
IA32_PMC0 (see also Section 17.4.9). 

PEBS uses a debug store mechanism to store a set of architectural state information for the processor. The infor-
mation provides architectural state of the instruction executed after the instruction that caused the event (See 
Section 18.4.4). 

The list of precise events supported in the Silvermont microarchitecture is shown in Table 18-12.

PEBS Record Format The PEBS record format supported by processors based on the Intel Silvermont microarchi-
tecture is shown in Table 18-13, and each field in the PEBS record is 64 bits long. 

Table 18-12    PEBS Performance Events for the Silvermont Microarchitecture
Event Name Event Select Sub-event UMask

BR_INST_RETIRED C4H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

CALL F9H

REL_CALL FDH

IND_CALL FBH

NON_RETURN_IND EBH

FAR_BRANCH BFH

RETURN F7H

BR_MISP_RETIRED C5H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

IND_CALL FBH

NON_RETURN_IND EBH

RETURN F7H

MEM_UOPS_RETIRED 04H L2_HIT_LOADS 02H

L2_MISS_LOADS 04H

DLTB_MISS_LOADS 08H

HITM 20H

REHABQ 03H LD_BLOCK_ST_FORWARD 01H

LD_SPLITS 08H
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18.6.2 Offcore Response Event
Event number 0B7H support offcore response monitoring using an associated configuration MSR, 
MSR_OFFCORE_RSP0 (address 1A6H) in conjunction with umask value 01H or MSR_OFFCORE_RSP1 (address 
1A7H) in conjunction with umask value 02H. Table 18-14 lists the event code, mask value and additional off-core 
configuration MSR that must be programmed to count off-core response events using IA32_PMCx. 

In the Silvermont microarchitecture, each MSR_OFFCORE_RSPx is shared by two processor cores.

The layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 are shown in Figure 18-18 and Figure 18-19. Bits 
15:0 specifies the request type of a transaction request to the uncore. Bits 30:16 specifies supplier information, 
bits 37:31 specifies snoop response information. 

Additionally, MSR_OFFCORE_RSP0 provides bit 38 to enable measurement of average latency of specific type of 
offcore transaction requests using two programmable counter simultaneously, see Section 18.6.3 for details. 

Table 18-13    PEBS Record Format for the Silvermont Microarchitecture

Byte Offset Field Byte Offset Field

00H R/EFLAGS 60H R10

08H R/EIP 68H R11

10H R/EAX 70H R12

18H R/EBX 78H R13

20H R/ECX 80H R14

28H R/EDX 88H R15

30H R/ESI 90H IA32_PERF_GLOBAL_STATUS

38H R/EDI 98H Reserved

40H R/EBP A0H Reserved

48H R/ESP A8H Reserved

50H R8 B0H EventingRIP

58H R9 B8H Reserved

Table 18-14    OffCore Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-1 B7H 01H MSR_OFFCORE_RSP0 (address 1A6H)

PMC0-1 B7H 02H MSR_OFFCORE_RSP1 (address 1A7H)
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Figure 18-18   Request_Type Fields for MSR_OFFCORE_RSPx 

RESPONSE TYPE — Other (R/W)
REQUEST TYPE — PARTIAL_STRM_ST (R/W) 

8 7 0

REQUEST TYPE — STRM_ST (R/W)

11 312 1

Reserved

63 249 5610131415

REQUEST TYPE — BUS_LOCKS (R/W)
REQUEST TYPE — UC_IFETCH (R/W)
REQUEST TYPE — PARTIAL_WRITE (R/W)
REQUEST TYPE — PARTIAL_READ (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 00000000_00000000H

37

See Figure 18-30

REQUEST TYPE — PF_DATA_RD (R/W) 
REQUEST TYPE  — SW_PREFETCH (R/W)

Table 18-15    MSR_OFFCORE_RSPx Request_Type Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand and DCU prefetch data reads of full and partial cachelines as 
well as demand data page table entry cacheline reads. Does not count L2 data read prefetches or 
instruction fetches.

DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for ownership (RFO) requests 
generated by a write to data cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction cacheline reads. Does not count 
L2 code read prefetches.

WB 3 (R/W). Counts the number of writeback (modified to exclusive) transactions.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 prefetchers.

PARTIAL_READ 7 (R/W). Counts the number of demand reads of partial cache lines (including UC and WC).

PARTIAL_WRITE 8 (R/W). Counts the number of demand RFO requests to write to partial cache lines (includes UC, WT 
and WP)

UC_IFETCH 9 (R/W). Counts the number of UC instruction fetches.

BUS_LOCKS 10 (R/W). Bus lock and split lock requests

STRM_ST 11 (R/W). Streaming store requests

SW_PREFETCH 12 (R/W). Counts software prefetch requests
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To properly program this extra register, software must set at least one request type bit (Table 18-15) and a valid 
response type pattern (Table 18-16, Table 18-17). Otherwise, the event count reported will be zero. It is 
permissible and useful to set multiple request and response type bits in order to obtain various classes of off-
core response events. Although MSR_OFFCORE_RSPx allow an agent software to program numerous 
combinations that meet the above guideline, not all combinations produce meaningful data.

To specify a complete offcore response filter, software must properly program bits in the request and response 
type fields. A valid request type must have at least one bit set in the non-reserved bits of 15:0. A valid response 
type must be a non-zero value of the following expression:

ANY | [(‘OR’ of Supplier Info Bits) & (‘OR’ of Snoop Info Bits)]

If “ANY” bit is set, the supplier and snoop info bits are ignored.

PF_DATA_RD 13 (R/W). Counts DCU hardware prefetcher data read requests

PARTIAL_STRM_ST 14 (R/W). Streaming store requests

ANY 15 (R/W). Any request that crosses IDI, including I/O.

Table 18-15    MSR_OFFCORE_RSPx Request_Type Field Definition (Contd.)

Bit Name Offset Description

Figure 18-19    Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSPx 

RESPONSE TYPE — NON_DRAM (R/W)
RSPNS_SNOOP — HITM (R/W)

16

RESERVED

33 1934 17

Reserved

63 182031 212232353637

RSPNS_SNOOP — SNOOP_HIT (R/W)
RSPNS_SNOOP — SNOOP_MISS (R/W)
RESERVED
RSPNS_SNOOP — SNOOP_NONE (R/W)
RESERVED
RSPNS_SUPPLIER — L2_HIT (R/W)
RESERVED
RSPNS_SUPPLIER — ANY (R/W)

RESET Value — 00000000_00000000H

38

AVG LATENCY — ENABLE AVG LATENCY(R/W)

Table 18-16    MSR_OFFCORE_RSP_x Response Supplier Info Field Definition

Subtype Bit Name Offset Description

Common ANY_RESPONSE 16 (R/W). Catch all value for any response types.

Supplier Info Reserved 17 Reserved

L2_HIT 18 (R/W). Cache reference hit L2 in either M/E/S states.

Reserved 30:19 Reserved
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...

18.6.3 Average Offcore Request Latency Measurement
Average latency for offcore transactions can be determined by using both MSR_OFFCORE_RSP registers. Using 
two performance monitoring counters, program the two OFFCORE_RESPONSE event encodings into the corre-
sponding IA32_PERFEVTSELx MSRs. Count the weighted cycles via MSR_OFFCORE_RSP0 by programming a 
request type in MSR_OFFCORE_RSP0.[15:0] and setting MSR_OFFCORE_RSP0.OUTSTANDING[38] to 1, white 
setting the remaining bits to 0. Count the number of requests via MSR_OFFCORE_RSP1 by programming the 
same request type from MSR_OFFCORE_RSP0 into MSR_OFFCORE_RSP1[bit 15:0], and setting 
MSR_OFFCORE_RSP1.ANY_RESPONSE[16] = 1, while setting the remaining bits to 0. The average latency can be 
obtained by dividing the value of the IA32_PMCx register that counted weight cycles by the register that counted 
requests.

18.7 PERFORMANCE MONITORING FOR GOLDMONT MICROARCHITECTURE
Next generation Intel Atom processors are based on the Goldmont microarchitecture. They report architectural 
performance monitoring versionID = 4 (see Section 18.2.4) and support non-architectural monitoring capabilities 
described in this section.

Architectural performance monitoring version 4 capabilities are described in Section 18.2.4.

The bit fields (except bit 21) within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in 
Section 18.2.1.1 and Section 18.2.3. Architectural and non-architectural performance monitoring events in the 
Goldmont microarchitecture ignore the AnyThread qualification regardless of its setting in the IA32_PERFEVTSELx 
MSR. 

The core PMU’s capability is similar to that of the Silvermont microarchitecture described in Section 18.6 , with 
some differences and enhancements summarized in Table 18-18.

Table 18-17    MSR_OFFCORE_RSPx Snoop Info Field Definition

Subtype Bit Name Offset Description

Snoop 
Info

SNP_NONE 31 (R/W). No details on snoop-related information

Reserved 32 Reserved

SNOOP_MISS 33 (R/W). Counts the number of snoop misses when L2 misses

SNOOP_HIT 34 (R/W). Counts the number of snoops hit in the other module where no modified copies 
were found

Reserved 35 Reserved

HITM 36 (R/W). Counts the number of snoops hit in the other module where modified copies 
were found in other core's L1 cache.

NON_DRAM 37 (R/W). Target was non-DRAM system address. This includes MMIO transactions.

AVG_LATENCY 38 (R/W). Enable average latency measurement by counting weighted cycles of 
outstanding offcore requests of the request type specified in bits 15:0 and any 
response (bits 37:16 cleared to 0). 

This bit is available in MSR_OFFCORE_RESP0. The weighted cycles is accumulated in the 
specified programmable counter IA32_PMCx and the occurrence of specified requests 
are counted in the other programmable counter.
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Table 18-18    Core PMU Comparison Between the Goldmont and Silvermont Microarchitectures

Box The Goldmont microarchitecture The Silvermont microarchitecture Comment

# of Fixed counters per core 3 3 Use CPUID to enumerate # 
of counters.

# of general-purpose 
counters per core

4 2

Counter width (R,W) R:48, W: 32/48 R:40, W:32 See Section 18.2.2.

Architectural Performance 
Monitoring version ID

4 3 Use CPUID to enumerate # 
of counters.

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with 
streamlined semantics.

• Freeze_on_LBR with legacy 
semantics for branch profiling.

• Freeze_while_SMM.

• Freeze_Perfmon_on_PMI with 
legacy semantics.

• Freeze_on_LBR with legacy 
semantics for branch profiling.

• Freeze_while_SMM.

See Section 17.4.7.

Legacy semantics not 
supported with version 4 
or higher.

Counter and Buffer 
Overflow Status 
Management

• Query via 
IA32_PERF_GLOBAL_STATUS

• Reset via 
IA32_PERF_GLOBAL_STATUS_R
ESET

• Set via 
IA32_PERF_GLOBAL_STATUS_S
ET

• Query via 
IA32_PERF_GLOBAL_STATUS

• Reset via 
IA32_PERF_GLOBAL_OVF_CTRL

See Section 18.2.4.

IA32_PERF_GLOBAL_STATU
S Indicators of Overflow/
Overhead/Interference

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow
• CTR_Frz, LBR_Frz

• Individual counter overflow
• PEBS buffer overflow

See Section 18.2.4.

Enable control in 
IA32_PERF_GLOBAL_STATU
S 

• CTR_Frz, 
• LBR_Frz

No See Section 18.2.4.1.

Perfmon Counter In-Use 
Indicator

Query IA32_PERF_GLOBAL_INUSE No See Section 18.2.4.3.

Processor Event Based 
Sampling (PEBS) Events

General-Purpose Counter 0 only. 
Supports all events (precise and 
non-precise). Precise events are 
listed in Table 18-19.

See Section 18.6.1.1. General-
Purpose Counter 0 only. Only 
supports precise events (see Table 
18-12).

IA32_PMC0 only.

PEBS record format 
encoding

0011b 0010b

Reduce skid PEBS IA32_PMC0 only No

Data Address Profiling Yes No

PEBS record layout Table 18-20; enhanced fields at 
offsets 90H- 98H; and TSC record 
field at C0H.

Table 18-13.

PEBS EventingIP Yes Yes

Off-core Response Event MSR 1A6H and 1A7H, each core 
has its own register.

MSR 1A6H and 1A7H, shared by a 
pair of cores.

Nehalem supports 1A6H 
only.
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18.7.1 Processor Event Based Sampling (PEBS)
Processor event based sampling (PEBS) on the Goldmont microarchitecture is enhanced over prior generations 
with respect to sampling support of precise events and non-precise events. In the Goldmont microarchitecture, 
PEBS is supported using IA32_PMC0 for all events (see Section 17.4.9). 

PEBS uses a debug store mechanism to store a set of architectural state information for the processor at the time 
the sample was generated. 

Precise events work the same way as on the Silvermont microarchitecture. They can capture precise eventingIP 
associated with a retired instruction that caused the event. The PEBS record provides architectural state of the 
instruction executed after the instruction that caused the event (See Section 18.4.4 and Section 17.4.9). The 
PEBS record also provides architectural state of the processor after the instruction that caused the event 
completes. The list of precise events supported in the Goldmont microarchitecture is shown in Table 18-19.

In the Goldmont microarchitecture, the PEBS facility also supports the use of non-precise events to record 
processor state information into PEBS records with the same format as with precise events.

However, a non-precise event may not be attributable to a particular retired instruction or the time of instruction 
execution. When the counter overflows, a PEBS record will be generated at the next opportunity. Consider the 
event ICACHE.HIT. When the counter overflows, the processor is fetching future instructions. The PEBS record will 
be generated at the next opportunity and capture the state at the processor's current retirement point. Other 
examples of a non-precise events are CPU_CLK_UNHALTED.CORE_P and HARDWARE_INTERRUPTS.RECEIVED. 
There may be many instructions in various stages of execution, multiple or zero instructions being retired each 
cycle as CPU_CLK_UNHALTED.CORE_P increments. HARDWARE_INTERRUPTS.RECEIVED increments indepen-
dent of any instructions being executed. The PEBS record will be generated at the next opportunity, capturing the 
processor state when the machine received the interrupt, even if interrupts are masked. The PEBS facility thus 
allows for identification of the instructions which were executing when the event overflowed.

After generating a record, the PEBS facility reloads the counter and resumes execution, just as is done for precise 
events. Unlike interrupt-based sampling, which requires an interrupt service routine to collect the sample and 
reload the counter, the PEBS facility can collect samples even when interrupts are masked and without using NMI. 
Since a PEBS record is generated immediately when a counter for a non-precise event is enabled, it may also be 
generated after an overflow is set by an MSR write to IA32_PERF_GLOBAL_STATUS_SET.

Table 18-19    Precise Events Supported by the Goldmont Microarchitecture
Event Name Event Select Sub-event UMask

LD_BLOCKS 03H DATA_UNKNOWN 01H

STORE_FORWARD 02H

4K_ALIAS 04H

UTLB_MISS 08H

ALL_BLOCK 10H

MISALIGN_MEM_REF 13H LOAD_PAGE_SPLIT 02H

STORE_PAGE_SPLIT 04H

INST_RETIRED C0H ANY 00H

UOPS_RETITRED C2H ANY 00H

LD_SPLITSMS 01H

BR_INST_RETIRED C4H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

CALL F9H

REL_CALL FDH
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The PEBS record format supported by processors based on the Intel Silvermont microarchitecture is shown in 
Table 18-13, and each field in the PEBS record is 64 bits long. 

IND_CALL FBH

NON_RETURN_IND EBH

FAR_BRANCH BFH

RETURN F7H

BR_MISP_RETIRED C5H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

IND_CALL FBH

NON_RETURN_IND EBH

RETURN F7H

MEM_UOPS_RETIRED D0H ALL_LOADS 81H

ALL_STORES 82H

ALL 83H

DLTB_MISS_LOADS 11H

DLTB_MISS_STORES 12H

DLTB_MISS 13H

MEM_LOAD_UOPS_RETIRED D1H L1_HIT 01H

L2_HIT 02H

L1_MISS 08H

L2_MISS 10H

HITM 20H

WCB_HIT 40H

DRAM_HIT 80H

Table 18-19    Precise Events Supported by the Goldmont Microarchitecture (Contd.)
Event Name Event Select Sub-event UMask

Table 18-20    PEBS Record Format for the Goldmont Microarchitecture

Byte Offset Field Byte Offset Field

00H R/EFLAGS 68H R11

08H R/EIP 70H R12

10H R/EAX 78H R13

18H R/EBX 80H R14

20H R/ECX 88H R15

28H R/EDX 90H Applicable Counters

30H R/ESI 98H Data Linear Address

38H R/EDI A0H Reserved
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On Goldmont microarchitecture, all 64 bits of architectural registers are written into the PEBS record regardless 
of processor mode.

With PEBS record format encoding 0011b, offset 90H reports the “applicable counter” field, which is a multi-
counter PEBS resolution index allowing software to correlate the PEBS record entry with the eventing PEBS over-
flow when multiple counters are configured to record PEBS records. Additionally, offset C0H captures a snapshot 
of the TSC that provides a time line annotation for each PEBS record entry.

18.7.1.1 PEBS Data Linear Address Profiling
Goldmont supports the Data Linear Address field introduced in Haswell. It does not support the Data Source 
Encoding or Latency Value fields that are also part of Data Address Profiling. The fields are present in the record 
but are reserved. 

For Goldmont, the Data Linear Address field will record the linear address of memory accesses in the previous 
instruction (e.g. the one that triggered a precise event that caused the PEBS record to be generated).

18.7.1.2 Reduced Skid PEBS
For precise events, upon triggering a PEBS assist, there will be a finite delay between the time the counter over-
flows and when the microcode starts to carry out its data collection obligations. The Reduced Skid mechanism 
mitigates the “skid” problem by providing an early indication of when the counter is about to overflow, allowing 
the machine to more precisely trap on the instruction that actually caused the counter overflow thus greatly 
reducing skid.

This mechanism is a superset of the PDIR mechanism available in the Sandy Bridge microarchitecture. See 
Section 18.9.4.4

In the Goldmont microarchitecture, the mechanism applies to all precise events including INST_RETIRED. 
However, the Reduced Skid mechanism is disabled for any counter when the INV, ANY, E, or CMASK fields are set.

To ensure the Reduced Skid mechanism operates correctly, disable PEBS via the IA32_PEBS_ENABLE or 
IA32_PERF_GLOBAL_CTRL MSRs before writing to the configuration registers (IA32_PERFEVTSELx) or to the 
counters (IA32_PMCx and IA32_A_PMCx).

18.7.1.3 Enhancements to IA32_PERF_GLOBAL_STATUS.OvfDSBuffer[62] 
In addition to IA32_PERF_GLOBAL_STATUS.OvfDSBuffer[62] being set when PEBS_Index reaches the 
PEBS_Interrupt_Theshold, the bit is also set when PEBS_Index is out of bounds. That is, the bit will be set when 
PEBS_Index < PEBS_Buffer_Base or PEBS_Index > PEBS_Absolute_Maximum. Note that when an out of bound 
condition is encountered, the overflow bits in IA32_PERF_GLOBAL_STATUS will be cleared according to Applicable 
Counters, however the IA32_PMCx values will not be reloaded with the Reset values stored in the DS_AREA.

40H R/EBP A8H Reserved

48H R/ESP B0H EventingRIP

50H R8 B8H Reserved

58H R9 C0H TSC

60H R10

Table 18-20    PEBS Record Format for the Goldmont Microarchitecture

Byte Offset Field Byte Offset Field
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18.7.2 Offcore Response Event
Event number 0B7H support offcore response monitoring using an associated configuration MSR, 
MSR_OFFCORE_RSP0 (address 1A6H) in conjunction with umask value 01H or MSR_OFFCORE_RSP1 (address 
1A7H) in conjunction with umask value 02H. Table 18-14 lists the event code, mask value and additional off-core 
configuration MSR that must be programmed to count off-core response events using IA32_PMCx. 

The Goldmont microarchitecture provides unique pairs of MSR_OFFCORE_RSPx registers per core.

The layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 are organized as follows:
• Bits 15:0 specifies the request type of a transaction request to the uncore. This is described in Table 18-21.
• Bits 30:16 specifies common supplier information or an L2 Hit, and is described in Table 18-16. 
• If L2 misses, then Bits 37:31 can be used to specify snoop response information and is described in Table 18-

22. 
• For outstanding requests, bit 38 can enable measurement of average latency of specific type of offcore 

transaction requests using two programmable counter simultaneously; see Section 18.6.3 for details. 

To properly program this extra register, software must set at least one request type bit (Table 18-15) and a valid 
response type pattern (either Table 18-16 or Table 18-22). Otherwise, the event count reported will be zero. It is 
permissible and useful to set multiple request and response type bits in order to obtain various classes of off-core 

Table 18-21    MSR_OFFCORE_RSPx Request_Type Field Definition

Bit Name Offset Description

DEMAND_DATA_RD 0 (R/W) Counts cacheline read requests due to demand reads (excludes prefetches).

DEMAND_RFO 1 (R/W) Counts cacheline read for ownership (RFO) requests due to demand writes (excludes 
prefetches).

DEMAND_CODE_RD 2 (R/W) Counts demand instruction cacheline and I-side prefetch requests that miss the instruction 
cache.

COREWB 3 (R/W) Counts writeback transactions caused by L1 or L2 cache evictions.

PF_L2_DATA_RD 4 (R/W) Counts data cacheline reads generated by hardware L2 cache prefetcher.

PF_L2_RFO 5 (R/W) Counts reads for ownership (RFO) requests generated by L2 prefetcher.

Reserved 6 Reserved.

PARTIAL_READS 7 (R/W) Counts demand data partial reads, including data in uncacheable (UC) or uncacheable (WC) 
write combining memory types.

PARTIAL_WRITES 8 (R/W) Counts partial writes, including uncacheable (UC), write through (WT) and write protected 
(WP) memory type writes.

UC_CODE_READS 9 (R/W) Counts code reads in uncacheable (UC) memory region.

BUS_LOCKS 10 (R/W) Counts bus lock and split lock requests.

FULL_STREAMING_S
TORES

11 (R/W) Counts full cacheline writes due to streaming stores.

SW_PREFETCH 12 (R/W) Counts cacheline requests due to software prefetch instructions.

PF_L1_DATA_RD 13 (R/W) Counts data cacheline reads generated by hardware L1 data cache prefetcher.

PARTIAL_STREAMIN
G_STORES

14 (R/W) Counts partial cacheline writes due to streaming stores.

ANY_REQUEST 15 (R/W) Counts requests to the uncore subsystem.
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response events. Although MSR_OFFCORE_RSPx allow an agent software to program numerous combinations 
that meet the above guideline, not all combinations produce meaningful data.

To specify a complete offcore response filter, software must properly program bits in the request and response 
type fields. A valid request type must have at least one bit set in the non-reserved bits of 15:0. A valid response 
type must be a non-zero value of the following expression:

[ANY ‘OR’ (L2 Hit) ] ‘XOR’ ( Snoop Info Bits) ‘XOR’ (Avg Latency)

18.7.3 Average Offcore Request Latency Measurement
In Goldmont microarachitecture, measurement of average latency of offcore transaction requests is the same as 
described in Section 18.6.3.

...

18.8.1 Enhancements of Performance Monitoring in the Processor Core
The notable enhancements in the monitoring of performance events in the processor core include:
• Four general purpose performance counters, IA32_PMCx, associated counter configuration MSRs, 

IA32_PERFEVTSELx, and global counter control MSR supporting simplified control of four counters. Each of 
the four performance counter can support processor event based sampling (PEBS) and thread-qualification of 
architectural and non-architectural performance events. Width of IA32_PMCx supported by hardware has 
been increased. The width of counter reported by CPUID.0AH:EAX[23:16] is 48 bits. The PEBS facility in Intel 
microarchitecture code name Nehalem has been enhanced to include new data format to capture additional 
information, such as load latency.

• Load latency sampling facility. Average latency of memory load operation can be sampled using load-latency 
facility in processors based on Intel microarchitecture code name Nehalem. This field measures the load 
latency from load's first dispatch of till final data writeback from the memory subsystem. The latency is 

Table 18-22    MSR_OFFCORE_RSPx For L2 Miss and Outstanding Requests

Subtype Bit Name Offset Description

L2_MISS 
(Snoop Info)

Reserved 32:31 Reserved

L2_MISS.SNOOP_MIS
S_OR_NO_SNOOP_N
EEDED

33 (R/W). A true miss to this module, for which a snoop request missed the other module 
or no snoop was performed/needed. 

L2_MISS.HIT_OTHER
_CORE_NO_FWD

34 (R/W) A snoop hit in the other processor module, but no data forwarding is required.

Reserved 35 Reserved

L2_MISS.HITM_OTHE
R_CORE

36 (R/W) Counts the number of snoops hit in the other module or other core's L1 where 
modified copies were found.

L2_MISS.NON_DRAM 37 (R/W) Target was a non-DRAM system address. This includes MMIO transactions.

Outstanding 
requests1

OUTSTANDING 38 (R/W) Counts weighted cycles of outstanding offcore requests of the request type 
specified in bits 15:0, from the time the XQ receives the request and any response is 
received. Bits 37:16 must be set to 0. This bit is only available in 
MSR_OFFCORE_RESP0.

NOTES:
1. See Section 18.6.3, “Average Offcore Request Latency Measurement” for details on how to use this bit to extract average latency.
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reported for retired demand load operations and in core cycles (it accounts for re-dispatches). This facility is 
used in conjunction with the PEBS facility.

• Off-core response counting facility. This facility in the processor core allows software to count certain 
transaction responses between the processor core to sub-systems outside the processor core (uncore). 
Counting off-core response requires additional event qualification configuration facility in conjunction with 
IA32_PERFEVTSELx. Two off-core response MSRs are provided to use in conjunction with specific event codes 
that must be specified with IA32_PERFEVTSELx.

18.8.1.1  Processor Event Based Sampling (PEBS)
All four general-purpose performance counters, IA32_PMCx, can be used for PEBS if the performance event 
supports PEBS. Software uses IA32_MISC_ENABLE[7] and IA32_MISC_ENABLE[12] to detect whether the perfor-
mance monitoring facility and PEBS functionality are supported in the processor. The MSR IA32_PEBS_ENABLE 
provides 4 bits that software must use to enable which IA32_PMCx overflow condition will cause the PEBS record 
to be captured. 

Additionally, the PEBS record is expanded to allow latency information to be captured. The MSR 
IA32_PEBS_ENABLE provides 4 additional bits that software must use to enable latency data recording in the 
PEBS record upon the respective IA32_PMCx overflow condition. The layout of IA32_PEBS_ENABLE for processors 
based on Intel microarchitecture code name Nehalem is shown in Figure 18-21.

When a counter is enabled to capture machine state (PEBS_EN_PMCx = 1), the processor will write machine 
state information to a memory buffer specified by software as detailed below. When the counter IA32_PMCx 
overflows from maximum count to zero, the PEBS hardware is armed.

...

18.8.2.2  Uncore Performance Event Configuration Facility
MSR_UNCORE_PerfEvtSel0 through MSR_UNCORE_PerfEvtSel7 are used to select performance event and 
configure the counting behavior of the respective uncore performance counter. Each uncore PerfEvtSel MSR is 
paired with an uncore performance counter. Each uncore counter must be locally configured using the corre-
sponding MSR_UNCORE_PerfEvtSelx and counting must be enabled using the respective EN_PCx bit in 
MSR_UNCORE_PERF_GLOBAL_CTRL. Figure 18-28 shows the layout of MSR_UNCORE_PERFEVTSELx.

• Event Select (bits 7:0): Selects the event logic unit used to detect uncore events.
• Unit Mask (bits 15:8) : Condition qualifiers for the event selection logic specified in the Event Select field.
• OCC_CTR_RST (bit17): When set causes the queue occupancy counter associated with this event to be 

cleared (zeroed). Writing a zero to this bit will be ignored. It will always read as a zero. 

Figure 18-28    Layout of MSR_UNCORE_PERFEVTSELx MSRs 
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OCC_CTR_RST—Rest Queue Occ
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• Edge Detect (bit 18): When set causes the counter to increment when a deasserted to asserted transition 
occurs for the conditions that can be expressed by any of the fields in this register.

• PMI (bit 20): When set, the uncore will generate an interrupt request when this counter overflowed. This 
request will be routed to the logical processors as enabled in the PMI enable bits (EN_PMI_COREx) in the 
register MSR_UNCORE_PERF_GLOBAL_CTRL.

• EN (bit 22): When clear, this counter is locally disabled. When set, this counter is locally enabled and counting 
starts when the corresponding EN_PCx bit in MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• INV (bit 23): When clear, the Counter Mask field is interpreted as greater than or equal to. When set, the 
Counter Mask field is interpreted as less than.

• Counter Mask (bits 31:24): When this field is clear, it has no effect on counting. When set to a value other than 
zero, the logical processor compares this field to the event counts on each core clock cycle. If INV is clear and 
the event counts are greater than or equal to this field, the counter is incremented by one. If INV is set and 
the event counts are less than this field, the counter is incremented by one. Otherwise the counter is not 
incremented.

Figure 18-29 shows the layout of MSR_UNCORE_FIXED_CTR_CTRL.

• EN (bit 0): When clear, the uncore fixed-function counter is locally disabled. When set, it is locally enabled and 
counting starts when the EN_FC0 bit in MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• PMI (bit 2): When set, the uncore will generate an interrupt request when the uncore fixed-function counter 
overflowed. This request will be routed to the logical processors as enabled in the PMI enable bits 
(EN_PMI_COREx) in the register MSR_UNCORE_PERF_GLOBAL_CTRL.

Both the general-purpose counters (MSR_UNCORE_PerfCntr) and the fixed-function counter 
(MSR_UNCORE_FixedCntr0) are 48 bits wide. They support both counting and interrupt based sampling usages. 
The event logic unit can filter event counts to specific regions of code or transaction types incoming to the home 
node logic.

...

18.9 PERFORMANCE MONITORING FOR PROCESSORS BASED ON INTEL® 

MICROARCHITECTURE CODE NAME SANDY BRIDGE
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series, and Intel® Xeon® processor 
E3-1200 family are based on Intel microarchitecture code name Sandy Bridge; this section describes the perfor-
mance monitoring facilities provided in the processor core. The core PMU supports architectural performance 
monitoring capability with version ID 3 (see Section 18.2.3) and a host of non-architectural monitoring capabili-
ties. 

Architectural performance monitoring version 3 capabilities are described in Section 18.2.3. 

Figure 18-29    Layout of MSR_UNCORE_FIXED_CTR_CTRL MSR 
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The core PMU’s capability is similar to those described in Section 18.8.1 and Section 18.8.4, with some differences 
and enhancements relative to Intel microarchitecture code name Westmere summarized in Table 18-30.

18.9.1 Global Counter Control Facilities In Intel® Microarchitecture Code Name Sandy Bridge
The number of general-purpose performance counters visible to a logical processor can vary across Processors 
based on Intel microarchitecture code name Sandy Bridge. Software must use CPUID to determine the number 
performance counters/event select registers (See Section 18.2.1.1). 

Table 18-30    Core PMU Comparison

Box
Intel® microarchitecture code 
name Sandy Bridge

Intel® microarchitecture code 
name Westmere Comment

# of Fixed counters per 
thread

3 3 Use CPUID to enumerate # of 
counters.

# of general-purpose 
counters per core

8 8

Counter width (R,W) R:48, W: 32/48 R:48, W:32 See Section 18.2.2.

# of programmable counters 
per thread

4 or (8 if a core not shared by two 
threads)

4 Use CPUID to enumerate # of 
counters.

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with 
legacy semantics.

• Freeze_on_LBR with legacy 
semantics for branch profiling.

• Freeze_while_SMM.

• Freeze_Perfmon_on_PMI 
with legacy semantics.

• Freeze_on_LBR with legacy 
semantics for branch 
profiling.

• Freeze_while_SMM.

See Section 17.4.7.

Processor Event Based 
Sampling (PEBS) Events

See Table 18-32. See Table 18-10. IA32_PMC4-IA32_PMC7 do 
not support PEBS.

PEBS-Load Latency See Section 18.9.4.2;

• Data source encoding
• STLB miss encoding
• Lock transaction encoding

Data source encoding 

PEBS-Precise Store Section 18.9.4.3 No

PEBS-PDIR Yes (using precise 
INST_RETIRED.ALL).

No

Off-core Response Event MSR 1A6H and 1A7H, extended 
request and response types.

MSR 1A6H and 1A7H, limited 
response types.

Nehalem supports 1A6H 
only.
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Figure 18-15 depicts the layout of IA32_PERF_GLOBAL_CTRL MSR. The enable bits (PMC4_EN, PMC5_EN, 
PMC6_EN, PMC7_EN) corresponding to IA32_PMC4-IA32_PMC7 are valid only if CPUID.0AH:EAX[15:8] reports a 
value of ‘8’. If CPUID.0AH:EAX[15:8] = 4, attempts to set the invalid bits will cause #GP. 

Each enable bit in IA32_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels in the respec-
tive IA32_PERFEVTSELx or IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective counters. 
Counting is enabled if the AND’ed results is true; counting is disabled when the result is false.
IA32_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to query the overflow condition of 
each performance counter. IA32_PERF_GLOBAL_STATUS[bit 62] indicates overflow conditions of the DS area 
data buffer (see Figure 18-33). A value of 1 in each bit of the PMCx_OVF field indicates an overflow condition has 
occurred in the associated counter. 

Figure 18-32    IA32_PERF_GLOBAL_CTRL MSR in Intel® Microarchitecture Code Name Sandy Bridge

Figure 18-33    IA32_PERF_GLOBAL_STATUS MSR in Intel® Microarchitecture Code Name Sandy Bridge
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3132333435

Reserved

63

CondChgd
Ovf_DSBuffer

8 7 6 5 4 3

PMC5_OVF (RO, If PMC5 present)
PMC4_OVF (RO, If PMC4 present)
PMC3_OVF (RO)
PMC2_OVF (RO)
PMC1_OVF (RO)
PMC0_OVF (RO)

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

Ovf_UncorePMU

61
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When a performance counter is configured for PEBS, an overflow condition in the counter will arm PEBS. On the 
subsequent event following overflow, the processor will generate a PEBS event. On a PEBS event, the processor 
will perform bounds checks based on the parameters defined in the DS Save Area (see Section 17.4.9). Upon 
successful bounds checks, the processor will store the data record in the defined buffer area, clear the counter 
overflow status, and reload the counter. If the bounds checks fail, the PEBS will be skipped entirely. In the event 
that the PEBS buffer fills up, the processor will set the OvfBuffer bit in MSR_PERF_GLOBAL_STATUS.

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators for general-purpose or fixed-
function counters via a single WRMSR (see Figure 18-34). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or interrupt based sampling
• Reloading counter values to continue sampling
• Disabling event counting or interrupt based sampling

...

18.11 4TH GENERATION INTEL® CORE™ PROCESSOR PERFORMANCE 
MONITORING FACILITY

The 4th generation Intel® Core™ processor and Intel® Xeon® processor E3-1200 v3 product family are based on 
the Haswell microarchitecture. The core PMU supports architectural performance monitoring capability with 
version ID 3 (see Section 18.2.3) and a host of non-architectural monitoring capabilities. 

Architectural performance monitoring version 3 capabilities are described in Section 18.2.3. 

The core PMU’s capability is similar to those described in Section 18.9 through Section 18.9.5, with some differ-
ences and enhancements summarized in Table 18-42. Additionally, the core PMU provides some enhancement to 
support performance monitoring when the target workload contains instruction streams using Intel® Transac-
tional Synchronization Extensions (TSX), see Section 18.11.5. For details of Intel TSX, see Chapter 15, “Program-
ming with Intel® Transactional Synchronization Extensions” of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.

Figure 18-34    IA32_PERF_GLOBAL_OVF_CTRL MSR in Intel microarchitecture code name Sandy Bridge
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FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC7_ClrOvf (if PMC7 present)

2 1 0

PMC6_ClrOvf (if PMC6 present)

3132333435

Reserved

63

ClrCondChgd
ClrOvfDSBuffer

8 7 6 5 4 3

PMC5_ClrOvf (if PMC5 present)
PMC4_ClrOvf (if PMC4 present)
PMC3_ClrOvf
PMC2_ClrOvf
PMC1_ClrOvf
PMC0_ClrOvf

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

ClrOvfUncore
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18.11.1 Processor Event Based Sampling (PEBS) Facility 
The PEBS facility in the 4th Generation Intel Core processor is similar to those in processors based on Intel micro-
architecture code name Sandy Bridge, with several enhanced features. The key components and differences of 
PEBS facility relative to Intel microarchitecture code name Sandy Bridge is summarized in Table 18-43.

Table 18-42    Core PMU Comparison

Box
Intel® microarchitecture code 
name Haswell

Intel® microarchitecture code 
name Sandy Bridge Comment

# of Fixed counters per thread 3 3

# of general-purpose counters 
per core

8 8

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 See Section 18.2.2.

# of programmable counters per 
thread

4 or (8 if a core not shared by two 
threads)

4 or (8 if a core not shared by 
two threads)

Use CPUID to enumerate 
# of counters.

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with 
legacy semantics.

• Freeze_on_LBR with legacy 
semantics for branch profiling.

• Freeze_while_SMM. 

• Freeze_Perfmon_on_PMI 
with legacy semantics.

• Freeze_on_LBR with legacy 
semantics for branch 
profiling.

• Freeze_while_SMM.

See Section 17.4.7.

Processor Event Based Sampling 
(PEBS) Events

See Table 18-32 and Section 
18.11.5.1.

See Table 18-32. IA32_PMC4-IA32_PMC7 
do not support PEBS.

PEBS-Load Latency See Section 18.9.4.2. See Section 18.9.4.2.

PEBS-Precise Store No, replaced by Data Address 
profiling.

Section 18.9.4.3

PEBS-PDIR Yes (using precise 
INST_RETIRED.ALL)

Yes (using precise 
INST_RETIRED.ALL)

PEBS-EventingIP yes no

Data Address Profiling yes no

LBR Profiling yes yes

Call Stack Profiling Yes, see Section 17.9. no Use LBR facility.

Off-core Response Event MSR 1A6H and 1A7H; extended 
request and response types.

MSR 1A6H and 1A7H; extended 
request and response types.

Intel TSX support for Perfmon See Section 18.11.5. no

Table 18-43    PEBS Facility Comparison

Box
Intel® microarchitecture code 
name Haswell

Intel® microarchitecture code 
name Sandy Bridge Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7 

PEBS Buffer Programming  Section 18.8.1.1 Section 18.8.1.1 Unchanged

IA32_PEBS_ENABLE Layout  Figure 18-21 Figure 18-35
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Only IA32_PMC0 through IA32_PMC3 support PEBS. 

NOTE
PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero: 
AnyThread, Edge, Invert, CMask.

In a PMU with PDIR capability, PEBS behavior is unpredictable if IA32_PERFEVTSELx or 
IA32_PMCx is changed for a PEBS-enabled counter while an event is being counted. To avoid this, 
changes to the programming or value of a PEBS-enabled counter should be performed when the 
counter is disabled.

...

18.12 INTEL® CORE™ M PROCESSOR PERFORMANCE MONITORING FACILITY
The Intel® Core™ M processor and the 5th Generation Intel Core processor families are based on the Broadwell 
microarchitecture. The core PMU supports architectural performance monitoring capability with version ID 3 (see 
Section 18.2.3) and a host of non-architectural monitoring capabilities. 

Architectural performance monitoring version 3 capabilities are described in Section 18.2.3. 

The core PMU has the same capability as those described in Section 18.11. IA32_PERF_GLOBAL_STATUS provide 
a bit indicator (bit 55) for PMI handler to distinguish PMI due to output buffer overflow condition due to accumu-
lating packet data from Intel Processor Trace. 

PEBS record layout Table 18-44; enhanced fields at 
offsets 98H, A0H, A8H, B0H.

Table 18-23; enhanced fields 
at offsets 98H, A0H, A8H.

Precise Events See Table 18-32. See Table 18-32. IA32_PMC4-IA32_PMC7 do not 
support PEBS.

PEBS-Load Latency See Table 18-33. Table 18-33

PEBS-Precise Store No, replaced by data address 
profiling.

Yes; see Section 18.9.4.3.

PEBS-PDIR yes yes IA32_PMC1 only.

PEBS skid from EventingIP 1 (or 2 if micro+macro fusion) 1

SAMPLING Restriction Small SAV(CountDown) value incur higher overhead than prior 
generation.

Table 18-43    PEBS Facility Comparison

Box
Intel® microarchitecture code 
name Haswell

Intel® microarchitecture code 
name Sandy Bridge Comment
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Details of Intel Processor Trace is described in Chapter 36, “Intel® Processor Trace”. 
IA32_PERF_GLOBAL_OVF_CTRL MSR provide a corresponding reset control bit. 

The specifics of non-architectural performance events are listed in Chapter 19, “Performance Monitoring Events”.

Figure 18-41    IA32_PERF_GLOBAL_STATUS MSR in Broadwell Microarchitecture 

Figure 18-42    IA32_PERF_GLOBAL_OVF_CTRL MSR in Broadwell microarchitecture 
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FIXED_CTR2 Overflow (RO)
FIXED_CTR1 Overflow (RO)
FIXED_CTR0 Overflow (RO)
PMC7_OVF (RO, If PMC7 present)

2 1 0

PMC6_OVF (RO, If PMC6 present)

3132333435

Reserved

63

CondChgd
Ovf_Buffer

8 7 6 5 4 3

PMC5_OVF (RO, If PMC5 present)
PMC4_OVF (RO, If PMC4 present)
PMC3_OVF (RO)
PMC2_OVF (RO)
PMC1_OVF (RO)
PMC0_OVF (RO)

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

Ovf_UncorePMU

61

Trace_ToPA_PMI

55

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC7_ClrOvf (if PMC7 present)

2 1 0

PMC6_ClrOvf (if PMC6 present)

3132333435

Reserved

63

ClrCondChgd
ClrOvfDSBuffer

8 7 6 5 4 3

PMC5_ClrOvf (if PMC5 present)
PMC4_ClrOvf (if PMC4 present)
PMC3_ClrOvf
PMC2_ClrOvf
PMC1_ClrOvf
PMC0_ClrOvf

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved

ClrOvfUncore
ClrTraceToPA_PMI

61 55
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18.13 6TH GENERATION INTEL® CORE™ PROCESSOR PERFORMANCE 
MONITORING FACILITY

The 6th generation Intel® Core™ processor is based on the Skylake microarchitecture. The core PMU supports 
architectural performance monitoring capability with version ID 4 (see Section 18.2.4) and a host of non-archi-
tectural monitoring capabilities. 

Architectural performance monitoring version 4 capabilities are described in Section 18.2.4. 

The core PMU’s capability is similar to those described in Section 18.9 through Section 18.9.5, with some differ-
ences and enhancements summarized in Table 18-42. Additionally, the core PMU provides some enhancement to 
support performance monitoring when the target workload contains instruction streams using Intel® Transac-
tional Synchronization Extensions (TSX), see Section 18.11.5. For details of Intel TSX, see Chapter 15, “Program-
ming with Intel® Transactional Synchronization Extensions” of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.

Performance monitoring result may be affected by side-band activity on processors that support Intel SGX, details 
are described in Chapter 43, “Enclave Code Debug and Profiling”.

Table 18-53    Core PMU Comparison

Box
Intel® microarchitecture code name 
Skylake

Intel® microarchitecture code 
name Haswell and Broadwell Comment

# of Fixed counters per thread 3 3

# of general-purpose counters 
per core

8 8

Counter width (R,W) R:48, W: 32/48 R:48, W: 32/48 See Section 18.2.2.

# of programmable counters 
per thread

4 or (8 if a core not shared by two 
threads)

4 or (8 if a core not shared by two 
threads)

CPUID enumerates 
# of counters.

Architectural Perfmon version 4 3 See Section 18.2.4

PMI Overhead Mitigation • Freeze_Perfmon_on_PMI with 
streamlined semantics.

• Freeze_on_LBR with streamlined 
semantics.

• Freeze_while_SMM.

• Freeze_Perfmon_on_PMI with 
legacy semantics.

• Freeze_on_LBR with legacy 
semantics for branch profiling.

• Freeze_while_SMM.

See Section 17.4.7.

Legacy semantics 
not supported with 
version 4 or higher.

Counter and Buffer Overflow 
Status Management

• Query via 
IA32_PERF_GLOBAL_STATUS

• Reset via 
IA32_PERF_GLOBAL_STATUS_RESET

• Set via 
IA32_PERF_GLOBAL_STATUS_SET

• Query via 
IA32_PERF_GLOBAL_STATUS

• Reset via 
IA32_PERF_GLOBAL_OVF_CTRL

See Section 18.2.4.

IA32_PERF_GLOBAL_STATUS 
Indicators of Overflow/
Overhead/Interference

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow
• CTR_Frz, LBR_Frz, ASCI

• Individual counter overflow
• PEBS buffer overflow
• ToPA buffer overflow (applicable 

to Broadwell microarchitecture)

See Section 18.2.4.

Enable control in 
IA32_PERF_GLOBAL_STATUS 

• CTR_Frz, 
• LBR_Frz

NA See Section 
18.2.4.1.

Perfmon Counter In-Use 
Indicator

Query IA32_PERF_GLOBAL_INUSE NA See Section 
18.2.4.3.
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18.13.1 Processor Event Based Sampling (PEBS) Facility 
The PEBS facility in the 6th Generation Intel Core processor provides a number enhancement relative to PEBS in 
processors based on Haswell/Broadwell microarchitectures. The key components and differences of PEBS facility 
relative to Haswell/Broadwell microarchitecture is summarized in Table 18-54.

Precise Events See Table 18-56. See Table 18-32. IA32_PMC4-PMC7 
do not support 
PEBS.

PEBS for front end events See Section 18.13.1.4; no

LBR Record Format Encoding 000101b 000100b Section 17.4.8.1

LBR Size 32 entries 16 entries

LBR Entry From_IP/To_IP/LBR_Info triplet From_IP/To_IP pair Section 17.10

LBR Timing yes no Section 17.10.1

Call Stack Profiling yes, see Section 17.9 yes, see Section 17.9 Use LBR facility

Off-core Response Event MSR 1A6H and 1A7H; Extended request 
and response types

MSR 1A6H and 1A7H; Extended 
request and response types

Intel TSX support for Perfmon See Section 18.11.5; See Section 18.11.5;

Table 18-53    Core PMU Comparison (Contd.)

Box
Intel® microarchitecture code name 
Skylake

Intel® microarchitecture code 
name Haswell and Broadwell Comment

Table 18-54    PEBS Facility Comparison

Box
Intel® microarchitecture code 
name Skylake

Intel® microarchitecture code 
name Haswell and Broadwell Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7.

PEBS Buffer Programming Section 18.8.1.1  Section 18.8.1.1 Unchanged

IA32_PEBS_ENABLE Layout Figure 18-21  Figure 18-21

PEBS-EventingIP yes yes

PEBS record format encoding 0011b 0010b

PEBS record layout Table 18-55; enhanced fields 
at offsets 98H- B8H; and TSC 
record field at C0H.

Table 18-44; enhanced fields at 
offsets 98H, A0H, A8H, B0H.

Multi-counter PEBS 
resolution

PEBS record 90H resolves the 
eventing counter overflow.

PEBS record 90H reflects 
IA32_PERF_GLOBAL_STATUS.

Precise Events See Table 18-56. See Table 18-32. IA32_PMC4-IA32_PMC7 do not 
support PEBS.

PEBS-PDIR yes yes IA32_PMC1 only.

PEBS-Load Latency See Section 18.9.4.2. See Section 18.9.4.2.

Data Address Profiling yes yes

FrontEnd event support FrontEnd_Retried event and 
MSR_PEBS_FRONTEND

no IA32_PMC0-PMC3 only
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Only IA32_PMC0 through IA32_PMC3 support PEBS. 

NOTE
Precise events are only valid when the following fields of IA32_PERFEVTSELx are all zero: 
AnyThread, Edge, Invert, CMask.

In a PMU with PDIR capability, PEBS behavior is unpredictable if IA32_PERFEVTSELx or 
IA32_PMCx is changed for a PEBS-enabled counter while an event is being counted. To avoid this, 
changes to the programming or value of a PEBS-enabled counter should be performed when the 
counter is disabled.

...

18.13.1.2  PEBS Events
The list of precise events supported for PEBS in the Skylake microarchitecture is shown in Table 18-56.

Table 18-56     Precise Events for the Skylake Microarchitecture
Event Name Event Select Sub-event UMask

INST_RETIRED C0H PREC_DIST1 01H

ALL_CYCLES2 01H

OTHER_ASSISTS C1H ANY 3FH

BR_INST_RETIRED C4H CONDITIONAL 01H

NEAR_CALL 02H

ALL_BRANCHES 04H

NEAR_RETURN 08H

NEAR_TAKEN 20H

FAR_BRACHES 40H

BR_MISP_RETIRED C5H CONDITIONAL 01H

ALL_BRANCHES 04H

NEAR_TAKEN 20H

FRONTEND_RETIRED C6H <Programmable3> 01H

HLE_RETIRED C8H ABORTED 04H

RTM_RETIRED C9H ABORTED 04H

MEM_INST_RETIRED2 D0H LOCK_LOADS 21H

SPLIT_LOADS 41H

SPLIT_STORES 42H

ALL_LOADS 81H

ALL_STORES 82H
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...

18.14 PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL 
NETBURST® MICROARCHITECTURE)

The performance monitoring mechanism provided in processors based on Intel NetBurst microarchitecture is 
different from that provided in the P6 family and Pentium processors. While the general concept of selecting, 
filtering, counting, and reading performance events through the WRMSR, RDMSR, and RDPMC instructions is 
unchanged, the setup mechanism and MSR layouts are incompatible with the P6 family and Pentium processor 
mechanisms. Also, the RDPMC instruction has been extended to support faster reading of counters and to read all 
performance counters available in processors based on Intel NetBurst microarchitecture.

The event monitoring mechanism consists of the following facilities:
• The IA32_MISC_ENABLE MSR, which indicates the availability in an Intel 64 or IA-32 processor of the 

performance monitoring and processor event-based sampling (PEBS) facilities.
• Event selection control (ESCR) MSRs for selecting events to be monitored with specific performance counters. 

The number available differs by family and model (43 to 45).
• 18 performance counter MSRs for counting events.
• 18 counter configuration control (CCCR) MSRs, with one CCCR associated with each performance counter. 

CCCRs sets up an associated performance counter for a specific method of counting.
• A debug store (DS) save area in memory for storing PEBS records.
• The IA32_DS_AREA MSR, which establishes the location of the DS save area.
• The debug store (DS) feature flag (bit 21) returned by the CPUID instruction, which indicates the availability 

of the DS mechanism.
• The MSR_PEBS_ENABLE MSR, which enables the PEBS facilities and replay tagging used in at-retirement 

event counting.

MEM_LOAD_RETIRED4 D1H L1_HIT 01H

L2_HIT 02H

L3_HIT 04H

L1_MISS 08H

L2_MISS 10H

L3_MISS 20H

HIT_LFB 40H

MEM_LOAD_L3_HIT_RETIRED2 D2H XSNP_MISS 01H

XSNP_HIT 02H

XSNP_HITM 04H

XSNP_NONE 08H

NOTES:
1. Only available on IA32_PMC1.
2. INST_RETIRED.ALL_CYCLES is configured with additional parameters of cmask = 10 and INV = 1
3. Subevents are specified using MSR_PEBS_FRONTEND, see Section 18.13.2
4. Instruction with at least one load uop experiencing the condition specified in the UMask.

Table 18-56     Precise Events for the Skylake Microarchitecture (Contd.)
Event Name Event Select Sub-event UMask
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• A set of predefined events and event metrics that simplify the setting up of the performance counters to count 
specific events.

Table 18-63 lists the performance counters and their associated CCCRs, along with the ESCRs that select events 
to be counted for each performance counter. Predefined event metrics and events are listed in Chapter 19, 
“Performance-Monitoring Events.”

Table 18-63    Performance Counter MSRs and Associated CCCR and 
ESCR MSRs (Processors Based on Intel NetBurst Microarchitecture)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr

MSR_BPU_COUNTER0 0 300H MSR_BPU_CCCR0 360H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

MSR_BPU_COUNTER1 1 301H MSR_BPU_CCCR1 361H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

MSR_BPU_COUNTER2 2 302H MSR_BPU_CCCR2 362H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_BPU_COUNTER3 3 303H MSR_BPU_CCCR3 363H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_MS_COUNTER0 4 304H MSR_MS_CCCR0 364H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER1 5 305H MSR_MS_CCCR1 365H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER2 6 306H MSR_MS_CCCR2 366H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_MS_COUNTER3 7 307H MSR_MS_CCCR3 367H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H
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MSR_FLAME_COUNTER0 8 308H MSR_FLAME_CCCR0 368H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_COUNTER1 9 309H MSR_FLAME_CCCR1 369H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_COUNTER2 10 30AH MSR_FLAME_CCCR2 36AH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_FLAME_COUNTER3 11 30BH MSR_FLAME_CCCR3 36BH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_IQ_COUNTER0 12 30CH MSR_IQ_CCCR0 36CH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER1 13 30DH MSR_IQ_CCCR1 36DH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER2 14 30EH MSR_IQ_CCCR2 36EH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

MSR_IQ_COUNTER3 15 30FH MSR_IQ_CCCR3 36FH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
 0

2
1

3B9H
3CDH
3E1H
3BBH

3BDH
3CBH

MSR_IQ_COUNTER4 16 310H MSR_IQ_CCCR4 370H MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

Table 18-63    Performance Counter MSRs and Associated CCCR and 
ESCR MSRs (Processors Based on Intel NetBurst Microarchitecture) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
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The types of events that can be counted with these performance monitoring facilities are divided into two classes: 
non-retirement events and at-retirement events.
• Non-retirement events (see Table 19-28) are events that occur any time during instruction execution (such as 

bus transactions or cache transactions).
• At-retirement events (see Table 19-29) are events that are counted at the retirement stage of instruction 

execution, which allows finer granularity in counting events and capturing machine state. 
The at-retirement counting mechanism includes facilities for tagging μops that have encountered a particular 
performance event during instruction execution. Tagging allows events to be sorted between those that 
occurred on an execution path that resulted in architectural state being committed at retirement as well as 
events that occurred on an execution path where the results were eventually cancelled and never committed 
to architectural state (such as, the execution of a mispredicted branch).

The Pentium 4 and Intel Xeon processor performance monitoring facilities support the three usage models 
described below. The first two models can be used to count both non-retirement and at-retirement events; the 
third model is used to count a subset of at-retirement events:
• Event counting — A performance counter is configured to count one or more types of events. While the 

counter is counting, software reads the counter at selected intervals to determine the number of events that 
have been counted between the intervals.

• Interrupt-based event sampling — A performance counter is configured to count one or more types of 
events and to generate an interrupt when it overflows. To trigger an overflow, the counter is preset to a 
modulus value that will cause the counter to overflow after a specific number of events have been counted. 
When the counter overflows, the processor generates a performance monitoring interrupt (PMI). The 
interrupt service routine for the PMI then records the return instruction pointer (RIP), resets the modulus, and 
restarts the counter. Code performance can be analyzed by examining the distribution of RIPs with a tool like 
the VTune™ Performance Analyzer.

• Processor event-based sampling (PEBS) — In PEBS, the processor writes a record of the architectural 
state of the processor to a memory buffer after the counter overflows. The records of architectural state 
provide additional information for use in performance tuning. Processor-based event sampling can be used to 
count only a subset of at-retirement events. PEBS captures more precise processor state information 
compared to interrupt based event sampling, because the latter need to use the interrupt service routine to 
re-construct the architectural states of processor. 

The following sections describe the MSRs and data structures used for performance monitoring in the Pentium 4 
and Intel Xeon processors.

...

MSR_IQ_COUNTER5 17 311H MSR_IQ_CCCR5 371H MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

NOTES:
1. MSR_IQ_ESCR0 and MSR_IQ_ESCR1 are available only on early processor builds (family 0FH, models 01H-02H). These MSRs are not 

available on later versions.

Table 18-63    Performance Counter MSRs and Associated CCCR and 
ESCR MSRs (Processors Based on Intel NetBurst Microarchitecture) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
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18.14.2 Performance Counters
The performance counters in conjunction with the counter configuration control registers (CCCRs) are used for 
filtering and counting the events selected by the ESCRs. Processors based on Intel NetBurst microarchitecture 
provide 18 performance counters organized into 9 pairs. A pair of performance counters is associated with a 
particular subset of events and ESCR’s (see Table 18-63). The counter pairs are partitioned into four groups:
• The BPU group, includes two performance counter pairs:

— MSR_BPU_COUNTER0 and MSR_BPU_COUNTER1.

— MSR_BPU_COUNTER2 and MSR_BPU_COUNTER3.
• The MS group, includes two performance counter pairs:

— MSR_MS_COUNTER0 and MSR_MS_COUNTER1.

— MSR_MS_COUNTER2 and MSR_MS_COUNTER3.
• The FLAME group, includes two performance counter pairs:

— MSR_FLAME_COUNTER0 and MSR_FLAME_COUNTER1.

— MSR_FLAME_COUNTER2 and MSR_FLAME_COUNTER3.
• The IQ group, includes three performance counter pairs:

— MSR_IQ_COUNTER0 and MSR_IQ_COUNTER1.

— MSR_IQ_COUNTER2 and MSR_IQ_COUNTER3.

— MSR_IQ_COUNTER4 and MSR_IQ_COUNTER5.

The MSR_IQ_COUNTER4 counter in the IQ group provides support for the PEBS. 

Alternate counters in each group can be cascaded: the first counter in one pair can start the first counter in the 
second pair and vice versa. A similar cascading is possible for the second counters in each pair. For example, 
within the BPU group of counters, MSR_BPU_COUNTER0 can start MSR_BPU_COUNTER2 and vice versa, and 
MSR_BPU_COUNTER1 can start MSR_BPU_COUNTER3 and vice versa (see Section 18.14.5.6, “Cascading Coun-
ters”). The cascade flag in the CCCR register for the performance counter enables the cascading of counters.

Each performance counter is 40-bits wide (see Figure 18-44). The RDPMC instruction is intended to allow reading 
of either the full counter-width (40-bits) or the low 32-bits of the counter. Reading the low 32-bits is faster than 
reading the full counter width and is appropriate in situations where the count is small enough to be contained in 
32 bits.

The RDPMC instruction can be used by programs or procedures running at any privilege level and in virtual-8086 
mode to read these counters. The PCE flag in control register CR4 (bit 8) allows the use of this instruction to be 
restricted to only programs and procedures running at privilege level 0.

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it does not necessarily wait until 
all previous instructions have been executed before reading the counter. Similarly, subsequent instructions may 
begin execution before the RDPMC instruction operation is performed.

Figure 18-44    Performance Counter (Pentium 4 and Intel Xeon Processors)
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Only the operating system, executing at privilege level 0, can directly manipulate the performance counters, 
using the RDMSR and WRMSR instructions. A secure operating system would clear the PCE flag during system 
initialization to disable direct user access to the performance-monitoring counters, but provide a user-accessible 
programming interface that emulates the RDPMC instruction.

Some uses of the performance counters require the counters to be preset before counting begins (that is, before 
the counter is enabled). This can be accomplished by writing to the counter using the WRMSR instruction. To set 
a counter to a specified number of counts before overflow, enter a 2s complement negative integer in the counter. 
The counter will then count from the preset value up to -1 and overflow. Writing to a performance counter in a 
Pentium 4 or Intel Xeon processor with the WRMSR instruction causes all 40 bits of the counter to be written.

18.14.3 CCCR MSRs
Each of the 18 performance counters has one CCCR MSR associated with it (see Table 18-63). The CCCRs control 
the filtering and counting of events as well as interrupt generation. Figure 18-45 shows the layout of an CCCR 
MSR. The functions of the flags and fields are as follows:
• Enable flag, bit 12 — When set, enables counting; when clear, the counter is disabled. This flag is cleared on 

reset.
• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to select events to be counted with 

the counter associated with the CCCR.
• Compare flag, bit 18 — When set, enables filtering of the event count; when clear, disables filtering. The 

filtering method is selected with the threshold, complement, and edge flags.
• Complement flag, bit 19 — Selects how the incoming event count is compared with the threshold value. 

When set, event counts that are less than or equal to the threshold value result in a single count being 
delivered to the performance counter; when clear, counts greater than the threshold value result in a count 
being delivered to the performance counter (see Section 18.14.5.2, “Filtering Events”). The complement flag 
is not active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used for comparisons. The 
processor examines this field only when the compare flag is set, and uses the complement flag setting to 
determine the type of threshold comparison to be made. The useful range of values that can be entered in this 
field depend on the type of event being counted (see Section 18.14.5.2, “Filtering Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge detection of the threshold 
comparison output for filtering event counts; when clear, rising edge detection is disabled. This flag is active 
only when the compare flag is set.
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• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every counter increment; when clear, 
overflow only occurs when the counter actually overflows.

• OVF_PMI flag, bit 26 — When set, causes a performance monitor interrupt (PMI) to be generated when the 
counter overflows occurs; when clear, disables PMI generation. Note that the PMI is generated on the next 
event count after the counter has overflowed.

• Cascade flag, bit 30 — When set, enables counting on one counter of a counter pair when its alternate 
counter in the other the counter pair in the same counter group overflows (see Section 18.14.2, “Performance 
Counters,” for further details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag is a sticky flag that must be 
explicitly cleared by software.

The CCCRs are initialized to all 0s on reset. 

The events that an enabled performance counter actually counts are selected and filtered by the following flags 
and fields in the ESCR and CCCR registers and in the qualification order given:

1. The event select and event mask fields in the ESCR select a class of events to be counted and one or more 
event types within the class, respectively.

2. The OS and USR flags in the ESCR selected the privilege levels at which events will be counted.

3. The ESCR select field of the CCCR selects the ESCR. Since each counter has several ESCRs associated with it, 
one ESCR must be chosen to select the classes of events that may be counted.

4. The compare and complement flags and the threshold field of the CCCR select an optional threshold to be 
used in qualifying an event count.

5. The edge flag in the CCCR allows events to be counted only on rising-edge transitions.

The qualification order in the above list implies that the filtered output of one “stage” forms the input for the next. 
For instance, events filtered using the privilege level flags can be further qualified by the compare and comple-
ment flags and the threshold field, and an event that matched the threshold criteria, can be further qualified by 
edge detection.

Figure 18-45    Counter Configuration Control Register (CCCR)
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The uses of the flags and fields in the CCCRs are discussed in greater detail in Section 18.14.5, “Programming the 
Performance Counters for Non-Retirement Events.”

18.14.4 Debug Store (DS) Mechanism
The debug store (DS) mechanism was introduced with processors based on Intel NetBurst microarchitecture to 
allow various types of information to be collected in memory-resident buffers for use in debugging and tuning 
programs. The DS mechanism can be used to collect two types of information: branch records and processor 
event-based sampling (PEBS) records. The availability of the DS mechanism in a processor is indicated with the 
DS feature flag (bit 21) returned by the CPUID instruction. 

See Section 17.4.5, “Branch Trace Store (BTS),” and Section 18.14.7, “Processor Event-Based Sampling (PEBS),” 
for a description of these facilities. Records collected with the DS mechanism are saved in the DS save area. See 
Section 17.4.9, “BTS and DS Save Area.”

...

18.14.5.1  Selecting Events to Count
Table 19-29 in Chapter 19 lists a set of at-retirement events for processors based on Intel NetBurst microarchi-
tecture. For each event listed in Table 19-29, setup information is provided. Table 18-64 gives an example of one 
of the events.

For Table 19-28 and Table 19-29, Chapter 19, the name of the event is listed in the Event Name column and 
parameters that define the event and other information are listed in the Event Parameters column. The Parameter 
Value and Description columns give specific parameters for the event and additional description information. 
Entries in the Event Parameters column are described below.

Table 18-64    Event Example 
Event Name Event Parameters  Parameter Value Description

branch_retired Counts the retirement of a branch. Specify one or more mask bits to select 
any combination of branch taken, not-taken, predicted and mispredicted. 

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 15-3 for the addresses of the ESCR MSRs.

Counter numbers per 
ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated with each ESCR are provided. The 
performance counters and corresponding CCCRs can be obtained from 
Table 15-3.

ESCR Event Select 06H ESCR[31:25]

ESCR Event Mask

Bit 0: MMNP

     1: MMNM

     2: MMTP

     3: MMTM

ESCR[24:9]

Branch Not-taken Predicted

Branch Not-taken Mispredicted

Branch Taken Predicted

Branch Taken Mispredicted

CCCR Select 05H CCCR[15:13]

Event Specific Notes P6: EMON_BR_INST_RETIRED

Can Support PEBS No

Requires Additional 
MSRs for Tagging

No
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• ESCR restrictions — Lists the ESCRs that can be used to program the event. Typically only one ESCR is 
needed to count an event. 

• Counter numbers per ESCR — Lists which performance counters are associated with each ESCR. Table 18-
63 gives the name of the counter and CCCR for each counter number. Typically only one counter is needed to 
count the event.

• ESCR event select — Gives the value to be placed in the event select field of the ESCR to select the event.
• ESCR event mask — Gives the value to be placed in the Event Mask field of the ESCR to select sub-events to 

be counted. The parameter value column defines the documented bits with relative bit position offset starting 
from 0, where the absolute bit position of relative offset 0 is bit 9 of the ESCR. All undocumented bits are 
reserved and should be set to 0.

• CCCR select — Gives the value to be placed in the ESCR select field of the CCCR associated with the counter 
to select the ESCR to be used to define the event. This value is not the address of the ESCR; it is the number 
of the ESCR from the Number column in Table 18-63.

• Event specific notes — Gives additional information about the event, such as the name of the same or a 
similar event defined for the P6 family processors.

• Can support PEBS — Indicates if PEBS is supported for the event (only supplied for at-retirement events 
listed in Table 19-29.)

• Requires additional MSR for tagging — Indicates which if any additional MSRs must be programmed to 
count the events (only supplied for the at-retirement events listed in Table 19-29.)

NOTE
The performance-monitoring events listed in Chapter 19, “Performance-Monitoring Events,” are 
intended to be used as guides for performance tuning. The counter values reported are not 
guaranteed to be absolutely accurate and should be used as a relative guide for tuning. Known 
discrepancies are documented where applicable.

The following procedure shows how to set up a performance counter for basic counting; that is, the counter is set 
up to count a specified event indefinitely, wrapping around whenever it reaches its maximum count. This proce-
dure is continued through the following four sections.

Using information in Table 19-28, Chapter 19, an event to be counted can be selected as follows:

1. Select the event to be counted.

2. Select the ESCR to be used to select events to be counted from the ESCRs field.

3. Select the number of the counter to be used to count the event from the Counter Numbers Per ESCR field.

4. Determine the name of the counter and the CCCR associated with the counter, and determine the MSR 
addresses of the counter, CCCR, and ESCR from Table 18-63.

5. Use the WRMSR instruction to write the ESCR Event Select and ESCR Event Mask values into the appropriate 
fields in the ESCR. At the same time set or clear the USR and OS flags in the ESCR as desired.

6. Use the WRMSR instruction to write the CCCR Select value into the appropriate field in the CCCR.

NOTE
Typically all the fields and flags of the CCCR will be written with one WRMSR instruction; however, 
in this procedure, several WRMSR writes are used to more clearly demonstrate the uses of the 
various CCCR fields and flags.

This setup procedure is continued in the next section, Section 18.14.5.2, “Filtering Events.”
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...

18.14.5.4  Reading a Performance Counter’s Count
Performance counters can be read using either the RDPMC or RDMSR instructions. The enhanced functions of the 
RDPMC instruction (including fast read) are described in Section 18.14.2, “Performance Counters.” These instruc-
tions can be used to read a performance counter while it is counting or when it is stopped.

The following procedural step shows how to read the event counter. This step is a continuation of the setup proce-
dure introduced in Section 18.14.5.3, “Starting Event Counting.”

7. To read a performance counters current event count, execute the RDPMC instruction with the counter number 
obtained from Table 18-63 used as an operand.

This setup procedure is continued in the next section, Section 18.14.5.5, “Halting Event Counting.”

...

18.14.5.7  EXTENDED CASCADING 
Extended cascading is a model-specific feature in the Intel NetBurst microarchitecture with CPUID 
DisplayFamily_DisplayModel 0F_02, 0F_03, 0F_04, 0F_06. This feature uses bit 11 in CCCRs associated with the 
IQ block. See Table 18-65. 

The extended cascading feature can be adapted to the Interrupt based sampling usage model for performance 
monitoring. However, it is known that performance counters do not generate PMI in cascade mode or extended 
cascade mode due to an erratum. This erratum applies to processors with CPUID DisplayFamily_DisplayModel 
signature of 0F_02. For processors with CPUID DisplayFamily_DisplayModel signature of 0F_00 and 0F_01, the 
erratum applies to processors with stepping encoding greater than 09H. 

Counters 16 and 17 in the IQ block are frequently used in processor event-based sampling or at-retirement 
counting of events indicating a stalled condition in the pipeline. Neither counter 16 or 17 can initiate the cascading 
of counter pairs using the cascade bit in a CCCR.

Extended cascading permits performance monitoring tools to use counters 16 and 17 to initiate cascading of two 
counters in the IQ block. Extended cascading from counter 16 and 17 is conceptually similar to cascading other 
counters, but instead of using CASCADE bit of a CCCR, one of the four CASCNTxINTOy bits is used. 

...

18.14.6 At-Retirement Counting
At-retirement counting provides a means counting only events that represent work committed to architectural 
state and ignoring work that was performed speculatively and later discarded.

Table 18-65    CCR Names and Bit Positions 

CCCR Name:Bit Position Bit Name Description

MSR_IQ_CCCR1|2:11 Reserved

MSR_IQ_CCCR0:11 CASCNT4INTO0 Allow counter 4 to cascade into counter 0

MSR_IQ_CCCR3:11 CASCNT5INTO3 Allow counter 5 to cascade into counter 3

MSR_IQ_CCCR4:11 CASCNT5INTO4 Allow counter 5 to cascade into counter 4

MSR_IQ_CCCR5:11 CASCNT4INTO5 Allow counter 4 to cascade into counter 5
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One example of this speculative activity is branch prediction. When a branch misprediction occurs, the results of 
instructions that were decoded and executed down the mispredicted path are canceled. If a performance counter 
was set up to count all executed instructions, the count would include instructions whose results were canceled as 
well as those whose results committed to architectural state.

To provide finer granularity in event counting in these situations, the performance monitoring facilities provided 
in the Pentium 4 and Intel Xeon processors provide a mechanism for tagging events and then counting only those 
tagged events that represent committed results. This mechanism is called “at-retirement counting.” 

Tables 19-29 through 19-33 list predefined at-retirement events and event metrics that can be used to for tagging 
events when using at retirement counting. The following terminology is used in describing at-retirement 
counting:
• Bogus, non-bogus, retire — In at-retirement event descriptions, the term “bogus” refers to instructions or 

μops that must be canceled because they are on a path taken from a mispredicted branch. The terms “retired” 
and “non-bogus” refer to instructions or μops along the path that results in committed architectural state 
changes as required by the program being executed. Thus instructions and μops are either bogus or non-
bogus, but not both. Several of the Pentium 4 and Intel Xeon processors’ performance monitoring events 
(such as, Instruction_Retired and Uops_Retired in Table 19-29) can count instructions or μops that are retired 
based on the characterization of bogus” versus non-bogus.

• Tagging — Tagging is a means of marking μops that have encountered a particular performance event so 
they can be counted at retirement. During the course of execution, the same event can happen more than 
once per μop and a direct count of the event would not provide an indication of how many μops encountered 
that event. 
The tagging mechanisms allow a μop to be tagged once during its lifetime and thus counted once at 
retirement. The retired suffix is used for performance metrics that increment a count once per μop, rather 
than once per event. For example, a μop may encounter a cache miss more than once during its life time, but 
a “Miss Retired” metric (that counts the number of retired μops that encountered a cache miss) will increment 
only once for that μop. A “Miss Retired” metric would be useful for characterizing the performance of the cache 
hierarchy for a particular instruction sequence. Details of various performance metrics and how these can be 
constructed using the Pentium 4 and Intel Xeon processors performance events are provided in the Intel 
Pentium 4 Processor Optimization Reference Manual (see Section 1.4, “Related Literature”). 

• Replay — To maximize performance for the common case, the Intel NetBurst microarchitecture aggressively 
schedules μops for execution before all the conditions for correct execution are guaranteed to be satisfied. In 
the event that all of these conditions are not satisfied, μops must be reissued. The mechanism that the 
Pentium 4 and Intel Xeon processors use for this reissuing of μops is called replay. Some examples of replay 
causes are cache misses, dependence violations, and unforeseen resource constraints. In normal operation, 
some number of replays is common and unavoidable. An excessive number of replays is an indication of a 
performance problem.

• Assist — When the hardware needs the assistance of microcode to deal with some event, the machine takes 
an assist. One example of this is an underflow condition in the input operands of a floating-point operation. 
The hardware must internally modify the format of the operands in order to perform the computation. Assists 
clear the entire machine of μops before they begin and are costly.

18.14.6.1  Using At-Retirement Counting
Processors based on Intel NetBurst microarchitecture allow counting both events and μops that encountered a 
specified event. For a subset of the at-retirement events listed in Table 19-29, a μop may be tagged when it 
encounters that event. The tagging mechanisms can be used in Interrupt-based event sampling, and a subset of 
these mechanisms can be used in PEBS. There are four independent tagging mechanisms, and each mechanism 
uses a different event to count μops tagged with that mechanism: 
• Front-end tagging — This mechanism pertains to the tagging of μops that encountered front-end events (for 

example, trace cache and instruction counts) and are counted with the Front_end_event event
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• Execution tagging — This mechanism pertains to the tagging of μops that encountered execution events 
(for example, instruction types) and are counted with the Execution_Event event.

• Replay tagging — This mechanism pertains to tagging of μops whose retirement is replayed (for example, a 
cache miss) and are counted with the Replay_event event. Branch mispredictions are also tagged with this 
mechanism.

• No tags — This mechanism does not use tags. It uses the Instr_retired and the Uops_ retired events.

Each tagging mechanism is independent from all others; that is, a μop that has been tagged using one mechanism 
will not be detected with another mechanism’s tagged-μop detector. For example, if μops are tagged using the 
front-end tagging mechanisms, the Replay_event will not count those as tagged μops unless they are also tagged 
using the replay tagging mechanism. However, execution tags allow up to four different types of μops to be 
counted at retirement through execution tagging.

The independence of tagging mechanisms does not hold when using PEBS. When using PEBS, only one tagging 
mechanism should be used at a time. 

Certain kinds of μops that cannot be tagged, including I/O, uncacheable and locked accesses, returns, and far 
transfers.

Table 19-29 lists the performance monitoring events that support at-retirement counting: specifically the 
Front_end_event, Execution_event, Replay_event, Inst_retired and Uops_retired events. The following sections 
describe the tagging mechanisms for using these events to tag μop and count tagged μops.

...

18.14.6.3  Tagging Mechanism For Execution_event
Table 19-29 describes the Execution_event and Table 19-32 describes metrics that are used to set up an 
Execution_event count.

The execution tagging mechanism differs from other tagging mechanisms in how it causes tagging. One upstream 
ESCR is used to specify an event to detect and to specify a tag value (bits 5 through 8) to identify that event. A 
second downstream ESCR is used to detect μops that have been tagged with that tag value identifier using 
Execution_event for the event selection. 

The upstream ESCR that counts the event must have its tag enable flag (bit 4) set and must have an appropriate 
tag value mask entered in its tag value field. The 4-bit tag value mask specifies which of tag bits should be set for 
a particular μop. The value selected for the tag value should coincide with the event mask selected in the down-
stream ESCR. For example, if a tag value of 1 is set, then the event mask of NBOGUS0 should be enabled, corre-
spondingly in the downstream ESCR. The downstream ESCR detects and counts tagged μops. The normal (not tag 
value) mask bits in the downstream ESCR specify which tag bits to count. If any one of the tag bits selected by 
the mask is set, the related counter is incremented by one. This mechanism is summarized in the Table 19-32 
metrics that are supported by the execution tagging mechanism. The tag enable and tag value bits are irrelevant 
for the downstream ESCR used to select the Execution_event.

The four separate tag bits allow the user to simultaneously but distinctly count up to four execution events at 
retirement. (This applies for interrupt-based event sampling. There are additional restrictions for PEBS as noted 
in Section 18.14.7.3, “Setting Up the PEBS Buffer.”) It is also possible to detect or count combinations of events 
by setting multiple tag value bits in the upstream ESCR or multiple mask bits in the downstream ESCR. For 
example, use a tag value of 3H in the upstream ESCR and use NBOGUS0/NBOGUS1 in the downstream ESCR 
event mask.

18.14.6.4  Tagging Mechanism for Replay_event
Table 19-29 describes the Replay_event and Table 19-33 describes metrics that are used to set up an 
Replay_event count.
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The replay mechanism enables tagging of μops for a subset of all replays before retirement. Use of the replay 
mechanism requires selecting the type of μop that may experience the replay in the MSR_PEBS_MATRIX_VERT 
MSR and selecting the type of event in the MSR_PEBS_ENABLE MSR. Replay tagging must also be enabled with 
the UOP_Tag flag (bit 24) in the MSR_PEBS_ENABLE MSR. 

The Table 19-33 lists the metrics that are support the replay tagging mechanism and the at-retirement events 
that use the replay tagging mechanism, and specifies how the appropriate MSRs need to be configured. The 
replay tags defined in Table A-5 also enable Processor Event-Based Sampling (PEBS, see Section 17.4.9). Each of 
these replay tags can also be used in normal sampling by not setting Bit 24 nor Bit 25 in 
IA_32_PEBS_ENABLE_MSR. Each of these metrics requires that the Replay_Event (see Table 19-29) be used to 
count the tagged μops.

18.14.7  Processor Event-Based Sampling (PEBS)
The debug store (DS) mechanism in processors based on Intel NetBurst microarchitecture allow two types of 
information to be collected for use in debugging and tuning programs: PEBS records and BTS records. See Section 
17.4.5, “Branch Trace Store (BTS),” for a description of the BTS mechanism.

PEBS permits the saving of precise architectural information associated with one or more performance events in 
the precise event records buffer, which is part of the DS save area (see Section 17.4.9, “BTS and DS Save Area”). 
To use this mechanism, a counter is configured to overflow after it has counted a preset number of events. After 
the counter overflows, the processor copies the current state of the general-purpose and EFLAGS registers and 
instruction pointer into a record in the precise event records buffer. The processor then resets the count in the 
performance counter and restarts the counter. When the precise event records buffer is nearly full, an interrupt is 
generated, allowing the precise event records to be saved. A circular buffer is not supported for precise event 
records.

PEBS is supported only for a subset of the at-retirement events: Execution_event, Front_end_event, and 
Replay_event. Also, PEBS can only be carried out using the one performance counter, the MSR_IQ_COUNTER4 
MSR.

In processors based on Intel Core microarchitecture, a similar PEBS mechanism is also supported using 
IA32_PMC0 and IA32_PERFEVTSEL0 MSRs (See Section 18.4.4).

...

19. Updates to Chapter 19, Volume 3B
Change bars show changes to Chapter 19 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------
This chapter lists the performance-monitoring events that can be monitored with the Intel 64 or IA-32 processors. 
The ability to monitor performance events and the events that can be monitored in these processors are mostly 
model-specific, except for architectural performance events, described in Section 19.1. 

Non-architectural performance events (i.e. model-specific events) are listed for each generation of microarchitec-
ture:
• Section 19.2 - Processors based on Skylake microarchitecture
• Section 19.3 - Processors based on Broadwell microarchitecture
• Section 19.4 - Processors based on Haswell microarchitecture
• Section 19.4.1 - Processors based on Haswell-E microarchitecture 
• Section 19.5 - Processors based on Ivy Bridge microarchitecture
• Section 19.5.1 - Processors based on Ivy Bridge-E microarchitecture
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• Section 19.6 - Processors based on Sandy Bridge microarchitecture 
• Section 19.7 - Processors based on Intel® microarchitecture code name Nehalem
• Section 19.8 - Processors based on Intel® microarchitecture code name Westmere
• Section 19.9 - Processors based on Enhanced Intel® Core™ microarchitecture
• Section 19.10 - Processors based on Intel® Core™ microarchitecture
• Section 19.11 - Processors based on the Goldmont microarchitecture
• Section 19.12 - Processors based on the Silvermont microarchitecture
• Section 19.12.1 - Processors based on the Airmont microarchitecture
• Section 19.13 - 45 nm and 32 nm Intel® Atom™ Processors
• Section 19.14 - Intel® Core™ Solo and Intel® Core™ Duo processors
• Section 19.15 - Processors based on Intel NetBurst® microarchitecture
• Section 19.16 - Pentium® M family processors
• Section 19.17 - P6 family processors
• Section 19.18 - Pentium® processors

NOTE
These performance-monitoring events are intended to be used as guides for performance tuning. 
The counter values reported by the performance-monitoring events are approximate and believed 
to be useful as relative guides for tuning software. Known discrepancies are documented where 
applicable. 
All performance event encodings not documented in the appropriate tables for the given 
processor are considered reserved, and their use will result in undefined counter updates with 
associated overflow actions.
The event tables listed this chapter provide information for tool developers to support architec-
tural and non-architectural performance monitoring events. The tables are up to date at processor 
launch, but are subject to changes. The most up to date event tables and additional details of 
performance event implementation for end-user (including additional details beyond event code/
umask) can found at the “perfmon” repository provided by The Intel Open Source Technology 
Center (https://download.01.org/perfmon/). 

...

19.2 PERFORMANCE MONITORING EVENTS FOR 6TH GENERATION INTEL® 
CORE™ PROCESSOR

6th Generation Intel® Core™ processors are based on the Skylake microarchitecture. They support the architec-
tural performance-monitoring events listed in Table 41-56. Fixed counters in the core PMU support the architec-
ture events defined in Table 19-2. Non-architectural performance-monitoring events in the processor core are 
listed in Table 19-3. The events in Table 19-3 apply to processors with CPUID signature of 
DisplayFamily_DisplayModel encoding with the following values: 06_4EH and 06_5EH. Table 19-8 lists perfor-
mance events supporting Intel TSX (see Section 18.11.5) and are applicable to processors based on Skylake 
microarchitecture. Where Skylake microarchitecture implements TSX-related event semantics that differ from 
Table 19-8, they are listed in Table 19-4.

The comment column in Table 19-3 uses abbreviated letters to indicate additional conditions applicable to the 
Event Mask Mnemonic. For event umasks listed in Table 19-3 that do not show “AnyT”, users should refrain from 
programming “AnyThread =1” in IA32_PERF_EVTSELx.
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...

19.11 PERFORMANCE MONITORING EVENTS FOR PROCESSORS BASED ON THE 
GOLDMONT MICROARCHITECTURE

Next Generation Intel Atom processors based on the Goldmont microarchitecture support the architectural 
performance-monitoring events listed in Table 41-56 and fixed-function performance events using a fixed 
counter. In addition, they also support the following non-architectural performance-monitoring events listed in 
Table 19-24. These events also apply to processors with CPUID signatures of 06_5CH and 06_5FH.

Performance monitoring event descriptions may refer to terminology described in Section B.2, “Performance 
Monitoring and Microarchitecture,” in Appendix B of the Intel® 64 and IA-32 Architectures Optimization Refer-
ence Manual.

In Goldmont microarchitecture, performance monitoring events that support Processor Event Based Sampling 
(PEBS) and PEBS records that contain processor state information that are associated with at-retirement tagging 
are marked by “Precise Event”.

Table 19-24    Non-Architectural Performance Events for the Goldmont Microarchitecture
Event
Num.

Umask
Value Event Name Description Comment

03H 10H LD_BLOCKS.ALL_BLOCK Counts anytime a load that retires is blocked for any reason. Precise Event

03H 08H LD_BLOCKS.UTLB_MISS Counts loads blocked because they are unable to find their physical 
address in the micro TLB (UTLB).

Precise Event

03H 02H LD_BLOCKS.STORE_FO
RWARD

Counts a load blocked from using a store forward because of an 
address/size mismatch; only one of the loads blocked from each store 
will be counted.

Precise Event

03H 01H LD_BLOCKS.DATA_UNK
NOWN

Counts a load blocked from using a store forward, but did not occur 
because the store data was not available at the right time. The forward 
might occur subsequently when the data is available.

Precise Event

03H 04H LD_BLOCKS.4K_ALIAS Counts loads that block because their address modulo 4K matches a 
pending store.

Precise Event

05H 01H PAGE_WALKS.D_SIDE_C
YCLES

Counts every core cycle when a Data-side (walks due to data operation) 
page walk is in progress.

05H 02H PAGE_WALKS.I_SIDE_CY
CLES

Counts every core cycle when an Instruction-side (walks due to an 
instruction fetch) page walk is in progress.

05H 03H PAGE_WALKS.CYCLES Counts every core cycle a page-walk is in progress due to either a data 
memory operation, or an instruction fetch.

0EH 00H UOPS_ISSUED.ANY Counts uops issued by the front end and allocated into the back end of 
the machine. This event counts uops that retire as well as uops that 
were speculatively executed but didn't retire. The sort of speculative 
uops that might be counted includes, but is not limited to those uops 
issued in the shadow of a mispredicted branch, those uops that are 
inserted during an assist (such as for a denormal floating-point result), 
and (previously allocated) uops that might be canceled during a 
machine clear. 

13H 02H MISALIGN_MEM_REF.LO
AD_PAGE_SPLIT

Counts when a memory load of a uop that spans a page boundary (a 
split) is retired.

Precise Event
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13H 04H MISALIGN_MEM_REF.ST
ORE_PAGE_SPLIT

Counts when a memory store of a uop that spans a page boundary (a 
split) is retired.

Precise Event

2EH 4FH LONGEST_LAT_CACHE.
REFERENCE

Counts memory requests originating from the core that reference a 
cache line in the L2 cache.

2EH 41H LONGEST_LAT_CACHE.
MISS

Counts memory requests originating from the core that miss in the L2 
cache.

30H 00H L2_REJECT_XQ.ALL Counts the number of demand and prefetch transactions that the L2 
XQ rejects due to a full or near full condition which likely indicates back 
pressure from the intra-die interconnect (IDI) fabric. The XQ may reject 
transactions from the L2Q (non-cacheable requests), L2 misses and L2 
write-back victims.

31H 00H CORE_REJECT_L2Q.ALL Counts the number of demand and L1 prefetcher requests rejected by 
the L2Q due to a full or nearly full condition which likely indicates back 
pressure from L2Q. It also counts requests that would have gone 
directly to the XQ, but are rejected due to a full or nearly full condition, 
indicating back pressure from the IDI link. The L2Q may also reject 
transactions from a core to ensure fairness between cores, or to delay 
a core's dirty eviction when the address conflicts with incoming 
external snoops. 

3CH 00H CPU_CLK_UNHALTED.C
ORE_P

Core cycles when core is not halted. This event uses a programmable 
general purpose performance counter.

3CH 01H CPU_CLK_UNHALTED.R
EF

Reference cycles when core is not halted. This event uses a 
programmable general purpose performance counter.

51H 01H DL1.DIRTY_EVICTION Counts when a modified (dirty) cache line is evicted from the data L1 
cache and needs to be written back to memory. No count will occur if 
the evicted line is clean, and hence does not require a writeback.

80H 01H ICACHE.HIT Counts requests to the Instruction Cache (ICache) for one or more 
bytes in an ICache Line and that cache line is in the Icache (hit). The 
event strives to count on a cache line basis, so that multiple accesses 
which hit in a single cache line count as one ICACHE.HIT. Specifically, the 
event counts when straight line code crosses the cache line boundary, 
or when a branch target is to a new line, and that cache line is in the 
ICache. This event counts differently than Intel processors based on 
the Silvermont microarchitecture.

80H 02H ICACHE.MISSES Counts requests to the Instruction Cache (ICache) for one or more 
bytes in an ICache Line and that cache line is not in the Icache (miss). 
The event strives to count on a cache line basis, so that multiple 
accesses which miss in a single cache line count as one ICACHE.MISS. 
Specifically, the event counts when straight line code crosses the cache 
line boundary, or when a branch target is to a new line, and that cache 
line is not in the ICache. This event counts differently than Intel 
processors based on the Silvermont microarchitecture.

Table 19-24    Non-Architectural Performance Events for the Goldmont Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Name Description Comment
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80H 03H ICACHE.ACCESSES Counts requests to the Instruction Cache (ICache) for one or more 
bytes in an ICache Line. The event strives to count on a cache line basis, 
so that multiple fetches to a single cache line count as one 
ICACHE.ACCESS. Specifically, the event counts when accesses from 
straight line code crosses the cache line boundary, or when a branch 
target is to a new line. This event counts differently than Intel 
processors based on the Silvermont microarchitecture.

81H 04H ITLB.MISS Counts the number of times the machine was unable to find a 
translation in the Instruction Translation Lookaside Buffer (ITLB) for a 
linear address of an instruction fetch. It counts when new translations 
are filled into the ITLB. The event is speculative in nature, but will not 
count translations (page walks) that are begun and not finished, or 
translations that are finished but not filled into the ITLB.

86H 02H FETCH_STALL.ICACHE_F
ILL_PENDING_CYCLES

Counts cycles that an ICache miss is outstanding, and instruction fetch 
is stalled. That is, the decoder queue is able to accept bytes, but the 
fetch unit is unable to provide bytes, while an Icache miss is 
outstanding. Note this event is not the same as cycles to retrieve an 
instruction due to an Icache miss. Rather, it is the part of the 
Instruction Cache (ICache) miss time where no bytes are available for 
the decoder.

Table 19-24    Non-Architectural Performance Events for the Goldmont Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Name Description Comment
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9CH 00H UOPS_NOT_DELIVERED.
ANY

This event is used to measure front-end inefficiencies, i.e., when the 
front end of the machine is not delivering uops to the back end and the 
back end has not stalled. This event can be used to identify if the 
machine is truly front-end bound. When this event occurs, it is an 
indication that the front end of the machine is operating at less than its 
theoretical peak performance. 

Background: We can think of the processor pipeline as being divided 
into 2 broader parts: the front end and the back end. The front end is 
responsible for fetching the instruction, decoding into uops in machine 
understandable format and putting them into a uop queue to be 
consumed by the back end. The back end then takes these uops and 
allocates the required resources. When all resources are ready, uops are 
executed. If the back end is not ready to accept uops from the front 
end, then we do not want to count these as front-end bottlenecks. 
However, whenever we have bottlenecks in the back end, we will have 
allocation unit stalls and eventually force the front end to wait until the 
back end is ready to receive more uops. This event counts only when 
the back end is requesting more micro-uops and the front end is not 
able to provide them. When 3 uops are requested and no uops are 
delivered, the event counts 3. When 3 are requested, and only 1 is 
delivered, the event counts 2. When only 2 are delivered, the event 
counts 1. Alternatively stated, the event will not count if 3 uops are 
delivered, or if the back end is stalled and not requesting any uops at 
all. Counts indicate missed opportunities for the front end to deliver a 
uop to the back end. Some examples of conditions that cause front-end 
efficiencies are: Icache misses, ITLB misses, and decoder restrictions 
that limit the front-end bandwidth. 

Known Issues: Some uops require multiple allocation slots. These uops 
will not be charged as a front end 'not delivered' opportunity, and will 
be regarded as a back-end problem. For example, the INC instruction 
has one uop that requires 2 issue slots. A stream of INC instructions will 
not count as UOPS_NOT_DELIVERED, even though only one instruction 
can be issued per clock. The low uop issue rate for a stream of INC 
instructions is considered to be a back-end issue.

B7H 01H, 
02H

OFFCORE_RESPONSE Requires MSR_OFFCORE_RESP[0,1] to specify request type and 
response. (Duplicated for both MSRs.)

C0H 00H INST_RETIRED.ANY_P Counts the number of instructions that retire execution. For 
instructions that consist of multiple uops, this event counts the 
retirement of the last uop of the instruction. The event continues 
counting during hardware interrupts, traps, and inside interrupt 
handlers. This is an architectural performance event. This event uses a 
programmable general purpose performance counter. *This event is a 
Precise Event: the EventingRIP field in the PEBS record is precise to the 
address of the instruction which caused the event. 

Note: Because PEBS records can be collected only on IA32_PMC0, only 
one event can use the PEBS facility at a time.

Precise Event

C2H 00H UOPS_RETIRED.ANY Counts uops which have retired. Precise Event

Table 19-24    Non-Architectural Performance Events for the Goldmont Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Name Description Comment
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C2H 01H UOPS_RETIRED.MS Counts uops retired that are from the complex flows issued by the 
micro-sequencer (MS). Counts both the uops from a micro-coded 
instruction, and the uops that might be generated from a micro-coded 
assist.

Precise Event

C3H 01H MACHINE_CLEARS.SMC Counts the number of times that the processor detects that a program 
is writing to a code section and has to perform a machine clear because 
of that modification. Self-modifying code (SMC) causes a severe penalty 
in all Intel architecture processors.

C3H 02H MACHINE_CLEARS.MEM
ORY_ORDERING

Counts machine clears due to memory ordering issues. This occurs 
when a snoop request happens and the machine is uncertain if memory 
ordering will be preserved as another core is in the process of 
modifying the data.

C3H 04H MACHINE_CLEARS.FP_A
SSIST

Counts machine clears due to floating-point (FP) operations needing 
assists. For instance, if the result was a floating-point denormal, the 
hardware clears the pipeline and reissues uops to produce the correct 
IEEE compliant denormal result.

C3H 08H MACHINE_CLEARS.DISA
MBIGUATION

Counts machine clears due to memory disambiguation. Memory 
disambiguation happens when a load which has been issued conflicts 
with a previous un-retired store in the pipeline whose address was not 
known at issue time, but is later resolved to be the same as the load 
address.

C3H 00H MACHINE_CLEARS.ALL Counts machine clears for any reason.

C4H 00H BR_INST_RETIRED.ALL_
BRANCHES

Counts branch instructions retired for all branch types. This is an 
architectural performance event.   

Precise Event

C4H 7EH BR_INST_RETIRED.JCC Counts retired Jcc (Jump on Conditional Code/Jump if Condition is Met) 
branch instructions retired, including both when the branch was taken 
and when it was not taken.

Precise Event

C4H FEH BR_INST_RETIRED.TAK
EN_JCC

Counts Jcc (Jump on Conditional Code/Jump if Condition is Met) branch 
instructions retired that were taken and does not count when the Jcc 
branch instruction were not taken. 

Precise Event

C4H F9H BR_INST_RETIRED.CALL Counts near CALL branch instructions retired. Precise Event

C4H FDH BR_INST_RETIRED.REL_
CALL

Counts near relative CALL branch instructions retired. Precise Event

C4H FBH BR_INST_RETIRED.IND_
CALL

Counts near indirect CALL branch instructions retired. Precise Event

C4H F7H BR_INST_RETIRED.RET
URN

Counts near return branch instructions retired. Precise Event

C4H EBH BR_INST_RETIRED.NON
_RETURN_IND

Counts near indirect call or near indirect jmp branch instructions retired. Precise Event

C4H BFH BR_INST_RETIRED.FAR
_BRANCH

Counts far branch instructions retired. This includes far jump, far call 
and return, and Interrupt call and return.

Precise Event

C5H 00H BR_MISP_RETIRED.ALL
_BRANCHES

Counts mispredicted branch instructions retired including all branch 
types.

Precise Event

Table 19-24    Non-Architectural Performance Events for the Goldmont Microarchitecture (Contd.)
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Num.

Umask
Value Event Name Description Comment



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 247

C5H 7EH BR_MISP_RETIRED.JCC Counts mispredicted retired Jcc (Jump on Conditional Code/Jump if 
Condition is Met) branch instructions retired, including both when the 
branch was supposed to be taken and when it was not supposed to be 
taken (but the processor predicted the opposite condition).

Precise Event

C5H FEH BR_MISP_RETIRED.TAK
EN_JCC

Counts mispredicted retired Jcc (Jump on Conditional Code/Jump if 
Condition is Met) branch instructions retired that were supposed to be 
taken but the processor predicted that it would not be taken.

Precise Event

C5H FBH BR_MISP_RETIRED.IND_
CALL

Counts mispredicted near indirect CALL branch instructions retired, 
where the target address taken was not what the processor predicted.

Precise Event

C5H F7H BR_MISP_RETIRED.RET
URN

Counts mispredicted near RET branch instructions retired, where the 
return address taken was not what the processor predicted.

Precise Event

C5H EBH BR_MISP_RETIRED.NON
_RETURN_IND

Counts mispredicted branch instructions retired that were near indirect 
call or near indirect jmp, where the target address taken was not what 
the processor predicted.

Precise Event

CAH 01H ISSUE_SLOTS_NOT_CO
NSUMED.RESOURCE_FU
LL

Counts the number of issue slots per core cycle that were not 
consumed because of a full resource in the back end. Including but not 
limited to resources include the Re-order Buffer (ROB), reservation 
stations (RS), load/store buffers, physical registers, or any other 
needed machine resource that is currently unavailable.   Note that uops 
must be available for consumption in order for this event to fire. If a 
uop is not available (Instruction Queue is empty), this event will not 
count. 

CAH 02H ISSUE_SLOTS_NOT_CO
NSUMED.RECOVERY

Counts the number of issue slots per core cycle that were not 
consumed by the back end because allocation is stalled waiting for a 
mispredicted jump to retire or other branch-like conditions (e.g. the 
event is relevant during certain microcode flows). Counts all issue slots 
blocked while within this window, including slots where uops were not 
available in the Instruction Queue.

CAH 00H ISSUE_SLOTS_NOT_CO
NSUMED.ANY

Counts the number of issue slots per core cycle that were not 
consumed by the back end due to either a full resource in the back end 
(RESOURCE_FULL), or due to the processor recovering from some 
event (RECOVERY).

CBH 01H HW_INTERRUPTS.RECEI
VED

Counts hardware interrupts received by the processor.

CBH 04H HW_INTERRUPTS.PENDI
NG_AND_MASKED

Counts core cycles during which there are pending interrupts, but 
interrupts are masked (EFLAGS.IF = 0).

CDH 00H CYCLES_DIV_BUSY.ALL Counts core cycles if either divide unit is busy.

CDH 01H CYCLES_DIV_BUSY.IDIV Counts core cycles if the integer divide unit is busy.

CDH 02H CYCLES_DIV_BUSY.FPDI
V

Counts core cycles if the floating point divide unit is busy.

D0H 81H MEM_UOPS_RETIRED.A
LL_LOADS

Counts the number of load uops retired. Precise Event

D0H 82H MEM_UOPS_RETIRED.A
LL_STORES

Counts the number of store uops retired. Precise Event

Table 19-24    Non-Architectural Performance Events for the Goldmont Microarchitecture (Contd.)
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D0H 83H MEM_UOPS_RETIRED.A
LL

Counts the number of memory uops retired that are either a load or a 
store or both.

Precise Event

D0H 11H MEM_UOPS_RETIRED.D
TLB_MISS_LOADS

Counts load uops retired that caused a DTLB miss. Precise Event

D0H 12H MEM_UOPS_RETIRED.D
TLB_MISS_STORES

Counts store uops retired that caused a DTLB miss. Precise Event

D0H 13H MEM_UOPS_RETIRED.D
TLB_MISS

Counts uops retired that had a DTLB miss on load, store or either. 

Note that when two distinct memory operations to the same page miss 
the DTLB, only one of them will be recorded as a DTLB miss.

Precise Event

D0H 21H MEM_UOPS_RETIRED.L
OCK_LOADS

Counts locked memory uops retired. This includes 'regular' locks and 
bus locks. To specifically count bus locks only, see the offcore response 
event. A locked access is one with a lock prefix, or an exchange to 
memory.

Precise Event

D0H 41H MEM_UOPS_RETIRED.S
PLIT_LOADS

Counts load uops retired where the data requested spans a 64 byte 
cache line boundary.

Precise Event

D0H 42H MEM_UOPS_RETIRED.S
PLIT_STORES

Counts store uops retired where the data requested spans a 64 byte 
cache line boundary.

Precise Event

D0H 43H MEM_UOPS_RETIRED.S
PLIT

Counts memory uops retired where the data requested spans a 64 
byte cache line boundary.

Precise Event

D1H 01H MEM_LOAD_UOPS_RETI
RED.L1_HIT

Counts load uops retired that hit the L1 data cache. Precise Event

D1H 08H MEM_LOAD_UOPS_RETI
RED.L1_MISS

Counts load uops retired that miss the L1 data cache. Precise Event

D1H 02H MEM_LOAD_UOPS_RETI
RED.L2_HIT

Counts load uops retired that hit in the L2 cache. Precise Event

0xD1H 10H MEM_LOAD_UOPS_RETI
RED.L2_MISS

Counts load uops retired that miss in the L2 cache. Precise Event

D1H 20H MEM_LOAD_UOPS_RETI
RED.HITM

Counts load uops retired where the cache line containing the data was 
in the modified state of another core or modules cache (HITM). More 
specifically, this means that when the load address was checked by 
other caching agents (typically another processor) in the system, one 
of those caching agents indicated that they had a dirty copy of the 
data. Loads that obtain a HITM response incur greater latency than 
most that is typical for a load. In addition, since HITM indicates that 
some other processor had this data in its cache, it implies that the data 
was shared between processors, or potentially was a lock or 
semaphore value. This event is useful for locating sharing, false 
sharing, and contended locks.

Precise Event
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19.12 PERFORMANCE MONITORING EVENTS FOR PROCESSORS BASED ON THE 
SILVERMONT MICROARCHITECTURE

Processors based on the Silvermont microarchitecture support the architectural performance-monitoring events 
listed in Table 41-56 and fixed-function performance events using fixed counter. In addition, they also support the 
following non-architectural performance-monitoring events listed in Table 19-25. These processors have the 
CPUID signatures of 06_37H, 06_4AH, 06_4DH, 06_5AH, and 06_5DH. 

Performance monitoring event descriptions may refer to terminology described in Section B.2, “Performance 
Monitoring and Microarchitecture,” in Appendix B of the Intel® 64 and IA-32 Architectures Optimization Refer-
ence Manual.

D1H 40H MEM_LOAD_UOPS_RETI
RED.WCB_HIT

Counts memory load uops retired where the data is retrieved from the 
WCB (or fill buffer), indicating that the load found its data while that 
data was in the process of being brought into the L1 cache. Typically a 
load will receive this indication when some other load or prefetch 
missed the L1 cache and was in the process of retrieving the cache line 
containing the data, but that process had not yet finished (and written 
the data back to the cache). For example, consider load X and Y, both 
referencing the same cache line that is not in the L1 cache. If load X 
misses cache first, it obtains and WCB (or fill buffer) begins the process 
of requesting the data. When load Y requests the data, it will either hit 
the WCB, or the L1 cache, depending on exactly what time the request 
to Y occurs.

Precise Event

D1H 80H MEM_LOAD_UOPS_RETI
RED.DRAM_HIT

Counts memory load uops retired where the data is retrieved from 
DRAM. Event is counted at retirment, so the speculative loads are 
ignored. A memory load can hit (or miss) the L1 cache, hit (or miss) the 
L2 cache, hit DRAM, hit in the WCB or receive a HITM response.

Precise Event

E6H 01H BACLEARS.ALL Counts the number of times a BACLEAR is signaled for any reason, 
including, but not limited to indirect branch/call, Jcc (Jump on Conditional 
Code/Jump if Condition is Met) branch, unconditional branch/call, and 
returns.

E6H 08H BACLEARS.RETURN Counts BACLEARS on return instructions.

E6H 10H BACLEARS.COND Counts BACLEARS on Jcc (Jump on Conditional Code/Jump if Condition is 
Met) branches.

E7H 01H MS_DECODED.MS_ENTR
Y

Counts the number of times the Microcode Sequencer (MS) starts a 
flow of uops from the MSROM. It does not count every time a uop is 
read from the MSROM. The most common case that this counts is when 
a micro-coded instruction is encountered by the front end of the 
machine. Other cases include when an instruction encounters a fault, 
trap, or microcode assist of any sort that initiates a flow of uops. The 
event will count MS startups for uops that are speculative, and 
subsequently cleared by branch mispredict or a machine clear.

E9H 01H DECODE_RESTRICTION.
PREDECODE_WRONG

Counts the number of times the prediction (from the pre-decode cache) 
for instruction length is incorrect.

Table 19-24    Non-Architectural Performance Events for the Goldmont Microarchitecture (Contd.)
Event
Num.

Umask
Value Event Name Description Comment
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...

20. Updates to Chapter 23, Volume 3B
Change bars show changes to Chapter 23 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

23.8 RESTRICTIONS ON VMX OPERATION
VMX operation places restrictions on processor operation. These are detailed below:
• In VMX operation, processors may fix certain bits in CR0 and CR4 to specific values and not support other 

values. VMXON fails if any of these bits contains an unsupported value (see “VMXON—Enter VMX Operation” 
in Chapter 30). Any attempt to set one of these bits to an unsupported value while in VMX operation (including 
VMX root operation) using any of the CLTS, LMSW, or MOV CR instructions causes a general-protection 
exception. VM entry or VM exit cannot set any of these bits to an unsupported value. Software should consult 
the VMX capability MSRs IA32_VMX_CR0_FIXED0 and IA32_VMX_CR0_FIXED1 to determine how bits in CR0 
are fixed (see Appendix A.7). For CR4, software should consult the VMX capability MSRs 
IA32_VMX_CR4_FIXED0 and IA32_VMX_CR4_FIXED1 (see Appendix A.8).

NOTES
The first processors to support VMX operation require that the following bits be 1 in VMX 
operation: CR0.PE, CR0.NE, CR0.PG, and CR4.VMXE. The restrictions on CR0.PE and CR0.PG 
imply that VMX operation is supported only in paged protected mode (including IA-32e mode). 
Therefore, guest software cannot be run in unpaged protected mode or in real-address mode. See 
Section 31.2, “Supporting Processor Operating Modes in Guest Environments,” for a discussion of 
how a VMM might support guest software that expects to run in unpaged protected mode or in 
real-address mode.
Later processors support a VM-execution control called “unrestricted guest” (see Section 24.6.2). 
If this control is 1, CR0.PE and CR0.PG may be 0 in VMX non-root operation (even if the capability 
MSR IA32_VMX_CR0_FIXED0 reports otherwise).1 Such processors allow guest software to run in 
unpaged protected mode or in real-address mode.

• VMXON fails if a logical processor is in A20M mode (see “VMXON—Enter VMX Operation” in Chapter 30). Once 
the processor is in VMX operation, A20M interrupts are blocked. Thus, it is impossible to be in A20M mode in 
VMX operation.

• The INIT signal is blocked whenever a logical processor is in VMX root operation. It is not blocked in VMX non-
root operation. Instead, INITs cause VM exits (see Section 25.2, “Other Causes of VM Exits”).

• Intel® Processor Trace (Intel PT) can be used in VMX operation only if IA32_VMX_MISC[14] is read as 1 (see 
Appendix A.6). On processors that support Intel PT but which do not allow it to be used in VMX operation, 
execution of VMXON clears IA32_RTIT_CTL.TraceEn (see “VMXON—Enter VMX Operation” in Chapter 30); any 
attempt to set that bit while in VMX operation (including VMX root operation) using the WRMSR instruction 
causes a general-protection exception. 

...

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VMX non-root operation functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.
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21. Updates to Chapter 24, Volume 3B
Change bars show changes to Chapter 24 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

24.4.1 Guest Register State
The following fields in the guest-state area correspond to processor registers:
• Control registers CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel 64 archi-

tecture).
• Debug register DR7 (64 bits; 32 bits on processors that do not support Intel 64 architecture).
• RSP, RIP, and RFLAGS (64 bits each; 32 bits on processors that do not support Intel 64 architecture).1

• The following fields for each of the registers CS, SS, DS, ES, FS, GS, LDTR, and TR:

— Selector (16 bits).

— Base address (64 bits; 32 bits on processors that do not support Intel 64 architecture). The base-address 
fields for CS, SS, DS, and ES have only 32 architecturally-defined bits; nevertheless, the corresponding 
VMCS fields have 64 bits on processors that support Intel 64 architecture.

— Segment limit (32 bits). The limit field is always a measure in bytes.

— Access rights (32 bits). The format of this field is given in Table 24-2 and detailed as follows:

• The low 16 bits correspond to bits 23:8 of the upper 32 bits of a 64-bit segment descriptor. While bits 
19:16 of code-segment and data-segment descriptors correspond to the upper 4 bits of the segment 
limit, the corresponding bits (bits 11:8) are reserved in this VMCS field.

• Bit 16 indicates an unusable segment. Attempts to use such a segment fault except in 64-bit mode. 
In general, a segment register is unusable if it has been loaded with a null selector.2

• Bits 31:17 are reserved.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX 
operation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 
32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to 
lower 32 bits of the indicated register.

2. There are a few exceptions to this statement. For example, a segment with a non-null selector may be unusable following a task 
switch that fails after its commit point; see “Interrupt 10—Invalid TSS Exception (#TS)” in Section 6.14, “Exception and Interrupt 
Handling in 64-bit Mode,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In contrast, the TR 
register is usable after processor reset despite having a null selector; see Table 10-1 in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A.

Table 24-2    Format of Access Rights 

Bit Position(s) Field

3:0 Segment type

4 S — Descriptor type (0 = system; 1 = code or data)

6:5 DPL — Descriptor privilege level
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The base address, segment limit, and access rights compose the “hidden” part (or “descriptor cache”) of each 
segment register. These data are included in the VMCS because it is possible for a segment register’s 
descriptor cache to be inconsistent with the segment descriptor in memory (in the GDT or the LDT) referenced 
by the segment register’s selector.
The value of the DPL field for SS is always equal to the logical processor’s current privilege level (CPL).1

• The following fields for each of the registers GDTR and IDTR:

— Base address (64 bits; 32 bits on processors that do not support Intel 64 architecture).

— Limit (32 bits). The limit fields contain 32 bits even though these fields are specified as only 16 bits in the 
architecture.

• The following MSRs:

— IA32_DEBUGCTL (64 bits)

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on processors that do not support Intel 
64 architecture)

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on processors that support the 1-setting 
of the “load IA32_PERF_GLOBAL_CTRL” VM-entry control.

— IA32_PAT (64 bits). This field is supported only on processors that support either the 1-setting of the “load 
IA32_PAT” VM-entry control or that of the “save IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on processors that support either the 1-setting of the 
“load IA32_EFER” VM-entry control or that of the “save IA32_EFER” VM-exit control.

— IA32_BNDCFGS (64 bits). This field is supported only on processors that support either the 1-setting of 
the “load IA32_BNDCFGS” VM-entry control or that of the “clear IA32_BNDCFGS” VM-exit control.

• The register SMBASE (32 bits). This register contains the base address of the logical processor’s SMRAM 
image.

7 P — Segment present

11:8 Reserved

12 AVL — Available for use by system software

13 Reserved (except for CS)
L — 64-bit mode active (for CS only)

14 D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

15 G — Granularity

16 Segment unusable (0 = usable; 1 = unusable)

31:17 Reserved

Table 24-2    Format of Access Rights  (Contd.)

Bit Position(s) Field

1. In protected mode, CPL is also associated with the RPL field in the CS selector. However, the RPL fields are not meaningful in real-
address mode or in virtual-8086 mode.
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24.4.2 Guest Non-Register State
In addition to the register state described in Section 24.4.1, the guest-state area includes the following fields that 
characterize guest state but which do not correspond to processor registers:
• Activity state (32 bits). This field identifies the logical processor’s activity state. When a logical processor is 

executing instructions normally, it is in the active state. Execution of certain instructions and the occurrence 
of certain events may cause a logical processor to transition to an inactive state in which it ceases to execute 
instructions.
The following activity states are defined:1

— 0: Active. The logical processor is executing instructions normally.

— 1: HLT. The logical processor is inactive because it executed the HLT instruction.

— 2: Shutdown. The logical processor is inactive because it incurred a triple fault2 or some other serious 
error.

— 3: Wait-for-SIPI. The logical processor is inactive because it is waiting for a startup-IPI (SIPI).
Future processors may include support for other activity states. Software should read the VMX capability MSR 
IA32_VMX_MISC (see Appendix A.6) to determine what activity states are supported.

• Interruptibility state (32 bits). The IA-32 architecture includes features that permit certain events to be 
blocked for a period of time. This field contains information about such blocking. Details and the format of this 
field are given in Table 24-3.

1. Execution of the MWAIT instruction may put a logical processor into an inactive state. However, this VMCS field never reflects this 
state. See Section 27.1.

2. A triple fault occurs when a logical processor encounters an exception while attempting to deliver a double fault.

Table 24-3    Format of Interruptibility State

Bit 
Position(s)

Bit Name Notes

0 Blocking by STI See the “STI—Set Interrupt Flag” section in Chapter 4 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2B.

Execution of STI with RFLAGS.IF = 0 blocks interrupts (and, optionally, other events) for one 
instruction after its execution. Setting this bit indicates that this blocking is in effect.

1 Blocking by 
MOV SS

See the “MOV—Move a Value from the Stack” from Chapter 3 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A, and “POP—Pop a Value from the 
Stack” from Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2B, and Section 6.8.3 in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

Execution of a MOV to SS or a POP to SS blocks interrupts for one instruction after its 
execution. In addition, certain debug exceptions are inhibited between a MOV to SS or a POP to 
SS and a subsequent instruction. Setting this bit indicates that the blocking of all these events 
is in effect. This document uses the term “blocking by MOV SS,” but it applies equally to POP SS.

2 Blocking by SMI See Section 34.2. System-management interrupts (SMIs) are disabled while the processor is in 
system-management mode (SMM). Setting this bit indicates that blocking of SMIs is in effect.
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...

24.6.2 Processor-Based VM-Execution Controls
The processor-based VM-execution controls constitute two 32-bit vectors that govern the handling of synchro-
nous events, mainly those caused by the execution of specific instructions.1 These are the primary processor-
based VM-execution controls and the secondary processor-based VM-execution controls.

Table 24-6 lists the primary processor-based VM-execution controls. See Chapter 25 for more details of how these 
controls affect processor behavior in VMX non-root operation.

3 Blocking by NMI See Section 6.7.1 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A and Section 34.8.

Delivery of a non-maskable interrupt (NMI) or a system-management interrupt (SMI) blocks 
subsequent NMIs until the next execution of IRET. See Section 25.3 for how this behavior of 
IRET may change in VMX non-root operation. Setting this bit indicates that blocking of NMIs is 
in effect. Clearing this bit does not imply that NMIs are not (temporarily) blocked for other 
reasons.

If the “virtual NMIs” VM-execution control (see Section 24.6.1) is 1, this bit does not control the 
blocking of NMIs. Instead, it refers to “virtual-NMI blocking” (the fact that guest software is not 
ready for an NMI).

4 Enclave 
interruption

A VM exit saves this bit as 1 to indicate that the VM exit was incident to enclave mode.

31:5 Reserved VM entry will fail if these bits are not 0. See Section 26.3.1.5.

Table 24-3    Format of Interruptibility State (Contd.)

Bit 
Position(s)

Bit Name Notes

1. Some instructions cause VM exits regardless of the settings of the processor-based VM-execution controls (see Section 25.1.2), as 
do task switches (see Section 25.2).

Table 24-6    Definitions of Primary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

2 Interrupt-window 
exiting

If this control is 1, a VM exit occurs at the beginning of any instruction if RFLAGS.IF = 1 and 
there are no other blocking of interrupts (see Section 24.4.2).

3 Use TSC offsetting This control determines whether executions of RDTSC, executions of RDTSCP, and executions 
of RDMSR that read from the IA32_TIME_STAMP_COUNTER MSR return a value modified by 
the TSC offset field (see Section 24.6.5 and Section 25.3).

7 HLT exiting This control determines whether executions of HLT cause VM exits.

9 INVLPG exiting This determines whether executions of INVLPG cause VM exits.

10 MWAIT exiting This control determines whether executions of MWAIT cause VM exits.

11 RDPMC exiting This control determines whether executions of RDPMC cause VM exits.

12 RDTSC exiting This control determines whether executions of RDTSC and RDTSCP cause VM exits.
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All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs 
IA32_VMX_PROCBASED_CTLS and IA32_VMX_TRUE_PROCBASED_CTLS (see Appendix A.3.2) to determine how 
to set reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 
26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 1, 4–6, 8, 13–
16, and 26. The VMX capability MSR IA32_VMX_PROCBASED_CTLS will always report that these bits must be 1. 
Logical processors that support the 0-settings of any of these bits will support the VMX capability MSR 
IA32_VMX_TRUE_PROCBASED_CTLS MSR, and software should consult this MSR to discover support for the 0-
settings of these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 
1.

Bit 31 of the primary processor-based VM-execution controls determines whether the secondary processor-based 
VM-execution controls are used. If that bit is 0, VM entry and VMX non-root operation function as if all the 
secondary processor-based VM-execution controls were 0. Processors that support only the 0-setting of bit 31 of 

15 CR3-load exiting In conjunction with the CR3-target controls (see Section 24.6.7), this control determines 
whether executions of MOV to CR3 cause VM exits. See Section 25.1.3.

The first processors to support the virtual-machine extensions supported only the 1-setting 
of this control.

16 CR3-store exiting This control determines whether executions of MOV from CR3 cause VM exits.

The first processors to support the virtual-machine extensions supported only the 1-setting 
of this control.

19 CR8-load exiting This control determines whether executions of MOV to CR8 cause VM exits.

20 CR8-store exiting This control determines whether executions of MOV from CR8 cause VM exits.

21 Use TPR shadow Setting this control to 1 enables TPR virtualization and other APIC-virtualization features. See 
Chapter 29.

22 NMI-window 
exiting

If this control is 1, a VM exit occurs at the beginning of any instruction if there is no virtual-
NMI blocking (see Section 24.4.2).

23 MOV-DR exiting This control determines whether executions of MOV DR cause VM exits.

24 Unconditional I/O 
exiting

This control determines whether executions of I/O instructions (IN, INS/INSB/INSW/INSD, OUT, 
and OUTS/OUTSB/OUTSW/OUTSD) cause VM exits.

25 Use I/O bitmaps This control determines whether I/O bitmaps are used to restrict executions of I/O instructions 
(see Section 24.6.4 and Section 25.1.3).

For this control, “0” means “do not use I/O bitmaps” and “1” means “use I/O bitmaps.” If the I/O 
bitmaps are used, the setting of the “unconditional I/O exiting” control is ignored.

27 Monitor trap flag If this control is 1, the monitor trap flag debugging feature is enabled. See Section 25.5.2.

28 Use MSR bitmaps This control determines whether MSR bitmaps are used to control execution of the RDMSR 
and WRMSR instructions (see Section 24.6.9 and Section 25.1.3).

For this control, “0” means “do not use MSR bitmaps” and “1” means “use MSR bitmaps.” If the 
MSR bitmaps are not used, all executions of the RDMSR and WRMSR instructions cause 
VM exits.

29 MONITOR exiting This control determines whether executions of MONITOR cause VM exits.

30 PAUSE exiting This control determines whether executions of PAUSE cause VM exits.

31 Activate secondary 
controls

This control determines whether the secondary processor-based VM-execution controls are 
used. If this control is 0, the logical processor operates as if all the secondary processor-based 
VM-execution controls were also 0.

Table 24-6    Definitions of Primary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description
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the primary processor-based VM-execution controls do not support the secondary processor-based VM-execution 
controls.

Table 24-7 lists the secondary processor-based VM-execution controls. See Chapter 25 for more details of how 
these controls affect processor behavior in VMX non-root operation.

Table 24-7    Definitions of Secondary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

0 Virtualize APIC 
accesses

If this control is 1, the logical processor treats specially accesses to the page with the APIC-
access address. See Section 29.4.

1 Enable EPT If this control is 1, extended page tables (EPT) are enabled. See Section 28.2.

2 Descriptor-table 
exiting

This control determines whether executions of LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, and 
STR cause VM exits.

3 Enable RDTSCP If this control is 0, any execution of RDTSCP causes an invalid-opcode exception (#UD).

4 Virtualize x2APIC 
mode

If this control is 1, the logical processor treats specially RDMSR and WRMSR to APIC MSRs (in 
the range 800H–8FFH). See Section 29.5.

5 Enable VPID If this control is 1, cached translations of linear addresses are associated with a virtual-
processor identifier (VPID). See Section 28.1.

6 WBINVD exiting This control determines whether executions of WBINVD cause VM exits.

7 Unrestricted guest This control determines whether guest software may run in unpaged protected mode or in real-
address mode.

8 APIC-register 
virtualization

If this control is 1, the logical processor virtualizes certain APIC accesses. See Section 29.4 and 
Section 29.5.

9 Virtual-interrupt 
delivery

This controls enables the evaluation and delivery of pending virtual interrupts as well as the 
emulation of writes to the APIC registers that control interrupt prioritization.

10 PAUSE-loop exiting This control determines whether a series of executions of PAUSE can cause a VM exit (see 
Section 24.6.13 and Section 25.1.3).

11 RDRAND exiting This control determines whether executions of RDRAND cause VM exits.

12 Enable INVPCID If this control is 0, any execution of INVPCID causes a #UD.

13 Enable 
VM functions

Setting this control to 1 enables use of the VMFUNC instruction in VMX non-root operation. See 
Section 25.5.5.

14 VMCS shadowing If this control is 1, executions of VMREAD and VMWRITE in VMX non-root operation may access 
a shadow VMCS (instead of causing VM exits). See Section 24.10 and Section 30.3.

15 Enable ENCLS 
exiting

If this control is 1, executions of ENCLS consult the ENCLS-exiting bitmap to determine whether 
the instruction causes a VM exit. See Section 24.6.16 and Section 25.1.3.

16 RDSEED exiting This control determines whether executions of RDSEED cause VM exits.

17 Enable PML If this control is 1, an access to a guest-physical address that sets an EPT dirty bit first adds an 
entry to the page-modification log. See Section 28.2.5.

18 EPT-violation #VE If this control is 1, EPT violations may cause virtualization exceptions (#VE) instead of VM exits. 
See Section 25.5.6.

19 Conceal VMX non-
root operation from 
Intel PT

If this control is 1, Intel Processor Trace suppresses data packets that indicate the use of 
virtualization (see Chapter 36).
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All other bits in this field are reserved to 0. Software should consult the VMX capability MSR 
IA32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3) to determine which bits may be set to 1. Failure to clear 
reserved bits causes subsequent VM entries to fail (see Section 26.2.1.1).

...

24.6.13 Controls for PAUSE-Loop Exiting
On processors that support the 1-setting of the “PAUSE-loop exiting” VM-execution control, the VM-execution 
control fields include the following 32-bit fields:
• PLE_Gap. Software can configure this field as an upper bound on the amount of time between two successive 

executions of PAUSE in a loop.
• PLE_Window. Software can configure this field as an upper bound on the amount of time a guest is allowed 

to execute in a PAUSE loop.

These fields measure time based on a counter that runs at the same rate as the timestamp counter (TSC). See 
Section 25.1.3 for more details regarding PAUSE-loop exiting.

24.6.14 VM-Function Controls
The VM-function controls constitute a 64-bit vector that governs use of the VMFUNC instruction in VMX non-
root operation. This field is supported only on processors that support the 1-settings of both the “activate 
secondary controls” primary processor-based VM-execution control and the “enable VM functions” secondary 
processor-based VM-execution control.

Table 24-9 lists the VM-function controls. See Section 25.5.5 for more details of how these controls affect 
processor behavior in VMX non-root operation.

All other bits in this field are reserved to 0. Software should consult the VMX capability MSR IA32_VMX_VMFUNC 
(see Appendix A.11) to determine which bits are reserved. Failure to clear reserved bits causes subsequent 
VM entries to fail (see Section 26.2.1.1).

Processors that support the 1-setting of the “EPTP switching” VM-function control also support a 64-bit field called 
the EPTP-list address. This field contains the physical address of the 4-KByte EPTP list. The EPTP list comprises 
512 8-Byte entries (each an EPTP value) and is used by the EPTP-switching VM function (see Section 25.5.5.3).

...

20 Enable XSAVES/
XRSTORS

If this control is 0, any execution of XSAVES or XRSTORS causes a #UD.

25 Use TSC scaling This control determines whether executions of RDTSC, executions of RDTSCP, and executions 
of RDMSR that read from the IA32_TIME_STAMP_COUNTER MSR return a value modified by the 
TSC multiplier field (see Section 24.6.5 and Section 25.3).

Table 24-7    Definitions of Secondary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description

Table 24-9    Definitions of VM-Function Controls
Bit Position(s) Name Description

0 EPTP switching The EPTP-switching VM function changes the EPT pointer to a value chosen from the EPTP list. 
See Section 25.5.5.3.
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24.6.16 ENCLS-Exiting Bitmap
The ENCLS-exiting bitmap is a 64-bit field. If the “enable ENCLS exiting” VM-execution control is 1, execution 
of ENCLS causes a VM exit if the bit in this field corresponding to the value of EAX is 1. If the bit is 0, the instruc-
tion executes normally. See Section 25.1.3 for more information.

24.6.17 Control Field for Page-Modification Logging
The PML address is a 64-bit field. It is the 4-KByte aligned address of the page-modification log. The page-
modification log consists of 512 64-bit entries. It is used for the page-modification logging feature. Details of the 
page-modification logging are given in Section 28.2.5.

If the “enable PML” VM-execution control is 1, VM entry ensures that the PML address is 4-KByte aligned. The PML 
address exists only on processors that support the 1-setting of the “enable PML” VM-execution control.

...

24.7.1 VM-Exit Controls
The VM-exit controls constitute a 32-bit vector that governs the basic operation of VM exits. Table 24-10 lists 
the controls supported. See Chapter 27 for complete details of how these controls affect VM exits. 

Table 24-10    Definitions of VM-Exit Controls

Bit Position(s) Name Description

2 Save debug 
controls

This control determines whether DR7 and the IA32_DEBUGCTL MSR are saved on VM exit.

The first processors to support the virtual-machine extensions supported only the 1-setting 
of this control.

9 Host address-
space size

On processors that support Intel 64 architecture, this control determines whether a logical 
processor is in 64-bit mode after the next VM exit. Its value is loaded into CS.L, 
IA32_EFER.LME, and IA32_EFER.LMA on every VM exit.1

This control must be 0 on processors that do not support Intel 64 architecture.

12 Load 
IA32_PERF_GLOB
AL_CTRL

This control determines whether the IA32_PERF_GLOBAL_CTRL MSR is loaded on VM exit.

15 Acknowledge 
interrupt on exit

This control affects VM exits due to external interrupts:

• If such a VM exit occurs and this control is 1, the logical processor acknowledges the 
interrupt controller, acquiring the interrupt’s vector. The vector is stored in the VM-exit 
interruption-information field, which is marked valid.

• If such a VM exit occurs and this control is 0, the interrupt is not acknowledged and the 
VM-exit interruption-information field is marked invalid.

18 Save IA32_PAT This control determines whether the IA32_PAT MSR is saved on VM exit.

19 Load IA32_PAT This control determines whether the IA32_PAT MSR is loaded on VM exit.

20 Save IA32_EFER This control determines whether the IA32_EFER MSR is saved on VM exit.

21 Load IA32_EFER This control determines whether the IA32_EFER MSR is loaded on VM exit.
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All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs 
IA32_VMX_EXIT_CTLS and IA32_VMX_TRUE_EXIT_CTLS (see Appendix A.4) to determine how it should set the 
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 26.2.1.2).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 0–8, 10, 11, 
13, 14, 16, and 17. The VMX capability MSR IA32_VMX_EXIT_CTLS always reports that these bits must be 1. 
Logical processors that support the 0-settings of any of these bits will support the VMX capability MSR 
IA32_VMX_TRUE_EXIT_CTLS MSR, and software should consult this MSR to discover support for the 0-settings of 
these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

...

24.8.1 VM-Entry Controls
The VM-entry controls constitute a 32-bit vector that governs the basic operation of VM entries. Table 24-12 
lists the controls supported. See Chapter 24 for how these controls affect VM entries.

22 Save VMX-
preemption timer 
value

This control determines whether the value of the VMX-preemption timer is saved on VM exit.

23 Clear 
IA32_BNDCFGS

This control determines whether the IA32_BNDCFGS MSR is cleared on VM exit.

24 Conceal VM exits 
from Intel PT

If this control is 1, Intel Processor Trace does not produce a paging information packet (PIP) on 
a VM exit (see Chapter 36).

NOTES:
1. Since Intel 64 architecture specifies that IA32_EFER.LMA is always set to the logical-AND of CR0.PG and IA32_EFER.LME, and since 

CR0.PG is always 1 in VMX operation, IA32_EFER.LMA is always identical to IA32_EFER.LME in VMX operation.

Table 24-10    Definitions of VM-Exit Controls (Contd.)

Bit Position(s) Name Description

Table 24-12    Definitions of VM-Entry Controls
Bit Position(s) Name Description

2 Load debug 
controls

This control determines whether DR7 and the IA32_DEBUGCTL MSR are loaded on VM entry.

The first processors to support the virtual-machine extensions supported only the 1-setting of 
this control.

9 IA-32e mode guest On processors that support Intel 64 architecture, this control determines whether the logical 
processor is in IA-32e mode after VM entry. Its value is loaded into IA32_EFER.LMA as part of 
VM entry.1

This control must be 0 on processors that do not support Intel 64 architecture.

10 Entry to SMM This control determines whether the logical processor is in system-management mode (SMM) 
after VM entry. This control must be 0 for any VM entry from outside SMM.

11 Deactivate dual-
monitor treatment

If set to 1, the default treatment of SMIs and SMM is in effect after the VM entry (see Section 
34.15.7). This control must be 0 for any VM entry from outside SMM.

13 Load 
IA32_PERF_GLOBA
L_CTRL

This control determines whether the IA32_PERF_GLOBAL_CTRL MSR is loaded on VM entry.

14 Load IA32_PAT This control determines whether the IA32_PAT MSR is loaded on VM entry.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 260

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs 
IA32_VMX_ENTRY_CTLS and IA32_VMX_TRUE_ENTRY_CTLS (see Appendix A.5) to determine how it should set 
the reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 
26.2.1.3).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 0–8 and 12. 
The VMX capability MSR IA32_VMX_ENTRY_CTLS always reports that these bits must be 1. Logical processors 
that support the 0-settings of any of these bits will support the VMX capability MSR 
IA32_VMX_TRUE_ENTRY_CTLS MSR, and software should consult this MSR to discover support for the 0-settings 
of these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

...

24.9.1 Basic VM-Exit Information
The following VM-exit information fields provide basic information about a VM exit:
• Exit reason (32 bits). This field encodes the reason for the VM exit and has the structure given in Table 24-

14.

— Bits 15:0 provide basic information about the cause of the VM exit (if bit 31 is clear) or of the VM-entry 
failure (if bit 31 is set). Appendix C enumerates the basic exit reasons.

— Bit 28 is set only by an SMM VM exit (see Section 34.15.2) that took priority over an MTF VM exit (see 
Section 25.5.2) that would have occurred had the SMM VM exit not occurred. See Section 34.15.2.3.

15 Load IA32_EFER This control determines whether the IA32_EFER MSR is loaded on VM entry.

16 Load 
IA32_BNDCFGS

This control determines whether the IA32_BNDCFGS MSR is loaded on VM entry.

17 Conceal VM entries 
from Intel PT

If this control is 1, Intel Processor Trace does not produce a paging information packet (PIP) on 
a VM entry (see Chapter 36).

NOTES:
1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting of the “unrestricted guest” VM-

execution control. If it is read as 1, every VM exit stores the value of IA32_EFER.LMA into the “IA-32e mode guest” VM-entry control 
(see Section 27.2).

Table 24-12    Definitions of VM-Entry Controls (Contd.)
Bit Position(s) Name Description

Table 24-14    Format of Exit Reason

Bit Position(s) Contents

15:0 Basic exit reason

26:16 Reserved (cleared to 0)

27 A VM exit saves this bit as 1 to indicate that the VM exit was incident to enclave mode.

28 Pending MTF VM exit

29 VM exit from VMX root operation

30 Reserved (cleared to 0)

31 VM-entry failure (0 = true VM exit; 1 = VM-entry failure)
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— Bit 29 is set if and only if the processor was in VMX root operation at the time the VM exit occurred. This 
can happen only for SMM VM exits. See Section 34.15.2.

— Because some VM-entry failures load processor state from the host-state area (see Section 26.7), 
software must be able to distinguish such cases from true VM exits. Bit 31 is used for that purpose.

• Exit qualification (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field 
contains additional information about the cause of VM exits due to the following: debug exceptions; page-
fault exceptions; start-up IPIs (SIPIs); task switches; INVEPT; INVLPG;INVVPID; LGDT; LIDT; LLDT; LTR; 
SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON; control-register 
accesses; MOV DR; I/O instructions; and MWAIT. The format of the field depends on the cause of the VM exit. 
See Section 27.2.1 for details.

• Guest-linear address (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field is 
used in the following cases:

— VM exits due to attempts to execute LMSW with a memory operand.

— VM exits due to attempts to execute INS or OUTS.

— VM exits due to system-management interrupts (SMIs) that arrive immediately after retirement of I/O 
instructions.

— Certain VM exits due to EPT violations
See Section 27.2.1 and Section 34.15.2.3 for details of when and how this field is used.

• Guest-physical address (64 bits). This field is used VM exits due to EPT violations and EPT misconfigura-
tions. See Section 27.2.1 for details of when and how this field is used.

...

22. Updates to Chapter 25, Volume 3C
Change bars show changes to Chapter 22 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

25.1.3 Instructions That Cause VM Exits Conditionally
Certain instructions cause VM exits in VMX non-root operation depending on the setting of the VM-execution 
controls. The following instructions can cause “fault-like” VM exits based on the conditions described:1

• CLTS. The CLTS instruction causes a VM exit if the bits in position 3 (corresponding to CR0.TS) are set in both 
the CR0 guest/host mask and the CR0 read shadow.

• ENCLS. The ENCLS instruction causes a VM exit if the “enable ENCLS exiting” VM-execution control is 1 and 
one of the following is true:

— The value of EAX is less than 63 and the corresponding bit in the ENCLS-exiting bitmap is 1 (see Section 
24.6.16).

— The value of EAX is greater than or equal to 63 and bit 63 in the ENCLS-exiting bitmap is 1.
• HLT. The HLT instruction causes a VM exit if the “HLT exiting” VM-execution control is 1.

1. Many of the items in this section refer to secondary processor-based VM-execution controls. If bit 31 of the primary processor-
based VM-execution controls is 0, VMX non-root operation functions as if these controls were all 0. See Section 24.6.2.
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• IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD. The behavior of each of these 
instructions is determined by the settings of the “unconditional I/O exiting” and “use I/O bitmaps” 
VM-execution controls:

— If both controls are 0, the instruction executes normally.

— If the “unconditional I/O exiting” VM-execution control is 1 and the “use I/O bitmaps” VM-execution 
control is 0, the instruction causes a VM exit.

— If the “use I/O bitmaps” VM-execution control is 1, the instruction causes a VM exit if it attempts to access 
an I/O port corresponding to a bit set to 1 in the appropriate I/O bitmap (see Section 24.6.4). If an I/O 
operation “wraps around” the 16-bit I/O-port space (accesses ports FFFFH and 0000H), the I/O instruction 
causes a VM exit (the “unconditional I/O exiting” VM-execution control is ignored if the “use I/O bitmaps” 
VM-execution control is 1).

See Section 25.1.1 for information regarding the priority of VM exits relative to faults that may be caused by 
the INS and OUTS instructions.

• INVLPG. The INVLPG instruction causes a VM exit if the “INVLPG exiting” VM-execution control is 1.
• INVPCID. The INVPCID instruction causes a VM exit if the “INVLPG exiting” and “enable INVPCID” 

VM-execution controls are both 1.
• LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR. These instructions cause VM exits if the “descriptor-

table exiting” VM-execution control is 1.
• LMSW. In general, the LMSW instruction causes a VM exit if it would write, for any bit set in the low 4 bits of 

the CR0 guest/host mask, a value different than the corresponding bit in the CR0 read shadow. LMSW never 
clears bit 0 of CR0 (CR0.PE); thus, LMSW causes a VM exit if either of the following are true:

— The bits in position 0 (corresponding to CR0.PE) are set in both the CR0 guest/mask and the source 
operand, and the bit in position 0 is clear in the CR0 read shadow.

— For any bit position in the range 3:1, the bit in that position is set in the CR0 guest/mask and the values 
of the corresponding bits in the source operand and the CR0 read shadow differ.

• MONITOR. The MONITOR instruction causes a VM exit if the “MONITOR exiting” VM-execution control is 1.
• MOV from CR3. The MOV from CR3 instruction causes a VM exit if the “CR3-store exiting” VM-execution 

control is 1. The first processors to support the virtual-machine extensions supported only the 1-setting of this 
control.

• MOV from CR8. The MOV from CR8 instruction causes a VM exit if the “CR8-store exiting” VM-execution 
control is 1.

• MOV to CR0. The MOV to CR0 instruction causes a VM exit unless the value of its source operand matches, 
for the position of each bit set in the CR0 guest/host mask, the corresponding bit in the CR0 read shadow. (If 
every bit is clear in the CR0 guest/host mask, MOV to CR0 cannot cause a VM exit.)

• MOV to CR3. The MOV to CR3 instruction causes a VM exit unless the “CR3-load exiting” VM-execution 
control is 0 or the value of its source operand is equal to one of the CR3-target values specified in the VMCS. 
If the CR3-target count in n, only the first n CR3-target values are considered; if the CR3-target count is 0, 
MOV to CR3 always causes a VM exit.
The first processors to support the virtual-machine extensions supported only the 1-setting of the “CR3-load
exiting” VM-execution control. These processors always consult the CR3-target controls to determine
whether an execution of MOV to CR3 causes a VM exit.

• MOV to CR4. The MOV to CR4 instruction causes a VM exit unless the value of its source operand matches, 
for the position of each bit set in the CR4 guest/host mask, the corresponding bit in the CR4 read shadow.

• MOV to CR8. The MOV to CR8 instruction causes a VM exit if the “CR8-load exiting” VM-execution control is 1.
• MOV DR. The MOV DR instruction causes a VM exit if the “MOV-DR exiting” VM-execution control is 1. Such 

VM exits represent an exception to the principles identified in Section 25.1.1 in that they take priority over the 
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following: general-protection exceptions based on privilege level; and invalid-opcode exceptions that occur 
because CR4.DE=1 and the instruction specified access to DR4 or DR5.

• MWAIT. The MWAIT instruction causes a VM exit if the “MWAIT exiting” VM-execution control is 1. If this 
control is 0, the behavior of the MWAIT instruction may be modified (see Section 25.3).

• PAUSE. The behavior of each of this instruction depends on CPL and the settings of the “PAUSE exiting” and 
“PAUSE-loop exiting” VM-execution controls:

— CPL = 0.

• If the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls are both 0, the PAUSE 
instruction executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction causes a VM exit (the “PAUSE-
loop exiting” VM-execution control is ignored if CPL = 0 and the “PAUSE exiting” VM-execution control 
is 1).

• If the “PAUSE exiting” VM-execution control is 0 and the “PAUSE-loop exiting” VM-execution control is 
1, the following treatment applies.

The processor determines the amount of time between this execution of PAUSE and the previous 
execution of PAUSE at CPL 0. If this amount of time exceeds the value of the VM-execution control field 
PLE_Gap, the processor considers this execution to be the first execution of PAUSE in a loop. (It also 
does so for the first execution of PAUSE at CPL 0 after VM entry.)

Otherwise, the processor determines the amount of time since the most recent execution of PAUSE 
that was considered to be the first in a loop. If this amount of time exceeds the value of the VM-
execution control field PLE_Window, a VM exit occurs.

For purposes of these computations, time is measured based on a counter that runs at the same rate 
as the timestamp counter (TSC).

— CPL > 0.

• If the “PAUSE exiting” VM-execution control is 0, the PAUSE instruction executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction causes a VM exit.

The “PAUSE-loop exiting” VM-execution control is ignored if CPL > 0.
• RDMSR. The RDMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the ranges 00000000H – 00001FFFH and C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in read bitmap for low MSRs is 1, 
where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in read bitmap for high MSRs is 1, 
where n is the value of ECX & 00001FFFH.

See Section 24.6.9 for details regarding how these bitmaps are identified.
• RDPMC. The RDPMC instruction causes a VM exit if the “RDPMC exiting” VM-execution control is 1.
• RDRAND. The RDRAND instruction causes a VM exit if the “RDRAND exiting” VM-execution control is 1.
• RDSEED. The RDSEED instruction causes a VM exit if the “RDSEED exiting” VM-execution control is 1.
• RDTSC. The RDTSC instruction causes a VM exit if the “RDTSC exiting” VM-execution control is 1.
• RDTSCP. The RDTSCP instruction causes a VM exit if the “RDTSC exiting” and “enable RDTSCP” VM-execution 

controls are both 1.
• RSM. The RSM instruction causes a VM exit if executed in system-management mode (SMM).1

• VMREAD. The VMREAD instruction causes a VM exit if any of the following are true:
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— The “VMCS shadowing” VM-execution control is 0.

— Bits 63:15 (bits 31:15 outside 64-bit mode) of the register source operand are not all 0.

— Bit n in VMREAD bitmap is 1, where n is the value of bits 14:0 of the register source operand. See Section 
24.6.15 for details regarding how the VMREAD bitmap is identified.

If the VMREAD instruction does not cause a VM exit, it reads from the VMCS referenced by the VMCS link
pointer. See Chapter 30, “VMREAD—Read Field from Virtual-Machine Control Structure” for details of the
operation of the VMREAD instruction.

• VMWRITE. The VMWRITE instruction causes a VM exit if any of the following are true:

— The “VMCS shadowing” VM-execution control is 0.

— Bits 63:15 (bits 31:15 outside 64-bit mode) of the register source operand are not all 0.

— Bit n in VMWRITE bitmap is 1, where n is the value of bits 14:0 of the register source operand. See Section 
24.6.15 for details regarding how the VMWRITE bitmap is identified.

If the VMWRITE instruction does not cause a VM exit, it writes to the VMCS referenced by the VMCS link
pointer. See Chapter 30, “VMWRITE—Write Field to Virtual-Machine Control Structure” for details of the
operation of the VMWRITE instruction.

• WBINVD. The WBINVD instruction causes a VM exit if the “WBINVD exiting” VM-execution control is 1.
• WRMSR. The WRMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the ranges 00000000H – 00001FFFH and C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in write bitmap for low MSRs is 1, 
where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in write bitmap for high MSRs is 1, 
where n is the value of ECX & 00001FFFH.

See Section 24.6.9 for details regarding how these bitmaps are identified.
• XRSTORS. The XRSTORS instruction causes a VM exit if the “enable XSAVES/XRSTORS” VM-execution 

control is 1and any bit is set in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, 
and the XSS-exiting bitmap (see Section 24.6.19).

• XSAVES. The XSAVES instruction causes a VM exit if the “enable XSAVES/XRSTORS” VM-execution control is 
1and any bit is set in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the 
XSS-exiting bitmap (see Section 24.6.19).

...

25.3 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT OPERATION
The behavior of some instructions is changed in VMX non-root operation. Some of these changes are determined 
by the settings of certain VM-execution control fields. The following items detail such changes:1

• CLTS. Behavior of the CLTS instruction is determined by the bits in position 3 (corresponding to CR0.TS) in 
the CR0 guest/host mask and the CR0 read shadow:

1. Execution of the RSM instruction outside SMM causes an invalid-opcode exception regardless of whether the processor is in VMX 
operation. It also does so in VMX root operation in SMM; see Section 34.15.3.

1. Some of the items in this section refer to secondary processor-based VM-execution controls. If bit 31 of the primary processor-
based VM-execution controls is 0, VMX non-root operation functions as if these controls were all 0. See Section 24.6.2.
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— If bit 3 in the CR0 guest/host mask is 0, CLTS clears CR0.TS normally (the value of bit 3 in the CR0 read 
shadow is irrelevant in this case), unless CR0.TS is fixed to 1 in VMX operation (see Section 23.8), in which 
case CLTS causes a general-protection exception.

— If bit 3 in the CR0 guest/host mask is 1 and bit 3 in the CR0 read shadow is 0, CLTS completes but does 
not change the contents of CR0.TS.

— If the bits in position 3 in the CR0 guest/host mask and the CR0 read shadow are both 1, CLTS causes a 
VM exit.

• INVPCID. Behavior of the INVPCID instruction is determined first by the setting of the “enable INVPCID” 
VM-execution control:

— If the “enable INVPCID” VM-execution control is 0, INVPCID causes an invalid-opcode exception (#UD). 
This exception takes priority over any other exception the instruction may incur.

— If the “enable INVPCID” VM-execution control is 1, treatment is based on the setting of the “INVLPG 
exiting” VM-execution control:

• If the “INVLPG exiting” VM-execution control is 0, INVPCID operates normally.

• If the “INVLPG exiting” VM-execution control is 1, INVPCID causes a VM exit.
• IRET. Behavior of IRET with regard to NMI blocking (see Table 24-3) is determined by the settings of the “NMI 

exiting” and “virtual NMIs” VM-execution controls:

— If the “NMI exiting” VM-execution control is 0, IRET operates normally and unblocks NMIs. (If the “NMI 
exiting” VM-execution control is 0, the “virtual NMIs” control must be 0; see Section 26.2.1.1.)

— If the “NMI exiting” VM-execution control is 1, IRET does not affect blocking of NMIs. If, in addition, the 
“virtual NMIs” VM-execution control is 1, the logical processor tracks virtual-NMI blocking. In this case, 
IRET removes any virtual-NMI blocking.

The unblocking of NMIs or virtual NMIs specified above occurs even if IRET causes a fault.
• LMSW. Outside of VMX non-root operation, LMSW loads its source operand into CR0[3:0], but it does not 

clear CR0.PE if that bit is set. In VMX non-root operation, an execution of LMSW that does not cause a VM exit 
(see Section 25.1.3) leaves unmodified any bit in CR0[3:0] corresponding to a bit set in the CR0 guest/host 
mask. An attempt to set any other bit in CR0[3:0] to a value not supported in VMX operation (see Section 
23.8) causes a general-protection exception. Attempts to clear CR0.PE are ignored without fault.

• MOV from CR0. The behavior of MOV from CR0 is determined by the CR0 guest/host mask and the CR0 read 
shadow. For each position corresponding to a bit clear in the CR0 guest/host mask, the destination operand is 
loaded with the value of the corresponding bit in CR0. For each position corresponding to a bit set in the CR0 
guest/host mask, the destination operand is loaded with the value of the corresponding bit in the CR0 read 
shadow. Thus, if every bit is cleared in the CR0 guest/host mask, MOV from CR0 reads normally from CR0; if 
every bit is set in the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read shadow.
Depending on the contents of the CR0 guest/host mask and the CR0 read shadow, bits may be set in the 
destination that would never be set when reading directly from CR0.

• MOV from CR3. If the “enable EPT” VM-execution control is 1 and an execution of MOV from CR3 does not 
cause a VM exit (see Section 25.1.3), the value loaded from CR3 is a guest-physical address; see Section 
28.2.1.

• MOV from CR4. The behavior of MOV from CR4 is determined by the CR4 guest/host mask and the CR4 read 
shadow. For each position corresponding to a bit clear in the CR4 guest/host mask, the destination operand is 
loaded with the value of the corresponding bit in CR4. For each position corresponding to a bit set in the CR4 
guest/host mask, the destination operand is loaded with the value of the corresponding bit in the CR4 read 
shadow. Thus, if every bit is cleared in the CR4 guest/host mask, MOV from CR4 reads normally from CR4; if 
every bit is set in the CR4 guest/host mask, MOV from CR4 returns the value of the CR4 read shadow.
Depending on the contents of the CR4 guest/host mask and the CR4 read shadow, bits may be set in the 
destination that would never be set when reading directly from CR4.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 266

• MOV from CR8. If the MOV from CR8 instruction does not cause a VM exit (see Section 25.1.3), its behavior 
is modified if the “use TPR shadow” VM-execution control is 1; see Section 29.3.

• MOV to CR0. An execution of MOV to CR0 that does not cause a VM exit (see Section 25.1.3) leaves 
unmodified any bit in CR0 corresponding to a bit set in the CR0 guest/host mask. Treatment of attempts to 
modify other bits in CR0 depends on the setting of the “unrestricted guest” VM-execution control:

— If the control is 0, MOV to CR0 causes a general-protection exception if it attempts to set any bit in CR0 to 
a value not supported in VMX operation (see Section 23.8).

— If the control is 1, MOV to CR0 causes a general-protection exception if it attempts to set any bit in CR0 
other than bit 0 (PE) or bit 31 (PG) to a value not supported in VMX operation. It remains the case, 
however, that MOV to CR0 causes a general-protection exception if it would result in CR0.PE = 0 and 
CR0.PG = 1 or if it would result in CR0.PG = 1, CR4.PAE = 0, and IA32_EFER.LME = 1.

• MOV to CR3. If the “enable EPT” VM-execution control is 1 and an execution of MOV to CR3 does not cause a 
VM exit (see Section 25.1.3), the value loaded into CR3 is treated as a guest-physical address; see Section 
28.2.1.

— If PAE paging is not being used, the instruction does not use the guest-physical address to access memory 
and it does not cause it to be translated through EPT.1

— If PAE paging is being used, the instruction translates the guest-physical address through EPT and uses 
the result to load the four (4) page-directory-pointer-table entries (PDPTEs). The instruction does not use 
the guest-physical addresses the PDPTEs to access memory and it does not cause them to be translated 
through EPT.

• MOV to CR4. An execution of MOV to CR4 that does not cause a VM exit (see Section 25.1.3) leaves 
unmodified any bit in CR4 corresponding to a bit set in the CR4 guest/host mask. Such an execution causes a 
general-protection exception if it attempts to set any bit in CR4 (not corresponding to a bit set in the CR4 
guest/host mask) to a value not supported in VMX operation (see Section 23.8).

• MOV to CR8. If the MOV to CR8 instruction does not cause a VM exit (see Section 25.1.3), its behavior is 
modified if the “use TPR shadow” VM-execution control is 1; see Section 29.3.

• MWAIT.  Behavior of the MWAIT instruction (which always causes an invalid-opcode exception—#UD—if 
CPL > 0) is determined by the setting of the “MWAIT exiting” VM-execution control:

— If the “MWAIT exiting” VM-execution control is 1, MWAIT causes a VM exit.

— If the “MWAIT exiting” VM-execution control is 0, MWAIT operates normally if one of the following are 
true: (1) ECX[0] is 0; (2) RFLAGS.IF = 1; or both of the following are true: (a) the “interrupt-window 
exiting” VM-execution control is 0; and (b) the logical processor has not recognized a pending virtual 
interrupt (see Section 29.2.1).

— If the “MWAIT exiting” VM-execution control is 0, ECX[0] = 1, and RFLAGS.IF = 0, MWAIT does not cause 
the processor to enter an implementation-dependent optimized state if either the “interrupt-window 
exiting” VM-execution control is 1 or the logical processor has recognized a pending virtual interrupt; 
instead, control passes to the instruction following the MWAIT instruction.

• RDMSR. Section 25.1.3 identifies when executions of the RDMSR instruction cause VM exits. If such an 
execution causes neither a fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified for 
certain values of ECX:

— If ECX contains 10H (indicating the IA32_TIME_STAMP_COUNTER MSR), the value returned by the 
instruction is determined by the setting of the “use TSC offsetting” VM-execution control:

• If the control is 0, RDMSR operates normally, loading EAX:EDX with the value of the 
IA32_TIME_STAMP_COUNTER MSR.

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.
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• If the control is 1, the value returned is determined by the setting of the “use TSC scaling” 
VM-execution control:

— If the control is 0, RDMSR loads EAX:EDX with the sum of the value of the 
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset.

— If the control is 1, RDMSR first computes the product of the value of the 
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC multiplier. It then shifts the value of 
the product right 48 bits and loads EAX:EDX with the sum of that shifted value and the value of 
the TSC offset.

The 1-setting of the “use TSC-offsetting” VM-execution control does not affect executions of RDMSR if ECX 
contains 6E0H (indicating the IA32_TSC_DEADLINE MSR). Such executions return the APIC-timer 
deadline relative to the actual timestamp counter without regard to the TSC offset.

— If ECX is in the range 800H–8FFH (indicating an APIC MSR), instruction behavior may be modified if the 
“virtualize x2APIC mode” VM-execution control is 1; see Section 29.5.

• RDPID. Behavior of the RDPID instruction is determined first by the setting of the “enable RDTSCP” 
VM-execution control:

— If the “enable RDTSCP” VM-execution control is 0, RDPID causes an invalid-opcode exception (#UD). 

— If the “enable RDTSCP” VM-execution control is 1, RDPID operates normally.
• RDTSC. Behavior of the RDTSC instruction is determined by the settings of the “RDTSC exiting” and “use TSC 

offsetting” VM-execution controls:

— If both controls are 0, RDTSC operates normally.

— If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting” VM-execution control is 1, 
the value returned is determined by the setting of the “use TSC scaling” VM-execution control:

• If the control is 0, RDTSC loads EAX:EDX with the sum of the value of the 
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset.

• If the control is 1, RDTSC first computes the product of the value of the IA32_TIME_STAMP_COUNTER 
MSR and the value of the TSC multiplier. It then shifts the value of the product right 48 bits and loads 
EAX:EDX with the sum of that shifted value and the value of the TSC offset.

— If the “RDTSC exiting” VM-execution control is 1, RDTSC causes a VM exit.
• RDTSCP. Behavior of the RDTSCP instruction is determined first by the setting of the “enable RDTSCP” 

VM-execution control:

— If the “enable RDTSCP” VM-execution control is 0, RDTSCP causes an invalid-opcode exception (#UD). 
This exception takes priority over any other exception the instruction may incur.

— If the “enable RDTSCP” VM-execution control is 1, treatment is based on the settings of the “RDTSC 
exiting” and “use TSC offsetting” VM-execution controls:

• If both controls are 0, RDTSCP operates normally.

• If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting” VM-execution control is 
1, the value returned is determined by the setting of the “use TSC scaling” VM-execution control:

— If the control is 0, RDTSCP loads EAX:EDX with the sum of the value of the 
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset.

— If the control is 1, RDTSCP first computes the product of the value of the 
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC multiplier. It then shifts the value of 
the product right 48 bits and loads EAX:EDX with the sum of that shifted value and the value of 
the TSC offset.

In either case, RDTSCP also loads ECX with the value of bits 31:0 of the IA32_TSC_AUX MSR.

• If the “RDTSC exiting” VM-execution control is 1, RDTSCP causes a VM exit.
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• SMSW. The behavior of SMSW is determined by the CR0 guest/host mask and the CR0 read shadow. For each 
position corresponding to a bit clear in the CR0 guest/host mask, the destination operand is loaded with the 
value of the corresponding bit in CR0. For each position corresponding to a bit set in the CR0 guest/host mask, 
the destination operand is loaded with the value of the corresponding bit in the CR0 read shadow. Thus, if 
every bit is cleared in the CR0 guest/host mask, MOV from CR0 reads normally from CR0; if every bit is set in 
the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read shadow.
Note the following: (1) for any memory destination or for a 16-bit register destination, only the low 16 bits of 
the CR0 guest/host mask and the CR0 read shadow are used (bits 63:16 of a register destination are left 
unchanged); (2) for a 32-bit register destination, only the low 32 bits of the CR0 guest/host mask and the 
CR0 read shadow are used (bits 63:32 of the destination are cleared); and (3) depending on the contents of 
the CR0 guest/host mask and the CR0 read shadow, bits may be set in the destination that would never be set 
when reading directly from CR0.

• WRMSR. Section 25.1.3 identifies when executions of the WRMSR instruction cause VM exits. If such an 
execution neither a fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified for certain 
values of ECX:

— If ECX contains 79H (indicating IA32_BIOS_UPDT_TRIG MSR), no microcode update is loaded, and control 
passes to the next instruction. This implies that microcode updates cannot be loaded in VMX non-root 
operation.

— On processors that support Intel PT but which do not allow it to be used in VMX operation, if ECX contains 
570H (indicating the IA32_RTIT_CTL MSR), the instruction causes a general-protection exception if it 
attempts IA32_RTIT_CTL.TraceEn.1

— If ECX contains 808H (indicating the TPR MSR), 80BH (the EOI MSR), or 83FH (self-IPI MSR), instruction 
behavior may modified if the “virtualize x2APIC mode” VM-execution control is 1; see Section 29.5.

• XRSTORS. Behavior of the XRSTORS instruction is determined first by the setting of the “enable XSAVES/
XRSTORS” VM-execution control:

— If the “enable XSAVES/XRSTORS” VM-execution control is 0, XRSTORS causes an invalid-opcode 
exception (#UD).

— If the “enable XSAVES/XRSTORS” VM-execution control is 1, treatment is based on the value of the XSS-
exiting bitmap (see Section 24.6.19):

• XRSTORS causes a VM exit if any bit is set in the logical-AND of the following three values: EDX:EAX, 
the IA32_XSS MSR, and the XSS-exiting bitmap.

• Otherwise, XRSTORS operates normally.
• XSAVES. Behavior of the XSAVES instruction is determined first by the setting of the “enable XSAVES/

XRSTORS” VM-execution control:

— If the “enable XSAVES/XRSTORS” VM-execution control is 0, XSAVES causes an invalid-opcode exception 
(#UD).

— If the “enable XSAVES/XRSTORS” VM-execution control is 1, treatment is based on the value of the XSS-
exiting bitmap (see Section 24.6.19):

• XSAVES causes a VM exit if any bit is set in the logical-AND of the following three values: EDX:EAX, 
the IA32_XSS MSR, and the XSS-exiting bitmap.

• Otherwise, XSAVES operates normally.

...

1. Software should read the VMX capability MSR IA32_VMX_MISC to determine whether the processor allows Intel PT to be used in 
VMX operation (see Appendix A.6).
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25.5.2 Monitor Trap Flag
The monitor trap flag is a debugging feature that causes VM exits to occur on certain instruction boundaries in 
VMX non-root operation. Such VM exits are called MTF VM exits. An MTF VM exit may occur on an instruction 
boundary in VMX non-root operation as follows:
• If the “monitor trap flag” VM-execution control is 1 and VM entry is injecting a vectored event (see Section 

26.5.1), an MTF VM exit is pending on the instruction boundary before the first instruction following the 
VM entry.

• If VM entry is injecting a pending MTF VM exit (see Section 26.5.2), an MTF VM exit is pending on the 
instruction boundary before the first instruction following the VM entry. This is the case even if the “monitor 
trap flag” VM-execution control is 0.

• If the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and a pending event 
(e.g., debug exception or interrupt) is delivered before an instruction can execute, an MTF VM exit is pending 
on the instruction boundary following delivery of the event (or any nested exception).

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and the 
first instruction following VM entry is a REP-prefixed string instruction:

— If the first iteration of the instruction causes a fault, an MTF VM exit is pending on the instruction boundary 
following delivery of the fault (or any nested exception).

— If the first iteration of the instruction does not cause a fault, an MTF VM exit is pending on the instruction 
boundary after that iteration.

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and the 
first instruction following VM entry is the XBEGIN instruction. In this case, an MTF VM exit is pending at the 
fallback instruction address of the XBEGIN instruction. This behavior applies regardless of whether advanced 
debugging of RTM transactional regions has been enabled (see Section 15.3.7, “RTM-Enabled Debugger 
Support,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and the 
first instruction following VM entry is neither a REP-prefixed string instruction or the XBEGIN instruction:

— If the instruction causes a fault, an MTF VM exit is pending on the instruction boundary following delivery 
of the fault (or any nested exception).1

— If the instruction does not cause a fault, an MTF VM exit is pending on the instruction boundary following 
execution of that instruction. If the instruction is INT3 or INTO, this boundary follows delivery of any 
software exception. If the instruction is INT n, this boundary follows delivery of a software interrupt. If the 
instruction is HLT, the MTF VM exit will be from the HLT activity state.

No MTF VM exit occurs if another VM exit occurs before reaching the instruction boundary on which an MTF 
VM exit would be pending (e.g., due to an exception or triple fault).

An MTF VM exit occurs on the instruction boundary on which it is pending unless a higher priority event takes 
precedence or the MTF VM exit is blocked due to the activity state:
• System-management interrupts (SMIs), INIT signals, and higher priority events take priority over MTF 

VM exits. MTF VM exits take priority over debug-trap exceptions and lower priority events.
• No MTF VM exit occurs if the processor is in either the shutdown activity state or wait-for-SIPI activity state. 

If a non-maskable interrupt subsequently takes the logical processor out of the shutdown activity state 
without causing a VM exit, an MTF VM exit is pending after delivery of that interrupt.

Special treatment may apply to Intel SGX instructions or if the logical processor is in enclave mode. See Section 
43.2 for details.

...

1. This item includes the cases of an invalid opcode exception—#UD— generated by the UD2 instruction and a BOUND-range 
exceeded exception—#BR—generated by the BOUND instruction.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 270

23. Updates to Chapter 26, Volume 3C
Change bars show changes to Chapter 26 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C: System Programming Guide, Part 3.

------------------------------------------------------------------------------------------

...

26.2.1.3  VM-Entry Control Fields
VM entries perform the following checks on the VM-entry control fields.
• Reserved bits in the VM-entry controls must be set properly. Software may consult the VMX capability MSRs 

to determine the proper settings (see Appendix A.5).
• Fields relevant to VM-entry event injection must be set properly. These fields are the VM-entry interruption-

information field (see Table 24-13 in Section 24.8.3), the VM-entry exception error code, and the VM-entry 
instruction length. If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the following 
must hold:

— The field’s interruption type (bits 10:8) is not set to a reserved value. Value 1 is reserved on all logical 
processors; value 7 (other event) is reserved on logical processors that do not support the 1-setting of the 
“monitor trap flag” VM-execution control.

— The field’s vector (bits 7:0) is consistent with the interruption type:

• If the interruption type is non-maskable interrupt (NMI), the vector is 2.

• If the interruption type is hardware exception, the vector is at most 31.

• If the interruption type is other event, the vector is 0 (pending MTF VM exit).

— The field's deliver-error-code bit (bit 11) is 1 if and only if (1) either (a) the "unrestricted guest" VM-
execution control is 0; or (b) bit 0 (corresponding to CR0.PE) is set in the CR0 field in the guest-state area; 
(2) the interruption type is hardware exception; and (3) the vector indicates an exception that would 
normally deliver an error code (8 = #DF; 10 = TS; 11 = #NP; 12 = #SS; 13 = #GP; 14 = #PF; or 17 = 
#AC).

— Reserved bits in the field (30:12) are 0.

— If the deliver-error-code bit (bit 11) is 1, bits 31:15 of the VM-entry exception error-code field are 0.

— If the interruption type is software interrupt, software exception, or privileged software exception, the 
VM-entry instruction-length field is in the range 0–15. A VM-entry instruction length of 0 is allowed only if 
IA32_VMX_MISC[30] is read as 1; see Appendix A.6.

• The following checks are performed for the VM-entry MSR-load address if the VM-entry MSR-load count field 
is non-zero:

— The lower 4 bits of the VM-entry MSR-load address must be 0. The address should not set any bits beyond 
the processor’s physical-address width.1

— The address of the last byte in the VM-entry MSR-load area should not set any bits beyond the processor’s 
physical-address width. The address of this last byte is VM-entry MSR-load address + (MSR count * 16) – 
1. (The arithmetic used for the computation uses more bits than the processor’s physical-address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the range 63:32; see Appendix
A.1.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.
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• If the processor is not in SMM, the “entry to SMM” and “deactivate dual-monitor treatment” VM-entry controls 
must be 0.

• The “entry to SMM” and “deactivate dual-monitor treatment” VM-entry controls cannot both be 1.

...

26.3.1.1  Checks on Guest Control Registers, Debug Registers, and MSRs
The following checks are performed on fields in the guest-state area corresponding to control registers, debug 
registers, and MSRs:
• The CR0 field must not set any bit to a value not supported in VMX operation (see Section 23.8). The 

following are exceptions:

— Bit 0 (corresponding to CR0.PE) and bit 31 (PG) are not checked if the “unrestricted guest” VM-execution 
control is 1.1

— Bit 29 (corresponding to CR0.NW) and bit 30 (CD) are never checked because the values of these bits are 
not changed by VM entry; see Section 26.3.2.1.

• If bit 31 in the CR0 field (corresponding to PG) is 1, bit 0 in that field (PE) must also be 1.2

• The CR4 field must not set any bit to a value not supported in VMX operation (see Section 23.8).
• If the “load debug controls” VM-entry control is 1, bits reserved in the IA32_DEBUGCTL MSR must be 0 in the 

field for that register. The first processors to support the virtual-machine extensions supported only the 1-
setting of this control and thus performed this check unconditionally.

• The following checks are performed on processors that support Intel 64 architecture:

— If the “IA-32e mode guest” VM-entry control is 1, bit 31 in the CR0 field (corresponding to CR0.PG) and 
bit 5 in the CR4 field (corresponding to CR4.PAE) must each be 1.3

— If the “IA-32e mode guest” VM-entry control is 0, bit 17 in the CR4 field (corresponding to CR4.PCIDE) 
must be 0.

— The CR3 field must be such that bits 63:52 and bits in the range 51:32 beyond the processor’s physical-
address width are 0.4,5

— If the “load debug controls” VM-entry control is 1, bits 63:32 in the DR7 field must be 0. The first 
processors to support the virtual-machine extensions supported only the 1-setting of this control and thus 
performed this check unconditionally (if they supported Intel 64 architecture).

— The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field must each contain a canonical address.
• If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, bits reserved in the IA32_PERF_GLOBAL_CTRL 

MSR must be 0 in the field for that register (see Figure 18-3).

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, bit 0 in the CR0 field must be 1 
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

3. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, bit 31 in the CR0 field must be 1 
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

4. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

5. Bit 63 of the CR3 field in the guest-state area must be 0. This is true even though, If CR4.PCIDE = 1, bit 63 of the source operand 
to MOV to CR3 is used to determine whether cached translation information is invalidated.
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• If the “load IA32_PAT” VM-entry control is 1, the value of the field for the IA32_PAT MSR must be one that 
could be written by WRMSR without fault at CPL 0. Specifically, each of the 8 bytes in the field must have one 
of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

• If the “load IA32_EFER” VM-entry control is 1, the following checks are performed on the field for the 
IA32_EFER MSR :

— Bits reserved in the IA32_EFER MSR must be 0.

— Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of the “IA-32e mode guest” VM-entry 
control. It must also be identical to bit 8 (LME) if bit 31 in the CR0 field (corresponding to CR0.PG) is 1.1

• If the “load IA32_BNDCFGS” VM-entry control is 1, the following checks are performed on the field for the 
IA32_BNDCFGS MSR :

— Bits reserved in the IA32_BNDCFGS MSR must be 0.

— The linear address in bits 63:12 must be canonical. 

...

26.3.1.5  Checks on Guest Non-Register State
The following checks are performed on fields in the guest-state area corresponding to non-register state:
• Activity state.

— The activity-state field must contain a value in the range 0 – 3, indicating an activity state supported by 
the implementation (see Section 24.4.2). Future processors may include support for other activity states. 
Software should read the VMX capability MSR IA32_VMX_MISC (see Appendix A.6) to determine what 
activity states are supported.

— The activity-state field must not indicate the HLT state if the DPL (bits 6:5) in the access-rights field for SS 
is not 0.2

— The activity-state field must indicate the active state if the interruptibility-state field indicates blocking by 
either MOV-SS or by STI (if either bit 0 or bit 1 in that field is 1).

— If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the interruption to be delivered 
(as defined by interruption type and vector) must not be one that would normally be blocked while a 
logical processor is in the activity state corresponding to the contents of the activity-state field. The 
following items enumerate the interruptions (as specified in the VM-entry interruption-information field) 
whose injection is allowed for the different activity states:

• Active. Any interruption is allowed.

• HLT. The only events allowed are the following:

— Those with interruption type external interrupt or non-maskable interrupt (NMI).

— Those with interruption type hardware exception and vector 1 (debug exception) or vector 18
(machine-check exception).

— Those with interruption type other event and vector 0 (pending MTF VM exit).

See Table 24-13 in Section 24.8.3 for details regarding the format of the VM-entry interruption-
information field.

• Shutdown. Only NMIs and machine-check exceptions are allowed.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, bit 31 in the CR0 field must be 1 
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

2. As noted in Section 24.4.1, SS.DPL corresponds to the logical processor’s current privilege level (CPL).
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• Wait-for-SIPI. No interruptions are allowed.

— The activity-state field must not indicate the wait-for-SIPI state if the “entry to SMM” VM-entry control is 
1.

• Interruptibility state.

— The reserved bits (bits 31:5) must be 0.

— The field cannot indicate blocking by both STI and MOV SS (bits 0 and 1 cannot both be 1).

— Bit 0 (blocking by STI) must be 0 if the IF flag (bit 9) is 0 in the RFLAGS field.

— Bit 0 (blocking by STI) and bit 1 (blocking by MOV-SS) must both be 0 if the valid bit (bit 31) in the 
VM-entry interruption-information field is 1 and the interruption type (bits 10:8) in that field has value 0, 
indicating external interrupt.

— Bit 1 (blocking by MOV-SS) must be 0 if the valid bit (bit 31) in the VM-entry interruption-information field 
is 1 and the interruption type (bits 10:8) in that field has value 2, indicating non-maskable interrupt 
(NMI).

— Bit 2 (blocking by SMI) must be 0 if the processor is not in SMM.

— Bit 2 (blocking by SMI) must be 1 if the “entry to SMM” VM-entry control is 1.

— A processor may require bit 0 (blocking by STI) to be 0 if the valid bit (bit 31) in the VM-entry inter-
ruption-information field is 1 and the interruption type (bits 10:8) in that field has value 2, indicating NMI. 
Other processors may not make this requirement.

— Bit 3 (blocking by NMI) must be 0 if the “virtual NMIs” VM-execution control is 1, the valid bit (bit 31) in 
the VM-entry interruption-information field is 1, and the interruption type (bits 10:8) in that field has 
value 2 (indicating NMI).

— If bit 4 (enclave interruption) is 1, bit 1 (blocking by MOV-SS) must be 0 and the processor must support 
for SGX by enumerating CPUID.(EAX=07H,ECX=0):EBX.SGX[bit 2] as 1.

NOTE
If the “virtual NMIs” VM-execution control is 0, there is no requirement that bit 3 be 0 if the valid 
bit in the VM-entry interruption-information field is 1 and the interruption type in that field has 
value 2.

• Pending debug exceptions.

— Bits 11:4, bit 13, bit 15, and bits 63:17 (bits 31:17 on processors that do not support Intel 64 archi-
tecture) must be 0.

— The following checks are performed if any of the following holds: (1) the interruptibility-state field 
indicates blocking by STI (bit 0 in that field is 1); (2) the interruptibility-state field indicates blocking by 
MOV SS (bit 1 in that field is 1); or (3) the activity-state field indicates HLT:

• Bit 14 (BS) must be 1 if the TF flag (bit 8) in the RFLAGS field is 1 and the BTF flag (bit 1) in the 
IA32_DEBUGCTL field is 0.

• Bit 14 (BS) must be 0 if the TF flag (bit 8) in the RFLAGS field is 0 or the BTF flag (bit 1) in the 
IA32_DEBUGCTL field is 1.

— The following checks are performed if bit 16 (RTM) is 1:

• Bits 11:0, bits 15:13, and bits 63:17 (bits 31:17 on processors that do not support Intel 64 archi-
tecture) must be 0; bit 12 must be 1.

• The processor must support for RTM by enumerating CPUID.(EAX=07H,ECX=0):EBX[bit 11] as 1.

• The interruptibility-state field must not indicate blocking by MOV SS (bit 1 in that field must be 0).
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• VMCS link pointer. The following checks apply if the field contains a value other than FFFFFFFF_FFFFFFFFH:

— Bits 11:0 must be 0.

— Bits beyond the processor’s physical-address width must be 0.1,2

— The 4 bytes located in memory referenced by the value of the field (as a physical address) must satisfy the 
following:

• Bits 30:0 must contain the processor’s VMCS revision identifier (see Section 24.2).3

• Bit 31 must contain the setting of the “VMCS shadowing” VM-execution control.4 This implies that the 
referenced VMCS is a shadow VMCS (see Section 24.10) if and only if the “VMCS shadowing” VM-
execution control is 1.

— If the processor is not in SMM or the “entry to SMM” VM-entry control is 1, the field must not contain the 
current VMCS pointer.

— If the processor is in SMM and the “entry to SMM” VM-entry control is 0, the field must differ from the 
executive-VMCS pointer.

26.3.1.6 Checks on Guest Page-Directory-Pointer-Table Entries
If CR0.PG =1, CR4.PAE = 1, and IA32_EFER.LME = 0, the logical processor uses PAE paging (see Section 4.4 in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).5 When PAE paging is in use, the 
physical address in CR3 references a table of page-directory-pointer-table entries (PDPTEs). A MOV to CR3 
when PAE paging is in use checks the validity of the PDPTEs.

A VM entry is to a guest that uses PAE paging if (1) bit 31 (corresponding to CR0.PG) is set in the CR0 field in the 
guest-state area; (2) bit 5 (corresponding to CR4.PAE) is set in the CR4 field; and (3) the “IA-32e mode guest” 
VM-entry control is 0. Such a VM entry checks the validity of the PDPTEs:
• If the “enable EPT” VM-execution control is 0, VM entry checks the validity of the PDPTEs referenced by the 

CR3 field in the guest-state area if either (1) PAE paging was not in use before the VM entry; or (2) the value 
of CR3 is changing as a result of the VM entry. VM entry may check their validity even if neither (1) nor (2) 
hold.6

• If the “enable EPT” VM-execution control is 1, VM entry checks the validity of the PDPTE fields in the guest-
state area (see Section 24.4.2).

A VM entry to a guest that does not use PAE paging does not check the validity of any PDPTEs.

A VM entry that checks the validity of the PDPTEs uses the same checks that are used when CR3 is loaded with 
MOV to CR3 when PAE paging is in use.7 If MOV to CR3 would cause a general-protection exception due to the 
PDPTEs that would be loaded (e.g., because a reserved bit is set), the VM entry fails.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, this field must not set any bits in the range 63:32; see Appendix A.1.

3. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field. For all processors produced prior to 
this change, bit 31 of the VMCS revision identifier was 0.

4. “VMCS shadowing” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “VMCS shadowing” VM-execution control were 0. See Section 24.6.2.

5. On processors that support Intel 64 architecture, the physical-address extension may support more than 36 physical-address bits. 
Software can determine the number physical-address bits supported by executing CPUID with 80000008H in EAX. The physical-
address width is returned in bits 7:0 of EAX.

6. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls 
is 0, VM entry functions as if the “enable EPT” VM-execution control were 0. See Section 24.6.2.
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...

26.3.2.1  Loading Guest Control Registers, Debug Registers, and MSRs
The following items describe how guest control registers, debug registers, and MSRs are loaded on VM entry:
• CR0 is loaded from the CR0 field with the exception of the following bits, which are never modified on 

VM entry: ET (bit 4); reserved bits 15:6, 17, and 28:19; NW (bit 29) and CD (bit 30).1 The values of these 
bits in the CR0 field are ignored.

• CR3 and CR4 are loaded from the CR3 field and the CR4 field, respectively.
• If the “load debug controls” VM-entry control is 1, DR7 is loaded from the DR7 field with the exception that 

bit 12 and bits 15:14 are always 0 and bit 10 is always 1. The values of these bits in the DR7 field are ignored.
The first processors to support the virtual-machine extensions supported only the 1-setting of the “load
debug controls” VM-entry control and thus always loaded DR7 from the DR7 field.

• The following describes how certain MSRs are loaded using fields in the guest-state area:

— If the “load debug controls” VM-entry control is 1, the IA32_DEBUGCTL MSR is loaded from the 
IA32_DEBUGCTL field. The first processors to support the virtual-machine extensions supported only the 
1-setting of this control and thus always loaded the IA32_DEBUGCTL MSR from the IA32_DEBUGCTL field.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field. Since this field has only 32 
bits, bits 63:32 of the MSR are cleared to 0.

— The IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are loaded from the IA32_SYSENTER_ESP field 
and the IA32_SYSENTER_EIP field, respectively. On processors that do not support Intel 64 architecture, 
these fields have only 32 bits; bits 63:32 of the MSRs are cleared to 0.

— The following are performed on processors that support Intel 64 architecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields for FS and GS, respectively 
(see Section 26.3.2.2).

• If the “load IA32_EFER” VM-entry control is 0, bits in the IA32_EFER MSR are modified as follows:

— IA32_EFER.LMA is loaded with the setting of the “IA-32e mode guest” VM-entry control.

— If CR0 is being loaded so that CR0.PG = 1, IA32_EFER.LME is also loaded with the setting of the
“IA-32e mode guest” VM-entry control.2 Otherwise, IA32_EFER.LME is unmodified.

See below for the case in which the “load IA32_EFER” VM-entry control is 1

— If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, the IA32_PERF_GLOBAL_CTRL MSR is 
loaded from the IA32_PERF_GLOBAL_CTRL field.

— If the “load IA32_PAT” VM-entry control is 1, the IA32_PAT MSR is loaded from the IA32_PAT field.

— If the “load IA32_EFER” VM-entry control is 1, the IA32_EFER MSR is loaded from the IA32_EFER field.

— If the “load IA32_BNDCFGS” VM-entry control is 1, the IA32_BNDCFGS MSR is loaded from the 
IA32_BNDCFGS field.

7. This implies that (1) bits 11:9 in each PDPTE are ignored; and (2) if bit 0 (present) is clear in one of the PDPTEs, bits 63:1 of that 
PDPTE are ignored.

1. Bits 15:6, bit 17, and bit 28:19 of CR0 and CR0.ET are unchanged by executions of MOV to CR0. Bits 15:6, bit 17, and bit 28:19 of 
CR0 are always 0 and CR0.ET is always 1.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, VM entry must be loading CR0 so 
that CR0.PG = 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution 
controls are both 1.
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With the exception of FS.base and GS.base, any of these MSRs is subsequently overwritten if it appears in
the VM-entry MSR-load area. See Section 26.4.

• The SMBASE register is unmodified by all VM entries except those that return from SMM.

...

26.3.2.4  Loading Page-Directory-Pointer-Table Entries
As noted in Section 26.3.1.6, the logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1, and 
IA32_EFER.LME = 0. A VM entry to a guest that uses PAE paging loads the PDPTEs into internal, non-architectural 
registers based on the setting of the “enable EPT” VM-execution control:
• If the control is 0, the PDPTEs are loaded from the page-directory-pointer table referenced by the physical 

address in the value of CR3 being loaded by the VM entry (see Section 26.3.2.1). The values loaded are 
treated as physical addresses in VMX non-root operation.

• If the control is 1, the PDPTEs are loaded from corresponding fields in the guest-state area (see Section 
24.4.2). The values loaded are treated as guest-physical addresses in VMX non-root operation.

...

24. Updates to Chapter 27, Volume 3C
Change bars show changes to Chapter 27 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C: System Programming Guide, Part 3.

------------------------------------------------------------------------------------------

...

27.1 ARCHITECTURAL STATE BEFORE A VM EXIT
This section describes the architectural state that exists before a VM exit, especially for VM exits caused by events 
that would normally be delivered through the IDT. Note the following:
• An exception causes a VM exit directly if the bit corresponding to that exception is set in the exception 

bitmap. A non-maskable interrupt (NMI) causes a VM exit directly if the “NMI exiting” VM-execution control is 
1. An external interrupt causes a VM exit directly if the “external-interrupt exiting” VM-execution control is 1. 
A start-up IPI (SIPI) that arrives while a logical processor is in the wait-for-SIPI activity state causes a VM exit 
directly. INIT signals that arrive while the processor is not in the wait-for-SIPI activity state cause VM exits 
directly.

• An exception, NMI, external interrupt, or software interrupt causes a VM exit indirectly if it does not do so 
directly but delivery of the event causes a nested exception, double fault, task switch, APIC access (see 
Section 27.4), EPT violation, EPT misconfiguration, or page-modification log-full event that causes a VM exit.

• An event results in a VM exit if it causes a VM exit (directly or indirectly).

The following bullets detail when architectural state is and is not updated in response to VM exits:
• If an event causes a VM exit directly, it does not update architectural state as it would have if it had it not 

caused the VM exit:

— A debug exception does not update DR6, DR7.GD, or IA32_DEBUGCTL.LBR. (Information about the 
nature of the debug exception is saved in the exit qualification field.)

— A page fault does not update CR2. (The linear address causing the page fault is saved in the exit-qualifi-
cation field.)
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— An NMI causes subsequent NMIs to be blocked, but only after the VM exit completes.

— An external interrupt does not acknowledge the interrupt controller and the interrupt remains pending, 
unless the “acknowledge interrupt on exit” VM-exit control is 1. In such a case, the interrupt controller is 
acknowledged and the interrupt is no longer pending.

— The flags L0 – L3 in DR7 (bit 0, bit 2, bit 4, and bit 6) are not cleared when a task switch causes a VM exit.

— If a task switch causes a VM exit, none of the following are modified by the task switch: old task-state 
segment (TSS); new TSS; old TSS descriptor; new TSS descriptor; RFLAGS.NT1; or the TR register.

— No last-exception record is made if the event that would do so directly causes a VM exit. 

— If a machine-check exception causes a VM exit directly, this does not prevent machine-check MSRs from 
being updated. These are updated by the machine-check event itself and not the resulting machine-check 
exception.

— If the logical processor is in an inactive state (see Section 24.4.2) and not executing instructions, some 
events may be blocked but others may return the logical processor to the active state. Unblocked events 
may cause VM exits.2 If an unblocked event causes a VM exit directly, a return to the active state occurs 
only after the VM exit completes.3 The VM exit generates any special bus cycle that is normally generated 
when the active state is entered from that activity state.

MTF VM exits (see Section 25.5.2 and Section 26.6.8) are not blocked in the HLT activity state. If an MTF 
VM exit occurs in the HLT activity state, the logical processor returns to the active state only after the 
VM exit completes. MTF VM exits are blocked the shutdown state and the wait-for-SIPI state.

• If an event causes a VM exit indirectly, the event does update architectural state:

— A debug exception updates DR6, DR7, and the IA32_DEBUGCTL MSR. No debug exceptions are 
considered pending.

— A page fault updates CR2.

— An NMI causes subsequent NMIs to be blocked before the VM exit commences.

— An external interrupt acknowledges the interrupt controller and the interrupt is no longer pending.

— If the logical processor had been in an inactive state, it enters the active state and, before the VM exit 
commences, generates any special bus cycle that is normally generated when the active state is entered 
from that activity state.

— There is no blocking by STI or by MOV SS when the VM exit commences.

— Processor state that is normally updated as part of delivery through the IDT (CS, RIP, SS, RSP, RFLAGS) is 
not modified. However, the incomplete delivery of the event may write to the stack.

— The treatment of last-exception records is implementation dependent:

• Some processors make a last-exception record when beginning the delivery of an event through the 
IDT (before it can encounter a nested exception). Such processors perform this update even if the 
event encounters a nested exception that causes a VM exit (including the case where nested 
exceptions lead to a triple fault).

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX 
operation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 
32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to 
lower 32 bits of the indicated register.

2. If a VM exit takes the processor from an inactive state resulting from execution of a specific instruction (HLT or MWAIT), the value 
saved for RIP by that VM exit will reference the following instruction.

3. An exception is made if the logical processor had been inactive due to execution of MWAIT; in this case, it is considered to have 
become active before the VM exit.
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• Other processors delay making a last-exception record until event delivery has reached some event 
handler successfully (perhaps after one or more nested exceptions). Such processors do not update 
the last-exception record if a VM exit or triple fault occurs before an event handler is reached.

• If the “virtual NMIs” VM-execution control is 1, VM entry injects an NMI, and delivery of the NMI causes a 
nested exception, double fault, task switch, or APIC access that causes a VM exit, virtual-NMI blocking is in 
effect before the VM exit commences.

• If a VM exit results from a fault, EPT violation, EPT misconfiguration, or page-modification log-full event is 
encountered during execution of IRET and the “NMI exiting” VM-execution control is 0, any blocking by NMI is 
cleared before the VM exit commences. However, the previous state of blocking by NMI may be recorded in 
the VM-exit interruption-information field; see Section 27.2.2.

• If a VM exit results from a fault, EPT violation, EPT misconfiguration, or page-modification log-full event is 
encountered during execution of IRET and the “virtual NMIs” VM-execution control is 1, virtual-NMI blocking 
is cleared before the VM exit commences. However, the previous state of virtual-NMI blocking may be 
recorded in the VM-exit interruption-information field; see Section 27.2.2.

• Suppose that a VM exit is caused directly by an x87 FPU Floating-Point Error (#MF) or by any of the following 
events if the event was unblocked due to (and given priority over) an x87 FPU Floating-Point Error: an INIT 
signal, an external interrupt, an NMI, an SMI; or a machine-check exception. In these cases, there is no 
blocking by STI or by MOV SS when the VM exit commences.

• Normally, a last-branch record may be made when an event is delivered through the IDT. However, if such an 
event results in a VM exit before delivery is complete, no last-branch record is made.

• If machine-check exception results in a VM exit, processor state is suspect and may result in suspect state 
being saved to the guest-state area. A VM monitor should consult the RIPV and EIPV bits in the 
IA32_MCG_STATUS MSR before resuming a guest that caused a VM exit resulting from a machine-check 
exception.

• If a VM exit results from a fault, APIC access (see Section 29.4), EPT violation, EPT misconfiguration, or page-
modification log-full event is encountered while executing an instruction, data breakpoints due to that 
instruction may have been recognized and information about them may be saved in the pending debug 
exceptions field (see Section 27.3.4).

• The following VM exits are considered to happen after an instruction is executed:

— VM exits resulting from debug traps (single-step, I/O breakpoints, and data breakpoints).

— VM exits resulting from debug exceptions whose recognition was delayed by blocking by MOV SS.

— VM exits resulting from some machine-check exceptions.

— Trap-like VM exits due to execution of MOV to CR8 when the “CR8-load exiting” VM-execution control is 0 
and the “use TPR shadow” VM-execution control is 1 (see Section 29.3). (Such VM exits can occur only 
from 64-bit mode and thus only on processors that support Intel 64 architecture.)

— Trap-like VM exits due to execution of WRMSR when the “use MSR bitmaps” VM-execution control is 1; the 
value of ECX is in the range 800H–8FFH; and the bit corresponding to the ECX value in write bitmap for 
low MSRs is 0; and the “virtualize x2APIC mode” VM-execution control is 1. See Section 29.5.

— VM exits caused by APIC-write emulation (see Section 29.4.3.2) that result from APIC accesses as part of 
instruction execution.

For these VM exits, the instruction’s modifications to architectural state complete before the VM exit occurs. 
Such modifications include those to the logical processor’s interruptibility state (see Table 24-3). If there had 
been blocking by MOV SS, POP SS, or STI before the instruction executed, such blocking is no longer in effect.

A VM exit that occurs in enclave mode sets bit 27 of the exit-reason field and bit 4 of the guest interruptibility-
state field. Before such a VM exit is delivered, an Asynchronous Enclave Exit (AEX) occurs (see Chapter 40, 
“Enclave Exiting Events”). An AEX modifies architectural state (Section 40.3). In particular, the processor estab-
lishes the following architectural state as indicated:
• The following bits in RFLAGS are cleared: CF, PF, AF, ZF, SF, OF, and RF.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 279

• FS and GS are restored to the values they had prior to the most recent enclave entry.
• RIP is loaded with the AEP of interrupted enclave thread.
• RSP is loaded from the URSP field in the enclave’s state-save area (SSA).

...

27.2.1 Basic VM-Exit Information
Section 24.9.1 defines the basic VM-exit information fields. The following items detail their use.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. It is loaded with a number indicating the general cause 
of the VM exit. Appendix C lists the numbers used and their meaning.

— Bit 27 of this field is set to 1 if the VM exit occurred while the logical processor was in enclave mode.

Such VM exits includes those caused by interrupts, non-maskable interrupts, system-management 
interrupts, INIT signals, and exceptions occurring in enclave mode as well as exceptions encountered 
during the delivery of such events incident to enclave mode.

A VM exit also sets this bit if it is incident to delivery of an event injected by VM entry and the guest inter-
ruptibility-state field indicates an enclave interrupt (bit 4 of the field is 1).

— The remainder of the field (bits 31:28 and bits 26:16) is cleared to 0 (certain SMM VM exits may set some 
of these bits; see Section 34.15.2.3).1

• Exit qualification. This field is saved for VM exits due to the following causes: debug exceptions; page-fault 
exceptions; start-up IPIs (SIPIs); system-management interrupts (SMIs) that arrive immediately after the 
retirement of I/O instructions; task switches; INVEPT; INVLPG; INVPCID; INVVPID; LGDT; LIDT; LLDT; LTR; 
SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON; XRSTORS; XSAVES; 
control-register accesses; MOV DR; I/O instructions; MWAIT; accesses to the APIC-access page (see Section 
29.4); EPT violations; EOI virtualization (see Section 29.1.4); APIC-write emulation (see Section 29.4.3.3); 
and page-modification log full (see Section 28.2.5). For all other VM exits, this field is cleared. The following 
items provide details:

— For a debug exception, the exit qualification contains information about the debug exception. The 
information has the format given in Table 27-1.

1. Bit 31 of this field is set on certain VM-entry failures; see Section 26.7.

Table 27-1    Exit Qualification for Debug Exceptions

Bit Position(s) Contents

3:0 B3 – B0. When set, each of these bits indicates that the corresponding breakpoint condition was met. Any of 
these bits may be set even if its corresponding enabling bit in DR7 is not set.

12:4 Reserved (cleared to 0).

13 BD. When set, this bit indicates that the cause of the debug exception is “debug register access detected.”

14 BS. When set, this bit indicates that the cause of the debug exception is either the execution of a single 
instruction (if RFLAGS.TF = 1 and IA32_DEBUGCTL.BTF = 0) or a taken branch (if 
RFLAGS.TF = DEBUGCTL.BTF = 1).

63:15 Reserved (cleared to 0). Bits 63:32 exist only on processors that support Intel 64 architecture.
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— For a page-fault exception, the exit qualification contains the linear address that caused the page fault. On 
processors that support Intel 64 architecture, bits 63:32 are cleared if the logical processor was not in 64-
bit mode before the VM exit.

If the page-fault exception occurred during execution of an instruction in enclave mode (and not during 
delivery of an event incident to enclave mode), bits 11:0 of the exit qualification are cleared.

— For a start-up IPI (SIPI), the exit qualification contains the SIPI vector information in bits 7:0. Bits 63:8 
of the exit qualification are cleared to 0.

— For a task switch, the exit qualification contains details about the task switch, encoded as shown in Table 
27-2.

— For INVLPG, the exit qualification contains the linear-address operand of the instruction.

• On processors that support Intel 64 architecture, bits 63:32 are cleared if the logical processor was 
not in 64-bit mode before the VM exit.

• If the INVLPG source operand specifies an unusable segment, the linear address specified in the exit 
qualification will match the linear address that the INVLPG would have used if no VM exit occurred. 
This address is not architecturally defined and may be implementation-specific.

— For INVEPT, INVPCID, INVVPID, LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR, VMCLEAR, VMPTRLD, 
VMPTRST, VMREAD, VMWRITE, VMXON, XRSTORS, and XSAVES, the exit qualification receives the value 
of the instruction’s displacement field, which is sign-extended to 64 bits if necessary (32 bits on 
processors that do not support Intel 64 architecture). If the instruction has no displacement (for example, 
has a register operand), zero is stored into the exit qualification.

On processors that support Intel 64 architecture, an exception is made for RIP-relative addressing (used 
only in 64-bit mode). Such addressing causes an instruction to use an address that is the sum of the 
displacement field and the value of RIP that references the following instruction. In this case, the exit 
qualification is loaded with the sum of the displacement field and the appropriate RIP value.

In all cases, bits of this field beyond the instruction’s address size are undefined. For example, suppose 
that the address-size field in the VM-exit instruction-information field (see Section 24.9.4 and Section 
27.2.4) reports an n-bit address size. Then bits 63:n (bits 31:n on processors that do not support Intel 
64 architecture) of the instruction displacement are undefined.

— For a control-register access, the exit qualification contains information about the access and has the 
format given in Table 27-3.

— For MOV DR, the exit qualification contains information about the instruction and has the format given in 
Table 27-4.

Table 27-2    Exit Qualification for Task Switch

Bit Position(s) Contents

15:0 Selector of task-state segment (TSS) to which the guest attempted to switch

29:16 Reserved (cleared to 0)

31:30 Source of task switch initiation:

0: CALL instruction
1: IRET instruction
2: JMP instruction
3: Task gate in IDT

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 64 architecture.
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— For an I/O instruction, the exit qualification contains information about the instruction and has the format 
given in Table 27-5.

— For MWAIT, the exit qualification contains a value that indicates whether address-range monitoring 
hardware was armed. The exit qualification is set either to 0 (if address-range monitoring hardware is not 
armed) or to 1 (if address-range monitoring hardware is armed).

— For an APIC-access VM exit resulting from a linear access or a guest-physical access to the APIC-access 
page (see Section 29.4), the exit qualification contains information about the access and has the format 
given in Table 27-6.1

If the access to the APIC-access page occurred during execution of an instruction in enclave mode (and 
not during delivery of an event incident to enclave mode), bits 11:0 of the exit qualification are cleared.

Such a VM exit that set bits 15:12 of the exit qualification to 0000b (data read during instruction 
execution) or 0001b (data write during instruction execution) set bit 12—which distinguishes data read 
from data write—to that which would have been stored in bit 1—W/R—of the page-fault error code had the 
access caused a page fault instead of an APIC-access VM exit. This implies the following:

• For an APIC-access VM exit caused by the CLFLUSH and CLFLUSHOPT instructions, the access type is 
“data read during instruction execution.”

• For an APIC-access VM exit caused by the ENTER instruction, the access type is “data write during 
instruction execution.”

1. The exit qualification is undefined if the access was part of the logging of a branch record or a precise-event-based-sampling 
(PEBS) record to the DS save area. It is recommended that software configure the paging structures so that no address in the DS 
save area translates to an address on the APIC-access page.

Table 27-3    Exit Qualification for Control-Register Accesses 

Bit Positions Contents

3:0 Number of control register (0 for CLTS and LMSW). Bit 3 is always 0 on processors that do not support Intel 64 
architecture as they do not support CR8.

5:4 Access type:

0 = MOV to CR
1 = MOV from CR
2 = CLTS
3 = LMSW

6 LMSW operand type:

0 = register
1 = memory

For CLTS and MOV CR, cleared to 0

7 Reserved (cleared to 0)
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Such a VM exit stores 1 for bit 31 for IDT-vectoring information field (see Section 27.2.3) if and only if it 
sets bits 15:12 of the exit qualification to 0011b (linear access during event delivery) or 1010b (guest-
physical access during event delivery).

See Section 29.4.4 for further discussion of these instructions and APIC-access VM exits.

For APIC-access VM exits resulting from physical accesses to the APIC-access page (see Section 29.4.6), 
the exit qualification is undefined.

— For an EPT violation, the exit qualification contains information about the access causing the EPT violation 
and has the format given in Table 27-7.

An EPT violation that occurs during as a result of execution of a read-modify-write operation sets bit 1 
(data write). Whether it also sets bit 0 (data read) is implementation-specific and, for a given implemen-
tation, may differ for different kinds of read-modify-write operations.

11:8 For MOV CR, the general-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

For CLTS and LMSW, cleared to 0

15:12 Reserved (cleared to 0)

31:16 For LMSW, the LMSW source data

For CLTS and MOV CR, cleared to 0

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 64 architecture.

Table 27-3    Exit Qualification for Control-Register Accesses  (Contd.)

Bit Positions Contents

Table 27-4    Exit Qualification for MOV DR

Bit Position(s) Contents

2:0 Number of debug register

3 Reserved (cleared to 0)

4 Direction of access (0 = MOV to DR; 1 = MOV from DR)

7:5 Reserved (cleared to 0)
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Bit 12 is undefined in any of the following cases:

• If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs” VM-execution control is 0.

• If the VM exit sets the valid bit in the IDT-vectoring information field (see Section 27.2.3).

Otherwise, bit 12 is defined as follows:

• If the “virtual NMIs” VM-execution control is 0, the EPT violation was caused by a memory access as 
part of execution of the IRET instruction, and blocking by NMI (see Table 24-3) was in effect before 
execution of IRET, bit 12 is set to 1.

11:8 General-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8 –15 = R8 – R15, respectively

63:12 Reserved (cleared to 0)

Table 27-4    Exit Qualification for MOV DR (Contd.)

Bit Position(s) Contents

Table 27-5    Exit Qualification for I/O Instructions

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in DX or in an immediate operand)

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 64 architecture.
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• If the “virtual NMIs” VM-execution control is 1,the EPT violation was caused by a memory access as 
part of execution of the IRET instruction, and virtual-NMI blocking was in effect before execution of 
IRET, bit 12 is set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.

— For VM exits caused as part of EOI virtualization (Section 29.1.4), bits 7:0 of the exit qualification are set 
to vector of the virtual interrupt that was dismissed by the EOI virtualization. Bits above bit 7 are cleared.

— For APIC-write VM exits (Section 29.4.3.3), bits 11:0 of the exit qualification are set to the page offset of 
the write access that caused the VM exit.1 Bits above bit 11 are cleared.

— For a VM exit due to a page-modification log-full event (Section 28.2.5), only bit 12 of the exit qualifi-
cation is defined, and only in some cases. It is undefined in the following cases:

• If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs” VM-execution control is 0.

• If the VM exit sets the valid bit in the IDT-vectoring information field (see Section 27.2.3).

Otherwise, it is defined as follows:

• If the “virtual NMIs” VM-execution control is 0, the page-modification log-full event was caused by a 
memory access as part of execution of the IRET instruction, and blocking by NMI (see Table 24-3) was 
in effect before execution of IRET, bit 12 is set to 1.

• If the “virtual NMIs” VM-execution control is 1,the page-modification log-full event was caused by a 
memory access as part of execution of the IRET instruction, and virtual-NMI blocking was in effect 
before execution of IRET, bit 12 is set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.

For these VM exits, all bits other than bit 12 are undefined.
• Guest-linear address. For some VM exits, this field receives a linear address that pertains to the VM exit. 

The field is set for different VM exits as follows:

— VM exits due to attempts to execute LMSW with a memory operand. In these cases, this field receives the 
linear address of that operand. Bits 63:32 are cleared if the logical processor was not in 64-bit mode 
before the VM exit.

Table 27-6    Exit Qualification for APIC-Access VM Exits from Linear Accesses and Guest-Physical Accesses

Bit Position(s) Contents

11:0 • If the APIC-access VM exit is due to a linear access, the offset of access within the APIC page.
• Undefined if the APIC-access VM exit is due a guest-physical access

15:12 Access type:

0 = linear access for a data read during instruction execution
1 = linear access for a data write during instruction execution
2 = linear access for an instruction fetch
3 = linear access (read or write) during event delivery
10 = guest-physical access during event delivery
15 = guest-physical access for an instruction fetch or during instruction execution

Other values not used

63:16 Reserved (cleared to 0). Bits 63:32 exist only on processors that support Intel 64 architecture.

1. Execution of WRMSR with ECX = 83FH (self-IPI MSR) can lead to an APIC-write VM exit; the exit qualification for such an APIC-
write VM exit is 3F0H.
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— VM exits due to attempts to execute INS or OUTS for which the relevant segment is usable (if the relevant 
segment is not usable, the value is undefined). (ES is always the relevant segment for INS; for OUTS, the 
relevant segment is DS unless overridden by an instruction prefix.) The linear address is the base address 
of relevant segment plus (E)DI (for INS) or (E)SI (for OUTS). Bits 63:32 are cleared if the logical 
processor was not in 64-bit mode before the VM exit.

— VM exits due to EPT violations that set bit 7 of the exit qualification (see Table 27-7; these are all EPT 
violations except those resulting from an attempt to load the PDPTEs as of execution of the MOV CR 
instruction). The linear address may translate to the guest-physical address whose access caused the EPT 
violation. Alternatively, translation of the linear address may reference a paging-structure entry whose 
access caused the EPT violation. Bits 63:32 are cleared if the logical processor was not in 64-bit mode 
before the VM exit.

Table 27-7    Exit Qualification for EPT Violations

Bit Position(s) Contents

0 Set if the access causing the EPT violation was a data read.1

1 Set if the access causing the EPT violation was a data write.1

2 Set if the access causing the EPT violation was an instruction fetch.

3 The logical-AND of bit 0 in the EPT paging-structure entries used to translate the guest-physical address of the 
access causing the EPT violation (indicates that the guest-physical address was readable).2

4 The logical-AND of bit 1 in the EPT paging-structure entries used to translate the guest-physical address of the 
access causing the EPT violation (indicates that the guest-physical address was writeable).

5 The logical-AND of bit 2 in the EPT paging-structure entries used to translate the guest-physical address of the 
access causing the EPT violation (indicates that the guest-physical address was executable).

6 Reserved (cleared to 0).

7 Set if the guest linear-address field is valid.

The guest linear-address field is valid for all EPT violations except those resulting from an attempt to load the 
guest PDPTEs as part of the execution of the MOV CR instruction.

8 If bit 7 is 1:

• Set if the access causing the EPT violation is to a guest-physical address that is the translation of a linear 
address.

• Clear if the access causing the EPT violation is to a paging-structure entry as part of a page walk or the 
update of an accessed or dirty bit.

Reserved if bit 7 is 0 (cleared to 0).

11:9 Reserved (cleared to 0).

12 NMI unblocking due to IRET

63:13 Reserved (cleared to 0).

NOTES:
1. If accessed and dirty flags for EPT are enabled, processor accesses to guest paging-structure entries are treated as writes with 

regard to EPT violations (see Section 28.2.3.2). If such an access causes an EPT violation, the processor sets both bit 0 and bit 1 of 
the exit qualification.

2. Bits 5:3 are cleared to 0 if any of EPT paging-structure entries used to translate the guest-physical address of the access causing the 
EPT violation is not present (see Section 28.2.2).
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If the EPT violation occurred during execution of an instruction in enclave mode (and not during delivery 
of an event incident to enclave mode), bits 11:0 of this field are cleared.

— For all other VM exits, the field is undefined.
• Guest-physical address. For a VM exit due to an EPT violation or an EPT misconfiguration, this field receives 

the guest-physical address that caused the EPT violation or EPT misconfiguration. For all other VM exits, the 
field is undefined.
If the EPT violation or EPT misconfiguration occurred during execution of an instruction in enclave mode (and 
not during delivery of an event incident to enclave mode), bits 11:0 of this field are cleared.

27.2.2 Information for VM Exits Due to Vectored Events
Section 24.9.2 defines fields containing information for VM exits due to the following events: exceptions 
(including those generated by the instructions INT3, INTO, BOUND, and UD2); external interrupts that occur 
while the “acknowledge interrupt on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). Such 
VM exits include those that occur on an attempt at a task switch that causes an exception before generating the 
VM exit due to the task switch that causes the VM exit.

The following items detail the use of these fields:
• VM-exit interruption information (format given in Table 24-15). The following items detail how this field is 

established for VM exits due to these events:

— For an exception, bits 7:0 receive the exception vector (at most 31). For an NMI, bits 7:0 are set to 2. For 
an external interrupt, bits 7:0 receive the vector.

— Bits 10:8 are set to 0 (external interrupt), 2 (non-maskable interrupt), 3 (hardware exception), or 6 
(software exception). Hardware exceptions comprise all exceptions except breakpoint exceptions (#BP; 
generated by INT3) and overflow exceptions (#OF; generated by INTO); these are software exceptions. 
(A #BP that occurs in enclave mode is considered a hardware exception.) BOUND-range exceeded 
exceptions (#BR; generated by BOUND) and invalid opcode exceptions (#UD) generated by UD2 are 
hardware exceptions.

— Bit 11 is set to 1 if the VM exit is caused by a hardware exception that would have delivered an error code 
on the stack. This bit is always 0 if the VM exit occurred while the logical processor was in real-address 
mode (CR0.PE=0).1 If bit 11 is set to 1, the error code is placed in the VM-exit interruption error code (see 
below).

— Bit 12 is undefined in any of the following cases:

• If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs” VM-execution control is 0.

• If the VM exit sets the valid bit in the IDT-vectoring information field (see Section 27.2.3).

• If the VM exit is due to a double fault (the interruption type is hardware exception and the vector is 8).

Otherwise, bit 12 is defined as follows:

• If the “virtual NMIs” VM-execution control is 0, the VM exit is due to a fault on the IRET instruction 
(other than a debug exception for an instruction breakpoint), and blocking by NMI (see Table 24-3) 
was in effect before execution of IRET, bit 12 is set to 1.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a logical processor cannot be in 
real-address mode unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution 
controls are both 1.
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• If the “virtual NMIs” VM-execution control is 1, the VM exit is due to a fault on the IRET instruction 
(other than a debug exception for an instruction breakpoint), and virtual-NMI blocking was in effect 
before execution of IRET, bit 12 is set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.1

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.
For other VM exits (including those due to external interrupts when the “acknowledge interrupt on exit” 
VM-exit control is 0), the field is marked invalid (by clearing bit 31) and the remainder of the field is 
undefined.

• VM-exit interruption error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the VM-exit interruption-
information field, this field receives the error code that would have been pushed on the stack had the 
event causing the VM exit been delivered normally through the IDT. The EXT bit is set in this field exactly 
when it would be set normally. For exceptions that occur during the delivery of double fault (if the IDT-
vectoring information field indicates a double fault), the EXT bit is set to 1, assuming that (1) that the 
exception would produce an error code normally (if not incident to double-fault delivery) and (2) that the 
error code uses the EXT bit (not for page faults, which use a different format).

— For other VM exits, the value of this field is undefined.

27.2.3 Information for VM Exits During Event Delivery
Section 24.9.3 defined fields containing information for VM exits that occur while delivering an event through the 
IDT and as a result of any of the following cases:2

• A fault occurs during event delivery and causes a VM exit (because the bit associated with the fault is set to 1 
in the exception bitmap).

• A task switch is invoked through a task gate in the IDT. The VM exit occurs due to the task switch only after 
the initial checks of the task switch pass (see Section 25.4.2).

• Event delivery causes an APIC-access VM exit (see Section 29.4).
• An EPT violation, EPT misconfiguration, or page-modification log-full event that occurs during event delivery.

These fields are used for VM exits that occur during delivery of events injected as part of VM entry (see Section 
26.5.1.2).

A VM exit is not considered to occur during event delivery in any of the following circumstances:
• The original event causes the VM exit directly (for example, because the original event is a non-maskable 

interrupt (NMI) and the “NMI exiting” VM-execution control is 1).
• The original event results in a double-fault exception that causes the VM exit directly.
• The VM exit occurred as a result of fetching the first instruction of the handler invoked by the event delivery.
• The VM exit is caused by a triple fault.

The following items detail the use of these fields:
• IDT-vectoring information (format given in Table 24-16). The following items detail how this field is 

established for VM exits that occur during event delivery:

1. The conditions imply that, if the “NMI exiting” VM-execution control is 0 or the “virtual NMIs” VM-execution control is 1, bit 12 is 
always cleared to 0 by VM exits due to debug exceptions.

2. This includes the case in which a VM exit occurs while delivering a software interrupt (INT n) through the 16-bit IVT (interrupt vec-
tor table) that is used in virtual-8086 mode with virtual-machine extensions (if RFLAGS.VM = CR4.VME = 1).
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— If the VM exit occurred during delivery of an exception, bits 7:0 receive the exception vector (at most 31). 
If the VM exit occurred during delivery of an NMI, bits 7:0 are set to 2. If the VM exit occurred during 
delivery of an external interrupt, bits 7:0 receive the vector.

— Bits 10:8 are set to indicate the type of event that was being delivered when the VM exit occurred: 0 
(external interrupt), 2 (non-maskable interrupt), 3 (hardware exception), 4 (software interrupt), 5 
(privileged software interrupt), or 6 (software exception).

Hardware exceptions comprise all exceptions except breakpoint exceptions (#BP; generated by INT3) and 
overflow exceptions (#OF; generated by INTO); these are software exceptions. (A #BP that occurs in 
enclave mode is considered a hardware exception.) BOUND-range exceeded exceptions (#BR; generated 
by BOUND) and invalid opcode exceptions (#UD) generated by UD2 are hardware exceptions.

Bits 10:8 may indicate privileged software interrupt if such an event was injected as part of VM entry.

— Bit 11 is set to 1 if the VM exit occurred during delivery of a hardware exception that would have delivered 
an error code on the stack. This bit is always 0 if the VM exit occurred while the logical processor was in 
real-address mode (CR0.PE=0).1 If bit 11 is set to 1, the error code is placed in the IDT-vectoring error 
code (see below).

— Bit 12 is undefined.

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.
For other VM exits, the field is marked invalid (by clearing bit 31) and the remainder of the field is undefined.

• IDT-vectoring error code. 

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the IDT-vectoring information field, 
this field receives the error code that would have been pushed on the stack by the event that was being 
delivered through the IDT at the time of the VM exit. The EXT bit is set in this field when it would be set 
normally.

— For other VM exits, the value of this field is undefined.

27.2.4 Information for VM Exits Due to Instruction Execution
Section 24.9.4 defined fields containing information for VM exits that occur due to instruction execution. (The VM-
exit instruction length is also used for VM exits that occur during the delivery of a software interrupt or software 
exception.) The following items detail their use.
• VM-exit instruction length. This field is used in the following cases:

— For fault-like VM exits due to attempts to execute one of the following instructions that cause VM exits 
unconditionally (see Section 25.1.2) or based on the settings of VM-execution controls (see Section 
25.1.3): CLTS, CPUID, ENCLS, GETSEC, HLT, IN, INS, INVD, INVEPT, INVLPG, INVPCID, INVVPID, LGDT, 
LIDT, LLDT, LMSW, LTR, MONITOR, MOV CR, MOV DR, MWAIT, OUT, OUTS, PAUSE, RDMSR, RDPMC, 
RDRAND, RDSEED, RDTSC, RDTSCP, RSM, SGDT, SIDT, SLDT, STR, VMCALL, VMCLEAR, VMLAUNCH, 
VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, VMXON, WBINVD, WRMSR, XRSTORS, 
XSETBV, and XSAVES.2

— For VM exits due to software exceptions (those generated by executions of INT3 or INTO).

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a logical processor cannot be in 
real-address mode unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution 
controls are both 1.

2. This item applies only to fault-like VM exits. It does not apply to trap-like VM exits following executions of the MOV to CR8 instruc-
tion when the “use TPR shadow” VM-execution control is 1 or to those following executions of the WRMSR instruction when the 
“virtualize x2APIC mode” VM-execution control is 1.
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— For VM exits due to faults encountered during delivery of a software interrupt, privileged software 
exception, or software exception.

— For VM exits due to attempts to effect a task switch via instruction execution. These are VM exits that 
produce an exit reason indicating task switch and either of the following:

• An exit qualification indicating execution of CALL, IRET, or JMP instruction.

• An exit qualification indicating a task gate in the IDT and an IDT-vectoring information field indicating 
that the task gate was encountered during delivery of a software interrupt, privileged software 
exception, or software exception.

— For APIC-access VM exits resulting from accesses (see Section 29.4) during delivery of a software 
interrupt, privileged software exception, or software exception.1

— For VM exits due executions of VMFUNC that fail because one of the following is true:

• EAX indicates a VM function that is not enabled (the bit at position EAX is 0 in the VM-function 
controls; see Section 25.5.5.2).

• EAX = 0 and either ECX ≥ 512 or the value of ECX selects an invalid tentative EPTP value (see Section 
25.5.5.3).

In all the above cases, this field receives the length in bytes (1–15) of the instruction (including any 
instruction prefixes) whose execution led to the VM exit (see the next paragraph for one exception).
The cases of VM exits encountered during delivery of a software interrupt, privileged software exception, or 
software exception include those encountered during delivery of events injected as part of VM entry (see 
Section 26.5.1.2). If the original event was injected as part of VM entry, this field receives the value of the 
VM-entry instruction length.
All VM exits other than those listed in the above items leave this field undefined.
If the VM exit occurred in enclave mode, this field is cleared (none of the previous items apply).

1. The VM-exit instruction-length field is not defined following APIC-access VM exits resulting from physical accesses (see Section 
29.4.6) even if encountered during delivery of a software interrupt, privileged software exception, or software exception.

Table 27-8    Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS
Bit Position(s) Content

6:0 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

14:10 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for VM exits due to execution of INS.

31:18 Undefined.
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• VM-exit instruction information. For VM exits due to attempts to execute INS, INVEPT, INVPCID, INVVPID, 
LIDT, LGDT, LLDT, LTR, OUTS, RDRAND, RDSEED, SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST, 
VMREAD, VMWRITE, VMXON, XRSTORS, or XSAVES, this field receives information about the instruction that 
caused the VM exit. The format of the field depends on the identity of the instruction causing the VM exit:

— For VM exits due to attempts to execute INS or OUTS, the field has the format is given in Table 27-8.1

— For VM exits due to attempts to execute INVEPT, INVPCID, or INVVPID, the field has the format is given in 
Table 27-9.

— For VM exits due to attempts to execute LIDT, LGDT, SIDT, or SGDT, the field has the format is given in 
Table 27-10.

— For VM exits due to attempts to execute LLDT, LTR, SLDT, or STR, the field has the format is given in 
Table 27-11.

— For VM exits due to attempts to execute RDRAND or RDSEED, the field has the format is given in 
Table 27-12.

— For VM exits due to attempts to execute VMCLEAR, VMPTRLD, VMPTRST, VMXON, XRSTORS, or XSAVES, 
the field has the format is given in Table 27-13.

— For VM exits due to attempts to execute VMREAD or VMWRITE, the field has the format is given in 
Table 27-14.

For all other VM exits, the field is undefined, unless the VM exit occurred in enclave mode, in which case the 
field is cleared.

• I/O RCX, I/O RSI, I/O RDI, I/O RIP. These fields are undefined except for SMM VM exits due to system-
management interrupts (SMIs) that arrive immediately after retirement of I/O instructions. See Section 
34.15.2.3. Note that, if the VM exit occurred in enclave mode, these fields are all cleared.

1. The format of the field was undefined for these VM exits on the first processors to support the virtual-machine extensions. Soft-
ware can determine whether the format specified in Table 27-8 is used by consulting the VMX capability MSR IA32_VMX_BASIC 
(see Appendix A.1).

Table 27-9    Format of the VM-Exit Instruction-Information Field as Used for INVEPT, INVPCID, and INVVPID
Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

14:11 Undefined.
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...

27.3.1 Saving Control Registers, Debug Registers, and MSRs
Contents of certain control registers, debug registers, and MSRs is saved as follows:
• The contents of CR0, CR3, CR4, and the IA32_SYSENTER_CS, IA32_SYSENTER_ESP, and 

IA32_SYSENTER_EIP MSRs are saved into the corresponding fields. Bits 63:32 of the IA32_SYSENTER_CS 
MSR are not saved. On processors that do not support Intel 64 architecture, bits 63:32 of the 
IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are not saved.

• If the “save debug controls” VM-exit control is 1, the contents of DR7 and the IA32_DEBUGCTL MSR are saved 
into the corresponding fields. The first processors to support the virtual-machine extensions supported only 
the 1-setting of this control and thus always saved data into these fields.

• If the “save IA32_PAT” VM-exit control is 1, the contents of the IA32_PAT MSR are saved into the corre-
sponding field.

• If the “save IA32_EFER” VM-exit control is 1, the contents of the IA32_EFER MSR are saved into the corre-
sponding field.

• If the processor supports either the 1-setting of the “load IA32_BNDCFGS” VM-entry control or that of the 
“clear IA32_BNDCFGS” VM-exit control, the contents of the IA32_BNDCFGS MSR are saved into the corre-
sponding field.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for memory instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Reg2 (same encoding as IndexReg above)

Table 27-9    Format of the VM-Exit Instruction-Information Field as Used for INVEPT, INVPCID, and INVVPID (Contd.)
Bit Position(s) Content
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• The value of the SMBASE field is undefined after all VM exits except SMM VM exits. See Section 34.15.2.

...

27.3.3 Saving RIP, RSP, and RFLAGS
The contents of the RIP, RSP, and RFLAGS registers are saved as follows:
• The value saved in the RIP field is determined by the nature and cause of the VM exit:

— If the VM exit occurred in enclave mode, the value saved is the AEP of interrupted enclave thread (the 
remaining items do not apply).

— If the VM exit occurs due to by an attempt to execute an instruction that causes VM exits unconditionally 
or that has been configured to cause a VM exit via the VM-execution controls, the value saved references 
that instruction.

— If the VM exit is caused by an occurrence of an INIT signal, a start-up IPI (SIPI), or system-management 
interrupt (SMI), the value saved is that which was in RIP before the event occurred.

— If the VM exit occurs due to the 1-setting of either the “interrupt-window exiting” VM-execution control or 
the “NMI-window exiting” VM-execution control, the value saved is that which would be in the register had 
the VM exit not occurred.

— If the VM exit is due to an external interrupt, non-maskable interrupt (NMI), or hardware exception (as 
defined in Section 27.2.2), the value saved is the return pointer that would have been saved (either on the 
stack had the event been delivered through a trap or interrupt gate,1 or into the old task-state segment 
had the event been delivered through a task gate).

— If the VM exit is due to a triple fault, the value saved is the return pointer that would have been saved 
(either on the stack had the event been delivered through a trap or interrupt gate, or into the old task-
state segment had the event been delivered through a task gate) had delivery of the double fault not 
encountered the nested exception that caused the triple fault.

— If the VM exit is due to a software exception (due to an execution of INT3 or INTO), the value saved 
references the INT3 or INTO instruction that caused that exception.

— Suppose that the VM exit is due to a task switch that was caused by execution of CALL, IRET, or JMP or by 
execution of a software interrupt (INT n) or software exception (due to execution of INT3 or INTO) that 
encountered a task gate in the IDT. The value saved references the instruction that caused the task switch 
(CALL, IRET, JMP, INT n, INT3, or INTO).

— Suppose that the VM exit is due to a task switch that was caused by a task gate in the IDT that was 
encountered for any reason except the direct access by a software interrupt or software exception. The 
value saved is that which would have been saved in the old task-state segment had the task switch 
completed normally.

— If the VM exit is due to an execution of MOV to CR8 or WRMSR that reduced the value of bits 7:4 of VTPR 
(see Section 29.1.1) below that of TPR threshold VM-execution control field (see Section 29.1.2), the 
value saved references the instruction following the MOV to CR8 or WRMSR.

— If the VM exit was caused by APIC-write emulation (see Section 29.4.3.2) that results from an APIC 
access as part of instruction execution, the value saved references the instruction following the one whose 
execution caused the APIC-write emulation.

• The contents of the RSP register are saved into the RSP field.
• With the exception of the resume flag (RF; bit 16), the contents of the RFLAGS register is saved into the 

RFLAGS field. RFLAGS.RF is saved as follows:

1. The reference here is to the full value of RIP before any truncation that would occur had the stack width been only 32 bits or 16 
bits.
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— If the VM exit occurred in enclave mode, the value saved is 0 (the remaining items do not apply).

— If the VM exit is caused directly by an event that would normally be delivered through the IDT, the value 
saved is that which would appear in the saved RFLAGS image (either that which would be saved on the 
stack had the event been delivered through a trap or interrupt gate1 or into the old task-state segment 
had the event been delivered through a task gate) had the event been delivered through the IDT. See 
below for VM exits due to task switches caused by task gates in the IDT.

— If the VM exit is caused by a triple fault, the value saved is that which the logical processor would have in 
RF in the RFLAGS register had the triple fault taken the logical processor to the shutdown state.

— If the VM exit is caused by a task switch (including one caused by a task gate in the IDT), the value saved 
is that which would have been saved in the RFLAGS image in the old task-state segment (TSS) had the 
task switch completed normally without exception.

— If the VM exit is caused by an attempt to execute an instruction that unconditionally causes VM exits or 
one that was configured to do with a VM-execution control, the value saved is 0.2

— For APIC-access VM exits and for VM exits caused by EPT violations EPT misconfigurations, and page-
modification log-full events, the value saved depends on whether the VM exit occurred during delivery of 
an event through the IDT:

• If the VM exit stored 0 for bit 31 for IDT-vectoring information field (because the VM exit did not occur 
during delivery of an event through the IDT; see Section 27.2.3), the value saved is 1.

• If the VM exit stored 1 for bit 31 for IDT-vectoring information field (because the VM exit did occur 
during delivery of an event through the IDT), the value saved is the value that would have appeared 
in the saved RFLAGS image had the event been delivered through the IDT (see above).

— For all other VM exits, the value saved is the value RFLAGS.RF had before the VM exit occurred.

27.3.4 Saving Non-Register State
Information corresponding to guest non-register state is saved as follows:
• The activity-state field is saved with the logical processor’s activity state before the VM exit.3 See Section 27.1 

for details of how events leading to a VM exit may affect the activity state.
• The interruptibility-state field is saved to reflect the logical processor’s interruptibility before the VM exit.

— See Section 27.1 for details of how events leading to a VM exit may affect this state.

— VM exits that end outside system-management mode (SMM) save bit 2 (blocking by SMI) as 0 regardless 
of the state of such blocking before the VM exit.

— Bit 3 (blocking by NMI) is treated specially if the “virtual NMIs” VM-execution control is 1. In this case, the 
value saved for this field does not indicate the blocking of NMIs but rather the state of virtual-NMI 
blocking.

— Bit 4 (enclave interruption) is set to 1 if the VM exit occurred while the logical processor was in enclave 
mode.

1. The reference here is to the full value of RFLAGS before any truncation that would occur had the stack width been only 32 bits or 
16 bits.

2. This is true even if RFLAGS.RF was 1 before the instruction was executed. If, in response to such a VM exit, a VM monitor re-enters 
the guest to re-execute the instruction that caused the VM exit (for example, after clearing the VM-execution control that caused 
the VM exit), the instruction may encounter a code breakpoint that has already been processed. A VM monitor can avoid this by 
setting the guest value of RFLAGS.RF to 1 before resuming guest software.

3. If this activity state was an inactive state resulting from execution of a specific instruction (HLT or MWAIT), the value saved for RIP 
by that VM exit will reference the following instruction.
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Such VM exits includes those caused by interrupts, non-maskable interrupts, system-management 
interrupts, INIT signals, and exceptions occurring in enclave mode as well as exceptions encountered 
during the delivery of such events incident to enclave mode.

A VM exit that is incident to delivery of an event injected by VM entry leaves this bit unmodified.
• The pending debug exceptions field is saved as clear for all VM exits except the following:

— A VM exit caused by an INIT signal, a machine-check exception, or a system-management interrupt 
(SMI).

— A VM exit with basic exit reason “TPR below threshold”,1 “virtualized EOI”, “APIC write”, or “monitor trap 
flag.”

— VM exits that are not caused by debug exceptions and that occur while there is MOV-SS blocking of debug 
exceptions.

For VM exits that do not clear the field, the value saved is determined as follows:

— Each of bits 3:0 may be set if it corresponds to a matched breakpoint. This may be true even if the corre-
sponding breakpoint is not enabled in DR7.

— Suppose that a VM exit is due to an INIT signal, a machine-check exception, or an SMI; or that a VM exit 
has basic exit reason “TPR below threshold” or “monitor trap flag.” In this case, the value saved sets bits 
corresponding to the causes of any debug exceptions that were pending at the time of the VM exit.

If the VM exit occurs immediately after VM entry, the value saved may match that which was loaded on 
VM entry (see Section 26.6.3). Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 in any of the following cases:

— If there was at least one matched data or I/O breakpoint that was enabled in DR7.

— If it had been set on VM entry, causing there to be valid pending debug exceptions (see Section 
26.6.3) and the VM exit occurred before those exceptions were either delivered or lost.

— If the XBEGIN instruction was executed immediately before the VM exit and advanced debugging 
of RTM transactional regions had been enabled (see Section 15.3.7, “RTM-Enabled Debugger 
Support,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1). (This 
does not apply to VM exits with basic exit reason “monitor trap flag.”)

In other cases, bit 12 is cleared to 0.

• Bit 14 (BS) is set if RFLAGS.TF = 1 in either of the following cases:

— IA32_DEBUGCTL.BTF = 0 and the cause of a pending debug exception was the execution of a 
single instruction.

— IA32_DEBUGCTL.BTF = 1 and the cause of a pending debug exception was a taken branch.

• Bit 16 (RTM) is set if a debug exception (#DB) or a breakpoint exception (#BP) occurred inside an RTM 
region while advanced debugging of RTM transactional regions had been enabled. (This does not apply 
to VM exits with basic exit reason “monitor trap flag.”)

— Suppose that a VM exit is due to another reason (but not a debug exception) and occurs while there is 
MOV-SS blocking of debug exceptions. In this case, the value saved sets bits corresponding to the causes 
of any debug exceptions that were pending at the time of the VM exit. If the VM exit occurs immediately 
after VM entry (no instructions were executed in VMX non-root operation), the value saved may match 
that which was loaded on VM entry (see Section 26.6.3). Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched data or I/O breakpoint that 
was enabled in DR7. Bit 12 is also set if it had been set on VM entry, causing there to be valid pending 

1. This item includes VM exits that occur as a result of certain VM entries (Section 26.6.7).
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debug exceptions (see Section 26.6.3) and the VM exit occurred before those exceptions were either 
delivered or lost. In other cases, bit 12 is cleared to 0.

• The setting of bit 14 (BS) is implementation-specific. However, it is not set if RFLAGS.TF = 0 or 
IA32_DEBUGCTL.BTF = 1.

— The reserved bits in the field are cleared.
• If the “save VMX-preemption timer value” VM-exit control is 1, the value of timer is saved into the VMX-

preemption timer-value field. This is the value loaded from this field on VM entry as subsequently 
decremented (see Section 25.5.1). VM exits due to timer expiration save the value 0. Other VM exits may also 
save the value 0 if the timer expired during VM exit. (If the “save VMX-preemption timer value” VM-exit 
control is 0, VM exit does not modify the value of the VMX-preemption timer-value field.)

• If the logical processor supports the 1-setting of the “enable EPT” VM-execution control, values are saved into 
the four (4) PDPTE fields as follows:

— If the “enable EPT” VM-execution control is 1 and the logical processor was using PAE paging at the time 
of the VM exit, the PDPTE values currently in use are saved:1

• The values saved into bits 11:9 of each of the fields is undefined.

• If the value saved into one of the fields has bit 0 (present) clear, the value saved into bits 63:1 of that 
field is undefined. That value need not correspond to the value that was loaded by VM entry or to any 
value that might have been loaded in VMX non-root operation.

• If the value saved into one of the fields has bit 0 (present) set, the value saved into bits 63:12 of the 
field is a guest-physical address.

— If the “enable EPT” VM-execution control is 0 or the logical processor was not using PAE paging at the time 
of the VM exit, the values saved are undefined.

...

27.5.1 Loading Host Control Registers, Debug Registers, MSRs
VM exits load new values for controls registers, debug registers, and some MSRs:
• CR0, CR3, and CR4 are loaded from the CR0 field, the CR3 field, and the CR4 field, respectively, with the 

following exceptions:

— The following bits are not modified:

• For CR0, ET, CD, NW; bits 63:32 (on processors that support Intel 64 architecture), 28:19, 17, and 
15:6; and any bits that are fixed in VMX operation (see Section 23.8).2

• For CR3, bits 63:52 and bits in the range 51:32 beyond the processor’s physical-address width (they 
are cleared to 0).3 (This item applies only to processors that support Intel 64 architecture.)

• For CR4, any bits that are fixed in VMX operation (see Section 23.8).

— CR4.PAE is set to 1 if the “host address-space size” VM-exit control is 1.

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A. “Enable EPT” is a secondary processor-based VM-execution control. If 
bit 31 of the primary processor-based VM-execution controls is 0, VM exit functions as if the “enable EPT” VM-execution control 
were 0. See Section 24.6.2.

2. Bits 28:19, 17, and 15:6 of CR0 and CR0.ET are unchanged by executions of MOV to CR0. CR0.ET is always 1 and the other bits are 
always 0.

3. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.
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— CR4.PCIDE is set to 0 if the “host address-space size” VM-exit control is 0.
• DR7 is set to 400H.
• The following MSRs are established as follows:

— The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field. Since that field has only 32 
bits, bits 63:32 of the MSR are cleared to 0. 

— IA32_SYSENTER_ESP MSR and IA32_SYSENTER_EIP MSR are loaded from the IA32_SYSENTER_ESP field 
and the IA32_SYSENTER_EIP field, respectively.

If the processor does not support the Intel 64 architecture, these fields have only 32 bits; bits 63:32 of the 
MSRs are cleared to 0.

If the processor does support the Intel 64 architecture and the processor supports N < 64 linear-address 
bits, each of bits 63:N is set to the value of bit N–1.1

— The following steps are performed on processors that support Intel 64 architecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields for FS and GS, respectively 
(see Section 27.5.2).

• The LMA and LME bits in the IA32_EFER MSR are each loaded with the setting of the “host address-
space size” VM-exit control.

— If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, the IA32_PERF_GLOBAL_CTRL MSR is loaded 
from the IA32_PERF_GLOBAL_CTRL field. Bits that are reserved in that MSR are maintained with their 
reserved values.

— If the “load IA32_PAT” VM-exit control is 1, the IA32_PAT MSR is loaded from the IA32_PAT field. Bits that 
are reserved in that MSR are maintained with their reserved values.

— If the “load IA32_EFER” VM-exit control is 1, the IA32_EFER MSR is loaded from the IA32_EFER field. Bits 
that are reserved in that MSR are maintained with their reserved values.

— If the “clear IA32_BNDCFGS” VM-exit control is 1, the IA32_BNDCFGS MSR is cleared to 
00000000_00000000H; otherwise, it is not modified.

With the exception of FS.base and GS.base, any of these MSRs is subsequently overwritten if it appears in the 
VM-exit MSR-load area. See Section 27.6.

...

25. Updates to Chapter 29, Volume 3C
Change bars show changes to Chapter 29 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

29.2.2 Virtual-Interrupt Delivery
If a virtual interrupt has been recognized (see Section 29.2.1), it is delivered at an instruction boundary when the 
following conditions all hold: (1) RFLAGS.IF = 1; (2) there is no blocking by STI; (3) there is no blocking by MOV 
SS or by POP SS; and (4) the “interrupt-window exiting” VM-execution control is 0.

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of linear-address bits supported 
is returned in bits 15:8 of EAX.
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Virtual-interrupt delivery has the same priority as that of VM exits due to the 1-setting of the “interrupt-window 
exiting” VM-execution control.1 Thus, non-maskable interrupts (NMIs) and higher priority events take priority 
over delivery of a virtual interrupt; delivery of a virtual interrupt takes priority over external interrupts and lower 
priority events.

Virtual-interrupt delivery wakes a logical processor from the same inactive activity states as would an external 
interrupt. Specifically, it wakes a logical processor from the states entered using the HLT and MWAIT instructions. 
It does not wake a logical processor in the shutdown state or in the wait-for-SIPI state.

Virtual-interrupt delivery updates the guest interrupt status (both RVI and SVI; see Section 24.4.2) and delivers 
an event within VMX non-root operation without a VM exit. The following pseudocode details the behavior of 
virtual-interrupt delivery (see Section 29.1.1 for definition of VISR, VIRR, and VPPR):

Vector ← RVI;
VISR[Vector] ← 1;
SVI ← Vector;
VPPR ← Vector & F0H;
VIRR[Vector] ← 0;
IF any bits set in VIRR

THEN RVI ← highest index of bit set in VIRR
ELSE RVI ← 0;

FI;
deliver interrupt with Vector through IDT;
cease recognition of any pending virtual interrupt;

If a logical processor is in enclave mode, an Asynchronous Enclave Exit (AEX) occurs before delivery of a virtual 
interrupt (see Chapter 40, “Enclave Exiting Events”).

...

29.4 VIRTUALIZING MEMORY-MAPPED APIC ACCESSES
When the local APIC is in xAPIC mode, software accesses the local APIC’s control registers using a memory-
mapped interface. Specifically, software uses linear addresses that translate to physical addresses on page frame 
indicated by the base address in the IA32_APIC_BASE MSR (see Section 10.4.4, “Local APIC Status and Loca-
tion”). This section describes how these accesses can be virtualized.

A virtual-machine monitor (VMM) can virtualize these memory-mapped APIC accesses by ensuring that any 
access to a linear address that would access the local APIC instead causes a VM exit. This could be done using 
paging or the extended page-table mechanism (EPT). Another way is by using the 1-setting of the “virtualize APIC 
accesses” VM-execution control.

If the “virtualize APIC accesses” VM-execution control is 1, the logical processor treats specially memory accesses 
using linear addresses that translate to physical addresses in the 4-KByte APIC-access page.2 (The APIC-access 
page is identified by the APIC-access address, a field in the VMCS; see Section 24.6.8.)

In general, an access to the APIC-access page causes an APIC-access VM exit. APIC-access VM exits provide a 
VMM with information about the access causing the VM exit. Section 29.4.1 discusses the priority of APIC-access 
VM exits.

1. A logical processor never recognizes or delivers a virtual interrupt if the “interrupt-window exiting” VM-execution control is 1. 
Because of this, the relative priority of virtual-interrupt delivery and VM exits due to the 1-setting of that control is not defined.

2. Even when addresses are translated using EPT (see Section 28.2), the determination of whether an APIC-access VM exit occurs 
depends on an access’s physical address, not its guest-physical address. Even when CR0.PG = 0, ordinary memory accesses by 
software use linear addresses; the fact that CR0.PG = 0 means only that the identity translation is used to convert linear 
addresses to physical (or guest-physical) addresses.
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Certain VM-execution controls enable the processor to virtualize certain accesses to the APIC-access page without 
a VM exit. In general, this virtualization causes these accesses to be made to the virtual-APIC page instead of the 
APIC-access page.

NOTES
Unless stated otherwise, this section characterizes only linear accesses to the APIC-access page; 
an access to the APIC-access page is a linear access if (1) it results from a memory access using 
a linear address; and (2) the access’s physical address is the translation of that linear address. 
Section 29.4.6 discusses accesses to the APIC-access page that are not linear accesses.
The distinction between the APIC-access page and the virtual-APIC page allows a VMM to share 
paging structures or EPT paging structures among the virtual processors of a virtual machine (the 
shared paging structures referencing the same APIC-access address, which appears in the VMCS 
of all the virtual processors) while giving each virtual processor its own virtual APIC (the VMCS of 
each virtual processor will have a unique virtual-APIC address).

Section 29.4.2 discusses when and how the processor may virtualize read accesses from the APIC-access page. 
Section 29.4.3 does the same for write accesses. When virtualizing a write to the APIC-access page, the processor 
typically takes actions in addition to passing the write through to the virtual-APIC page.

The discussion in those sections uses the concept of an operation within which these memory accesses may 
occur. For those discussions, an “operation” can be an iteration of a REP-prefixed string instruction, an execution 
of any other instruction, or delivery of an event through the IDT.

The 1-setting of the “virtualize APIC accesses” VM-execution control may also affect accesses to the APIC-access 
page that do not result directly from linear addresses. This is discussed in Section 29.4.6.

Special treatment may apply to Intel SGX instructions or if the logical processor is in enclave mode. See Section 
42.5.3 for details.

...

29.6 POSTED-INTERRUPT PROCESSING
Posted-interrupt processing is a feature by which a processor processes the virtual interrupts by recording them 
as pending on the virtual-APIC page.

Posted-interrupt processing is enabled by setting the “process posted interrupts” VM-execution control. The 
processing is performed in response to the arrival of an interrupt with the posted-interrupt notification 
vector. In response to such an interrupt, the processor processes virtual interrupts recorded in a data structure 
called a posted-interrupt descriptor. The posted-interrupt notification vector and the address of the posted-
interrupt descriptor are fields in the VMCS; see Section 24.6.8.

If the “process posted interrupts” VM-execution control is 1, a logical processor uses a 64-byte posted-interrupt 
descriptor located at the posted-interrupt descriptor address. The posted-interrupt descriptor has the following 
format:

The notation PIR (posted-interrupt requests) refers to the 256 posted-interrupt bits in the posted-interrupt 
descriptor.

Use of the posted-interrupt descriptor differs from that of other data structures that are referenced by pointers in 
a VMCS. There is a general requirement that software ensure that each such data structure is modified only when 
no logical processor with a current VMCS that references it is in VMX non-root operation. That requirement does 
not apply to the posted-interrupt descriptor. There is a requirement, however, that such modifications be done 
using locked read-modify-write instructions.
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If the “external-interrupt exiting” VM-execution control is 1, any unmasked external interrupt causes a VM exit 
(see Section 25.2). If the “process posted interrupts” VM-execution control is also 1, this behavior is changed and 
the processor handles an external interrupt as follows:1

1. The local APIC is acknowledged; this provides the processor core with an interrupt vector, called here the 
physical vector.

2. If the physical vector equals the posted-interrupt notification vector, the logical processor continues to the 
next step. Otherwise, a VM exit occurs as it would normally due to an external interrupt; the vector is saved 
in the VM-exit interruption-information field.

3. The processor clears the outstanding-notification bit in the posted-interrupt descriptor. This is done atomically 
so as to leave the remainder of the descriptor unmodified (e.g., with a locked AND operation).

4. The processor writes zero to the EOI register in the local APIC; this dismisses the interrupt with the posted-
interrupt notification vector from the local APIC.

5. The logical processor performs a logical-OR of PIR into VIRR and clears PIR. No other agent can read or write 
a PIR bit (or group of bits) between the time it is read (to determine what to OR into VIRR) and when it is 
cleared.

6. The logical processor sets RVI to be the maximum of the old value of RVI and the highest index of all bits that 
were set in PIR; if no bit was set in PIR, RVI is left unmodified.

7. The logical processor evaluates pending virtual interrupts as described in Section 29.2.1.

The logical processor performs the steps above in an uninterruptible manner. If step #7 leads to recognition of a 
virtual interrupt, the processor may deliver that interrupt immediately.

Steps #1 to #7 above occur when the interrupt controller delivers an unmasked external interrupt to the CPU 
core. This delivery can occur when the logical processor is in the active, HLT, or MWAIT states. If the logical 
processor had been in the active or MWAIT state before the arrival of the interrupt, it is in the active state 
following completion of step #7; if it had been in the HLT state, it returns to the HLT state after step #7 (if a 
pending virtual interrupt was recognized, the logical processor may immediately wake from the HLT state).

If an external interrupt causes a VM exit while the logical processor is in enclave mode, an Asynchronous Enclave 
Exit (AEX) occurs before the VM exit is delivered (see Chapter 40, “Enclave Exiting Events”). If the “external-
interrupt exiting” VM-execution control is 1, any unmasked external interrupt may cause an AEX even if no 
VM exit occurs (e.g., if the process above does not cause a VM exit at step #2).

...

Table 29-1    Format of Posted-Interrupt Descriptor

Bit
Position(s)

Name Description

255:0 Posted-interrupt requests One bit for each interrupt vector. There is a posted-interrupt request for a vector if 
the corresponding bit is 1

256 Outstanding notification If this bit is set, there is a notification outstanding for one or more posted interrupts 
in bits 255:0

511:257 Reserved for software and 
other agents

These bits may be used by software and by other agents in the system (e.g., 
chipset). The processor does not modify these bits.

1. VM entry ensures that the “process posted interrupts” VM-execution control is 1 only if the “external-interrupt exiting” VM-execu-
tion control is also 1. SeeSection 26.2.1.1.
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26. Updates to Chapter 30, Volume 3C
Change bars show changes to Chapter 30 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B: System Programming Guide, Part 2.

------------------------------------------------------------------------------------------

...

VMXON—Enter VMX Operation

Description

Puts the logical processor in VMX operation with no current VMCS, blocks INIT signals, disables A20M, and clears 
any address-range monitoring established by the MONITOR instruction.1 

The operand of this instruction is a 4KB-aligned physical address (the VMXON pointer) that references the VMXON 
region, which the logical processor may use to support VMX operation. This operand is always 64 bits and is 
always in memory. 

Operation

IF (register operand) or (CR0.PE = 0) or (CR4.VMXE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF not in VMX operation
THEN

IF (CPL > 0) or (in A20M mode) or
(the values of CR0 and CR4 are not supported in VMX operation; see Section 23.8) or
(bit 0 (lock bit) of IA32_FEATURE_CONTROL MSR is clear) or
(in SMX operation2 and bit 1 of IA32_FEATURE_CONTROL MSR is clear) or
(outside SMX operation and bit 2 of IA32_FEATURE_CONTROL MSR is clear)

THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned or 
addr sets any bits beyond the physical-address width3

THEN VMfailInvalid;
ELSE

rev ← 32 bits located at physical address addr;
IF rev[30:0] ≠ VMCS revision identifier supported by processor OR rev[31] = 1

THEN VMfailInvalid;
ELSE

Opcode Instruction Description

F3 0F C7 /6 VMXON m64 Enter VMX root operation.

1. See the information on MONITOR/MWAIT in Chapter 8, “Multiple-Processor Management,” of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A.

2. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A log-
ical processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last 
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference.”

3. If IA32_VMX_BASIC[48] is read as 1, VMfailInvalid occurs if addr sets any bits in the range 63:32; see Appendix A.1.
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current-VMCS pointer ← FFFFFFFF_FFFFFFFFH;
enter VMX operation;
block INIT signals;
block and disable A20M;
clear address-range monitoring;
IF the processor supports Intel PT but does not allow it to be used in VMX operation1

THEN IA32_RTIT_CTL.TraceEn ← 0;
FI;
VMsucceed;

FI;
FI;

FI;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE VMfail(“VMXON executed in VMX root operation”);

FI;

Flags Affected
See the operation section and Section 30.2.

Protected Mode Exceptions
#GP(0) If executed outside VMX operation with CPL>0 or with invalid CR0 or CR4 fixed bits.

If executed in A20M mode.
If the memory source operand effective address is outside the CS, DS, ES, FS, or GS segment 
limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the memory source operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If operand is a register.

If executed with CR4.VMXE = 0.

Real-Address Mode Exceptions
#UD If executed outside VMX root operation.

Virtual-8086 Mode Exceptions
#UD The VMXON instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMXON instruction is not recognized in compatibility mode.

1. Software should read the VMX capability MSR IA32_VMX_MISC to determine whether the processor allows Intel PT to be used in 
VMX operation (see Appendix A.6).
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64-Bit Mode Exceptions
#GP(0) If executed outside VMX operation with CPL > 0 or with invalid CR0 or CR4 fixed bits.

If executed in A20M mode.
If the source operand is in the CS, DS, ES, FS, or GS segments and the memory address is in 
a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the source operand is in the SS segment and the memory address is in a non-canonical 

form.
#UD If operand is a register.

If executed with CR4.VMXE = 0.

...

27. Updates to Chapter 35, Volume 3C
Change bars show changes to Chapter 35 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C: System Programming Guide, Part 3.

------------------------------------------------------------------------------------------

...
This chapter lists MSRs across Intel processor families. All MSRs listed can be read with the RDMSR and written 
with the WRMSR instructions. 

Register addresses are given in both hexadecimal and decimal. The register name is the mnemonic register name 
and the bit description describes individual bits in registers.

Model specific registers and its bit-fields may be supported for a finite range of processor families/models. To 
distinguish between different processor family and/or models, software must use CPUID.01H leaf function to 
query the combination of DisplayFamily and DisplayModel to determine model-specific availability of MSRs (see 
CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A). Table 35-1 lists the signature values of DisplayFamily and DisplayModel for 
various processor families or processor number series.

Table 35-1    CPUID Signature Values of DisplayFamily_DisplayModel 
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_57H Next Generation Intel® Xeon Phi™ Processor Family 

06_8EH, 06_9EH Future Intel® Core Processors 

06_55H Future Intel® Xeon Processors 

06_4EH, 06_5EH 6th generation Intel Core processors and Intel Xeon processor E3-1500m v5 product family and E3-
1200 v5 product family based on Skylake microarchitecture

06_56H Intel Xeon processor D-1500 product family based on Broadwell microarchitecture

06_4FH Intel Xeon processor E5 v4 Family based on Broadwell microarchitecture

06_47H 5th generation Intel Core processors, Intel Xeon processor E3-1200 v4 product family based on 
Broadwell microarchitecture

06_3DH Intel Core M-5xxx Processor, 5th generation Intel Core processors based on Broadwell 
microarchitecture

06_3FH Intel Xeon processor E5-4600/2600/1600 v3 product families, Intel Xeon processor E7 v3 product 
families based on Haswell-E microarchitecture, Intel Core i7-59xx Processor Extreme Edition
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06_3CH, 06_45H, 06_46H 4th Generation Intel Core processor and Intel Xeon processor E3-1200 v3 product family based on 
Haswell microarchitecture

06_3EH Intel Xeon processor E7-8800/4800/2800 v2 product families based on Ivy Bridge-E 
microarchitecture

06_3EH Intel Xeon processor E5-2600/1600 v2 product families and Intel Xeon processor E5-2400 v2 
product family based on Ivy Bridge-E microarchitecture, Intel Core i7-49xx Processor Extreme Edition

06_3AH 3rd Generation Intel Core Processor and Intel Xeon processor E3-1200 v2 product family based on Ivy 
Bridge microarchitecture

06_2DH Intel Xeon processor E5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core 
i7-39xx Processor Extreme Edition

06_2FH Intel Xeon Processor E7 Family

06_2AH Intel Xeon processor E3-1200 product family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx 
Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series

06_1DH Intel Xeon processor MP 7400 series

06_17H Intel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000 
series

06_0FH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series, 
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel 
Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_5FH Future Intel® Atom™ processors based on Goldmont Microarchitecture

06_5CH Next Generation Intel® Atom™ processors based on Goldmont Microarchitecture

06_4CH Intel® Atom™ processor X7-Z8000 and X5-Z8000 series based on Airmont Microarchitecture

06_5DH Intel® Atom™ processor X3-C3000 based on Silvermont Microarchitecture

06_5AH Intel Atom processor Z3500 series

06_4AH Intel Atom processor Z3400 series

06_37H Intel Atom processor E3000 series, Z3600 series, Z3700 series

06_4DH Intel Atom processor C2000 series

06_36H Intel Atom processor S1000 Series

06_1CH, 06_26H, 06_27H, 
06_35H, 06_36H

Intel Atom processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D 
processors

0F_03H, 0F_04H Intel Xeon processor, Intel Xeon processor MP, Intel Pentium 4, Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

Table 35-1    CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel  (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series
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35.1 ARCHITECTURAL MSRS
Many MSRs have carried over from one generation of IA-32 processors to the next and to Intel 64 processors. A 
subset of MSRs and associated bit fields, which do not change on future processor generations, are now consid-
ered architectural MSRs. For historical reasons (beginning with the Pentium 4 processor), these “architectural 
MSRs” were given the prefix “IA32_”. Table 35-2 lists the architectural MSRs, their addresses, their current 
names, their names in previous IA-32 processors, and bit fields that are considered architectural. MSR addresses 
outside Table 35-2 and certain bit fields in an MSR address that may overlap with architectural MSR addresses are 
model-specific. Code that accesses a machine specified MSR and that is executed on a processor that does not 
support that MSR will generate an exception.

Architectural MSR or individual bit fields in an architectural MSR may be introduced or transitioned at the granu-
larity of certain processor family/model or the presence of certain CPUID feature flags. The right-most column of 
Table 35-2 provides information on the introduction of each architectural MSR or its individual fields. This informa-
tion is expressed either as signature values of “DF_DM” (see Table 35-1) or via CPUID flags.

Certain bit field position may be related to the maximum physical address width, the value of which is expressed 
as “MAXPHYADDR” in Table 35-2. “MAXPHYADDR” is reported by CPUID.8000_0008H leaf.

MSR address range between 40000000H - 400000FFH is marked as a specially reserved range. All existing and 
future processors will not implement any features using any MSR in this range.

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

06_7H, 06_08H, 06_0AH, 
06_0BH

Intel Pentium III Xeon processor, Intel Pentium III processor

06_03H, 06_05H Intel Pentium II Xeon processor, Intel Pentium II processor 

06_01H Intel Pentium Pro processor 

05_01H, 05_02H, 05_04H Intel Pentium processor, Intel Pentium processor with MMX Technology

Intel Quark X1000 processor can be identified by the signature of DisplayFamily_DisplayModel = 05_09H and SteppingID = 0

Table 35-1    CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel  (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series
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0H 0 IA32_P5_MC_ADDR (P5_MC_ADDR) See Section 35.22, “MSRs in Pentium 
Processors.”

Pentium Processor 
(05_01H)

1H 1 IA32_P5_MC_TYPE (P5_MC_TYPE) See Section 35.22, “MSRs in Pentium 
Processors.”

DF_DM = 05_01H

6H 6 IA32_MONITOR_FILTER_SIZE See Section 8.10.5, “Monitor/Mwait 
Address Range Determination.”

0F_03H

10H 16 IA32_TIME_STAMP_
COUNTER (TSC)

See Section 17.15, “Time-Stamp Counter.” 05_01H
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17H 23 IA32_PLATFORM_ID 
(MSR_PLATFORM_ID )

Platform ID (RO) 
The operating system can use this MSR to 
determine “slot” information for the 
processor and the proper microcode update 
to load.

06_01H

49:0 Reserved.

52:50 Platform Id (RO) 

Contains information concerning the 
intended platform for the processor. 

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4 
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

1BH 27 IA32_APIC_BASE (APIC_BASE) 06_01H

7:0 Reserved

8 BSP flag (R/W)

9 Reserved

10 Enable x2APIC mode 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYADDR - 1):12 APIC Base (R/W)

63: MAXPHYADDR Reserved

3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64 Processor 
(R/W)

If any one enumeration 
condition for defined bit 
field holds
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0 Lock bit (R/WO): (1 = locked). When set, 
locks this MSR from being written, writes 
to this bit will result in GP(0).

Note: Once the Lock bit is set, the contents 
of this register cannot be modified. 
Therefore the lock bit must be set after 
configuring support for Intel Virtualization 
Technology and prior to transferring control 
to an option ROM or the OS. Hence, once 
the Lock bit is set, the entire 
IA32_FEATURE_CONTROL contents are 
preserved across RESET when PWRGOOD is 
not deasserted.

If any one enumeration 
condition for defined bit 
field position greater than 
bit 0 holds

1 Enable VMX inside SMX operation (R/WL): 
This bit enables a system executive to use 
VMX in conjunction with SMX to support 
Intel® Trusted Execution Technology.

BIOS must set this bit only when the CPUID 
function 1 returns VMX feature flag and 
SMX feature flag set (ECX bits 5 and 6 
respectively).

If CPUID.01H:ECX[5] = 1 
&& CPUID.01H:ECX[6] = 1

2 Enable VMX outside SMX operation (R/WL): 
This bit enables VMX for system executive 
that do not require SMX.

BIOS must set this bit only when the CPUID 
function 1 returns VMX feature flag set 
(ECX bit 5).

If CPUID.01H:ECX[5] = 1 

7:3 Reserved

14:8 SENTER Local Function Enables (R/WL): 
When set, each bit in the field represents 
an enable control for a corresponding 
SENTER function. This bit is supported only 
if CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[6] = 1

15 SENTER Global Enable (R/WL): This bit must 
be set to enable SENTER leaf functions. 
This bit is supported only if 
CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[6] = 1

16 Reserved

17 SGX Launch Control Enable (R/WL): This bit 
must be set to enable runtime 
reconfiguration of SGX Launch Control via 
IA32_SGXLEPUBKEYHASHn MSR. 

If CPUID.(EAX=07H, 
ECX=0H): ECX[30] = 1

18 SGX Global Enable (R/WL): This bit must be 
set to enable SGX leaf functions. 

If CPUID.(EAX=07H, 
ECX=0H): EBX[2] = 1
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19 Reserved

20 LMCE On (R/WL): When set, system 
software can program the MSRs associated 
with LMCE to configure delivery of some 
machine check exceptions to a single logical 
processor. 

If IA32_MCG_CAP[27] = 1

63:21 Reserved

3BH 59 IA32_TSC_ADJUST Per Logical Processor TSC Adjust (R/Write 
to clear)

If CPUID.(EAX=07H, 
ECX=0H): EBX[1] = 1

63:0 THREAD_ADJUST: 

Local offset value of the IA32_TSC for a 
logical processor. Reset value is Zero. A 
write to IA32_TSC will modify the local 
offset in IA32_TSC_ADJUST and the 
content of IA32_TSC, but does not affect 
the internal invariant TSC hardware. 

79H 121 IA32_BIOS_UPDT_TRIG 
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR instruction to this MSR 
causes a microcode update to be loaded 
into the processor. See Section 9.11.6, 
“Microcode Update Loader.”

A processor may prevent writing to this 
MSR when loading guest states on VM 
entries or saving guest states on VM exits.

06_01H

8BH 139 IA32_BIOS_SIGN_ID (BIOS_SIGN/
BBL_CR_D3)

BIOS Update Signature (RO)

Returns the microcode update signature 
following the execution of CPUID.01H.

A processor may prevent writing to this 
MSR when loading guest states on VM 
entries or saving guest states on VM exits.

06_01H

31:0 Reserved

63:32 It is recommended that this field be pre-
loaded with 0 prior to executing CPUID. 

If the field remains 0 following the 
execution of CPUID; this indicates that no 
microcode update is loaded. Any non-zero 
value is the microcode update signature.
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8CH 140 IA32_SGXLEPUBKEYHASH0 IA32_SGXLEPUBKEYHASH[63:0] (R/W)

Bits 63:0 of the SHA256 digest of the 
SIGSTRUCT.MODULUS for SGX Launch 
Enclave. On reset, the default value is the 
digest of Intel’s signing key.

Read permitted If 
CPUID.(EAX=12H,ECX=0H): 
EAX[0]=1,

Write permitted if 
CPUID.(EAX=12H,ECX=0H): 
EAX[0]=1 && 
IA32_FEATURE_CONTROL[
17] = 1 && 
IA32_FEATURE_CONTROL[
0] = 1

8DH 141 IA32_SGXLEPUBKEYHASH1 IA32_SGXLEPUBKEYHASH[127:64] (R/W)

Bits 127:64 of the SHA256 digest of the 
SIGSTRUCT.MODULUS for SGX Launch 
Enclave. On reset, the default value is the 
digest of Intel’s signing key.

Read permitted If 
CPUID.(EAX=12H,ECX=0H): 
EAX[0]=1,

Write permitted if 
CPUID.(EAX=12H,ECX=0H): 
EAX[0]=1 && 
IA32_FEATURE_CONTROL[
17] = 1 && 
IA32_FEATURE_CONTROL[
0] = 1

8EH 142 IA32_SGXLEPUBKEYHASH2 IA32_SGXLEPUBKEYHASH[191:128] (R/W)

Bits 191:128 of the SHA256 digest of the 
SIGSTRUCT.MODULUS for SGX Launch 
Enclave. On reset, the default value is the 
digest of Intel’s signing key.

Read permitted If 
CPUID.(EAX=12H,ECX=0H): 
EAX[0]=1,

Write permitted if 
CPUID.(EAX=12H,ECX=0H): 
EAX[0]=1 && 
IA32_FEATURE_CONTROL[
17] = 1 && 
IA32_FEATURE_CONTROL[
0] = 1

8FH 143 IA32_SGXLEPUBKEYHASH3 IA32_SGXLEPUBKEYHASH[255:192] (R/W)

Bits 255:192 of the SHA256 digest of the 
SIGSTRUCT.MODULUS for SGX Launch 
Enclave. On reset, the default value is the 
digest of Intel’s signing key.

9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration (R/W) If CPUID.01H: ECX[5]=1 || 
CPUID.01H: ECX[6] = 1

0 Valid (R/W)

1 Reserved

2 Controls SMI unblocking by VMXOFF (see 
Section 34.14.4)

If IA32_VMX_MISC[28]

11:3 Reserved

31:12 MSEG Base (R/W)

63:32 Reserved

9EH 158 IA32_SMBASE Base address of the logical processor’s 
SMRAM image (RO, SMM only)

If IA32_VMX_MISC[15]

C1H 193 IA32_PMC0 (PERFCTR0) General Performance Counter 0 (R/W) If CPUID.0AH: EAX[15:8] > 
0
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C2H 194 IA32_PMC1 (PERFCTR1) General Performance Counter 1 (R/W) If CPUID.0AH: EAX[15:8] > 
1

C3H 195 IA32_PMC2 General Performance Counter 2 (R/W) If CPUID.0AH: EAX[15:8] > 
2

C4H 196 IA32_PMC3 General Performance Counter 3 (R/W) If CPUID.0AH: EAX[15:8] > 
3

C5H 197 IA32_PMC4 General Performance Counter 4 (R/W) If CPUID.0AH: EAX[15:8] > 
4

C6H 198 IA32_PMC5 General Performance Counter 5 (R/W) If CPUID.0AH: EAX[15:8] > 
5

C7H 199 IA32_PMC6 General Performance Counter 6 (R/W) If CPUID.0AH: EAX[15:8] > 
6

C8H 200 IA32_PMC7 General Performance Counter 7 (R/W) If CPUID.0AH: EAX[15:8] > 
7

E7H 231 IA32_MPERF TSC Frequency Clock Counter (R/Write to 
clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_MCNT: C0 TSC Frequency Clock Count

Increments at fixed interval (relative to TSC 
freq.) when the logical processor is in C0. 

Cleared upon overflow / wrap-around of 
IA32_APERF. 

E8H 232 IA32_APERF Actual Performance Clock Counter (R/Write 
to clear).

If CPUID.06H: ECX[0] = 1

63:0 C0_ACNT: C0 Actual Frequency Clock 
Count

Accumulates core clock counts at the 
coordinated clock frequency, when the 
logical processor is in C0. 

Cleared upon overflow / wrap-around of 
IA32_MPERF.

FEH 254 IA32_MTRRCAP (MTRRcap) MTRR Capability (RO) Section 11.11.2.1, 
“IA32_MTRR_DEF_TYPE MSR.”

06_01H

7:0 VCNT: The number of variable memory 
type ranges in the processor.

8 Fixed range MTRRs are supported when 
set.

9 Reserved.

10 WC Supported when set.

11 SMRR Supported when set.

63:12 Reserved.
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174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector

63:16 Reserved.

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H

179H 377 IA32_MCG_CAP (MCG_CAP) Global Machine Check Capability (RO) 06_01H

7:0 Count: Number of reporting banks.

8 MCG_CTL_P: IA32_MCG_CTL is present if 
this bit is set

9 MCG_EXT_P: Extended machine check 
state registers are present if this bit is set

10 MCP_CMCI_P: Support for corrected MC 
error event is present.

06_01H

11 MCG_TES_P: Threshold-based error status 
register are present if this bit is set.

15:12 Reserved

23:16 MCG_EXT_CNT: Number of extended 
machine check state registers present.

24 MCG_SER_P: The processor supports 
software error recovery if this bit is set.

25 Reserved.

26 MCG_ELOG_P: Indicates that the processor 
allows platform firmware to be invoked 
when an error is detected so that it may 
provide additional platform specific 
information in an ACPI format “Generic 
Error Data Entry” that augments the data 
included in machine check bank registers.

06_3EH

27 MCG_LMCE_P: Indicates that the processor 
support extended state in 
IA32_MCG_STATUS and associated 
MSR necessary to configure Local 
Machine Check Exception (LMCE).

06_3EH

63:28 Reserved.

17AH 378 IA32_MCG_STATUS (MCG_STATUS) Global Machine Check Status (R/W0) 06_01H

0 RIPV. Restart IP valid 06_01H

1 EIPV. Error IP valid 06_01H

2 MCIP. Machine check in progress 06_01H
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3 LMCE_S. If 
IA32_MCG_CAP.LMCE_P[2
7] =1

63:4 Reserved.

17BH 379 IA32_MCG_CTL (MCG_CTL) Global Machine Check Control (R/W) If IA32_MCG_CAP.CTL_P[8] 
=1

180H-
185H

384-
389

Reserved 06_0EH1

186H 390 IA32_PERFEVTSEL0 (PERFEVTSEL0) Performance Event Select Register 0 (R/W) If CPUID.0AH: EAX[15:8] > 
0

7:0 Event Select: Selects a performance event 
logic unit.

15:8 UMask: Qualifies the microarchitectural 
condition to detect on the selected event 
logic.

16 USR: Counts while in privilege level is not 
ring 0.

17 OS: Counts while in privilege level is ring 0.

18 Edge: Enables edge detection if set.

19 PC: enables pin control.

20 INT: enables interrupt on counter overflow.

21 AnyThread: When set to 1, it enables 
counting the associated event conditions 
occurring across all logical processors 
sharing a processor core. When set to 0, the 
counter only increments the associated 
event conditions occurring in the logical 
processor which programmed the MSR.

22 EN: enables the corresponding performance 
counter to commence counting when this 
bit is set.

23 INV: invert the CMASK.

31:24 CMASK: When CMASK is not zero, the 
corresponding performance counter 
increments each cycle if the event count is 
greater than or equal to the CMASK.

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 (PERFEVTSEL1) Performance Event Select Register 1 (R/W) If CPUID.0AH: EAX[15:8] > 
1

188H 392 IA32_PERFEVTSEL2 Performance Event Select Register 2 (R/W) If CPUID.0AH: EAX[15:8] > 
2
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189H 393 IA32_PERFEVTSEL3 Performance Event Select Register 3 (R/W) If CPUID.0AH: EAX[15:8] > 
3

18AH-
197H

394-
407

Reserved 06_0EH2

198H 408 IA32_PERF_STATUS (RO) 0F_03H

15:0 Current performance State Value

63:16 Reserved.

199H 409 IA32_PERF_CTL (R/W) 0F_03H

15:0 Target performance State Value

31:16 Reserved.

32 IDA Engage. (R/W)

When set to 1: disengages IDA

06_0FH (Mobile only)

63:33 Reserved.

19AH 410 IA32_CLOCK_MODULATION Clock Modulation Control (R/W)

See Section 14.7.3, “Software Controlled 
Clock Modulation.”

If CPUID.01H:EDX[22] = 1

0 Extended On-Demand Clock Modulation 
Duty Cycle:

If CPUID.06H:EAX[5] = 1

3:1 On-Demand Clock Modulation Duty Cycle: 
Specific encoded values for target duty 
cycle modulation.

If CPUID.01H:EDX[22] = 1

4 On-Demand Clock Modulation Enable: Set 1 
to enable modulation.

If CPUID.01H:EDX[22] = 1

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

Enables and disables the generation of an 
interrupt on temperature transitions 
detected with the processor’s thermal 
sensors and thermal monitor. 

See Section 14.7.2, “Thermal Monitor.”

If CPUID.01H:EDX[22] = 1

0 High-Temperature Interrupt Enable If CPUID.01H:EDX[22] = 1

1 Low-Temperature Interrupt Enable If CPUID.01H:EDX[22] = 1

2 PROCHOT# Interrupt Enable If CPUID.01H:EDX[22] = 1

3 FORCEPR# Interrupt Enable If CPUID.01H:EDX[22] = 1

4 Critical Temperature Interrupt Enable If CPUID.01H:EDX[22] = 1

7:5 Reserved.

14:8 Threshold #1 Value If CPUID.01H:EDX[22] = 1

15 Threshold #1 Interrupt Enable If CPUID.01H:EDX[22] = 1
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22:16 Threshold #2 Value If CPUID.01H:EDX[22] = 1

23 Threshold #2 Interrupt Enable If CPUID.01H:EDX[22] = 1

24 Power Limit Notification Enable If CPUID.06H:EAX[4] = 1

63:25 Reserved.

19CH 412 IA32_THERM_STATUS Thermal Status Information (RO)

Contains status information about the 
processor’s thermal sensor and automatic 
thermal monitoring facilities. 

See Section 14.7.2, “Thermal Monitor”

If CPUID.01H:EDX[22] = 1

0 Thermal Status (RO): If CPUID.01H:EDX[22] = 1

1 Thermal Status Log (R/W): If CPUID.01H:EDX[22] = 1

2 PROCHOT # or FORCEPR# event (RO) If CPUID.01H:EDX[22] = 1

3 PROCHOT # or FORCEPR# log (R/WC0) If CPUID.01H:EDX[22] = 1

4 Critical Temperature Status (RO) If CPUID.01H:EDX[22] = 1

5 Critical Temperature Status log (R/WC0) If CPUID.01H:EDX[22] = 1

6 Thermal Threshold #1 Status (RO) If CPUID.01H:ECX[8] = 1

7 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1

8 Thermal Threshold #2 Status (RO) If CPUID.01H:ECX[8] = 1

9 Thermal Threshold #2 log (R/WC0) If CPUID.01H:ECX[8] = 1

10 Power Limitation Status (RO) If CPUID.06H:EAX[4] = 1

11 Power Limitation log (R/WC0) If CPUID.06H:EAX[4] = 1

12 Current Limit Status (RO) If CPUID.06H:EAX[7] = 1

13 Current Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

14 Cross Domain Limit Status (RO) If CPUID.06H:EAX[7] = 1

15 Cross Domain Limit log (R/WC0) If CPUID.06H:EAX[7] = 1

22:16 Digital Readout (RO) If CPUID.06H:EAX[0] = 1

26:23 Reserved.

30:27 Resolution in Degrees Celsius (RO) If CPUID.06H:EAX[0] = 1

31 Reading Valid (RO) If CPUID.06H:EAX[0] = 1

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to 
be enabled and disabled.
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0 Fast-Strings Enable

When set, the fast-strings feature (for REP 
MOVS and REP STORS) is enabled (default); 
when clear, fast-strings are disabled.

0F_0H

2:1 Reserved.

3 Automatic Thermal Control Circuit Enable 
(R/W) 

1 = Setting this bit enables the thermal 
control circuit (TCC) portion of the 
Intel Thermal Monitor feature. This 
allows the processor to automatically 
reduce power consumption in 
response to TCC activation.

0 = Disabled.
Note: In some products clearing this bit 
might be ignored in critical thermal 
conditions, and TM1, TM2 and adaptive 
thermal throttling will still be activated.

The default value of this field varies with 
product . See respective tables where 
default value is listed. 

0F_0H

6:4 Reserved

7 Performance Monitoring Available (R) 

1 = Performance monitoring enabled
0 = Performance monitoring disabled

0F_0H

10:8 Reserved.

11 Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch 
trace storage (BTS)

0 = BTS is supported

0F_0H

12 Processor Event Based Sampling (PEBS) 
Unavailable (RO) 

1 = PEBS is not supported; 
0 = PEBS is supported. 

06_0FH

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology 
Enable (R/W)

0= Enhanced Intel SpeedStep 
Technology disabled

1 = Enhanced Intel SpeedStep 
Technology enabled

If CPUID.01H: ECX[7] =1

17 Reserved.
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18 ENABLE MONITOR FSM (R/W)

When this bit is set to 0, the MONITOR 
feature flag is not set (CPUID.01H:ECX[bit 
3] = 0). This indicates that MONITOR/
MWAIT are not supported. 

Software attempts to execute MONITOR/
MWAIT will cause #UD when this bit is 0.

When this bit is set to 1 (default), 
MONITOR/MWAIT are supported 
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag ECX[0] is not set 
(CPUID.01H:ECX[bit 0] = 0), the OS must 
not attempt to alter this bit. BIOS must 
leave it in the default state. Writing this bit 
when the SSE3 feature flag is set to 0 may 
generate a #GP exception.

0F_03H

21:19 Reserved.

22 Limit CPUID Maxval (R/W)

When this bit is set to 1, CPUID.00H returns 
a maximum value in EAX[7:0] of 2.

BIOS should contain a setup question that 
allows users to specify when the installed 
OS does not support CPUID functions 
greater than 2.

Before setting this bit, BIOS must execute 
the CPUID.0H and examine the maximum 
value returned in EAX[7:0]. If the maximum 
value is greater than 2, this bit is 
supported.

Otherwise, this bit is not supported. Setting 
this bit when the maximum value is not 
greater than 2 may generate a #GP 
exception.

Setting this bit may cause unexpected 
behavior in software that depends on the 
availability of CPUID leaves greater than 2.

0F_03H

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are 
disabled. xTPR messages are optional 
messages that allow the processor to 
inform the chipset of its priority.

if CPUID.01H:ECX[14] = 1

33:24 Reserved.

Table 35-2    IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name and bit 
fields 

(Former MSR Name) MSR/Bit Description

Comment

Hex Decimal



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 316

34 XD Bit Disable (R/W)

When set to 1, the Execute Disable Bit 
feature (XD Bit) is disabled and the XD Bit 
extended feature flag will be clear 
(CPUID.80000001H: EDX[20]=0).

When set to a 0 (default), the Execute 
Disable Bit feature (if available) allows the 
OS to enable PAE paging and take 
advantage of data only pages.

BIOS must not alter the contents of this bit 
location, if XD bit is not supported. Writing 
this bit to 1 when the XD Bit extended 
feature flag is set to 0 may generate a #GP 
exception.

if 
CPUID.80000001H:EDX[2
0] = 1

63:35 Reserved.

1B0H 432 IA32_ENERGY_PERF_BIAS Performance Energy Bias Hint (R/W) if CPUID.6H:ECX[3] = 1

3:0 Power Policy Preference: 

0 indicates preference to highest 
performance.

15 indicates preference to maximize 
energy saving.

63:4 Reserved.

1B1H 433 IA32_PACKAGE_THERM_STATUS Package Thermal Status Information (RO)

Contains status information about the 
package’s thermal sensor. 

See Section 14.8, “Package Level Thermal 
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg Thermal Status (RO):

1 Pkg Thermal Status Log (R/W): 

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature Status (RO)

5 Pkg Critical Temperature Status log (R/
WC0)

6 Pkg Thermal Threshold #1 Status (RO)

7 Pkg Thermal Threshold #1 log (R/WC0)

8 Pkg Thermal Threshold #2 Status (RO)

9 Pkg Thermal Threshold #1 log (R/WC0)

10 Pkg Power Limitation Status (RO)
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11 Pkg Power Limitation log (R/WC0)

15:12 Reserved.

22:16 Pkg Digital Readout (RO)

63:23 Reserved.

1B2H 434 IA32_PACKAGE_THERM_INTERRUPT Pkg Thermal Interrupt Control (R/W)

Enables and disables the generation of an 
interrupt on temperature transitions 
detected with the package’s thermal 
sensor. 

See Section 14.8, “Package Level Thermal 
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg High-Temperature Interrupt Enable

1 Pkg Low-Temperature Interrupt Enable

2 Pkg PROCHOT# Interrupt Enable

3 Reserved.

4 Pkg Overheat Interrupt Enable

7:5 Reserved.

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt Enable

22:16 Pkg Threshold #2 Value

23 Pkg Threshold #2 Interrupt Enable

24 Pkg Power Limit Notification Enable

63:25 Reserved.

1D9H 473 IA32_DEBUGCTL (MSR_DEBUGCTLA, 
MSR_DEBUGCTLB)

Trace/Profile Resource Control (R/W) 06_0EH

0 LBR: Setting this bit to 1 enables the 
processor to record a running trace of the 
most recent branches taken by the 
processor in the LBR stack.

06_01H

1 BTF: Setting this bit to 1 enables the 
processor to treat EFLAGS.TF as single-step 
on branches instead of single-step on 
instructions.

06_01H

5:2 Reserved.

6 TR: Setting this bit to 1 enables branch 
trace messages to be sent.

06_0EH

7 BTS: Setting this bit enables branch trace 
messages (BTMs) to be logged in a BTS 
buffer.

06_0EH
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8 BTINT: When clear, BTMs are logged in a 
BTS buffer in circular fashion. When this bit 
is set, an interrupt is generated by the BTS 
facility when the BTS buffer is full.

06_0EH

9 1: BTS_OFF_OS: When set, BTS or BTM is 
skipped if CPL = 0.

06_0FH

10 BTS_OFF_USR: When set, BTS or BTM is 
skipped if CPL > 0.

06_0FH

11 FREEZE_LBRS_ON_PMI: When set, the LBR 
stack is frozen on a PMI request.

If CPUID.01H: ECX[15] = 1 
&& CPUID.0AH: EAX[7:0] > 
1

12 FREEZE_PERFMON_ON_PMI: When set, 
each ENABLE bit of the global counter 
control MSR are frozen (address 38FH) on a 
PMI request

If CPUID.01H: ECX[15] = 1 
&& CPUID.0AH: EAX[7:0] > 
1

13 ENABLE_UNCORE_PMI: When set, enables 
the logical processor to receive and 
generate PMI on behalf of the uncore.

06_1AH

14 FREEZE_WHILE_SMM: When set, freezes 
perfmon and trace messages while in SMM.

If  
IA32_PERF_CAPABILITIES[
12] = 1

15 RTM_DEBUG: When set, enables DR7 debug 
bit on XBEGIN

If (CPUID.(EAX=07H, 
ECX=0):EBX[11] = 1)

63:16 Reserved.

1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address (Writeable only in 
SMM) 

Base address of SMM memory range.

If 
IA32_MTRRCAP.SMRR[11] 
= 1

7:0 Type. Specifies memory type of the range.

11:8 Reserved.

31:12 PhysBase. 

SMRR physical Base Address.

63:32 Reserved.

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask. (Writeable only in 
SMM) 

Range Mask of SMM memory range.

If IA32_MTRRCAP[SMRR] 
= 1

10:0  Reserved.

11 Valid

Enable range mask.

31:12 PhysMask

SMRR address range mask.
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63:32 Reserved.

1F8H 504 IA32_PLATFORM_DCA_CAP DCA Capability (R) If CPUID.01H: ECX[18] = 1 

1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-Hint type. If CPUID.01H: ECX[18] = 1 

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and Control register. If CPUID.01H: ECX[18] = 1 

0 DCA_ACTIVE: Set by HW when DCA is fuse-
enabled and no defeatures are set.

2:1 TRANSACTION

6:3 DCA_TYPE

10:7 DCA_QUEUE_SIZE

12:11 Reserved.

16:13 DCA_DELAY: Writes will update the register 
but have no HW side-effect.

23:17 Reserved.

24 SW_BLOCK: SW can request DCA block by 
setting this bit.

25 Reserved.

26 HW_BLOCK: Set when DCA is blocked by 
HW (e.g. CR0.CD = 1).

31:27 Reserved.

200H 512 IA32_MTRR_PHYSBASE0 
(MTRRphysBase0)

See Section 11.11.2.3, “Variable Range 
MTRRs.”

If CPUID.01H: 
EDX.MTRR[12] =1

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 If CPUID.01H: 
EDX.MTRR[12] =1

202H 514 IA32_MTRR_PHYSBASE1  MTRRphysBase1 If CPUID.01H: 
EDX.MTRR[12] =1

203H 515 IA32_MTRR_PHYSMASK1  MTRRphysMask1 If CPUID.01H: 
EDX.MTRR[12] =1

204H 516 IA32_MTRR_PHYSBASE2  MTRRphysBase2 If CPUID.01H: 
EDX.MTRR[12] =1

205H 517 IA32_MTRR_PHYSMASK2  MTRRphysMask2 If CPUID.01H: 
EDX.MTRR[12] =1

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 If CPUID.01H: 
EDX.MTRR[12] =1

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 If CPUID.01H: 
EDX.MTRR[12] =1

208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 If CPUID.01H: 
EDX.MTRR[12] =1
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209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 If CPUID.01H: 
EDX.MTRR[12] =1

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 If CPUID.01H: 
EDX.MTRR[12] =1

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 If CPUID.01H: 
EDX.MTRR[12] =1

20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 If CPUID.01H: 
EDX.MTRR[12] =1

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 If CPUID.01H: 
EDX.MTRR[12] =1

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 If CPUID.01H: 
EDX.MTRR[12] =1

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 If CPUID.01H: 
EDX.MTRR[12] =1

210H 528 IA32_MTRR_PHYSBASE8 MTRRphysBase8 if IA32_MTRRCAP[7:0] > 8

211H 529 IA32_MTRR_PHYSMASK8 MTRRphysMask8 if IA32_MTRRCAP[7:0] > 8

212H 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 if IA32_MTRRCAP[7:0] > 9

213H 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 if IA32_MTRRCAP[7:0] > 9

250H 592 IA32_MTRR_FIX64K_00000 MTRRfix64K_00000 If CPUID.01H: 
EDX.MTRR[12] =1

258H 600 IA32_MTRR_FIX16K_80000 MTRRfix16K_80000 If CPUID.01H: 
EDX.MTRR[12] =1

259H 601 IA32_MTRR_FIX16K_A0000 MTRRfix16K_A0000 If CPUID.01H: 
EDX.MTRR[12] =1

268H 616 IA32_MTRR_FIX4K_C0000 
(MTRRfix4K_C0000 )

See Section 11.11.2.2, “Fixed Range 
MTRRs.”

If CPUID.01H: 
EDX.MTRR[12] =1

269H 617 IA32_MTRR_FIX4K_C8000 MTRRfix4K_C8000 If CPUID.01H: 
EDX.MTRR[12] =1

26AH 618 IA32_MTRR_FIX4K_D0000 MTRRfix4K_D0000 If CPUID.01H: 
EDX.MTRR[12] =1

26BH 619 IA32_MTRR_FIX4K_D8000 MTRRfix4K_D8000 If CPUID.01H: 
EDX.MTRR[12] =1

26CH 620 IA32_MTRR_FIX4K_E0000 MTRRfix4K_E0000 If CPUID.01H: 
EDX.MTRR[12] =1

26DH 621 IA32_MTRR_FIX4K_E8000 MTRRfix4K_E8000 If CPUID.01H: 
EDX.MTRR[12] =1

26EH 622 IA32_MTRR_FIX4K_F0000 MTRRfix4K_F0000 If CPUID.01H: 
EDX.MTRR[12] =1

26FH 623 IA32_MTRR_FIX4K_F8000 MTRRfix4K_F8000 If CPUID.01H: 
EDX.MTRR[12] =1
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277H 631 IA32_PAT IA32_PAT (R/W) If CPUID.01H: 
EDX.MTRR[16] =1

2:0 PA0

7:3 Reserved.

10:8 PA1

15:11 Reserved.

18:16 PA2

23:19 Reserved.

26:24 PA3

31:27 Reserved.

34:32 PA4

39:35 Reserved.

42:40 PA5

47:43 Reserved.

50:48 PA6

55:51 Reserved.

58:56 PA7

63:59 Reserved.

280H 640 IA32_MC0_CTL2 (R/W) If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
0 

14:0 Corrected error count threshold.

29:15 Reserved.

30 CMCI_EN

63:31 Reserved.

281H 641 IA32_MC1_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
1

282H 642 IA32_MC2_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
2

283H 643 IA32_MC3_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
3

284H 644 IA32_MC4_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
4
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285H 645 IA32_MC5_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
5

286H 646 IA32_MC6_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
6

287H 647 IA32_MC7_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
7

288H 648 IA32_MC8_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
8

289H 649 IA32_MC9_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
9

28AH 650 IA32_MC10_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
10

28BH 651 IA32_MC11_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
11

28CH 652 IA32_MC12_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
12

28DH 653 IA32_MC13_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
13

28EH 654 IA32_MC14_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
14

28FH 655 IA32_MC15_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
15

290H 656 IA32_MC16_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
16

291H 657 IA32_MC17_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
17

292H 658 IA32_MC18_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
18
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293H 659 IA32_MC19_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
19

294H 660 IA32_MC20_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
20

295H 661 IA32_MC21_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
21

296H 662 IA32_MC22_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
22

297H 663 IA32_MC23_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
23

298H 664 IA32_MC24_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
24

299H 665 IA32_MC25_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
25

29AH 666 IA32_MC26_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
26

29BH 667 IA32_MC27_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
27

29CH 668 IA32_MC28_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
28

29DH 669 IA32_MC29_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
29

29EH 670 IA32_MC30_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
30

29FH 671 IA32_MC31_CTL2 (R/W) same fields as IA32_MC0_CTL2. If IA32_MCG_CAP[10] = 1 
&& IA32_MCG_CAP[7:0] > 
31

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType (R/W) If CPUID.01H: 
EDX.MTRR[12] =1

2:0 Default Memory Type
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9:3 Reserved.

10 Fixed Range MTRR Enable 

11 MTRR Enable 

63:12 Reserved.

309H 777 IA32_FIXED_CTR0 
(MSR_PERF_FIXED_CTR0)

Fixed-Function Performance Counter 0 (R/
W): Counts Instr_Retired.Any.

If CPUID.0AH: EDX[4:0] > 0

30AH 778 IA32_FIXED_CTR1 
(MSR_PERF_FIXED_CTR1)

Fixed-Function Performance Counter 1 (R/
W): Counts CPU_CLK_Unhalted.Core

If CPUID.0AH: EDX[4:0] > 1

30BH 779 IA32_FIXED_CTR2 
(MSR_PERF_FIXED_CTR2)

Fixed-Function Performance Counter 2 (R/
W): Counts CPU_CLK_Unhalted.Ref

If CPUID.0AH: EDX[4:0] > 2

345H 837 IA32_PERF_CAPABILITIES RO If CPUID.01H: ECX[15] = 1

5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is supported.

13 1: Full width of counter writable via 
IA32_A_PMCx.

63:14 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Fixed-Function Performance Counter 
Control (R/W)

Counter increments while the results of 
ANDing respective enable bit in 
IA32_PERF_GLOBAL_CTRL with the 
corresponding OS or USR bits in this MSR is 
true.

If CPUID.0AH: EAX[7:0] > 1

0 EN0_OS: Enable Fixed Counter 0 to count 
while CPL = 0.

1 EN0_Usr: Enable Fixed Counter 0 to count 
while CPL > 0.

2 AnyThread: When set to 1, it enables 
counting the associated event conditions 
occurring across all logical processors 
sharing a processor core. When set to 0, the 
counter only increments the associated 
event conditions occurring in the logical 
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

3 EN0_PMI: Enable PMI when fixed counter 0 
overflows.
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4 EN1_OS: Enable Fixed Counter 1to count 
while CPL = 0.

5 EN1_Usr: Enable Fixed Counter 1to count 
while CPL > 0.

6 AnyThread: When set to 1, it enables 
counting the associated event conditions 
occurring across all logical processors 
sharing a processor core. When set to 0, the 
counter only increments the associated 
event conditions occurring in the logical 
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

7 EN1_PMI: Enable PMI when fixed counter 1 
overflows.

8 EN2_OS: Enable Fixed Counter 2 to count 
while CPL = 0.

9 EN2_Usr: Enable Fixed Counter 2 to count 
while CPL > 0.

10 AnyThread: When set to 1, it enables 
counting the associated event conditions 
occurring across all logical processors 
sharing a processor core. When set to 0, the 
counter only increments the associated 
event conditions occurring in the logical 
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

11 EN2_PMI: Enable PMI when fixed counter 2 
overflows.

63:12 Reserved.

38EH 910 IA32_PERF_GLOBAL_STATUS Global Performance Counter Status (RO) If CPUID.0AH: EAX[7:0] > 0

0 Ovf_PMC0: Overflow status of IA32_PMC0. If CPUID.0AH: EAX[15:8] > 
0

1 Ovf_PMC1: Overflow status of IA32_PMC1. If CPUID.0AH: EAX[15:8] > 
1

2 Ovf_PMC2: Overflow status of IA32_PMC2. If CPUID.0AH: EAX[15:8] > 
2

3 Ovf_PMC3: Overflow status of IA32_PMC3. If CPUID.0AH: EAX[15:8] > 
3

31:4 Reserved.

32 Ovf_FixedCtr0: Overflow status of 
IA32_FIXED_CTR0.

If CPUID.0AH: EAX[7:0] > 1

33 Ovf_FixedCtr1: Overflow status of 
IA32_FIXED_CTR1.

If CPUID.0AH: EAX[7:0] > 1
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34 Ovf_FixedCtr2: Overflow status of 
IA32_FIXED_CTR2.

If CPUID.0AH: EAX[7:0] > 1

54:35 Reserved.

55 Trace_ToPA_PMI: A PMI occurred due to a 
ToPA entry memory buffer was completely 
filled.

If (CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1) && 
IA32_RTIT_CTL.ToPA = 1

57:56 Reserved.

58 LBR_Frz: LBRs are frozen due to 

• IA32_DEBUGCTL.FREEZE_LBR_ON_PMI=1,
• The LBR stack overflowed

If CPUID.0AH: EAX[7:0] > 3

59 CTR_Frz: Performance counters in the core 
PMU are frozen due to 

• IA32_DEBUGCTL.FREEZE_PERFMON_ON_
PMI=1,

• one or more core PMU counters 
overflowed.

If CPUID.0AH: EAX[7:0] > 3

60 ASCI: Data in the performance counters in 
the core PMU may include contributions 
from the direct or indirect operation intel 
SGX to protect an enclave.

If CPUID.(EAX=07H, 
ECX=0):EBX[2] = 1

61 Ovf_Uncore: Uncore counter overflow 
status.

If CPUID.0AH: EAX[7:0] > 2

62 OvfBuf: DS SAVE area Buffer overflow 
status.

If CPUID.0AH: EAX[7:0] > 0

63 CondChgd: status bits of this register has 
changed.

If CPUID.0AH: EAX[7:0] > 0

38FH 911 IA32_PERF_GLOBAL_CTRL Global Performance Counter Control (R/W)

Counter increments while the result of 
ANDing respective enable bit in this MSR 
with the corresponding OS or USR bits in 
the general-purpose or fixed counter 
control MSR is true.

If CPUID.0AH: EAX[7:0] > 0

0 EN_PMC0 If CPUID.0AH: EAX[15:8] > 
0

1 EN_PMC1 If CPUID.0AH: EAX[15:8] > 
1

2 EN_PMC2 If CPUID.0AH: EAX[15:8] > 
2

n EN_PMCn If CPUID.0AH: EAX[15:8] > 
n

31:n+1 Reserved.
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32 EN_FIXED_CTR0 If CPUID.0AH: EDX[4:0] > 0

33 EN_FIXED_CTR1 If CPUID.0AH: EDX[4:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH: EDX[4:0] > 2

63:35 Reserved.

390H 912 IA32_PERF_GLOBAL_OVF_CTRL Global Performance Counter Overflow 
Control (R/W)

If CPUID.0AH: EAX[7:0] > 0 
&& CPUID.0AH: EAX[7:0] 
<= 3

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[15:8] > 
0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[15:8] > 
1

2 Set 1 to Clear Ovf_PMC2 bit. If CPUID.0AH: EAX[15:8] > 
2

n Set 1 to Clear Ovf_PMCn bit. If CPUID.0AH: EAX[15:8] > 
n

31:n Reserved.

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EDX[4:0] > 0

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EDX[4:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EDX[4:0] > 2

54:35 Reserved.

55 Set 1 to Clear Trace_ToPA_PMI bit. If (CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1) && 
IA32_RTIT_CTL.ToPA = 1

60:56 Reserved.

61 Set 1 to Clear Ovf_Uncore bit. 06_2EH

62 Set 1 to Clear OvfBuf: bit. If CPUID.0AH: EAX[7:0] > 0

63 Set to 1to clear CondChgd: bit. If CPUID.0AH: EAX[7:0] > 0

390H 912 IA32_PERF_GLOBAL_STATUS_RESET Global Performance Counter Overflow 
Reset Control (R/W)

If CPUID.0AH: EAX[7:0] > 3

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[15:8] > 
0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[15:8] > 
1

2 Set 1 to Clear Ovf_PMC2 bit. If CPUID.0AH: EAX[15:8] > 
2

n Set 1 to Clear Ovf_PMCn bit. If CPUID.0AH: EAX[15:8] > 
n

31:n Reserved.
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32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EDX[4:0] > 0

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EDX[4:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EDX[4:0] > 2

54:35 Reserved.

55 Set 1 to Clear Trace_ToPA_PMI bit. If (CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1) && 
IA32_RTIT_CTL.ToPA[8] = 
1

57:56 Reserved.

58 Set 1 to Clear LBR_Frz bit. If CPUID.0AH: EAX[7:0] > 3

59 Set 1 to Clear CTR_Frz bit. If CPUID.0AH: EAX[7:0] > 3

58 Set 1 to Clear ASCI bit. If CPUID.0AH: EAX[7:0] > 3

61 Set 1 to Clear Ovf_Uncore bit. 06_2EH

62 Set 1 to Clear OvfBuf: bit. If CPUID.0AH: EAX[7:0] > 0

63 Set to 1to clear CondChgd: bit. If CPUID.0AH: EAX[7:0] > 0

391H 913 IA32_PERF_GLOBAL_STATUS_SET Global Performance Counter Overflow Set 
Control (R/W)

If CPUID.0AH: EAX[7:0] > 3

0 Set 1 to cause Ovf_PMC0 = 1. If CPUID.0AH: EAX[7:0] > 3

1 Set 1 to cause Ovf_PMC1 = 1 If CPUID.0AH: EAX[15:8] > 
1

2 Set 1 to cause Ovf_PMC2 = 1 If CPUID.0AH: EAX[15:8] > 
2

n Set 1 to cause Ovf_PMCn = 1 If CPUID.0AH: EAX[15:8] > 
n

31:n Reserved.

32 Set 1 to cause Ovf_FIXED_CTR0 = 1. If CPUID.0AH: EAX[7:0] > 3

33 Set 1 to cause Ovf_FIXED_CTR1 = 1. If CPUID.0AH: EAX[7:0] > 3

34 Set 1 to cause Ovf_FIXED_CTR2 = 1. If CPUID.0AH: EAX[7:0] > 3

54:35 Reserved.

55 Set 1 to cause Trace_ToPA_PMI = 1. If CPUID.0AH: EAX[7:0] > 3

57:56 Reserved.

58 Set 1 to cause LBR_Frz = 1. If CPUID.0AH: EAX[7:0] > 3

59 Set 1 to cause CTR_Frz = 1. If CPUID.0AH: EAX[7:0] > 3

58 Set 1 to cause ASCI = 1. If CPUID.0AH: EAX[7:0] > 3

61 Set 1 to cause Ovf_Uncore = 1. If CPUID.0AH: EAX[7:0] > 3

62 Set 1 to cause OvfBuf = 1. If CPUID.0AH: EAX[7:0] > 3
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63 Reserved

392H 914 IA32_PERF_GLOBAL_INUSE Indicator of core perfmon interface is in use 
(RO)

If CPUID.0AH: EAX[7:0] > 3

0 IA32_PERFEVTSEL0 in use

1 IA32_PERFEVTSEL1 in use If CPUID.0AH: EAX[15:8] > 
1

2 IA32_PERFEVTSEL2 in use If CPUID.0AH: EAX[15:8] > 
2

n IA32_PERFEVTSELn in use If CPUID.0AH: EAX[15:8] > 
n

31:n Reserved.

32 IA32_FIXED_CTR0 in use

33 IA32_FIXED_CTR1 in use

34 IA32_FIXED_CTR2 in use

62:35 Reserved or Model specific.

63 PMI in use.

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0. 06_0FH

3:1 Reserved or Model specific.

31:4 Reserved.

35:32 Reserved or Model specific.

63:36 Reserved.

400H 1024 IA32_MC0_CTL MC0_CTL If IA32_MCG_CAP.CNT >0

401H 1025 IA32_MC0_STATUS MC0_STATUS If IA32_MCG_CAP.CNT >0

402H 1026 IA32_MC0_ADDR1 MC0_ADDR If IA32_MCG_CAP.CNT >0

403H 1027 IA32_MC0_MISC MC0_MISC If IA32_MCG_CAP.CNT >0

404H 1028 IA32_MC1_CTL MC1_CTL If IA32_MCG_CAP.CNT >1

405H 1029 IA32_MC1_STATUS MC1_STATUS If IA32_MCG_CAP.CNT >1

406H 1030 IA32_MC1_ADDR2 MC1_ADDR If IA32_MCG_CAP.CNT >1

407H 1031 IA32_MC1_MISC MC1_MISC If IA32_MCG_CAP.CNT >1

408H 1032 IA32_MC2_CTL MC2_CTL If IA32_MCG_CAP.CNT >2

409H 1033 IA32_MC2_STATUS MC2_STATUS If IA32_MCG_CAP.CNT >2

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR If IA32_MCG_CAP.CNT >2

40BH 1035 IA32_MC2_MISC MC2_MISC If IA32_MCG_CAP.CNT >2

40CH 1036 IA32_MC3_CTL MC3_CTL If IA32_MCG_CAP.CNT >3
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40DH 1037 IA32_MC3_STATUS MC3_STATUS If IA32_MCG_CAP.CNT >3

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR If IA32_MCG_CAP.CNT >3

40FH 1039 IA32_MC3_MISC MC3_MISC If IA32_MCG_CAP.CNT >3

410H 1040 IA32_MC4_CTL MC4_CTL If IA32_MCG_CAP.CNT >4

411H 1041 IA32_MC4_STATUS MC4_STATUS If IA32_MCG_CAP.CNT >4

412H 1042 IA32_MC4_ADDR1 MC4_ADDR If IA32_MCG_CAP.CNT >4

413H 1043 IA32_MC4_MISC MC4_MISC If IA32_MCG_CAP.CNT >4

414H 1044 IA32_MC5_CTL MC5_CTL If IA32_MCG_CAP.CNT >5

415H 1045 IA32_MC5_STATUS MC5_STATUS If IA32_MCG_CAP.CNT >5

416H 1046 IA32_MC5_ADDR1 MC5_ADDR If IA32_MCG_CAP.CNT >5

417H 1047 IA32_MC5_MISC MC5_MISC If IA32_MCG_CAP.CNT >5

418H 1048 IA32_MC6_CTL MC6_CTL If IA32_MCG_CAP.CNT >6

419H 1049 IA32_MC6_STATUS MC6_STATUS If IA32_MCG_CAP.CNT >6

41AH 1050 IA32_MC6_ADDR1 MC6_ADDR If IA32_MCG_CAP.CNT >6

41BH 1051 IA32_MC6_MISC MC6_MISC If IA32_MCG_CAP.CNT >6

41CH 1052 IA32_MC7_CTL MC7_CTL If IA32_MCG_CAP.CNT >7

41DH 1053 IA32_MC7_STATUS MC7_STATUS If IA32_MCG_CAP.CNT >7

41EH 1054 IA32_MC7_ADDR1 MC7_ADDR If IA32_MCG_CAP.CNT >7

41FH 1055 IA32_MC7_MISC MC7_MISC If IA32_MCG_CAP.CNT >7

420H 1056 IA32_MC8_CTL MC8_CTL If IA32_MCG_CAP.CNT >8

421H 1057 IA32_MC8_STATUS MC8_STATUS If IA32_MCG_CAP.CNT >8

422H 1058 IA32_MC8_ADDR1 MC8_ADDR If IA32_MCG_CAP.CNT >8

423H 1059 IA32_MC8_MISC MC8_MISC If IA32_MCG_CAP.CNT >8

424H 1060 IA32_MC9_CTL MC9_CTL If IA32_MCG_CAP.CNT >9

425H 1061 IA32_MC9_STATUS MC9_STATUS If IA32_MCG_CAP.CNT >9

426H 1062 IA32_MC9_ADDR1 MC9_ADDR If IA32_MCG_CAP.CNT >9

427H 1063 IA32_MC9_MISC MC9_MISC If IA32_MCG_CAP.CNT >9

428H 1064 IA32_MC10_CTL MC10_CTL If IA32_MCG_CAP.CNT >10

429H 1065 IA32_MC10_STATUS MC10_STATUS If IA32_MCG_CAP.CNT >10

42AH 1066 IA32_MC10_ADDR1 MC10_ADDR If IA32_MCG_CAP.CNT >10

42BH 1067 IA32_MC10_MISC MC10_MISC If IA32_MCG_CAP.CNT >10

42CH 1068 IA32_MC11_CTL MC11_CTL If IA32_MCG_CAP.CNT >11

42DH 1069 IA32_MC11_STATUS MC11_STATUS If IA32_MCG_CAP.CNT >11

42EH 1070 IA32_MC11_ADDR1 MC11_ADDR If IA32_MCG_CAP.CNT >11
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42FH 1071 IA32_MC11_MISC MC11_MISC If IA32_MCG_CAP.CNT >11

430H 1072 IA32_MC12_CTL MC12_CTL If IA32_MCG_CAP.CNT >12

431H 1073 IA32_MC12_STATUS MC12_STATUS If IA32_MCG_CAP.CNT >12

432H 1074 IA32_MC12_ADDR1 MC12_ADDR If IA32_MCG_CAP.CNT >12

433H 1075 IA32_MC12_MISC MC12_MISC If IA32_MCG_CAP.CNT >12

434H 1076 IA32_MC13_CTL MC13_CTL If IA32_MCG_CAP.CNT >13

435H 1077 IA32_MC13_STATUS MC13_STATUS If IA32_MCG_CAP.CNT >13

436H 1078 IA32_MC13_ADDR1 MC13_ADDR If IA32_MCG_CAP.CNT >13

437H 1079 IA32_MC13_MISC MC13_MISC If IA32_MCG_CAP.CNT >13

438H 1080 IA32_MC14_CTL MC14_CTL If IA32_MCG_CAP.CNT >14

439H 1081 IA32_MC14_STATUS MC14_STATUS If IA32_MCG_CAP.CNT >14

43AH 1082 IA32_MC14_ADDR1 MC14_ADDR If IA32_MCG_CAP.CNT >14

43BH 1083 IA32_MC14_MISC MC14_MISC If IA32_MCG_CAP.CNT >14

43CH 1084 IA32_MC15_CTL MC15_CTL If IA32_MCG_CAP.CNT >15

43DH 1085 IA32_MC15_STATUS MC15_STATUS If IA32_MCG_CAP.CNT >15

43EH 1086 IA32_MC15_ADDR1 MC15_ADDR If IA32_MCG_CAP.CNT >15

43FH 1087 IA32_MC15_MISC MC15_MISC If IA32_MCG_CAP.CNT >15

440H 1088 IA32_MC16_CTL MC16_CTL If IA32_MCG_CAP.CNT >16

441H 1089 IA32_MC16_STATUS MC16_STATUS If IA32_MCG_CAP.CNT >16

442H 1090 IA32_MC16_ADDR1 MC16_ADDR If IA32_MCG_CAP.CNT >16

443H 1091 IA32_MC16_MISC MC16_MISC If IA32_MCG_CAP.CNT >16

444H 1092 IA32_MC17_CTL MC17_CTL If IA32_MCG_CAP.CNT >17

445H 1093 IA32_MC17_STATUS MC17_STATUS If IA32_MCG_CAP.CNT >17

446H 1094 IA32_MC17_ADDR1 MC17_ADDR If IA32_MCG_CAP.CNT >17

447H 1095 IA32_MC17_MISC MC17_MISC If IA32_MCG_CAP.CNT >17

448H 1096 IA32_MC18_CTL MC18_CTL If IA32_MCG_CAP.CNT >18

449H 1097 IA32_MC18_STATUS MC18_STATUS If IA32_MCG_CAP.CNT >18

44AH 1098 IA32_MC18_ADDR1 MC18_ADDR If IA32_MCG_CAP.CNT >18

44BH 1099 IA32_MC18_MISC MC18_MISC If IA32_MCG_CAP.CNT >18

44CH 1100 IA32_MC19_CTL MC19_CTL If IA32_MCG_CAP.CNT >19

44DH 1101 IA32_MC19_STATUS MC19_STATUS If IA32_MCG_CAP.CNT >19

44EH 1102 IA32_MC19_ADDR1 MC19_ADDR If IA32_MCG_CAP.CNT >19

44FH 1103 IA32_MC19_MISC MC19_MISC If IA32_MCG_CAP.CNT >19

450H 1104 IA32_MC20_CTL MC20_CTL If IA32_MCG_CAP.CNT >20
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451H 1105 IA32_MC20_STATUS MC20_STATUS If IA32_MCG_CAP.CNT >20

452H 1106 IA32_MC20_ADDR1 MC20_ADDR If IA32_MCG_CAP.CNT >20

453H 1107 IA32_MC20_MISC MC20_MISC If IA32_MCG_CAP.CNT >20

454H 1108 IA32_MC21_CTL MC21_CTL If IA32_MCG_CAP.CNT >21

455H 1109 IA32_MC21_STATUS MC21_STATUS If IA32_MCG_CAP.CNT >21

456H 1110 IA32_MC21_ADDR1 MC21_ADDR If IA32_MCG_CAP.CNT >21

457H 1111 IA32_MC21_MISC MC21_MISC If IA32_MCG_CAP.CNT >21

458H IA32_MC22_CTL MC22_CTL If IA32_MCG_CAP.CNT >22

459H IA32_MC22_STATUS MC22_STATUS If IA32_MCG_CAP.CNT >22

45AH IA32_MC22_ADDR1 MC22_ADDR If IA32_MCG_CAP.CNT >22

45BH IA32_MC22_MISC MC22_MISC If IA32_MCG_CAP.CNT >22

45CH IA32_MC23_CTL MC23_CTL If IA32_MCG_CAP.CNT >23

45DH IA32_MC23_STATUS MC23_STATUS If IA32_MCG_CAP.CNT >23

45EH IA32_MC23_ADDR1 MC23_ADDR If IA32_MCG_CAP.CNT >23

45FH IA32_MC23_MISC MC23_MISC If IA32_MCG_CAP.CNT >23

460H IA32_MC24_CTL MC24_CTL If IA32_MCG_CAP.CNT >24

461H IA32_MC24_STATUS MC24_STATUS If IA32_MCG_CAP.CNT >24

462H IA32_MC24_ADDR1 MC24_ADDR If IA32_MCG_CAP.CNT >24

463H IA32_MC24_MISC MC24_MISC If IA32_MCG_CAP.CNT >24

464H IA32_MC25_CTL MC25_CTL If IA32_MCG_CAP.CNT >25

465H IA32_MC25_STATUS MC25_STATUS If IA32_MCG_CAP.CNT >25

466H IA32_MC25_ADDR1 MC25_ADDR If IA32_MCG_CAP.CNT >25

467H IA32_MC25_MISC MC25_MISC If IA32_MCG_CAP.CNT >25

468H IA32_MC26_CTL MC26_CTL If IA32_MCG_CAP.CNT >26

469H IA32_MC26_STATUS MC26_STATUS If IA32_MCG_CAP.CNT >26

46AH IA32_MC26_ADDR1 MC26_ADDR If IA32_MCG_CAP.CNT >26

46BH IA32_MC26_MISC MC26_MISC If IA32_MCG_CAP.CNT >26

46CH IA32_MC27_CTL MC27_CTL If IA32_MCG_CAP.CNT >27

46DH IA32_MC27_STATUS MC27_STATUS If IA32_MCG_CAP.CNT >27

46EH IA32_MC27_ADDR1 MC27_ADDR If IA32_MCG_CAP.CNT >27

46FH IA32_MC27_MISC MC27_MISC If IA32_MCG_CAP.CNT >27

470H IA32_MC28_CTL MC28_CTL If IA32_MCG_CAP.CNT >28

471H IA32_MC28_STATUS MC28_STATUS If IA32_MCG_CAP.CNT >28

472H IA32_MC28_ADDR1 MC28_ADDR If IA32_MCG_CAP.CNT >28
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473H IA32_MC28_MISC MC28_MISC If IA32_MCG_CAP.CNT >28

480H 1152 IA32_VMX_BASIC Reporting Register of Basic VMX 
Capabilities (R/O)

See Appendix A.1, “Basic VMX Information.”

If CPUID.01H:ECX.[5] = 1

481H 1153 IA32_VMX_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If CPUID.01H:ECX.[5] = 1

482H 1154 IA32_VMX_PROCBASED_CTLS Capability Reporting Register of Primary 
Processor-based VM-execution Controls 
(R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If CPUID.01H:ECX.[5] = 1

483H 1155 IA32_VMX_EXIT_CTLS Capability Reporting Register of VM-exit 
Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If CPUID.01H:ECX.[5] = 1

484H 1156 IA32_VMX_ENTRY_CTLS Capability Reporting Register of VM-
entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If CPUID.01H:ECX.[5] = 1

485H 1157 IA32_VMX_MISC Reporting Register of Miscellaneous 
VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data.”

If CPUID.01H:ECX.[5] = 1

486H 1158 IA32_VMX_CR0_FIXED0 Capability Reporting Register of CR0 Bits 
Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[5] = 1

487H 1159 IA32_VMX_CR0_FIXED1 Capability Reporting Register of CR0 Bits 
Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[5] = 1

488H 1160 IA32_VMX_CR4_FIXED0 Capability Reporting Register of CR4 Bits 
Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[5] = 1

489H 1161 IA32_VMX_CR4_FIXED1 Capability Reporting Register of CR4 Bits 
Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[5] = 1

48AH 1162 IA32_VMX_VMCS_ENUM Capability Reporting Register of VMCS 
Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration.”

If CPUID.01H:ECX.[5] = 1
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48BH 1163 IA32_VMX_PROCBASED_CTLS2 Capability Reporting Register of 
Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3.3, “Secondary Processor-
Based VM-Execution Controls.”

If ( CPUID.01H:ECX.[5] && 
IA32_VMX_PROCBASED_C
TLS[63])

48CH 1164 IA32_VMX_EPT_VPID_CAP Capability Reporting Register of EPT and 
VPID (R/O)

See Appendix A.10, “VPID and EPT 
Capabilities.”

If ( CPUID.01H:ECX.[5] && 
IA32_VMX_PROCBASED_C
TLS[63] && ( 
IA32_VMX_PROCBASED_C
TLS2[33] || 
IA32_VMX_PROCBASED_C
TLS2[37]) )

48DH 1165 IA32_VMX_TRUE_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Flex Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If ( CPUID.01H:ECX.[5] = 1 
&& IA32_VMX_BASIC[55] )

48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Capability Reporting Register of Primary 
Processor-based VM-execution Flex 
Controls (R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If( CPUID.01H:ECX.[5] = 1 
&& IA32_VMX_BASIC[55] )

48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Capability Reporting Register of VM-exit 
Flex Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If( CPUID.01H:ECX.[5] = 1 
&& IA32_VMX_BASIC[55] )

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Capability Reporting Register of VM-
entry Flex Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If( CPUID.01H:ECX.[5] = 1 
&& IA32_VMX_BASIC[55] )

491H 1169 IA32_VMX_VMFUNC Capability Reporting Register of VM-
function Controls (R/O)

If( CPUID.01H:ECX.[5] = 1 
&& IA32_VMX_BASIC[55] )

4C1H 1217 IA32_A_PMC0 Full Width Writable IA32_PMC0 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
0) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C2H 1218 IA32_A_PMC1 Full Width Writable IA32_PMC1 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
1) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C3H 1219 IA32_A_PMC2 Full Width Writable IA32_PMC2 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
2) &&

IA32_PERF_CAPABILITIES[
13] = 1
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4C4H 1220 IA32_A_PMC3 Full Width Writable IA32_PMC3 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
3) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C5H 1221 IA32_A_PMC4 Full Width Writable IA32_PMC4 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
4) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C6H 1222 IA32_A_PMC5 Full Width Writable IA32_PMC5 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
5) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C7H 1223 IA32_A_PMC6 Full Width Writable IA32_PMC6 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
6) &&

IA32_PERF_CAPABILITIES[
13] = 1

4C8H 1224 IA32_A_PMC7 Full Width Writable IA32_PMC7 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
7) &&

IA32_PERF_CAPABILITIES[
13] = 1

4D0H 1232 IA32_MCG_EXT_CTL (R/W) If IA32_MCG_CAP.LMCE_P 
=1

0 LMCE_EN.

63:1 Reserved.

500H 1280 IA32_SGX_SVN_STATUS Status and SVN Threshold of SGX Support 
for ACM (RO).

If CPUID.(EAX=07H, 
ECX=0H): EBX[2] = 1

0 Lock. See Section 42.11.3, 
“Interactions with 
Authenticated Code 
Modules (ACMs)”.

15:1 Reserved.

23:16 SGX_SVN_SINIT. See Section 42.11.3, 
“Interactions with 
Authenticated Code 
Modules (ACMs)”.

63:24 Reserved.

560H 1376 IA32_RTIT_OUTPUT_BASE Trace Output Base Register (R/W) If ((CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1) && ( 
(CPUID.(EAX=14H,ECX=0):
ECX[0] = 1) || 
(CPUID.(EAX=14H,ECX=0):
ECX[2] = 1) ) )
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6:0 Reserved

MAXPHYADDR3-1:7 Base physical address

63:MAXPHYADDR Reserved.

561H 1377 IA32_RTIT_OUTPUT_MASK_PTRS Trace Output Mask Pointers Register (R/
W)

If ((CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1) && ( 
(CPUID.(EAX=14H,ECX=0):
ECX[0] = 1) || 
(CPUID.(EAX=14H,ECX=0):
ECX[2] = 1) ) )

6:0 Reserved

31:7 MaskOrTableOffset

63:32 Output Offset.

570H 1392 IA32_RTIT_CTL Trace Control Register (R/W) If (CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1)

0 TraceEn

1 CYCEn If (CPUID.(EAX=07H, 
ECX=0):EBX[1] = 1)

2 OS

3 User

5:4 Reserved, 

6 FabricEn If (CPUID.(EAX=07H, 
ECX=0):ECX[3] = 1)

7 CR3 filter

8 ToPA

9 MTCEn If (CPUID.(EAX=07H, 
ECX=0):EBX[3] = 1)

10 TSCEn

11 DisRETC

12 Reserved, MBZ

13 BranchEn

17:14 MTCFreq If (CPUID.(EAX=07H, 
ECX=0):EBX[3] = 1)

18 Reserved, MBZ

22:19 CYCThresh If (CPUID.(EAX=07H, 
ECX=0):EBX[1] = 1)

23 Reserved, MBZ

27:24 PSBFreq If (CPUID.(EAX=07H, 
ECX=0):EBX[1] = 1)
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31:28 Reserved, MBZ

35:32 ADDR0_CFG If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 0)

39:36 ADDR1_CFG If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 1)

43:40 ADDR2_CFG If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 2)

47:44 ADDR3_CFG If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 3)

63:48 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Tracing Status Register (R/W) If (CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1)

0 FilterEn, (writes ignored) If (CPUID.(EAX=07H, 
ECX=0):EBX[2] = 1)

1 ContexEn, (writes ignored)

2 TriggerEn, (writes ignored)

3 Reserved

4 Error 

5 Stopped

31:6 Reserved, MBZ

48:32 PacketByteCnt If (CPUID.(EAX=07H, 
ECX=0):EBX[1] > 3)

63:49 Reserved.

572H 1394 IA32_RTIT_CR3_MATCH Trace Filter CR3 Match Register (R/W) If (CPUID.(EAX=07H, 
ECX=0):EBX[25] = 1)

4:0 Reserved

63:5 CR3[63:5] value to match

580H 1408 IA32_RTIT_ADDR0_A Region 0 Start Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 0)

47:0 Virtual Address

63:48 SignExt_VA

581H 1409 IA32_RTIT_ADDR0_B Region 0 End Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 0)

47:0 Virtual Address

63:48 SignExt_VA

582H 1410 IA32_RTIT_ADDR1_A Region 1 Start Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 1)
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47:0 Virtual Address

63:48 SignExt_VA

583H 1411 IA32_RTIT_ADDR1_B Region 1 End Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 1)

47:0 Virtual Address

63:48 SignExt_VA

584H 1412 IA32_RTIT_ADDR2_A Region 2 Start Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 2)

47:0 Virtual Address

63:48 SignExt_VA

585H 1413 IA32_RTIT_ADDR2_B Region 2 End Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 2)

47:0 Virtual Address

63:48 SignExt_VA

586H 1414 IA32_RTIT_ADDR3_A Region 3 Start Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 3)

47:0 Virtual Address

63:48 SignExt_VA

587H 1415 IA32_RTIT_ADDR3_B Region 3 End Address (R/W) If (CPUID.(EAX=07H, 
ECX=1):EAX[2:0] > 3)

47:0 Virtual Address

63:48 SignExt_VA

600H 1536 IA32_DS_AREA DS Save Area (R/W) 

Points to the linear address of the first 
byte of the DS buffer management area, 
which is used to manage the BTS and PEBS 
buffers.

See Section 18.12.4, “Debug Store (DS) 
Mechanism.”

If( CPUID.01H:EDX.DS[21] 
= 1 

63:0 The linear address of the first byte of the 
DS buffer management area, if IA-32e 
mode is active.

31:0 The linear address of the first byte of the 
DS buffer management area, if not in IA-
32e mode.

63:32 Reserved if not in IA-32e mode.

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s TSC Deadline 
Mode (R/W)

If CPUID.01H:ECX.[24] = 1 

770H 1904 IA32_PM_ENABLE Enable/disable HWP (R/W) If CPUID.06H:EAX.[7] = 1 
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0 HWP_ENABLE (R/W1-Once).

See Section 14.4.2, “Enabling HWP”

If CPUID.06H:EAX.[7] = 1 

63:1 Reserved. 

771H 1905 IA32_HWP_CAPABILITIES HWP Performance Range Enumeration 
(RO)

If CPUID.06H:EAX.[7] = 1 

7:0 Highest_Performance 

See Section 14.4.3, “HWP Performance 
Range and Dynamic Capabilities”

If CPUID.06H:EAX.[7] = 1 

15:8 Guaranteed_Performance 

See Section 14.4.3, “HWP Performance 
Range and Dynamic Capabilities”

If CPUID.06H:EAX.[7] = 1 

23:16 Most_Efficient_Performance 

See Section 14.4.3, “HWP Performance 
Range and Dynamic Capabilities”

If CPUID.06H:EAX.[7] = 1 

31:24 Lowest_Performance 

See Section 14.4.3, “HWP Performance 
Range and Dynamic Capabilities”

If CPUID.06H:EAX.[7] = 1 

63:32 Reserved. 

772H 1906 IA32_HWP_REQUEST_PKG Power Management Control Hints for All 
Logical Processors in a Package (R/W)

If CPUID.06H:EAX.[11] = 1 

7:0 Minimum_Performance 

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1 

15:8 Maximum_Performance 

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1 

23:16 Desired_Performance 

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1 

31:24 Energy_Performance_Preference 

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1 
&& 

CPUID.06H:EAX.[10] = 1

41:32 Activity_Window 

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[11] = 1 
&& 

CPUID.06H:EAX.[9] = 1

63:42 Reserved. 

773H 1907 IA32_HWP_INTERRUPT Control HWP Native Interrupts (R/W) If CPUID.06H:EAX.[8] = 1 

0 EN_Guaranteed_Performance_Change.

See Section 14.4.6, “HWP Notifications”

If CPUID.06H:EAX.[8] = 1 

1 EN_Excursion_Minimum.

See Section 14.4.6, “HWP Notifications”

If CPUID.06H:EAX.[8] = 1 
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63:2 Reserved. 

774H 1908 IA32_HWP_REQUEST Power Management Control Hints to a 
Logical Processor (R/W)

If CPUID.06H:EAX.[7] = 1

7:0 Minimum_Performance 

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1 

15:8 Maximum_Performance 

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1 

23:16 Desired_Performance 

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1 

31:24 Energy_Performance_Preference 

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1 
&& CPUID.06H:EAX.[10] = 
1 

41:32 Activity_Window 

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1 
&& CPUID.06H:EAX.[9] = 1 

42 Package_Control 

See Section 14.4.4, “Managing HWP”

If CPUID.06H:EAX.[7] = 1 
&& CPUID.06H:EAX.[11] = 
1 

63:43 Reserved. 

777H 1911 IA32_HWP_STATUS Log bits indicating changes to 
Guaranteed & excursions to Minimum (R/
W)

If CPUID.06H:EAX.[7] = 1 

0 Guaranteed_Performance_Change (R/
WC0).

See Section 14.4.5, “HWP Feedback”

If CPUID.06H:EAX.[7] = 1 

1 Reserved. 

2 Excursion_To_Minimum (R/WC0).

See Section 14.4.5, “HWP Feedback”

If CPUID.06H:EAX.[7] = 1 

63:3 Reserved. 

802H 2050 IA32_X2APIC_APICID x2APIC ID Register (R/O)

See x2APIC Specification

If CPUID.01H:ECX[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register (R/O) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

808H 2056 IA32_X2APIC_TPR x2APIC Task Priority Register (R/W) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority Register (R/O) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1
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80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register (W/O) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination Register (R/
O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt Vector 
Register (R/W)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register Bits 31:0 (R/
O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register Bits 63:32 
(R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register Bits 95:64 
(R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register Bits 127:96 
(R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register Bits 159:128 
(R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register Bits 191:160 
(R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register Bits 223:192 
(R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register Bits 255:224 
(R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode Register Bits 31:0 
(R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode Register Bits 63:32 
(R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode Register Bits 95:64 
(R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1
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81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode Register Bits 
127:96 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode Register Bits 
159:128 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode Register Bits 
191:160 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode Register Bits 
223:192 (R/O)

If ( CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1)

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode Register Bits 
255:224 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request Register Bits 
31:0 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request Register Bits 
63:32 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request Register Bits 
95:64 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request Register Bits 
127:96 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request Register Bits 
159:128 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request Register Bits 
191:160 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request Register Bits 
223:192 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request Register Bits 
255:224 (R/O)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

828H 2088 IA32_X2APIC_ESR x2APIC Error Status Register (R/W) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1
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82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected Machine Check 
Interrupt Register (R/W)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command Register (R/
W)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer Interrupt Register (R/
W)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

833H 2099 IA32_X2APIC_LVT_THERMAL x2APIC LVT Thermal Sensor Interrupt 
Register (R/W)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance Monitor 
Interrupt Register (R/W)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0 Register (R/W) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1 Register (R/W) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

837H 2103 IA32_X2APIC_LVT_ERROR x2APIC LVT Error Register (R/W) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

838H 2104 IA32_X2APIC_INIT_COUNT x2APIC Initial Count Register (R/W) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

839H 2105 IA32_X2APIC_CUR_COUNT x2APIC Current Count Register (R/O) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide Configuration Register (R/
W)

If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register (W/O) If CPUID.01H:ECX.[21] = 1 
&& IA32_APIC_BASE.[10] 
= 1

C80H 3200 IA32_DEBUG_INTERFACE Silicon Debug Feature Control (R/W) If CPUID.01H:ECX.[11] = 1 

0 Enable (R/W)

BIOS set 1 to enable Silicon debug features. 
Default is 0

If CPUID.01H:ECX.[11] = 1 

29:1 Reserved. 
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30 Lock (R/W): If 1, locks any further change 
to the MSR. The lock bit is set automatically 
on the first SMI assertion even if not 
explicitly set by BIOS. Default is 0.

If CPUID.01H:ECX.[11] = 1 

31 Debug Occurred (R/O): This “sticky bit” is 
set by hardware to indicate the status of 
bit 0. Default is 0.

If CPUID.01H:ECX.[11] = 1 

63:32 Reserved. 

C81H 3201 IA32_L3_QOS_CFG L3 QOS Configuration (R/W) If ( CPUID.(EAX=10H, 
ECX=1):ECX.[2] = 1 )

0 Enable (R/W)

Set 1 to enable L3 CAT masks and COS to 
operate in Code and Data Prioritization 
(CDP) mode

63:1 Reserved. 

C8DH 3213 IA32_QM_EVTSEL Monitoring Event Select Register (R/W) If ( CPUID.(EAX=07H, 
ECX=0):EBX.[12] = 1 )

7:0 Event ID: ID of a supported monitoring 
event to report via IA32_QM_CTR.

31: 8 Reserved. 

N+31:32 Resource Monitoring ID: ID for monitoring 
hardware to report monitored data via 
IA32_QM_CTR.

N = Ceil (Log2 ( 
CPUID.(EAX= 0FH, 
ECX=0H).EBX[31:0] +1))

63:N+32 Reserved.

C8EH 3214 IA32_QM_CTR Monitoring Counter Register (R/O) If ( CPUID.(EAX=07H, 
ECX=0):EBX.[12] = 1 )

61:0 Resource Monitored Data 

62 Unavailable: If 1, indicates data for this 
RMID is not available or not monitored for 
this resource or RMID.

63 Error: If 1, indicates and unsupported RMID 
or event type was written to 
IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC Resource Association Register (R/W) If ( (CPUID.(EAX=07H, 
ECX=0):EBX[12] =1) or 
(CPUID.(EAX=07H, 
ECX=0):EBX[15] =1 )  )

N-1:0 Resource Monitoring ID (R/W): ID for 
monitoring hardware to track internal 
operation, e.g. memory access.

N = Ceil (Log2 ( 
CPUID.(EAX= 0FH, 
ECX=0H).EBX[31:0] +1))

31:N Reserved 
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63:32 COS (R/W). The class of service 
(COS) to enforce (on writes); 
returns the current COS when 
read.

If ( CPUID.(EAX=07H, 
ECX=0):EBX.[15] = 1 )

C90H - 
D8FH

Reserved MSR Address Space for CAT 
Mask Registers

See Section 17.17.3.1, “Enumeration and 
Detection Support of Cache Allocation 
Technology”

C90H 3216 IA32_L3_MASK_0 L3 CAT Mask for COS0 (R/W) If (CPUID.(EAX=10H, 
ECX=0H):EBX[1] != 0)

31:0 Capacity Bit Mask (R/W)

63:32 Reserved. 

C90H+
n

3216+n IA32_L3_MASK_n L3 CAT Mask for COSn (R/W) n = CPUID.(EAX=10H, 
ECX=1H):EDX[15:0]

31:0 Capacity Bit Mask (R/W)

63:32 Reserved. 

D10H - 
D4FH

Reserved MSR Address Space for L2 
CAT Mask Registers

See Section 17.17.3.1, “Enumeration and 
Detection Support of Cache Allocation 
Technology”

D10H 3344 IA32_L2_MASK_0 L2 CAT Mask for COS0 (R/W) If (CPUID.(EAX=10H, 
ECX=0H):EBX[2] != 0)

31:0 Capacity Bit Mask (R/W)

63:32 Reserved. 

D10H+
n

3344+n IA32_L2_MASK_n L2 CAT Mask for COSn (R/W) n = CPUID.(EAX=10H, 
ECX=2H):EDX[15:0]

31:0 Capacity Bit Mask (R/W)

63:32 Reserved. 

D90H 3472 IA32_BNDCFGS Supervisor State of MPX Configuration. 
(R/W)

If (CPUID.(EAX=07H, 
ECX=0H):EBX[14] = 1)

0 EN: Enable Intel MPX in supervisor mode

1 BNDPRESERVE: Preserve the bounds 
registers for near branch instructions in the 
absence of the BND prefix

11:2 Reserved, must be 0
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63:12 Base Address of Bound Directory.

DA0H 3488 IA32_XSS Extended Supervisor State Mask (R/W) If( CPUID.(0DH, 1):EAX.[3] 
= 1 

7:0 Reserved

8 Trace Packet Configuration State (R/W)

63:9 Reserved. 

DB0H 3504 IA32_PKG_HDC_CTL Package Level Enable/disable HDC (R/W) If CPUID.06H:EAX.[13] = 1 

0 HDC_Pkg_Enable (R/W)

Force HDC idling or wake up HDC-idled 
logical processors in the package. See 
Section 14.5.2, “Package level Enabling 
HDC”

If CPUID.06H:EAX.[13] = 1 

63:1 Reserved. 

DB1H 3505 IA32_PM_CTL1 Enable/disable HWP (R/W) If CPUID.06H:EAX.[13] = 1 

0 HDC_Allow_Block (R/W)

Allow/Block this logical processor for 
package level HDC control. See Section 
14.5.3

If CPUID.06H:EAX.[13] = 1 

63:1 Reserved. 

DB2H 3506 IA32_THREAD_STALL Per-Logical_Processor HDC Idle 
Residency (R/0)

If CPUID.06H:EAX.[13] = 1 

63:0 Stall_Cycle_Cnt (R/W)

Stalled cycles due to HDC forced idle on this 
logical processor. See Section 14.5.4.1

If CPUID.06H:EAX.[13] = 1 

4000_
0000H 
- 
4000_
00FFH

Reserved MSR Address Space All existing and future processors will 
not implement MSR in this range.

C000_
0080H

IA32_EFER Extended Feature Enables If ( 
CPUID.80000001H:EDX.[2
0] || 
CPUID.80000001H:EDX.[2
9])

0 SYSCALL Enable: IA32_EFER.SCE (R/W)

Enables SYSCALL/SYSRET instructions in 
64-bit mode.

7:1 Reserved.
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8 IA-32e Mode Enable: IA32_EFER.LME (R/
W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active: IA32_EFER.LMA (R) 

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable: 
IA32_EFER.NXE (R/W)

63:12 Reserved.

C000_
0081H

IA32_STAR System Call Target Address (R/W) If 
CPUID.80000001:EDX.[29] 
= 1

C000_
0082H

IA32_LSTAR IA-32e Mode System Call Target Address 
(R/W)

If 
CPUID.80000001:EDX.[29] 
= 1

C000_
0084H

IA32_FMASK System Call Flag Mask (R/W) If 
CPUID.80000001:EDX.[29] 
= 1

C000_
0100H

IA32_FS_BASE Map of BASE Address of FS (R/W) If 
CPUID.80000001:EDX.[29] 
= 1

C000_
0101H

IA32_GS_BASE Map of BASE Address of GS (R/W) If 
CPUID.80000001:EDX.[29] 
= 1

C000_
0102H

IA32_KERNEL_GS_BASE Swap Target of BASE Address of GS (R/
W)

If 
CPUID.80000001:EDX.[29] 
= 1

C000_
0103H

IA32_TSC_AUX Auxiliary TSC (RW) If CPUID.80000001H: 
EDX[27] = 1

31:0 AUX: Auxiliary signature of TSC

63:32 Reserved.
NOTES:

1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are supported, software must treat them as 
model-specific. Starting with Intel Core Duo processors, MSR addresses 180H-185H, 188H-197H are reserved.

2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. See Section 15.3.2.3 and Section 
15.3.2.4 for more information.

3. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].
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35.2 MSRS IN THE INTEL® CORE™ 2 PROCESSOR FAMILY
Table 35-3 lists model-specific registers (MSRs) for Intel Core 2 processor family and for Intel Xeon processors 
based on Intel Core microarchitecture, architectural MSR addresses are also included in Table 35-3. These proces-
sors have a CPUID signature with DisplayFamily_DisplayModel of 06_0FH, see Table 35-1. 

MSRs listed in Table 35-2 and Table 35-3 are also supported by processors based on the Enhanced Intel Core 
microarchitecture. Processors based on the Enhanced Intel Core microarchitecture have the CPUID signature 
DisplayFamily_DisplayModel of 06_17H. 

The column “Shared/Unique” applies to multi-core processors based on Intel Core microarchitecture. “Unique” 
means each processor core has a separate MSR, or a bit field in an MSR governs only a core independently. 
“Shared” means the MSR or the bit field in an MSR address governs the operation of both processor cores. 

Table 35-3    MSRs in Processors Based on Intel® Core™ Microarchitecture

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Unique See Section 35.22, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Unique See Section 35.22, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_SIZ
E

Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination.” 
andTable 35-2.

10H 16 IA32_TIME_STAMP_COUNT
ER

Unique See Section 17.15, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R) 
See Table 35-2.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R) 

7:0 Reserved.

12:8 Maximum Qualified Ratio (R) 

The maximum allowed bus ratio.

49:13 Reserved.

52:50 See Table 35-2.

63:53 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location.” and Table 35-
2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W)

Enables and disables processor features; (R) indicates current 
processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W. 
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2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W. 

3 MCERR# Drive Enable (R/W) 

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W. 

4 Address Parity Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W. 

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled 
Note: Not all processor implements R/W. 

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled 

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled 

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

11 Intel TXT Capable Chipset. (R/O)

1 = Present; 0 = Not Present

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled 

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved.

17:16 APIC Cluster ID (R/O)

18 N/2 Non-Integer Bus Ratio (R/O)

0 = Integer ratio; 1 = Non-integer ratio

19 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

26:22 Integer Bus Frequency Ratio (R/O)
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3AH 58 MSR_FEATURE_CONTROL Unique Control Features in Intel 64Processor (R/W)

See Table 35-2.

3 Unique SMRR Enable (R/WL)

When this bit is set and the lock bit is set makes the 
SMRR_PHYS_BASE and SMRR_PHYS_MASK registers read visible 
and writeable while in SMM.

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Unique Last Branch Record 0 From IP (R/W)

One of four pairs of last branch record registers on the last branch 
record stack. The From_IP part of the stack contains pointers to 
the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.5

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Unique Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Unique Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Unique Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_TO_IP

Unique Last Branch Record 0 To IP (R/W)

One of four pairs of last branch record registers on the last branch 
record stack. This To_IP part of the stack contains pointers to the 
destination instruction.

61H 97 MSR_
LASTBRANCH_1_TO_IP

Unique Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

62H 98 MSR_
LASTBRANCH_2_TO_IP

Unique Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

63H 99 MSR_
LASTBRANCH_3_TO_IP

Unique Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

79H 121 IA32_BIOS_UPDT_TRIG Unique BIOS Update Trigger Register (W) 

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 35-2.

A0H 160 MSR_SMRR_PHYSBASE Unique System Management Mode Base Address register (WO in SMM)

Model-specific implementation of SMRR-like interface, read visible 
and write only in SMM.

11:0 Reserved.

31:12 PhysBase. SMRR physical Base Address.
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63:32 Reserved.

A1H 161 MSR_SMRR_PHYSMASK Unique System Management Mode Physical Address Mask register 
(WO in SMM)

Model-specific implementation of SMRR-like interface, read visible 
and write only in SMM.

10:0 Reserved.

11 Valid. Physical address base and range mask are valid.

31:12 PhysMask. SMRR physical address range mask.

63:32 Reserved.

C1H 193 IA32_PMC0 Unique Performance Counter Register

See Table 35-2.

C2H 194 IA32_PMC1 Unique Performance Counter Register

See Table 35-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for 
processors based on Intel Core microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)

133.33 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 001B. 

166.67 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 011B.

266.67 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 000B.

333.33 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 100B.

63:3 Reserved.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for 
processors based on Enhanced Intel Core microarchitecture:
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2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)
• 110B: 400 MHz (FSB 1600)

133.33 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 001B. 

166.67 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 011B.

266.67 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 110B.

333.33 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 111B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW) 

See Table 35-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count (RW) 

See Table 35-2.

FEH 254 IA32_MTRRCAP Unique See Table 35-2.

11 Unique SMRR Capability Using MSR 0A0H and 0A1H (R) 

11EH 281 MSR_BBL_CR_CTL3 Shared

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled (R/W) 

1 = L2 cache has been initialized 
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD 
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO) 

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Unique See Table 35-2.
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175H 373 IA32_SYSENTER_ESP Unique See Table 35-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 35-2.

179H 377 IA32_MCG_CAP Unique See Table 35-2.

17AH 378 IA32_MCG_STATUS Unique

0 RIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) can be used to restart the program. If cleared, the 
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If 
a second machine check is detected while this bit is still set, the 
processor enters a shutdown state. Software should write this bit 
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Unique See Table 35-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 35-2.

198H 408 IA32_PERF_STATUS Shared See Table 35-2.

198H 408 MSR_PERF_STATUS Shared

15:0 Current Performance State Value.

30:16 Reserved.

31 XE Operation (R/O).

If set, XE operation is enabled. Default is cleared.

39:32 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for the processor.

45 Reserved.

46 Non-Integer Bus Ratio (R/O)

Indicates non-integer bus ratio is enabled. Applies processors 
based on Enhanced Intel Core microarchitecture.

63:47 Reserved.

199H 409 IA32_PERF_CTL Unique See Table 35-2.
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19AH 410 IA32_CLOCK_MODULATION Unique Clock Modulation (R/W) 

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named 
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Unique Thermal Interrupt Control (R/W) 

See Table 35-2.

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W) 

See Table 35-2.

19DH 413 MSR_THERM2_CTL Unique

15:0 Reserved.

16 TM_SELECT (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of 
the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT 
has no effect. Neither TM1 nor TM2 are enabled.

63:16 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable (R/W) 

See Table 35-2.

6:4 Reserved.

7 Shared Performance Monitoring Available (R) 

See Table 35-2.

8 Reserved.

9 Hardware Prefetcher Disable (R/W)

When set, disables the hardware prefetcher operation on streams 
of data. When clear (default), enables the prefetch queue.

Disabling of the hardware prefetcher may impact processor 
performance.
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10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break 
event within the processor 

0 =  Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

11 Shared Branch Trace Storage Unavailable (RO) 

See Table 35-2.

12 Shared Processor Event Based Sampling Unavailable (RO) 

See Table 35-2.

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the 
die temperature is at the pre-determined threshold, the Thermal 
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core 
ratio and voltage according to the value last written to 
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not change 
the VID signals or the bus to core ratio when the processor enters 
a thermally managed state. 

The BIOS must enable this feature if the TM2 feature flag 
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, this 
feature is not supported and BIOS must not alter the contents of 
the TM2 bit location. 

The processor is operating out of specification if both this bit and 
the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 35-2.

18 Shared ENABLE MONITOR FSM (R/W) 

See Table 35-2.

19 Shared Adjacent Cache Line Prefetch Disable (R/W) 

When set to 1, the processor fetches the cache line that contains 
data currently required by the processor. When set to 0, the 
processor fetches cache lines that comprise a cache line pair (128 
bytes).

Single processor platforms should not set this bit. Server platforms 
should set or clear this bit based on platform performance 
observed in validation and testing. 

BIOS may contain a setup option that controls the setting of this 
bit.
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20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WO)

When set, this bit causes the following bits to become read-only:

• Enhanced Intel SpeedStep Technology Select Lock (this bit), 
• Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep 
Technology transition is requested. This bit is cleared on reset.

21 Reserved.

22 Shared Limit CPUID Maxval (R/W) 

See Table 35-2.

23 Shared xTPR Message Disable (R/W) 

See Table 35-2.

33:24 Reserved.

34 Unique XD Bit Disable (R/W) 

See Table 35-2.

36:35 Reserved.

37 Unique DCU Prefetcher Disable (R/W)

When set to 1, The DCU L1 data cache prefetcher is disabled. The 
default value after reset is 0. BIOS may write ‘1’ to disable this 
feature. 

The DCU prefetcher is an L1 data cache prefetcher. When the DCU 
prefetcher detects multiple loads from the same line done within a 
time limit, the DCU prefetcher assumes the next line will be 
required. The next line is prefetched in to the L1 data cache from 
memory or L2.

38 Shared IDA Disable (R/W)

When set to 1 on processors that support IDA, the Intel Dynamic 
Acceleration feature (IDA) is disabled and the IDA_Enable feature 
flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H: 
EAX[1] reports the processor’s support of IDA is enabled.

Note: the power-on default value is used by BIOS to detect 
hardware support of IDA. If power-on default value is 1, IDA is 
available in the processor. If power-on default value is 0, IDA is not 
available.
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39 Unique IP Prefetcher Disable (R/W)

When set to 1, The IP prefetcher is disabled. The default value 
after reset is 0. BIOS may write ‘1’ to disable this feature. 

The IP prefetcher is an L1 data cache prefetcher. The IP prefetcher 
looks for sequential load history to determine whether to prefetch 
the next expected data into the L1 cache from memory or L2.

63:40 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the 
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W) 

See Table 35-2

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch 
instruction that the processor executed prior to the last exception 
that was generated or the last interrupt that was handled. 

200H 512 IA32_MTRR_PHYSBASE0 Unique See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Unique See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Unique See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Unique See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Unique See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Unique See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Unique See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Unique See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Unique See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Unique See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Unique See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Unique See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Unique See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Unique See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Unique See Table 35-2.
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20FH 527 IA32_MTRR_PHYSMASK7 Unique See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Unique See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Unique See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Unique See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Unique See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Unique See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Unique See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Unique See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Unique See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Unique See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Unique See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Unique See Table 35-2.

277H 631 IA32_PAT Unique See Table 35-2.

2FFH 767 IA32_MTRR_DEF_TYPE Unique Default Memory Types (R/W) 

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W) 

See Table 35-2.

309H 777 MSR_PERF_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W) 

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W) 

See Table 35-2.

30AH 778 MSR_PERF_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W) 

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W) 

See Table 35-2.

30BH 779 MSR_PERF_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W) 

345H 837 IA32_PERF_CAPABILITIES Unique See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

345H 837 MSR_PERF_CAPABILITIES Unique RO. This applies to processors that do not support architectural 
perfmon version 2.
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5:0 LBR Format. See Table 35-2.

6 PEBS Record Format. 

7 PEBSSaveArchRegs. See Table 35-2.

63:8 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Unique Fixed-Function-Counter Control Register (R/W) 

See Table 35-2.

38DH 909 MSR_PERF_FIXED_CTR_
CTRL

Unique Fixed-Function-Counter Control Register (R/W) 

38EH 910 IA32_PERF_GLOBAL_
STATUS

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.” 

38EH 910 MSR_PERF_GLOBAL_STATU
S

Unique See Section 18.4.2, “Global Counter Control Facilities.”

38FH 911 IA32_PERF_GLOBAL_CTRL Unique See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

38FH 911 MSR_PERF_GLOBAL_CTRL Unique See Section 18.4.2, “Global Counter Control Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

390H 912 MSR_PERF_GLOBAL_OVF_
CTRL

Unique See Section 18.4.2, “Global Counter Control Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Unique See Table 35-2. See Section 18.4.4, “Precise Event Based Sampling 
(PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC0_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”
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406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC1_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC2_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

40CH 1036 IA32_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC4_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC4_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

410H 1040 IA32_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC3_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

413H 1043 IA32_MC3_MISC Unique

414H 1044 IA32_MC5_CTL Unique

415H 1045 IA32_MC5_STATUS Unique

416H 1046 IA32_MC5_ADDR Unique

417H 1047 IA32_MC5_MISC Unique

419H 1045 IA32_MC6_STATUS Unique Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.” and 
Chapter 23.
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480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Unique Capability Reporting Register of Pin-based VM-execution 
Controls (R/O) 

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Unique Capability Reporting Register of Primary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-exit Controls (R/O) 

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-entry Controls (R/O) 

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”
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48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Unique Capability Reporting Register of Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 35-2.

See Section 18.12.4, “Debug Store (DS) Mechanism.”

107CC
H

MSR_EMON_L3_CTR_CTL0 Unique GBUSQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107CD
H

MSR_EMON_L3_CTR_CTL1 Unique GBUSQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107CE
H

MSR_EMON_L3_CTR_CTL2 Unique GSNPQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107CF
H

MSR_EMON_L3_CTR_CTL3 Unique GSNPQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107D0
H

MSR_EMON_L3_CTR_CTL4 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107D1
H

MSR_EMON_L3_CTR_CTL5 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107D2
H

MSR_EMON_L3_CTR_CTL6 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107D3
H

MSR_EMON_L3_CTR_CTL7 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107D8
H

MSR_EMON_L3_GL_CTL Unique L3/FSB Common Control Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

C000_
0080H

IA32_EFER Unique Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Unique System Call Target Address (R/W)

See Table 35-2.
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35.3 MSRS IN THE 45 NM AND 32 NM INTEL® ATOM™ PROCESSOR FAMILY
Table 35-4 lists model-specific registers (MSRs) for 45 nm and 32 nm Intel Atom processors, architectural MSR 
addresses are also included in Table 35-4. These processors have a CPUID signature with 
DisplayFamily_DisplayModel of 06_1CH, 06_26H, 06_27H, 06_35H and 06_36H; see Table 35-1. 

The column “Shared/Unique” applies to logical processors sharing the same core in processors based on the Intel 
Atom microarchitecture. “Unique” means each logical processor has a separate MSR, or a bit field in an MSR 
governs only a logical processor. “Shared” means the MSR or the bit field in an MSR address governs the operation 
of both logical processors in the same core.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Unique Swap Target of BASE Address of GS (R/W) See Table 35-2.
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0H 0 IA32_P5_MC_ADDR Shared See Section 35.22, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Shared See Section 35.22, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination.” 
andTable 35-2

10H 16 IA32_TIME_STAMP_
COUNTER

Unique See Section 17.15, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R) 
See Table 35-2.

17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R) 

7:0 Reserved.
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12:8 Maximum Qualified Ratio (R) 

The maximum allowed bus ratio.

63:13 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W) Enables and 
disables processor features; 

(R) indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0. 

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled
Always 0.

3 AERR# Drive Enable (R/W) 

1 = Enabled; 0 = Disabled
Always 0.

4 BERR# Enable for initiator bus requests (R/W)

1 = Enabled; 0 = Disabled
Always 0. 

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled 
Always 0.

8 Reserved.

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled 

10 AERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0.

11 Reserved.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled 
Always 0.

13 Reserved.
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14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

Always 00B.

19: 18 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio (R/O)

3AH 58 IA32_FEATURE_CONTROL Unique Control Features in Intel 64Processor (R/W)

See Table 35-2.

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Unique Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the last branch 
record stack. The From_IP part of the stack contains pointers to 
the source instruction . See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.5

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Unique Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Unique Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Unique Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_
LASTBRANCH_4_FROM_IP

Unique Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_FROM_IP

Unique Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_FROM_IP

Unique Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_FROM_IP

Unique Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_TO_IP

Unique Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the last branch 
record stack. The To_IP part of the stack contains pointers to the 
destination instruction.

61H 97 MSR_
LASTBRANCH_1_TO_IP

Unique Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 
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62H 98 MSR_
LASTBRANCH_2_TO_IP

Unique Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

63H 99 MSR_
LASTBRANCH_3_TO_IP

Unique Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

64H 100 MSR_
LASTBRANCH_4_TO_IP

Unique Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

65H 101 MSR_
LASTBRANCH_5_TO_IP

Unique Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

66H 102 MSR_
LASTBRANCH_6_TO_IP

Unique Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

67H 103 MSR_
LASTBRANCH_7_TO_IP

Unique Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

79H 121 IA32_BIOS_UPDT_TRIG Shared BIOS Update Trigger Register (W) 

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Unique Performance counter register

See Table 35-2.

C2H 194 IA32_PMC1 Unique Performance Counter Register

See Table 35-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for 
processors based on Intel Atom microarchitecture:

2:0 • 111B: 083 MHz (FSB 333)
• 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 001B. 

166.67 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 011B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW) 

See Table 35-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count (RW) 

See Table 35-2.

FEH 254 IA32_MTRRCAP Shared Memory Type Range Register (R) 

See Table 35-2.
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11EH 281 MSR_BBL_CR_CTL3 Shared

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W) 

1 = L2 cache has been initialized 
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD 
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO) 

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Unique See Table 35-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 35-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 35-2.

179H 377 IA32_MCG_CAP Unique See Table 35-2.

17AH 378 IA32_MCG_STATUS Unique

0 RIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) can be used to restart the program. If cleared, the 
program cannot be reliably restarted

1 EIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If 
a second machine check is detected while this bit is still set, the 
processor enters a shutdown state. Software should write this bit 
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Unique See Table 35-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 35-2.

198H 408 IA32_PERF_STATUS Shared See Table 35-2.
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198H 408 MSR_PERF_STATUS Shared

15:0 Current Performance State Value.

39:16 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for the processor.

63:45 Reserved.

199H 409 IA32_PERF_CTL Unique See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Unique Clock Modulation (R/W) 

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named 
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Unique Thermal Interrupt Control (R/W) 

See Table 35-2.

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W) 

See Table 35-2.

19DH 413 MSR_THERM2_CTL Shared

15:0 Reserved.

16 TM_SELECT (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of 
the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT 
has no effect. Neither TM1 nor TM2 are enabled.

63:17 Reserved.

1A0H 416 IA32_MISC_ENABLE Unique Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable (R/W) 

See Table 35-2. Default value is 0.

6:4 Reserved.

7 Shared Performance Monitoring Available (R) 

See Table 35-2.

8 Reserved.

9 Reserved.
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10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break 
event within the processor 

0 =  Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

11 Shared Branch Trace Storage Unavailable (RO) 

See Table 35-2.

12 Shared Processor Event Based Sampling Unavailable (RO) 

See Table 35-2.

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the 
die temperature is at the pre-determined threshold, the Thermal 
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core 
ratio and voltage according to the value last written to 
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not change 
the VID signals or the bus to core ratio when the processor enters 
a thermally managed state. 

The BIOS must enable this feature if the TM2 feature flag 
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, this 
feature is not supported and BIOS must not alter the contents of 
the TM2 bit location. 

The processor is operating out of specification if both this bit and 
the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 35-2.

18 Shared ENABLE MONITOR FSM (R/W) 

See Table 35-2.

19 Reserved.

20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WO)

When set, this bit causes the following bits to become read-only:

• Enhanced Intel SpeedStep Technology Select Lock (this bit), 
• Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep 
Technology transition is requested. This bit is cleared on reset.

21 Reserved.

22 Unique Limit CPUID Maxval (R/W) 

See Table 35-2.
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23 Shared xTPR Message Disable (R/W) 

See Table 35-2.

33:24 Reserved.

34 Unique XD Bit Disable (R/W) 

See Table 35-2.

63:35 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-2) that points to the MSR containing the 
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W) 

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch 
instruction that the processor executed prior to the last exception 
that was generated or the last interrupt that was handled. 

200H 512 IA32_MTRR_PHYSBASE0 Shared See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Shared See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Shared See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Shared See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Shared See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Shared See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Shared See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Shared See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Shared See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Shared See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Shared See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Shared See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Shared See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Shared See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Shared See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Shared See Table 35-2.
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250H 592 IA32_MTRR_FIX64K_
00000

Shared See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Shared See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Shared See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Shared See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Shared See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Shared See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Shared See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Shared See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Shared See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Shared See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Shared See Table 35-2.

277H 631 IA32_PAT Unique See Table 35-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W) 

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W) 

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W) 

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Shared See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Unique Fixed-Function-Counter Control Register (R/W) 

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STATUS

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.” 

38FH 911 IA32_PERF_GLOBAL_CTRL Unique See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Unique See Table 35-2. See Section 18.4.4, “Precise Event Based Sampling 
(PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”
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402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC0_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC2_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

40CH 1036 IA32_MC3_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC3_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

410H 1040 IA32_MC4_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC4_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Unique Capability Reporting Register of Pin-based VM-execution 
Controls (R/O) 

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

Table 35-4    MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 373

482H 1154 IA32_VMX_PROCBASED_
CTLS

Unique Capability Reporting Register of Primary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-exit Controls (R/O) 

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-entry Controls (R/O) 

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Unique Capability Reporting Register of Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 35-2.

See Section 18.12.4, “Debug Store (DS) Mechanism.”

C000_
0080H

IA32_EFER Unique Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Unique System Call Target Address (R/W)

See Table 35-2.
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...

35.4 MSRS IN INTEL PROCESSORS BASED ON SILVERMONT 
MICROARCHITECTURE

Table 35-6 lists model-specific registers (MSRs) common to Intel processors based on the Silvermont microarchi-
tecture. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_37H, 06_4AH, 
06_4DH, 06_5AH, and 06_5DH; see Table 35-1. The MSRs listed in Table 35-6 are also common to processors 
based on the Airmont microarchitecture and newer microarchitectures for next generation Intel Atom processors.

Table 35-7 lists MSRs common to processors based on the Silvermont and Airmont microarchitectures, but not 
newer microarchitectures.

Table 35-8, Table 35-9, and Table 35-10 lists MSRs that are model-specific across processors based on the Silver-
mont microarchitecture.

In the Silvermont microarchitecture, the scope column indicates the following: “Core” means each processor core 
has a separate MSR, or a bit field not shared with another processor core. “Module” means the MSR or the bit field 
is shared by a pair of processor cores in the physical package. “Package” means all processor cores in the physical 
package share the same MSR or bit interface.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Unique Swap Target of BASE Address of GS (R/W) See Table 35-2.
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0H 0 IA32_P5_MC_ADDR Module See Section 35.22, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Module See Section 35.22, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Core See Section 8.10.5, “Monitor/Mwait Address Range Determination.” 
andTable 35-2

10H 16 IA32_TIME_STAMP_
COUNTER

Core See Section 17.15, “Time-Stamp Counter,” and see Table 35-2.
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1BH 27 IA32_APIC_BASE Core See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

2AH 42 MSR_EBL_CR_POWERON Module Processor Hard Power-On Configuration (R/W) Writes ignored

63:0 Reserved (R/O)

34H 52 MSR_SMI_COUNT Core SMI Counter (R/O)

31:0 SMI Count (R/O) 

Running count of SMI events since last RESET.

63:32 Reserved.

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W) 

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Core BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Core Performance counter register

See Table 35-2.

C2H 194 IA32_PMC1 Core Performance Counter Register

See Table 35-2.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Module Power Management IO Redirection in C-state (R/W) 

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W) 

Specifies the base address visible to software for IO redirection. If 
IO MWAIT Redirection is enabled, reads to this address will be 
consumed by the power management logic and decoded to MWAIT 
instructions. When IO port address redirection is enabled, this is the 
IO port address reported to the OS/software.

18:16 C-state Range (R/W) 

Specifies the encoding value of the maximum C-State code name to 
be included when IO read to MWAIT redirection is enabled by 
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

100b - C4 is the max C-State to include

110b - C6 is the max C-State to include

111b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Core Maximum Performance Frequency Clock Count (RW) 

See Table 35-2.

E8H 232 IA32_APERF Core Actual Performance Frequency Clock Count (RW) 

See Table 35-2.
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FEH 254 IA32_MTRRCAP Core Memory Type Range Register (R) 

See Table 35-2.

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle 
unsuccessful read of this MSR.

1:0 AES Configuration (RW-L) 

Upon a successful read of this MSR, the configuration of AES 
instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

otherwise, AES instructions are available.

Note, AES instruction set is not available if read is unsuccessful. If 
the configuration is not 01b, AES instruction can be mis-configured 
if a privileged agent unintentionally writes 11b.

63:2 Reserved.

174H 372 IA32_SYSENTER_CS Core See Table 35-2.

175H 373 IA32_SYSENTER_ESP Core See Table 35-2.

176H 374 IA32_SYSENTER_EIP Core See Table 35-2.

179H 377 IA32_MCG_CAP Core See Table 35-2.

17AH 378 IA32_MCG_STATUS Core

0 RIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) can be used to restart the program. If cleared, the 
program cannot be reliably restarted

1 EIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If 
a second machine check is detected while this bit is still set, the 
processor enters a shutdown state. Software should write this bit 
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Core See Table 35-2.

7:0 Event Select

15:8 UMask
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16 USR

17 OS

18 Edge

19 PC

20 INT

21 Reserved

22 EN

23 INV

31:24 CMASK

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 Core See Table 35-2.

198H 408 IA32_PERF_STATUS Module See Table 35-2.

199H 409 IA32_PERF_CTL Core See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Core Clock Modulation (R/W) 

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named 
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W) 

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W) 

See Table 35-2.

1A2H 418 MSR_
TEMPERATURE_TARGET

Package

15:0 Reserved.

23:16 Temperature Target (R) 

The default thermal throttling or PROCHOT# activation 
temperature in degree C, The effective temperature for thermal 
throttling or PROCHOT# activation is “Temperature Target” + 
“Target Offset”

29:24 Target Offset (R/W) 

Specifies an offset in degrees C to adjust the throttling and 
PROCHOT# activation temperature from the default target 
specified in TEMPERATURE_TARGET (bits 23:16).

63:30 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Module Offcore Response Event Select Register (R/W)

1A7H 423 MSR_OFFCORE_RSP_1 Module Offcore Response Event Select Register (R/W)

1B0H 432 IA32_ENERGY_PERF_BIAS Core See Table 35-2.
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1D9H 473 IA32_DEBUGCTL Core Debug Control (R/W) 

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Core Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Core Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch 
instruction that the processor executed prior to the last exception 
that was generated or the last interrupt that was handled. 

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

200H 512 IA32_MTRR_PHYSBASE0 Core See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Core See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Core See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Core See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Core See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Core See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Core See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Core See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Core See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Core See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Core See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Core See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Core See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Core See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Core See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Core See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Core See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Core See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Core See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Core See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Core See Table 35-2.
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26AH 618 IA32_MTRR_FIX4K_D0000 Core See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Core See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Core See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Core See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Core See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Core See Table 35-2.

277H 631 IA32_PAT Core See Table 35-2.

2FFH 767 IA32_MTRR_DEF_TYPE Core Default Memory Types (R/W) 

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Core Fixed-Function Performance Counter Register 0 (R/W) 

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Core Fixed-Function Performance Counter Register 1 (R/W) 

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Core Fixed-Function Performance Counter Register 2 (R/W) 

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Core See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Core Fixed-Function-Counter Control Register (R/W) 

See Table 35-2.

38FH 911 IA32_PERF_GLOBAL_CTRL Core See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6 
states. Counts at the TSC Frequency.

400H 1024 IA32_MC0_CTL Module See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Module See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Module See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC0_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Module See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Module See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Module See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”
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409H 1033 IA32_MC2_STATUS Module See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Module See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC2_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC3_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

410H 1040 IA32_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC4_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 IA32_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 IA32_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC4_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

480H 1152 IA32_VMX_BASIC Core Reporting Register of Basic VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Core Capability Reporting Register of Pin-based VM-execution 
Controls (R/O) 

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

Table 35-6     MSRs Common to the Silvermont Microarchitecture and Newer Microarchitectures for Intel Atom 
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482H 1154 IA32_VMX_PROCBASED_
CTLS

Core Capability Reporting Register of Primary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Core Capability Reporting Register of VM-exit Controls (R/O) 

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Core Capability Reporting Register of VM-entry Controls (R/O) 

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Core Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Core Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Core Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Core Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Core Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Core Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Core Capability Reporting Register of Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Core Capability Reporting Register of EPT and VPID (R/O) 

See Table 35-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Core Capability Reporting Register of Pin-based VM-execution Flex 
Controls (R/O)

See Table 35-2

48EH 1166 IA32_VMX_TRUE_PROCBA
SED_CTLS

Core Capability Reporting Register of Primary Processor-based 
VM-execution Flex Controls (R/O)

See Table 35-2

Table 35-6     MSRs Common to the Silvermont Microarchitecture and Newer Microarchitectures for Intel Atom 
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Table 35-7 lists model-specific registers (MSRs) that are common to Intel® Atom™ processors based on the 
Silvermont and Airmont microarchitectures but not newer microarchitectures.

48FH 1167 IA32_VMX_TRUE_EXIT_CT
LS

Core Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 35-2

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Core Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 35-2

491H 1169 IA32_VMX_FMFUNC Core Capability Reporting Register of VM-function Controls (R/O)

See Table 35-2

4C1H 1217 IA32_A_PMC0 Core See Table 35-2.

4C2H 1218 IA32_A_PMC1 Core See Table 35-2.

600H 1536 IA32_DS_AREA Core DS Save Area (R/W)

See Table 35-2.

See Section 18.12.4, “Debug Store (DS) Mechanism.”

660H 1632 MSR_CORE_C1_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C1 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C1 
states. Counts at the TSC frequency.

6E0H 1760 IA32_TSC_DEADLINE Core TSC Target of Local APIC’s TSC Deadline Mode (R/W) 

See Table 35-2

C000_
0080H

IA32_EFER Core Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Core System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Core IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Core System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Core Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Core Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Core Swap Target of BASE Address of GS (R/W) See Table 35-2.

C000_
0103H

IA32_TSC_AUX Core AUXILIARY TSC Signature. (R/W) See Table 35-2 
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Table 35-7    MSRs Common to the Silvermont and Airmont Microarchitectures 

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

17H 23 MSR_PLATFORM_ID Module Model Specific Platform ID (R) 

7:0 Reserved.

12:8 Maximum Qualified Ratio (R) 

The maximum allowed bus ratio.

49:13 Reserved.

52:50 See Table 35-2

63:33 Reserved.

3AH 58 IA32_FEATURE_CONTROL Core Control Features in Intel 64Processor (R/W)

See Table 35-2.

0 Lock (R/WL) 

1 Reserved

2 Enable VMX outside SMX operation (R/WL) 

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Core Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the last branch 
record stack. The From_IP part of the stack contains pointers to 
the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.5 and record format in Section 17.4.8.1

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Core Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Core Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Core Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_
LASTBRANCH_4_FROM_IP

Core Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_FROM_IP

Core Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_FROM_IP

Core Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_FROM_IP

Core Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_TO_IP

Core Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the last branch 
record stack. The To_IP part of the stack contains pointers to the 
destination instruction.
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61H 97 MSR_
LASTBRANCH_1_TO_IP

Core Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

62H 98 MSR_
LASTBRANCH_2_TO_IP

Core Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

63H 99 MSR_
LASTBRANCH_3_TO_IP

Core Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

64H 100 MSR_
LASTBRANCH_4_TO_IP

Core Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

65H 101 MSR_
LASTBRANCH_5_TO_IP

Core Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

66H 102 MSR_
LASTBRANCH_6_TO_IP

Core Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

67H 103 MSR_
LASTBRANCH_7_TO_IP

Core Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

CDH 205 MSR_FSB_FREQ Module Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for 
processors based on Silvermont microarchitecture:

2:0 • 100B: 080.0 MHz 
• 000B: 083.3 MHz 
• 001B: 100.0 MHz 
• 010B: 133.3 MHz 
• 011B: 116.7 MHz 

63:3 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Module C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name 
(consuming the least power). for the package. The default is set as 
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

100b: C4

110b: C6

111b: C7 (Silvermont only).

9:3 Reserved.

Table 35-7    MSRs Common to the Silvermont and Airmont Microarchitectures 
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10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register 
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO) 

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

11EH 281 MSR_BBL_CR_CTL3 Module

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W) 

1 = L2 cache has been initialized 
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD 
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO) 

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Core Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Module Automatic Thermal Control Circuit Enable (R/W) 

See Table 35-2. Default value is 0.

6:4 Reserved.

7 Core Performance Monitoring Available (R) 

See Table 35-2.

10:8 Reserved.

11 Core Branch Trace Storage Unavailable (RO) 

See Table 35-2.

12 Core Processor Event Based Sampling Unavailable (RO) 

See Table 35-2.

Table 35-7    MSRs Common to the Silvermont and Airmont Microarchitectures 
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15:13 Reserved.

16 Module Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 35-2.

18 Core ENABLE MONITOR FSM (R/W) 

See Table 35-2.

21:19 Reserved.

22 Core Limit CPUID Maxval (R/W) 

See Table 35-2.

23 Module xTPR Message Disable (R/W) 

See Table 35-2.

33:24 Reserved.

34 Core XD Bit Disable (R/W) 

See Table 35-2.

37:35 Reserved.

38 Module Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost 
Technology, the turbo mode feature is disabled and the IDA_Enable 
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H: 
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect 
hardware support of turbo mode. If power-on default value is 1, 
turbo mode is available in the processor. If power-on default value 
is 0, turbo mode is not available.

63:39 Reserved.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register (R/W) 

See Section 17.7.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved.

Table 35-7    MSRs Common to the Silvermont and Airmont Microarchitectures 
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35.4.1  MSRs with Model-Specific Behavior in the Silvermont Microarchitecture
Table 35-8 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor E3000 Series (CPUID 
signature with DisplayFamily_DisplayModel of 06_37H) and Intel Atom processors (CPUID signatures with 
DisplayFamily_DisplayModel of 06_4AH, 06_5AH, 06_5DH). 

...
Table 35-10 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor C2000 Series 
(CPUID signature with DisplayFamily_DisplayModel of 06_4DH). 

1C9H 457 MSR_LASTBRANCH_TOS Core Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-2) that points to the MSR containing the 
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP.

38EH 910 IA32_PERF_GLOBAL_
STATUS

Core See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.” 

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Core See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Core See Table 35-2. See Section 18.4.4, “Precise Event Based Sampling 
(PEBS).”

0 Enable PEBS for precise event on IA32_PMC0. (R/W)

3FAH 1018 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6 
states. Counts at the TSC Frequency.

664H 1636 MSR_MC6_RESIDENCY_COU
NTER

Module Module C6 Residency Counter (R/0) 

Note: C-state values are processor specific C-state code names,

unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Time that this module is in module-specific C6 states since last

reset. Counts at 1 Mhz frequency.

Table 35-7    MSRs Common to the Silvermont and Airmont Microarchitectures 
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1A4H 420 MSR_MISC_FEATURE_
CONTROL

Miscellaneous Feature Control (R/W) 
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0 Core L2 Hardware Prefetcher Disable (R/W) 

If 1, disables the L2 hardware prefetcher, which fetches additional 
lines of code or data into the L2 cache.

1 Reserved

2 Core DCU Hardware Prefetcher Disable (R/W) 

If 1, disables the L1 data cache prefetcher, which fetches the next 
cache line into L1 data cache.

63:3 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode (RW)

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O) 

See Section 14.9.1, “RAPL Interfaces.”

3:0 Power Units. 

Power related information (in milliWatts) is based on the multiplier,   
2^PU; where PU is an unsigned integer represented by bits 3:0. 
Default value is 0101b, indicating power unit is in 32 milliWatts 
increment.

7:4 Reserved

12:8 Energy Status Units. 

Energy related information (in microJoules) is based on the 
multiplier,   2^ESU; where ESU is an unsigned integer represented 
by bits 12:8. Default value is 00101b, indicating energy unit is in 
32 microJoules increment.

Table 35-10    Specific MSRs Supported by Intel® Atom™ Processor C2000 Series (Contd.)with CPUID Signature 
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35.4.2  MSRs In Intel Atom Processors Based on Airmont Microarchitecture
Intel Atom processor X7-Z8000 and X5-Z8000 series are based on the Airmont microarchitecture. These proces-
sors support MSRs listed in Table 35-6, Table 35-7, Table 35-8, and Table 35-11. These processors have a CPUID 
signature with DisplayFamily_DisplayModel including 06_4CH; see Table 35-1. 

15:13 Reserved

19:16 Time Unit. 

The value is 0000b, indicating time unit is in one second.

63:20 Reserved

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W) 

See Section 14.9.3, “Package RAPL Domain.”

66EH 1646 MSR_PKG_POWER_INFO Package PKG RAPL Parameter (R/0) 

14:0 Thermal Spec Power. (R/0)

The unsigned integer value is the equivalent of thermal 
specification power of the package domain. The unit of this field is 
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT

63:15 Reserved

Table 35-10    Specific MSRs Supported by Intel® Atom™ Processor C2000 Series (Contd.)with CPUID Signature 
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Table 35-11     MSRs in Intel Atom Processors Based on the Airmont Microarchitecture

Address
Register Name

Scope
Bit Description Hex Dec

CDH 205 MSR_FSB_FREQ Module Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for 
processors based on Airmont microarchitecture:

3:0 • 0000B: 083.3 MHz 
• 0001B: 100.0 MHz 
• 0010B: 133.3 MHz 
• 0011B: 116.7 MHz 
• 0100B: 080.0 MHz 
• 0101B: 093.3 MHz 
• 0110B: 090.0 MHz 
• 0111B: 088.9 MHz 
• 10sure00B: 087.5 MHz 

63:5 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Module C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.
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2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name 
(consuming the least power). for the package. The default is set as 
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: No limit

001b: C1 

010b: C2 

110b: C6

111b: C7 

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register 
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO) 

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Module Power Management IO Redirection in C-state (R/W) 

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W) 

Specifies the base address visible to software for IO redirection. If 
IO MWAIT Redirection is enabled, reads to this address will be 
consumed by the power management logic and decoded to MWAIT 
instructions. When IO port address redirection is enabled, this is the 
IO port address reported to the OS/software.

18:16 C-state Range (R/W) 

Specifies the encoding value of the maximum C-State code name to 
be included when IO read to MWAIT redirection is enabled by 
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - Deep Power Down Technology is the max C-State 

010b - C7 is the max C-State to include

63:19 Reserved.

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W) 

14:0 PP0 Power Limit #1. (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.” and 
MSR_RAPL_POWER_UNIT in Table 35-8. 

15 Enable Power Limit #1. (R/W)

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

Table 35-11     MSRs in Intel Atom Processors Based on the Airmont Microarchitecture (Contd.)
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35.5 MSRS IN NEXT GENERATION INTEL ATOM PROCESSORS
Next Generation Intel Atom processors are based on the Goldmont microarchitecture. These processors support 
MSRs listed in Table 35-6 and Table 35-12. These processors have a CPUID signature with 
DisplayFamily_DisplayModel including 06_5CH; see Table 35-1. 

In the Goldmont microarchitecture, the scope column indicates the following: “Core” means each processor core 
has a separate MSR, or a bit field not shared with another processor core. “Module” means the MSR or the bit field 
is shared by a pair of processor cores in the physical package. “Package” means all processor cores in the physical 
package share the same MSR or bit interface.

16 Reserved

23:17 Time Window for Power Limit #1. (R/W)

Specifies the time duration over which the average power must 
remain below PP0_POWER_LIMIT #1(14:0). Supported Encodings:

0x0: 1 second time duration.

0x1: 5 second time duration (Default).

0x2: 10 second time duration.

0x3: 15 second time duration.

0x4: 20 second time duration.

0x5: 25 second time duration.

0x6: 30 second time duration.

0x7: 35 second time duration.

0x8: 40 second time duration.

0x9: 45 second time duration.

0xA: 50 second time duration.

0xB-0x7F - reserved.

63:24 Reserved

Table 35-11     MSRs in Intel Atom Processors Based on the Airmont Microarchitecture (Contd.)
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17H 23 MSR_PLATFORM_ID Module Model Specific Platform ID (R) 

49:0 Reserved.

52:50 See Table 35-2

63:33 Reserved.

3AH 58 IA32_FEATURE_CONTROL Core Control Features in Intel 64Processor (R/W)

See Table 35-2.

0 Lock (R/WL) 
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1 Enable VMX inside SMX operation (R/WL) 

2 Enable VMX outside SMX operation (R/WL) 

14:8 SENTER local functions enables (R/WL) 

15 SENTER global functions enable (R/WL) 

18 SGX global functions enable (R/WL) 

63:19 Reserved.

3BH 59 IA32_TSC_ADJUST Core Per-Core TSC ADJUST (R/W)

See Table 35-2.

C3H 195 IA32_PMC2 Core Performance Counter Register

See Table 35-2.

C4H 196 IA32_PMC3 Core Performance Counter Register

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O) 

The is the ratio of the frequency that invariant TSC runs at. 
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limits for Turbo 
mode is enabled, and when set to 0, indicates Programmable Ratio 
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limits for Turbo mode are 
programmable, and when set to 0, indicates TDP Limit for Turbo 
mode is not programmable.

30 Package Programmable TJ OFFSET (R/O) 

When set to 1, indicates that MSR_TEMPERATURE_TARGET.[27:24] 
is valid and writable to specify an temperature offset.

39:31 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O) 

The is the minimum ratio (maximum efficiency) that the processor 
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.
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3:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name 
(consuming the least power). for the package. The default is set as 
factory-configured package C-state limit.

The following C-state code name encodings are supported:

0000b: No limit

0001b: C1 

0010b: C3 

0011b: C6

0100b: C7

0101b: C7S

0110b: C8

0111b: C9

1000b: C10 

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register 
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO) 

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

17DH 381 MSR_SMM_MCA_CAP Core Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in 
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is 
supported and the MSR_SMM_FEATURE_CONTROL is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported 
and the MSR_SMM_DELAYED is supported.

63:60 Reserved

188H 392 IA32_PERFEVTSEL2 Core See Table 35-2.

189H 393 IA32_PERFEVTSEL3 Core See Table 35-2.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Core Fast-Strings Enable

See Table 35-2.
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2:1 Reserved.

3 Package Automatic Thermal Control Circuit Enable (R/W) 

See Table 35-2. Default value is 1.

6:4 Reserved.

7 Core Performance Monitoring Available (R) 

See Table 35-2.

10:8 Reserved.

11 Core Branch Trace Storage Unavailable (RO) 

See Table 35-2.

12 Core Processor Event Based Sampling Unavailable (RO) 

See Table 35-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 35-2.

18 Core ENABLE MONITOR FSM (R/W) 

See Table 35-2.

21:19 Reserved.

22 Core Limit CPUID Maxval (R/W) 

See Table 35-2.

23 Package xTPR Message Disable (R/W) 

See Table 35-2.

33:24 Reserved.

34 Core XD Bit Disable (R/W) 

See Table 35-2.

37:35 Reserved.

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost 
Technology, the turbo mode feature is disabled and the IDA_Enable 
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H: 
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect 
hardware support of turbo mode. If power-on default value is 1, 
turbo mode is available in the processor. If power-on default value 
is 0, turbo mode is not available.

63:39 Reserved.

1A4H 420 MSR_MISC_FEATURE_
CONTROL

Miscellaneous Feature Control (R/W) 
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0 Core L2 Hardware Prefetcher Disable (R/W) 

If 1, disables the L2 hardware prefetcher, which fetches additional 
lines of code or data into the L2 cache.

1 Reserved

2 Core DCU Hardware Prefetcher Disable (R/W) 

If 1, disables the L1 data cache prefetcher, which fetches the next 
cache line into L1 data cache.

63:3 Reserved.

1AAH 426 MSR_MISC_PWR_MGMT Package See http://biosbits.org.

0 EIST Hardware Coordination Disable (R/W)

When 0, enables hardware coordination of Enhanced Intel 
Speedstep Technology request from processor cores; When 1, 
disables hardware coordination of Enhanced Intel Speedstep 
Technology requests.

21:1 Reserved.

22 Thermal Interrupt Coordination Enable (R/W) 

If set, then thermal interrupt on one core is routed to all cores.

63:23 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode by Core Groups (RW)

Specifies Maximum Ratio Limit for each Core Group. Max ratio 
for groups with more cores must decrease monotonically.

For groups with less than 4 cores, the max ratio must be 32 or 
less. For groups with 4-5 cores, the max ratio must be 22 or 
less. For groups with more than 5 cores, the max ratio must be 
16 or less.

7:0 Package Maximum Ratio Limit for Active cores in Group 0

Maximum turbo ratio limit when number of active cores is less or 
equal to Group 0 threshold. 

15:8 Package Maximum Ratio Limit for Active cores in Group 1

Maximum turbo ratio limit when number of active cores is less or 
equal to Group 1 threshold and greater than Group 0 threshold. 

23:16 Package Maximum Ratio Limit for Active cores in Group 2

Maximum turbo ratio limit when number of active cores is less or 
equal to Group 2 threshold and greater than Group 1 threshold. 

31:24 Package Maximum Ratio Limit for Active cores in Group 3

Maximum turbo ratio limit when number of active cores is less or 
equal to Group 3 threshold and greater than Group 2 threshold. 

39:32 Package Maximum Ratio Limit for Active cores in Group 4

Maximum turbo ratio limit when number of active cores is less or 
equal to Group 4 threshold and greater than Group 3 threshold. 

Table 35-12     MSRs in Next Generation Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description Hex Dec



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 396

47:40 Package Maximum Ratio Limit for Active cores in Group 5

Maximum turbo ratio limit when number of active cores is less or 
equal to Group 5 threshold and greater than Group 4 threshold. 

55:48 Package Maximum Ratio Limit for Active cores in Group 6

Maximum turbo ratio limit when number of active cores is less or 
equal to Group 6 threshold and greater than Group 5 threshold. 

63:56 Package Maximum Ratio Limit for Active cores in Group 7

Maximum turbo ratio limit when number of active cores is less or 
equal to Group 7 threshold and greater than Group 6 threshold. 

1AEH 430 MSR_TURBO_GROUP_CORE
CNT

Package Group Size of Active Cores for Turbo Mode Operation (RW)

Writes of 0 threshold is ignored

7:0 Package Group 0 Core Count Threshold

Maximum number of active cores to operate under Group 0 Max 
Turbo Ratio limit. 

15:8 Package Group 1 Core Count Threshold

Maximum number of active cores to operate under Group 1 Max 
Turbo Ratio limit. Must be greater than Group 0 Core Count.

23:16 Package Group 2 Core Count Threshold

Maximum number of active cores to operate under Group 2 Max 
Turbo Ratio limit. Must be greater than Group 1 Core Count.

31:24 Package Group 3 Core Count Threshold

Maximum number of active cores to operate under Group 3 Max 
Turbo Ratio limit. Must be greater than Group 2 Core Count.

39:32 Package Group 4 Core Count Threshold

Maximum number of active cores to operate under Group 4 Max 
Turbo Ratio limit. Must be greater than Group 3 Core Count.

47:40 Package Group 5 Core Count Threshold

Maximum number of active cores to operate under Group 5 Max 
Turbo Ratio limit. Must be greater than Group 4 Core Count.

55:48 Package Group 6 Core Count Threshold

Maximum number of active cores to operate under Group 6 Max 
Turbo Ratio limit. Must be greater than Group 5 Core Count.

63:56 Package Group 7 Core Count Threshold

Maximum number of active cores to operate under Group 7 Max 
Turbo Ratio limit. Must be greater than Group 6 Core Count and not 
less than the total number of processor cores in the package. E.g. 
specify 255.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register (R/W) 

See Section 17.7.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0
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1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

9 EN_CALL_STACK

63:10 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Core Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-4) that points to the MSR containing the 
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP.

1FCH 508 MSR_POWER_CTL Core Power Control Register. See http://biosbits.org.

0 Reserved.

1 Package C1E Enable (R/W) 

When set to ‘1’, will enable the CPU to switch to the Minimum 
Enhanced Intel SpeedStep Technology operating point when all 
execution cores enter MWAIT (C1).

63:2 Reserved.

210H 528 IA32_MTRR_PHYSBASE8 Core See Table 35-2.

211H 529 IA32_MTRR_PHYSMASK8 Core See Table 35-2.

212H 530 IA32_MTRR_PHYSBASE9 Core See Table 35-2.

213H 531 IA32_MTRR_PHYSMASK9 Core See Table 35-2.

280H 640 IA32_MC0_CTL2 Module See Table 35-2.

281H 641 IA32_MC1_CTL2 Module See Table 35-2.

282H 642 IA32_MC2_CTL2 Core See Table 35-2.

283H 643 IA32_MC3_CTL2 Module See Table 35-2.

284H 644 IA32_MC4_CTL2 Package See Table 35-2.

285H 645 IA32_MC5_CTL2 Package See Table 35-2.

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

300H 768 MSR_SGXOWNER0 Package Lower 64 Bit OwnerEpoch Component of SGX Key (RO).

63:0 Low 64 bits of an 128-bit external entropy value for key 
derivation of an enclave.

301H 769 MSR_SGXOWNER1 Package Upper 64 Bit OwnerEpoch Component of SGX Key (RO).
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63:0 Upper 64 bits of an 128-bit external entropy value for key 
derivation of an enclave.

38EH 910 IA32_PERF_GLOBAL_
STATUS

Core See Table 35-2. See Section 18.2.2.3, “Full-Width Writes to 
Performance Counter Registers.” 

0 Ovf_PMC0 

1 Ovf_PMC1 

2 Ovf_PMC2 

3 Ovf_PMC3 

31:4 Reserved.

32 Ovf_FixedCtr0 

33 Ovf_FixedCtr1 

34 Ovf_FixedCtr2 

54:35 Reserved.

55 Trace_ToPA_PMI. 

57:56 Reserved.

58 LBR_Frz. 

59 CTR_Frz. 

60 ASCI. 

61 Ovf_Uncore 

62 Ovf_BufDSSAVE 

63 CondChgd 

390H 912 IA32_PERF_GLOBAL_STAT
US_RESET

Core See Table 35-2. See Section 18.2.2.3, “Full-Width Writes to 
Performance Counter Registers.”

0 Set 1 to clear Ovf_PMC0 

1 Set 1 to clear Ovf_PMC1 

2 Set 1 to clear Ovf_PMC2 

3 Set 1 to clear Ovf_PMC3 

31:4 Reserved.

32 Set 1 to clear Ovf_FixedCtr0 

33 Set 1 to clear Ovf_FixedCtr1 

34 Set 1 to clear Ovf_FixedCtr2 

54:35 Reserved.

55 Set 1 to clear Trace_ToPA_PMI. 

57:56 Reserved.

58 Set 1 to clear LBR_Frz. 

59 Set 1 to clear CTR_Frz. 
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60 Set 1 to clear ASCI. 

61 Set 1 to clear Ovf_Uncore 

62 Set 1 to clear Ovf_BufDSSAVE 

63 Set 1 to clear CondChgd 

391H 913 IA32_PERF_GLOBAL_STAT
US_SET

Core See Table 35-2. See Section 18.2.2.3, “Full-Width Writes to 
Performance Counter Registers.”

0 Set 1 to cause Ovf_PMC0 = 1

1 Set 1 to cause Ovf_PMC1 = 1

2 Set 1 to cause Ovf_PMC2 = 1

3 Set 1 to cause Ovf_PMC3 = 1

31:4 Reserved.

32 Set 1 to cause Ovf_FixedCtr0 = 1

33 Set 1 to cause Ovf_FixedCtr1 = 1

34 Set 1 to cause Ovf_FixedCtr2 = 1

54:35 Reserved.

55 Set 1 to cause Trace_ToPA_PMI = 1

57:56 Reserved.

58 Set 1 to cause LBR_Frz = 1

59 Set 1 to cause CTR_Frz = 1

60 Set 1 to cause ASCI = 1

61 Set 1 to cause Ovf_Uncore 

62 Set 1 to cause Ovf_BufDSSAVE 

63 Set 1 to cause CondChgd = 1

392H 914 IA32_PERF_GLOBAL_INUSE See Table 35-2. 

3F1H 1009 MSR_PEBS_ENABLE Core See Table 35-2. See Section 18.4.4, “Precise Event Based Sampling 
(PEBS).”

0 Enable PEBS trigger and recording for the programmed event 
(precise or otherwise) on IA32_PMC0. (R/W)

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3 
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.
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63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6 
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3 
states. Count at the same frequency as the TSC.

406H 1030 IA32_MC1_ADDR Module See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC2_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 IA32_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 IA32_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

4C3H 1219 IA32_A_PMC2 Core See Table 35-2.

4C4H 1220 IA32_A_PMC3 Core See Table 35-2.

4E0H 1248 MSR_SMM_FEATURE_CONT
ROL

Package Enhanced SMM Feature Control (SMM-RW)

Reports SMM capability Enhancement. Accessible only while in 
SMM.

0 Lock (SMM-RWO)

When set to ‘1’ locks this register from further changes

1 Reserved

2 SMM_Code_Chk_En (SMM-RW)

This control bit is available only if MSR_SMM_MCA_CAP[58] == 1. 
When set to ‘0’ (default) none of the logical processors are 
prevented from executing SMM code outside the ranges defined by 
the SMRR. 

When set to ‘1’ any logical processor in the package that attempts 
to execute SMM code not within the ranges defined by the SMRR 
will assert an unrecoverable MCE.

63:3 Reserved

4E2H 1250 MSR_SMM_DELAYED Package SMM Delayed (SMM-RO)

Reports the interruptible state of all logical processors in the 
package. Available only while in SMM and 
MSR_SMM_MCA_CAP[LONG_FLOW_INDICATION] == 1.
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N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a processor core of its state in a long flow of 
internal operation which delays servicing an interrupt. The 
corresponding bit will be set at the start of long events such as: 
Microcode Update Load, C6, WBINVD, Ratio Change, Throttle. 

The bit is automatically cleared at the end of each long event. The 
reset value of this field is 0.

Only bit positions below N = CPUID.(EAX=0BH, 
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

4E3H 1251 MSR_SMM_BLOCKED Package SMM Blocked (SMM-RO)

Reports the blocked state of all logical processors in the package. 
Available only while in SMM.

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a processor core of its blocked state to service 
an SMI. The corresponding bit will be set if the logical processor is 
in one of the following states: Wait For SIPI or SENTER Sleep. 

The reset value of this field is 0FFFH.

Only bit positions below N = CPUID.(EAX=0BH, 
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

500H 1280 IA32_SGX_SVN_STATUS Core Status and SVN Threshold of SGX Support for ACM (RO).

0 Lock. See Section 42.11.3, “Interactions with Authenticated Code 
Modules (ACMs)”

15:1 Reserved.

23:16 SGX_SVN_SINIT. See Section 42.11.3, “Interactions with 
Authenticated Code Modules (ACMs)”

63:24 Reserved.

560H 1376 IA32_RTIT_OUTPUT_BASE Core Trace Output Base Register (R/W). See Table 35-2. 

561H 1377 IA32_RTIT_OUTPUT_MASK
_PTRS

Core Trace Output Mask Pointers Register (R/W). See Table 35-2. 

570H 1392 IA32_RTIT_CTL Core Trace Control Register (R/W)

0 TraceEn

1 CYCEn

2 OS

3 User

6:4 Reserved, MBZ

7 CR3 filter

8 ToPA; writing 0 will #GP if also setting TraceEn
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9 MTCEn

10 TSCEn

11 DisRETC

12 Reserved, MBZ

13 BranchEn

17:14 MTCFreq

18 Reserved, MBZ

22:19 CYCThresh

23 Reserved, MBZ

27:24 PSBFreq

31:28 Reserved, MBZ

35:32 ADDR0_CFG

39:36 ADDR1_CFG

63:40 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Core Tracing Status Register (R/W)

0 FilterEn, writes ignored.

1 ContexEn, writes ignored.

2 TriggerEn, writes ignored.

3 Reserved

4 Error (R/W)

5 Stopped

31:6 Reserved. MBZ

48:32 PacketByteCnt

63:49 Reserved, MBZ.

572H 1394 IA32_RTIT_CR3_MATCH Core Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match

580H 1408 IA32_RTIT_ADDR0_A Core Region 0 Start Address (R/W)

63:0 See Table 35-2. 

581H 1409 IA32_RTIT_ADDR0_B Core Region 0 End Address (R/W)

63:0 See Table 35-2. 

582H 1410 IA32_RTIT_ADDR1_A Core Region 1 Start Address (R/W)

63:0 See Table 35-2. 

583H 1411 IA32_RTIT_ADDR1_B Core Region 1 End Address (R/W)

63:0 See Table 35-2. 
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606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O) 

See Section 14.9.1, “RAPL Interfaces.”

3:0 Power Units. 

Power related information (in Watts) is in unit of,   1W/2^PU; where 
PU is an unsigned integer represented by bits 3:0. Default value is 
1000b, indicating power unit is in 3.9 milliWatts increment.

7:4 Reserved

12:8 Energy Status Units. 

Energy related information (in Joules) is in unit of,   1Joule/ (2^ESU); 
where ESU is an unsigned integer represented by bits 12:8. Default 
value is 01110b, indicating energy unit is in 61 microJoules.

15:13 Reserved

19:16 Time Unit. 

Time related information (in seconds) is in unit of,   1S/2^TU; where 
TU is an unsigned integer represented by bits 19:16. Default value 
is 1010b, indicating power unit is in 0.977 millisecond.

63:20 Reserved

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W) 

Specifies the limit that should be used to decide if the package 
should be put into a package C3 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response 
time limit. See Table 35-18 for supported time unit encodings. 

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used 
by the processor for package C-sate management. 

63:16 Reserved.

60BH 1547 MSR_PKGC_IRTL1 Package Package C6/C7S Interrupt Response Limit 1 (R/W) 

This MSR defines the interrupt response time limit used by the 
processor to manage transition to package C6 or C7S state. 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.
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9:0 Interrupt response time limit (R/W) 

Specifies the limit that should be used to decide if the package 
should be put into a package C6 or C7S state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response 
time limit. See Table 35-18 for supported time unit encodings 

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used 
by the processor for package C-sate management. 

63:16 Reserved.

60CH 1548 MSR_PKGC_IRTL2 Package Package C7 Interrupt Response Limit 2 (R/W) 

This MSR defines the interrupt response time limit used by the 
processor to manage transition to package C7 state. 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W) 

Specifies the limit that should be used to decide if the package 
should be put into a package C7 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response 
time limit. See Table 35-18 for supported time unit encodings

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used 
by the processor for package C-sate management. 

63:16 Reserved.

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C2 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C2 
states. Count at the same frequency as the TSC.

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W) 

See Section 14.9.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O) 

See Section 14.9.3, “Package RAPL Domain.”

613H 1555 MSR_PKG_PERF_STATUS Package PKG Perf Status (R/O) 

See Section 14.9.3, “Package RAPL Domain.”
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614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) 

14:0 Thermal Spec Power (R/W) 

See Section 14.9.3, “Package RAPL Domain.”

15 Reserved.

30:16 Minimum Power (R/W) 

See Section 14.9.3, “Package RAPL Domain.”

31 Reserved.

46:32 Maximum Power (R/W) 

See Section 14.9.3, “Package RAPL Domain.”

47 Reserved.

54:48 Maximum Time Window (R/W) 

Specified by 2^Y * (1.0 + Z/4.0) * Time_Unit, where “Y” 
is the unsigned integer value represented. by bits 
52:48, “Z” is an unsigned integer represented by bits 
54:53. “Time_Unit” is specified by the “Time Units” field 
of MSR_RAPL_POWER_UNIT

63:55 Reserved.

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W) 

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O) 

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5, 
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W) 

See Section 14.9.5, “DRAM RAPL Domain.”

632H 1586 MSR_PKG_C10_RESIDENCY Package Note: C-state values are processor specific C-state code names, 

63:0 Package C10 Residency Counter. (R/O)

Value since last reset that the entire SOC is in an S0i3 state. Count 
at the same frequency as the TSC.

639H 1593 MSR_PP0_ENERGY_STATU
S

Package PP0 Energy Status (R/O) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATU
S

Package PP1 Energy Status (R/O) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field. 

30:8 Reserved.
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31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is locked until a 
reset. 

63:32 Reserved.

64FH 1615 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the 
operating system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal event.

2 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system 
request due to package-level power limiting PL1.

3 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system 
request due to package-level power limiting PL2.

8:4 Reserved.

9 Core Power Limiting Status (R0)

When set, frequency is reduced below the operating system 
request due to domain-level power limiting.

10 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal alert from the Voltage Regulator.

11 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating system 
request due to multi-core turbo limits.

12 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system 
request due to electrical design point constraints (e.g. maximum 
electrical current consumption).

13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating system 
request due to Turbo transition attenuation. This prevents 
performance degradation due to frequent operating ratio changes.

14 Maximum Efficiency Frequency Status (R0)

When set, frequency is reduced below the maximum efficiency 
frequency.

15 Reserved 
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16 PROCHOT Log 

When set, indicates that the PROCHOT Status bit has asserted 
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log 

When set, indicates that the Thermal Status bit has asserted since 
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

18 Package-Level PL1 Power Limiting Log 

When set, indicates that the Package Level PL1 Power Limiting 
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19 Package-Level PL2 Power Limiting Log

When set, indicates that the Package Level PL2 Power Limiting 
Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

24:20 Reserved.

25 Core Power Limiting Log 

When set, indicates that the Core Power Limiting Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

26 VR Therm Alert Log 

When set, indicates that the VR Therm Alert Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

27 Max Turbo Limit Log

When set, indicates that the Max Turbo Limit Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28 Electrical Design Point Log 

When set, indicates that the EDP Status bit has asserted since the 
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

29 Turbo Transition Attenuation Log

When set, indicates that the Turbo Transition Attenuation Status 
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.
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30 Maximum Efficiency Frequency Log 

When set, indicates that the Maximum Efficiency Frequency Status 
bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:31 Reserved.

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Core Last Branch Record 0 From IP (R/W)

One of 32 pairs of last branch record registers on the last branch 
record stack. The From_IP part of the stack contains pointers to 
the source instruction . See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6 and record format in Section 17.4.8.1

0:47 From Linear Address (R/W)

62:48 Signed extension of bits 47:0.

63 Mispred

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Core Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Core Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Core Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Core Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Core Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Core Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Core Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Core Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Core Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_IP

Core Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_FROM_IP

Core Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_IP

Core Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.
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68DH 1677 MSR_
LASTBRANCH_13_FROM_IP

Core Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_IP

Core Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_FROM_IP

Core Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

690H 1680 MSR_
LASTBRANCH_16_FROM_IP

Core Last Branch Record 16 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

691H 1681 MSR_
LASTBRANCH_17_FROM_IP

Core Last Branch Record 17 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

692H 1682 MSR_
LASTBRANCH_18_FROM_IP

Core Last Branch Record 18 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

693H 1683 MSR_
LASTBRANCH_19_FROM_IP

Core Last Branch Record 19From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

694H 1684 MSR_
LASTBRANCH_20_FROM_IP

Core Last Branch Record 20 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

695H 1685 MSR_
LASTBRANCH_21_FROM_IP

Core Last Branch Record 21 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

696H 1686 MSR_
LASTBRANCH_22_FROM_IP

Core Last Branch Record 22 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

697H 1687 MSR_
LASTBRANCH_23_FROM_IP

Core Last Branch Record 23 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

698H 1688 MSR_
LASTBRANCH_24_FROM_IP

Core Last Branch Record 24 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

699H 1689 MSR_
LASTBRANCH_25_FROM_IP

Core Last Branch Record 25 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69AH 1690 MSR_
LASTBRANCH_26_FROM_IP

Core Last Branch Record 26 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69BH 1691 MSR_
LASTBRANCH_27_FROM_IP

Core Last Branch Record 27 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69CH 1692 MSR_
LASTBRANCH_28_FROM_IP

Core Last Branch Record 28 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69DH 1693 MSR_
LASTBRANCH_29_FROM_IP

Core Last Branch Record 29 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69EH 1694 MSR_
LASTBRANCH_30_FROM_IP

Core Last Branch Record 30 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.
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69FH 1695 MSR_
LASTBRANCH_31_FROM_IP

Core Last Branch Record 31 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Core Last Branch Record 0 To IP (R/W)

One of 32 pairs of last branch record registers on the last branch 
record stack. The To_IP part of the stack contains pointers to the 
Destination instruction and elapsed cycles from last LBR update. 
See also:

• Section 17.6

0:47 Target Linear Address (R/W)

63:48 Elapsed cycles from last update to the LBR.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Core Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Core Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Core Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Core Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Core Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Core Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Core Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Core Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Core Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Core Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Core Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Core Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Core Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Core Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 
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6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Core Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6D0H 1744 MSR_
LASTBRANCH_16_TO_IP

Core Last Branch Record 16 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6D1H 1745 MSR_
LASTBRANCH_17_TO_IP

Core Last Branch Record 17 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D2H 1746 MSR_
LASTBRANCH_18_TO_IP

Core Last Branch Record 18 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6D3H 1747 MSR_
LASTBRANCH_19_TO_IP

Core Last Branch Record 19To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D4H 1748 MSR_
LASTBRANCH_20_TO_IP

Core Last Branch Record 20 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D5H 1749 MSR_
LASTBRANCH_21_TO_IP

Core Last Branch Record 21 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D6H 1750 MSR_
LASTBRANCH_22_TO_IP

Core Last Branch Record 22 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D7H 1751 MSR_
LASTBRANCH_23_TO_IP

Core Last Branch Record 23 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D8H 1752 MSR_
LASTBRANCH_24_TO_IP

Core Last Branch Record 24 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D9H 1753 MSR_
LASTBRANCH_25_TO_IP

Core Last Branch Record 25 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DAH 1754 MSR_
LASTBRANCH_26_TO_IP

Core Last Branch Record 26 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DBH 1755 MSR_
LASTBRANCH_27_TO_IP

Core Last Branch Record 27 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DCH 1756 MSR_
LASTBRANCH_28_TO_IP

Core Last Branch Record 28 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DDH 1757 MSR_
LASTBRANCH_29_TO_IP

Core Last Branch Record 29 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DEH 1758 MSR_
LASTBRANCH_30_TO_IP

Core Last Branch Record 30 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DFH 1759 MSR_
LASTBRANCH_31_TO_IP

Core Last Branch Record 31 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

802H 2050 IA32_X2APIC_APICID Core x2APIC ID register (R/O) See x2APIC Specification.

803H 2051 IA32_X2APIC_VERSION Core x2APIC Version register (R/O) 

808H 2056 IA32_X2APIC_TPR Core x2APIC Task Priority register (R/W) 
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80AH 2058 IA32_X2APIC_PPR Core x2APIC Processor Priority register (R/O) 

80BH 2059 IA32_X2APIC_EOI Core x2APIC EOI register (W/O) 

80DH 2061 IA32_X2APIC_LDR Core x2APIC Logical Destination register (R/O) 

80FH 2063 IA32_X2APIC_SIVR Core x2APIC Spurious Interrupt Vector register (R/W) 

810H 2064 IA32_X2APIC_ISR0 Core x2APIC In-Service register bits [31:0] (R/O) 

811H 2065 IA32_X2APIC_ISR1 Core x2APIC In-Service register bits [63:32] (R/O) 

812H 2066 IA32_X2APIC_ISR2 Core x2APIC In-Service register bits [95:64] (R/O) 

813H 2067 IA32_X2APIC_ISR3 Core x2APIC In-Service register bits [127:96] (R/O) 

814H 2068 IA32_X2APIC_ISR4 Core x2APIC In-Service register bits [159:128] (R/O) 

815H 2069 IA32_X2APIC_ISR5 Core x2APIC In-Service register bits [191:160] (R/O) 

816H 2070 IA32_X2APIC_ISR6 Core x2APIC In-Service register bits [223:192] (R/O) 

817H 2071 IA32_X2APIC_ISR7 Core x2APIC In-Service register bits [255:224] (R/O) 

818H 2072 IA32_X2APIC_TMR0 Core x2APIC Trigger Mode register bits [31:0] (R/O) 

819H 2073 IA32_X2APIC_TMR1 Core x2APIC Trigger Mode register bits [63:32] (R/O) 

81AH 2074 IA32_X2APIC_TMR2 Core x2APIC Trigger Mode register bits [95:64] (R/O) 

81BH 2075 IA32_X2APIC_TMR3 Core x2APIC Trigger Mode register bits [127:96] (R/O) 

81CH 2076 IA32_X2APIC_TMR4 Core x2APIC Trigger Mode register bits [159:128] (R/O) 

81DH 2077 IA32_X2APIC_TMR5 Core x2APIC Trigger Mode register bits [191:160] (R/O) 

81EH 2078 IA32_X2APIC_TMR6 Core x2APIC Trigger Mode register bits [223:192] (R/O) 

81FH 2079 IA32_X2APIC_TMR7 Core x2APIC Trigger Mode register bits [255:224] (R/O) 

820H 2080 IA32_X2APIC_IRR0 Core x2APIC Interrupt Request register bits [31:0] (R/O) 

821H 2081 IA32_X2APIC_IRR1 Core x2APIC Interrupt Request register bits [63:32] (R/O) 

822H 2082 IA32_X2APIC_IRR2 Core x2APIC Interrupt Request register bits [95:64] (R/O) 

823H 2083 IA32_X2APIC_IRR3 Core x2APIC Interrupt Request register bits [127:96] (R/O) 

824H 2084 IA32_X2APIC_IRR4 Core x2APIC Interrupt Request register bits [159:128] (R/O) 

825H 2085 IA32_X2APIC_IRR5 Core x2APIC Interrupt Request register bits [191:160] (R/O) 

826H 2086 IA32_X2APIC_IRR6 Core x2APIC Interrupt Request register bits [223:192] (R/O) 

827H 2087 IA32_X2APIC_IRR7 Core x2APIC Interrupt Request register bits [255:224] (R/O) 

828H 2088 IA32_X2APIC_ESR Core x2APIC Error Status register (R/W) 

82FH 2095 IA32_X2APIC_LVT_CMCI Core x2APIC LVT Corrected Machine Check Interrupt register (R/W) 

830H 2096 IA32_X2APIC_ICR Core x2APIC Interrupt Command register (R/W) 

832H 2098 IA32_X2APIC_LVT_TIMER Core x2APIC LVT Timer Interrupt register (R/W) 

833H 2099 IA32_X2APIC_LVT_THERM
AL

Core x2APIC LVT Thermal Sensor Interrupt register (R/W) 

834H 2100 IA32_X2APIC_LVT_PMI Core x2APIC LVT Performance Monitor register (R/W) 
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35.6 MSRS IN THE INTEL® MICROARCHITECTURE CODE NAME NEHALEM
Table 35-13 lists model-specific registers (MSRs) that are common for Intel® microarchitecture code name 
Nehalem. These include Intel Core i7 and i5 processor family. These processors have a CPUID signature with 
DisplayFamily_DisplayModel of 06_1AH, 06_1EH, 06_1FH, 06_2EH, see Table 35-1. Additional MSRs specific to 

835H 2101 IA32_X2APIC_LVT_LINT0 Core x2APIC LVT LINT0 register (R/W) 

836H 2102 IA32_X2APIC_LVT_LINT1 Core x2APIC LVT LINT1 register (R/W) 

837H 2103 IA32_X2APIC_LVT_ERROR Core x2APIC LVT Error register (R/W) 

838H 2104 IA32_X2APIC_INIT_COUNT Core x2APIC Initial Count register (R/W) 

839H 2105 IA32_X2APIC_CUR_COUNT Core x2APIC Current Count register (R/O) 

83EH 2110 IA32_X2APIC_DIV_CONF Core x2APIC Divide Configuration register (R/W) 

83FH 2111 IA32_X2APIC_SELF_IPI Core x2APIC Self IPI register (W/O) 

C8FH 3215 IA32_PQR_ASSOC Core Resource Association Register (R/W)

31:0 Reserved

33:32 COS (R/W). 

63: 34 Reserved

D10H 3344 IA32_L2_QOS_MASK_0 Module L2 Class Of Service Mask - COS 0 (R/W)

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=0

0:7 CBM: Bit vector of available L2 ways for COS 0 enforcement

63:8 Reserved

D11H 3345 IA32_L2_QOS_MASK_1 Module L2 Class Of Service Mask - COS 1 (R/W)

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=1

0:7 CBM: Bit vector of available L2 ways for COS 0 enforcement

63:8 Reserved

D12H 3346 IA32_L2_QOS_MASK_2 Module L2 Class Of Service Mask - COS 2 (R/W)

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=2

0:7 CBM: Bit vector of available L2 ways for COS 0 enforcement

63:8 Reserved

D13H 3347 IA32_L2_QOS_MASK_3 Package L2 Class Of Service Mask - COS 3 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=3

0:19 CBM: Bit vector of available L2 ways for COS 3 enforcement

63:20 Reserved

D90H 3472 IA32_BNDCFGS Core See Table 35-2.

DA0H 3488 IA32_XSS Core See Table 35-2.

See Table 35-6, and Table 35-12 for MSR definitions applicable to processors with CPUID signature 06_5CH. 

Table 35-12     MSRs in Next Generation Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)
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06_1AH, 06_1EH, 06_1FH are listed in Table 35-14. Some MSRs listed in these tables are used by BIOS. More 
information about these MSR can be found at http://biosbits.org.

The column “Scope” represents the package/core/thread scope of individual bit field of an MSR. “Thread” means 
this bit field must be programmed on each logical processor independently. “Core” means the bit field must be 
programmed on each processor core independently, logical processors in the same core will be affected by change 
of this bit on the other logical processor in the same core. “Package” means the bit field must be programmed 
once for each physical package. Change of a bit filed with a package scope will affect all logical processors in that 
physical package.

Table 35-13    MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 35.22, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 35.22, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,” 
and Table 35-2.

10H 16 IA32_TIME_
STAMP_COUNTER

Thread See Section 17.15, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R) 
See Table 35-2.

17H 23 MSR_PLATFORM_ID Package Model Specific Platform ID (R) 

49:0 Reserved.

52:50 See Table 35-2.

63:53 Reserved.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O) 

Running count of SMI events since last RESET.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 35-2.

79H 121 IA32_BIOS_
UPDT_TRIG

Core BIOS Update Trigger Register (W) 

See Table 35-2.

8BH 139 IA32_BIOS_
SIGN_ID

Thread BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register

See Table 35-2.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 415

C2H 194 IA32_PMC1 Thread Performance Counter Register

See Table 35-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register

See Table 35-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package see http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O) 

The is the ratio of the frequency that invariant TSC runs at. The 
invariant TSC frequency can be computed by multiplying this ratio 
by 133.33 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limits for Turbo 
mode is enabled, and when set to 0, indicates Programmable Ratio 
Limits for Turbo mode is disabled.

29 Package Programmable TDC-TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDC/TDP Limits for Turbo mode are 
programmable, and when set to 0, indicates TDC and TDP Limits for 
Turbo mode are not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O) 

The is the minimum ratio (maximum efficiency) that the processor 
can operates, in units of 133.33MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States. See http://biosbits.org.
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2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name 
(consuming the least power). for the package. The default is set as 
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

010b: C3

011b: C6

100b: C7

101b and 110b: Reserved

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved. 

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register 
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions.

14:11 Reserved. 

15 CFG Lock (R/WO) 

When set, lock bits 15:0 of this register until next reset.

23:16 Reserved. 

24 Interrupt filtering enable (R/W) 

When set, processor cores in a deep C-State will wake only when 
the event message is destined for that core. When 0, all processor 
cores in a deep C-State will wake for an event message.

25 C3 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C6/C7 requests 
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C3/C6/C7 
requests to C1 based on uncore auto-demote information.

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Package C State Demotion Enable (R/W)

30 Package C State UnDemotion Enable (R/W)

63:31 Reserved.
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E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W) 

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W) 

Specifies the base address visible to software for IO redirection. If 
IO MWAIT Redirection is enabled, reads to this address will be 
consumed by the power management logic and decoded to MWAIT 
instructions. When IO port address redirection is enabled, this is the 
IO port address reported to the OS/software.

18:16 C-state Range (R/W) 

Specifies the encoding value of the maximum C-State code name to 
be included when IO read to MWAIT redirection is enabled by 
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW) 

See Table 35-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW) 

See Table 35-2.

FEH 254 IA32_MTRRCAP Thread See Table 35-2.

174H 372 IA32_SYSENTER_CS Thread See Table 35-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 35-2.

179H 377 IA32_MCG_CAP Thread See Table 35-2.

17AH 378 IA32_MCG_STATUS Thread

0 RIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) can be used to restart the program. If cleared, the 
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) is directly associated with the error.
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2 MCIP

When set, bit indicates that a machine check has been generated. If 
a second machine check is detected while this bit is still set, the 
processor enters a shutdown state. Software should write this bit 
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Thread See Table 35-2.

7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 AnyThread

22 EN

23 INV

31:24 CMASK

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 Thread See Table 35-2.

188H 392 IA32_PERFEVTSEL2 Thread See Table 35-2.

189H 393 IA32_PERFEVTSEL3 Thread See Table 35-2.

198H 408 IA32_PERF_STATUS Core See Table 35-2.

15:0 Current Performance State Value.

63:16 Reserved.

199H 409 IA32_PERF_CTL Thread See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Thread Clock Modulation (R/W) 

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named 
IA32_THERM_CONTROL MSR.

0 Reserved.

3:1 On demand Clock Modulation Duty Cycle (R/W)

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.
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19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W) 

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W) 

See Table 35-2.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Thread Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Thread Automatic Thermal Control Circuit Enable (R/W)

See Table 35-2. Default value is 1.

6:4 Reserved.

7 Thread Performance Monitoring Available (R) 

See Table 35-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable (RO) 

See Table 35-2.

12 Thread Processor Event Based Sampling Unavailable (RO) 

See Table 35-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 35-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 35-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval (R/W) 

See Table 35-2.

23 Thread xTPR Message Disable (R/W) 

See Table 35-2.

33:24 Reserved.

34 Thread XD Bit Disable (R/W)

See Table 35-2.

37:35 Reserved.
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38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost 
Technology, the turbo mode feature is disabled and the IDA_Enable 
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H: 
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect 
hardware support of turbo mode. If power-on default value is 1, 
turbo mode is available in the processor. If power-on default value 
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Thread

15:0 Reserved.

23:16 Temperature Target (R) 

The minimum temperature at which PROCHOT# will be asserted. 
The value is degree C.

63:24 Reserved.

1A4H 420 MSR_MISC_FEATURE_
CONTROL

Miscellaneous Feature Control (R/W) 

0 Core L2 Hardware Prefetcher Disable (R/W) 

If 1, disables the L2 hardware prefetcher, which fetches additional 
lines of code or data into the L2 cache.

1 Core L2 Adjacent Cache Line Prefetcher Disable (R/W) 

If 1, disables the adjacent cache line prefetcher, which fetches the 
cache line that comprises a cache line pair (128 bytes).

2 Core DCU Hardware Prefetcher Disable (R/W) 

If 1, disables the L1 data cache prefetcher, which fetches the next 
cache line into L1 data cache.

3 Core DCU IP Prefetcher Disable (R/W) 

If 1, disables the L1 data cache IP prefetcher, which uses 
sequential load history (based on instruction Pointer of previous 
loads) to determine whether to prefetch additional lines.

63:4 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT See http://biosbits.org.

Table 35-13    MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 421

0 Package EIST Hardware Coordination Disable (R/W)

When 0, enables hardware coordination of Enhanced Intel 
Speedstep Technology request from processor cores; When 1, 
disables hardware coordination of Enhanced Intel Speedstep 
Technology requests.

1 Thread Energy/Performance Bias Enable (R/W) 

This bit makes the IA32_ENERGY_PERF_BIAS register (MSR 1B0h) 
visible to software with Ring 0 privileges. This bit’s status (1 or 0) 
is also reflected by CPUID.(EAX=06h):ECX[3].

63:2 Reserved.

1ACH 428 MSR_TURBO_POWER_
CURRENT_LIMIT

See http://biosbits.org.

14:0 Package TDP Limit (R/W) 

TDP limit in 1/8 Watt granularity.

15 Package TDP Limit Override Enable (R/W) 

A value = 0 indicates override is not active, and a value = 1 
indicates active.

30:16 Package TDC Limit (R/W) 

TDC limit in 1/8 Amp granularity.

31 Package TDC Limit Override Enable (R/W) 

A value = 0 indicates override is not active, and a value = 1 
indicates active.

63:32 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register (R/W) 

See Section 17.7.2, “Filtering of Last Branch Records.”
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0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the 
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W) 

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch 
instruction that the processor executed prior to the last exception 
that was generated or the last interrupt that was handled. 

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

1FCH 508 MSR_POWER_CTL Core Power Control Register. See http://biosbits.org.

0 Reserved.

1 Package C1E Enable (R/W) 

When set to ‘1’, will enable the CPU to switch to the Minimum 
Enhanced Intel SpeedStep Technology operating point when all 
execution cores enter MWAIT (C1).

63:2 Reserved.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 35-2.
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201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 35-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 35-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 35-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 35-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 35-2.

277H 631 IA32_PAT Thread See Table 35-2.
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280H 640 IA32_MC0_CTL2 Package See Table 35-2.

281H 641 IA32_MC1_CTL2 Package See Table 35-2.

282H 642 IA32_MC2_CTL2 Core See Table 35-2.

283H 643 IA32_MC3_CTL2 Core See Table 35-2.

284H 644 IA32_MC4_CTL2 Core See Table 35-2.

285H 645 IA32_MC5_CTL2 Core See Table 35-2.

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

288H 648 IA32_MC8_CTL2 Package See Table 35-2.

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W) 

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W) 

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W) 

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W) 

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 35-2.

6 PEBS Record Format. 

7 PEBSSaveArchRegs. See Table 35-2.

11:8 PEBS_REC_FORMAT. See Table 35-2.

12 SMM_FREEZE. See Table 35-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W) 

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STATUS

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.” 

38EH 910 MSR_PERF_GLOBAL_STATU
S

Thread  (RO)

61 UNC_Ovf

Uncore overflowed if 1.

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”
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390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

390H 912 MSR_PERF_GLOBAL_OVF_
CTRL

Thread  (R/W)

61 CLR_UNC_Ovf

Set 1 to clear UNC_Ovf.

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.7.1.1, “Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

3F6H 1014 MSR_PEBS_LD_LAT Thread See Section 18.7.1.2, “Load Latency Performance Monitoring 
Facility.”

15:0 Minimum threshold latency value of tagged load operation that will 
be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3 
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6 
states. Count at the same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.
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63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7 
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3 
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6 
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC0_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

403H 1027 IA32_MC0_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC1_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

407H 1031 IA32_MC1_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”
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40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC2_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC4_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 IA32_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC3_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

413H 1043 IA32_MC4_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

414H 1044 IA32_MC5_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 IA32_MC5_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 IA32_MC5_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 IA32_MC5_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 IA32_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 IA32_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 IA32_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 IA32_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41EH 1054 IA32_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”
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41FH 1055 IA32_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 IA32_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

422H 1058 IA32_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 IA32_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution 
Controls (R/O) 

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O) 

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O) 

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

Table 35-13    MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 429

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration (R/
O). 

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-2.

See Section 18.12.4, “Debug Store (DS) Mechanism.”

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last 
branch record stack. The From_IP part of the stack contains 
pointers to the source instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.7.1 and record format in Section 17.4.8.1

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.
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68BH 1675 MSR_
LASTBRANCH_11_FROM_IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_FROM_IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last 
branch record stack. This part of the stack contains pointers to the 
destination instruction.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 
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6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

802H 2050 IA32_X2APIC_APICID Thread x2APIC ID register (R/O) See x2APIC Specification.

803H 2051 IA32_X2APIC_VERSION Thread x2APIC Version register (R/O) 

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority register (R/W) 

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority register (R/O) 

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI register (W/O) 

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination register (R/O) 

80FH 2063 IA32_X2APIC_SIVR Thread x2APIC Spurious Interrupt Vector register (R/W) 

810H 2064 IA32_X2APIC_ISR0 Thread x2APIC In-Service register bits [31:0] (R/O) 

811H 2065 IA32_X2APIC_ISR1 Thread x2APIC In-Service register bits [63:32] (R/O) 

812H 2066 IA32_X2APIC_ISR2 Thread x2APIC In-Service register bits [95:64] (R/O) 

813H 2067 IA32_X2APIC_ISR3 Thread x2APIC In-Service register bits [127:96] (R/O) 

814H 2068 IA32_X2APIC_ISR4 Thread x2APIC In-Service register bits [159:128] (R/O) 

815H 2069 IA32_X2APIC_ISR5 Thread x2APIC In-Service register bits [191:160] (R/O) 

816H 2070 IA32_X2APIC_ISR6 Thread x2APIC In-Service register bits [223:192] (R/O) 

817H 2071 IA32_X2APIC_ISR7 Thread x2APIC In-Service register bits [255:224] (R/O) 

818H 2072 IA32_X2APIC_TMR0 Thread x2APIC Trigger Mode register bits [31:0] (R/O) 

819H 2073 IA32_X2APIC_TMR1 Thread x2APIC Trigger Mode register bits [63:32] (R/O) 

81AH 2074 IA32_X2APIC_TMR2 Thread x2APIC Trigger Mode register bits [95:64] (R/O) 

81BH 2075 IA32_X2APIC_TMR3 Thread x2APIC Trigger Mode register bits [127:96] (R/O) 

81CH 2076 IA32_X2APIC_TMR4 Thread x2APIC Trigger Mode register bits [159:128] (R/O) 

81DH 2077 IA32_X2APIC_TMR5 Thread x2APIC Trigger Mode register bits [191:160] (R/O) 

81EH 2078 IA32_X2APIC_TMR6 Thread x2APIC Trigger Mode register bits [223:192] (R/O) 

81FH 2079 IA32_X2APIC_TMR7 Thread x2APIC Trigger Mode register bits [255:224] (R/O) 

820H 2080 IA32_X2APIC_IRR0 Thread x2APIC Interrupt Request register bits [31:0] (R/O) 

821H 2081 IA32_X2APIC_IRR1 Thread x2APIC Interrupt Request register bits [63:32] (R/O) 
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822H 2082 IA32_X2APIC_IRR2 Thread x2APIC Interrupt Request register bits [95:64] (R/O) 

823H 2083 IA32_X2APIC_IRR3 Thread x2APIC Interrupt Request register bits [127:96] (R/O) 

824H 2084 IA32_X2APIC_IRR4 Thread x2APIC Interrupt Request register bits [159:128] (R/O) 

825H 2085 IA32_X2APIC_IRR5 Thread x2APIC Interrupt Request register bits [191:160] (R/O) 

826H 2086 IA32_X2APIC_IRR6 Thread x2APIC Interrupt Request register bits [223:192] (R/O) 

827H 2087 IA32_X2APIC_IRR7 Thread x2APIC Interrupt Request register bits [255:224] (R/O) 

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status register (R/W) 

82FH 2095 IA32_X2APIC_LVT_CMCI Thread x2APIC LVT Corrected Machine Check Interrupt register (R/W) 

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command register (R/W) 

832H 2098 IA32_X2APIC_LVT_TIMER Thread x2APIC LVT Timer Interrupt register (R/W) 

833H 2099 IA32_X2APIC_LVT_THERM
AL

Thread x2APIC LVT Thermal Sensor Interrupt register (R/W) 

834H 2100 IA32_X2APIC_LVT_PMI Thread x2APIC LVT Performance Monitor register (R/W) 

835H 2101 IA32_X2APIC_LVT_LINT0 Thread x2APIC LVT LINT0 register (R/W) 

836H 2102 IA32_X2APIC_LVT_LINT1 Thread x2APIC LVT LINT1 register (R/W) 

837H 2103 IA32_X2APIC_LVT_ERROR Thread x2APIC LVT Error register (R/W) 

838H 2104 IA32_X2APIC_INIT_COUNT Thread x2APIC Initial Count register (R/W) 

839H 2105 IA32_X2APIC_CUR_COUNT Thread x2APIC Current Count register (R/O) 

83EH 2110 IA32_X2APIC_DIV_CONF Thread x2APIC Divide Configuration register (R/W) 

83FH 2111 IA32_X2APIC_SELF_IPI Thread x2APIC Self IPI register (W/O) 

C000_
0080H

IA32_EFER Thread Extended Feature Enables 

See Table 35-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W) 

See Table 35-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W) 

See Table 35-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W) 

See Table 35-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W) 

See Table 35-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W) 

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W) See Table 35-2.
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...

35.6.2  Additional MSRs in the Intel® Xeon® Processor 7500 Series
Intel Xeon Processor 7500 series support MSRs listed in Table 35-13 (except MSR address 1ADH) and additional 
model-specific registers listed in Table 35-15. These processors have a CPUID signature with 
DisplayFamily_DisplayModel of 06_2EH.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W) See Table 35-2 and Section 
17.15.2, “IA32_TSC_AUX Register and RDTSCP Support.” 
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1ADH 429 MSR_TURBO_RATIO_LIMIT Package Reserved

Attempt to read/write will cause #UD.

289H 649 IA32_MC9_CTL2 Package See Table 35-2.

28AH 650 IA32_MC10_CTL2 Package See Table 35-2.

28BH 651 IA32_MC11_CTL2 Package See Table 35-2.

28CH 652 IA32_MC12_CTL2 Package See Table 35-2.

28DH 653 IA32_MC13_CTL2 Package See Table 35-2.

28EH 654 IA32_MC14_CTL2 Package See Table 35-2.

28FH 655 IA32_MC15_CTL2 Package See Table 35-2.

290H 656 IA32_MC16_CTL2 Package See Table 35-2.

291H 657 IA32_MC17_CTL2 Package See Table 35-2.

292H 658 IA32_MC18_CTL2 Package See Table 35-2.

293H 659 IA32_MC19_CTL2 Package See Table 35-2.

294H 660 IA32_MC20_CTL2 Package See Table 35-2.

295H 661 IA32_MC21_CTL2 Package See Table 35-2.

394H 816 MSR_W_PMON_FIXED_CTR Package Uncore W-box perfmon fixed counter 

395H 817 MSR_W_PMON_FIXED_
CTR_CTL

Package Uncore U-box perfmon fixed counter control MSR

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 IA32_MC9_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

426H 1062 IA32_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”
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427H 1063 IA32_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 IA32_MC10_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42AH 1066 IA32_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 IA32_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 IA32_MC11_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42EH 1070 IA32_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 IA32_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 IA32_MC12_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

432H 1074 IA32_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 IA32_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 IA32_MC13_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

436H 1078 IA32_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 IA32_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 IA32_MC14_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43AH 1082 IA32_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 IA32_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 IA32_MC15_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43EH 1086 IA32_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 IA32_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 IA32_MC16_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

442H 1090 IA32_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 IA32_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 IA32_MC17_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

446H 1094 IA32_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 IA32_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”
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449H 1097 IA32_MC18_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44AH 1098 IA32_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 IA32_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 IA32_MC19_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44EH 1102 IA32_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 IA32_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

450H 1104 IA32_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

451H 1105 IA32_MC20_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

452H 1106 IA32_MC20_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

453H 1107 IA32_MC20_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

454H 1108 IA32_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

455H 1109 IA32_MC21_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

456H 1110 IA32_MC21_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

457H 1111 IA32_MC21_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

C00H 3072 MSR_U_PMON_GLOBAL_
CTRL

Package Uncore U-box perfmon global control MSR.

C01H 3073 MSR_U_PMON_GLOBAL_
STATUS

Package Uncore U-box perfmon global status MSR.

C02H 3074 MSR_U_PMON_GLOBAL_
OVF_CTRL

Package Uncore U-box perfmon global overflow control MSR.

C10H 3088 MSR_U_PMON_EVNT_SEL Package Uncore U-box perfmon event select MSR.

C11H 3089 MSR_U_PMON_CTR Package Uncore U-box perfmon counter MSR.

C20H 3104 MSR_B0_PMON_BOX_CTRL Package Uncore B-box 0 perfmon local box control MSR.

C21H 3105 MSR_B0_PMON_BOX_
STATUS

Package Uncore B-box 0 perfmon local box status MSR.

C22H 3106 MSR_B0_PMON_BOX_OVF_
CTRL

Package Uncore B-box 0 perfmon local box overflow control MSR.

C30H 3120 MSR_B0_PMON_EVNT_
SEL0

Package Uncore B-box 0 perfmon event select MSR.

C31H 3121 MSR_B0_PMON_CTR0 Package Uncore B-box 0 perfmon counter MSR.

C32H 3122 MSR_B0_PMON_EVNT_
SEL1

Package Uncore B-box 0 perfmon event select MSR.

C33H 3123 MSR_B0_PMON_CTR1 Package Uncore B-box 0 perfmon counter MSR.
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C34H 3124 MSR_B0_PMON_EVNT_
SEL2

Package Uncore B-box 0 perfmon event select MSR.

C35H 3125 MSR_B0_PMON_CTR2 Package Uncore B-box 0 perfmon counter MSR.

C36H 3126 MSR_B0_PMON_EVNT_
SEL3

Package Uncore B-box 0 perfmon event select MSR.

C37H 3127 MSR_B0_PMON_CTR3 Package Uncore B-box 0 perfmon counter MSR.

C40H 3136 MSR_S0_PMON_BOX_CTRL Package Uncore S-box 0 perfmon local box control MSR.

C41H 3137 MSR_S0_PMON_BOX_
STATUS

Package Uncore S-box 0 perfmon local box status MSR.

C42H 3138 MSR_S0_PMON_BOX_OVF_
CTRL

Package Uncore S-box 0 perfmon local box overflow control MSR.

C50H 3152 MSR_S0_PMON_EVNT_
SEL0

Package Uncore S-box 0 perfmon event select MSR.

C51H 3153 MSR_S0_PMON_CTR0 Package Uncore S-box 0 perfmon counter MSR.

C52H 3154 MSR_S0_PMON_EVNT_
SEL1

Package Uncore S-box 0 perfmon event select MSR.

C53H 3155 MSR_S0_PMON_CTR1 Package Uncore S-box 0 perfmon counter MSR.

C54H 3156 MSR_S0_PMON_EVNT_
SEL2

Package Uncore S-box 0 perfmon event select MSR.

C55H 3157 MSR_S0_PMON_CTR2 Package Uncore S-box 0 perfmon counter MSR.

C56H 3158 MSR_S0_PMON_EVNT_
SEL3

Package Uncore S-box 0 perfmon event select MSR.

C57H 3159 MSR_S0_PMON_CTR3 Package Uncore S-box 0 perfmon counter MSR.

C60H 3168 MSR_B1_PMON_BOX_CTRL Package Uncore B-box 1 perfmon local box control MSR.

C61H 3169 MSR_B1_PMON_BOX_
STATUS

Package Uncore B-box 1 perfmon local box status MSR.

C62H 3170 MSR_B1_PMON_BOX_OVF_
CTRL

Package Uncore B-box 1 perfmon local box overflow control MSR.

C70H 3184 MSR_B1_PMON_EVNT_
SEL0

Package Uncore B-box 1 perfmon event select MSR.

C71H 3185 MSR_B1_PMON_CTR0 Package Uncore B-box 1 perfmon counter MSR.

C72H 3186 MSR_B1_PMON_EVNT_
SEL1

Package Uncore B-box 1 perfmon event select MSR.

C73H 3187 MSR_B1_PMON_CTR1 Package Uncore B-box 1 perfmon counter MSR.
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C74H 3188 MSR_B1_PMON_EVNT_
SEL2

Package Uncore B-box 1 perfmon event select MSR.

C75H 3189 MSR_B1_PMON_CTR2 Package Uncore B-box 1 perfmon counter MSR.

C76H 3190 MSR_B1_PMON_EVNT_
SEL3

Package Uncore B-box 1vperfmon event select MSR.

C77H 3191 MSR_B1_PMON_CTR3 Package Uncore B-box 1 perfmon counter MSR.

C80H 3120 MSR_W_PMON_BOX_CTRL Package Uncore W-box perfmon local box control MSR.

C81H 3121 MSR_W_PMON_BOX_
STATUS

Package Uncore W-box perfmon local box status MSR.

C82H 3122 MSR_W_PMON_BOX_OVF_
CTRL

Package Uncore W-box perfmon local box overflow control MSR.

C90H 3136 MSR_W_PMON_EVNT_SEL0 Package Uncore W-box perfmon event select MSR.

C91H 3137 MSR_W_PMON_CTR0 Package Uncore W-box perfmon counter MSR.

C92H 3138 MSR_W_PMON_EVNT_SEL1 Package Uncore W-box perfmon event select MSR.

C93H 3139 MSR_W_PMON_CTR1 Package Uncore W-box perfmon counter MSR.

C94H 3140 MSR_W_PMON_EVNT_SEL2 Package Uncore W-box perfmon event select MSR.

C95H 3141 MSR_W_PMON_CTR2 Package Uncore W-box perfmon counter MSR.

C96H 3142 MSR_W_PMON_EVNT_SEL3 Package Uncore W-box perfmon event select MSR.

C97H 3143 MSR_W_PMON_CTR3 Package Uncore W-box perfmon counter MSR.

CA0H 3232 MSR_M0_PMON_BOX_CTRL Package Uncore M-box 0 perfmon local box control MSR.

CA1H 3233 MSR_M0_PMON_BOX_
STATUS

Package Uncore M-box 0 perfmon local box status MSR.

CA2H 3234 MSR_M0_PMON_BOX_
OVF_CTRL

Package Uncore M-box 0 perfmon local box overflow control MSR.

CA4H 3236 MSR_M0_PMON_
TIMESTAMP

Package Uncore M-box 0 perfmon time stamp unit select MSR.

CA5H 3237 MSR_M0_PMON_DSP Package Uncore M-box 0 perfmon DSP unit select MSR.

CA6H 3238 MSR_M0_PMON_ISS Package Uncore M-box 0 perfmon ISS unit select MSR.

CA7H 3239 MSR_M0_PMON_MAP Package Uncore M-box 0 perfmon MAP unit select MSR.

CA8H 3240 MSR_M0_PMON_MSC_THR Package Uncore M-box 0 perfmon MIC THR select MSR.

CA9H 3241 MSR_M0_PMON_PGT Package Uncore M-box 0 perfmon PGT unit select MSR.
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CAAH 3242 MSR_M0_PMON_PLD Package Uncore M-box 0 perfmon PLD unit select MSR.

CABH 3243 MSR_M0_PMON_ZDP Package Uncore M-box 0 perfmon ZDP unit select MSR.

CB0H 3248 MSR_M0_PMON_EVNT_
SEL0

Package Uncore M-box 0 perfmon event select MSR.

CB1H 3249 MSR_M0_PMON_CTR0 Package Uncore M-box 0 perfmon counter MSR.

CB2H 3250 MSR_M0_PMON_EVNT_
SEL1

Package Uncore M-box 0 perfmon event select MSR.

CB3H 3251 MSR_M0_PMON_CTR1 Package Uncore M-box 0 perfmon counter MSR.

CB4H 3252 MSR_M0_PMON_EVNT_
SEL2

Package Uncore M-box 0 perfmon event select MSR.

CB5H 3253 MSR_M0_PMON_CTR2 Package Uncore M-box 0 perfmon counter MSR.

CB6H 3254 MSR_M0_PMON_EVNT_
SEL3

Package Uncore M-box 0 perfmon event select MSR.

CB7H 3255 MSR_M0_PMON_CTR3 Package Uncore M-box 0 perfmon counter MSR.

CB8H 3256 MSR_M0_PMON_EVNT_
SEL4

Package Uncore M-box 0 perfmon event select MSR.

CB9H 3257 MSR_M0_PMON_CTR4 Package Uncore M-box 0 perfmon counter MSR.

CBAH 3258 MSR_M0_PMON_EVNT_
SEL5

Package Uncore M-box 0 perfmon event select MSR.

CBBH 3259 MSR_M0_PMON_CTR5 Package Uncore M-box 0 perfmon counter MSR.

CC0H 3264 MSR_S1_PMON_BOX_CTRL Package Uncore S-box 1 perfmon local box control MSR.

CC1H 3265 MSR_S1_PMON_BOX_
STATUS

Package Uncore S-box 1 perfmon local box status MSR.

CC2H 3266 MSR_S1_PMON_BOX_OVF_
CTRL

Package Uncore S-box 1 perfmon local box overflow control MSR.

CD0H 3280 MSR_S1_PMON_EVNT_
SEL0

Package Uncore S-box 1 perfmon event select MSR.

CD1H 3281 MSR_S1_PMON_CTR0 Package Uncore S-box 1 perfmon counter MSR.

CD2H 3282 MSR_S1_PMON_EVNT_
SEL1

Package Uncore S-box 1 perfmon event select MSR.

CD3H 3283 MSR_S1_PMON_CTR1 Package Uncore S-box 1 perfmon counter MSR.

CD4H 3284 MSR_S1_PMON_EVNT_
SEL2

Package Uncore S-box 1 perfmon event select MSR.

CD5H 3285 MSR_S1_PMON_CTR2 Package Uncore S-box 1 perfmon counter MSR.
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CD6H 3286 MSR_S1_PMON_EVNT_
SEL3

Package Uncore S-box 1 perfmon event select MSR.

CD7H 3287 MSR_S1_PMON_CTR3 Package Uncore S-box 1 perfmon counter MSR.

CE0H 3296 MSR_M1_PMON_BOX_CTRL Package Uncore M-box 1 perfmon local box control MSR.

CE1H 3297 MSR_M1_PMON_BOX_
STATUS

Package Uncore M-box 1 perfmon local box status MSR.

CE2H 3298 MSR_M1_PMON_BOX_
OVF_CTRL

Package Uncore M-box 1 perfmon local box overflow control MSR.

CE4H 3300 MSR_M1_PMON_
TIMESTAMP

Package Uncore M-box 1 perfmon time stamp unit select MSR.

CE5H 3301 MSR_M1_PMON_DSP Package Uncore M-box 1 perfmon DSP unit select MSR.

CE6H 3302 MSR_M1_PMON_ISS Package Uncore M-box 1 perfmon ISS unit select MSR.

CE7H 3303 MSR_M1_PMON_MAP Package Uncore M-box 1 perfmon MAP unit select MSR.

CE8H 3304 MSR_M1_PMON_MSC_THR Package Uncore M-box 1 perfmon MIC THR select MSR.

CE9H 3305 MSR_M1_PMON_PGT Package Uncore M-box 1 perfmon PGT unit select MSR.

CEAH 3306 MSR_M1_PMON_PLD Package Uncore M-box 1 perfmon PLD unit select MSR.

CEBH 3307 MSR_M1_PMON_ZDP Package Uncore M-box 1 perfmon ZDP unit select MSR.

CF0H 3312 MSR_M1_PMON_EVNT_
SEL0

Package Uncore M-box 1 perfmon event select MSR.

CF1H 3313 MSR_M1_PMON_CTR0 Package Uncore M-box 1 perfmon counter MSR.

CF2H 3314 MSR_M1_PMON_EVNT_
SEL1

Package Uncore M-box 1 perfmon event select MSR.

CF3H 3315 MSR_M1_PMON_CTR1 Package Uncore M-box 1 perfmon counter MSR.

CF4H 3316 MSR_M1_PMON_EVNT_
SEL2

Package Uncore M-box 1 perfmon event select MSR.

CF5H 3317 MSR_M1_PMON_CTR2 Package Uncore M-box 1 perfmon counter MSR.

CF6H 3318 MSR_M1_PMON_EVNT_
SEL3

Package Uncore M-box 1 perfmon event select MSR.

CF7H 3319 MSR_M1_PMON_CTR3 Package Uncore M-box 1 perfmon counter MSR.

CF8H 3320 MSR_M1_PMON_EVNT_
SEL4

Package Uncore M-box 1 perfmon event select MSR.

CF9H 3321 MSR_M1_PMON_CTR4 Package Uncore M-box 1 perfmon counter MSR.

CFAH 3322 MSR_M1_PMON_EVNT_
SEL5

Package Uncore M-box 1 perfmon event select MSR.

CFBH 3323 MSR_M1_PMON_CTR5 Package Uncore M-box 1 perfmon counter MSR.
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D00H 3328 MSR_C0_PMON_BOX_CTRL Package Uncore C-box 0 perfmon local box control MSR.

D01H 3329 MSR_C0_PMON_BOX_
STATUS

Package Uncore C-box 0 perfmon local box status MSR.

D02H 3330 MSR_C0_PMON_BOX_OVF_
CTRL

Package Uncore C-box 0 perfmon local box overflow control MSR.

D10H 3344 MSR_C0_PMON_EVNT_
SEL0

Package Uncore C-box 0 perfmon event select MSR.

D11H 3345 MSR_C0_PMON_CTR0 Package Uncore C-box 0 perfmon counter MSR.

D12H 3346 MSR_C0_PMON_EVNT_
SEL1

Package Uncore C-box 0 perfmon event select MSR.

D13H 3347 MSR_C0_PMON_CTR1 Package Uncore C-box 0 perfmon counter MSR.

D14H 3348 MSR_C0_PMON_EVNT_
SEL2

Package Uncore C-box 0 perfmon event select MSR.

D15H 3349 MSR_C0_PMON_CTR2 Package Uncore C-box 0 perfmon counter MSR.

D16H 3350 MSR_C0_PMON_EVNT_
SEL3

Package Uncore C-box 0 perfmon event select MSR.

D17H 3351 MSR_C0_PMON_CTR3 Package Uncore C-box 0 perfmon counter MSR.

D18H 3352 MSR_C0_PMON_EVNT_
SEL4

Package Uncore C-box 0 perfmon event select MSR.

D19H 3353 MSR_C0_PMON_CTR4 Package Uncore C-box 0 perfmon counter MSR.

D1AH 3354 MSR_C0_PMON_EVNT_
SEL5

Package Uncore C-box 0 perfmon event select MSR.

D1BH 3355 MSR_C0_PMON_CTR5 Package Uncore C-box 0 perfmon counter MSR.

D20H 3360 MSR_C4_PMON_BOX_CTRL Package Uncore C-box 4 perfmon local box control MSR.

D21H 3361 MSR_C4_PMON_BOX_
STATUS

Package Uncore C-box 4 perfmon local box status MSR.

D22H 3362 MSR_C4_PMON_BOX_OVF_
CTRL

Package Uncore C-box 4 perfmon local box overflow control MSR.

D30H 3376 MSR_C4_PMON_EVNT_
SEL0

Package Uncore C-box 4 perfmon event select MSR.

D31H 3377 MSR_C4_PMON_CTR0 Package Uncore C-box 4 perfmon counter MSR.

D32H 3378 MSR_C4_PMON_EVNT_
SEL1

Package Uncore C-box 4 perfmon event select MSR.

D33H 3379 MSR_C4_PMON_CTR1 Package Uncore C-box 4 perfmon counter MSR.
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D34H 3380 MSR_C4_PMON_EVNT_
SEL2

Package Uncore C-box 4 perfmon event select MSR.

D35H 3381 MSR_C4_PMON_CTR2 Package Uncore C-box 4 perfmon counter MSR.

D36H 3382 MSR_C4_PMON_EVNT_
SEL3

Package Uncore C-box 4 perfmon event select MSR.

D37H 3383 MSR_C4_PMON_CTR3 Package Uncore C-box 4 perfmon counter MSR.

D38H 3384 MSR_C4_PMON_EVNT_
SEL4

Package Uncore C-box 4 perfmon event select MSR.

D39H 3385 MSR_C4_PMON_CTR4 Package Uncore C-box 4 perfmon counter MSR.

D3AH 3386 MSR_C4_PMON_EVNT_
SEL5

Package Uncore C-box 4 perfmon event select MSR.

D3BH 3387 MSR_C4_PMON_CTR5 Package Uncore C-box 4 perfmon counter MSR.

D40H 3392 MSR_C2_PMON_BOX_CTRL Package Uncore C-box 2 perfmon local box control MSR.

D41H 3393 MSR_C2_PMON_BOX_
STATUS

Package Uncore C-box 2 perfmon local box status MSR.

D42H 3394 MSR_C2_PMON_BOX_OVF_
CTRL

Package Uncore C-box 2 perfmon local box overflow control MSR.

D50H 3408 MSR_C2_PMON_EVNT_
SEL0

Package Uncore C-box 2 perfmon event select MSR.

D51H 3409 MSR_C2_PMON_CTR0 Package Uncore C-box 2 perfmon counter MSR.

D52H 3410 MSR_C2_PMON_EVNT_
SEL1

Package Uncore C-box 2 perfmon event select MSR.

D53H 3411 MSR_C2_PMON_CTR1 Package Uncore C-box 2 perfmon counter MSR.

D54H 3412 MSR_C2_PMON_EVNT_
SEL2

Package Uncore C-box 2 perfmon event select MSR.

D55H 3413 MSR_C2_PMON_CTR2 Package Uncore C-box 2 perfmon counter MSR.

D56H 3414 MSR_C2_PMON_EVNT_
SEL3

Package Uncore C-box 2 perfmon event select MSR.

D57H 3415 MSR_C2_PMON_CTR3 Package Uncore C-box 2 perfmon counter MSR.

D58H 3416 MSR_C2_PMON_EVNT_
SEL4

Package Uncore C-box 2 perfmon event select MSR.

D59H 3417 MSR_C2_PMON_CTR4 Package Uncore C-box 2 perfmon counter MSR.

D5AH 3418 MSR_C2_PMON_EVNT_
SEL5

Package Uncore C-box 2 perfmon event select MSR.

D5BH 3419 MSR_C2_PMON_CTR5 Package Uncore C-box 2 perfmon counter MSR.
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D60H 3424 MSR_C6_PMON_BOX_CTRL Package Uncore C-box 6 perfmon local box control MSR.

D61H 3425 MSR_C6_PMON_BOX_
STATUS

Package Uncore C-box 6 perfmon local box status MSR.

D62H 3426 MSR_C6_PMON_BOX_OVF_
CTRL

Package Uncore C-box 6 perfmon local box overflow control MSR.

D70H 3440 MSR_C6_PMON_EVNT_
SEL0

Package Uncore C-box 6 perfmon event select MSR.

D71H 3441 MSR_C6_PMON_CTR0 Package Uncore C-box 6 perfmon counter MSR.

D72H 3442 MSR_C6_PMON_EVNT_
SEL1

Package Uncore C-box 6 perfmon event select MSR.

D73H 3443 MSR_C6_PMON_CTR1 Package Uncore C-box 6 perfmon counter MSR.

D74H 3444 MSR_C6_PMON_EVNT_
SEL2

Package Uncore C-box 6 perfmon event select MSR.

D75H 3445 MSR_C6_PMON_CTR2 Package Uncore C-box 6 perfmon counter MSR.

D76H 3446 MSR_C6_PMON_EVNT_
SEL3

Package Uncore C-box 6 perfmon event select MSR.

D77H 3447 MSR_C6_PMON_CTR3 Package Uncore C-box 6 perfmon counter MSR.

D78H 3448 MSR_C6_PMON_EVNT_
SEL4

Package Uncore C-box 6 perfmon event select MSR.

D79H 3449 MSR_C6_PMON_CTR4 Package Uncore C-box 6 perfmon counter MSR.

D7AH 3450 MSR_C6_PMON_EVNT_
SEL5

Package Uncore C-box 6 perfmon event select MSR.

D7BH 3451 MSR_C6_PMON_CTR5 Package Uncore C-box 6 perfmon counter MSR.

D80H 3456 MSR_C1_PMON_BOX_CTRL Package Uncore C-box 1 perfmon local box control MSR.

D81H 3457 MSR_C1_PMON_BOX_
STATUS

Package Uncore C-box 1 perfmon local box status MSR.

D82H 3458 MSR_C1_PMON_BOX_OVF_
CTRL

Package Uncore C-box 1 perfmon local box overflow control MSR.

D90H 3472 MSR_C1_PMON_EVNT_
SEL0

Package Uncore C-box 1 perfmon event select MSR.

D91H 3473 MSR_C1_PMON_CTR0 Package Uncore C-box 1 perfmon counter MSR.

D92H 3474 MSR_C1_PMON_EVNT_
SEL1

Package Uncore C-box 1 perfmon event select MSR.

D93H 3475 MSR_C1_PMON_CTR1 Package Uncore C-box 1 perfmon counter MSR.
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D94H 3476 MSR_C1_PMON_EVNT_
SEL2

Package Uncore C-box 1 perfmon event select MSR.

D95H 3477 MSR_C1_PMON_CTR2 Package Uncore C-box 1 perfmon counter MSR.

D96H 3478 MSR_C1_PMON_EVNT_
SEL3

Package Uncore C-box 1 perfmon event select MSR.

D97H 3479 MSR_C1_PMON_CTR3 Package Uncore C-box 1 perfmon counter MSR.

D98H 3480 MSR_C1_PMON_EVNT_
SEL4

Package Uncore C-box 1 perfmon event select MSR.

D99H 3481 MSR_C1_PMON_CTR4 Package Uncore C-box 1 perfmon counter MSR.

D9AH 3482 MSR_C1_PMON_EVNT_
SEL5

Package Uncore C-box 1 perfmon event select MSR.

D9BH 3483 MSR_C1_PMON_CTR5 Package Uncore C-box 1 perfmon counter MSR.

DA0H 3488 MSR_C5_PMON_BOX_CTRL Package Uncore C-box 5 perfmon local box control MSR.

DA1H 3489 MSR_C5_PMON_BOX_
STATUS

Package Uncore C-box 5 perfmon local box status MSR.

DA2H 3490 MSR_C5_PMON_BOX_OVF_
CTRL

Package Uncore C-box 5 perfmon local box overflow control MSR.

DB0H 3504 MSR_C5_PMON_EVNT_
SEL0

Package Uncore C-box 5 perfmon event select MSR.

DB1H 3505 MSR_C5_PMON_CTR0 Package Uncore C-box 5 perfmon counter MSR.

DB2H 3506 MSR_C5_PMON_EVNT_
SEL1

Package Uncore C-box 5 perfmon event select MSR.

DB3H 3507 MSR_C5_PMON_CTR1 Package Uncore C-box 5 perfmon counter MSR.

DB4H 3508 MSR_C5_PMON_EVNT_
SEL2

Package Uncore C-box 5 perfmon event select MSR.

DB5H 3509 MSR_C5_PMON_CTR2 Package Uncore C-box 5 perfmon counter MSR.

DB6H 3510 MSR_C5_PMON_EVNT_
SEL3

Package Uncore C-box 5 perfmon event select MSR.

DB7H 3511 MSR_C5_PMON_CTR3 Package Uncore C-box 5 perfmon counter MSR.

DB8H 3512 MSR_C5_PMON_EVNT_
SEL4

Package Uncore C-box 5 perfmon event select MSR.

DB9H 3513 MSR_C5_PMON_CTR4 Package Uncore C-box 5 perfmon counter MSR.

DBAH 3514 MSR_C5_PMON_EVNT_
SEL5

Package Uncore C-box 5 perfmon event select MSR.

DBBH 3515 MSR_C5_PMON_CTR5 Package Uncore C-box 5 perfmon counter MSR.
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DC0H 3520 MSR_C3_PMON_BOX_CTRL Package Uncore C-box 3 perfmon local box control MSR.

DC1H 3521 MSR_C3_PMON_BOX_
STATUS

Package Uncore C-box 3 perfmon local box status MSR.

DC2H 3522 MSR_C3_PMON_BOX_OVF_
CTRL

Package Uncore C-box 3 perfmon local box overflow control MSR.

DD0H 3536 MSR_C3_PMON_EVNT_
SEL0

Package Uncore C-box 3 perfmon event select MSR.

DD1H 3537 MSR_C3_PMON_CTR0 Package Uncore C-box 3 perfmon counter MSR.

DD2H 3538 MSR_C3_PMON_EVNT_
SEL1

Package Uncore C-box 3 perfmon event select MSR.

DD3H 3539 MSR_C3_PMON_CTR1 Package Uncore C-box 3 perfmon counter MSR.

DD4H 3540 MSR_C3_PMON_EVNT_
SEL2

Package Uncore C-box 3 perfmon event select MSR.

DD5H 3541 MSR_C3_PMON_CTR2 Package Uncore C-box 3 perfmon counter MSR.

DD6H 3542 MSR_C3_PMON_EVNT_SEL
3

Package Uncore C-box 3 perfmon event select MSR.

DD7H 3543 MSR_C3_PMON_CTR3 Package Uncore C-box 3 perfmon counter MSR.

DD8H 3544 MSR_C3_PMON_EVNT_
SEL4

Package Uncore C-box 3 perfmon event select MSR.

DD9H 3545 MSR_C3_PMON_CTR4 Package Uncore C-box 3 perfmon counter MSR.

DDAH 3546 MSR_C3_PMON_EVNT_
SEL5

Package Uncore C-box 3 perfmon event select MSR.

DDBH 3547 MSR_C3_PMON_CTR5 Package Uncore C-box 3 perfmon counter MSR.

DE0H 3552 MSR_C7_PMON_BOX_CTRL Package Uncore C-box 7 perfmon local box control MSR.

DE1H 3553 MSR_C7_PMON_BOX_
STATUS

Package Uncore C-box 7 perfmon local box status MSR.

DE2H 3554 MSR_C7_PMON_BOX_OVF_
CTRL

Package Uncore C-box 7 perfmon local box overflow control MSR.

DF0H 3568 MSR_C7_PMON_EVNT_
SEL0

Package Uncore C-box 7 perfmon event select MSR.

DF1H 3569 MSR_C7_PMON_CTR0 Package Uncore C-box 7 perfmon counter MSR.

DF2H 3570 MSR_C7_PMON_EVNT_
SEL1

Package Uncore C-box 7 perfmon event select MSR.

DF3H 3571 MSR_C7_PMON_CTR1 Package Uncore C-box 7 perfmon counter MSR.
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DF4H 3572 MSR_C7_PMON_EVNT_
SEL2

Package Uncore C-box 7 perfmon event select MSR.

DF5H 3573 MSR_C7_PMON_CTR2 Package Uncore C-box 7 perfmon counter MSR.

DF6H 3574 MSR_C7_PMON_EVNT_
SEL3

Package Uncore C-box 7 perfmon event select MSR.

DF7H 3575 MSR_C7_PMON_CTR3 Package Uncore C-box 7 perfmon counter MSR.

DF8H 3576 MSR_C7_PMON_EVNT_
SEL4

Package Uncore C-box 7 perfmon event select MSR.

DF9H 3577 MSR_C7_PMON_CTR4 Package Uncore C-box 7 perfmon counter MSR.

DFAH 3578 MSR_C7_PMON_EVNT_
SEL5

Package Uncore C-box 7 perfmon event select MSR.

DFBH 3579 MSR_C7_PMON_CTR5 Package Uncore C-box 7 perfmon counter MSR.

E00H 3584 MSR_R0_PMON_BOX_CTRL Package Uncore R-box 0 perfmon local box control MSR.

E01H 3585 MSR_R0_PMON_BOX_
STATUS

Package Uncore R-box 0 perfmon local box status MSR.

E02H 3586 MSR_R0_PMON_BOX_OVF_
CTRL

Package Uncore R-box 0 perfmon local box overflow control MSR.

E04H 3588 MSR_R0_PMON_IPERF0_P0 Package Uncore R-box 0 perfmon IPERF0 unit Port 0 select MSR.

E05H 3589 MSR_R0_PMON_IPERF0_P1 Package Uncore R-box 0 perfmon IPERF0 unit Port 1 select MSR.

E06H 3590 MSR_R0_PMON_IPERF0_P2 Package Uncore R-box 0 perfmon IPERF0 unit Port 2 select MSR.

E07H 3591 MSR_R0_PMON_IPERF0_P3 Package Uncore R-box 0 perfmon IPERF0 unit Port 3 select MSR.

E08H 3592 MSR_R0_PMON_IPERF0_P4 Package Uncore R-box 0 perfmon IPERF0 unit Port 4 select MSR.

E09H 3593 MSR_R0_PMON_IPERF0_P5 Package Uncore R-box 0 perfmon IPERF0 unit Port 5 select MSR.

E0AH 3594 MSR_R0_PMON_IPERF0_P6 Package Uncore R-box 0 perfmon IPERF0 unit Port 6 select MSR.

E0BH 3595 MSR_R0_PMON_IPERF0_P7 Package Uncore R-box 0 perfmon IPERF0 unit Port 7 select MSR.

E0CH 3596 MSR_R0_PMON_QLX_P0 Package Uncore R-box 0 perfmon QLX unit Port 0 select MSR.

E0DH 3597 MSR_R0_PMON_QLX_P1 Package Uncore R-box 0 perfmon QLX unit Port 1 select MSR.

E0EH 3598 MSR_R0_PMON_QLX_P2 Package Uncore R-box 0 perfmon QLX unit Port 2 select MSR.

E0FH 3599 MSR_R0_PMON_QLX_P3 Package Uncore R-box 0 perfmon QLX unit Port 3 select MSR.

E10H 3600 MSR_R0_PMON_EVNT_
SEL0

Package Uncore R-box 0 perfmon event select MSR.

E11H 3601 MSR_R0_PMON_CTR0 Package Uncore R-box 0 perfmon counter MSR.

E12H 3602 MSR_R0_PMON_EVNT_
SEL1

Package Uncore R-box 0 perfmon event select MSR.

E13H 3603 MSR_R0_PMON_CTR1 Package Uncore R-box 0 perfmon counter MSR.
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E14H 3604 MSR_R0_PMON_EVNT_
SEL2

Package Uncore R-box 0 perfmon event select MSR.

E15H 3605 MSR_R0_PMON_CTR2 Package Uncore R-box 0 perfmon counter MSR.

E16H 3606 MSR_R0_PMON_EVNT_
SEL3

Package Uncore R-box 0 perfmon event select MSR.

E17H 3607 MSR_R0_PMON_CTR3 Package Uncore R-box 0 perfmon counter MSR.

E18H 3608 MSR_R0_PMON_EVNT_
SEL4

Package Uncore R-box 0 perfmon event select MSR.

E19H 3609 MSR_R0_PMON_CTR4 Package Uncore R-box 0 perfmon counter MSR.

E1AH 3610 MSR_R0_PMON_EVNT_
SEL5

Package Uncore R-box 0 perfmon event select MSR.

E1BH 3611 MSR_R0_PMON_CTR5 Package Uncore R-box 0 perfmon counter MSR.

E1CH 3612 MSR_R0_PMON_EVNT_
SEL6

Package Uncore R-box 0 perfmon event select MSR.

E1DH 3613 MSR_R0_PMON_CTR6 Package Uncore R-box 0 perfmon counter MSR.

E1EH 3614 MSR_R0_PMON_EVNT_
SEL7

Package Uncore R-box 0 perfmon event select MSR.

E1FH 3615 MSR_R0_PMON_CTR7 Package Uncore R-box 0 perfmon counter MSR.

E20H 3616 MSR_R1_PMON_BOX_CTRL Package Uncore R-box 1 perfmon local box control MSR.

E21H 3617 MSR_R1_PMON_BOX_
STATUS

Package Uncore R-box 1 perfmon local box status MSR.

E22H 3618 MSR_R1_PMON_BOX_OVF_
CTRL

Package Uncore R-box 1 perfmon local box overflow control MSR.

E24H 3620 MSR_R1_PMON_IPERF1_P8 Package Uncore R-box 1 perfmon IPERF1 unit Port 8 select MSR.

E25H 3621 MSR_R1_PMON_IPERF1_P9 Package Uncore R-box 1 perfmon IPERF1 unit Port 9 select MSR.

E26H 3622 MSR_R1_PMON_IPERF1_
P10

Package Uncore R-box 1 perfmon IPERF1 unit Port 10 select MSR.

E27H 3623 MSR_R1_PMON_IPERF1_
P11

Package Uncore R-box 1 perfmon IPERF1 unit Port 11 select MSR.

E28H 3624 MSR_R1_PMON_IPERF1_
P12

Package Uncore R-box 1 perfmon IPERF1 unit Port 12 select MSR.

E29H 3625 MSR_R1_PMON_IPERF1_
P13

Package Uncore R-box 1 perfmon IPERF1 unit Port 13 select MSR.

E2AH 3626 MSR_R1_PMON_IPERF1_
P14

Package Uncore R-box 1 perfmon IPERF1 unit Port 14 select MSR.

E2BH 3627 MSR_R1_PMON_IPERF1_
P15

Package Uncore R-box 1 perfmon IPERF1 unit Port 15 select MSR.
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E2CH 3628 MSR_R1_PMON_QLX_P4 Package Uncore R-box 1 perfmon QLX unit Port 4 select MSR.

E2DH 3629 MSR_R1_PMON_QLX_P5 Package Uncore R-box 1 perfmon QLX unit Port 5 select MSR.

E2EH 3630 MSR_R1_PMON_QLX_P6 Package Uncore R-box 1 perfmon QLX unit Port 6 select MSR.

E2FH 3631 MSR_R1_PMON_QLX_P7 Package Uncore R-box 1 perfmon QLX unit Port 7 select MSR.

E30H 3632 MSR_R1_PMON_EVNT_
SEL8

Package Uncore R-box 1 perfmon event select MSR.

E31H 3633 MSR_R1_PMON_CTR8 Package Uncore R-box 1 perfmon counter MSR.

E32H 3634 MSR_R1_PMON_EVNT_
SEL9

Package Uncore R-box 1 perfmon event select MSR.

E33H 3635 MSR_R1_PMON_CTR9 Package Uncore R-box 1 perfmon counter MSR.

E34H 3636 MSR_R1_PMON_EVNT_
SEL10

Package Uncore R-box 1 perfmon event select MSR.

E35H 3637 MSR_R1_PMON_CTR10 Package Uncore R-box 1 perfmon counter MSR.

E36H 3638 MSR_R1_PMON_EVNT_
SEL11

Package Uncore R-box 1 perfmon event select MSR.

E37H 3639 MSR_R1_PMON_CTR11 Package Uncore R-box 1 perfmon counter MSR.

E38H 3640 MSR_R1_PMON_EVNT_
SEL12

Package Uncore R-box 1 perfmon event select MSR.

E39H 3641 MSR_R1_PMON_CTR12 Package Uncore R-box 1 perfmon counter MSR.

E3AH 3642 MSR_R1_PMON_EVNT_
SEL13

Package Uncore R-box 1 perfmon event select MSR.

E3BH 3643 MSR_R1_PMON_CTR13 Package Uncore R-box 1perfmon counter MSR.

E3CH 3644 MSR_R1_PMON_EVNT_
SEL14

Package Uncore R-box 1 perfmon event select MSR.

E3DH 3645 MSR_R1_PMON_CTR14 Package Uncore R-box 1 perfmon counter MSR.

E3EH 3646 MSR_R1_PMON_EVNT_
SEL15

Package Uncore R-box 1 perfmon event select MSR.

E3FH 3647 MSR_R1_PMON_CTR15 Package Uncore R-box 1 perfmon counter MSR.

E45H 3653 MSR_B0_PMON_MATCH Package Uncore B-box 0 perfmon local box match MSR.

E46H 3654 MSR_B0_PMON_MASK Package Uncore B-box 0 perfmon local box mask MSR.

E49H 3657 MSR_S0_PMON_MATCH Package Uncore S-box 0 perfmon local box match MSR.

E4AH 3658 MSR_S0_PMON_MASK Package Uncore S-box 0 perfmon local box mask MSR.

E4DH 3661 MSR_B1_PMON_MATCH Package Uncore B-box 1 perfmon local box match MSR.

E4EH 3662 MSR_B1_PMON_MASK Package Uncore B-box 1 perfmon local box mask MSR.
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...

35.9 MSRS IN INTEL® PROCESSOR FAMILY BASED ON INTEL® 
MICROARCHITECTURE CODE NAME SANDY BRIDGE

Table 35-18 lists model-specific registers (MSRs) that are common to Intel® processor family based on Intel 
microarchitecture code name Sandy Bridge. These processors have a CPUID signature with 
DisplayFamily_DisplayModel of 06_2AH, 06_2DH, see Table 35-1. Additional MSRs specific to 06_2AH are listed in 
Table 35-19.

E54H 3668 MSR_M0_PMON_MM_
CONFIG

Package Uncore M-box 0 perfmon local box address match/mask config MSR.

E55H 3669 MSR_M0_PMON_ADDR_
MATCH

Package Uncore M-box 0 perfmon local box address match MSR.

E56H 3670 MSR_M0_PMON_ADDR_
MASK

Package Uncore M-box 0 perfmon local box address mask MSR.

E59H 3673 MSR_S1_PMON_MATCH Package Uncore S-box 1 perfmon local box match MSR.

E5AH 3674 MSR_S1_PMON_MASK Package Uncore S-box 1 perfmon local box mask MSR.

E5CH 3676 MSR_M1_PMON_MM_
CONFIG

Package Uncore M-box 1 perfmon local box address match/mask config MSR.

E5DH 3677 MSR_M1_PMON_ADDR_
MATCH

Package Uncore M-box 1 perfmon local box address match MSR.

E5EH 3678 MSR_M1_PMON_ADDR_
MASK

Package Uncore M-box 1 perfmon local box address mask MSR.

3B5H 965 MSR_UNCORE_PMC5 Package See Section 18.7.2.2, “Uncore Performance Event Configuration 
Facility.”
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0H 0 IA32_P5_MC_ADDR Thread See Section 35.22, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 35.22, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,” 
and Table 35-2.

10H 16 IA32_TIME_STAMP_
COUNTER

Thread See Section 17.15, “Time-Stamp Counter,” and see Table 35-2.
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17H 23 IA32_PLATFORM_ID Package Platform ID (R) 
See Table 35-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O) 

Count SMIs.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 35-2.

0 Lock (R/WL) 

1 Enable VMX inside SMX operation (R/WL) 

2 Enable VMX outside SMX operation (R/WL) 

14:8 SENTER local functions enables (R/WL) 

15 SENTER global functions enable (R/WL) 

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W) 

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Thread BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register 

See Table 35-2.

C2H 194 IA32_PMC1 Thread Performance Counter Register 

See Table 35-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register 

See Table 35-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register 

See Table 35-2.

C5H 197 IA32_PMC4 Core Performance Counter Register (if core not shared by threads)

C6H 198 IA32_PMC5 Core Performance Counter Register (if core not shared by threads)

C7H 199 IA32_PMC6 Core Performance Counter Register (if core not shared by threads)

C8H 200 IA32_PMC7 Core Performance Counter Register (if core not shared by threads)

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.
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15:8 Package Maximum Non-Turbo Ratio (R/O) 

The is the ratio of the frequency that invariant TSC runs at. 
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limits for Turbo 
mode is enabled, and when set to 0, indicates Programmable Ratio 
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limits for Turbo mode are 
programmable, and when set to 0, indicates TDP Limit for Turbo 
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O) 

The is the minimum ratio (maximum efficiency) that the processor 
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name 
(consuming the least power). for the package. The default is set as 
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register 
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions
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14:11 Reserved.

15 CFG Lock (R/WO) 

When set, lock bits 15:0 of this register until next reset.

24:16 Reserved.

25 C3 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C6/C7 requests 
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C3/C6/C7 
requests to C1 based on uncore auto-demote information.

27 Enable C3 undemotion (R/W) 

When set, enables undemotion from demoted C3.

28 Enable C1 undemotion (R/W) 

When set, enables undemotion from demoted C1.

63:29 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W) 

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W) 

Specifies the base address visible to software for IO redirection. If 
IO MWAIT Redirection is enabled, reads to this address will be 
consumed by the power management logic and decoded to MWAIT 
instructions. When IO port address redirection is enabled, this is 
the IO port address reported to the OS/software.

18:16 C-state Range (R/W) 

Specifies the encoding value of the maximum C-State code name 
to be included when IO read to MWAIT redirection is enabled by 
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW) 

See Table 35-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Thread See Table 35-2.
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13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle 
unsuccessful read of this MSR.

1:0 AES Configuration (RW-L) 

Upon a successful read of this MSR, the configuration of AES 
instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

otherwise, AES instructions are available.

Note, AES instruction set is not available if read is unsuccessful. If 
the configuration is not 01b, AES instruction can be mis-configured 
if a privileged agent unintentionally writes 11b.

63:2 Reserved.

174H 372 IA32_SYSENTER_CS Thread See Table 35-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 35-2.

179H 377 IA32_MCG_CAP Thread See Table 35-2.

17AH 378 IA32_MCG_STATUS Thread

0 RIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) can be used to restart the program. If cleared, the 
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If 
a second machine check is detected while this bit is still set, the 
processor enters a shutdown state. Software should write this bit 
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Thread See Table 35-2.

187H 391 IA32_
PERFEVTSEL1

Thread See Table 35-2.

188H 392 IA32_
PERFEVTSEL2

Thread See Table 35-2.

Table 35-18    MSRs Supported by Intel® Processors 
based on Intel® microarchitecture code name Sandy Bridge (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 453

189H 393 IA32_
PERFEVTSEL3

Thread See Table 35-2.

18AH 394 IA32_
PERFEVTSEL4

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18BH 395 IA32_
PERFEVTSEL5

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18CH 396 IA32_
PERFEVTSEL6

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18DH 397 IA32_
PERFEVTSEL7

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

198H 408 IA32_PERF_STATUS Package See Table 35-2.

15:0 Current Performance State Value.

63:16 Reserved.

198H 408 MSR_PERF_STATUS Package

47:32 Core Voltage (R/O)

P-state core voltage can be computed by

MSR_PERF_STATUS[37:32] * (float) 1/(2^13).

199H 409 IA32_PERF_CTL Thread See Table 35-2.

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation (R/W) 

See Table 35-2

IA32_CLOCK_MODULATION MSR was originally named 
IA32_THERM_CONTROL MSR.

3:0 On demand Clock Modulation Duty Cycle (R/W)

In 6.25% increment

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W) 

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W) 

See Table 35-2.

0 Thermal status (RO) 

See Table 35-2.

1 Thermal status log (R/WC0) 

See Table 35-2.

2 PROTCHOT # or FORCEPR# status (RO) 

See Table 35-2.
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3 PROTCHOT # or FORCEPR# log (R/WC0) 

See Table 35-2.

4 Critical Temperature status (RO) 

See Table 35-2.

5 Critical Temperature status log (R/WC0) 

See Table 35-2.

6 Thermal threshold #1 status (RO) 

See Table 35-2.

7 Thermal threshold #1 log (R/WC0) 

See Table 35-2.

8 Thermal threshold #2 status (RO) 

See Table 35-2.

9 Thermal threshold #2 log (R/WC0) 

See Table 35-2.

10 Power Limitation status (RO) 

See Table 35-2.

11 Power Limitation log (R/WC0) 

See Table 35-2.

15:12 Reserved.

22:16 Digital Readout (RO) 

See Table 35-2.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO) 

See Table 35-2.

31 Reading Valid (RO) 

See Table 35-2.

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Thread Fast-Strings Enable 

See Table 35-2

6:1 Reserved.

7 Thread Performance Monitoring Available (R) 

See Table 35-2.

10:8 Reserved.
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11 Thread Branch Trace Storage Unavailable (RO) 

See Table 35-2.

12 Thread Processor Event Based Sampling Unavailable (RO) 

See Table 35-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 35-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 35-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval (R/W) 

See Table 35-2.

23 Thread xTPR Message Disable (R/W) 

See Table 35-2.

33:24 Reserved.

34 Thread XD Bit Disable (R/W) 

See Table 35-2.

37:35 Reserved.

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost 
Technology, the turbo mode feature is disabled and the IDA_Enable 
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H: 
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect 
hardware support of turbo mode. If power-on default value is 1, 
turbo mode is available in the processor. If power-on default value 
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Unique

15:0 Reserved.

23:16 Temperature Target (R) 

The minimum temperature at which PROCHOT# will be asserted. 
The value is degree C.

63:24 Reserved.

1A4H 420 MSR_MISC_FEATURE_
CONTROL

Miscellaneous Feature Control (R/W) 
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0 Core L2 Hardware Prefetcher Disable (R/W) 

If 1, disables the L2 hardware prefetcher, which fetches additional 
lines of code or data into the L2 cache.

1 Core L2 Adjacent Cache Line Prefetcher Disable (R/W) 

If 1, disables the adjacent cache line prefetcher, which fetches the 
cache line that comprises a cache line pair (128 bytes).

2 Core DCU Hardware Prefetcher Disable (R/W) 

If 1, disables the L1 data cache prefetcher, which fetches the next 
cache line into L1 data cache.

3 Core DCU IP Prefetcher Disable (R/W) 

If 1, disables the L1 data cache IP prefetcher, which uses 
sequential load history (based on instruction Pointer of previous 
loads) to determine whether to prefetch additional lines.

63:4 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1A7H 422 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT See http://biosbits.org.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 35-2.

1B1H 433 IA32_PACKAGE_THERM_
STATUS

Package See Table 35-2.

1B2H 434 IA32_PACKAGE_THERM_
INTERRUPT

Package See Table 35-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W) 

See Section 17.7.2, “Filtering of Last Branch Records.”

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

63:9 Reserved.
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1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the 
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W) 

See Table 35-2.

0 LBR: Last Branch Record

1 BTF

5:2 Reserved.

6 TR: Branch Trace

7 BTS: Log Branch Trace Message to BTS buffer

8 BTINT

9 BTS_OFF_OS

10 BTS_OFF_USER

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

63:15 Reserved.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch 
instruction that the processor executed prior to the last exception 
that was generated or the last interrupt that was handled. 

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

1FCH 508 MSR_POWER_CTL Core See http://biosbits.org.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 35-2.
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204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 35-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 35-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 35-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 35-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 35-2.

277H 631 IA32_PAT Thread See Table 35-2.

280H 640 IA32_MC0_CTL2 Core See Table 35-2.

281H 641 IA32_MC1_CTL2 Core See Table 35-2.

282H 642 IA32_MC2_CTL2 Core See Table 35-2.
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283H 643 IA32_MC3_CTL2 Core See Table 35-2.

284H 644 IA32_MC4_CTL2 Package Always 0 (CMCI not supported).

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W) 

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W) 

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W) 

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 35-2.

6 PEBS Record Format. 

7 PEBSSaveArchRegs. See Table 35-2.

11:8 PEBS_REC_FORMAT. See Table 35-2.

12 SMM_FREEZE. See Table 35-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W) 

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STATUS

See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.” 

0 Thread Ovf_PMC0 

1 Thread Ovf_PMC1 

2 Thread Ovf_PMC2 

3 Thread Ovf_PMC3 

4 Core Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Core Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Core Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Core Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Ovf_FixedCtr0 

33 Thread Ovf_FixedCtr1 

34 Thread Ovf_FixedCtr2 
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60:35 Reserved.

61 Thread Ovf_Uncore 

62 Thread Ovf_BufDSSAVE 

63 Thread CondChgd 

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

0 Thread Set 1 to enable PMC0 to count

1 Thread Set 1 to enable PMC1 to count

2 Thread Set 1 to enable PMC2 to count

3 Thread Set 1 to enable PMC3 to count

4 Core Set 1 to enable PMC4 to count (if CPUID.0AH:EAX[15:8] > 4)

5 Core Set 1 to enable PMC5 to count (if CPUID.0AH:EAX[15:8] > 5)

6 Core Set 1 to enable PMC6 to count (if CPUID.0AH:EAX[15:8] > 6)

7 Core Set 1 to enable PMC7 to count (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to enable FixedCtr0 to count

33 Thread Set 1 to enable FixedCtr1 to count

34 Thread Set 1 to enable FixedCtr2 to count

63:35 Reserved.

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

0 Thread Set 1 to clear Ovf_PMC0 

1 Thread Set 1 to clear Ovf_PMC1 

2 Thread Set 1 to clear Ovf_PMC2 

3 Thread Set 1 to clear Ovf_PMC3 

4 Core Set 1 to clear Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Core Set 1 to clear Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Core Set 1 to clear Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Core Set 1 to clear Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to clear Ovf_FixedCtr0 

33 Thread Set 1 to clear Ovf_FixedCtr1 

34 Thread Set 1 to clear Ovf_FixedCtr2 

60:35 Reserved.
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61 Thread Set 1 to clear Ovf_Uncore 

62 Thread Set 1 to clear Ovf_BufDSSAVE 

63 Thread Set 1 to clear CondChgd 

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.7.1.1, “Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

62:36 Reserved.

63 Enable Precise Store. (R/W)

3F6H 1014 MSR_PEBS_LD_LAT Thread see See Section 18.7.1.2, “Load Latency Performance Monitoring 
Facility.”

15:0 Minimum threshold latency value of tagged load operation that will 
be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3 
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6 
states. Count at the same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.
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63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7 
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3 
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6 
states. Count at the same frequency as the TSC.

3FEH 1022 MSR_CORE_C7_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C7 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C7 
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

403H 1027 IA32_MC0_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

406H 1030 IA32_MC1_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

407H 1031 IA32_MC1_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”
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410H 1040 IA32_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

0 PCU Hardware Error (R/W) 

When set, enables signaling of PCU hardware detected errors. 

1 PCU Controller Error (R/W) 

When set, enables signaling of PCU controller detected errors

2 PCU Firmware Error (R/W) 

When set, enables signaling of PCU firmware detected errors

63:2 Reserved.

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution 
Controls (R/O) 

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O) 

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O) 

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”
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488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration (R/O) 

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Thread Capability Reporting Register of EPT and VPID (R/O) 

See Table 35-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Thread Capability Reporting Register of Pin-based VM-execution Flex 
Controls (R/O)

See Table 35-2

48EH 1166 IA32_VMX_TRUE_PROCBAS
ED_CTLS

Thread Capability Reporting Register of Primary Processor-based 
VM-execution Flex Controls (R/O)

See Table 35-2

48FH 1167 IA32_VMX_TRUE_EXIT_CTL
S

Thread Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 35-2

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Thread Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 35-2

4C1H 1217 IA32_A_PMC0 Thread See Table 35-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 35-2.

4C3H 1219 IA32_A_PMC2 Thread See Table 35-2.

4C4H 1220 IA32_A_PMC3 Thread See Table 35-2.

4C5H 1221 IA32_A_PMC4 Core See Table 35-2.

4C6H 1222 IA32_A_PMC5 Core See Table 35-2.

4C7H 1223 IA32_A_PMC6 Core See Table 35-2.

4C8H 1224 IA32_A_PMC7 Core See Table 35-2.

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-2.

See Section 18.12.4, “Debug Store (DS) Mechanism.”
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606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O) 

See Section 14.9.1, “RAPL Interfaces.”

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W) 

Specifies the limit that should be used to decide if the package 
should be put into a package C3 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response 
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used 
by the processor for package C-sate management. 

63:16 Reserved.

60BH 1547 MSR_PKGC6_IRTL Package Package C6 Interrupt Response Limit (R/W) 

This MSR defines the budget allocated for the package to exit from 
C6 to a C0 state, where interrupt request can be delivered to the 
core and serviced. Additional core-exit latency amy be applicable 
depending on the actual C-state the core is in. 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W) 

Specifies the limit that should be used to decide if the package 
should be put into a package C6 state. 
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12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response 
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used 
by the processor for package C-sate management. 

63:16 Reserved.

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C2 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C2 
states. Count at the same frequency as the TSC.

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W) 

See Section 14.9.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O) 

See Section 14.9.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) See Section 14.9.3, “Package RAPL 
Domain.”

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last 
branch record stack. This part of the stack contains pointers to the 
source instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.7.1 and record format in Section 17.4.8.1

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.
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682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_FROM_IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_FROM_IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last 
branch record stack. This part of the stack contains pointers to the 
destination instruction.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 
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6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6E0H 1760 IA32_TSC_DEADLINE Thread See Table 35-2.

802H-
83FH

X2APIC MSRs Thread See Table 35-2.

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 35-2.
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35.9.1  MSRs In 2nd Generation Intel® Core™ Processor Family (Based on Intel® 
Microarchitecture Code Name Sandy Bridge)

Table 35-19 and Table 35-20 list model-specific registers (MSRs) that are specific to the 2nd generation Intel® 
Core™ processor family (based on Intel microarchitecture code name Sandy Bridge). These processors have a 
CPUID signature with DisplayFamily_DisplayModel of 06_2AH; see Table 35-1. 

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W) 

See Table 35-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W)

See Table 35-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature (R/W)

See Table 35-2 and Section 17.15.2, “IA32_TSC_AUX Register and 
RDTSCP Support.” 

Table 35-18    MSRs Supported by Intel® Processors 
based on Intel® microarchitecture code name Sandy Bridge (Contd.)
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Table 35-19    MSRs Supported by 2nd Generation Intel® Core™ Processors (Intel® microarchitecture code name 
Sandy Bridge)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.
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Table 35-20 lists the MSRs of uncore PMU for Intel processors with CPUID signature 06_2AH.

60CH 1548 MSR_PKGC7_IRTL Package Package C7 Interrupt Response Limit (R/W) 

This MSR defines the budget allocated for the package to exit 
from C7 to a C0 state, where interrupt request can be delivered to 
the core and serviced. Additional core-exit latency amy be 
applicable depending on the actual C-state the core is in. 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W) 

Specifies the limit that should be used to decide if the package 
should be put into a package C7 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response 
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used 
by the processor for package C-sate management. 

63:16 Reserved.

63AH 1594 MSR_PP0_POLICY Package PP0 Balance Policy (R/W) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

640H 1600 MSR_PP1_POWER_LIMIT Package PP1 RAPL Power Limit Control (R/W) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATUS Package PP1 Energy Status (R/O) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

See Table 35-18, Table 35-19, and Table 35-20 for MSR definitions applicable to processors with CPUID signature 06_2AH. 

Table 35-19    MSRs Supported by 2nd Generation Intel® Core™ Processors (Intel® microarchitecture code name 
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Table 35-20    Uncore PMU MSRs Supported by 2nd Generation Intel® Core™ Processors 

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Slice 0 select

1 Slice 1 select

2 Slice 2 select

3 Slice 3 select

4 Slice 4 select

18:5 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

392H 914 MSR_UNC_PERF_GLOBAL_
STATUS

Package Uncore PMU main status 

0 Fixed counter overflowed

1 An ARB counter overflowed

2 Reserved

3 A CBox counter overflowed (on any slice)

63:4 Reserved.

394H 916 MSR_UNC_PERF_FIXED_
CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow propagation

21 Reserved

22 Enable counting

63:23 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box configuration information (R/O)

3:0 Report the number of C-Box units with performance counters, 
including processor cores and processor graphics“

63:4 Reserved.
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3B0H 946 MSR_UNC_ARB_PERFCTR0 Package Uncore Arb unit, performance counter 0 

3B1H 947 MSR_UNC_ARB_PERFCTR1 Package Uncore Arb unit, performance counter 1

3B2H 944 MSR_UNC_ARB_
PERFEVTSEL0

Package Uncore Arb unit, counter 0 event select MSR

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

702H 1794 MSR_UNC_CBO_0_
PERFEVTSEL2

Package Uncore C-Box 0, counter 2 event select MSR.

703H 1795 MSR_UNC_CBO_0_
PERFEVTSEL3

Package Uncore C-Box 0, counter 3 event select MSR.

705H 1797 MSR_UNC_CBO_0_UNIT_
STATUS

Package Uncore C-Box 0, unit status for counter 0-3 

706H 1798 MSR_UNC_CBO_0_PERFCTR0 Package Uncore C-Box 0, performance counter 0 

707H 1799 MSR_UNC_CBO_0_PERFCTR1 Package Uncore C-Box 0, performance counter 1

708H 1800 MSR_UNC_CBO_0_PERFCTR2 Package Uncore C-Box 0, performance counter 2.

709H 1801 MSR_UNC_CBO_0_PERFCTR3 Package Uncore C-Box 0, performance counter 3.

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

712H 1810 MSR_UNC_CBO_1_
PERFEVTSEL2

Package Uncore C-Box 1, counter 2 event select MSR.

713H 1811 MSR_UNC_CBO_1_
PERFEVTSEL3

Package Uncore C-Box 1, counter 3 event select MSR.

715H 1813 MSR_UNC_CBO_1_UNIT_
STATUS

Package Uncore C-Box 1, unit status for counter 0-3 

716H 1814 MSR_UNC_CBO_1_PERFCTR0 Package Uncore C-Box 1, performance counter 0 

717H 1815 MSR_UNC_CBO_1_PERFCTR1 Package Uncore C-Box 1, performance counter 1

718H 1816 MSR_UNC_CBO_1_PERFCTR2 Package Uncore C-Box 1, performance counter 2.

719H 1817 MSR_UNC_CBO_1_PERFCTR3 Package Uncore C-Box 1, performance counter 3.

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

Table 35-20    Uncore PMU MSRs Supported by 2nd Generation Intel® Core™ Processors 
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721H 1825 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

722H 1826 MSR_UNC_CBO_2_
PERFEVTSEL2

Package Uncore C-Box 2, counter 2 event select MSR.

723H 1827 MSR_UNC_CBO_2_
PERFEVTSEL3

Package Uncore C-Box 2, counter 3 event select MSR.

725H 1829 MSR_UNC_CBO_2_UNIT_
STATUS

Package Uncore C-Box 2, unit status for counter 0-3 

726H 1830 MSR_UNC_CBO_2_PERFCTR0 Package Uncore C-Box 2, performance counter 0 

727H 1831 MSR_UNC_CBO_2_PERFCTR1 Package Uncore C-Box 2, performance counter 1

728H 1832 MSR_UNC_CBO_3_PERFCTR2 Package Uncore C-Box 3, performance counter 2.

729H 1833 MSR_UNC_CBO_3_PERFCTR3 Package Uncore C-Box 3, performance counter 3.

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR.

732H 1842 MSR_UNC_CBO_3_
PERFEVTSEL2

Package Uncore C-Box 3, counter 2 event select MSR.

733H 1843 MSR_UNC_CBO_3_
PERFEVTSEL3

Package Uncore C-Box 3, counter 3 event select MSR.

735H 1845 MSR_UNC_CBO_3_UNIT_
STATUS

Package Uncore C-Box 3, unit status for counter 0-3 

736H 1846 MSR_UNC_CBO_3_PERFCTR0 Package Uncore C-Box 3, performance counter 0.

737H 1847 MSR_UNC_CBO_3_PERFCTR1 Package Uncore C-Box 3, performance counter 1.

738H 1848 MSR_UNC_CBO_3_PERFCTR2 Package Uncore C-Box 3, performance counter 2.

739H 1849 MSR_UNC_CBO_3_PERFCTR3 Package Uncore C-Box 3, performance counter 3.

740H 1856 MSR_UNC_CBO_4_
PERFEVTSEL0

Package Uncore C-Box 4, counter 0 event select MSR

741H 1857 MSR_UNC_CBO_4_
PERFEVTSEL1

Package Uncore C-Box 4, counter 1 event select MSR.

742H 1858 MSR_UNC_CBO_4_
PERFEVTSEL2

Package Uncore C-Box 4, counter 2 event select MSR.

743H 1859 MSR_UNC_CBO_4_
PERFEVTSEL3

Package Uncore C-Box 4, counter 3 event select MSR.

745H 1861 MSR_UNC_CBO_4_UNIT_
STATUS

Package Uncore C-Box 4, unit status for counter 0-3 

746H 1862 MSR_UNC_CBO_4_PERFCTR0 Package Uncore C-Box 4, performance counter 0.

747H 1863 MSR_UNC_CBO_4_PERFCTR1 Package Uncore C-Box 4, performance counter 1.
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35.9.2  MSRs In Intel® Xeon® Processor E5 Family (Based on Intel® Microarchitecture Code 
Name Sandy Bridge)

Table 35-21 lists additional model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5 
Family (based on Intel® microarchitecture code name Sandy Bridge). These processors have a CPUID signature 
with DisplayFamily_DisplayModel of 06_2DH, and also supports MSRs listed in Table 35-18 and Table 35-22. 

748H 1864 MSR_UNC_CBO_4_PERFCTR2 Package Uncore C-Box 4, performance counter 2.

749H 1865 MSR_UNC_CBO_4_PERFCTR3 Package Uncore C-Box 4, performance counter 3.

Table 35-20    Uncore PMU MSRs Supported by 2nd Generation Intel® Core™ Processors 
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Table 35-21    Selected MSRs Supported by Intel® Xeon® Processors E5 Family (based on Sandy Bridge 
microarchitecture)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W) 

When set, enables IMC status bank to log additional info in bits 
36:32.

63:2 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.
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55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

285H 645 IA32_MC5_CTL2 Package See Table 35-2.

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

288H 648 IA32_MC8_CTL2 Package See Table 35-2.

289H 649 IA32_MC9_CTL2 Package See Table 35-2.

28AH 650 IA32_MC10_CTL2 Package See Table 35-2.

28BH 651 IA32_MC11_CTL2 Package See Table 35-2.

28CH 652 IA32_MC12_CTL2 Package See Table 35-2.

28DH 653 IA32_MC13_CTL2 Package See Table 35-2.

28EH 654 IA32_MC14_CTL2 Package See Table 35-2.

28FH 655 IA32_MC15_CTL2 Package See Table 35-2.

290H 656 IA32_MC16_CTL2 Package See Table 35-2.

291H 657 IA32_MC17_CTL2 Package See Table 35-2.

292H 658 IA32_MC18_CTL2 Package See Table 35-2.

293H 659 IA32_MC19_CTL2 Package See Table 35-2.

39CH 924 MSR_PEBS_NUM_ALT Package

0 ENABLE_PEBS_NUM_ALT (RW)

Write 1 to enable alternate PEBS counting logic for specific events 
requiring additional configuration, see Table 19-9

63:1 Reserved (must be zero).

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 IA32_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

416H 1046 IA32_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 IA32_MC5_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 IA32_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 IA32_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 IA32_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 IA32_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

Table 35-21    Selected MSRs Supported by Intel® Xeon® Processors E5 Family (based on Sandy Bridge 
microarchitecture) (Contd.)
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41EH 1054 IA32_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 IA32_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 IA32_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

422H 1058 IA32_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 IA32_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 IA32_MC9_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

426H 1062 IA32_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 IA32_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 IA32_MC10_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42AH 1066 IA32_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 IA32_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 IA32_MC11_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42EH 1070 IA32_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 IA32_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 IA32_MC12_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

432H 1074 IA32_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 IA32_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 IA32_MC13_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

436H 1078 IA32_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 IA32_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 IA32_MC14_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43AH 1082 IA32_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 IA32_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 IA32_MC15_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43EH 1086 IA32_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

Table 35-21    Selected MSRs Supported by Intel® Xeon® Processors E5 Family (based on Sandy Bridge 
microarchitecture) (Contd.)
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...

35.10 MSRS IN THE 3RD GENERATION INTEL® CORE™ PROCESSOR FAMILY 
(BASED ON INTEL® MICROARCHITECTURE CODE NAME IVY BRIDGE)

The 3rd generation Intel® Core™ processor family and the Intel® Xeon® processor E3-1200v2 product family 
(based on Intel microarchitecture code name Ivy Bridge) support the MSR interfaces listed in Table 35-18, Table 

43FH 1087 IA32_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 IA32_MC16_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

442H 1090 IA32_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 IA32_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 IA32_MC17_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

446H 1094 IA32_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 IA32_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 IA32_MC18_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44AH 1098 IA32_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 IA32_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 IA32_MC19_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44EH 1102 IA32_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 IA32_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

613H 1555 MSR_PKG_PERF_STATUS Package Package RAPL Perf Status (R/O) 

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W) 

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O) 

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5, 
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W) 

See Section 14.9.5, “DRAM RAPL Domain.”

See Table 35-18, Table 35-21, and Table 35-22 for MSR definitions applicable to processors with CPUID signature 06_2DH. 

Table 35-21    Selected MSRs Supported by Intel® Xeon® Processors E5 Family (based on Sandy Bridge 
microarchitecture) (Contd.)
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35-19, Table 35-20, and Table 35-23. These processors have a CPUID signature with DisplayFamily_DisplayModel 
of 06_3AH. 

Table 35-23    Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Intel® 
microarchitecture code name Ivy Bridge)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O) 

The is the ratio of the frequency that invariant TSC runs at. 
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limits for Turbo 
mode is enabled, and when set to 0, indicates Programmable Ratio 
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limits for Turbo mode are 
programmable, and when set to 0, indicates TDP Limit for Turbo 
mode is not programmable.

31:30 Reserved.

32 Package Low Power Mode Support (LPM) (R/O) 

When set to 1, indicates that LPM is supported, and when set to 0, 
indicates LPM is not supported.

34:33 Package Number of ConfigTDP Levels (R/O) 

00: Only Base TDP level available.

01: One additional TDP level available.

02: Two additional TDP level available.

11: Reserved

39:35 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O) 

The is the minimum ratio (maximum efficiency) that the processor 
can operates, in units of 100MHz.

55:48 Package Minimum Operating Ratio (R/O) 

Contains the minimum supported

operating ratio in units of 100 MHz.

63:56 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-States.

See http://biosbits.org.
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2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name 
(consuming the least power). for the package. The default is set as 
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register specified 
by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO) 

When set, lock bits 15:0 of this register until next reset.

24:16 Reserved.

25 C3 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C6/C7 requests 
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C3/C6/C7 
requests to C1 based on uncore auto-demote information.

27 Enable C3 undemotion (R/W) 

When set, enables undemotion from demoted C3.

28 Enable C1 undemotion (R/W) 

When set, enables undemotion from demoted C1.

63:29 Reserved.

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Base TDP Ratio (R/O)

7:0 Config_TDP_Base

Base TDP level ratio to be used for this specific processor (in units 
of 100 MHz). 

Table 35-23    Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Intel® 
microarchitecture code name Ivy Bridge) (Contd.)
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63:8 Reserved.

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O)

14:0 PKG_TDP_LVL1. Power setting for ConfigTDP Level 1.

15 Reserved

23:16 Config_TDP_LVL1_Ratio. ConfigTDP level 1 ratio to be used for this 
specific processor. 

31:24 Reserved

46:32 PKG_MAX_PWR_LVL1. Max Power setting allowed for ConfigTDP 
Level 1.

47 Reserved

62:48 PKG_MIN_PWR_LVL1. MIN Power setting allowed for ConfigTDP 
Level 1.

63 Reserved.

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O)

14:0 PKG_TDP_LVL2. Power setting for ConfigTDP Level 2.

15 Reserved

23:16 Config_TDP_LVL2_Ratio. ConfigTDP level 2 ratio to be used for this 
specific processor. 

31:24 Reserved

46:32 PKG_MAX_PWR_LVL2. Max Power setting allowed for ConfigTDP 
Level 2.

47 Reserved

62:48 PKG_MIN_PWR_LVL2. MIN Power setting allowed for ConfigTDP 
Level 2.

63 Reserved.

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

1:0 TDP_LEVEL (RW/L)

System BIOS can program this field. 

30:2 Reserved.

31 Config_TDP_Lock (RW/L)

When this bit is set, the content of this register is locked until a 
reset. 

63:32 Reserved.

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

Table 35-23    Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Intel® 
microarchitecture code name Ivy Bridge) (Contd.)
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35.10.1  MSRs In Intel® Xeon® Processor E5 v2 Product Family (Based on Ivy Bridge-E 
Microarchitecture)

Table 35-24 lists model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5 v2 Product 
Family (based on Ivy Bridge-E microarchitecture). These processors have a CPUID signature with 
DisplayFamily_DisplayModel of 06_3EH, see Table 35-1. These processors supports the MSR interfaces listed in 
Table 35-18, and Table 35-24. 

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field. 

30:8 Reserved.

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is locked until a 
reset. 

63:32 Reserved.

See Table 35-18, Table 35-19 and Table 35-20 for other MSR definitions applicable to processors with CPUID signature 
06_3AH 

Table 35-23    Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Intel® 
microarchitecture code name Ivy Bridge) (Contd.)
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Table 35-24    MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E 
microarchitecture)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control (R/W)

0 LockOut (R/WO)

Set 1to prevent further writes to MSR_PPIN_CTL. Writing 1 to

MSR_PPINCTL[bit 0] is permitted only if MSR_PPIN_CTL[bit 1] is

clear, Default is 0.

BIOS should provide an opt-in menu to enable the user to turn on

MSR_PPIN_CTL[bit 1] for privileged inventory initialization agent to

access MSR_PPIN. After reading MSR_PPIN, the privileged

inventory initialization agent should write ‘01b’ to MSR_PPIN_CTL

to disable further access to MSR_PPIN and prevent unauthorized

modification to MSR_PPIN_CTL.

1 Enable_PPIN (R/W)

If 1, enables MSR_PPIN to be accessible using RDMSR. Once set,

attempt to write 1 to MSR_PPIN_CTL[bit 0] will cause #GP.

If 0, an attempt to read MSR_PPIN will cause #GP. Default is 0.
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63:2 Reserved.

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

63:0 Protected Processor Inventory Number (R/O)

A unique value within a given CPUID family/model/stepping

signature that a privileged inventory initialization agent can access

to identify each physical processor, when access to MSR_PPIN is

enabled. Access to MSR_PPIN is permitted only if

MSR_PPIN_CTL[bits 1:0] = ‘10b’

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O) 

The is the ratio of the frequency that invariant TSC runs at. 
Frequency = ratio * 100 MHz.

22:16 Reserved.

23 Package PPIN_CAP (R/O)

When set to 1, indicates that Protected Processor Inventory

Number (PPIN) capability can be enabled for privileged system

inventory agent to read PPIN from MSR_PPIN.

When set to 0, PPIN capability is not supported. An attempt to

access MSR_PPIN_CTL or MSR_PPIN will cause #GP.

27:24 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limits for Turbo 
mode is enabled, and when set to 0, indicates Programmable Ratio 
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limits for Turbo mode are 
programmable, and when set to 0, indicates TDP Limit for Turbo 
mode is not programmable.

30 Package Programmable TJ OFFSET (R/O) 

When set to 1, indicates that MSR_TEMPERATURE_TARGET.[27:24] 
is valid and writable to specify an temperature offset.

39:31 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O) 

The is the minimum ratio (maximum efficiency) that the processor 
can operates, in units of 100MHz.

63:48 Reserved.

Table 35-24    MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E 
microarchitecture) (Contd.)
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E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name 
(consuming the least power). for the package. The default is set as 
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register 
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO) 

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 Reserved.

Table 35-24    MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E 
microarchitecture) (Contd.)
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26 MCG_ELOG_P

63:27 Reserved.

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W) 

When set, enables IMC status bank to log additional info in bits 
36:32.

63:2 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Package

15:0 Reserved.

23:16 Temperature Target (RO) 

The minimum temperature at which PROCHOT# will be asserted. 
The value is degree C.

27:24 TCC Activation Offset (R/W) 

Specifies a temperature offset in degrees C from the temperature 
target (bits 23:16). PROCHOT# will assert at the offset target 
temperature. Write is permitted only MSR_PLATFORM_INFO.[30] is 
set.

63:28 Reserved.

1AEH 430 MSR_TURBO_RATIO_LIMIT
1

Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active. 

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10core active. 

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

63:32 Reserved

285H 645 IA32_MC5_CTL2 Package See Table 35-2.

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

288H 648 IA32_MC8_CTL2 Package See Table 35-2.

Table 35-24    MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E 
microarchitecture) (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 485

289H 649 IA32_MC9_CTL2 Package See Table 35-2.

28AH 650 IA32_MC10_CTL2 Package See Table 35-2.

28BH 651 IA32_MC11_CTL2 Package See Table 35-2.

28CH 652 IA32_MC12_CTL2 Package See Table 35-2.

28DH 653 IA32_MC13_CTL2 Package See Table 35-2.

28EH 654 IA32_MC14_CTL2 Package See Table 35-2.

28FH 655 IA32_MC15_CTL2 Package See Table 35-2.

290H 656 IA32_MC16_CTL2 Package See Table 35-2.

291H 657 IA32_MC17_CTL2 Package See Table 35-2.

292H 658 IA32_MC18_CTL2 Package See Table 35-2.

293H 659 IA32_MC19_CTL2 Package See Table 35-2.

294H 660 IA32_MC20_CTL2 Package See Table 35-2.

295H 661 IA32_MC21_CTL2 Package See Table 35-2.

296H 662 IA32_MC22_CTL2 Package See Table 35-2.

297H 663 IA32_MC23_CTL2 Package See Table 35-2.

298H 664 IA32_MC24_CTL2 Package See Table 35-2.

299H 665 IA32_MC25_CTL2 Package See Table 35-2.

29AH 666 IA32_MC26_CTL2 Package See Table 35-2.

29BH 667 IA32_MC27_CTL2 Package See Table 35-2.

29CH 668 IA32_MC28_CTL2 Package See Table 35-2.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC error from the Intel QPI module.
415H 1045 IA32_MC5_STATUS Package

416H 1046 IA32_MC5_ADDR Package

417H 1047 IA32_MC5_MISC Package

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC error from the integrated I/O module.
419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC7 and MC 8 report MC error from the two home agents.
41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

Table 35-24    MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E 
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420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC7 and MC 8 report MC error from the two home agents.
421H 1057 IA32_MC8_STATUS Package

422H 1058 IA32_MC8_ADDR Package

423H 1059 IA32_MC8_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 IA32_MC11_STATUS Package Bank MC11 reports MC error from a specific channel of the 
integrated memory controller.42EH 1070 IA32_MC11_ADDR Package

42FH 1071 IA32_MC11_MISC Package

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

431H 1073 IA32_MC12_STATUS Package

432H 1074 IA32_MC12_ADDR Package

433H 1075 IA32_MC12_MISC Package

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

435H 1077 IA32_MC13_STATUS Package

436H 1078 IA32_MC13_ADDR Package

437H 1079 IA32_MC13_MISC Package

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

439H 1081 IA32_MC14_STATUS Package

43AH 1082 IA32_MC14_ADDR Package

43BH 1083 IA32_MC14_MISC Package

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

43DH 1085 IA32_MC15_STATUS Package

43EH 1086 IA32_MC15_ADDR Package

43FH 1087 IA32_MC15_MISC Package

Table 35-24    MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E 
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440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

441H 1089 IA32_MC16_STATUS Package

442H 1090 IA32_MC16_ADDR Package

443H 1091 IA32_MC16_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC error from a specific CBo (core broadcast) 
and its corresponding slice of L3.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC error from a specific CBo (core broadcast) 
and its corresponding slice of L3.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC error from a specific CBo (core broadcast) 
and its corresponding slice of L3.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

450H 1104 IA32_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

451H 1105 IA32_MC20_STATUS Package Bank MC20 reports MC error from a specific CBo (core broadcast) 
and its corresponding slice of L3.452H 1106 IA32_MC20_ADDR Package

453H 1107 IA32_MC20_MISC Package

454H 1108 IA32_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC21 reports MC error from a specific CBo (core broadcast) 
and its corresponding slice of L3.

455H 1109 IA32_MC21_STATUS Package

456H 1110 IA32_MC21_ADDR Package

457H 1111 IA32_MC21_MISC Package

458H 1112 IA32_MC22_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC22 reports MC error from a specific CBo (core broadcast) 
and its corresponding slice of L3.

459H 1113 IA32_MC22_STATUS Package

45AH 1114 IA32_MC22_ADDR Package

45BH 1115 IA32_MC22_MISC Package

45CH 1116 IA32_MC23_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC23 reports MC error from a specific CBo (core broadcast) 
and its corresponding slice of L3.

45DH 1117 IA32_MC23_STATUS Package

45EH 1118 IA32_MC23_ADDR Package

45FH 1119 IA32_MC23_MISC Package

Table 35-24    MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E 
microarchitecture) (Contd.)
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460H 1120 IA32_MC24_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC24 reports MC error from a specific CBo (core broadcast) 
and its corresponding slice of L3.

461H 1121 IA32_MC24_STATUS Package

462H 1122 IA32_MC24_ADDR Package

463H 1123 IA32_MC24_MISC Package

464H 1124 IA32_MC25_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC25 reports MC error from a specific CBo (core broadcast) 
and its corresponding slice of L3.

465H 1125 IA32_MC25_STATUS Package

466H 1126 IA32_MC25_ADDR Package

467H 1127 IA32_MC2MISC Package

468H 1128 IA32_MC26_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC26 reports MC error from a specific CBo (core broadcast) 
and its corresponding slice of L3.

469H 1129 IA32_MC26_STATUS Package

46AH 1130 IA32_MC26_ADDR Package

46BH 1131 IA32_MC26_MISC Package

46CH 1132 IA32_MC27_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC27 reports MC error from a specific CBo (core broadcast) 
and its corresponding slice of L3.

46DH 1133 IA32_MC27_STATUS Package

46EH 1134 IA32_MC27_ADDR Package

46FH 1135 IA32_MC27_MISC Package

470H 1136 IA32_MC28_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC28 reports MC error from a specific CBo (core broadcast) 
and its corresponding slice of L3.

471H 1137 IA32_MC28_STATUS Package

472H 1138 IA32_MC28_ADDR Package

473H 1139 IA32_MC28_MISC Package

613H 1555 MSR_PKG_PERF_STATUS Package Package RAPL Perf Status (R/O) 

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W) 

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O) 

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5, 
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W) 

See Section 14.9.5, “DRAM RAPL Domain.”

See Table 35-18, for other MSR definitions applicable to Intel Xeon processor E5 v2 with CPUID signature 06_3EH 

Table 35-24    MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-E 
microarchitecture) (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec
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35.10.2  Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family
Intel® Xeon® processor E7 v2 family (based on Ivy Bridge-E microarchitecture) with CPUID 
DisplayFamily_DisplayModel signature 06_3EH supports the MSR interfaces listed in Table 35-18, Table 35-24, 
and Table 35-25. 

Table 35-25    Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with 
DisplayFamily_DisplayModel Signature 06_3EH

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 35-2.

0 Lock (R/WL) 

1 Enable VMX inside SMX operation (R/WL) 

2 Enable VMX outside SMX operation (R/WL) 

14:8 SENTER local functions enables (R/WL) 

15 SENTER global functions enable (R/WL) 

63:16 Reserved.

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

63:25 Reserved.

17AH 378 IA32_MCG_STATUS Thread (R/W0)

0 RIPV

1 EIPV

2 MCIP

3 LMCE signaled

63:4 Reserved.

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active. 
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15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10core active. 

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

39:32 Package Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

47:40 Package Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

55:48 Package Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

62:56 Reserved

63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 specified in 
MSR_TURBO_RATIO_LIMIT and MSR_TURBO_RATIO_LIMIT1.

If 0, the processor uses factory-set configuration (Default).

29DH 669 IA32_MC29_CTL2 Package See Table 35-2.

29EH 670 IA32_MC30_CTL2 Package See Table 35-2.

29FH 671 IA32_MC31_CTL2 Package See Table 35-2.

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.7.1.1, “Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

41BH 1051 IA32_MC6_MISC Package Misc MAC information of Integrated I/O. (R/O) see Section 15.3.2.4

5:0 Recoverable Address LSB

8:6 Address Mode

Table 35-25    Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with 
DisplayFamily_DisplayModel Signature 06_3EH

Register 
Address Register Name

Scope
Bit Description

 Hex Dec
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...

35.11 MSRS IN THE 4TH GENERATION INTEL® CORE™ PROCESSORS (BASED ON 
HASWELL MICROARCHITECTURE)

The 4th generation Intel® Core™ processor family and Intel® Xeon® processor E3-1200v3 product family (based 
on Haswell microarchitecture), with CPUID DisplayFamily_DisplayModel signature 06_3CH/06_45H/06_46H, 
support the MSR interfaces listed in Table 35-18, Table 35-19, Table 35-20, and Table 35-27. For an MSR listed in 
Table 35-18 that also appears in Table 35-27, Table 35-27 supercede Table 35-18.

The MSRs listed in Table 35-27 also apply to processors based on Haswell-E microarchitecture (see Section 
35.12).

15:9 Reserved

31:16 PCI Express Requestor ID

39:32 PCI Express Segment Number

63:32 Reserved

474H 1140 IA32_MC29_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC29 reports MC error from a specific CBo (core broadcast) and 
its corresponding slice of L3.

475H 1141 IA32_MC29_STATUS Package

476H 1142 IA32_MC29_ADDR Package

477H 1143 IA32_MC29_MISC Package

478H 1144 IA32_MC30_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC30 reports MC error from a specific CBo (core broadcast) and 
its corresponding slice of L3.

479H 1145 IA32_MC30_STATUS Package

47AH 1146 IA32_MC30_ADDR Package

47BH 1147 IA32_MC30_MISC Package

47CH 1148 IA32_MC31_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC31 reports MC error from a specific CBo (core broadcast) and 
its corresponding slice of L3.

47DH 1149 IA32_MC31_STATUS Package

47EH 1150 IA32_MC31_ADDR Package

47FH 1147 IA32_MC31_MISC Package

See Table 35-18, Table 35-24 for other MSR definitions applicable to Intel Xeon processor E7 v2 with CPUID signature 06_3AH. 
NOTES:

1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the 
factory-set configuration is dependent on features specific to the processor and the platform.

Table 35-25    Additional MSRs Supported by Intel® Xeon® Processor E7 v2 Family with 
DisplayFamily_DisplayModel Signature 06_3EH
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Bit Description

 Hex Dec
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Table 35-27    Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

3BH 59 IA32_TSC_ADJUST THREAD Per-Logical-Processor TSC ADJUST (R/W)

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O) 

The is the ratio of the frequency that invariant TSC runs at. 
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limits for Turbo 
mode is enabled, and when set to 0, indicates Programmable Ratio 
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limits for Turbo mode are 
programmable, and when set to 0, indicates TDP Limit for Turbo 
mode is not programmable.

31:30 Reserved.

32 Package Low Power Mode Support (LPM) (R/O) 

When set to 1, indicates that LPM is supported, and when set to 0, 
indicates LPM is not supported.

34:33 Package Number of ConfigTDP Levels (R/O) 

00: Only Base TDP level available.

01: One additional TDP level available.

02: Two additional TDP level available.

11: Reserved

39:35 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O) 

The is the minimum ratio (maximum efficiency) that the processor 
can operates, in units of 100MHz.

55:48 Package Minimum Operating Ratio (R/O) 

Contains the minimum supported

operating ratio in units of 100 MHz.

63:56 Reserved.

186H 390 IA32_PERFEVTSEL0 THREAD Performance Event Select for Counter 0 (R/W)

Supports all fields described inTable 35-2 and the fields below.
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32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to 
prevent incorrect results

187H 391 IA32_PERFEVTSEL1 THREAD Performance Event Select for Counter 1 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to 
prevent incorrect results

188H 392 IA32_PERFEVTSEL2 THREAD Performance Event Select for Counter 2 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to 
prevent incorrect results

33 IN_TXCP: see Section 18.11.5.1

When IN_TXCP=1 & IN_TX=1 and in sampling, spurious PMI may 
occur and transactions may continuously abort near overflow 
conditions. Software should favor using IN_TXCP for counting over 
sampling. If sampling, software should use large “sample-after” 
value after clearing the counter configured to use IN_TXCP and 
also always reset the counter even when no overflow condition 
was reported. 

189H 393 IA32_PERFEVTSEL3 THREAD Performance Event Select for Counter 3 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to 
prevent incorrect results

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W) 

0 CPL_EQ_0

1 CPL_NEQ_0

2 JCC

3 NEAR_REL_CALL

4 NEAR_IND_CALL

5 NEAR_RET

6 NEAR_IND_JMP

7 NEAR_REL_JMP

8 FAR_BRANCH

9 EN_CALL_STACK

63:9 Reserved.

Table 35-27    Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures 
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1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W) 

See Table 35-2.

0 LBR: Last Branch Record

1 BTF

5:2 Reserved.

6 TR: Branch Trace

7 BTS: Log Branch Trace Message to BTS buffer

8 BTINT

9 BTS_OFF_OS

10 BTS_OFF_USER

11 FREEZE_LBR_ON_PMI

12 FREEZE_PERFMON_ON_PMI

13 ENABLE_UNCORE_PMI

14 FREEZE_WHILE_SMM

15 RTM_DEBUG

63:15 Reserved.

491H 1169 IA32_VMX_VMFUNC THREAD Capability Reporting Register of VM-function Controls (R/O)

See Table 35-2

60BH 1548 MSR_PKGC_IRTL1 Package Package C6/C7 Interrupt Response Limit 1 (R/W) 

This MSR defines the interrupt response time limit used by the 
processor to manage transition to package C6 or C7 state. The 
latency programmed in this register is for the shorter-latency sub 
C-states used by an MWAIT hint to C6 or C7 state.

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-States.

9:0 Interrupt response time limit (R/W) 

Specifies the limit that should be used to decide if the package 
should be put into a package C6 or C7 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response 
time limit. See Table 35-18 for supported time unit encodings 

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used 
by the processor for package C-sate management. 

63:16 Reserved.

Table 35-27    Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures 
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60CH 1548 MSR_PKGC_IRTL2 Package Package C6/C7 Interrupt Response Limit 2 (R/W) 

This MSR defines the interrupt response time limit used by the 
processor to manage transition to package C6 or C7 state. The 
latency programmed in this register is for the longer-latency sub C-
states used by an MWAIT hint to C6 or C7 state.

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-States.

9:0 Interrupt response time limit (R/W) 

Specifies the limit that should be used to decide if the package 
should be put into a package C6 or C7 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response 
time limit. See Table 35-18 for supported time unit encodings

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used 
by the processor for package C-sate management. 

63:16 Reserved.

613H 1555 MSR_PKG_PERF_STATUS Package PKG Perf Status (R/O) 

See Section 14.9.3, “Package RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O) 

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5, 
“DRAM RAPL Domain.”

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Base TDP Ratio (R/O)

7:0 Config_TDP_Base

Base TDP level ratio to be used for this specific processor (in units 
of 100 MHz). 

63:8 Reserved.

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O)

14:0 PKG_TDP_LVL1. Power setting for ConfigTDP Level 1.

15 Reserved

23:16 Config_TDP_LVL1_Ratio. ConfigTDP level 1 ratio to be used for this 
specific processor. 

31:24 Reserved

46:32 PKG_MAX_PWR_LVL1. Max Power setting allowed for ConfigTDP 
Level 1.

Table 35-27    Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures 
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62:47 PKG_MIN_PWR_LVL1. MIN Power setting allowed for ConfigTDP 
Level 1.

63 Reserved.

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O)

14:0 PKG_TDP_LVL2. Power setting for ConfigTDP Level 2.

15 Reserved

23:16 Config_TDP_LVL2_Ratio. ConfigTDP level 2 ratio to be used for this 
specific processor. 

31:24 Reserved

46:32 PKG_MAX_PWR_LVL2. Max Power setting allowed for ConfigTDP 
Level 2.

62:47 PKG_MIN_PWR_LVL2. MIN Power setting allowed for ConfigTDP 
Level 2.

63 Reserved.

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

1:0 TDP_LEVEL (RW/L)

System BIOS can program this field. 

30:2 Reserved.

31 Config_TDP_Lock (RW/L)

When this bit is set, the content of this register is locked until a 
reset. 

63:32 Reserved.

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field. 

30:8 Reserved.

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is locked until a 
reset. 

63:32 Reserved.

C80H 3200 IA32_DEBUG_FEATURE Package Silicon Debug Feature Control (R/W)

See Table 35-2.

Table 35-27    Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures 
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35.12 MSRS IN INTEL® XEON® PROCESSOR E5 V3 AND E7 V3 PRODUCT FAMILY
Intel® Xeon® processor E5 v3 family and Intel® Xeon® processor E7 v3 family are based on Haswell-E microar-
chitecture (CPUID DisplayFamily_DisplayModel = 06_3F). These processors supports the MSR interfaces listed in 
Table 35-18, Table 35-27, and Table 35-30. 

Table 35-30    Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name 
(consuming the least power) for the package. The default is set as 
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-state support)

001b: C2

010b: C6 (non-retention)

011b: C6 (retention)

111b: No Package C state limits. All C states supported by the 
processor are available.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

24:16 Reserved

25 C3 State Auto Demotion Enable (R/W)

26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Package C State Demotion Enable (R/W)

30 Package C State UnDemotion Enable (R/W)

63:31 Reserved

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

http://biosbits.org
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11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 MCG_EM_P

26 MCG_ELOG_P

63:27 Reserved.

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in 
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is 
supported and a host-space interface available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported 
and a host-space interface available to SMM handler.

63:60 Reserved

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W) 

When set, enables IMC status bank to log additional info in bits 
36:32.

63:2 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

Table 35-30    Additional MSRs Supported by Intel® Xeon® Processor E5 v3 Family
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47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active. 

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10 core active. 

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

39:32 Package Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

47:40 Package Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

55:48 Package Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

63:56 Package Maximum Ratio Limit for16C

Maximum turbo ratio limit of 16 core active.

1AFH 431 MSR_TURBO_RATIO_LIMIT2 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 17C

Maximum turbo ratio limit of 17 core active. 

15:8 Package Maximum Ratio Limit for 18C

Maximum turbo ratio limit of 18 core active. 

62:16 Package Reserved
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63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 specified in 
MSR_TURBO_RATIO_LIMIT, MSR_TURBO_RATIO_LIMIT1 and 
MSR_TURBO_RATIO_LIMIT2.

If 0, the processor uses factory-set configuration (Default).

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC error from the Intel QPI 0 module.
415H 1045 IA32_MC5_STATUS Package

416H 1046 IA32_MC5_ADDR Package

417H 1047 IA32_MC5_MISC Package

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC error from the integrated I/O module.
419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC error from the home agent HA 0.
41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC8 reports MC error from the home agent HA 1.
421H 1057 IA32_MC8_STATUS Package

422H 1058 IA32_MC8_ADDR Package

423H 1059 IA32_MC8_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

42DH 1069 IA32_MC11_STATUS Package

42EH 1070 IA32_MC11_ADDR Package

42FH 1071 IA32_MC11_MISC Package
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430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

431H 1073 IA32_MC12_STATUS Package

432H 1074 IA32_MC12_ADDR Package

433H 1075 IA32_MC12_MISC Package

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

435H 1077 IA32_MC13_STATUS Package

436H 1078 IA32_MC13_ADDR Package

437H 1079 IA32_MC13_MISC Package

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

439H 1081 IA32_MC14_STATUS Package

43AH 1082 IA32_MC14_ADDR Package

43BH 1083 IA32_MC14_MISC Package

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

43DH 1085 IA32_MC15_STATUS Package

43EH 1086 IA32_MC15_ADDR Package

43FH 1087 IA32_MC15_MISC Package

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

441H 1089 IA32_MC16_STATUS Package

442H 1090 IA32_MC16_ADDR Package

443H 1091 IA32_MC16_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC error from the following pair of CBo/L3 
Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, CBo12, 
CBo15.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC error from the following pair of CBo/L3 
Slices (if the pair is present): CBo1, CBo4, CBo7, CBo10, CBo13, 
CBo16.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC error from the following pair of CBo/L3 
Slices (if the pair is present): CBo2, CBo5, CBo8, CBo11, CBo14, 
CBo17.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package
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450H 1104 IA32_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC20 reports MC error from the Intel QPI 1 module.
451H 1105 IA32_MC20_STATUS Package

452H 1106 IA32_MC20_ADDR Package

453H 1107 IA32_MC20_MISC Package

454H 1108 IA32_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC21 reports MC error from the Intel QPI 2 module.
455H 1109 IA32_MC21_STATUS Package

456H 1110 IA32_MC21_ADDR Package

457H 1111 IA32_MC21_MISC Package

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O) 

3:0 Package Power Units

See Section 14.9.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the multiplier, 1/
2^ESU; where ESU is an unsigned integer represented by bits 12:8. 
Default value is 0EH (or 61 micro-joules)

15:13 Package Reserved

19:16 Package Time Units

See Section 14.9.1, “RAPL Interfaces.”

63:20 Reserved

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W) 

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O) 

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5, 
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W) 

See Section 14.9.5, “DRAM RAPL Domain.”

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating 
system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal event.
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2 Power Budget Management Status (R0) 

When set, frequency is reduced below the operating system 
request due to PBM limit

3 Platform Configuration Services Status (R0) 

When set, frequency is reduced below the operating system 
request due to PCS limit

4 Reserved.

5 Autonomous Utilization-Based Frequency Control Status (R0) 

When set, frequency is reduced below the operating system 
request because the processor has detected that utilization is low

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system 
request due to electrical design point constraints (e.g. maximum 
electrical current consumption).

9 Reserved.

10 Multi-Core Turbo Status (R0) 

When set, frequency is reduced below the operating system 
request due to Multi-Core Turbo limits

12:11 Reserved.

13 Core Frequency P1 Status (R0) 

When set, frequency is reduced below max non-turbo P1

14 Core Max n-core Turbo Frequency Limiting Status (R0) 

When set, frequency is reduced below max n-core turbo frequency

15 Core Frequency Limiting Status (R0) 

When set, frequency is reduced below the operating system 
request.

16 PROCHOT Log 

When set, indicates that the PROCHOT Status bit has asserted 
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log 

When set, indicates that the Thermal Status bit has asserted since 
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.
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18 Power Budget Management Log 

When set, indicates that the PBM Status bit has asserted since the 
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19 Platform Configuration Services Log 

When set, indicates that the PCS Status bit has asserted since the 
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

20 Reserved.

21 Autonomous Utilization-Based Frequency Control Log 

When set, indicates that the AUBFC Status bit has asserted since 
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log 

When set, indicates that the VR Therm Alert Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

24 Electrical Design Point Log 

When set, indicates that the EDP Status bit has asserted since the 
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Reserved.

26 Multi-Core Turbo Log 

When set, indicates that the Multi-Core Turbo Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28:27 Reserved.

29 Core Frequency P1 Log

When set, indicates that the Core Frequency P1 Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

30 Core Max n-core Turbo Frequency Limiting Log

When set, indicates that the Core Max n-core Turbo Frequency 
Limiting Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.
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...

35.13 MSRS IN INTEL® CORE™ M PROCESSORS AND 5TH GENERATION INTEL 
CORE PROCESSORS

The Intel® Core™ M-5xxx processors and 5th generation Intel® Core™ Processors, and Intel® Xeon® Processor 
E3-1200 v4 family are based on the Broadwell microarchitecture. The Intel® Core™ M-5xxx processors and 5th 
generation Intel® Core™ Processors have CPUID DisplayFamily_DisplayModel signature 06_3DH. Intel® Xeon® 

31 Core Frequency Limiting Log

When set, indicates that the Core Frequency Limiting Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:32 Reserved.

C8DH 3213 IA32_QM_EVTSEL THREAD Monitoring Event Select Register (R/W).

if CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1

7:0 EventID (RW)

Event encoding:

0x0: no monitoring

0x1: L3 occupancy monitoring

all other encoding reserved.

31:8 Reserved.

41:32 RMID (RW)

63:42 Reserved.

C8EH 3214 IA32_QM_CTR THREAD Monitoring Counter Register (R/O).

if CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1

61:0 Resource Monitored Data 

62 Unavailable: If 1, indicates data for this RMID is not available or not 
monitored for this resource or RMID.

63 Error: If 1, indicates and unsupported RMID or event type was 
written to IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC THREAD Resource Association Register (R/W).

9:0 RMID 

63: 10 Reserved

See Table 35-18, Table 35-27 for other MSR definitions applicable to processors with CPUID signature 06_3FH.
NOTES:

1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the 
factory-set configuration is dependent on features specific to the processor and the platform.
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Processor E3-1200 v4 family and the 5th generation Intel® Core™ Processors have CPUID 
DisplayFamily_DisplayModel signature 06_47H. Processors with signatures 06_3DH and 06_47H support the MSR 
interfaces listed in Table 35-18, Table 35-19, Table 35-20, Table 35-23, Table 35-27, Table 35-28, Table 35-32, 
and Table 35-33. For an MSR listed in Table 35-33 that also appears in the model-specific tables of prior genera-
tions, Table 35-33 supercede prior generation tables.

Table 35-32 lists MSRs that are common to processors based on the Broadwell microarchitectures (including 
CPUID signatures 06_3DH, 06_47H, 06_4FH, and 06_56H).
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38EH 910 IA32_PERF_GLOBAL_
STATUS

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.” 

0 Ovf_PMC0 

1 Ovf_PMC1 

2 Ovf_PMC2 

3 Ovf_PMC3 

31:4 Reserved.

32 Ovf_FixedCtr0 

33 Ovf_FixedCtr1 

34 Ovf_FixedCtr2 

54:35 Reserved.

55 Trace_ToPA_PMI. See Section 36.2.4.2, “Table of Physical 
Addresses (ToPA).”

60:56 Reserved.

61 Ovf_Uncore 

62 Ovf_BufDSSAVE 

63 CondChgd 

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

0 Set 1 to clear Ovf_PMC0 

1 Set 1 to clear Ovf_PMC1 

2 Set 1 to clear Ovf_PMC2 

3 Set 1 to clear Ovf_PMC3 

31:4 Reserved.

32 Set 1 to clear Ovf_FixedCtr0 

33 Set 1 to clear Ovf_FixedCtr1 

34 Set 1 to clear Ovf_FixedCtr2 

54:35 Reserved.
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55 Set 1 to clear Trace_ToPA_PMI. See Section 36.2.4.2, “Table of 
Physical Addresses (ToPA).”

60:56 Reserved.

61 Set 1 to clear Ovf_Uncore 

62 Set 1 to clear Ovf_BufDSSAVE 

63 Set 1 to clear CondChgd 

560H 1376 IA32_RTIT_OUTPUT_BASE THREAD Trace Output Base Register (R/W)

6:0 Reserved.

MAXPHYADDR1-1:7 Base physical address.

63:MAXPHYADDR Reserved.

561H 1377 IA32_RTIT_OUTPUT_MASK
_PTRS

THREAD Trace Output Mask Pointers Register (R/W)

6:0 Reserved.

31:7 MaskOrTableOffset

63:32 Output Offset.

570H 1392 IA32_RTIT_CTL Thread Trace Control Register (R/W)

0 TraceEn

1 Reserved, MBZ.

2 OS

3 User

6:4 Reserved, MBZ

7 CR3 filter

8 ToPA; writing 0 will #GP if also setting TraceEn

9 Reserved, MBZ

10 TSCEn

11 DisRETC

12 Reserved, MBZ

13 Reserved; writing 0 will #GP if also setting TraceEn

63:14 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Thread Tracing Status Register (R/W)

0 Reserved, writes ignored.

1 ContexEn, writes ignored.

2 TriggerEn, writes ignored.

3 Reserved

4 Error (R/W)
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...

35.14 MSRS IN INTEL® XEON® PROCESSORS E5 V4 FAMILY
The MSRs listed in Table 35-34 are available and common to Intel® Xeon® Processor D product Family (CPUID 
DisplayFamily_DisplayModel = 06_56H) and to Intel Xeon processors E5 v4 family (CPUID 
DisplayFamily_DisplayModel = 06_4FH). They are based on the Broadwell microarchitecture.

See Section 35.14.1 for lists of tables of MSRs that are supported by Intel® Xeon® Processor D Family.

5 Stopped

63:6 Reserved, MBZ.

572H 1394 IA32_RTIT_CR3_MATCH THREAD Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match
NOTES:

1. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].
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4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control (R/W)

0 LockOut (R/WO)

See Table 35-24.

1 Enable_PPIN (R/W)

See Table 35-24.

63:2 Reserved.

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

63:0 Protected Processor Inventory Number (R/O)

See Table 35-24.

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O) 

See Table 35-24.

22:16 Reserved.
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23 Package PPIN_CAP (R/O)

See Table 35-24.

27:24 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

See Table 35-24.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

See Table 35-24.

30 Package Programmable TJ OFFSET (R/O) 

See Table 35-24.

39:31 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O) 

See Table 35-24.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_

CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-states.

See http://biosbits.org.

2:0 Package C-State Limit (R/W)

Specifies the lowest processor-specific C-state code name 
(consuming the least power) for the package. The default is set as 
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-state support)

001b: C2

010b: C6 (non-retention)

011b: C6 (retention)

111b: No Package C state limits. All C states supported by the 
processor are available.

9:3 Reserved

10 I/O MWAIT Redirection Enable (R/W)

14:11 Reserved

15 CFG Lock (R/WO)

16 Automatic C-State Conversion Enable (R/W)

If 1, the processor will convert HALT or MWAT(C1) to MWAIT(C6)

24:17 Reserved

25 C3 State Auto Demotion Enable (R/W)
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26 C1 State Auto Demotion Enable (R/W)

27 Enable C3 Undemotion (R/W)

28 Enable C1 Undemotion (R/W)

29 Package C State Demotion Enable (R/W)

30 Package C State UnDemotion Enable (R/W)

63:31 Reserved

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 MCG_EM_P

26 MCG_ELOG_P

63:27 Reserved.

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in 
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is 
supported and a host-space interface available to SMM handler.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported 
and a host-space interface available to SMM handler.

63:60 Reserved

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W) 

See Table 35-2.

0 Thermal status (RO) 

See Table 35-2.

1 Thermal status log (R/WC0) 

See Table 35-2.
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2 PROTCHOT # or FORCEPR# status (RO) 

See Table 35-2.

3 PROTCHOT # or FORCEPR# log (R/WC0) 

See Table 35-2.

4 Critical Temperature status (RO) 

See Table 35-2.

5 Critical Temperature status log (R/WC0) 

See Table 35-2.

6 Thermal threshold #1 status (RO) 

See Table 35-2.

7 Thermal threshold #1 log (R/WC0) 

See Table 35-2.

8 Thermal threshold #2 status (RO) 

See Table 35-2.

9 Thermal threshold #2 log (R/WC0) 

See Table 35-2.

10 Power Limitation status (RO) 

See Table 35-2.

11 Power Limitation log (R/WC0) 

See Table 35-2.

12 Current Limit status (RO) 

See Table 35-2.

13 Current Limit log (R/WC0) 

See Table 35-2.

14 Cross Domain Limit status (RO) 

See Table 35-2.

15 Cross Domain Limit log (R/WC0) 

See Table 35-2.

22:16 Digital Readout (RO) 

See Table 35-2.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO) 

See Table 35-2.

31 Reading Valid (RO) 

See Table 35-2.
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63:32 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Package

15:0 Reserved.

23:16 Temperature Target (RO) 

See Table 35-24.

27:24 TCC Activation Offset (R/W) 

See Table 35-24.

63:28 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

15:8 Package Maximum Ratio Limit for 2C

23:16 Package Maximum Ratio Limit for 3C

31:24 Package Maximum Ratio Limit for 4C

39:32 Package Maximum Ratio Limit for 5C

47:40 Package Maximum Ratio Limit for 6C

55:48 Package Maximum Ratio Limit for 7C

63:56 Package Maximum Ratio Limit for 8C

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

15:8 Package Maximum Ratio Limit for 10C

23:16 Package Maximum Ratio Limit for 11C

31:24 Package Maximum Ratio Limit for 12C

39:32 Package Maximum Ratio Limit for 13C

47:40 Package Maximum Ratio Limit for 14C

55:48 Package Maximum Ratio Limit for 15C

63:56 Package Maximum Ratio Limit for 16C

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O) 

3:0 Package Power Units

See Section 14.9.1, “RAPL Interfaces.”
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7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the multiplier, 1/
2^ESU; where ESU is an unsigned integer represented by bits 12:8. 
Default value is 0EH (or 61 micro-joules)

15:13 Package Reserved

19:16 Package Time Units

See Section 14.9.1, “RAPL Interfaces.”

63:20 Reserved

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W) 

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O) 

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5, 
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W) 

See Section 14.9.5, “DRAM RAPL Domain.”

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating 
system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal event.

2 Power Budget Management Status (R0) 

When set, frequency is reduced below the operating system 
request due to PBM limit

3 Platform Configuration Services Status (R0) 

When set, frequency is reduced below the operating system 
request due to PCS limit

4 Reserved.

5 Autonomous Utilization-Based Frequency Control Status (R0) 

When set, frequency is reduced below the operating system 
request because the processor has detected that utilization is low
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6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system 
request due to electrical design point constraints (e.g. maximum 
electrical current consumption).

9 Reserved.

10 Multi-Core Turbo Status (R0) 

When set, frequency is reduced below the operating system 
request due to Multi-Core Turbo limits

12:11 Reserved.

13 Core Frequency P1 Status (R0) 

When set, frequency is reduced below max non-turbo P1

14 Core Max n-core Turbo Frequency Limiting Status (R0) 

When set, frequency is reduced below max n-core turbo frequency

15 Core Frequency Limiting Status (R0) 

When set, frequency is reduced below the operating system 
request.

16 PROCHOT Log 

When set, indicates that the PROCHOT Status bit has asserted 
since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

17 Thermal Log 

When set, indicates that the Thermal Status bit has asserted since 
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

18 Power Budget Management Log 

When set, indicates that the PBM Status bit has asserted since the 
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

19 Platform Configuration Services Log 

When set, indicates that the PCS Status bit has asserted since the 
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

20 Reserved.
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21 Autonomous Utilization-Based Frequency Control Log 

When set, indicates that the AUBFC Status bit has asserted since 
the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

22 VR Therm Alert Log 

When set, indicates that the VR Therm Alert Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

23 Reserved.

24 Electrical Design Point Log 

When set, indicates that the EDP Status bit has asserted since the 
log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

25 Reserved.

26 Multi-Core Turbo Log 

When set, indicates that the Multi-Core Turbo Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

28:27 Reserved.

29 Core Frequency P1 Log

When set, indicates that the Core Frequency P1 Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

30 Core Max n-core Turbo Frequency Limiting Log

When set, indicates that the Core Max n-core Turbo Frequency 
Limiting Status bit has asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

31 Core Frequency Limiting Log

When set, indicates that the Core Frequency Limiting Status bit has 
asserted since the log bit was last cleared.

This log bit will remain set until cleared by software writing 0.

63:32 Reserved.

770H 1904 IA32_PM_ENABLE Package See Section 14.4.2, “Enabling HWP”

771H 1905 IA32_HWP_CAPABILITIES Thread See Section 14.4.3, “HWP Performance Range and Dynamic 
Capabilities”

774H 1908 IA32_HWP_REQUEST Thread See Section 14.4.4, “Managing HWP”

7:0 Minimum Performance (R/W)
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15:8 Maximum Performance (R/W)

23:16 Desired Performance (R/W)

63:24 Reserved.

777H 1911 IA32_HWP_STATUS Thread See Section 14.4.5, “HWP Feedback”

1:0 Reserved.

2 Excursion to Minimum (RO)

63:3 Reserved.

C8DH 3213 IA32_QM_EVTSEL THREAD Monitoring Event Select Register (R/W)

if CPUID.(EAX=07H, ECX=0):EBX.RDT-M[bit 12] = 1

7:0 EventID (RW)

Event encoding:

0x00: no monitoring

0x01: L3 occupancy monitoring

0x02: Total memory bandwidth monitoring

0x03: Local memory bandwidth monitoring

All other encoding reserved

31:8 Reserved.

41:32 RMID (RW)

63:42 Reserved.

C8FH 3215 IA32_PQR_ASSOC THREAD Resource Association Register (R/W)

9:0 RMID 

31:10 Reserved

51:32 COS (R/W). 

63: 52 Reserved

C90H 3216 IA32_L3_QOS_MASK_0 Package L3 Class Of Service Mask - COS 0 (R/W)

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=0

0:19 CBM: Bit vector of available L3 ways for COS 0 enforcement

63:20 Reserved

C91H 3217 IA32_L3_QOS_MASK_1 Package L3 Class Of Service Mask - COS 1 (R/W)

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=1

0:19 CBM: Bit vector of available L3 ways for COS 1 enforcement

63:20 Reserved

C92H 3218 IA32_L3_QOS_MASK_2 Package L3 Class Of Service Mask - COS 2 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=2
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0:19 CBM: Bit vector of available L3 ways for COS 2 enforcement

63:20 Reserved

C93H 3219 IA32_L3_QOS_MASK_3 Package L3 Class Of Service Mask - COS 3 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=3

0:19 CBM: Bit vector of available L3 ways for COS 3 enforcement

63:20 Reserved

C94H 3220 IA32_L3_QOS_MASK_4 Package L3 Class Of Service Mask - COS 4 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=4

0:19 CBM: Bit vector of available L3 ways for COS 4 enforcement

63:20 Reserved

C95H 3221 IA32_L3_QOS_MASK_5 Package L3 Class Of Service Mask - COS 5 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=5

0:19 CBM: Bit vector of available L3 ways for COS 5 enforcement

63:20 Reserved

C96H 3222 IA32_L3_QOS_MASK_6 Package L3 Class Of Service Mask - COS 6 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=6

0:19 CBM: Bit vector of available L3 ways for COS 6 enforcement

63:20 Reserved

C97H 3223 IA32_L3_QOS_MASK_7 Package L3 Class Of Service Mask - COS 7 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=7

0:19 CBM: Bit vector of available L3 ways for COS 7 enforcement

63:20 Reserved

C98H 3224 IA32_L3_QOS_MASK_8 Package L3 Class Of Service Mask - COS 8 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=8

0:19 CBM: Bit vector of available L3 ways for COS 8 enforcement

63:20 Reserved

C99H 3225 IA32_L3_QOS_MASK_9 Package L3 Class Of Service Mask - COS 9 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] >=9

0:19 CBM: Bit vector of available L3 ways for COS 9 enforcement

63:20 Reserved

C9AH 3226 IA32_L3_QOS_MASK_10 Package L3 Class Of Service Mask - COS 10 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] 
>=10

0:19 CBM: Bit vector of available L3 ways for COS 10 enforcement
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35.14.1  Additional MSRs Supported in the Intel® Xeon® Processor D Product Family
The MSRs listed in Table 35-35 are available to Intel® Xeon® Processor D Product Family (CPUID 
DisplayFamily_DisplayModel = 06_56H). The Intel® Xeon® processor D product family is based on the Broadwell 
microarchitecture and supports the MSR interfaces listed in Table 35-18, Table 35-27, Table 35-32, Table 35-34, 
and Table 35-35. 

63:20 Reserved

C9BH 3227 IA32_L3_QOS_MASK_11 Package L3 Class Of Service Mask - COS 11 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] 
>=11

0:19 CBM: Bit vector of available L3 ways for COS 11 enforcement

63:20 Reserved

C9CH 3228 IA32_L3_QOS_MASK_12 Package L3 Class Of Service Mask - COS 12 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] 
>=12

0:19 CBM: Bit vector of available L3 ways for COS 12 enforcement

63:20 Reserved

C9DH 3229 IA32_L3_QOS_MASK_13 Package L3 Class Of Service Mask - COS 13 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] 
>=13

0:19 CBM: Bit vector of available L3 ways for COS 13 enforcement

63:20 Reserved

C9EH 3230 IA32_L3_QOS_MASK_14 Package L3 Class Of Service Mask - COS 14 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] 
>=14

0:19 CBM: Bit vector of available L3 ways for COS 14 enforcement

63:20 Reserved

C9FH 3231 IA32_L3_QOS_MASK_15 Package L3 Class Of Service Mask - COS 15 (R/W).

if CPUID.(EAX=10H, ECX=1):EDX.COS_MAX[15:0] 
>=15

0:19 CBM: Bit vector of available L3 ways for COS 15 enforcement

63:20 Reserved
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Table 35-35    Additional MSRs Supported by Intel® Xeon® Processor D with DisplayFamily_DisplayModel 06_56H

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

1ACH 428 MSR_TURBO_RATIO_LIMIT3 Package Config Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

62:0 Package Reserved

63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 specified in 
MSR_TURBO_RATIO_LIMIT, MSR_TURBO_RATIO_LIMIT1.

If 0, the processor uses factory-set configuration (Default).

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

289H 649 IA32_MC9_CTL2 Package See Table 35-2.

28AH 650 IA32_MC10_CTL2 Package See Table 35-2.

291H 657 IA32_MC17_CTL2 Package See Table 35-2.

292H 658 IA32_MC18_CTL2 Package See Table 35-2.

293H 659 IA32_MC19_CTL2 Package See Table 35-2.

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC error from the integrated I/O module.
419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC error from the home agent HA 0.
41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 10 report MC error from each channel of 
the integrated memory controllers.

425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 10 report MC error from each channel of 
the integrated memory controllers.

429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package
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35.14.2  Additional MSRs Supported in Intel® Xeon® Processors E5 v4 Family
The MSRs listed in Table 35-35 are available to Intel® Xeon® Processor E5 v4 Family (CPUID 
DisplayFamily_DisplayModel = 06_4FH). The Intel® Xeon® processor E5 v4 family is based on the Broadwell 
microarchitecture and supports the MSR interfaces listed in Table 35-18, Table 35-19, Table 35-27, Table 35-32, 
Table 35-34, and Table 35-36. 

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC error from the following pair of CBo/L3 
Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, CBo12, 
CBo15.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC error from the following pair of CBo/L3 
Slices (if the pair is present): CBo1, CBo4, CBo7, CBo10, CBo13, 
CBo16.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC error from the following pair of CBo/L3 
Slices (if the pair is present): CBo2, CBo5, CBo8, CBo11, CBo14, 
CBo17.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

See Table 35-18, Table 35-27, Table 35-32, and Table 35-34 for other MSR definitions applicable to processors with CPUID signature 
06_56H. 
NOTES:

1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the 
factory-set configuration is dependent on features specific to the processor and the platform.
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1ACH 428 MSR_TURBO_RATIO_LIMIT3 Package Config Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

62:0 Package Reserved

63 Package Semaphore for Turbo Ratio Limit Configuration

If 1, the processor uses override configuration1 specified in 
MSR_TURBO_RATIO_LIMIT, MSR_TURBO_RATIO_LIMIT1 and 
MSR_TURBO_RATIO_LIMIT2.

If 0, the processor uses factory-set configuration (Default).
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285H 645 IA32_MC5_CTL2 Package See Table 35-2.

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

288H 648 IA32_MC8_CTL2 Package See Table 35-2.

289H 649 IA32_MC9_CTL2 Package See Table 35-2.

28AH 650 IA32_MC10_CTL2 Package See Table 35-2.

28BH 651 IA32_MC11_CTL2 Package See Table 35-2.

28CH 652 IA32_MC12_CTL2 Package See Table 35-2.

28DH 653 IA32_MC13_CTL2 Package See Table 35-2.

28EH 654 IA32_MC14_CTL2 Package See Table 35-2.

28FH 655 IA32_MC15_CTL2 Package See Table 35-2.

290H 656 IA32_MC16_CTL2 Package See Table 35-2.

291H 657 IA32_MC17_CTL2 Package See Table 35-2.

292H 658 IA32_MC18_CTL2 Package See Table 35-2.

293H 659 IA32_MC19_CTL2 Package See Table 35-2.

294H 660 IA32_MC20_CTL2 Package See Table 35-2.

295H 661 IA32_MC21_CTL2 Package See Table 35-2.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC error from the Intel QPI 0 module.
415H 1045 IA32_MC5_STATUS Package

416H 1046 IA32_MC5_ADDR Package

417H 1047 IA32_MC5_MISC Package

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC error from the integrated I/O module.
419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC error from the home agent HA 0.
41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC8 reports MC error from the home agent HA 1.
421H 1057 IA32_MC8_STATUS Package

422H 1058 IA32_MC8_ADDR Package

423H 1059 IA32_MC8_MISC Package
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424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

42DH 1069 IA32_MC11_STATUS Package

42EH 1070 IA32_MC11_ADDR Package

42FH 1071 IA32_MC11_MISC Package

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

431H 1073 IA32_MC12_STATUS Package

432H 1074 IA32_MC12_ADDR Package

433H 1075 IA32_MC12_MISC Package

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

435H 1077 IA32_MC13_STATUS Package

436H 1078 IA32_MC13_ADDR Package

437H 1079 IA32_MC13_MISC Package

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

439H 1081 IA32_MC14_STATUS Package

43AH 1082 IA32_MC14_ADDR Package

43BH 1083 IA32_MC14_MISC Package

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

43DH 1085 IA32_MC15_STATUS Package

43EH 1086 IA32_MC15_ADDR Package

43FH 1087 IA32_MC15_MISC Package

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 through MC 16 report MC error from each channel of 
the integrated memory controllers.

441H 1089 IA32_MC16_STATUS Package

442H 1090 IA32_MC16_ADDR Package

443H 1091 IA32_MC16_MISC Package
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444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC17 reports MC error from the following pair of CBo/L3 
Slices (if the pair is present): CBo0, CBo3, CBo6, CBo9, CBo12, 
CBo15.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC18 reports MC error from the following pair of CBo/L3 
Slices (if the pair is present): CBo1, CBo4, CBo7, CBo10, CBo13, 
CBo16.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC error from the following pair of CBo/L3 
Slices (if the pair is present): CBo2, CBo5, CBo8, CBo11, CBo14, 
CBo17.

44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

450H 1104 IA32_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC20 reports MC error from the Intel QPI 1 module.
451H 1105 IA32_MC20_STATUS Package

452H 1106 IA32_MC20_ADDR Package

453H 1107 IA32_MC20_MISC Package

454H 1108 IA32_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC21 reports MC error from the Intel QPI 2 module.
455H 1109 IA32_MC21_STATUS Package

456H 1110 IA32_MC21_ADDR Package

457H 1111 IA32_MC21_MISC Package

630H 1584 MSR_PKG_C8_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-States.

59:0 Package C8 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C8 
states. Count at the same frequency as the TSC.

63:60 Reserved

631H 1585 MSR_PKG_C9_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-States.

59:0 Package C9 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C9 
states. Count at the same frequency as the TSC.

63:60 Reserved

632H 1586 MSR_PKG_C10_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-States.
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35.15 MSRS IN THE 6TH GENERATION INTEL® CORE™ PROCESSORS
The 6th generation Intel® Core™ processor family is based on the Skylake microarchitecture. They have CPUID 
DisplayFamily_DisplayModel signatures of 06_4EH and 06_5EH, supports the MSR interfaces listed in Table 35-
18, Table 35-19, Table 35-23, Table 35-27, Table 35-33, Table 35-37, and Table 35-38. For an MSR listed in Table 
35-37 that also appears in the model-specific tables of prior generations, Table 35-37 supercede prior generation 
tables.

The notation of “Platform” in the Scope column (with respect to MSR_PLATFORM_ENERGY_COUNTER and 
MSR_PLATFORM_POWER_LIMIT) is limited to the power-delivery domain and the specifics of the power delivery 
integration may vary by platform vendor’s implementation.

59:0 Package C10 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C10 
states. Count at the same frequency as the TSC.

63:60 Reserved

C81H 3201 IA32_L3_QOS_CFG Package Cache Allocation Technology Configuration (R/W)

0 CAT Enable. Set 1 to enable Cache Allocation Technology

63:1 Reserved.

See Table 35-18, Table 35-19, Table 35-27, and Table 35-28 for other MSR definitions applicable to processors with CPUID signature 
06_45H.
NOTES:

1. An override configuration lower than the factory-set configuration is always supported. An override configuration higher than the 
factory-set configuration is dependent on features specific to the processor and the platform.
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3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 35-2.

0 Lock (R/WL) 

1 Enable VMX inside SMX operation (R/WL) 

2 Enable VMX outside SMX operation (R/WL) 

14:8 SENTER local functions enables (R/WL) 

15 SENTER global functions enable (R/WL) 

18 SGX global functions enable (R/WL) 

20 LMCE_ON (R/WL) 
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63:21 Reserved.

FEH 254 IA32_MTRRCAP Thread MTRR Capality (RO, Architectural). See Table 35-2

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W) 

See Table 35-2.

0 Thermal status (RO) 

See Table 35-2.

1 Thermal status log (R/WC0) 

See Table 35-2.

2 PROTCHOT # or FORCEPR# status (RO) 

See Table 35-2.

3 PROTCHOT # or FORCEPR# log (R/WC0) 

See Table 35-2.

4 Critical Temperature status (RO) 

See Table 35-2.

5 Critical Temperature status log (R/WC0) 

See Table 35-2.

6 Thermal threshold #1 status (RO) 

See Table 35-2.

7 Thermal threshold #1 log (R/WC0) 

See Table 35-2.

8 Thermal threshold #2 status (RO) 

See Table 35-2.

9 Thermal threshold #2 log (R/WC0) 

See Table 35-2.

10 Power Limitation status (RO) 

See Table 35-2.

11 Power Limitation log (R/WC0) 

See Table 35-2.

12 Current Limit status (RO) 

See Table 35-2.

13 Current Limit log (R/WC0) 

See Table 35-2.

14 Cross Domain Limit status (RO) 

See Table 35-2.
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15 Cross Domain Limit log (R/WC0) 

See Table 35-2.

22:16 Digital Readout (RO) 

See Table 35-2.

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO) 

See Table 35-2.

31 Reading Valid (RO) 

See Table 35-2.

63:32 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-4) that points to the MSR containing the 
most recent branch record.

300H 768 MSR_SGXOWNER0 Package Lower 64 Bit OwnerEpoch Component of SGX Key (RO).

63:0 Low 64 bits of an 128-bit external entropy value for key 
derivation of an enclave.

301H 768 MSR_SGXOWNER1 Package Upper 64 Bit OwnerEpoch Component of SGX Key (RO).

63:0 Upper 64 bits of an 128-bit external entropy value for key 
derivation of an enclave.

38EH 910 IA32_PERF_GLOBAL_
STATUS

See Table 35-2. See Section 18.2.2.3, “Full-Width Writes to 
Performance Counter Registers.” 

0 Thread Ovf_PMC0 

1 Thread Ovf_PMC1 

2 Thread Ovf_PMC2 
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3 Thread Ovf_PMC3 

4 Thread Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Thread Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Thread Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Thread Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Ovf_FixedCtr0 

33 Thread Ovf_FixedCtr1 

34 Thread Ovf_FixedCtr2 

54:35 Reserved.

55 Thread Trace_ToPA_PMI. 

57:56 Reserved.

58 Thread LBR_Frz. 

59 Thread CTR_Frz. 

60 Thread ASCI. 

61 Thread Ovf_Uncore 

62 Thread Ovf_BufDSSAVE 

63 Thread CondChgd 

390H 912 IA32_PERF_GLOBAL_STAT
US_RESET

See Table 35-2. See Section 18.2.2.3, “Full-Width Writes to 
Performance Counter Registers.”

0 Thread Set 1 to clear Ovf_PMC0 

1 Thread Set 1 to clear Ovf_PMC1 

2 Thread Set 1 to clear Ovf_PMC2 

3 Thread Set 1 to clear Ovf_PMC3 

4 Thread Set 1 to clear Ovf_PMC4 (if CPUID.0AH:EAX[15:8] > 4)

5 Thread Set 1 to clear Ovf_PMC5 (if CPUID.0AH:EAX[15:8] > 5)

6 Thread Set 1 to clear Ovf_PMC6 (if CPUID.0AH:EAX[15:8] > 6)

7 Thread Set 1 to clear Ovf_PMC7 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to clear Ovf_FixedCtr0 

33 Thread Set 1 to clear Ovf_FixedCtr1 

34 Thread Set 1 to clear Ovf_FixedCtr2 

54:35 Reserved.
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55 Thread Set 1 to clear Trace_ToPA_PMI. 

57:56 Reserved.

58 Thread Set 1 to clear LBR_Frz. 

59 Thread Set 1 to clear CTR_Frz. 

60 Thread Set 1 to clear ASCI. 

61 Thread Set 1 to clear Ovf_Uncore 

62 Thread Set 1 to clear Ovf_BufDSSAVE 

63 Thread Set 1 to clear CondChgd 

391H 913 IA32_PERF_GLOBAL_STAT
US_SET

See Table 35-2. See Section 18.2.2.3, “Full-Width Writes to 
Performance Counter Registers.”

0 Thread Set 1 to cause Ovf_PMC0 = 1

1 Thread Set 1 to cause Ovf_PMC1 = 1

2 Thread Set 1 to cause Ovf_PMC2 = 1

3 Thread Set 1 to cause Ovf_PMC3 = 1

4 Thread Set 1 to cause Ovf_PMC4=1 (if CPUID.0AH:EAX[15:8] > 4)

5 Thread Set 1 to cause Ovf_PMC5=1 (if CPUID.0AH:EAX[15:8] > 5)

6 Thread Set 1 to cause Ovf_PMC6=1 (if CPUID.0AH:EAX[15:8] > 6)

7 Thread Set 1 to cause Ovf_PMC7=1 (if CPUID.0AH:EAX[15:8] > 7)

31:8 Reserved.

32 Thread Set 1 to cause Ovf_FixedCtr0 = 1

33 Thread Set 1 to cause Ovf_FixedCtr1 = 1

34 Thread Set 1 to cause Ovf_FixedCtr2 = 1

54:35 Reserved.

55 Thread Set 1 to cause Trace_ToPA_PMI = 1

57:56 Reserved.

58 Thread Set 1 to cause LBR_Frz = 1

59 Thread Set 1 to cause CTR_Frz = 1

60 Thread Set 1 to cause ASCI = 1

61 Thread Set 1 to cause Ovf_Uncore 

62 Thread Set 1 to cause Ovf_BufDSSAVE 

63 Thread Set 1 to cause CondChgd = 1

392H 913 IA32_PERF_GLOBAL_INUSE See Table 35-2. 

3F7H 1015 MSR_PEBS_FRONTEND Thread FrontEnd Precise Event Condition Select (R/W) 
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2:0 Event Code Select 

3 Reserved.

4 Event Code Select High

7:5 Reserved.

19:8 IDQ_Bubble_Length Specifier

22:20 IDQ_Bubble_Width Specifier

63:23 Reserved

500H 1280 IA32_SGX_SVN_STATUS Thread Status and SVN Threshold of SGX Support for ACM (RO).

0 Lock. See Section 42.11.3, “Interactions with Authenticated Code 
Modules (ACMs)”

15:1 Reserved.

23:16 SGX_SVN_SINIT. See Section 42.11.3, “Interactions with 
Authenticated Code Modules (ACMs)”

63:24 Reserved.

560H 1376 IA32_RTIT_OUTPUT_BASE Thread Trace Output Base Register (R/W). See Table 35-2. 

561H 1377 IA32_RTIT_OUTPUT_MASK
_PTRS

Thread Trace Output Mask Pointers Register (R/W). See Table 35-2. 

570H 1392 IA32_RTIT_CTL Thread Trace Control Register (R/W)

0 TraceEn

1 CYCEn

2 OS

3 User

6:4 Reserved, MBZ

7 CR3 filter

8 ToPA; writing 0 will #GP if also setting TraceEn

9 MTCEn

10 TSCEn

11 DisRETC

12 Reserved, MBZ

13 BranchEn

17:14 MTCFreq

18 Reserved, MBZ

22:19 CYCThresh

23 Reserved, MBZ
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27:24 PSBFreq

31:28 Reserved, MBZ

35:32 ADDR0_CFG

39:36 ADDR1_CFG

63:40 Reserved, MBZ.

571H 1393 IA32_RTIT_STATUS Thread Tracing Status Register (R/W)

0 FilterEn, writes ignored.

1 ContexEn, writes ignored.

2 TriggerEn, writes ignored.

3 Reserved

4 Error (R/W)

5 Stopped

31:6 Reserved. MBZ

48:32 PacketByteCnt

63:49 Reserved, MBZ.

572H 1394 IA32_RTIT_CR3_MATCH Thread Trace Filter CR3 Match Register (R/W)

4:0 Reserved

63:5 CR3[63:5] value to match

580H 1408 IA32_RTIT_ADDR0_A Thread Region 0 Start Address (R/W)

63:0 See Table 35-2. 

581H 1409 IA32_RTIT_ADDR0_B Thread Region 0 End Address (R/W)

63:0 See Table 35-2. 

582H 1410 IA32_RTIT_ADDR1_A Thread Region 1 Start Address (R/W)

63:0 See Table 35-2. 

583H 1411 IA32_RTIT_ADDR1_B Thread Region 1 End Address (R/W)

63:0 See Table 35-2. 

64DH 1613 MSR_PLATFORM_ENERGY_
COUNTER

Platform* Platform Energy Counter. (R/O).

This MSR is valid only if both platform vendor hardware 
implementation and BIOS enablement support it. This MSR will read 
0 if not valid.
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31:0 Total energy consumed by all devices in the platform that receive 
power from integrated power delivery mechanism, Included 
platform devices are processor cores, SOC, memory, add-on or 
peripheral devices that get powered directly from the platform 
power delivery means. The energy units are specified in the 
MSR_RAPL_POWER_UNIT.Enery_Status_Unit.

63:32 Reserved.

64EH 1614 MSR_PPERF Thread Productive Performance Count. (R/O).

63:0 Hardware’s view of workload scalability. See Section 14.4.5.1

652H 1618 MSR_PKG_HDC_CONFIG Package HDC Configuration (R/W).

2:0 PKG_Cx_Monitor. 

Configures Package Cx state threshold for 
MSR_PKG_HDC_DEEP_RESIDENCY

63: 3 Reserved

653H 1619 MSR_CORE_HDC_

RESIDENCY

Core Core HDC Idle Residency. (R/O).

63:0 Core_Cx_Duty_Cycle_Cnt. 

655H 1621 MSR_PKG_HDC_SHALLOW_
RESIDENCY

Package Accumulate the cycles the package was in C2 state and at least one 
logical processor was in forced idle. (R/O).

63:0 Pkg_C2_Duty_Cycle_Cnt. 

656H 1622 MSR_PKG_HDC_DEEP_

RESIDENCY

Package Package Cx HDC Idle Residency. (R/O).

63:0 Pkg_Cx_Duty_Cycle_Cnt. 

658H 1624 MSR_WEIGHTED_CORE_C0 Package Core-count Weighted C0 Residency. (R/O).

63:0 Increment at the same rate as the TSC. The increment each cycle is 
weighted by the number of processor cores in the package that 
reside in C0. If N cores are simultaneously in C0, then each cycle the 
counter increments by N. 

659H 1625 MSR_ANY_CORE_C0 Package Any Core C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is 
one if any processor core in the package is in C0. 

65AH 1626 MSR_ANY_GFXE_C0 Package Any Graphics Engine C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is 
one if any processor graphic device’s compute engines are in C0. 

65BH 1627 MSR_CORE_GFXE_OVERLA
P_C0

Package Core and Graphics Engine Overlapped C0 Residency. (R/O)
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63:0 Increment at the same rate as the TSC. The increment each cycle is 
one if at least one compute engine of the processor graphics is in 
C0 and at least one processor core in the package is also in C0. 

65CH 1628 MSR_PLATFORM_POWER_L
IMIT

Platform* Platform Power Limit Control (R/W-L) 

Allows platform BIOS to limit power consumption of the platform 
devices to the specified values. The Long Duration power 
consumption is specified via Platform_Power_Limit_1 and 
Platform_Power_Limit_1_Time. The Short Duration power 
consumption limit is specified via the Platform_Power_Limit_2 with 
duration chosen by the processor. 

The processor implements an exponential-weighted algorithm in 
the placement of the time windows.

14:0 Platform Power Limit #1. 

Average Power limit value which the platform must not exceed 
over a time window as specified by Power_Limit_1_TIME field. 

The default value is the Thermal Design Power (TDP) and varies 
with product skus. The unit is specified in MSR_RAPLPOWER_UNIT.

15 Enable Platform Power Limit #1. 

When set, enables the processor to apply control policy such that 
the platform power does not exceed Platform Power limit #1 over 
the time window specified by Power Limit #1 Time Window.

16 Platform Clamping Limitation #1. 

When set, allows the processor to go below the OS requested P 
states in order to maintain the power below specified Platform 
Power Limit #1 value. 

This bit is writeable only when CPUID (EAX=6):EAX[4] is set.

23:17 Time Window for Platform Power Limit #1. 

Specifies the duration of the time window over which Platform 
Power Limit 1 value should be maintained for sustained long 
duration. This field is made up of two numbers from the following 
equation:

Time Window = (float) ((1+(X/4))*(2^Y)), where:

X = POWER_LIMIT_1_TIME[23:22]

Y = POWER_LIMIT_1_TIME[21:17].

The maximum allowed value in this field is defined in 
MSR_PKG_POWER_INFO[PKG_MAX_WIN].

The default value is 0DH, The unit is specified in 
MSR_RAPLPOWER_UNIT[Time Unit].

31:24 Reserved
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46:32 Platform Power Limit #2. 

Average Power limit value which the platform must not exceed 
over the Short Duration time window chosen by the processor. 

The recommended default value is 1.25 times the Long Duration 
Power Limit (i.e. Platform Power Limit # 1)

47 Enable Platform Power Limit #2. 

When set, enables the processor to apply control policy such that 
the platform power does not exceed Platform Power limit #2 over 
the Short Duration time window.

48 Platform Clamping Limitation #2. 

When set, allows the processor to go below the OS requested P 
states in order to maintain the power below specified Platform 
Power Limit #2 value. 

62:49 Reserved

63 Lock. Setting this bit will lock all other bits of this MSR until system 
RESET.

690H 1680 MSR_
LASTBRANCH_16_FROM_IP

Thread Last Branch Record 16 From IP (R/W)

One of 32 triplets of last branch record registers on the last branch 
record stack. This part of the stack contains pointers to the source 
instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.10

691H 1681 MSR_
LASTBRANCH_17_FROM_IP

Thread Last Branch Record 17 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

692H 1682 MSR_
LASTBRANCH_18_FROM_IP

Thread Last Branch Record 18 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

693H 1683 MSR_
LASTBRANCH_19_FROM_IP

Thread Last Branch Record 19From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

694H 1684 MSR_
LASTBRANCH_20_FROM_IP

Thread Last Branch Record 20 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

695H 1685 MSR_
LASTBRANCH_21_FROM_IP

Thread Last Branch Record 21 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

696H 1686 MSR_
LASTBRANCH_22_FROM_IP

Thread Last Branch Record 22 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

697H 1687 MSR_
LASTBRANCH_23_FROM_IP

Thread Last Branch Record 23 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

698H 1688 MSR_
LASTBRANCH_24_FROM_IP

Thread Last Branch Record 24 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.
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699H 1689 MSR_
LASTBRANCH_25_FROM_IP

Thread Last Branch Record 25 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69AH 1690 MSR_
LASTBRANCH_26_FROM_IP

Thread Last Branch Record 26 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69BH 1691 MSR_
LASTBRANCH_27_FROM_IP

Thread Last Branch Record 27 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69CH 1692 MSR_
LASTBRANCH_28_FROM_IP

Thread Last Branch Record 28 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69DH 1693 MSR_
LASTBRANCH_29_FROM_IP

Thread Last Branch Record 29 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69EH 1694 MSR_
LASTBRANCH_30_FROM_IP

Thread Last Branch Record 30 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

69FH 1695 MSR_
LASTBRANCH_31_FROM_IP

Thread Last Branch Record 31 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6D0H 1744 MSR_
LASTBRANCH_16_TO_IP

Thread Last Branch Record 16 To IP (R/W)

One of 32 triplets of last branch record registers on the last branch 
record stack. This part of the stack contains pointers to the 
destination instruction. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.10

6D1H 1745 MSR_
LASTBRANCH_17_TO_IP

Thread Last Branch Record 17 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D2H 1746 MSR_
LASTBRANCH_18_TO_IP

Thread Last Branch Record 18 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6D3H 1747 MSR_
LASTBRANCH_19_TO_IP

Thread Last Branch Record 19To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D4H 1748 MSR_
LASTBRANCH_20_TO_IP

Thread Last Branch Record 20 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D5H 1749 MSR_
LASTBRANCH_21_TO_IP

Thread Last Branch Record 21 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D6H 1750 MSR_
LASTBRANCH_22_TO_IP

Thread Last Branch Record 22 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D7H 1751 MSR_
LASTBRANCH_23_TO_IP

Thread Last Branch Record 23 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6D8H 1752 MSR_
LASTBRANCH_24_TO_IP

Thread Last Branch Record 24 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

Table 35-37    Additional MSRs Supported by 6th Generation Intel® Core™ Processors Based on Skylake 
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6D9H 1753 MSR_
LASTBRANCH_25_TO_IP

Thread Last Branch Record 25 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DAH 1754 MSR_
LASTBRANCH_26_TO_IP

Thread Last Branch Record 26 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DBH 1755 MSR_
LASTBRANCH_27_TO_IP

Thread Last Branch Record 27 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DCH 1756 MSR_
LASTBRANCH_28_TO_IP

Thread Last Branch Record 28 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DDH 1757 MSR_
LASTBRANCH_29_TO_IP

Thread Last Branch Record 29 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DEH 1758 MSR_
LASTBRANCH_30_TO_IP

Thread Last Branch Record 30 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

6DFH 1759 MSR_
LASTBRANCH_31_TO_IP

Thread Last Branch Record 31 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP.

770H 1904 IA32_PM_ENABLE Package See Section 14.4.2, “Enabling HWP”

771H 1905 IA32_HWP_CAPABILITIES Thread See Section 14.4.3, “HWP Performance Range and Dynamic 
Capabilities”

772H 1906 IA32_HWP_REQUEST_PKG Package See Section 14.4.4, “Managing HWP”

773H 1907 IA32_HWP_INTERRUPT Thread See Section 14.4.6, “HWP Notifications”

774H 1908 IA32_HWP_REQUEST Thread See Section 14.4.4, “Managing HWP”

7:0 Minimum Performance (R/W). 

15:8 Maximum Performance (R/W). 

23:16 Desired Performance (R/W). 

31:24 Energy/Performance Preference (R/W). 

41:32 Activity Window (R/W). 

42 Package Control (R/W). 

63:43 Reserved.

777H 1911 IA32_HWP_STATUS Thread See Section 14.4.5, “HWP Feedback”

D90H 3472 IA32_BNDCFGS Thread See Table 35-2.

DA0H 3488 IA32_XSS Thread See Table 35-2.

DB0H 3504 IA32_PKG_HDC_CTL Package See Section 14.5.2, “Package level Enabling HDC”

DB1H 3505 IA32_PM_CTL1 Thread See Section 14.5.3, “Logical-Processor Level HDC Control”

DB2H 3506 IA32_THREAD_STALL Thread See Section 14.5.4.1, “IA32_THREAD_STALL”

Table 35-37    Additional MSRs Supported by 6th Generation Intel® Core™ Processors Based on Skylake 
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DC0H 3520 MSR_LBR_INFO_0 Thread Last Branch Record 0 Additional Information (R/W)

One of 32 triplet of last branch record registers on the last branch 
record stack. This part of the stack contains flag, TSX-related and 
elapsed cycle information. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.7.1, “LBR Stack.”

DC1H 3521 MSR_LBR_INFO_1 Thread Last Branch Record 1 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC2H 3522 MSR_LBR_INFO_2 Thread Last Branch Record 2 Additional Information (R/W)

See description of MSR_LBR_INFO_0. 

DC3H 3523 MSR_LBR_INFO_3 Thread Last Branch Record 3 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC4H 3524 MSR_LBR_INFO_4 Thread Last Branch Record 4 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC5H 3525 MSR_LBR_INFO_5 Thread Last Branch Record 5 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC6H 3526 MSR_LBR_INFO_6 Thread Last Branch Record 6 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC7H 3527 MSR_LBR_INFO_7 Thread Last Branch Record 7 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC8H 3528 MSR_LBR_INFO_8 Thread Last Branch Record 8 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DC9H 3529 MSR_LBR_INFO_9 Thread Last Branch Record 9 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCAH 3530 MSR_LBR_INFO_10 Thread Last Branch Record 10 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCBH 3531 MSR_LBR_INFO_11 Thread Last Branch Record 11 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCCH 3532 MSR_LBR_INFO_12 Thread Last Branch Record 12 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCDH 3533 MSR_LBR_INFO_13 Thread Last Branch Record 13 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCEH 3534 MSR_LBR_INFO_14 Thread Last Branch Record 14 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DCFH 3535 MSR_LBR_INFO_15 Thread Last Branch Record 15 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

Table 35-37    Additional MSRs Supported by 6th Generation Intel® Core™ Processors Based on Skylake 
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Table 35-38 lists the MSRs of uncore PMU for Intel processors with CPUID DisplayFamily_DisplayModel signatures of 
06_4EH and 06_5EH.

DD0H 3536 MSR_LBR_INFO_16 Thread Last Branch Record 16 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD1H 3537 MSR_LBR_INFO_17 Thread Last Branch Record 17 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD2H 3538 MSR_LBR_INFO_18 Thread Last Branch Record 18 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD3H 3539 MSR_LBR_INFO_19 Thread Last Branch Record 19 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD4H 3520 MSR_LBR_INFO_20 Thread Last Branch Record 20 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD5H 3521 MSR_LBR_INFO_21 Thread Last Branch Record 21 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD6H 3522 MSR_LBR_INFO_22 Thread Last Branch Record 22 Additional Information (R/W)

See description of MSR_LBR_INFO_0. 

DD7H 3523 MSR_LBR_INFO_23 Thread Last Branch Record 23 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD8H 3524 MSR_LBR_INFO_24 Thread Last Branch Record 24 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DD9H 3525 MSR_LBR_INFO_25 Thread Last Branch Record 25 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDAH 3526 MSR_LBR_INFO_26 Thread Last Branch Record 26 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDBH 3527 MSR_LBR_INFO_27 Thread Last Branch Record 27 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDCH 3528 MSR_LBR_INFO_28 Thread Last Branch Record 28 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDDH 3529 MSR_LBR_INFO_29 Thread Last Branch Record 29 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDEH 3530 MSR_LBR_INFO_30 Thread Last Branch Record 30 Additional Information (R/W)

See description of MSR_LBR_INFO_0.

DDFH 3531 MSR_LBR_INFO_31 Thread Last Branch Record 31 Additional Information (R/W)

See description of MSR_LBR_INFO_0.
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Table 35-38    Uncore PMU MSRs Supported by 6th Generation Intel® Core™ Processors 

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

394H 916 MSR_UNC_PERF_FIXED_
CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow propagation

21 Reserved

22 Enable counting

63:23 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

43:0 Current count

63:44 Reserved.

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box configuration information (R/O)

3:0 Specifies the number of C-Box units with programmable 
counters (including processor cores and processor graphics), 

63:4 Reserved.

3B0H 946 MSR_UNC_ARB_PERFCTR0 Package Uncore Arb unit, performance counter 0 

3B1H 947 MSR_UNC_ARB_PERFCTR1 Package Uncore Arb unit, performance counter 1

3B2H 944 MSR_UNC_ARB_
PERFEVTSEL0

Package Uncore Arb unit, counter 0 event select MSR

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

706H 1798 MSR_UNC_CBO_0_PERFCTR0 Package Uncore C-Box 0, performance counter 0 

707H 1799 MSR_UNC_CBO_0_PERFCTR1 Package Uncore C-Box 0, performance counter 1

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

716H 1814 MSR_UNC_CBO_1_PERFCTR0 Package Uncore C-Box 1, performance counter 0 

717H 1815 MSR_UNC_CBO_1_PERFCTR1 Package Uncore C-Box 1, performance counter 1
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35.16 MSRS IN FUTURE INTEL® XEON® PROCESSORS 
Future Intel® Xeon® Processors (CPUID DisplayFamily_DisplayModel = 06_55H) support the machine check bank 
registers listed in Table 35-40.

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

721H 1825 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

726H 1830 MSR_UNC_CBO_2_PERFCTR0 Package Uncore C-Box 2, performance counter 0 

727H 1831 MSR_UNC_CBO_2_PERFCTR1 Package Uncore C-Box 2, performance counter 1

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR.

736H 1846 MSR_UNC_CBO_3_PERFCTR0 Package Uncore C-Box 3, performance counter 0.

737H 1847 MSR_UNC_CBO_3_PERFCTR1 Package Uncore C-Box 3, performance counter 1.

E01H 3585 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Slice 0 select

1 Slice 1 select

2 Slice 2 select

3 Slice 3 select

4 Slice 4select

18:5 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

E02H 3586 MSR_UNC_PERF_GLOBAL_
STATUS

Package Uncore PMU main status 

0 Fixed counter overflowed

1 An ARB counter overflowed

2 Reserved

3 A CBox counter overflowed (on any slice)

63:4 Reserved.

Table 35-38    Uncore PMU MSRs Supported by 6th Generation Intel® Core™ Processors 
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Table 35-39    Machine Check MSRs Supported by Future Intel® Xeon® Processors with DisplayFamily_DisplayModel 
06_55H

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

280H 640 IA32_MC0_CTL2 Package See Table 35-2.

281H 641 IA32_MC1_CTL2 Package See Table 35-2.

282H 642 IA32_MC2_CTL2 Package See Table 35-2.

283H 643 IA32_MC3_CTL2 Package See Table 35-2.

284H 644 IA32_MC4_CTL2 Package See Table 35-2.

285H 645 IA32_MC5_CTL2 Package See Table 35-2.

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

288H 648 IA32_MC8_CTL2 Package See Table 35-2.

289H 649 IA32_MC9_CTL2 Package See Table 35-2.

28AH 650 IA32_MC10_CTL2 Package See Table 35-2.

28BH 651 IA32_MC11_CTL2 Package See Table 35-2.

28CH 652 IA32_MC12_CTL2 Package See Table 35-2.

28DH 653 IA32_MC13_CTL2 Package See Table 35-2.

28EH 654 IA32_MC14_CTL2 Package See Table 35-2.

28FH 655 IA32_MC15_CTL2 Package See Table 35-2.

290H 656 IA32_MC16_CTL2 Package See Table 35-2.

291H 657 IA32_MC17_CTL2 Package See Table 35-2.

292H 658 IA32_MC18_CTL2 Package See Table 35-2.

293H 659 IA32_MC19_CTL2 Package See Table 35-2.

400H 1024 IA32_MC0_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC0 reports MC error from the IFU module.
401H 1025 IA32_MC0_STATUS Package

402H 1026 IA32_MC0_ADDR Package

403H 1027 IA32_MC0_MISC Package

404H 1028 IA32_MC1_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC1 reports MC error from the DCU module.
405H 1029 IA32_MC1_STATUS Package

406H 1030 IA32_MC1_ADDR Package

407H 1031 IA32_MC1_MISC Package

408H 1032 IA32_MC2_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC2 reports MC error from the DTLB module.
409H 1033 IA32_MC2_STATUS Package

40AH 1034 IA32_MC2_ADDR Package

40BH 1035 IA32_MC2_MISC Package
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40CH 1036 IA32_MC3_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC3 reports MC error from the MLC module.
40DH 1037 IA32_MC3_STATUS Package

40EH 1038 IA32_MC3_ADDR Package

40FH 1039 IA32_MC3_MISC Package

410H 1040 IA32_MC4_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC4 reports MC error from the PCU module.
411H 1041 IA32_MC4_STATUS Package

412H 1042 IA32_MC4_ADDR Package

413H 1043 IA32_MC4_MISC Package

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC5 reports MC error from a link interconnect module.
415H 1045 IA32_MC5_STATUS Package

416H 1046 IA32_MC5_ADDR Package

417H 1047 IA32_MC5_MISC Package

418H 1048 IA32_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC6 reports MC error from the integrated I/O module.
419H 1049 IA32_MC6_STATUS Package

41AH 1050 IA32_MC6_ADDR Package

41BH 1051 IA32_MC6_MISC Package

41CH 1052 IA32_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC7 reports MC error from the M2M 0.
41DH 1053 IA32_MC7_STATUS Package

41EH 1054 IA32_MC7_ADDR Package

41FH 1055 IA32_MC7_MISC Package

420H 1056 IA32_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC8 reports MC error from the M2M 1.
421H 1057 IA32_MC8_STATUS Package

422H 1058 IA32_MC8_ADDR Package

423H 1059 IA32_MC8_MISC Package

424H 1060 IA32_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 - MC11 report MC error from the CHA 
425H 1061 IA32_MC9_STATUS Package

426H 1062 IA32_MC9_ADDR Package

427H 1063 IA32_MC9_MISC Package

428H 1064 IA32_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 - MC11 report MC error from the CHA.
429H 1065 IA32_MC10_STATUS Package

42AH 1066 IA32_MC10_ADDR Package

42BH 1067 IA32_MC10_MISC Package

Table 35-39    Machine Check MSRs Supported by Future Intel® Xeon® Processors with DisplayFamily_DisplayModel 
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42CH 1068 IA32_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC9 - MC11 report MC error from the CHA.
42DH 1069 IA32_MC11_STATUS Package

42EH 1070 IA32_MC11_ADDR Package

42FH 1071 IA32_MC11_MISC Package

430H 1072 IA32_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC12 report MC error from each channel of a link 
interconnect module.

431H 1073 IA32_MC12_STATUS Package

432H 1074 IA32_MC12_ADDR Package

433H 1075 IA32_MC12_MISC Package

434H 1076 IA32_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC error from the integrated 
memory controllers.

435H 1077 IA32_MC13_STATUS Package

436H 1078 IA32_MC13_ADDR Package

437H 1079 IA32_MC13_MISC Package

438H 1080 IA32_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC error from the integrated 
memory controllers.

439H 1081 IA32_MC14_STATUS Package

43AH 1082 IA32_MC14_ADDR Package

43BH 1083 IA32_MC14_MISC Package

43CH 1084 IA32_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC error from the integrated 
memory controllers.

43DH 1085 IA32_MC15_STATUS Package

43EH 1086 IA32_MC15_ADDR Package

43FH 1087 IA32_MC15_MISC Package

440H 1088 IA32_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC error from the integrated 
memory controllers

441H 1089 IA32_MC16_STATUS Package

442H 1090 IA32_MC16_ADDR Package

443H 1091 IA32_MC16_MISC Package

444H 1092 IA32_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC error from the integrated 
memory controllers.

445H 1093 IA32_MC17_STATUS Package

446H 1094 IA32_MC17_ADDR Package

447H 1095 IA32_MC17_MISC Package

448H 1096 IA32_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Banks MC13 through MC 18 report MC error from the integrated 
memory controllers.

449H 1097 IA32_MC18_STATUS Package

44AH 1098 IA32_MC18_ADDR Package

44BH 1099 IA32_MC18_MISC Package

Table 35-39    Machine Check MSRs Supported by Future Intel® Xeon® Processors with DisplayFamily_DisplayModel 
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35.17 MSRS IN THE NEXT GENERATION INTEL® XEON PHI™ PROCESSORS
The next generation Intel® Xeon Phi™ processor family, with CPUID DisplayFamily_DisplayModel signature 
06_57H, supports the MSR interfaces listed in Table 35-40. These processors are based on the Knights Landing 
microarchitecture. Some MSRs are shared between a pair of processor cores, the scope is marked as module.

44CH 1100 IA32_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.” through Section 
15.3.2.4, “IA32_MCi_MISC MSRs.”.

Bank MC19 reports MC error from a link interconnect module.
44DH 1101 IA32_MC19_STATUS Package

44EH 1102 IA32_MC19_ADDR Package

44FH 1103 IA32_MC19_MISC Package

Table 35-39    Machine Check MSRs Supported by Future Intel® Xeon® Processors with DisplayFamily_DisplayModel 
06_55H
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Bit Description
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Table 35-40    Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with 
DisplayFamily_DisplayModel Signature 06_57H

Address
Register Name

Scope
Bit Description Hex Dec

0H 0 IA32_P5_MC_ADDR Module See Section 35.22, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Module See Section 35.22, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination.” 
and Table 35-2

10H 16 IA32_TIME_STAMP_
COUNTER

Thread See Section 17.15, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R) 
See Table 35-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and Table 35-
2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O) 

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 35-2.

0 Lock (R/WL) 

1 Reserved

2 Enable VMX outside SMX operation (R/WL) 

3BH 59 IA32_TSC_ADJUST THREAD Per-Logical-Processor TSC ADJUST (R/W)

See Table 35-2.
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79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W) 

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID THREAD BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 THREAD Performance counter register

See Table 35-2.

C2H 194 IA32_PMC1 THREAD Performance Counter Register

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O) 

The is the ratio of the frequency that invariant TSC runs at. 
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limits for Turbo 
mode is enabled, and when set to 0, indicates Programmable Ratio 
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limits for Turbo mode are 
programmable, and when set to 0, indicates TDP Limit for Turbo 
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O) 

The is the minimum ratio (maximum efficiency) that the processor 
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Module C-State Configuration Control (R/W) 

2:0 Package C-State Limit (R/W) 

The following C-state code name encodings are supported:

000b: C0/C1

001b: C2

010b: C6 No Retention

011b: C6 Retention

111b: No limit

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 
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14:11 Reserved.

15 CFG Lock (R/WO) 

63:16 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Module Power Management IO Redirection in C-state (R/W) 

15:0 LVL_2 Base Address (R/W) 

18:16 C-state Range (R/W) 

Specifies the encoding value of the maximum C-State code name to 
be included when IO read to MWAIT redirection is enabled by 
MSR_PKG_CST_CONFIG_CONTROL[bit10]:

100b - C4 is the max C-State to include

110b - C6 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW) 

See Table 35-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW) 

See Table 35-2.

FEH 254 IA32_MTRRCAP Core Memory Type Range Register (R) 

See Table 35-2.

13CH 52 MSR_FEATURE_CONFIG Core AES Configuration (RW-L)

Privileged post-BIOS agent must provide a #GP handler to handle 
unsuccessful read of this MSR.

1:0 AES Configuration (RW-L) 

Upon a successful read of this MSR, the configuration of AES 
instruction set availability is as follows:

11b: AES instructions are not available until next RESET.

otherwise, AES instructions are available.

Note, AES instruction set is not available if read is unsuccessful. If 
the configuration is not 01b, AES instruction can be mis-configured 
if a privileged agent unintentionally writes 11b.

63:2 Reserved.

174H 372 IA32_SYSENTER_CS Thread See Table 35-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 35-2.

179H 377 IA32_MCG_CAP Thread See Table 35-2.

17AH 378 IA32_MCG_STATUS Thread See Table 35-2.

186H 390 IA32_PERFEVTSEL0 Thread Performance Monitoring Event Select Register (R/W)

See Table 35-2.
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7:0 Event Select

15:8 UMask

16 USR

17 OS

18 Edge

19 PC

20 INT

21 AnyThread

22 EN

23 INV

31:24 CMASK

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 Thread See Table 35-2.

198H 408 IA32_PERF_STATUS Package See Table 35-2.

199H 409 IA32_PERF_CTL Thread See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Thread Clock Modulation (R/W) 

See Table 35-2.

19BH 411 IA32_THERM_INTERRUPT Module Thermal Interrupt Control (R/W) 

See Table 35-2.

19CH 412 IA32_THERM_STATUS Module Thermal Monitor Status (R/W) 

See Table 35-2.

0 Thermal status (RO) 

1 Thermal status log (R/WC0) 

2 PROTCHOT # or FORCEPR# status (RO) 

3 PROTCHOT # or FORCEPR# log (R/WC0) 

4 Critical Temperature status (RO) 

5 Critical Temperature status log (R/WC0) 

6 Thermal threshold #1 status (RO) 

7 Thermal threshold #1 log (R/WC0) 

8 Thermal threshold #2 status (RO) 

9 Thermal threshold #2 log (R/WC0) 

10 Power Limitation status (RO) 

11 Power Limitation log (R/WC0) 

15:12 Reserved.
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22:16 Digital Readout (RO) 

26:23 Reserved.

30:27 Resolution in degrees Celsius (RO) 

31 Reading Valid (RO) 

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Thread Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

2:1 Reserved.

3 Automatic Thermal Control Circuit Enable (R/W) Default value is 
1.

6:4 Reserved.

7 Performance Monitoring Available (R) 

10:8 Reserved.

11 Branch Trace Storage Unavailable (RO) 

12 Processor Event Based Sampling Unavailable (RO) 

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable (R/W) 

18 ENABLE MONITOR FSM (R/W) 

21:19 Reserved.

22 Limit CPUID Maxval (R/W) 

23 xTPR Message Disable (R/W) 

33:24 Reserved.

34 XD Bit Disable (R/W) 

37:35 Reserved.

38 Turbo Mode Disable (R/W)

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Package

15:0 Reserved.

23:16 Temperature Target (R) 

29:24 Target Offset (R/W) 

63:30 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Shared Offcore Response Event Select Register (R/W)

1A7H 423 MSR_OFFCORE_RSP_1 Shared Offcore Response Event Select Register (R/W)
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1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode for Groups of Cores (RW)

0 Reserved

7:1 Package Maximum Number of Cores in Group 0

Number active processor cores which operates under the maximum 
ratio limit for group 0. 

15:8 Package Maximum Ratio Limit for Group 0

Maximum turbo ratio limit when the number of active cores are not 
more than the group 0 maximum core count. 

20:16 Package Number of Incremental Cores Added to Group 1

Group 1, which includes the specified number of additional cores 
plus the cores in group 0, operates under the group 1 turbo max 
ratio limit = “group 0 Max ratio limit” - “group ratio delta for group 
1”.

23:21 Package Group Ratio Delta for Group 1

An unsigned integer specifying the ratio decrement relative to the 
Max ratio limit to Group 0.

28:24 Package Number of Incremental Cores Added to Group 2

Group 2, which includes the specified number of additional cores 
plus all the cores in group 1, operates under the group 2 turbo max 
ratio limit = “group 1 Max ratio limit” - “group ratio delta for group 
2”.

31:29 Package Group Ratio Delta for Group 2

An unsigned integer specifying the ratio decrement relative to the 
Max ratio limit for Group 1.

36:32 Package Number of Incremental Cores Added to Group 3

Group 3, which includes the specified number of additional cores 
plus all the cores in group 2, operates under the group 3 turbo max 
ratio limit = “group 2 Max ratio limit” - “group ratio delta for group 
3”.

39:37 Package Group Ratio Delta for Group 3

An unsigned integer specifying the ratio decrement relative to the 
Max ratio limit for Group 2.

44:40 Package Number of Incremental Cores Added to Group 4

Group 4, which includes the specified number of additional cores 
plus all the cores in group 3, operates under the group 4 turbo max 
ratio limit = “group 3 Max ratio limit” - “group ratio delta for group 
4”.

47:45 Package Group Ratio Delta for Group 4

An unsigned integer specifying the ratio decrement relative to the 
Max ratio limit for Group 3.
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52:48 Package Number of Incremental Cores Added to Group 5

Group 5, which includes the specified number of additional cores 
plus all the cores in group 4, operates under the group 5 turbo max 
ratio limit = “group 4 Max ratio limit” - “group ratio delta for group 
5”.

55:53 Package Group Ratio Delta for Group 5

An unsigned integer specifying the ratio decrement relative to the 
Max ratio limit for Group 4.

60:56 Package Number of Incremental Cores Added to Group 6

Group 6, which includes the specified number of additional cores 
plus all the cores in group 5, operates under the group 6 turbo max 
ratio limit = “group 5 Max ratio limit” - “group ratio delta for group 
6”.

63:61 Package Group Ratio Delta for Group 6

An unsigned integer specifying the ratio decrement relative to the 
Max ratio limit for Group 5.

1B0H 432 IA32_ENERGY_PERF_BIAS Thread See Table 35-2.

1B1H 433 IA32_PACKAGE_THERM_
STATUS

Package See Table 35-2.

1B2H 434 IA32_PACKAGE_THERM_
INTERRUPT

Package See Table 35-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W) 

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W) 

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W) 

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R) 

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R) 

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

200H 512 IA32_MTRR_PHYSBASE0 Core See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Core See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Core See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Core See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Core See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Core See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Core See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Core See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Core See Table 35-2.
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209H 521 IA32_MTRR_PHYSMASK4 Core See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Core See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Core See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Core See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Core See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Core See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Core See Table 35-2.

250H 592 IA32_MTRR_FIX64K_00000 Core See Table 35-2.

258H 600 IA32_MTRR_FIX16K_80000 Core See Table 35-2.

259H 601 IA32_MTRR_FIX16K_A000
0

Core See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Core See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Core See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Core See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Core See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Core See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Core See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Core See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Core See Table 35-2.

277H 631 IA32_PAT Core See Table 35-2.

2FFH 767 IA32_MTRR_DEF_TYPE Core Default Memory Types (R/W) 

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W) 

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W) 

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W) 

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Core See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W) 

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_STATU
S

Thread See Table 35-2. 

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-2. 
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390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-2. 

3F1H 1009 MSR_PEBS_ENABLE Thread See Table 35-2. 

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 Package C3 Residency Counter. (R/O)

3F9H 1017 MSR_PKG_C6_RESIDENCY Package

63:0 Package C6 Residency Counter. (R/O)

3FAH 1018 MSR_PKG_C7_RESIDENCY Package

63:0 Package C7 Residency Counter. (R/O)

3FCH 1020 MSR_MC0_RESIDENCY Module Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 Module C0 Residency Counter. (R/O)

3FDH 1021 MSR_MC6_RESIDENCY Module

63:0 Module C6 Residency Counter. (R/O)

3FFH 1023 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 CORE C6 Residency Counter. (R/O)

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

410H 1040 IA32_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”
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412H 1042 IA32_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC4_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

414H 1044 IA32_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 IA32_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 IA32_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

480H 1152 IA32_VMX_BASIC Core Reporting Register of Basic VMX Capabilities (R/O) 

See Table 35-2.

481H 1153 IA32_VMX_PINBASED_
CTLS

Core Capability Reporting Register of Pin-based VM-execution 
Controls (R/O) 

See Table 35-2.

482H 1154 IA32_VMX_PROCBASED_
CTLS

Core Capability Reporting Register of Primary Processor-based 
VM-execution Controls (R/O)

483H 1155 IA32_VMX_EXIT_CTLS Core Capability Reporting Register of VM-exit Controls (R/O) 

See Table 35-2.

484H 1156 IA32_VMX_ENTRY_CTLS Core Capability Reporting Register of VM-entry Controls (R/O) 

See Table 35-2.

485H 1157 IA32_VMX_MISC Core Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 35-2.

486H 1158 IA32_VMX_CR0_FIXED0 Core Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 35-2.

487H 1159 IA32_VMX_CR0_FIXED1 Core Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 35-2.

488H 1160 IA32_VMX_CR4_FIXED0 Core Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 35-2.

489H 1161 IA32_VMX_CR4_FIXED1 Core Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 35-2.

48AH 1162 IA32_VMX_VMCS_ENUM Core Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Core Capability Reporting Register of Secondary Processor-based 
VM-execution Controls (R/O)

See Table 35-2

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Core Capability Reporting Register of EPT and VPID (R/O) 

See Table 35-2
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48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Core Capability Reporting Register of Pin-based VM-execution Flex 
Controls (R/O)

See Table 35-2

48EH 1166 IA32_VMX_TRUE_PROCBAS
ED_CTLS

Core Capability Reporting Register of Primary Processor-based 
VM-execution Flex Controls (R/O)

See Table 35-2

48FH 1167 IA32_VMX_TRUE_EXIT_CTL
S

Core Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 35-2

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Core Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 35-2

491H 1169 IA32_VMX_FMFUNC Core Capability Reporting Register of VM-function Controls (R/O)

See Table 35-2

4C1H 1217 IA32_A_PMC0 Thread See Table 35-2.

4C2H 1218 IA32_A_PMC1 Thread See Table 35-2.

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-2.

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O) 

3:0 Package Power Units

See Section 14.9.1, “RAPL Interfaces.”

7:4 Package Reserved

12:8 Package Energy Status Units

Energy related information (in Joules) is based on the multiplier, 1/
2^ESU; where ESU is an unsigned integer represented by bits 12:8. 
Default value is 0EH (or 61 micro-joules)

15:13 Package Reserved

19:16 Package Time Units

See Section 14.9.1, “RAPL Interfaces.”

63:20 Reserved

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-States.

63:0 Package C2 Residency Counter. (R/O)

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W) 

See Section 14.9.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O) 

See Section 14.9.3, “Package RAPL Domain.”

613H 1555 MSR_PKG_PERF_STATUS Package PKG Perf Status (R/O) 

See Section 14.9.3, “Package RAPL Domain.”
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614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) See Section 14.9.3, “Package RAPL 
Domain.”

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W) 

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O) 

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5, 
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W) 

See Section 14.9.5, “DRAM RAPL Domain.”

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERGY_STATUS Package PP0 Energy Status (R/O) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Base TDP Ratio (R/O)

See Table 35-23

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O). See Table 35-23

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O). See Table 35-23

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

See Table 35-23

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

See Table 35-23

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

1 Thermal Status (R0)

5:2 Reserved.

6 VR Therm Alert Status (R0)

7 Reserved.

8 Electrical Design Point Status (R0)

63:9 Reserved.

6E0H 1760 IA32_TSC_DEADLINE Core TSC Target of Local APIC’s TSC Deadline Mode (R/W) 

See Table 35-2

802H 2050 IA32_X2APIC_APICID Thread x2APIC ID register (R/O) See x2APIC Specification.
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803H 2051 IA32_X2APIC_VERSION Thread x2APIC Version register (R/O) 

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority register (R/W) 

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority register (R/O) 

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI register (W/O) 

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination register (R/O) 

80FH 2063 IA32_X2APIC_SIVR Thread x2APIC Spurious Interrupt Vector register (R/W) 

810H 2064 IA32_X2APIC_ISR0 Thread x2APIC In-Service register bits [31:0] (R/O) 

811H 2065 IA32_X2APIC_ISR1 Thread x2APIC In-Service register bits [63:32] (R/O) 

812H 2066 IA32_X2APIC_ISR2 Thread x2APIC In-Service register bits [95:64] (R/O) 

813H 2067 IA32_X2APIC_ISR3 Thread x2APIC In-Service register bits [127:96] (R/O) 

814H 2068 IA32_X2APIC_ISR4 Thread x2APIC In-Service register bits [159:128] (R/O) 

815H 2069 IA32_X2APIC_ISR5 Thread x2APIC In-Service register bits [191:160] (R/O) 

816H 2070 IA32_X2APIC_ISR6 Thread x2APIC In-Service register bits [223:192] (R/O) 

817H 2071 IA32_X2APIC_ISR7 Thread x2APIC In-Service register bits [255:224] (R/O) 

818H 2072 IA32_X2APIC_TMR0 Thread x2APIC Trigger Mode register bits [31:0] (R/O) 

819H 2073 IA32_X2APIC_TMR1 Thread x2APIC Trigger Mode register bits [63:32] (R/O) 

81AH 2074 IA32_X2APIC_TMR2 Thread x2APIC Trigger Mode register bits [95:64] (R/O) 

81BH 2075 IA32_X2APIC_TMR3 Thread x2APIC Trigger Mode register bits [127:96] (R/O) 

81CH 2076 IA32_X2APIC_TMR4 Thread x2APIC Trigger Mode register bits [159:128] (R/O) 

81DH 2077 IA32_X2APIC_TMR5 Thread x2APIC Trigger Mode register bits [191:160] (R/O) 

81EH 2078 IA32_X2APIC_TMR6 Thread x2APIC Trigger Mode register bits [223:192] (R/O) 

81FH 2079 IA32_X2APIC_TMR7 Thread x2APIC Trigger Mode register bits [255:224] (R/O) 

820H 2080 IA32_X2APIC_IRR0 Thread x2APIC Interrupt Request register bits [31:0] (R/O) 

821H 2081 IA32_X2APIC_IRR1 Thread x2APIC Interrupt Request register bits [63:32] (R/O) 

822H 2082 IA32_X2APIC_IRR2 Thread x2APIC Interrupt Request register bits [95:64] (R/O) 

823H 2083 IA32_X2APIC_IRR3 Thread x2APIC Interrupt Request register bits [127:96] (R/O) 

824H 2084 IA32_X2APIC_IRR4 Thread x2APIC Interrupt Request register bits [159:128] (R/O) 

825H 2085 IA32_X2APIC_IRR5 Thread x2APIC Interrupt Request register bits [191:160] (R/O) 

826H 2086 IA32_X2APIC_IRR6 Thread x2APIC Interrupt Request register bits [223:192] (R/O) 

827H 2087 IA32_X2APIC_IRR7 Thread x2APIC Interrupt Request register bits [255:224] (R/O) 

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status register (R/W) 

82FH 2095 IA32_X2APIC_LVT_CMCI Thread x2APIC LVT Corrected Machine Check Interrupt register (R/W) 

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command register (R/W) 

832H 2098 IA32_X2APIC_LVT_TIMER Thread x2APIC LVT Timer Interrupt register (R/W) 

Table 35-40    Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with 
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35.18 MSRS IN THE PENTIUM® 4 AND INTEL® XEON® PROCESSORS
Table 35-41 lists MSRs (architectural and model-specific) that are defined across processor generations based on 
Intel NetBurst microarchitecture. The processor can be identified by its CPUID signatures of DisplayFamily 
encoding of 0FH, see Table 35-1.
• MSRs with an “IA32_” prefix are designated as “architectural.” This means that the functions of these MSRs 

and their addresses remain the same for succeeding families of IA-32 processors.
• MSRs with an “MSR_” prefix are model specific with respect to address functionalities. The column “Model 

Availability” lists the model encoding value(s) within the Pentium 4 and Intel Xeon processor family at the 
specified register address. The model encoding value of a processor can be queried using CPUID. See 

833H 2099 IA32_X2APIC_LVT_THERMA
L

Thread x2APIC LVT Thermal Sensor Interrupt register (R/W) 

834H 2100 IA32_X2APIC_LVT_PMI Thread x2APIC LVT Performance Monitor register (R/W) 

835H 2101 IA32_X2APIC_LVT_LINT0 Thread x2APIC LVT LINT0 register (R/W) 

836H 2102 IA32_X2APIC_LVT_LINT1 Thread x2APIC LVT LINT1 register (R/W) 

837H 2103 IA32_X2APIC_LVT_ERROR Thread x2APIC LVT Error register (R/W) 

838H 2104 IA32_X2APIC_INIT_COUNT Thread x2APIC Initial Count register (R/W) 

839H 2105 IA32_X2APIC_CUR_COUNT Thread x2APIC Current Count register (R/O) 

83EH 2110 IA32_X2APIC_DIV_CONF Thread x2APIC Divide Configuration register (R/W) 

83FH 2111 IA32_X2APIC_SELF_IPI Thread x2APIC Self IPI register (W/O) 

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W) See Table 35-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W) See Table 35-2 

Table 35-40    Selected MSRs Supported by Next Generation Intel® Xeon Phi™ Processors with 
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“CPUID—CPU Identification” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A.

Table 35-41    MSRs in the Pentium® 4 and Intel® Xeon® Processors 

Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR 0, 1, 2, 3, 
4, 6

Shared See Section 35.22, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE 0, 1, 2, 3, 
4, 6

Shared See Section 35.22, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_LINE_
SIZE

3, 4, 6 Shared See Section 8.10.5, “Monitor/Mwait Address 
Range Determination.”

10H 16 IA32_TIME_STAMP_COUNTER 0, 1, 2, 3, 
4, 6

Unique Time Stamp Counter

See Table 35-2.

On earlier processors, only the lower 32 bits are 
writable. On any write to the lower 32 bits, the 
upper 32 bits are cleared. For processor family 
0FH, models 3 and 4: all 64 bits are writable.

17H 23 IA32_PLATFORM_ID 0, 1, 2, 3, 
4, 6

Shared Platform ID (R) 

See Table 35-2.

The operating system can use this MSR to 
determine “slot” information for the processor and 
the proper microcode update to load.

1BH 27 IA32_APIC_BASE 0, 1, 2, 3, 
4, 6

Unique APIC Location and Status (R/W)

See Table 35-2. See Section 10.4.4, “Local APIC 
Status and Location.”

2AH 42 MSR_EBC_HARD_POWERON 0, 1, 2, 3, 
4, 6

Shared Processor Hard Power-On Configuration

(R/W) Enables and disables processor features; 

(R) indicates current processor configuration.

0 Output Tri-state Enabled (R)

Indicates whether tri-state output is enabled (1) 
or disabled (0) as set by the strapping of SMI#. 
The value in this bit is written on the deassertion 
of RESET#; the bit is set to 1 when the address 
bus signal is asserted.

1 Execute BIST (R) 

Indicates whether the execution of the BIST is 
enabled (1) or disabled (0) as set by the strapping 
of INIT#. The value in this bit is written on the 
deassertion of RESET#; the bit is set to 1 when 
the address bus signal is asserted.
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2 In Order Queue Depth (R)

Indicates whether the in order queue depth for 
the system bus is 1 (1) or up to 12 (0) as set by 
the strapping of A7#. The value in this bit is 
written on the deassertion of RESET#; the bit is 
set to 1 when the address bus signal is asserted.

3 MCERR# Observation Disabled (R)

Indicates whether MCERR# observation is enabled 
(0) or disabled (1) as determined by the strapping 
of A9#. The value in this bit is written on the 
deassertion of RESET#; the bit is set to 1 when 
the address bus signal is asserted.

4 BINIT# Observation Enabled (R)

Indicates whether BINIT# observation is enabled 
(0) or disabled (1) as determined by the strapping 
of A10#. The value in this bit is written on the 
deassertion of RESET#; the bit is set to 1 when 
the address bus signal is asserted.

6:5 APIC Cluster ID (R) 

Contains the logical APIC cluster ID value as set by 
the strapping of A12# and A11#. The logical 
cluster ID value is written into the field on the 
deassertion of RESET#; the field is set to 1 when 
the address bus signal is asserted.

7 Bus Park Disable (R) 

Indicates whether bus park is enabled (0) or 
disabled (1) as set by the strapping of A15#. The 
value in this bit is written on the deassertion of 
RESET#; the bit is set to 1 when the address bus 
signal is asserted.

11:8 Reserved.

13:12 Agent ID (R) 

Contains the logical agent ID value as set by the 
strapping of BR[3:0]. The logical ID value is 
written into the field on the deassertion of 
RESET#; the field is set to 1 when the address bus 
signal is asserted.

63:14 Reserved.

2BH 43 MSR_EBC_SOFT_POWERON 0, 1, 2, 3, 
4, 6

Shared Processor Soft Power-On Configuration (R/W) 

Enables and disables processor features.

Table 35-41    MSRs in the Pentium® 4 and Intel® Xeon® Processors  (Contd.)
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0 RCNT/SCNT On Request Encoding Enable (R/W) 

Controls the driving of RCNT/SCNT on the request 
encoding. Set to enable (1); clear to disabled (0, 
default).

1 Data Error Checking Disable (R/W) 

Set to disable system data bus parity checking; 
clear to enable parity checking.

2 Response Error Checking Disable (R/W) 

Set to disable (default); clear to enable. 

3 Address/Request Error Checking Disable (R/W) 

Set to disable (default); clear to enable.

4 Initiator MCERR# Disable (R/W)

Set to disable MCERR# driving for initiator bus 
requests (default); clear to enable. 

5 Internal MCERR# Disable (R/W)

Set to disable MCERR# driving for initiator internal 
errors (default); clear to enable. 

6 BINIT# Driver Disable (R/W) 

Set to disable BINIT# driver (default); clear to 
enable driver.

63:7 Reserved.

2CH 44 MSR_EBC_FREQUENCY_ID 2,3, 4, 6 Shared Processor Frequency Configuration

The bit field layout of this MSR varies according to 
the MODEL value in the CPUID version 
information. The following bit field layout applies 
to Pentium 4 and Xeon Processors with MODEL 
encoding equal or greater than 2. 

(R) The field Indicates the current processor 
frequency configuration.

15:0 Reserved.

18:16 Scalable Bus Speed (R/W)

Indicates the intended scalable bus speed:

EncodingScalable Bus Speed
000B 100 MHz (Model 2)
000B 266 MHz (Model 3 or 4)
001B 133 MHz
010B 200 MHz
011B 166 MHz
100B 333 MHz (Model 6)
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133.33 MHz should be utilized if performing 
calculation with System Bus Speed when encoding 
is 001B. 

166.67 MHz should be utilized if performing 
calculation with System Bus Speed when encoding 
is 011B.

266.67 MHz should be utilized if performing 
calculation with System Bus Speed when encoding 
is 000B and model encoding = 3 or 4.

333.33 MHz should be utilized if performing 
calculation with System Bus Speed when encoding 
is 100B and model encoding = 6.

All other values are reserved.

23:19 Reserved.

31:24 Core Clock Frequency to System Bus 
Frequency Ratio (R)

The processor core clock frequency to system bus 
frequency ratio observed at the de-assertion of 
the reset pin.

63:25 Reserved.

2CH 44 MSR_EBC_FREQUENCY_ID 0, 1 Shared Processor Frequency Configuration (R) 

The bit field layout of this MSR varies according to 
the MODEL value of the CPUID version 
information. This bit field layout applies to 
Pentium 4 and Xeon Processors with MODEL 
encoding less than 2.

Indicates current processor frequency 
configuration.

20:0 Reserved.

23:21 Scalable Bus Speed (R/W)

Indicates the intended scalable bus speed:

Encoding Scalable Bus Speed
000B 100 MHz

All others values reserved.

63:24 Reserved.

3AH 58 IA32_FEATURE_CONTROL 3, 4, 6 Unique Control Features in IA-32 Processor (R/W)

See Table 35-2

(If CPUID.01H:ECX.[bit 5])

79H 121 IA32_BIOS_UPDT_TRIG 0, 1, 2, 3, 
4, 6

Shared BIOS Update Trigger Register (W) 

See Table 35-2.
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8BH 139 IA32_BIOS_SIGN_ID 0, 1, 2, 3, 
4, 6

Unique BIOS Update Signature ID (R/W)

See Table 35-2.

9BH 155 IA32_SMM_MONITOR_CTL 3, 4, 6 Unique SMM Monitor Configuration (R/W)

See Table 35-2.

FEH 254 IA32_MTRRCAP 0, 1, 2, 3, 
4, 6

Unique MTRR Information

See Section 11.11.1, “MTRR Feature 
Identification.”.

174H 372 IA32_SYSENTER_CS 0, 1, 2, 3, 
4, 6

Unique CS register target for CPL 0 code (R/W)

See Table 35-2.

See Section 5.8.7, “Performing Fast Calls to 
System Procedures with the SYSENTER and 
SYSEXIT Instructions.”

175H 373 IA32_SYSENTER_ESP 0, 1, 2, 3, 
4, 6

Unique Stack pointer for CPL 0 stack (R/W)

See Table 35-2.

See Section 5.8.7, “Performing Fast Calls to 
System Procedures with the SYSENTER and 
SYSEXIT Instructions.”

176H 374 IA32_SYSENTER_EIP 0, 1, 2, 3, 
4, 6

Unique CPL 0 code entry point (R/W)

See Table 35-2. See Section 5.8.7, “Performing 
Fast Calls to System Procedures with the 
SYSENTER and SYSEXIT Instructions.”

179H 377 IA32_MCG_CAP 0, 1, 2, 3, 
4, 6

Unique Machine Check Capabilities (R)

See Table 35-2. See Section 15.3.1.1, 
“IA32_MCG_CAP MSR.”

17AH 378 IA32_MCG_STATUS 0, 1, 2, 3, 
4, 6

Unique Machine Check Status. (R)

See Table 35-2. See Section 15.3.1.2, 
“IA32_MCG_STATUS MSR.”

17BH 379 IA32_MCG_CTL Machine Check Feature Enable (R/W)

See Table 35-2.

See Section 15.3.1.3, “IA32_MCG_CTL MSR.”

180H 384 MSR_MCG_RAX 0, 1, 2, 3, 
4, 6

Unique Machine Check EAX/RAX Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

181H 385 MSR_MCG_RBX 0, 1, 2, 3, 
4, 6

Unique Machine Check EBX/RBX Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”
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63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

182H 386 MSR_MCG_RCX 0, 1, 2, 3, 
4, 6

Unique Machine Check ECX/RCX Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

183H 387 MSR_MCG_RDX 0, 1, 2, 3, 
4, 6

Unique Machine Check EDX/RDX Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

184H 388 MSR_MCG_RSI 0, 1, 2, 3, 
4, 6

Unique Machine Check ESI/RSI Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

185H 389 MSR_MCG_RDI 0, 1, 2, 3, 
4, 6

Unique Machine Check EDI/RDI Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

186H 390 MSR_MCG_RBP 0, 1, 2, 3, 
4, 6

Unique Machine Check EBP/RBP Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

187H 391 MSR_MCG_RSP 0, 1, 2, 3, 
4, 6

Unique Machine Check ESP/RSP Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.
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188H 392 MSR_MCG_RFLAGS 0, 1, 2, 3, 
4, 6

Unique Machine Check EFLAGS/RFLAG Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

189H 393 MSR_MCG_RIP 0, 1, 2, 3, 
4, 6

Unique Machine Check EIP/RIP Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

18AH 394 MSR_MCG_MISC 0, 1, 2, 3, 
4, 6

Unique Machine Check Miscellaneous

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

0 DS

When set, the bit indicates that a page assist or 
page fault occurred during DS normal operation. 
The processors response is to shut down. 

The bit is used as an aid for debugging DS 
handling code. It is the responsibility of the user 
(BIOS or operating system) to clear this bit for 
normal operation.

63:1 Reserved.

18BH - 
18FH

395 MSR_MCG_RESERVED1 - 
MSR_MCG_RESERVED5

Reserved.

190H 400 MSR_MCG_R8 0, 1, 2, 3, 
4, 6

Unique Machine Check R8

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

191H 401 MSR_MCG_R9 0, 1, 2, 3, 
4, 6

Unique Machine Check R9D/R9

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.
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192H 402 MSR_MCG_R10 0, 1, 2, 3, 
4, 6

Unique Machine Check R10

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

193H 403 MSR_MCG_R11 0, 1, 2, 3, 
4, 6

Unique Machine Check R11

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

194H 404 MSR_MCG_R12 0, 1, 2, 3, 
4, 6

Unique Machine Check R12

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

195H 405 MSR_MCG_R13 0, 1, 2, 3, 
4, 6

Unique Machine Check R13

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

196H 406 MSR_MCG_R14 0, 1, 2, 3, 
4, 6

Unique Machine Check R14

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

197H 407 MSR_MCG_R15 0, 1, 2, 3, 
4, 6

Unique Machine Check R15

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”
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63:0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

198H 408 IA32_PERF_STATUS 3, 4, 6 Unique See Table 35-2. See Section 14.1, “Enhanced Intel 
Speedstep® Technology.”

199H 409 IA32_PERF_CTL 3, 4, 6 Unique See Table 35-2. See Section 14.1, “Enhanced Intel 
Speedstep® Technology.”

19AH 410 IA32_CLOCK_MODULATION 0, 1, 2, 3, 
4, 6

Unique Thermal Monitor Control (R/W)

See Table 35-2. 

See Section 14.7.3, “Software Controlled Clock 
Modulation.”

19BH 411 IA32_THERM_INTERRUPT 0, 1, 2, 3, 
4, 6

Unique Thermal Interrupt Control (R/W)

See Section 14.7.2, “Thermal Monitor,” and see 
Table 35-2.

19CH 412 IA32_THERM_STATUS 0, 1, 2, 3, 
4, 6

Shared Thermal Monitor Status (R/W)

See Section 14.7.2, “Thermal Monitor,” and see 
Table 35-2.

19DH 413 MSR_THERM2_CTL Thermal Monitor 2 Control.

3, Shared For Family F, Model 3 processors: When read, 
specifies the value of the target TM2 transition 
last written. When set, it sets the next target 
value for TM2 transition. 

4, 6 Shared For Family F, Model 4 and Model 6 processors: 
When read, specifies the value of the target TM2 
transition last written. Writes may cause #GP 
exceptions.

1A0H 416 IA32_MISC_ENABLE 0, 1, 2, 3, 
4, 6

Shared Enable Miscellaneous Processor Features (R/W) 

0 Fast-Strings Enable. See Table 35-2.

1 Reserved. 

2 x87 FPU Fopcode Compatibility Mode Enable

3 Thermal Monitor 1 Enable

See Section 14.7.2, “Thermal Monitor,” and see 
Table 35-2.
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4 Split-Lock Disable

When set, the bit causes an #AC exception to be 
issued instead of a split-lock cycle. Operating 
systems that set this bit must align system 
structures to avoid split-lock scenarios. 

When the bit is clear (default), normal split-locks 
are issued to the bus.

This debug feature is specific to the Pentium 4 
processor.

5 Reserved.

6 Third-Level Cache Disable (R/W)

When set, the third-level cache is disabled; when 
clear (default) the third-level cache is enabled. 
This flag is reserved for processors that do not 
have a third-level cache. 

Note that the bit controls only the third-level 
cache; and only if overall caching is enabled 
through the CD flag of control register CR0, the 
page-level cache controls, and/or the MTRRs.

See Section 11.5.4, “Disabling and Enabling the L3 
Cache.”

7 Performance Monitoring Available (R)

See Table 35-2.

8 Suppress Lock Enable

When set, assertion of LOCK on the bus is 
suppressed during a Split Lock access. When clear 
(default), LOCK is not suppressed.

9 Prefetch Queue Disable

When set, disables the prefetch queue. When clear 
(default), enables the prefetch queue.

10 FERR# Interrupt Reporting Enable (R/W) 

When set, interrupt reporting through the FERR# 
pin is enabled; when clear, this interrupt reporting 
function is disabled. 

When this flag is set and the processor is in the 
stop-clock state (STPCLK# is asserted), asserting 
the FERR# pin signals to the processor that an 
interrupt (such as, INIT#, BINIT#, INTR, NMI, SMI#, 
or RESET#) is pending and that the processor 
should return to normal operation to handle the 
interrupt.
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This flag does not affect the normal operation of 
the FERR# pin (to indicate an unmasked floating-
point error) when the STPCLK# pin is not 
asserted.

11 Branch Trace Storage Unavailable 
(BTS_UNAVILABLE) (R)

See Table 35-2.

When set, the processor does not support branch 
trace storage (BTS); when clear, BTS is supported.

12 PEBS_UNAVILABLE: Processor Event Based 
Sampling Unavailable (R)

See Table 35-2.

When set, the processor does not support 
processor event-based sampling (PEBS); when 
clear, PEBS is supported.

13 3 TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor 
indicates that the die temperature is at the pre-
determined threshold, the Thermal Monitor 2 
mechanism is engaged. TM2 will reduce the bus to 
core ratio and voltage according to the value last 
written to MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor 
does not change the VID signals or the bus to core 
ratio when the processor enters a thermal 
managed state.

If the TM2 feature flag (ECX[8]) is not set to 1 
after executing CPUID with EAX = 1, then this 
feature is not supported and BIOS must not alter 
the contents of this bit location. The processor is 
operating out of spec if both this bit and the TM1 
bit are set to disabled states.

17:14 Reserved.

18 3, 4, 6 ENABLE MONITOR FSM (R/W)

See Table 35-2.

19 Adjacent Cache Line Prefetch Disable (R/W) 

When set to 1, the processor fetches the cache 
line of the 128-byte sector containing currently 
required data. When set to 0, the processor 
fetches both cache lines in the sector.
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Single processor platforms should not set this bit. 
Server platforms should set or clear this bit based 
on platform performance observed in validation 
and testing. 

BIOS may contain a setup option that controls the 
setting of this bit.

21:20 Reserved.

22 3, 4, 6 Limit CPUID MAXVAL (R/W) 

See Table 35-2.

Setting this can cause unexpected behavior to 
software that depends on the availability of CPUID 
leaves greater than 3.

23 Shared xTPR Message Disable (R/W)

See Table 35-2.

24 L1 Data Cache Context Mode (R/W) 

When set, the L1 data cache is placed in shared 
mode; when clear (default), the cache is placed in 
adaptive mode. This bit is only enabled for IA-32 
processors that support Intel Hyper-Threading 
Technology. See Section 11.5.6, “L1 Data Cache 
Context Mode.”

When L1 is running in adaptive mode and CR3s 
are identical, data in L1 is shared across logical 
processors. Otherwise, L1 is not shared and cache 
use is competitive.

If the Context ID feature flag (ECX[10]) is set to 0 
after executing CPUID with EAX = 1, the ability to 
switch modes is not supported. BIOS must not 
alter the contents of IA32_MISC_ENABLE[24].

33:25 Reserved.

34 Unique XD Bit Disable (R/W)

See Table 35-2.

63:35 Reserved.

1A1H 417 MSR_PLATFORM_BRV 3, 4, 6 Shared Platform Feature Requirements (R)

17:0 Reserved.

18 PLATFORM Requirements

When set to 1, indicates the processor has specific 
platform requirements. The details of the platform 
requirements are listed in the respective data 
sheets of the processor.

63:19 Reserved.
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1D7H 471 MSR_LER_FROM_LIP 0, 1, 2, 3, 
4, 6

Unique Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction 
that the processor executed prior to the last 
exception that was generated or the last interrupt 
that was handled.

See Section 17.11.3, “Last Exception Records.”

31:0 From Linear IP

Linear address of the last branch instruction. 

63:32 Reserved.

1D7H 471 63:0 Unique From Linear IP

Linear address of the last branch instruction (If IA-
32e mode is active). 

1D8H 472 MSR_LER_TO_LIP 0, 1, 2, 3, 
4, 6

Unique Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the 
last branch instruction that the processor 
executed prior to the last exception that was 
generated or the last interrupt that was handled.

See Section 17.11.3, “Last Exception Records.”

31:0 From Linear IP

Linear address of the target of the last branch 
instruction. 

63:32 Reserved.

1D8H 472 63:0 Unique From Linear IP

Linear address of the target of the last branch 
instruction (If IA-32e mode is active).

1D9H 473 MSR_DEBUGCTLA 0, 1, 2, 3, 
4, 6

Unique Debug Control (R/W) 

Controls how several debug features are used. Bit 
definitions are discussed in the referenced 
section.

See Section 17.11.1, “MSR_DEBUGCTLA MSR.”

1DAH 474 MSR_LASTBRANCH
_TOS

0, 1, 2, 3, 
4, 6

Unique Last Branch Record Stack TOS (R/W) 

Contains an index (0-3 or 0-15) that points to the 
top of the last branch record stack (that is, that 
points the index of the MSR containing the most 
recent branch record).

See Section 17.11.2, “LBR Stack for Processors 
Based on Intel NetBurst® Microarchitecture”; and 
addresses 1DBH-1DEH and 680H-68FH.
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1DBH 475 MSR_LASTBRANCH_0 0, 1, 2 Unique Last Branch Record 0 (R/W) 

One of four last branch record registers on the last 
branch record stack. It contains pointers to the 
source and destination instruction for one of the 
last four branches, exceptions, or interrupts that 
the processor took.

MSR_LASTBRANCH_0 through 
MSR_LASTBRANCH_3 at 1DBH-1DEH are 
available only on family 0FH, models 0H-02H. 
They have been replaced by the MSRs at 680H-
68FH and 6C0H-6CFH. 

See Section 17.10, “Last Branch, Call Stack, 
Interrupt, and Exception Recording for Processors 
based on Skylake Microarchitecture.”

1DDH 477 MSR_LASTBRANCH_2 0, 1, 2 Unique Last Branch Record 2

See description of the MSR_LASTBRANCH_0 MSR 
at 1DBH.

1DEH 478 MSR_LASTBRANCH_3 0, 1, 2 Unique Last Branch Record 3

See description of the MSR_LASTBRANCH_0 MSR 
at 1DBH.

200H 512 IA32_MTRR_PHYSBASE0 0, 1, 2, 3, 
4, 6

Shared Variable Range Base MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

201H 513 IA32_MTRR_PHYSMASK0 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

202H 514 IA32_MTRR_PHYSBASE1 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

203H 515 IA32_MTRR_PHYSMASK1 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

204H 516 IA32_MTRR_PHYSBASE2 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

205H 517 IA32_MTRR_PHYSMASK2 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs”.

206H 518 IA32_MTRR_PHYSBASE3 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

207H 519 IA32_MTRR_PHYSMASK3 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

208H 520 IA32_MTRR_PHYSBASE4 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”
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209H 521 IA32_MTRR_PHYSMASK4 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20AH 522 IA32_MTRR_PHYSBASE5 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20BH 523 IA32_MTRR_PHYSMASK5 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20CH 524 IA32_MTRR_PHYSBASE6 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20DH 525 IA32_MTRR_PHYSMASK6 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20EH 526 IA32_MTRR_PHYSBASE7 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20FH 527 IA32_MTRR_PHYSMASK7 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

250H 592 IA32_MTRR_FIX64K_00000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

258H 600 IA32_MTRR_FIX16K_80000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

259H 601 IA32_MTRR_FIX16K_A0000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

268H 616 IA32_MTRR_FIX4K_C0000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

269H 617 IA32_MTRR_FIX4K_C8000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs”.

26AH 618 IA32_MTRR_FIX4K_D0000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs”.

26BH 619 IA32_MTRR_FIX4K_D8000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26CH 620 IA32_MTRR_FIX4K_E0000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26DH 621 IA32_MTRR_FIX4K_E8000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26EH 622 IA32_MTRR_FIX4K_F0000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26FH 623 IA32_MTRR_FIX4K_F8000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”
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277H 631 IA32_PAT 0, 1, 2, 3, 
4, 6

Unique Page Attribute Table

See Section 11.11.2.2, “Fixed Range MTRRs.”

2FFH 767 IA32_MTRR_DEF_TYPE 0, 1, 2, 3, 
4, 6

Shared Default Memory Types (R/W) 

See Table 35-2. 

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE 
MSR.”

300H 768 MSR_BPU_COUNTER0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

301H 769 MSR_BPU_COUNTER1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

302H 770 MSR_BPU_COUNTER2 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

303H 771 MSR_BPU_COUNTER3 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

304H 772 MSR_MS_COUNTER0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

305H 773 MSR_MS_COUNTER1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

306H 774 MSR_MS_COUNTER2 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

307H 775 MSR_MS_COUNTER3 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

308H 776 MSR_FLAME_COUNTER0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

309H 777 MSR_FLAME_COUNTER1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

30AH 778 MSR_FLAME_COUNTER2 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

30BH 779 MSR_FLAME_COUNTER3 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

30CH 780 MSR_IQ_COUNTER0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

30DH 781 MSR_IQ_COUNTER1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

30EH 782 MSR_IQ_COUNTER2 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

30FH 783 MSR_IQ_COUNTER3 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

310H 784 MSR_IQ_COUNTER4 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”
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311H 785 MSR_IQ_COUNTER5 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

360H 864 MSR_BPU_CCCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

361H 865 MSR_BPU_CCCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

362H 866 MSR_BPU_CCCR2 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

363H 867 MSR_BPU_CCCR3 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

364H 868 MSR_MS_CCCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

365H 869 MSR_MS_CCCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

366H 870 MSR_MS_CCCR2 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

367H 871 MSR_MS_CCCR3 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

368H 872 MSR_FLAME_CCCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

369H 873 MSR_FLAME_CCCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

36AH 874 MSR_FLAME_CCCR2 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

36BH 875 MSR_FLAME_CCCR3 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

36CH 876 MSR_IQ_CCCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

36DH 877 MSR_IQ_CCCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

36EH 878 MSR_IQ_CCCR2 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

36FH 879 MSR_IQ_CCCR3 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

370H 880 MSR_IQ_CCCR4 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

371H 881 MSR_IQ_CCCR5 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

3A0H 928 MSR_BSU_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”
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3A1H 929 MSR_BSU_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3A2H 930 MSR_FSB_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3A3H 931 MSR_FSB_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3A4H 932 MSR_FIRM_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3A5H 933 MSR_FIRM_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3A6H 934 MSR_FLAME_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3A7H 935 MSR_FLAME_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3A8H 936 MSR_DAC_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3A9H 937 MSR_DAC_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3AAH 938 MSR_MOB_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3ABH 939 MSR_MOB_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3ACH 940 MSR_PMH_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3ADH 941 MSR_PMH_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3AEH 942 MSR_SAAT_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3AFH 943 MSR_SAAT_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3B0H 944 MSR_U2L_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3B1H 945 MSR_U2L_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3B2H 946 MSR_BPU_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3B3H 947 MSR_BPU_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3B4H 948 MSR_IS_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”
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3B5H 949 MSR_IS_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3B6H 950 MSR_ITLB_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3B7H 951 MSR_ITLB_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3B8H 952 MSR_CRU_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3B9H 953 MSR_CRU_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3BAH 954 MSR_IQ_ESCR0 0, 1, 2 Shared See Section 18.12.1, “ESCR MSRs.”

This MSR is not available on later processors. It is 
only available on processor family 0FH, models 
01H-02H.

3BBH 955 MSR_IQ_ESCR1 0, 1, 2 Shared See Section 18.12.1, “ESCR MSRs.”

This MSR is not available on later processors. It is 
only available on processor family 0FH, models 
01H-02H.

3BCH 956 MSR_RAT_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3BDH 957 MSR_RAT_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3BEH 958 MSR_SSU_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3C0H 960 MSR_MS_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3C1H 961 MSR_MS_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3C2H 962 MSR_TBPU_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3C3H 963 MSR_TBPU_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3C4H 964 MSR_TC_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3C5H 965 MSR_TC_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3C8H 968 MSR_IX_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3C9H 969 MSR_IX_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”
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3CAH 970 MSR_ALF_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3CBH 971 MSR_ALF_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3CCH 972 MSR_CRU_ESCR2 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3CDH 973 MSR_CRU_ESCR3 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3E0H 992 MSR_CRU_ESCR4 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3E1H 993 MSR_CRU_ESCR5 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3F0H 1008 MSR_TC_PRECISE_EVENT 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3F1H 1009 MSR_PEBS_ENABLE 0, 1, 2, 3, 
4, 6

Shared Processor Event Based Sampling (PEBS) (R/W) 

Controls the enabling of processor event sampling 
and replay tagging. 

12:0 See Table 19-26.

23:13 Reserved.

24 UOP Tag 

Enables replay tagging when set.

25 ENABLE_PEBS_MY_THR (R/W)

Enables PEBS for the target logical processor 
when set; disables PEBS when clear (default). 

See Section 18.13.3, “IA32_PEBS_ENABLE MSR,” 
for an explanation of the target logical processor. 

This bit is called ENABLE_PEBS in IA-32 
processors that do not support Intel Hyper-
Threading Technology.

26 ENABLE_PEBS_OTH_THR (R/W)

Enables PEBS for the target logical processor 
when set; disables PEBS when clear (default).

See Section 18.13.3, “IA32_PEBS_ENABLE MSR,” 
for an explanation of the target logical processor. 

This bit is reserved for IA-32 processors that do 
not support Intel Hyper-Threading Technology.

63:27 Reserved.

3F2H 1010 MSR_PEBS_MATRIX_VERT 0, 1, 2, 3, 
4, 6

Shared See Table 19-26.

Table 35-41    MSRs in the Pentium® 4 and Intel® Xeon® Processors  (Contd.)

Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 577

400H 1024 IA32_MC0_CTL 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC0_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the IA32_MC0_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

403H 1027 IA32_MC0_MISC 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC0_MISC MSR is either not 
implemented or does not contain additional 
information if the MISCV flag in the 
IA32_MC0_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

404H 1028 IA32_MC1_CTL 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC1_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the IA32_MC1_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

407H 1031 IA32_MC1_MISC Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC1_MISC MSR is either not 
implemented or does not contain additional 
information if the MISCV flag in the 
IA32_MC1_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

408H 1032 IA32_MC2_CTL 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”
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40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the IA32_MC2_STATUS register is clear. 
When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

40BH 1035 IA32_MC2_MISC See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either not 
implemented or does not contain additional 
information if the MISCV flag in the 
IA32_MC2_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

40CH 1036 IA32_MC3_CTL 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC3_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the IA32_MC3_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

40FH 1039 IA32_MC3_MISC 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC3_MISC MSR is either not 
implemented or does not contain additional 
information if the MISCV flag in the 
IA32_MC3_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

410H 1040 IA32_MC4_CTL 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”
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412H 1042 IA32_MC4_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the IA32_MC4_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

413H 1043 IA32_MC4_MISC See Section 15.3.2.4, “IA32_MCi_MISC MSRs.” 

The IA32_MC2_MISC MSR is either not 
implemented or does not contain additional 
information if the MISCV flag in the 
IA32_MC4_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

480H 1152 IA32_VMX_BASIC 3, 4, 6 Unique Reporting Register of Basic VMX Capabilities 
(R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_CTLS 3, 4, 6 Unique Capability Reporting Register of Pin-based 
VM-execution Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_CTLS 3, 4, 6 Unique Capability Reporting Register of Primary 
Processor-based VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls,” and 
see Table 35-2.

483H 1155 IA32_VMX_EXIT_CTLS 3, 4, 6 Unique Capability Reporting Register of VM-exit 
Controls (R/O)

See Appendix A.4, “VM-Exit Controls,” and see 
Table 35-2.

484H 1156 IA32_VMX_ENTRY_CTLS 3, 4, 6 Unique Capability Reporting Register of VM-entry 
Controls (R/O)

See Appendix A.5, “VM-Entry Controls,” and see 
Table 35-2.

485H 1157 IA32_VMX_MISC 3, 4, 6 Unique Reporting Register of Miscellaneous VMX 
Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data,” and see 
Table 35-2.
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486H 1158 IA32_VMX_CR0_FIXED0 3, 4, 6 Unique Capability Reporting Register of CR0 Bits Fixed 
to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0,” and 
see Table 35-2.

487H 1159 IA32_VMX_CR0_FIXED1 3, 4, 6 Unique Capability Reporting Register of CR0 Bits Fixed 
to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0,” and 
see Table 35-2.

488H 1160 IA32_VMX_CR4_FIXED0 3, 4, 6 Unique Capability Reporting Register of CR4 Bits Fixed 
to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4,” and 
see Table 35-2.

489H 1161 IA32_VMX_CR4_FIXED1 3, 4, 6 Unique Capability Reporting Register of CR4 Bits Fixed 
to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4,” and 
see Table 35-2.

48AH 1162 IA32_VMX_VMCS_ENUM 3, 4, 6 Unique Capability Reporting Register of VMCS Field 
Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration,” and see 
Table 35-2.

48BH 1163 IA32_VMX_PROCBASED_CTLS2 3, 4, 6 Unique Capability Reporting Register of Secondary 
Processor-based VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls,” and 
see Table 35-2.

600H 1536 IA32_DS_AREA 0, 1, 2, 3, 
4, 6

Unique DS Save Area (R/W)

See Table 35-2.

See Section 18.12.4, “Debug Store (DS) 
Mechanism.”

680H 1664 MSR_LASTBRANCH_0_FROM_IP 3, 4, 6 Unique Last Branch Record 0 (R/W) 

One of 16 pairs of last branch record registers on 
the last branch record stack (680H-68FH). This 
part of the stack contains pointers to the source 
instruction for one of the last 16 branches, 
exceptions, or interrupts taken by the processor.

The MSRs at 680H-68FH, 6C0H-6CfH are not 
available in processor releases before family 0FH, 
model 03H. These MSRs replace MSRs previously 
located at 1DBH-1DEH.which performed the same 
function for early releases. 

See Section 17.10, “Last Branch, Call Stack, 
Interrupt, and Exception Recording for Processors 
based on Skylake Microarchitecture.”
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681H 1665 MSR_LASTBRANCH_1_FROM_IP 3, 4, 6 Unique Last Branch Record 1

See description of MSR_LASTBRANCH_0 at 680H.

682H 1666 MSR_LASTBRANCH_2_FROM_IP 3, 4, 6 Unique Last Branch Record 2

See description of MSR_LASTBRANCH_0 at 680H.

683H 1667 MSR_LASTBRANCH_3_FROM_IP 3, 4, 6 Unique Last Branch Record 3

See description of MSR_LASTBRANCH_0 at 680H.

684H 1668 MSR_LASTBRANCH_4_FROM_IP 3, 4, 6 Unique Last Branch Record 4

See description of MSR_LASTBRANCH_0 at 680H.

685H 1669 MSR_LASTBRANCH_5_FROM_IP 3, 4, 6 Unique Last Branch Record 5

See description of MSR_LASTBRANCH_0 at 680H.

686H 1670 MSR_LASTBRANCH_6_FROM_IP 3, 4, 6 Unique Last Branch Record 6

See description of MSR_LASTBRANCH_0 at 680H.

687H 1671 MSR_LASTBRANCH_7_FROM_IP 3, 4, 6 Unique Last Branch Record 7

See description of MSR_LASTBRANCH_0 at 680H.

688H 1672 MSR_LASTBRANCH_8_FROM_IP 3, 4, 6 Unique Last Branch Record 8

See description of MSR_LASTBRANCH_0 at 680H.

689H 1673 MSR_LASTBRANCH_9_FROM_IP 3, 4, 6 Unique Last Branch Record 9

See description of MSR_LASTBRANCH_0 at 680H.

68AH 1674 MSR_LASTBRANCH_10_FROM_IP 3, 4, 6 Unique Last Branch Record 10

See description of MSR_LASTBRANCH_0 at 680H.

68BH 1675 MSR_LASTBRANCH_11_FROM_IP 3, 4, 6 Unique Last Branch Record 11

See description of MSR_LASTBRANCH_0 at 680H.

68CH 1676 MSR_LASTBRANCH_12_FROM_IP 3, 4, 6 Unique Last Branch Record 12

See description of MSR_LASTBRANCH_0 at 680H.

68DH 1677 MSR_LASTBRANCH_13_FROM_IP 3, 4, 6 Unique Last Branch Record 13

See description of MSR_LASTBRANCH_0 at 680H.

68EH 1678 MSR_LASTBRANCH_14_FROM_IP 3, 4, 6 Unique Last Branch Record 14

See description of MSR_LASTBRANCH_0 at 680H.

68FH 1679 MSR_LASTBRANCH_15_FROM_IP 3, 4, 6 Unique Last Branch Record 15

See description of MSR_LASTBRANCH_0 at 680H.
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6C0H 1728 MSR_LASTBRANCH_0_TO_IP 3, 4, 6 Unique Last Branch Record 0 (R/W) 

One of 16 pairs of last branch record registers on 
the last branch record stack (6C0H-6CFH). This 
part of the stack contains pointers to the 
destination instruction for one of the last 16 
branches, exceptions, or interrupts that the 
processor took.

See Section 17.10, “Last Branch, Call Stack, 
Interrupt, and Exception Recording for Processors 
based on Skylake Microarchitecture.”

6C1H 1729 MSR_LASTBRANCH_1_TO_IP 3, 4, 6 Unique Last Branch Record 1

See description of MSR_LASTBRANCH_0 at 6C0H.

6C2H 1730 MSR_LASTBRANCH_2_TO_IP 3, 4, 6 Unique Last Branch Record 2

See description of MSR_LASTBRANCH_0 at 6C0H.

6C3H 1731 MSR_LASTBRANCH_3_TO_IP 3, 4, 6 Unique Last Branch Record 3

See description of MSR_LASTBRANCH_0 at 6C0H.

6C4H 1732 MSR_LASTBRANCH_4_TO_IP 3, 4, 6 Unique Last Branch Record 4

See description of MSR_LASTBRANCH_0 at 6C0H.

6C5H 1733 MSR_LASTBRANCH_5_TO_IP 3, 4, 6 Unique Last Branch Record 5

See description of MSR_LASTBRANCH_0 at 6C0H.

6C6H 1734 MSR_LASTBRANCH_6_TO_IP 3, 4, 6 Unique Last Branch Record 6

See description of MSR_LASTBRANCH_0 at 6C0H.

6C7H 1735 MSR_LASTBRANCH_7_TO_IP 3, 4, 6 Unique Last Branch Record 7

See description of MSR_LASTBRANCH_0 at 6C0H.

6C8H 1736 MSR_LASTBRANCH_8_TO_IP 3, 4, 6 Unique Last Branch Record 8

See description of MSR_LASTBRANCH_0 at 6C0H.

6C9H 1737 MSR_LASTBRANCH_9_TO_IP 3, 4, 6 Unique Last Branch Record 9

See description of MSR_LASTBRANCH_0 at 6C0H.

6CAH 1738 MSR_LASTBRANCH_10_TO_IP 3, 4, 6 Unique Last Branch Record 10

See description of MSR_LASTBRANCH_0 at 6C0H.

6CBH 1739 MSR_LASTBRANCH_11_TO_IP 3, 4, 6 Unique Last Branch Record 11

See description of MSR_LASTBRANCH_0 at 6C0H.

6CCH 1740 MSR_LASTBRANCH_12_TO_IP 3, 4, 6 Unique Last Branch Record 12

See description of MSR_LASTBRANCH_0 at 6C0H.

6CDH 1741 MSR_LASTBRANCH_13_TO_IP 3, 4, 6 Unique Last Branch Record 13

See description of MSR_LASTBRANCH_0 at 6C0H.

6CEH 1742 MSR_LASTBRANCH_14_TO_IP 3, 4, 6 Unique Last Branch Record 14

See description of MSR_LASTBRANCH_0 at 6C0H.
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...

35.19 MSRS IN INTEL® CORE™ SOLO AND INTEL® CORE™ DUO PROCESSORS
Model-specific registers (MSRs) for Intel Core Solo, Intel Core Duo processors, and Dual-core Intel Xeon 
processor LV are listed in Table 35-44. The column “Shared/Unique” applies to Intel Core Duo processor. “Unique” 
means each processor core has a separate MSR, or a bit field in an MSR governs only a core independently. 
“Shared” means the MSR or the bit field in an MSR address governs the operation of both processor cores.

6CFH 1743 MSR_LASTBRANCH_15_TO_IP 3, 4, 6 Unique Last Branch Record 15

See description of MSR_LASTBRANCH_0 at 6C0H.

C000_
0080H

IA32_EFER 3, 4, 6 Unique Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR 3, 4, 6 Unique System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR 3, 4, 6 Unique IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK 3, 4, 6 Unique System Call Flag Mask (R/W) 

See Table 35-2.

C000_
0100H

IA32_FS_BASE 3, 4, 6 Unique Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE 3, 4, 6 Unique Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE 3, 4, 6 Unique Swap Target of BASE Address of GS (R/W)

See Table 35-2.

NOTES
1. For HT-enabled processors, there may be more than one logical processors per physical unit. If an MSR is Shared, this means that 

one MSR is shared between logical processors. If an MSR is unique, this means that each logical processor has its own MSR.
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0H 0 P5_MC_ADDR Unique See Section 35.22, “MSRs in Pentium Processors,” and see Table 
35-2.

1H 1 P5_MC_TYPE Unique See Section 35.22, “MSRs in Pentium Processors,” and see Table 
35-2.

6H 6 IA32_MONITOR_FILTER_
SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination,” 
and see Table 35-2.
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10H 16 IA32_TIME_STAMP_
COUNTER

Unique See Section 17.15, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R) 

See Table 35-2.

The operating system can use this MSR to determine “slot” 
information for the processor and the proper microcode update to 
load.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location,” and see Table 
35-2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W)

Enables and disables processor features; (R) indicates current 
processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

2 Response Error Checking Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

3 MCERR# Drive Enable (R/W) 

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

4 Address Parity Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

6: 5 Reserved

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled 

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled 

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

11 Reserved

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled 
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13 Reserved

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

18 System Bus Frequency (R/O)

0 = 100 MHz
1 = Reserved

19 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

26:22 Clock Frequency Ratio (R/O)

3AH 58 IA32_FEATURE_CONTROL Unique Control Features in IA-32 Processor (R/W) 

See Table 35-2.

40H 64 MSR_LASTBRANCH_0 Unique Last Branch Record 0 (R/W)

One of 8 last branch record registers on the last branch record 
stack: bits 31-0 hold the ‘from’ address and bits 63-32 hold the ‘to’ 
address. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.13, “Last Branch, Interrupt, and Exception Recording 

(Pentium M Processors).”

41H 65 MSR_LASTBRANCH_1 Unique Last Branch Record 1 (R/W)

See description of MSR_LASTBRANCH_0.

42H 66 MSR_LASTBRANCH_2 Unique Last Branch Record 2 (R/W)

See description of MSR_LASTBRANCH_0. 

43H 67 MSR_LASTBRANCH_3 Unique Last Branch Record 3 (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_LASTBRANCH_4 Unique Last Branch Record 4 (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_LASTBRANCH_5 Unique Last Branch Record 5 (R/W)

See description of MSR_LASTBRANCH_0. 

46H 70 MSR_LASTBRANCH_6 Unique Last Branch Record 6 (R/W)

See description of MSR_LASTBRANCH_0. 

47H 71 MSR_LASTBRANCH_7 Unique Last Branch Record 7 (R/W)

See description of MSR_LASTBRANCH_0. 

79H 121 IA32_BIOS_UPDT_TRIG Unique BIOS Update Trigger Register (W)

See Table 35-2.
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8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Unique Performance counter register

See Table 35-2.

C2H 194 IA32_PMC1 Unique Performance counter register

See Table 35-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed (RO)

This field indicates the scaleable bus clock speed:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 101B. 

166.67 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 001B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count. (RW)

See Table 35-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count. (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Unique See Table 35-2.

11EH 281 MSR_BBL_CR_CTL3 Shared

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled (R/W) 

1 = L2 cache has been initialized 
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD 
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO) 

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.
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174H 372 IA32_SYSENTER_CS Unique See Table 35-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 35-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 35-2.

179H 377 IA32_MCG_CAP Unique See Table 35-2.

17AH 378 IA32_MCG_STATUS Unique

0 RIPV

When set, this bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) can be used to restart the program. If this bit is 
cleared, the program cannot be reliably restarted.

1 EIPV

When set, this bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) is directly associated with the error.

2 MCIP

When set, this bit indicates that a machine check has been 
generated. If a second machine check is detected while this bit is 
still set, the processor enters a shutdown state. Software should 
write this bit to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Unique See Table 35-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 35-2.

198H 408 IA32_PERF_STATUS Shared See Table 35-2.

199H 409 IA32_PERF_CTL Unique See Table 35-2.

19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation (R/W) 

See Table 35-2.

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control (R/W) 

See Table 35-2.

See Section 14.7.2, “Thermal Monitor.”

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W) 

See Table 35-2. 

See Section 14.7.2, “Thermal Monitor”.

19DH 413 MSR_THERM2_CTL Unique

15:0 Reserved.
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16 TM_SELECT (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of 
the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT 
has no effect. Neither TM1 nor TM2 will be enabled.

63:16 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Miscellaneous Processor Features

(R/W) 

Allows a variety of processor functions to be enabled and disabled.

2:0 Reserved.

3 Unique Automatic Thermal Control Circuit Enable (R/W) 

See Table 35-2. 

6:4 Reserved.

7 Shared Performance Monitoring Available (R)

See Table 35-2.

9:8 Reserved.

10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break 
event within the processor 

0 =  Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

11 Shared Branch Trace Storage Unavailable (RO)

See Table 35-2.

12 Reserved.

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the 
die temperature is at the pre-determined threshold, the Thermal 
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core 
ratio and voltage according to the value last written to 
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not change 
the VID signals or the bus to core ratio when the processor enters 
a thermal managed state.

If the TM2 feature flag (ECX[8]) is not set to 1 after executing 
CPUID with EAX = 1, then this feature is not supported and BIOS 
must not alter the contents of this bit location. The processor is 
operating out of spec if both this bit and the TM1 bit are set to 
disabled states.
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15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

1 = Enhanced Intel SpeedStep Technology enabled

18 Shared ENABLE MONITOR FSM (R/W)

See Table 35-2.

19 Reserved. 

22 Shared Limit CPUID Maxval (R/W) 

See Table 35-2. 

Setting this bit may cause behavior in software that depends on 
the availability of CPUID leaves greater than 2.

33:23 Reserved.

34 Shared XD Bit Disable (R/W)

See Table 35-2.

63:35 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the 
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W) 

Controls how several debug features are used. Bit definitions are 
discussed in the referenced section.

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch 
instruction that the processor executed prior to the last exception 
that was generated or the last interrupt that was handled. 

1E0H 480 ROB_CR_
BKUPTMPDR6

Unique

1:0 Reserved.

2 Fast String Enable bit. (Default, enabled)

200H 512 MTRRphysBase0 Unique

201H 513 MTRRphysMask0 Unique

202H 514 MTRRphysBase1 Unique

203H 515 MTRRphysMask1 Unique
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204H 516 MTRRphysBase2 Unique

205H 517 MTRRphysMask2 Unique

206H 518 MTRRphysBase3 Unique

207H 519 MTRRphysMask3 Unique

208H 520 MTRRphysBase4 Unique

209H 521 MTRRphysMask4 Unique

20AH 522 MTRRphysBase5 Unique

20BH 523 MTRRphysMask5 Unique

20CH 524 MTRRphysBase6 Unique

20DH 525 MTRRphysMask6 Unique

20EH 526 MTRRphysBase7 Unique

20FH 527 MTRRphysMask7 Unique

250H 592 MTRRfix64K_00000 Unique

258H 600 MTRRfix16K_80000 Unique

259H 601 MTRRfix16K_A0000 Unique

268H 616 MTRRfix4K_C0000 Unique

269H 617 MTRRfix4K_C8000 Unique

26AH 618 MTRRfix4K_D0000 Unique

26BH 619 MTRRfix4K_D8000 Unique

26CH 620 MTRRfix4K_E0000 Unique

26DH 621 MTRRfix4K_E8000 Unique

26EH 622 MTRRfix4K_F0000 Unique

26FH 623 MTRRfix4K_F8000 Unique

2FFH 767 IA32_MTRR_DEF_TYPE Unique Default Memory Types (R/W)

See Table 35-2. 

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE MSR.”

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC0_STATUS 
register is clear. When not implemented in the processor, all reads 
and writes to this MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”
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406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC1_STATUS 
register is clear. When not implemented in the processor, all reads 
and writes to this MSR will cause a general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC2_STATUS 
register is clear. When not implemented in the processor, all reads 
and writes to this MSR will cause a general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC4_STATUS 
register is clear. When not implemented in the processor, all reads 
and writes to this MSR will cause a general-protection exception.

410H 1040 IA32_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC3_STATUS 
register is clear. When not implemented in the processor, all reads 
and writes to this MSR will cause a general-protection exception.

413H 1043 MSR_MC3_MISC Unique

414H 1044 MSR_MC5_CTL Unique

415H 1045 MSR_MC5_STATUS Unique

416H 1046 MSR_MC5_ADDR Unique

417H 1047 MSR_MC5_MISC Unique

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information”

(If CPUID.01H:ECX.[bit 9])

481H 1153 IA32_VMX_PINBASED_
CTLS

Unique Capability Reporting Register of Pin-based VM-execution 
Controls (R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])
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482H 1154 IA32_VMX_PROCBASED_
CTLS

Unique Capability Reporting Register of Primary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-exit Controls (R/O)

See Appendix A.4, “VM-Exit Controls”

(If CPUID.01H:ECX.[bit 9])

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls”

(If CPUID.01H:ECX.[bit 9])

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data”

(If CPUID.01H:ECX.[bit 9])

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration”

(If CPUID.01H:ECX.[bit 9])

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Unique Capability Reporting Register of Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9] and 
IA32_VMX_PROCBASED_CTLS[bit 63])

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W) 

See Table 35-2.

See Section 18.12.4, “Debug Store (DS) Mechanism.”

31:0 DS Buffer Management Area

Linear address of the first byte of the DS buffer management area.
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35.20 MSRS IN THE PENTIUM M PROCESSOR
Model-specific registers (MSRs) for the Pentium M processor are similar to those described in Section 35.21 for P6 
family processors. The following table describes new MSRs and MSRs whose behavior has changed on the 
Pentium M processor. 

63:32 Reserved.

C000_
0080H

IA32_EFER Unique See Table 35-2.

10:0 Reserved.

11 Execute Disable Bit Enable

63:12 Reserved.
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0H 0 P5_MC_ADDR See Section 35.22, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Section 35.22, “MSRs in Pentium Processors.”

10H 16 IA32_TIME_STAMP_COUNTER See Section 17.15, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Platform ID (R)

See Table 35-2.

The operating system can use this MSR to determine “slot” information 
for the processor and the proper microcode update to load.

2AH 42 MSR_EBL_CR_POWERON Processor Hard Power-On Configuration

(R/W) Enables and disables processor features.

(R) Indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.

2 Response Error Checking Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.

3 MCERR# Drive Enable (R) 

0 = Disabled
Always 0 on the Pentium M processor.
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4 Address Parity Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.

6:5 Reserved.

7 BINIT# Driver Enable (R)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled 

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled 

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

11 Reserved.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled 
Always 0 on the Pentium M processor.

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes
Always 0 on the Pentium M processor.

15 Reserved.

17:16 APIC Cluster ID (R/O)

Always 00B on the Pentium M processor.

18 System Bus Frequency (R/O)

0 = 100 MHz
1 = Reserved
Always 0 on the Pentium M processor.

19 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

Always 00B on the Pentium M processor.

26:22 Clock Frequency Ratio (R/O)

Table 35-45    MSRs in Pentium M Processors (Contd.)
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40H 64 MSR_LASTBRANCH_0 Last Branch Record 0 (R/W)

One of 8 last branch record registers on the last branch record stack: bits 
31-0 hold the ‘from’ address and bits 63-32 hold the to address. 

See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.13, “Last Branch, Interrupt, and Exception Recording 

(Pentium M Processors)”

41H 65 MSR_LASTBRANCH_1 Last Branch Record 1 (R/W)

See description of MSR_LASTBRANCH_0.

42H 66 MSR_LASTBRANCH_2 Last Branch Record 2 (R/W)

See description of MSR_LASTBRANCH_0. 

43H 67 MSR_LASTBRANCH_3 Last Branch Record 3 (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_LASTBRANCH_4 Last Branch Record 4 (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_LASTBRANCH_5 Last Branch Record 5 (R/W)

See description of MSR_LASTBRANCH_0. 

46H 70 MSR_LASTBRANCH_6 Last Branch Record 6 (R/W)

See description of MSR_LASTBRANCH_0. 

47H 71 MSR_LASTBRANCH_7 Last Branch Record 7 (R/W)

See description of MSR_LASTBRANCH_0. 

119H 281 MSR_BBL_CR_CTL

63:0 Reserved.

11EH 281 MSR_BBL_CR_CTL3

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

4:1 Reserved.

5 ECC Check Enable (RO)

This bit enables ECC checking on the cache data bus. ECC is always 
generated on write cycles. 

0 = Disabled (default)
1 = Enabled
For the Pentium M processor, ECC checking on the cache data bus is 
always enabled.

7:6 Reserved.
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8 L2 Enabled (R/W) 

1 = L2 cache has been initialized 
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD 
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO) 

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

179H 377 IA32_MCG_CAP

7:0 Count (RO)

Indicates the number of hardware unit error reporting banks available in 
the processor.

8 IA32_MCG_CTL Present (RO)

1 = Indicates that the processor implements the MSR_MCG_CTL 
register found at MSR 17BH.

0 = Not supported.

63:9 Reserved.

17AH 378 IA32_MCG_STATUS

0 RIPV

When set, this bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check was 
generated) can be used to restart the program. If this bit is cleared, the 
program cannot be reliably restarted.

1 EIPV

When set, this bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check was 
generated) is directly associated with the error.

2 MCIP

When set, this bit indicates that a machine check has been generated. If a 
second machine check is detected while this bit is still set, the processor 
enters a shutdown state. Software should write this bit to 0 after 
processing a machine check exception.

63:3 Reserved.

198H 408 IA32_PERF_STATUS See Table 35-2.

199H 409 IA32_PERF_CTL See Table 35-2.

Table 35-45    MSRs in Pentium M Processors (Contd.)

Register 
Address

Register Name Bit Description

 Hex Dec



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 597

19AH 410 IA32_CLOCK_MODULATION Clock Modulation (R/W). 

See Table 35-2. 

See Section 14.7.3, “Software Controlled Clock Modulation.”

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

See Table 35-2. 

See Section 14.7.2, “Thermal Monitor.”

19CH 412 IA32_THERM_STATUS Thermal Monitor Status (R/W)

See Table 35-2.

See Section 14.7.2, “Thermal Monitor.”

19DH 413 MSR_THERM2_CTL

15:0 Reserved.

16 TM_SELECT (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of the 
stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)
If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT has no 
effect. Neither TM1 nor TM2 will be enabled.

63:16 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Miscellaneous Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

2:0 Reserved.

3 Automatic Thermal Control Circuit Enable (R/W) 

1 = Setting this bit enables the thermal control circuit (TCC) portion of 
the Intel Thermal Monitor feature. This allows processor clocks to 
be automatically modulated based on the processor's thermal 
sensor operation. 

0 = Disabled (default). 
The automatic thermal control circuit enable bit determines if the 
thermal control circuit (TCC) will be activated when the processor's 
internal thermal sensor determines the processor is about to exceed its 
maximum operating temperature.

When the TCC is activated and TM1 is enabled, the processors clocks will 
be forced to a 50% duty cycle. BIOS must enable this feature.

The bit should not be confused with the on-demand thermal control 
circuit enable bit.

6:4 Reserved.

7 Performance Monitoring Available (R) 

1 = Performance monitoring enabled
0 = Performance monitoring disabled
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9:8 Reserved.

10 FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break 
event within the processor 

0 =  Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch trace storage (BTS)
0 = BTS is supported

12 Processor Event Based Sampling Unavailable (RO) 

1 = Processor does not support processor event based sampling 
(PEBS); 

0 = PEBS is supported. 
The Pentium M processor does not support PEBS.

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable (R/W) 

1 = Enhanced Intel SpeedStep Technology enabled.
On the Pentium M processor, this bit may be configured to be read-only.

22:17 Reserved.

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are disabled. xTPR messages are optional 
messages that allow the processor to inform the chipset of its priority. 
The default is processor specific.

63:24 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the most 
recent branch record. See also:

• MSR_LASTBRANCH_0_FROM_IP (at 40H)
• Section 17.13, “Last Branch, Interrupt, and Exception Recording 

(Pentium M Processors)”

1D9H 473 MSR_DEBUGCTLB Debug Control (R/W) 

Controls how several debug features are used. Bit definitions are 
discussed in the referenced section.

See Section 17.13, “Last Branch, Interrupt, and Exception Recording 
(Pentium M Processors).”
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1DDH 477 MSR_LER_TO_LIP Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch instruction 
that the processor executed prior to the last exception that was 
generated or the last interrupt that was handled.

See Section 17.13, “Last Branch, Interrupt, and Exception Recording 
(Pentium M Processors)” and Section 17.14.2, “Last Branch and Last 
Exception MSRs.”

1DEH 478 MSR_LER_FROM_LIP Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

See Section 17.13, “Last Branch, Interrupt, and Exception Recording 
(Pentium M Processors)” and Section 17.14.2, “Last Branch and Last 
Exception MSRs.”

2FFH 767 IA32_MTRR_DEF_TYPE Default Memory Types (R/W) 

Sets the memory type for the regions of physical memory that are not 
mapped by the MTRRs. 

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE MSR.”

400H 1024 IA32_MC0_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR See Section 14.3.2.3., “IA32_MCi_ADDR MSRs”. 

The IA32_MC0_ADDR register is either not implemented or contains no 
address if the ADDRV flag in the IA32_MC0_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR 
will cause a general-protection exception.

404H 1028 IA32_MC1_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or contains no 
address if the ADDRV flag in the IA32_MC1_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR 
will cause a general-protection exception.

408H 1032 IA32_MC2_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS See Chapter 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or contains no 
address if the ADDRV flag in the IA32_MC2_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR 
will cause a general-protection exception.

40CH 1036 MSR_MC4_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 35-45    MSRs in Pentium M Processors (Contd.)

Register 
Address

Register Name Bit Description

 Hex Dec
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...

35.23 MSR INDEX
MSRs of recent processors are indexed here for convenience. IA32 MSRs are excluded from this index.

40EH 1038 MSR_MC4_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or contains no 
address if the ADDRV flag in the MSR_MC4_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR 
will cause a general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC3_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The MSR_MC3_ADDR register is either not implemented or contains no 
address if the ADDRV flag in the MSR_MC3_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR 
will cause a general-protection exception.

600H 1536 IA32_DS_AREA DS Save Area (R/W)

See Table 35-2.

Points to the DS buffer management area, which is used to manage the 
BTS and PEBS buffers. See Section 18.12.4, “Debug Store (DS) 
Mechanism.”

31:0 DS Buffer Management Area

Linear address of the first byte of the DS buffer management area.

63:32 Reserved.

Table 35-45    MSRs in Pentium M Processors (Contd.)

Register 
Address

Register Name Bit Description

 Hex Dec

MSR Name and CPUID DisplayFamily_DisplayModel Location

MSR_ALF_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_ALF_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_ANY_CORE_C0

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_ANY_GFXE_C0

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_B0_PMON_BOX_CTRL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15
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MSR_B0_PMON_BOX_OVF_CTRL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B0_PMON_BOX_STATUS

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B0_PMON_CTR0

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B0_PMON_CTR1

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B0_PMON_CTR2 

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B0_PMON_CTR3

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B0_PMON_EVNT_SEL0

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B0_PMON_EVNT_SEL1

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B0_PMON_EVNT_SEL2

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B0_PMON_EVNT_SEL3

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B0_PMON_MASK

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B0_PMON_MATCH

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B1_PMON_BOX_CTRL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B1_PMON_BOX_OVF_CTRL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B1_PMON_BOX_STATUS

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B1_PMON_CTR0

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B1_PMON_CTR1

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B1_PMON_CTR2

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B1_PMON_CTR3

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B1_PMON_EVNT_SEL0

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B1_PMON_EVNT_SEL1

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B1_PMON_EVNT_SEL2

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B1_PMON_EVNT_SEL3

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B1_PMON_MASK

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_B1_PMON_MATCH

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_BBL_CR_CTL

06_09H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-45

MSR_BBL_CR_CTL3

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-7

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

06_09H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-45

MSR_BPU_CCCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_BPU_CCCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_BPU_CCCR2

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_BPU_CCCR3

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_BPU_COUNTER0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_BPU_COUNTER1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_BPU_COUNTER2

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_BPU_COUNTER3

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_BPU_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_BPU_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR Name and CPUID DisplayFamily_DisplayModel Location
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MSR_BSU_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_BSU_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_C0_PMON_BOX_CTRL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-22

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_C0_PMON_BOX_FILTER

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-22

MSR_C0_PMON_BOX_FILTER0

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_C0_PMON_BOX_FILTER1

06_3EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-26

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_C0_PMON_BOX_OVF_CTRL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_C0_PMON_BOX_STATUS

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_C0_PMON_CTR0

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-22

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_C0_PMON_CTR1

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15
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MSR_C9_PMON_EVNT_SEL1

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-17
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06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-17

MSR_C9_PMON_EVNT_SEL5

06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-17

MSR_CC6_DEMOTION_POLICY_CONFIG

06_37H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-9

MSR_CONFIG_TDP_CONTROL

06_3AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-23

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-27

06_57H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_CONFIG_TDP_LEVEL1

06_3AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-23

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-27

06_57H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_CONFIG_TDP_LEVEL2

06_3AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-23

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-27

06_57H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_CONFIG_TDP_NOMINAL

06_3AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-23

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-27

06_57H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_CORE_C1_RESIDENCY

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-6

MSR_CORE_C3_RESIDENCY

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13
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06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

MSR_CORE_C6_RESIDENCY

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-6

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

06_57H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_CORE_C7_RESIDENCY

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

MSR_CORE_GFXE_OVERLAP_C0

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_CORE_HDC_RESIDENCY

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_CORE_PERF_LIMIT_REASONS

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_3F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-30

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-34

06_57H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_CRU_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_CRU_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_CRU_ESCR2

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_CRU_ESCR3

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_CRU_ESCR4

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_CRU_ESCR5

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41
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0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41
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0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_DRAM_ENERGY_ STATUS

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-21

06_3EH, 06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-24

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-27
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06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-34

06_57H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_DRAM_PERF_STATUS

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-21

06_3EH, 06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-24

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-27

06_3F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-30

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-34

06_57H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_DRAM_POWER_INFO

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-21

06_3EH, 06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-24

06_3F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-30

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-34

06_57H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40
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06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-21

06_3EH, 06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-24
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0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41
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0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41
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0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_EBL_CR_POWERON

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-6

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

06_09H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-45
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MSR_EFSB_DRDY1
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06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

0F_06H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-43

MSR_EMON_L3_CTR_CTL1
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0F_06H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-43
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06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3
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MSR_FEATURE_CONFIG

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-6
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0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_FLAME_COUNTER1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_FLAME_COUNTER2

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_FLAME_COUNTER3

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_FLAME_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_FLAME_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_FSB_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_FSB_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_FSB_FREQ

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-7

06_4CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-11

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

MSR_GQ_SNOOP_MESF

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

MSR_GRAPHICS_PERF_LIMIT_REASONS

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

MSR_IFSB_BUSQ0

0F_03H, 0F_04H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-42

MSR Name and CPUID DisplayFamily_DisplayModel Location
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MSR_IFSB_BUSQ1

0F_03H, 0F_04H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-42

MSR_IFSB_CNTR7

0F_03H, 0F_04H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-42

MSR_IFSB_CTL6

0F_03H, 0F_04H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-42

MSR_IFSB_SNPQ0

0F_03H, 0F_04H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-42

MSR_IFSB_SNPQ1

0F_03H, 0F_04H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-42

MSR_IQ_CCCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_IQ_CCCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_IQ_CCCR2

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_IQ_CCCR3

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_IQ_CCCR4

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_IQ_CCCR5

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_IQ_COUNTER0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_IQ_COUNTER1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_IQ_COUNTER2

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_IQ_COUNTER3

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_IQ_COUNTER4

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_IQ_COUNTER5

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_IQ_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_IQ_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_IS_ESCR0
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0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_IS_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_ITLB_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_ITLB_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_IX_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_IX_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_LASTBRANCH_0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

06_09H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-45

MSR_LASTBRANCH_0_FROM_IP

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-7

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_LASTBRANCH_0_TO_IP

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-7

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_LASTBRANCH_1_FROM_IP

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-7

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR Name and CPUID DisplayFamily_DisplayModel Location



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 627

MSR_LASTBRANCH_1_TO_IP

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-7

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_LASTBRANCH_10_FROM_IP

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18
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MSR_LBR_INFO_27

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_LBR_INFO_28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_LBR_INFO_29

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_LBR_INFO_3

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_LBR_INFO_30

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37
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MSR_LBR_INFO_31

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_LBR_INFO_4

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_LBR_INFO_5

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_LBR_INFO_6

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_LBR_INFO_7

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_LBR_INFO_8

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_LBR_INFO_9

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_LBR_SELECT

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-7

06_5CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-27

06_57H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_LER_FROM_LIP 

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

06_0EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

06_09H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-45

MSR_LER_TO_LIP

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_0EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

06_09H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-45

MSR_M0_PMON_ADDR_MASK

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_ADDR_MATCH

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_BOX_CTRL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_BOX_OVF_CTRL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_BOX_STATUS

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_CTR0

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_CTR1

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_CTR2

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_CTR3

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_CTR4

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_CTR5

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_DSP

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_EVNT_SEL0

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_EVNT_SEL1

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_EVNT_SEL2

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_EVNT_SEL3

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_EVNT_SEL4

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_EVNT_SEL5

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_ISS

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_MAP

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_MM_CONFIG

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_MSC_THR

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_PGT

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_PLD

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_TIMESTAMP

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M0_PMON_ZDP

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M1_PMON_ADDR_MASK

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M1_PMON_ADDR_MATCH

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M1_PMON_BOX_CTRL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M1_PMON_BOX_OVF_CTRL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M1_PMON_BOX_STATUS

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M1_PMON_CTR0

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M1_PMON_CTR1

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M1_PMON_CTR2

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M1_PMON_CTR3

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M1_PMON_CTR4

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M1_PMON_CTR5

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_M1_PMON_DSP

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_3F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-30

06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-36

IA32_MC9_ADDR / MSR_MC9_ADDR

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-21
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06_56H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-35

06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-36

IA32_MC9_CTL / MSR_MC9_CTL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15
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06_56H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-35

06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-36

IA32_MC9_MISC / MSR_MC9_MISC

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-21
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IA32_MC9_STATUS / MSR_MC9_STATUS

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15
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06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-36

MSR_MCG_MISC

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MCG_R10

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MCG_R11
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0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MCG_R12

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MCG_R13

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MCG_R14

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MCG_R15

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MCG_R8

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MCG_R9

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MCG_RAX

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MCG_RBP

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MCG_RBX

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MCG_RCX

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MCG_RDI

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MCG_RDX

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MCG_RESERVED1 - MSR_MCG_RESERVED5

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MCG_RFLAGS

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MCG_RIP

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MCG_RSI

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MCG_RSP

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MISC_FEATURE_CONTROL

06_5CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18
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MSR_MISC_PWR_MGMT

06_5CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

MSR_MOB_ESCR0

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MOB_ESCR1

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MS_CCCR0

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MS_CCCR1

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MS_CCCR2

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MS_CCCR3

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MS_COUNTER0

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MS_COUNTER1

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MS_COUNTER2

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MS_COUNTER3

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MS_ESCR0

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MS_ESCR1

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_MTRRCAP

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_OFFCORE_RSP_0

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_OFFCORE_RSP_1

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-6

06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-16

06_2FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-17
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06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_PCU_PMON_BOX_CTL

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-22

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_PCU_PMON_BOX_FILTER

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-22

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_PCU_PMON_BOX_STATUS

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-26

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_PCU_PMON_CTR0

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-22

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_PCU_PMON_CTR1

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-22

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_PCU_PMON_CTR2

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-22

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_PCU_PMON_CTR3

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-22

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_PCU_PMON_EVNTSEL0

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-22

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_PCU_PMON_EVNTSEL1

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-22

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_PCU_PMON_EVNTSEL2

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-22

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_PCU_PMON_EVNTSEL3

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-22

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_PEBS_ENABLE

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-7

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-25

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_PEBS_FRONTEND

06_4EH, 06_5EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_PEBS_LD_LAT

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

MSR_PEBS_MATRIX_VERT

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_PEBS_NUM_ALT

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-21

MSR_PERF_CAPABILITIES

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

MSR_PERF_FIXED_CTR_CTRL

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

MSR_PERF_FIXED_CTR0

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

MSR_PERF_FIXED_CTR1

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

MSR_PERF_FIXED_CTR2

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

MSR_PERF_GLOBAL_CTRL

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

MSR_PERF_GLOBAL_OVF_CTRL

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

MSR_PERF_GLOBAL_STATUS

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

MSR_PERF_STATUS

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-4

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

MSR_PKG_C10_RESIDENCY

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

MSR Name and CPUID DisplayFamily_DisplayModel Location



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 659

06_45H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28 and 
Table 35-29

06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-36

MSR_PKG_C2_RESIDENCY

06_27H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-5

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table Table 35-
40

MSR_PKG_C3_RESIDENCY

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_PKG_C4_RESIDENCY

06_27H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-5

MSR_PKG_C6_RESIDENCY

06_27H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-5

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-7

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_PKG_C7_RESIDENCY

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH, 06_2FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_PKG_C8_RESIDENCY

06_45H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-29

06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-36

MSR_PKG_C9_RESIDENCY

06_45H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-29

06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-36

MSR_PKG_CST_CONFIG_CONTROL

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-7

06_4CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-11

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_3AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-23

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-24

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_45H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-29

06_3F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-30

06_3DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-33

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-34

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_PKG_ENERGY_STATUS

06_37H, 06_4AH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-8

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

MSR_PKG_HDC_CONFIG

06_4EH, 06_5EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_PKG_HDC_DEEP_RESIDENCY

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_PKG_HDC_SHALLOW_RESIDENCY

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_PKG_PERF_STATUS

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-21

06_3EH, 06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-24

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_PKG_POWER_INFO

06_4DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-10

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_PKG_POWER_LIMIT

06_37H, 06_4AH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-8

06_4DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-10

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_PKGC_IRTL1

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_3CH, 06_45H, 06_46H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-27

MSR_PKGC_IRTL2

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_3CH, 06_45H, 06_46H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-27

MSR_PKGC3_IRTL

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

MSR_PKGC6_IRTL

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

MSR_PKGC7_IRTL

06_2AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-19

MSR_PLATFORM_BRV

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_PLATFORM_ENERGY_COUNTER

06_4EH, 06_5EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_PLATFORM_ID

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-4

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-7

06_5CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

MSR_PLATFORM_INFO

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

06_3AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-23

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-24

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-27 and 
Table 35-28

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-34

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_PLATFORM_POWER_LIMIT

06_4EH, 06_5EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_PMG_IO_CAPTURE_BASE

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-6

06_4CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-11

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

06_3AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-23

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-24

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR Name and CPUID DisplayFamily_DisplayModel Location
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MSR_PMH_ESCR0

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_PMH_ESCR1

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_PMON_GLOBAL_CONFIG

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-26

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_PMON_GLOBAL_CTL

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-26

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_PMON_GLOBAL_STATUS

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-26

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_POWER_CTL

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

MSR_PP0_ENERGY_STATUS

06_37H, 06_4AH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-8

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_PP0_POLICY

06_2AH, 06_45H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-19

MSR_PP0_POWER_LIMIT

06_4CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-11

06_2AH, 06_2DH, 06_3AH, 06_3CH, 06_3EH, 06_3FH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_PP1_ENERGY_STATUS

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_2AH, 06_45H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-19

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

MSR_PP1_POLICY

06_2AH, 06_45H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-19

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

MSR_PP1_POWER_LIMIT

06_2AH, 06_45H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-19

06_3CH, 06_45H, 06_46H See Table 35-28

MSR_PPERF

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_PPIN

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-24

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-34

MSR_PPIN_CTL

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-24

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-34

MSR_R0_PMON_BOX_CTRL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_BOX_OVF_CTRL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_BOX_STATUS

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_CTR0

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_CTR1

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_CTR2

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_CTR3

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_CTR4

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_CTR5

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_CTR6

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_CTR7

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_EVNT_SEL0

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_EVNT_SEL1

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_EVNT_SEL2

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_EVNT_SEL3

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_EVNT_SEL4

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR Name and CPUID DisplayFamily_DisplayModel Location
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MSR_R0_PMON_EVNT_SEL5

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_EVNT_SEL6

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_EVNT_SEL7

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_IPERF0_P0

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_IPERF0_P1

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_IPERF0_P2

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_IPERF0_P3

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_IPERF0_P4

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_IPERF0_P5

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_IPERF0_P6

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_IPERF0_P7

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_QLX_P0

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_QLX_P1

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_QLX_P2

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R0_PMON_QLX_P3

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_BOX_CTRL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_BOX_OVF_CTRL

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_BOX_STATUS

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_CTR10

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_CTR11

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_CTR12

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_CTR13

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_CTR14

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_CTR15

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_CTR8

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_CTR9

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_EVNT_SEL10

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_EVNT_SEL11

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_EVNT_SEL12

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_EVNT_SEL13

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_EVNT_SEL14

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_EVNT_SEL15

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_EVNT_SEL8

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_EVNT_SEL9

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_IPERF1_P10

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_IPERF1_P11

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_IPERF1_P12

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_IPERF1_P13

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_IPERF1_P14

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15
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MSR_R1_PMON_IPERF1_P15

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_IPERF1_P8

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_IPERF1_P9

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_QLX_P4

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_QLX_P5

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_R1_PMON_QLX_P6
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06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_S3_PMON_CTR3

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_S3_PMON_EVNTSEL0

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_S3_PMON_EVNTSEL1

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_S3_PMON_EVNTSEL2

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_S3_PMON_EVNTSEL3

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_SAAT_ESCR0

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_SAAT_ESCR1

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_SGXOWNER0

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_SGXOWNER1

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_SMI_COUNT

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

MSR Name and CPUID DisplayFamily_DisplayModel Location



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 670

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_SMM_BLOCKED

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

MSR_SMM_DELAYED

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

MSR_SMM_FEATURE_CONTROL

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

MSR_SMM_MCA_CAP

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_3F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-30

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-34

MSR_SMRR_PHYSBASE

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

MSR_SMRR_PHYSMASK

06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

MSR_SSU_ESCR0

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_TBPU_ESCR0

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_TBPU_ESCR1

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_TC_ESCR0

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_TC_ESCR1

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_TC_PRECISE_EVENT

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_TEMPERATURE_TARGET

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-6

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_2AH, 06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-18

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-24

06_56H, 06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-34

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_THERM2_CTL

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_0FH, 06_17H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-3

06_1CH, 06_26H, 06_27H, 06_35H, 06_36H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-4

0FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

06_0EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

06_09H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-45

MSR_TURBO_ACTIVATION_RATIO

06_5CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_3AH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-23

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-27

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_TURBO_GROUP_CORECNT

06_5CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

MSR_TURBO_POWER_CURRENT_LIMIT

06_1AH, 06_1EH, 06_1FH, 06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

MSR_TURBO_RATIO_LIMIT

06_37H, 06_4AH, 06_4DH, 06_5AH, 06_5DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-6

06_4DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-10

06_5CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-12

06_1AH, 06_1EH, 06_1FH, 06_2EH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-13

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-16

06_2FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-17

06_2AH, 06_45H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-19

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-21

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-24 and 
Table 35-25

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-30

06_3DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-33

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-34

06_57H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-40

MSR_TURBO_RATIO_LIMIT1

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-24 and 
Table 35-25

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-30

06_56H, 06_4FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-34

MSR_TURBO_RATIO_LIMIT2

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-30

MSR Name and CPUID DisplayFamily_DisplayModel Location
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MSR_TURBO_RATIO_LIMIT3

06_56H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-35

06_4FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-36

MSR_U_PMON_BOX_STATUS

06_3EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-26

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_U_PMON_CTR

06_2EH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_U_PMON_CTR0

06_2DH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-22

06_3FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_U_PMON_CTR1

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-22

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_U_PMON_EVNT_SEL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_U_PMON_EVNTSEL0

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-22

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_U_PMON_EVNTSEL1

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-22

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_U_PMON_GLOBAL_CTRL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_U_PMON_GLOBAL_OVF_CTRL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_U_PMON_GLOBAL_STATUS

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_U_PMON_UCLK_FIXED_CTL

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-22

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_U_PMON_UCLK_FIXED_CTR

06_2DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-22

06_3FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-31

MSR_U2L_ESCR0

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_U2L_ESCR1

0FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-41

MSR_UNC_ARB_PERFCTR0

MSR Name and CPUID DisplayFamily_DisplayModel Location
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06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_ARB_PERFCTR1

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_ARB_PERFEVTSEL0

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_ARB_PERFEVTSEL1

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_CBO_0_PERFCTR0

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_CBO_0_PERFCTR1

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_CBO_0_PERFCTR2

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_0_PERFCTR3

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_0_PERFEVTSEL0

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_CBO_0_PERFEVTSEL1

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_CBO_0_PERFEVTSEL2

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_0_PERFEVTSEL3

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR Name and CPUID DisplayFamily_DisplayModel Location



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 674

MSR_UNC_CBO_0_UNIT_STATUS

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_1_PERFCTR0

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_CBO_1_PERFCTR1

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_CBO_1_PERFCTR2

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_1_PERFCTR3

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_1_PERFEVTSEL0

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_CBO_1_PERFEVTSEL1

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_CBO_1_PERFEVTSEL2

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_1_PERFEVTSEL3

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_1_UNIT_STATUS

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_2_PERFCTR0

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_CBO_2_PERFCTR1

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_CBO_2_PERFCTR2

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_2_PERFCTR3
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06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_2_PERFEVTSEL0

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_CBO_2_PERFEVTSEL1

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_CBO_2_PERFEVTSEL2

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_2_PERFEVTSEL3

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_2_UNIT_STATUS

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_3_PERFCTR0

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_CBO_3_PERFCTR1

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_CBO_3_PERFCTR2

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_3_PERFCTR3

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_3_PERFEVTSEL0

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_CBO_3_PERFEVTSEL1

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_CBO_3_PERFEVTSEL2

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_3_PERFEVTSEL3

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20
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MSR_UNC_CBO_3_UNIT_STATUS

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_4_PERFCTR0

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_4_PERFCTR1

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_4_PERFCTR2

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_4_PERFCTR3

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_4_PERFEVTSEL0

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_4_PERFEVTSEL1

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_4_PERFEVTSEL2

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_4_PERFEVTSEL3

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_4_UNIT_STATUS

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

MSR_UNC_CBO_CONFIG

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_PERF_FIXED_CTR

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_PERF_FIXED_CTRL

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_PERF_GLOBAL_CTRL

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNC_PERF_GLOBAL_STATUS

06_2AH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-20

06_3CH, 06_45H, 06_46H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-28
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06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-38

MSR_UNCORE_ADDR_OPCODE_MATCH

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

MSR_UNCORE_FIXED_CTR_CTRL

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

MSR_UNCORE_FIXED_CTR0

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

MSR_UNCORE_PERF_GLOBAL_CTRL

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

MSR_UNCORE_PERF_GLOBAL_OVF_CTRL

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

MSR_UNCORE_PERF_GLOBAL_STATUS

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

MSR_UNCORE_PERFEVTSEL0

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

MSR_UNCORE_PERFEVTSEL1

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

MSR_UNCORE_PERFEVTSEL2

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

MSR_UNCORE_PERFEVTSEL3

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

MSR_UNCORE_PERFEVTSEL4

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

MSR_UNCORE_PERFEVTSEL5

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

MSR_UNCORE_PERFEVTSEL6

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

MSR_UNCORE_PERFEVTSEL7

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

MSR_UNCORE_PMC0

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

MSR_UNCORE_PMC1

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

MSR_UNCORE_PMC2

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

MSR_UNCORE_PMC3

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

MSR_UNCORE_PMC4

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14
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MSR_UNCORE_PMC5

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_UNCORE_PMC6

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

MSR_UNCORE_PMC7

06_1AH, 06_1EH, 06_1FH, 06_25H, 06_2CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-14

MSR_UNCORE_PRMRR_BASE

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_UNCORE_PRMRR_MASK

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR_W_PMON_BOX_CTRL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_W_PMON_BOX_OVF_CTRL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_W_PMON_BOX_STATUS

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_W_PMON_CTR0

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_W_PMON_CTR1

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_W_PMON_CTR2

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_W_PMON_CTR3

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_W_PMON_EVNT_SEL0

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_W_PMON_EVNT_SEL1

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_W_PMON_EVNT_SEL2

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_W_PMON_EVNT_SEL3

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_W_PMON_FIXED_CTR

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_W_PMON_FIXED_CTR_CTL

06_2EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-15

MSR_WEIGHTED_CORE_C0

06_4EH, 06_5EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-37

MSR Name and CPUID DisplayFamily_DisplayModel Location
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MTRRfix16K_80000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRfix16K_A0000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRfix4K_C0000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRfix4K_C8000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRfix4K_D0000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRfix4K_D8000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRfix4K_E0000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRfix4K_E8000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRfix4K_F0000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRfix4K_F8000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRfix64K_00000

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRphysBase0

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRphysBase1

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MSR Name and CPUID DisplayFamily_DisplayModel Location
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MTRRphysBase2

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRphysBase3

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRphysBase4

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRphysBase5

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRphysBase6

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRphysBase7

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRphysMask0

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRphysMask1

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRphysMask2

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRphysMask3

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRphysMask4

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRphysMask5

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

MTRRphysMask6

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46
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...

28. Updates to Chapter 36, Volume 3C
Change bars show changes to Chapter 36 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C: System Programming Guide, Part 3.

------------------------------------------------------------------------------------------

...

36.2.6.2  Virtual-Machine Extensions (VMX)
Initial implementations of Intel Processor Trace do not support tracing in VMX operation. Such processors indicate 
this by returning 0 for IA32_VMX_MISC[bit 14]. On these processors, execution of the VMXON instruction clears 
IA32_RTIT_CTL.TraceEn and any attempt to set that bit in VMX operation using WRMSR causes a general-protec-
tion exception (#GP).
Processors that support Intel Processor Trace in VMX operation return 1 for IA32_VMX_MISC[bit 14]. Details of 
tracing in VMX operation are described in Section 36.5.

...

36.3.7 Decoder Synchronization (PSB+)
The PSB packet (Section 36.4.2.17) serves as a synchronization point for a trace-packet decoder. It is a pattern 
in the trace log for which the decoder can quickly scan to align packet boundaries. No legal packet combination 
can result in such a byte sequence. As such, it serves as the starting point for packet decode. To decode a trace 
log properly, the decoder needs more than simply to be aligned: it needs to know some state and potentially some 
timing information as well. The decoder should never need to retain any information (e.g., LastIP, call stack, 
compound packet event) across a PSB; all compound packet events will be completed before a PSB, and any 
compression state will be reset.
When a PSB packet is generated, it is followed by a PSBEND packet (Section 36.4.2.18). One or more packets 
may be generated in between those two packets, and these inform the decoder of the current state of the 
processor. These packets, known collectively as PSB+, should be interpreted as “status only”, since they do not 
imply any change of state at the time of the PSB, nor are they associated directly with any instruction or event. 
Thus, the normal binding and ordering rules that apply to these packets outside of PSB+ can be ignored when 
these packets are between a PSB and PSBEND. They inform the decoder of the state of the processor at the time 
of the PSB.

MTRRphysMask7

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46

ROB_CR_BKUPTMPDR6

06_0EH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-44

P6 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Table 35-46
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PSB+ can include:
• Timestamp (TSC), if IA32_RTIT_CTL.TSCEn=1. 
• Timestamp-MTC Align (TMA), if IA32_RTIT_CTL.TSCEn=1 && IA32_RTIT_CTL.MTCEn=1.
• Paging Info Packet (PIP), if ContextEn=1 and IA32_RTIT_CTL.OS=1. The non-root bit (NR) is set if the logical 

processor is in VMX non-root operation and the “conceal VMX non-root operation from Intel PT”. VM-execution 
control is 0.

• VMCS packet, if either the logical is in VMX root operation or the logical processor is in VMX non-root operation 
and the “conceal VMX non-root operation from Intel PT” VM-execution control is 0.

• Core Bus Ratio (CBR).
• MODE.TSX, if ContextEn=1 and BranchEn = 1. 
• MODE.Exec, if PacketEn=1. 
• Flow Update Packet (FUP), if PacketEn=1.
PSB is generated only when TriggerEn=1; hence PSB+ has the same dependencies. The ordering of packets 
within PSB+ is not fixed. Timing packets such as CYC and MTC may be generated between PSB and PSBEND, and 
their meanings are the same as outside PSB+.
Note that an overflow can occur during PSB+, and this could cause the PSBEND packet to be lost. For this reason, 
the OVF packet should also be viewed as terminating PSB+.

...
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36.4.2.7  Paging Information (PIP) Packet

...

Table 36-26   PIP Packet Definition

Name Paging Information (PIP) Packet

Packet Format

Dependencies TriggerEn && ContextEn && 
IA32_RTIT_CTL.OS

Generation 
Scenario

MOV CR3, Task switch, INIT, SIPI, PSB+;
If IA32_VMX_MISC[bit 14] reports 1: VM exit, VM entry

Description The CR3 payload shown includes only the address portion of the CR3 value. For PAE paging, CR3[11:5] are thus 
included. For other page modes (32-bit and IA-32e paging), these bits are 0.
This packet holds the CR3 address value. It will be generated on operations that modify CR3:
• MOV CR3 operation
• Task Switch
• INIT and SIPI
• VM exit and VM entry, if appropriate controls in the VMCS are clear (see Section 36.5.1)
PIPs are not generated, despite changes to CR3, on SMI and RSM. This is due to the special behavior on these oper-
ations, see Section  for details. Note that, for some cases of task switch where CR3 is not modified, no PIP will be 
produced.
The purpose of the PIP is to indicate to the decoder which application is running, so that it can apply the proper 
binaries to the linear addresses that are being traced. 
The PIP packet contains the new CR3 value when CR3 is written.
PIPs generated by VM entries set the NR bit. PIPs generated in VMX non-root operation set the NR bit if the “con-
ceal VMX non-root operation from Intel PT” VM-execution control is 0. All other PIPs clear the NR bit. 

Application The purpose of the PIP packet is to help the decoder uniquely identify what software is running at any given time.
When a PIP is encountered, a decoder should do the following:
1) If there was a prior unbound FUP (that is, a FUP not preceded by a packet such as MODE.TSX that consumes it, 
and it hence pairs with a TIP that has not yet been seen), then this PIP is part of a compound packet event (Section 
36.4.1). Find the ending TIP and apply the new CR3/NR values to the TIP payload IP.
2) Otherwise, look for the next MOV CR3, far branch, or VMRESUME/VMLAUNCH in the disassembly, and apply the 
new CR3 to the next (or target) IP.
For examples of the packets generated by these flows, see Section 36.7.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 1 1

2 CR3[11:5] or 0 RSVD/NR

3 CR3[19:12]

4 CR3[27:20]

5 CR3[35:28]

6 CR3[43:36]

7 CR3[51:44]
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36.4.2.15  VMCS Packet

...

36.5  TRACING IN VMX OPERATION
On processors that IA32_VMX_MISC[bit 14] reports 1, TraceEn can be set in VMX operation. A series of mecha-
nisms exist to allow the VMM to configure tracing based on the desired trace domain, and on the consumer of the 
trace output. The VMM can configure specific VM-execution controls to control what virtualization-specific data 

Table 36-34   VMCS Packet Definition

Name VMCS Packet

Packet Format

Dependencies TriggerEn && ContextEn;
Also in VMX operation.

Generation Scenario Generated on successful VMPTRLD, and optionally on SMM VM 
exits and VM entries that return from SMM (see Section 36.5).

Description The VMCS packet provides an address related to a VMCS pointer for a decoder to determine the transition of code 
contexts:

• On a successful VMPTRLD (i.e, a VMPTRLD that doesn’t fault, fail, or VM exit), the VMCS packet contains the 
address of the current working VMCS pointer of the logical processor that will execute a VM guest context. 

• On SMM VM exits, the VMCS packet provides the STM VMCS base address (SMM Transfer VMCS pointer), if VMCS-
based controls are clear (see Section 36.5.1). See Section 36.6 on tracing inside and outside STM.

• On VM entries that return from SMM, the VMCS packet provides the current working VMCS pointer of the guest 
VM (see Section 36.6), if VMCS-based controls are clear (see Section 36.5.1). Root versus Non-Root operation can 
be distinguished from the PIP.NR bit.

If a VMCS packet is generated before a VMCS has been loaded, or after it has been cleared, the base address value 
will be all 1s.
VMCS packets will not be seen on processors with IA32_VMX_MISC[bit 14]=0, as these processors do not allow 
TraceEn to be set in VMX operation.

Application The purpose of the VMCS packet is to help the decoder uniquely identify changes in the executing software context 
in situations that CR3 may not be unique. 
When a VMCS is encountered, a decoder should do the following:
• If there was a prior unbound FUP (that is, a FUP not preceded by a packet such as MODE.TSX that consumes it, and 

it hence pairs with a TIP that has not yet been seen), then this VMCS is part of a compound packet event (Section 
36.4.1). Find the ending TIP and apply the new VMCS base pointer value to the TIP payload IP. 

• Otherwise, look for the next VMPTRLD, VMRESUME, or VMLAUNCH in the disassembly, and apply the new VMCS 
base pointer on the next VM entry.

For examples of the packets generated by these flows, see Section 36.7.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 0 0 1 0 0 0

2 VMCS Base Address [19:12]

3 VMCS Base Address [27:20]

4 VMCS Base Address [35:28]

5 VMCS Base Address [43:36]

6 VMCS Base Address [51:44]
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are included within the trace packets (see Section 36.5.1 for details). MSR save and load lists can be employed by 
the VMM to restrict tracing to the desired context (see Section 36.5.2 for details). These configuration options are 
summarized in Table 36-40. Table 36-40 covers common Intel PT usages while SMIs are handled by the default 
SMM treatment. Tracing with SMM Transfer Monitor is described in Section 36.6.

36.5.1 VMX-Specific Packets and VMCS Controls
In all of the usages of VMX and Intel PT, the decoder in the host or VMM context can identify the occurrences of 
VMX transitions with the aid of VMX-specific packets. Packets relevant to VMX fall into the follow two kinds:
• VMCS Packet: The VMX transitions of individual VM can be distinguished by a decoder using the base address 

field in a VMCS packet. The base address field stores the VMCS pointer address of a successful VMPTRLD. A 
VMCS packet is sent on a successful execution of VMPTRLD. See Section 36.4.2.15 for details.

• NonRoot (NR) bit field in PIP packet: PIP packets are generated with each VM entry/exit. The NR bit in a PIP 
packet is set when in VMX non-Root operation. Thus a transition of the NR bit from 0 to 1 indicates the 
occurrence of a VM entry, and a transition of 1 to 0 indicates the occurrence of a VM exit.

Processors with IA32_VMX_MISC[bit 14]= 1 also provides VMCS controls that a VMM can configure to prevent 
VMX-specific information from leaking across virtualization boundaries.

Table 36-40   Common Usages of Intel PT and VMX

Target Domain Output 
Consumer

Virtualize 
Output

Configure VMCS 
Controls

TraceEN Configuration Save/Restore MSR states 
of Trace Configuration

System-Wide 
(VMM + VMs)

Host NA Default Setting 
(no suppression)

WRMSR or XRSTORS by Host NA

VMM Only Intel PT Aware 
VMM

NA Enable 
suppression

MSR load list to disable tracing in 
VM, enable tracing on VM exits

NA

VM Only Intel PT Aware 
VMM

NA Enable 
suppression

MSR load list to enable tracing in 
VM, disable tracing on VM exits

NA

Intel PT Aware 
Guest(s)

Per Guest VMM adds 
trace output 
virtualization

Enable 
suppression

MSR load list to enable tracing in 
VM, disable tracing on VM exits

VMM Update guest state 
on XRSTORS-exiting VM 
exits

Table 36-41   VMCS Controls For Intel Processor Trace

Name Type Bit 
Position

Value Behavior

Conceal VMX 
non-root 
operation from 
Intel PT

VM-execution 
control

19 0 PIPs generated in VM non-root operation will set the PIP.NR bit.

PSB+ in VMX non-root operation will include the VMCS packet, to ensure 
that the decoder knows which guest is currently in use.

1 PIPs generated in VMX non-root operation will not set the PIP.NR bit.

PSB+ in VMX non-root operation will not include the VMCS packet.

Conceal VM 
exits from Intel 
PT

VM-exit control 24 0 PIPs are generated on VM exit, with NonRoot=0.

On VM exit to SMM, VMCS packets are additionally generated.

1 No PIP is generated on VM exit, and no VMCS packet is generated on 
VM exit to SMM.
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The default setting for the VMCS controls that interacts with Intel PT is to enable all VMX-specific packet informa-
tion. The scenarios that would use the default setting also do not require the VMM to use MSR load list to manage 
the configuration of turning-on/off of trace packet generation across VM exits.
If IA32_VMX_MISC[bit 14] reports 0, any attempt to set the VMCS control bits in Table 36-41 will result in a 
failure on guest entry.

36.5.2 Managing Trace Packet Generation Across VMX Transitions
In tracing scenarios that collect packets for both VMX root operation and VMX non-root operation, a host execu-
tive can manage the MSRs associated with trace packet generation directly. The states of these MSRs need not be 
modified using MSR load list or MSR save list across VMX transitions.
For tracing scenarios that collect only packets within either VMX root operation or VMX non-root operation, the 
VMM can use the MSR load list and/or MSR save list to toggle IA32_RTIT_CTL.TraceEn.

36.5.2.1  System-Wide Tracing
When a host or VMM configures Intel PT to collect trace packets of the entire system, it can leave the VMCS 
controls clear to allow VMX-specific packets to provide information across VMX transitions. MSR load list is not 
used across VM exits or VM entries, nor is VM-exit MSR save list.
The decoder will desire to identify the occurrence of VMX transitions. The packets of interests to a decoder are 
shown in Table 36-42.

Conceal VM 
entries from 
Intel PT

VM-entry control 17 0 PIPs are generated on VM entry, with NonRoot=1 if the destination of 
the VM entry is VMX non-root operation.

On VM entry to SMM, VMCS packets are additionally generated.

1 No PIP is generated on VM entry, and no VMCS packet is generated on 
VM entry to SMM.

Table 36-41   VMCS Controls For Intel Processor Trace

Name Type Bit 
Position

Value Behavior

Table 36-42   Packets on VMX Transitions (System-Wide Tracing)

Event Packets Description

VM exit FUP(GuestIP) The FUP indicates at which point in the guest flow the VM exit occurred. This is important, 
since VM exit can be an asynchronous event. The IP will match that written into the VMCS.

PIP(HostCR3, NR=0) The PIP packet provides the new host CR3 value, as well as indication that the logical processor 
is entering VMX root operation. This allows the decoder to identify the change of executing 
context from guest to host and load the appropriate set of binaries to continue decode.

TIP(HostIP) The TIP indicates the destination IP, the IP of the first instruction to be executed in VMX root 
operation.

Note, this packet could be preceded by a MODE.Exec packet (Section 36.4.2.8). This is 
generated only in cases where CS.D or (CS.L & EFER.LMA) change during the transition.
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Since the packet suppression controls are cleared, the VMCS packet will be included in all PSB+ for this usage 
scenario. Thus the decoder can distinguish the execution context of different VMs. Additionally, it will be gener-
ated on VMPTRLD. Thus the decoder can distinguish the execution context of different VMs.
When the host VMM configures a system to collect trace packets in this scenario, it should emulate CPUID to 
report CPUID.(EAX=07H, ECX=0):EBX[bit 26] with 0 to guests, indicating to guests that Intel PT is not available.

VMX TSC Manipulation

The TSC packets generated while in VMX non-root operation will include any changes resulting from the use of a 
VMM’s use of the TSC offsetting or TSC scaling VMCS control (see Chapter 25, “VMX Non-Root Operation”). In this 
system-wide usage model, the decoder may need to account for the effect of per-VM adjustments in the TSC 
packets generated in VMX non-root operation and the absence of TSC adjustments in TSC packets generated in 
VMX root operation. The VMM can supply this information to the decoder.

36.5.2.2  Host-Only Tracing
When trace packets in VMX non-root operation are not desired, the VMM can use VM-entry MSR load list with 
IA32_RTIT_CTL.TraceEn=0 to disable trace packet generation in guests, set IA32_RTIT_CTL.TraceEn=1 via VM-
exit MSR load list.

When tracing only the host, the decoder does not need information about the guests, the VMCS controls for 
suppressing VMX-specific packets can be set to reduce the packets generated. VMCS packets will still be gener-
ated on successful VMPTRLD and in PSB+ generated in the Host, but these will be unused by the decoder.
The packets of interests to a decoder when trace packets are collected for host-only tracing are shown in Table 36-
43.

VM entry PIP(GuestCR3, NR=1) The PIP packet provides the new guest CR3 value, as well as indication that the logical 
processor is entering VMX non-root operation. This allows the decoder to identify the change 
of executing context from host to guest and load the appropriate set of binaries to continue 
decode.

TIP(GuestIP) The TIP indicates the destination IP, the IP of the first instruction to be executed in VMX non-
root operation. This should match the IP value read out from the VMCS.

Note, this packet could be preceded by a MODE.Exec packet (Section 36.4.2.8). This is 
generated only in cases where CS.D or (CS.L & EFER.LMA) change during the transition.

Table 36-42   Packets on VMX Transitions (System-Wide Tracing)

Event Packets Description

Table 36-43   Packets on VMX Transitions (Host-Only Tracing)

Event Packets Description

VM exit TIP.PGE(HostIP) The TIP.PGE indicates that trace packet generation is enabled and gives the IP of the first 
instruction to be executed in VMX root operation.

Note, this packet could be preceded by a MODE.Exec packet (Section 36.4.2.8). This is 
generated only in cases where CS.D or (CS.L & EFER.LMA) change during the transition.

VM entry TIP.PGD() The TIP indicates that trace packet generation was disabled. This ensure that all buffered 
packets are flushed out.
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36.5.2.3  Guest-Only Tracing
A VMM can configure trace packet generation while in non-root operation for guests executing normally. This is 
accomplished by utilizing the MSR load lists across VM exit and VM entry to confine trace packet generation to 
stay within the guest environment. 
For this usage, the VM-entry MSR load list is programmed to turn on trace packet generation. The VM-exit MSR 
load list is used to clear TraceEn=0 to disable trace packet generation in the host. Further, if it is preferred that 
the guest packet stream contain no indication that execution was in VMX non-root operation, the VMM should 
set the VMCS controls described in Table 36-41.

...

36.5.2.7  Failed VM Entry
The packets generated by a failed VM entry depend both on the VMCS configuration, as well as on the type of 
failure. The results to expect are summarized in the table below. Note that packets in italics may or may not be 
generated, depending on implementation choice, and the point of failure.

36.5.2.8  VMX Abort
VMX abort conditions take the processor into a shutdown state. On a VM exit that leads to VMX abort, some 
packets (FUP, PIP) may be generated, but any expected TIP, TIP.PGE, or TIP.PGD may be dropped.

36.6 TRACING AND SMM TRANSFER MONITOR (STM)
SMM Transfer Monitor is a VMM that operates inside SMM while in VMX root operation. An STM operates in 
conjunction with an executive monitor. The latter operates outside SMM and in VMX root operation. Transitions 
from the executive monitor or its VMs to the STM are called SMM VM exits. The STM returns from SMM via a VM 
entry to the VM in VMX non-root operation or the executive monitor in VMX root operation. 
Intel PT supports tracing in an STM similar to tracing support for VMX operation as described above in Section 
36.7. As a result, on a SMM VM exit resulting from #SMI, TraceEn is not saved and then cleared. Software can 
save the state of the trace configuration MSRs and clear TraceEN using the MSR load/save lists. 

...

36.7 PACKET GENERATION SCENARIOS
Table 36-45 illustrates the packets generated in various scenarios. In the heading row, PacketEn is abbreviated as 
PktEn, ContextEn as CntxEn. Note that this assumes that TraceEn=1 in IA32_RTIT_CTL, while TriggerEn=1 and 

Table 36-44   Packets on a Failed VM Entry

Usage Model Entry Configuration Early Failure (fall 
through to Next IP)

Late Failure (VM exit)

System-Wide No MSR load list TIP (NextIP) PIP(Guest CR3, NR=1), TraceEn 0->1 Packets (See Section 
36.2.5.3), PIP(HostCR3, NR=0), TIP(HostIP)

VMM Only MSR load list 
disables TraceEn

TIP (NextIP) TraceEn 0->1 Packets (See Section 36.2.5.3), TIP(HostIP)

VM Only MSR load list 
Enables TraceEn

None None
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Error=0 in IA32_RTIT_STATUS, unless otherwise specified. Entries that do not matter in packet generation are 
marked “D.C.”

Table 36-45   Packet Generation under Different Enable Conditions

Case Operation PktEn 
Before

PktEn 
After

CntxEn 
After

Other Dependencies Packets Output

1a Normal non-jump operation 0 0 D.C. None

1b Normal non-jump operation 1 1 1 None

2a WRMSR/XRSTORS/RSM that changes 
TraceEn 0 -> 1, with PacketByteCnt >0

0 0 D.C. *TSC if TSCEn=1;
*TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR

2b WRMSR/XRSTORS/RSM that changes 
TraceEn 0 -> 1, with PacketByteCnt =0

0 0 D.C. *TSC if TSCEn=1;
*TMA if TSCEn=MTCEn=1

PSB, PSBEND (see Sec-
tion 36.4.2.17)

2d WRMSR/XRSTORS/RSM that changes 
TraceEn 0 -> 1, with PacketByteCnt >0

0 1 1 TSC if TSCEn=1;
TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR, 
MODE.Exec, TIP.PGE(NLIP)

2e WRMSR/XRSTORS/RSM that changes 
TraceEn 0 -> 1, with PacketByteCnt =0

0 1 1 MODE.Exec, 
TIP.PGE(NLIP), PSB, 
PSBEND (see Section 
36.4.2.8, 36.4.2.7, 
36.4.2.13,36.4.2.15, 
36.4.2.17)

3a WRMSR that changes TraceEn 1 -> 0 0 0 D.C. None

3b WRMSR that changes TraceEn 1 -> 0 1 0 D.C. FUP(CLIP), TIP.PGD()

5a MOV to CR3 0 0 0 None

5f MOV to CR3 0 0 1 TraceStop if executed in a
TraceStop region

PIP(NewCR3,NR?), Trace-
Stop?

5b MOV to CR3 0 1 1 *PIP.NR=1 if not in root 
operation, and “Conceal 
VMX non-root operation 
from Intel PT” execution 
control = 0
*MODE.Exec if the mode has 
changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB 

PIP(NewCR3, NR?), 
MODE.Exec?, 
TIP.PGE(NLIP)

5c MOV to CR3 1 0 0 TIP.PGD()

5e MOV to CR3 1 0 1 *PIP.NR=1 if not in root 
operation, and “Conceal 
VMX non-root operation 
from Intel PT” execution 
control = 0
*TraceStop if executed in a
TraceStop region

PIP(NewCR3, NR?), 
TIP.PGE(NLIP), TraceStop?

5d MOV to CR3 1 1 1 *PIP.NR=1 if not in root 
operation, and “Conceal 
VMX non-root operation 
from Intel PT” execution 
control = 0

PIP(NewCR3, NR?)
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6a Unconditional direct near jump 0 0 D.C. None

6b Unconditional direct near jump 1 0 1 TraceStop if BLIP is in a 
TraceStop region

TIP.PGD(BLIP), TraceStop?

6c Unconditional direct near jump 0 1 1 MODE.Exec if the mode has 
changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB

MODE.Exec?,
TIP.PGE(BLIP)

6d Unconditional direct near jump 1 1 1 None

7a Conditional taken jump or compressed 
RET that does not fill up the internal 
TNT buffer

0 0 D.C. None

7b Conditional taken jump or compressed 
RET

0 1 1 MODE.Exec if the mode has 
changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB

MODE.Exec?,
TIP.PGE(BLIP)

7e Conditional taken jump or compressed 
RET, with empty TNT buffer

1 0 1 TraceStop if BLIP is in a 
TraceStop region

TIP.PGD(), TraceStop?

7f Conditional taken jump or compressed 
RET, with non-empty TNT buffer

1 0 1 TraceStop if BLIP is in a 
TraceStop region

TNT, TIP.PGD(), TraceS-
top?

7d Conditional taken jump or compressed 
RET that fills up the internal TNT buf-
fer

1 1 1 TNT

8a Conditional non-taken jump 0 0 D.C. None

8d Conditional not-taken jump that fills up 
the internal TNT buffer

1 1 1 TNT

9a Near indirect jump (JMP, CALL, or 
uncompressed RET)

0 0 D.C. None

9b Near indirect jump (JMP, CALL, or 
uncompressed RET)

0 1 1 MODE.Exec if the mode has 
changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB

MODE.Exec?,
TIP.PGE(BLIP)

9c Near indirect jump (JMP, CALL, or 
uncompressed RET)

1 0 1 TraceStop if BLIP is in a 
TraceStop region

TIP.PGD(BLIP), TraceStop?

9d Near indirect jump (JMP, CALL, or 
uncompressed RET)

1 1 1 TIP(BLIP)

10a Far Branch (CALL/JMP/RET) 0 0 0 None

Table 36-45   Packet Generation under Different Enable Conditions

Case Operation PktEn 
Before

PktEn 
After

CntxEn 
After

Other Dependencies Packets Output
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10f Far Branch (CALL/JMP/RET) 0 0 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is 
not root operation, and 
“Conceal VMX non-root 
operation from Intel PT” 
execution control = 0;
*TraceStop if BLIP is in a 
TraceStop region

PIP(new CR3, NR?), Trace-
Stop?

10b Far Branch (CALL/JMP/RET) 0 1 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is 
not root operation, and 
“Conceal VMX non-root 
operation from Intel PT” 
execution control = 0;
*MODE.Exec if the mode has 
changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB 

PIP(new CR3, NR?), 
MODE.Exec?, 
TIP.PGE(BLIP)

10c Far Branch (CALL/JMP/RET) 1 0 0 TIP.PGD()

10d Far Branch (CALL/JMP/RET) 1 0 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is 
not root operation, and 
“Conceal VMX non-root 
operation from Intel PT” 
execution control = 0;
*TraceStop if BLIP is in a 
TraceStop region

PIP(new CR3, NR?), 
TIP.PGD(BLIP), TraceStop?

10e Far Branch (CALL/JMP/RET) 1 1 1 *PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation, and 
“Conceal VMX non-root 
operation from Intel PT” 
execution control = 0;
* MODE.Exec if the opera-
tion changes CS.L/D or 
IA32_EFER.LMA 

PIP(NewCR3, NR?)?, 
MODE.Exec?, TIP(BLIP)

11a HW Interrupt 0 0 0 None

Table 36-45   Packet Generation under Different Enable Conditions

Case Operation PktEn 
Before

PktEn 
After

CntxEn 
After

Other Dependencies Packets Output
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11f HW Interrupt 0 0 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is 
not root operation, and 
“Conceal VMX non-root 
operation from Intel PT” 
execution control = 0;
*TraceStop if BLIP is in a 
TraceStop region

PIP(new CR3, NR?), Trace-
Stop?

11b HW Interrupt 0 1 1 *PIP if CR3 is updated (i.e.,
task switch), and OS=1;
*PIP.NR=1 if destination is 
not root operation, and 
“Conceal VMX non-root 
operation from Intel PT” 
execution control = 0;
* MODE.Exec if the mode 
has changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB 

PIP(new CR3, NR?), 
MODE.Exec?, 
TIP.PGE(BLIP)

11c HW Interrupt 1 0 0 FUP(NLIP), TIP.PGD()

11d HW Interrupt 1 0 1 * PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation, and 
“Conceal VMX non-root 
operation from Intel PT” 
execution control = 0;
*TraceStop if BLIP is in a 
TraceStop region

FUP(NLIP), PIP(NewCR3, 
NR?)?, TIP.PGD(BLIP), 
TraceStop

11e HW Interrupt 1 1 1 * PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation, and 
“Conceal VMX non-root 
operation from Intel PT” 
execution control = 0;
* MODE.Exec if the opera-
tion changes CS.L/D or 
IA32_EFER.LMA 

FUP(NLIP), PIP(NewCR3, 
NR?)?, MODE.Exec?, 
TIP(BLIP)

12a SW Interrupt 0 0 0 None

Table 36-45   Packet Generation under Different Enable Conditions

Case Operation PktEn 
Before

PktEn 
After

CntxEn 
After

Other Dependencies Packets Output
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12f SW Interrupt 0 0 1 * PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation, and 
“Conceal VMX non-root 
operation from Intel PT” 
execution control = 0;
*TraceStop if BLIP is in a 
TraceStop region

PIP(NewCR3, NR?)?, 
TraceStop?

12b SW Interrupt 0 1 1 * PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation, and 
“Conceal VMX non-root 
operation from Intel PT” 
execution control = 0;
*MODE.Exec if the mode has 
changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB 

PIP(NewCR3, NR?)?, 
MODE.Exec?, 
TIP.PGE(BLIP)

12c SW Interrupt 1 0 0 FUP(CLIP), TIP.PGD()

12d SW Interrupt 1 0 1 * PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation, and 
“Conceal VMX non-root 
operation from Intel PT” 
execution control = 0;
*TraceStop if BLIP is in a 
TraceStop region

FUP(CLIP), PIP(NewCR3, 
NR?)?, TIP.PGD(BLIP), 
TraceStop?

12e SW Interrupt 1 1 1 * PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation, and 
“Conceal VMX non-root 
operation from Intel PT” 
execution control = 0;
* MODE.Exec if the opera-
tion changes CS.L/D or 
IA32_EFER.LMA 

FUP(CLIP), PIP(NewCR3, 
NR?)?, FUP(NLIP), 
MODE.Exec?, TIP(BLIP)

13a Exception/Fault 0 0 0 None

Table 36-45   Packet Generation under Different Enable Conditions

Case Operation PktEn 
Before

PktEn 
After

CntxEn 
After

Other Dependencies Packets Output
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13f Exception/Fault 0 0 1 * PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation, and 
“Conceal VMX non-root 
operation from Intel PT” 
execution control = 0;
*TraceStop if BLIP is in a 
TraceStop region

PIP(NewCR3, NR?)?, 
TraceStop?

13b Exception/Fault 0 1 1 * PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation, and 
“Conceal VMX non-root 
operation from Intel PT” 
execution control = 0;
*MODE.Exec if the mode has 
changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB 

PIP(NewCR3, NR?)?, 
MODE.Exec?, 
TIP.PGE(BLIP)

13c Exception/Fault 1 0 0 FUP(CLIP), TIP.PGD()

13d Exception/Fault 1 0 1 * PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation, and 
“Conceal VMX non-root 
operation from Intel PT” 
execution control = 0;
*TraceStop if BLIP is in a 
TraceStop region

FUP(CLIP), PIP(NewCR3, 
NR?)?, TIP.PGD(BLIP), 
TraceStop?

13e Exception/Fault 1 1 1 * PIP if CR3 is updated (i.e., 
task switch), and OS=1
*PIP.NR=1 if destination is 
not root operation, and 
“Conceal VMX non-root 
operation from Intel PT” 
execution control = 0;
* MODE.Exec if the opera-
tion changes CS.L/D or 
IA32_EFER.LMA 

FUP(CLIP), PIP(NewCR3, 
NR?)?, MODE.Exec?, 
TIP(BLIP)

14a SMI (TraceEn cleared) 0 0 D.C. None

14b SMI (TraceEn cleared) 1 0 0 FUP(SMRAM,LIP), 
TIP.PGD()

14f SMI (TraceEn cleared) 1 0 1 NA 

14c SMI (TraceEn cleared) 1 1 1 NA 

15a RSM, TraceEn restored to 0 0 0 0 None
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15b RSM, TraceEn restored to 1 0 0 D.C. See WRMSR cases for 
packets on enable

15c RSM, TraceEn restored to 1 0 1 1 See WRMSR cases for 
packets on enable. FUP/
TIP.PGE IP is SMRAM.LIP

15e RSM (TraceEn=1, goes to shutdown) 1 0 0 None

15f RSM (TraceEn=1, goes to shutdown) 1 0 1 None

15d RSM (TraceEn=1, goes to shutdown) 1 1 1 None

16i Vmext 0 0 0 None

16a Vmext 0 0 1 *PIP if OF=1, and “Conceal 
VM exits from Intel PT” exe-
cution control = 0;
*TraceStop if VMCSh.LIP is 
in a TraceStop region

PIP(HostCR3, NR=0)?, 
TraceStop?

16b VM exit, MSR list sets TraceEn=1 0 0 0 See WRMSR cases for 
packets on enable. FUP IP 
is VMCSh.LIP

16c VM exit, MSR list sets TraceEn=1 0 1 1 See WRMSR cases for 
packets on enable. FUP/
TIP.PGE IP is VMCSh.LIP

16e VM exit 0 1 1 *PIP if OF=1, and “Conceal 
VM exits from Intel PT” exe-
cution control = 0;
*MODE.Exec if the value is 
different, since last TIP.PGD 

PIP(HostCR3, NR=0)?, 
MODE.Exec?, 
TIP.PGE(VMCSh.LIP)

16f VM exit, MSR list clears TraceEn=0 1 0 0 *PIP if OF=1, and “Conceal 
VM exits from Intel PT” exe-
cution control = 0;

FUP(VMCSg.LIP), 
PIP(HostCR3, NR=0)?, 
TIP.PGD

16j VM exit, ContextEN 1->0 1 0 0 FUP(VMCSg.LIP), TIP.PGD

16g VM exit 1 0 1 *PIP if OF=1, and “Conceal 
VM exits from Intel PT” exe-
cution control = 0;
*TraceStop if VMCSh.LIP is 
in a TraceStop region

FUP(VMCSg.LIP), 
PIP(HostCR3, NR=0)?, 
TIP.PGD(VMCSh.LIP), 
TraceStop?

16h VM exit 1 1 1 *PIP if OF=1, and “Conceal 
VM exits from Intel PT” exe-
cution control = 0;
*MODE.Exec if the value is 
different, since last TIP.PGD 

FUP(VMCSg.LIP), 
PIP(HostCR3, NR=0)?, 
MODE.Exec, 
TIP(VMCSh.LIP)

17a Vmentry 0 0 0 None
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17b VM entry 0 0 1 *PIP if OF=1, and “Conceal 
VM entries from Intel PT” 
execution control = 0;
*TraceStop if VMCSg.LIP is 
in a TraceStop region

PIP(GuestCR3, NR=1)?, 
TraceStop?

17c VM entry, MSR load list sets TraceEn=1 0 0 1 See WRMSR cases for 
packets on enable. FUP IP 
is VMCSg.LIP

17d VM entry, MSR load list sets TraceEn=1 0 1 1 See WRMSR cases for 
packets on enable. FUP/
TIP.PGE IP is VMCSg.LIP

17f VM entry, FilterEN 0->1 0 1 1 *PIP if OF=1, and “Conceal 
VM entries from Intel PT” 
execution control = 0;
*MODE.Exec if the value is 
different, since last TIP.PGD 

PIP(GuestCR3, NR=1)?, 
MODE.Exec?, 
TIP.PGE(VMCSg.LIP)

17j VM entry, ContextEN 0->1 0 1 1 *MODE.Exec if the value is 
different, since last TIP.PGD 

MODE.Exec, 
TIP.PGE(VMCSg.LIP)

17g VM entry, MSR list clears TraceEn=0 1 0 0 *PIP if OF=1, and “Conceal 
VM entries from Intel PT” 
execution control = 0;

PIP(GuestCR3, NR=1)?, 
TIP.PGD

17h VM entry 1 0 1 *PIP if OF=1, and “Conceal 
VM entries from Intel PT” 
execution control = 0;
*TraceStop if VMCSg.LIP is 
in a TraceStop region

PIP(GuestCR3, NR=1)?, 
TIP.PGD(VMCSg.LIP), 
TraceStop?

17i VM entry 1 1 1 *PIP if OF=1, and “Conceal 
VM entries from Intel PT” 
execution control = 0;
*MODE.Exec if the value is 
different, since last TIP.PGD 

PIP(GuestCR3, NR=1)?, 
MODE.Exec, 
TIP(VMCSg.LIP)

20a EENTER/ERESUME to non-debug 
enclave

0 0 0 None

20c EENTER/ERESUME to non-debug 
enclave

1 0 0 FUP(CLIP), TIP.PGD()

21a EEXIT from non-debug enclave 0 0 D.C. None

21b EEXIT from non-debug enclave 0 1 1 *MODE.Exec if the value is 
different, since last TIP.PGD 

MODE.Exec?, 
TIP.PGE(BLIP)

22a AEX/EEE from non-debug enclave 0 0 D.C. None

22b AEX/EEE from non-debug enclave 0 1 1 *MODE.Exec if the value is 
different, since last TIP.PGD 

MODE.Exec?, 
TIP.PGE(AEP.LIP)

23a EENTER/ERESUME to debug enclave 0 0 D.C. None

23b EENTER/ERESUME to debug enclave 0 1 1 *MODE.Exec if the value is 
different, since last TIP.PGD 

MODE.Exec?, 
TIP.PGE(BLIP)
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23c EENTER/ERESUME to debug enclave 1 0 0 FUP(CLIP), TIP.PGD()

23d EENTER/ERESUME to debug enclave 0 0 1 *TraceStop if BLIP is in a 
TraceStop region

FUP(CLIP), TIP.PGD(BLIP), 
TraceStop?

23e EENTER/ERESUME to debug enclave 1 1 1 FUP(CLIP), TIP(BLIP)

24f EEXIT from debug enclave 0 0 D.C. None

24b EEXIT from debug enclave 0 1 1 *MODE.Exec if the value is 
different, since last TIP.PGD 

MODE.Exec?, 
TIP.PGE(BLIP)

24d EEXIT from debug enclave 1 0 1 *TraceStop if BLIP is in a 
TraceStop region

FUP(CLIP), TIP.PGD(BLIP), 
TraceStop?

24e EEXIT from debug enclave 1 1 1 FUP(CLIP), TIP(BLIP)

25a AEX/EEE from debug enclave 0 0 D.C. None

25b AEX/EEE from debug enclave 0 1 1 *MODE.Exec if the value is 
different, since last TIP.PGD 

 MODE.Exec?, 
TIP.PGE(AEP.LIP)

25d AEX/EEE from debug enclave 1 0 1 *For AEX, FUP IP could be 
NLIP, for trap-like events

FUP(CLIP), 
TIP.PGD(AEP.LIP)

25e AEX/EEE from debug enclave 1 1 1 *MODE.Exec if the value is 
different, since last TIP.PGD 
*For AEX, FUP IP could be 
NLIP, for trap-like events

FUP(CLIP), MODE.Exec?, 
TIP(AEP.LIP)

26a XBEGIN/XACQUIRE 0 0 D.C. None

26d XBEGIN/XACQUIRE that does not set 
InTX

1 1 1 None

26e XBEGIN/XACQUIRE that sets InTX 1 1 1 MODE(InTX=1, 
TXAbort=0), FUP(CLIP)

27a XEND/XRELEASE 0 0 D.C. None

27d XEND/XRELEASE that does not clear 
InTX

1 1 1 None

27e XEND/XRELEASE that clears InTX 1 1 1 MODE(InTX=0, 
TXAbort=0), FUP(CLIP)

28a XABORT(Async XAbort, or other) 0 0 0 None

28e XABORT(Async XAbort, or other) 0 0 1 *TraceStop if BLIP is in a 
TraceStop region

MODE(InTX=0, 
TXAbort=1), TraceStop?

28b XABORT(Async XAbort, or other) 0 1 1 MODE(InTX=0, 
TXAbort=1), 
TIP.PGE(BLIP)

28c XABORT(Async XAbort, or other) 1 0 1 *TraceStop if BLIP is in a 
TraceStop region

MODE(InTX=0, 
TXAbort=1), TIP.PGD 
(BLIP), TraceStop?

28d XABORT(Async XAbort, or other) 1 1 1 MODE(InTX=0, 
TXAbort=1), FUP(CLIP), 
TIP(BLIP)
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...

30a INIT (BSP) 0 0 0 None

30b INIT (BSP) 0 0 1 *TraceStop if RESET.LIP is in 
a TraceStop region

BIP(0), TraceStop?

30c INIT (BSP) 0 1 1 * MODE.Exec if the value is 
different, since last TIP.PGD 

MODE.Exec?, PIP(0), 
TIP.PGE(ResetLIP)

30d INIT (BSP) 1 0 0 FUP(NLIP), TIP.PGD()

30e INIT (BSP) 1 0 1 * PIP if OS=1
*TraceStop if RESET.LIP is in 
a TraceStop region

FUP(NLIP), PIP(0), 
TIP.PGD, TraceStop?

30f INIT (BSP) 1 1 1 * MODE.Exec if the mode 
has changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB
* PIP if OS=1

FUP(NLIP), PIP(0)?, 
MODE.Exec?, 
TIP(ResetLIP)

31a INIT (AP, goes to wait-for-SIPI) 0 D.C. D.C. None

31b INIT (AP, goes to wait-for-SIPI) 1 D.C. D.C. * PIP if OS=1 FUP(NLIP), PIP(0)

32a SIPI 0 0 0 None

32c SIPI 0 1 1 * MODE.Exec if the mode 
has changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB

MODE.Exec?, TIP.PGE(SIPI-
LIP)

32d SIPI 1 0 0 TIP.PGD

32e SIPI 1 0 1 *TraceStop if SIPI LIP is in a 
TraceStop region

TIP.PGD(SIPILIP); TraceS-
top?

32f SIPI 1 1 1 * MODE.Exec if the mode 
has changed since the last 
MODE.Exec, or if no 
MODE.Exec since last PSB

MODE.Exec?, TIP(SIPILIP)

33a MWAIT (to C0) D.C. D.C. D.C. None

33b MWAIT (to higher-numbered C-State, 
packet sent on wake)

D.C. D.C. D.C. *TSC if TSCEn=1
*TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR
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29. Updates to Chapter 37, Volume 3D
Change bars show changes to Chapter 37 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3D: System Programming Guide, Part 4.

------------------------------------------------------------------------------------------

...

37.3 ENCLAVE LIFE CYCLE 
Enclave memory management is divided into two parts: address space allocation and memory commitment. 
Address space allocation is the specification of the range of logical addresses that the enclave may use. This range 
is called the ELRANGE. No actual resources are committed to this region. Memory commitment is the assignment 
of actual memory resources (as pages) within the allocated address space. This two-phase technique allows flex-
ibility for enclaves to control their memory usage and to adjust dynamically without overusing memory resources 
when enclave needs are low. Commitment adds physical pages to the enclave. An operating system may support 
separate allocate and commit operations. 
During enclave creation, code and data for an enclave are loaded from a clear-text source, i.e. from non-enclave 
memory.
Untrusted application code starts using an initialized enclave typically by using the EENTER leaf function provided 
by Intel SGX to transfer control to the enclave code residing in the protected Enclave Page Cache (EPC). The 
enclave code returns to the caller via the EEXIT leaf function. Upon enclave entry, control is transferred by hard-
ware to software inside the enclave. The software inside the enclave switches the stack pointer to one inside the 
enclave. When returning back from the enclave, the software swaps back the stack pointer then executes the 
EEXIT leaf function.
On processors that supports the SGX2 extensions, an enclave writer may add memory to an enclave using the 
SGX2 instruction set, after the enclave is built and running. These instructions allow adding additional memory 
resources to the enclave for use in such areas as the heap. In addition, SGX2 instructions allow the enclave to add 
new threads to the enclave. The SGX2 features provide additional capabilities to the software model without 
changing the security properties of the Intel SGX architecture. 
Calling an external procedure from an enclave could be done using the EEXIT leaf function. Software would use 
EEXIT and a software convention between the trusted section and the untrusted section.
An active enclave consumes resource from the Enclave Page Cache (EPC, see Section 37.5). Intel SGX provides 
the EREMOVE instruction that an EPC manager can use to reclaim EPC pages committed to an enclave. The EPC 
manager uses EREMOVE on every enclave page when the enclave is torn down. After successful execution of 
EREMOVE the EPC page is available for allocation to another enclave.

37.4 DATA STRUCTURES AND ENCLAVE OPERATION
There are 2 main data structures associated with operating an enclave, the SGX Enclave Control Structure (SECS, 
see Section 38.7) and the Thread Control Structure (TCS, see Section 38.8). 
There is one SECS for each enclave. The SECS contains meta-data about the enclave which is used by the hard-
ware and cannot be directly accessed by software. Included in the SECS is a field that stores the enclave build 
measurement value. This field, MRENCLAVE, is initialized by the ECREATE instruction and updated by every EADD 
and EEXTEND. It is locked by EINIT. 
Every enclave contains one or more TCS structures. The TCS contains meta-data used by the hardware to save 
and restore thread specific information when entering/exiting the enclave. There is one field, FLAGS, that may be 
accessed by software. This field can only be accessed by debug enclaves. The flag bit, DBGOPTIN, allows to single 
step into the thread associated with the TCS. (see Section 38.8.1)
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The SECS is created when ECREATE (see Table 37-1) is executed. The TCS can be created using the EADD instruc-
tion or the SGX2 instructions (see Table 37-2). 

37.5 ENCLAVE PAGE CACHE
The Enclave Page Cache (EPC) is the secure storage used to store enclave pages when they are a part of an 
executing enclave. For an EPC page, hardware performs additional access control checks to restrict access to the 
page. After the current page access checks and translations are performed, the hardware checks that the EPC 
page is accessible to the program currently executing. Generally an EPC page is only accessed by the owner of the 
executing enclave or an instruction which is setting up an EPC page
The EPC is divided into EPC pages. An EPC page is 4KB in size and always aligned on a 4KB boundary. 
Pages in the EPC can either be valid or invalid. Every valid page in the EPC belongs to one enclave instance. Each 
enclave instance has an EPC page that holds its SECS. The security metadata for each EPC page is held in an 
internal micro-architectural structure called Enclave Page Cache Map (EPCM, see Section 37.5.1).
The EPC is managed by privileged software. Intel SGX provides a set of instructions for adding and removing 
content to and from the EPC. The EPC may be configured by BIOS at boot time. On implementations in which EPC 
memory is part of system DRAM, the contents of the EPC are protected by an encryption engine. 

37.6 ENCLAVE INSTRUCTIONS AND INTEL® SGX
The enclave instructions available with Intel SGX are organized as leaf functions under two instruction 
mnemonics: ENCLS (ring 0) and ENCLU (ring 3). Each leaf function uses EAX to specify the leaf function index, 
and may require additional implicit input registers as parameters. The use of EAX is implied implicitly by the 
ENCLS and ENCLU instructions, ModR/M byte encoding is not used with ENCLS and ENCLU. The use of additional 
registers does not use ModR/M encoding and is implied implicitly by the respective leaf function index.
Each leaf function index is also associated with a unique, leaf-specific mnemonic. A long-form expression of Intel 
SGX instruction takes the form of ENCLx[LEAF_MNEMONIC], where ‘x’ is either ‘S’ or ‘U’. The long-form expres-
sion provides clear association of the privilege-level requirement of a given “leaf mnemonic”. For simplicity, the 
unique “Leaf_Mnemonic” name is used (omitting the ENCLx for convenience) throughout in this document. 
Details of Individual SGX leaf functions are described in Chapter 41. Table 37-1 provides a summary of the 
instruction leaves that are available in the initial implementation of Intel SGX, which is introduced in the 6th 
generation Intel Core processors. Table 37-1 summarizes enhancement of Intel SGX for future Intel processors.

Table 37-1    Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1
Supervisor Instruction Description User Instruction Description

ENCLS[EADD] Add an EPC page to an enclave. ENCLU[EENTER] Enter an enclave.

ENCLS[EBLOCK] Block an EPC page. ENCLU[EEXIT] Exit an enclave.

ENCLS[ECREATE] Create an enclave. ENCLU[EGETKEY] Create a cryptographic key.

ENCLS[EDBGRD] Read data from a debug enclave by debug-
ger.

ENCLU[EREPORT] Create a cryptographic report.

ENCLS[EDBGWR] Write data into a debug enclave by debug-
ger.

ENCLU[ERESUME] Re-enter an enclave.

ENCLS[EEXTEND] Extend EPC page measurement.

ENCLS[EINIT] Initialize an enclave.

ENCLS[ELDB] Load an EPC page in blocked state.
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...

37.7.2 Intel® SGX Resource Enumeration Leaves
If CPUID.(EAX=07H, ECX=0H):EBX.SGX = 1, the processor also supports querying CPUID with EAX=12H on Intel 
SGX resource capability and configuration. The number of available sub-leaves in leaf 12H depends on the Opt-in 
and system software configuration. Information returned by CPUID.12H is thread specific; software should not 
assume that if Intel SGX instructions are supported on one hardware thread, they are also supported elsewhere. 
A properly configured processor exposes Intel SGX functionality with CPUID.EAX=12H reporting valid information 
(non-zero content) in three or more sub-leaves, see Table 37-4.
• CPUID.(EAX=12H, ECX=0H) enumerates Intel SGX capability, including enclave instruction opcode support.
• CPUID.(EAX=12H, ECX=1H) enumerates Intel SGX capability of processor state configuration and enclave 

configuration in the SECS structure (see Table 38-3).
• CPUID.(EAX=12H, ECX >1) enumerates available EPC resources.

ENCLS[ELDU] Load an EPC page in unblocked state.

ENCLS[EPA] Add an EPC page to create a version array.

ENCLS[EREMOVE] Remove an EPC page from an enclave.

ENCLS[ETRACK] Activate EBLOCK checks.

ENCLS[EWB] Write back/invalidate an EPC page.

Table 37-1    Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1
Supervisor Instruction Description User Instruction Description

Table 37-4    CPUID Leaf 12H, Sub-Leaf 0 Enumeration of Intel® SGX Capabilities

CPUID.(EAX=12H,ECX=0) Description Behavior

Register Bits

EAX 0 SGX1: If 1, indicates leaf functions of SGX1 instruction listed in Table 37-1 are supported.

1 SGX2: If 1, indicates leaf functions of SGX2 instruction listed in Table 37-2 are supported.

31:2 Reserved (0)

EBX
31:0 MISCSELECT: Reports the bit vector of supported extended features that can be written to the MISC 

region of the SSA.

ECX 31:0 Reserved (0).

EDX

7:0 MaxEnclaveSize_Not64: the maximum supported enclave size is 2^(EDX[7:0]) bytes when not in 64-bit 
mode.

15:8 MaxEnclaveSize_64: the maximum supported enclave size is 2^(EDX[15:8]) bytes when operating in 64-
bit mode.

31:16 Reserved (0).
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On processors that support Intel SGX1 and SGX2, CPUID leaf 12H sub-leaf 2 report physical memory resources 
available for use with Intel SGX. These physical memory sections are typically allocated by BIOS as Processor 
Reserved Memory, and available to the OS to manage as EPC. 
To enumerate how many EPC sections are available to the EPC manager, software can enumerate CPUID leaf 12H 
with sub-leaf index starting from 2, and decode the sub-leaf-type encoding (returned in EAX[3:0]) until the sub-
leaf type is invalid. All invalid sub-leaves of CPUID leaf 12H return EAX/EBX/ECX/EDX with 0.

...

Table 37-5    CPUID Leaf 12H, Sub-Leaf 1 Enumeration of Intel® SGX Capabilities

CPUID.(EAX=12H,ECX=1) Description Behavior

Register Bits

EAX 31:0 Report the valid bits of SECS.ATTRIBUTES[31:0] that software can set with ECREATE. 
SECS.ATTRIBUTES[n] can be set to 1 using ECREATE only if EAX[n] is 1, where n < 32.

EBX 31:0 Report the valid bits of SECS.ATTRIBUTES[63:32] that software can set with ECREATE. 
SECS.ATTRIBUTES[n+32] can be set to 1 using ECREATE only if EBX[n] is 1, where n < 32.

ECX 31:0 Report the valid bits of SECS.ATTRIBUTES[95:64] that software can set with ECREATE. 
SECS.ATTRIBUTES[n+64] can be set to 1 using ECREATE only if ECX[n] is 1, where n < 32.

EDX 31:0 Report the valid bits of SECS.ATTRIBUTES[127:96] that software can set with ECREATE. 
SECS.ATTRIBUTES[n+96] can be set to 1 using ECREATE only if EDX[n] is 1, where n < 32.

Table 37-6    CPUID Leaf 12H, Sub-Leaf Index 2 or Higher Enumeration of Intel® SGX Resources

CPUID.(EAX=12H,ECX > 1) Description Behavior

Register Bits

EAX 3:0 0000b: This sub-leaf is invalid; EDX:ECX:EBX:EAX return 0.

0001b: This sub-leaf enumerates an EPC section. EBX:EAX and EDX:ECX provide information on the 
Enclave Page Cache (EPC) section.

All other encoding are reserved.

11:4 Reserved (enumerate 0).

31:12 If EAX[3:0] = 0001b, these are bits 31:12 of the physical address of the base of the EPC section.

EBX
19:0 If EAX[3:0] = 0001b, these are bits 51:32 of the physical address of the base of the EPC section.

31:20 Reserved.

ECX

3: 0 If EAX[3:0] 0000b, then all bits of the EDX:ECX pair are enumerated as 0.

If EAX[3:0] 0001b, then this section has confidentiality and integrity protection.

All other encoding are reserved.

11:4 Reserved (enumerate 0).

31:12 If EAX[3:0] = 0001b, these are bits 31:12 of the size of the corresponding EPC section within the 
Processor Reserved Memory.

EDX 19: 0 If EAX[3:0] = 0001b, these are bits 51:32 of the size of the corresponding EPC section within the 
Processor Reserved Memory.

31:20 Reserved.
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30. Updates to Chapter 38, Volume 3D
Change bars show changes to Chapter 38 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3D: System Programming Guide, Part 4.

------------------------------------------------------------------------------------------

...

38.1 OVERVIEW OF ENCLAVE EXECUTION ENVIRONMENT
When an enclave is created, it has a range of linear addresses that the processor applies enhanced access control. 
This ranged is called the ELRANGE (see Section 37.3). When an enclave generates a memory access, the existing 
IA32 segmentation and paging architecture are applied. Additionally, linear addresses inside the ELRANGE must 
map to an EPC page otherwise when an enclave attempts to access that linear address a fault is generated.
The EPC pages need not be physically contiguous. System software allocates EPC pages to various enclaves. 
Enclaves must abide by OS/VMM imposed segmentation and paging policies. OS/VMM-managed page tables and 
extended page tables provide address translation for the enclave pages. Hardware requires that these pages are 
properly mapped to EPC (any failure generates an exception).
Enclave entry must happen through specific enclave instructions:
• ENCLU[EENTER], ENCLU[ERESUME].
Enclave exit must happen through specific enclave instructions or events:
• ENCLU[EEXIT], Asynchronous Enclave Exit (AEX).
Attempt to execute, read or write to linear addresses mapped to EPC pages when not inside an enclave will result 
in undefined behavior. The processor will provide the protections as described in Section 38.4 and Section 38.5 on 
such accesses.

...

38.3 ACCESS-CONTROL REQUIREMENTS
Enclave accesses have the following access-control attributes:
• All memory accesses must conform to segmentation and paging protection mechanisms.
• Code fetches from inside an enclave to a linear address outside that enclave result in a #GP(0) exception. 
• Non-enclave accesses to EPC memory result in undefined behavior. EPC memory is protected as described in 

Section 38.4 and Section 38.5 on such accesses.
• EPC pages of page types PT_REG, PT_TCS and PT_TRIM must be mapped to ELRANGE at the linear address 

specified when the EPC page was allocated to the enclave using ENCLS[EADD] or ENCLS[EAUG] leaf functions. 
Enclave accesses through other linear address result in a #PF with the PFEC.SGX bit set. 

• Direct EAs to any EPC pages must conform to the currently defined security attributes for that EPC page in the 
EPCM. These attributes may be defined at enclave creation time (EADD) or when the enclave sets them using 
SGX2 instructions. The failure of these checks results in a #PF with the PFEC.SGX bit set.

— Target page must belong to the currently executing enclave.

— Data may be written to an EPC page if the EPCM allow write access.

— Data may be read from an EPC page if the EPCM allow read access.

— Instruction fetches from an EPC page are allowed if the EPCM allows execute access.

— Target page must not have a restricted page type1 (PT_SECS, PT_TCS, PT_VA, or PT_TRIM).
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— The EPC page must not be BLOCKED. 

— The EPC page must not be PENDING. 

— The EPC page must not be MODIFIED. 

...

38.5 PAGE-BASED ACCESS CONTROL

38.5.1 Access-control for Accesses that Originate from non-SGX Instructions
Intel SGX builds on the processor's paging mechanism to provide page-granular access-control for enclave pages. 
Enclave pages are only accessible from inside the currently executing enclave if they belong to that enclave. In 
addition, enclave accesses must conform to the access control requirements described in Section 38.3. or through 
certain Intel SGX instructions. Attempts to execute, read or write to linear addresses mapped to EPC pages using 
non-enclave access results in undefined behavior.

...

38.5.3.2  Implicit Accesses
Accesses to data structures whose physical addresses are cached by the processor are called implicit accesses. 
These addresses are not passed as operands of the instruction but are implied by use of the instruction. 
These accesses do not trigger any access-control faults/exits or data breakpoints. Table 38-1 lists memory 
objects that Intel SGX instruction leaf functions access either by explicit access or implicit access. The addresses 
of explicit access objects are passed via register operands with the second through fourth column of Table 38-1 
matching implicitly encoded registers RBX, RCX, RDX.
Physical addresses used in different implicit accesses are cached via different instructions and for different dura-
tions. The physical address of SECS associated with each EPC page is cached at the time the page is added to the 
enclave via ENCLS[EADD] or ENCLS[EAUG], or when the page is loaded to EPC via ENCLS[ELDB] or 
ENCLS[ELDU]. This binding is severed when the corresponding page is removed from the EPC via 
ENCLS[EREMOVE] or ENCLS[EWB]. Physical addresses of TCS and SSA pages are cached at the time of most-
recent enclave entry. Exit from an enclave (ENCLU[EEXIT] or AEX) flushes this caching. Details of Asynchronous 
Enclave Exit is described in Chapter 40.
The physical addresses that are cached for use by implicit accesses are derived from logical (or linear) addresses 
after checks such as segmentation, paging, EPT, and APIC virtualization checks. These checks may trigger excep-
tions or VM exits. Note, however, that such exception or VM exits may not occur after a physical address is cached 
and used for an implicit access. 

1. EPCM may allow write, read or execute access only for pages with page type PT_REG.

Table 38-1    List of Implicit and Explicit Memory Access by Intel® SGX Enclave Instructions
Instr. Leaf Enum. Explicit 1 Explicit 2 Explicit 3 Implicit 

EACCEPT SGX2 SECINFO EPCPAGE SECS

EACCEPTCOPY SGX2 SECINFO EPCPAGE (Src) EPCPAGE (Dst)

EADD SGX1 PAGEINFO and linked structures EPCPAGE

EAUG SGX2 PAGEINFO and linked structures EPCPAGE SECS
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...

38.7 SGX ENCLAVE CONTROL STRUCTURE (SECS)
The SECS data structure requires 4K-Bytes alignment.

EBLOCK SGX1 EPCPAGE SECS

ECREATE SGX1 PAGEINFO and linked structures EPCPAGE

EDBGRD SGX1 EPCADDR Destination SECS

EDBGWR SGX1 EPCADDR Source SECS

EENTER SGX1 TCS and linked SSA SECS

EEXIT SGX1 SECS, TCS

EEXTEND SGX1 SECS EPCPAGE

EGETKEY SGX1 KEYREQUEST KEY SECS

EINIT SGX1 SIGSTRUCT SECS EINITTOKEN

ELDB/ELDU SGX1 PAGEINFO and linked structures, PCMD EPCPAGE VAPAGE

EMODPE SGX2 SECINFO EPCPAGE

EMODPR SGX2 SECINFO EPCPAGE SECS

EMODT SGX2 SECINFO EPCPAGE SECS

EPA SGX1 EPCADDR

EREMOVE SGX1 EPCPAGE SECS

EREPORT SGX1 TARGETINFO REPORTDATA OUTPUTDATA SECS

ERESUME SGX1 TCS and linked SSA SECS

ETRACK SGX1 EPCPAGE

EWB SGX1 PAGEINFO and linked structures, PCMD EPCPAGE VAPAGE SECS

Asynchronous Enclave Exit* SECS, TCS, 
SSA

*Details of Asynchronous Enclave Exit (AEX) is described in Section 40.4

Table 38-1    List of Implicit and Explicit Memory Access by Intel® SGX Enclave Instructions
Instr. Leaf Enum. Explicit 1 Explicit 2 Explicit 3 Implicit 

Table 38-2    Layout of SGX Enclave Control Structure (SECS)
Field OFFSET (Bytes) Size (Bytes) Description

SIZE 0 8 Size of enclave in bytes; must be power of 2.

BASEADDR 8 8 Enclave Base Linear Address must be naturally aligned to size.

SSAFRAMESIZE 16 4 Size of one SSA frame in pages, including XSAVE, pad, GPR, and MISC (if 
CPUID.(EAX=12H, ECX=0):.EBX != 0).

MISCSELECT 20 4 Bit vector specifying which extended features are saved to the MISC region 
(see Section 38.7.2) of the SSA frame when an AEX occurs.

RESERVED 24 24

ATTRIBUTES 48 16 Attributes of the Enclave, see Table 38-3.
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38.7.1 ATTRIBUTES 
The ATTRIBUTES data structure is comprised of bit-granular fields that are used in the SECS, the REPORT and the 
KEYREQUEST structures. CPUID.(EAX=12H, ECX=1) enumerates a bitmap of permitted 1-setting of bits in ATTRI-
BUTES.

38.7.2 SECS.MISCSELECT Field
CPUID.(EAX=12H, ECX=0):EBX[31:0] enumerates which extended information that the processor can save into 
the MISC region of SSA when an AEX occurs. An enclave writer can specify via SIGSTRUCT how to set the 
SECS.MISCSELECT field. The bit vector of MISCSELECT selects which extended information is to be saved in the 
MISC region of the SSA frame when an AEX is generated. The bit vector definition of extended information is listed 
in Table 38-4.
If CPUID.(EAX=12H, ECX=0):EBX[31:0] = 0, SECS.MISCSELECT field must be all zeros.
The SECS.MISCSELECT field determines the size of MISC region of the SSA frame, see Section 38.9.2.

MRENCLAVE 64 32 Measurement Register of enclave build process. See SIGSTRUCT for format.

RESERVED 96 32

MRSIGNER 128 32 Measurement Register extended with the public key that verified the 
enclave. See SIGSTRUCT for format.

RESERVED 160 96

ISVPRODID 256 2 Product ID of enclave.

ISVSVN 258 2 Security version number (SVN) of the enclave.

RESERVED 260 3836 The RESERVED field consists of the following:
• EID: An 8 byte Enclave Identifier. Its location is implementation specific.
• PAD: A 352 bytes padding pattern from the Signature (used for key 

derivation strings). It’s location is implementation specific.
• The remaining 3476 bytes are reserved area.
The entire 3836 byte field must be cleared prior to executing ECREATE or 
EREPORT.

Table 38-2    Layout of SGX Enclave Control Structure (SECS)
Field OFFSET (Bytes) Size (Bytes) Description

Table 38-3    Layout of ATTRIBUTES Structure
Field Bit Position Description

INIT 0 This bit indicates if the enclave has been initialized by EINIT. It must be cleared when loaded as 
part of ECREATE. For EREPORT instruction, TARGET_INFO.ATTRIBUTES[ENIT] must always be 1 to 
match the state after EINIT has initialized the enclave.

DEBUG 1  If 1, the enclave permit debugger to read and write enclave data using EDBGRD and EDBGWR.

MODE64BIT 2 Enclave runs in 64-bit mode.

RESERVED 3 Must be Zero.

PROVISIONKEY 4 Provisioning Key is available from EGETKEY.

EINITTOKENKEY 5 EINIT token key is available from EGETKEY.

RESERVED 63:6

XFRM 127:64 XSAVE Feature Request Mask. See Section 42.7.
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38.8 THREAD CONTROL STRUCTURE (TCS)
Each executing thread in the enclave is associated with a Thread Control Structure. It requires 4K-Bytes align-
ment.

...

38.8.2 State Save Area Offset (OSSA)
The OSSA points to a stack of State Save Area (SSA) frames (see Section 38.9) used to save the processor state 
when an interrupt or exception occurs while executing in the enclave. 

...

Table 38-4    Bit Vector Layout of MISCSELECT Field of Extended Information
Field Bit Position Description

EXINFO 0 Report information about page fault and general protection exception that occurred inside an 
enclave.

Reserved 31:1  Reserved (0).

Table 38-5    Layout of Thread Control Structure (TCS)
Field OFFSET (Bytes) Size (Bytes) Description

STAGE 0 8 Enclave execution state of the thread controlled by this TCS. A value of 0 indi-
cates that this TCS is available for enclave entry. A value of 1 indicates that a 
processer is currently executing an enclave in the context of this TCS.

FLAGS 8 8 The thread’s execution flags (see Section 38.8.1).

OSSA 16 8 Offset of the base of the State Save Area stack, relative to the enclave base. 
Must be page aligned.

CSSA 24 4 Current slot index of an SSA frame, cleared by EADD and EACCEPT.

NSSA 28 4 Number of available slots for SSA frames.

OENTRY 32 8 Offset in enclave to which control is transferred on EENTER relative to the 
base of the enclave.

AEP 40 8 The value of the Asynchronous Exit Pointer that was saved at EENTER time.

OFSBASGX 48 8 Offset to add to the base address of the enclave for producing the base 
address of FS segment inside the enclave. Must be page aligned.

OGSBASGX 56 8 Offset to add to the base address of the enclave for producing the base 
address of GS segment inside the enclave. Must be page aligned.

FSLIMIT 64 4 Size to become the new FS limit in 32-bit mode.

GSLIMIT 68 4 Size to become the new GS limit in 32-bit mode.

RESERVED 72 4024 Must be zero.
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38.9 STATE SAVE AREA (SSA) FRAME
When an AEX occurs while running in an enclave, the architectural state is saved in the thread’s current SSA 
frame, which is pointed to by TCS.CSSA. An SSA frame must be page aligned, and contains the following regions:
• The XSAVE region starts at the base of the SSA frame, this region contains extended feature register state in 

an XSAVE/FXSAVE-compatible non-compacted format.
• A Pad region: software may choose to maintain a pad region separating the XSAVE region and the MISC 

region. Software choose the size of the pad region according to the sizes of the MISC and GPRSGX regions.
• The GPRSGX region. The GPRSGX region is the last region of an SSA frame (see Table 38-7). This is used to 

hold the processor general purpose registers (RAX … R15), the RIP, the outside RSP and RBP, RFLAGS and the 
AEX information. 

• The MISC region (If CPUIDEAX=12H, ECX=0):EBX[31:0] != 0). The MISC region is adjacent to the GRPSGX 
region, and may contain zero or more components of extended information that would be saved when an AEX 
occurs. If the MISC region is absent, the region between the GPRSGX and XSAVE regions is the pad region 
that software can use. If the MISC region is present, the region between the MISC and XSAVE regions is the 
pad region that software can use. See additional details in Section 38.9.2.

...

38.9.2 MISC Region
The layout of the MISC region is shown in Table 38-11. The number of components that the processor supports in 
the MISC region corresponds to the set bits of CPUID.(EAX=12H, ECX=0):EBX[31:0] set to 1. Each set bit in 
CPUID.(EAX=12H, ECX=0):EBX[31:0] has a defined size for the corresponding component, as shown in Table 38-
11. Enclave writers needs to do the following:
• Decide which MISC region components will be supported for the enclave.
• Allocate an SSA frame large enough to hold the components chosen above.
• Instruct each enclave builder software to set the appropriate bits in SECS.MISCSELECT.
The first component, EXINFO, starts next to the GPRSGX region. Additional components in the MISC region grow 
in ascending order within the MISC region towards the XSAVE region.
The size of the MISC region is calculated as follows:
• If CPUID.(EAX=12H, ECX=0):EBX[31:0] = 0, MISC region is not supported. 

Table 38-7    Top-to-Bottom Layout of an SSA Frame
Region Offset (Byte) Size (Bytes) Description

XSAVE 0 Calculate using CPUID 
leaf 0DH information

The size of XSAVE region in SSA is derived from the enclave’s support of the col-
lection of processor extended states that would be managed by XSAVE. The 
enablement of those processor extended state components in conjunction with 
CPUID leaf 0DH information determines the XSAVE region size in SSA.

Pad End of XSAVE 
region

Chosen by enclave 
writer

Ensure the end of GPRSGX region is aligned to the end of a 4KB page.

MISC base of GPRSGX 
–sizeof(MISC)

Calculate from high-
est set bit of 
SECS.MISCSELECT

See Section 38.9.2.

GPRSGX SSAFRAMESIZE 
–176

176 See Table 38-8 for layout of the GPRSGX region.
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• If CPUID.(EAX=12H, ECX=0):EBX[31:0] != 0, the size of MISC region is derived from sum of the highest bit 
set in SECS.MISCSELECT and the size of the MISC component corresponding to that bit. Offset and size 
information of currently defined MISC components are listed in Table 38-11. For example, if the highest bit set 
in SECS.MISCSELECT is bit 0, the MISC region offset is OFFSET(GPRSGX)-16 and size is 16 bytes.

• The processor saves a MISC component i in the MISC region if and only if SECS.MISCSELECT[i] is 1.

...

38.9.2.2  Page Fault Error Codes
Table 38-13 contains page fault error code that may be reported in EXINFO.ERRCD. 

...

38.11.2 PAGE_TYPE Field Definition
The SECINFO flags and EPC flags contain bits indicating the type of page. 

Table 38-11    Layout of MISC region of the State Save Area
MISC Components OFFSET (Bytes) Size (Bytes) Description

EXINFO Offset(GPRSGX) –16 16 if CPUID.(EAX=12H, ECX=0):EBX[0] = 1, exception information on #GP or 
#PF that occurred inside an enclave can be written to the EXINFO structure 
if specified by SECS.MISCSELECT[0] = 1.

Future Extension Below EXINFO TBD Reserved. (Zero size if CPUID.(EAX=12H, ECX=0):EBX[31:1] =0).

Table 38-13    Page Fault Error Codes
Name Bit Position Description

P 0 Same as non-SGX page fault exception P flag.

W/R 1 Same as non-SGX page fault exception W/R flag.

U/S1 2 Always set to 1 (user mode reference).

RSVD 3 Same as non-SGX page fault exception RSVD flag.

I/D 4 Same as non-SGX page fault exception I/D flag.

PK 5 Protection Key induced fault.

RSVD 14:6 Reserved.

SGX 15 EPCM induced fault.

RSVD 31:5 Reserved.

NOTES:
1.Page faults incident to enclave mode that report U/S=0 are not reported in EXINFO

Table 38.17    Supported PAGE_TYPE
TYPE Value Description

PT_SECS 0 Page is an SECS.

PT_TCS 1 Page is a TCS.
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38.12 PAGING CRYPTO METADATA (PCMD)
The PCMD structure is used to keep track of crypto meta-data associated with a paged-out page. Combined with 
PAGEINFO, it provides enough information for the processor to verify, decrypt, and reload a paged-out EPC page. 
The size of the PCMD structure (128 bytes) is architectural. 
EWB calculates the Message Authentication Code (MAC) value and writes out the PCMD. ELDB/U reads the fields 
and checks the MAC.
The format of PCMD is as follows:

38.13 ENCLAVE SIGNATURE STRUCTURE (SIGSTRUCT)
SIGSTRUCT is a structure created and signed by the enclave developer that contains information about the 
enclave. SIGSTRUCT is processed by the EINIT leaf function to verify that the enclave was properly built.
SIGSTRUCT includes ENCLAVEHASH as SHA256 digest, as defined in FIPS PUB 180-4. The digests are byte strings 
of length 32. Each of the 8 HASH dwords is stored in little-endian order.
SIGSTRUCT includes four 3072-bit integers (MODULUS, SIGNATURE, Q1, Q2). Each such integer is represented 
as a byte strings of length 384, with the most significant byte at the position “offset + 383”, and the least signifi-
cant byte at position “offset”.
The (3072-bit integer) SIGNATURE should be an RSA signature, where: a) the RSA modulus (MODULUS) is a 
3072-bit integer; b) the public exponent is set to 3; c) the signing procedure uses the EMSA-PKCS1-v1.5 format 
with DER encoding of the “DigestInfo” value as specified in of PKCS#1 v2.1/RFC 3447.
The 3072-bit integers Q1 and Q2 are defined by:
q1 = floor(Signature^2 / Modulus);
q2 = floor((Signature^3 - q1 * Signature * Modulus) / Modulus);
SIGSTRUCT must be page aligned
In column 5 of Table 38-19, ‘Y’ indicates that this field should be included in the signature generated by the devel-
oper.

PT_REG 2 Page is a regular page.

PT_VA 3 Page is a Version Array.

PT_TRIM 4 Page is in trimmed state.

All other Reserved.

Table 38.17    Supported PAGE_TYPE
TYPE Value Description

Table 38-18    Layout of PCMD Data Structure
Field OFFSET (Bytes) Size (Bytes) Description

SECINFO 0 64 Flags describing the state of the enclave page; R/W by software.

ENCLAVEID 64 8 Enclave Identifier used to establish a cryptographic binding between paged-out 
page and the enclave.

RESERVED 72 40 Must be zero.

MAC 112 16 Message Authentication Code for the page, page meta-data and reserved 
field.
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...

38.14 EINIT TOKEN STRUCTURE (EINITTOKEN)
The EINIT token is used by EINIT to verify that the enclave is permitted to launch. EINIT token is generated by an 
enclave in possession of the EINITTOKEN key (the Launch Enclave).
EINIT token must be 512-Byte aligned.

38.15 REPORT (REPORT)
The REPORT structure is the output of the EREPORT instruction, and must be 512-Byte aligned.

Table 38-20    Layout of EINIT Token (EINITTOKEN)
Field OFFSET (Bytes) Size (Bytes) MACed Description

Valid 0 4 Y Bit 0: 1: Valid; 0: Invalid. 
All other bits reserved.

RESERVED 4 44 Y Must be zero.

ATTRIBUTES 48 16 Y ATTRIBUTES of the Enclave.

MRENCLAVE 64 32 Y MRENCLAVE of the Enclave.

RESERVED 96 32 Y Reserved.

MRSIGNER 128 32 Y MRSIGNER of the Enclave.

RESERVED 160 32 Y Reserved.

CPUSVNLE 192 16 N Launch Enclave’s CPUSVN.

ISVPRODIDLE 208 02 N Launch Enclave’s ISVPRODID.

ISVSVNLE 210 02 N Launch Enclave’s ISVSVN.

RESERVED 212 24 N Reserved.

MASKEDMISCSEL
ECTLE

236 4 Launch Enclave’s MASKEDMISCSELECT: set by the LE to the resolved 
MISCSELECT value, used by EGETKEY (after applying KEYREQUEST’s 
masking).

MASKEDATTRIBU
TESLE

240 16 N Launch Enclave’s MASKEDATTRIBUTES: This should be set to the LE’s 
ATTRIBUTES masked with ATTRIBUTEMASK of the LE’s KEYREQUEST.

KEYID 256 32 N Value for key wear-out protection.

MAC 288 16 N Message Authentication Code on EINITTOKEN using EINITOKENKEY.

Table 38-21    Layout of REPORT 
Field OFFSET (Bytes) Size (Bytes) Description

CPUSVN 0 16 The security version number of the processor.

MISCSELECT 16 4 Bit vector specifying which extended features are saved to the MISC region of the 
SSA frame when an AEX occurs.

RESERVED 20 28 Must be zero.

ATTRIBUTES 48 16 ATTRIBUTES of the Enclave. See Section 38.7.1.

MRENCLAVE 64 32 The value of SECS.MRENCLAVE.
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38.15.1 REPORTDATA
REPORTDATA is a 64-Byte data structure that is provided by the enclave and included in the REPORT. It can be 
used to securely pass information from the enclave to the target enclave. 

...

38.17 KEY REQUEST (KEYREQUEST)
This structure is an input parameter to the EGETKEY leaf function. It is passed in as an effective address in RBX 
and must be 512-Byte aligned. It is used for selecting the appropriate key and any additional parameters required 
in the derivation of that key.

...

38.17.1 KEY REQUEST KeyNames

...

RESERVED 96 32 Reserved.

MRSIGNER 128 32 The value of SECS.MRSIGNER.

RESERVED 160 96 Zero.

ISVPRODID 256 02 Product ID of enclave.

ISVSVN 258 02 Security version number (SVN) of the enclave.

RESERVED 260 60 Zero.

REPORTDATA 320 64 Data provided by the user and protected by the REPORT's MAC, see Section 
38.15.1.

KEYID 384 32 Value for key wear-out protection.

MAC 416 16 Message Authentication Code on the report using report key.

Table 38-21    Layout of REPORT 
Field OFFSET (Bytes) Size (Bytes) Description

Table 38-24    Supported KEYName Values
Key Name Value Description

EINITOKEN_KEY 0 EINIT_TOKEN key

PROVISION_KEY 1 Provisioning Key

PROVISION_SEAL_KEY 2 Provisioning Seal Key

REPORT_KEY 3 Report Key

SEAL_KEY 4 Seal Key

All other Reserved
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38.19 ENCLAVE PAGE CACHE MAP (EPCM)
EPCM is a secure structure used by the processor to track the contents of the EPC. The EPCM holds exactly one 
entry for each page that is currently loaded into the EPC. EPCM is not accessible by software, and the layout of 
EPCM fields is implementation specific.

1. The application hands over the enclave content along with additional information required by the enclave 
creation API to the enclave creation service running at privilege level 0.

2. The enclave creation service running at privilege level 0 uses the ECREATE leaf function to set up the initial 
environment, specifying base address and size of the enclave. This address range, the ELRANGE, is part of the 
application's address space. This reserves the memory range. The enclave will now reside in this address 
region. ECREATE also allocates an Enclave Page Cache (EPC) page for the SGX Enclave Control Structure 
(SECS). Note that this page is not required to be a part of the enclave linear address space and is not required 
to be mapped into the process. 

3. The enclave creation service uses the EADD leaf function to commit EPC pages to the enclave, and use 
EEXTEND to measure the committed memory content of the enclave. For each page to be added to the 
enclave:

— Use EADD to add the new page to the enclave. 

— If the enclave developer requires measurement of the page as a proof for the content, use EEXTEND to 
add a measurement for 256 bytes of the page. Repeat this operation until the entire page is measured. 

4. The enclave creation service uses the EINIT leaf function to complete the enclave creation process and finalize 
the enclave measurement to establish the enclave identity. Until an EINIT is executed, the enclave is not 
permitted to execute any enclave code (i.e. entering the enclave by executing EENTER would result in a fault).

...

Table 38-27   Content of an Enclave Page Cache Map Entry
Field Description

VALID Indicates whether the EPCM entry is valid.

R Read access; indicates whether enclave accesses for reads are allowed from the EPC page referenced by this 
entry.

W Write access; indicates whether enclave accesses for writes are allowed to the EPC page referenced by this 
entry.

X Execute access; indicates whether enclave accesses for instruction fetches are allowed from the EPC page 
referenced by this entry.

PT EPCM page type (PT_SECS, PT_TCS, PT_REG, PT_VA, PT_TRIM).

ENCLAVESECS SECS identifier of the enclave to which the EPC page belongs.

ENCLAVEADDRESS Linear enclave address of the EPC page.

BLOCKED Indicates whether the EPC page is in the blocked state.

PENDING Indicates whether the EPC page is in the pending state.

MODIFIED Indicates whether the EPC page is in the modified state.

PR Indicates whether the EPC page is in a permission restriction state.
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31. Updates to Chapter 39, Volume 3D
Change bars show changes to Chapter 39 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3D: System Programming Guide, Part 4.

------------------------------------------------------------------------------------------
The following aspects of enclave operation are described in this chapter:
• Enclave creation: Includes loading code and data from outside of enclave into the EPC and establishing the 

enclave entity.
• Adding pages and measuring the enclave.
• Initialization of an enclave: Finalizes the cryptographic log and establishes the enclave identity and sealing 

identity.
• Enclave entry and exiting including:

— Controlled entry and exit.

— Asynchronous Enclave Exit (AEX) and resuming execution after an AEX.

39.1 CONSTRUCTING AN ENCLAVE
Figure 39-1 illustrates a typical Enclave memory layout. 

The enclave creation, commitment of memory resources, and finalizing the enclave’s identity with measurement 
comprises multiple phases. This process can be illustrated by the following exemplary steps:

...

Figure 39-1    Enclave Memory Layout
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39.1.2 EADD and EEXTEND Interaction
Once the SECS has been created, enclave pages can be added to the enclave via EADD. This involves converting 
a free EPC page into either a PT_REG or a PT_TCS page.
When EADD is invoked, the processor will update the EPCM entry with the type of page (PT_REG or PT_TCS), the 
linear address used by the enclave to access the page, and the enclave access permissions for the page. It asso-
ciates the page to the SECS provided as input. The EPCM entry information is used by hardware to manage access 
control to the page. EADD records EPCM information in the cryptographic log stored in the SECS and copies 4 
KBytes of data from unprotected memory outside the EPC to the allocated EPC page.
System software is responsible for selecting a free EPC page. System software is also responsible for providing 
the type of page to be added, the attributes the page, the contents of the page, and the SECS (enclave) to which 
the page is to be added as requested by the application. Incorrect data would lead to a failure of EADD or to an 
incorrect cryptographic log and a failure at EINIT time.
After a page has been added to an enclave, software can measure a 256 byte region as determined by the devel-
oper by invoking EEXTEND. Thus to measure an entire 4KB page, system software must execute EEXTEND 16 
times. Each invocation of EEXTEND adds to the cryptographic log information about which region is being 
measured and the measurement of the section.
Entries in the cryptographic log define the measurement of the enclave and are critical in gaining assurance that 
the enclave was correctly constructed by the untrusted system software.

39.1.3 EINIT Interaction
Once system software has completed the process of adding and measuring pages, the enclave needs to be initial-
ized by the EINIT leaf function. After an enclave is initialized, EADD and EEXTEND are disabled for that enclave 
(An attempt to execute EADD/EEXTEND to enclave after enclave initialization will result in a fault). The initializa-
tion process finalizes the cryptographic log and establishes the enclave identity and sealing identity used by 
EGETKEY and EREPORT.
A cryptographic hash of the log is stored as the enclave identity. Correct construction of the enclave results in 
the cryptographic hash matching the one built by the enclave owner and included as the ENCLAVEHASH field of 
SIGSTRUCT. The enclave identity provided by the EREPORT leaf function can be verified by a remote party. 
The EINIT leaf function checks the EINIT token to validate that the enclave has been enabled on this platform. If 
the enclave is not correctly constructed, or the EINIT token is not valid for the platform, or SIGSTRUCT isn't prop-
erly signed, then EINIT will fail. See the EINIT leaf function for details on the error reporting. 
The enclave identity is a cryptographic hash that reflects the enclave attributes and MISCSELECT value, content 
of the enclave, the order in which it was built, the addresses it occupies in memory, the security attributes, and 
access right permissions of each page. The enclave identity is established by the EINIT leaf function.
The sealing identity is managed by a sealing authority represented by the hash of the public key used to sign 
the SIGSTRUCT structure processed by EINIT. The sealing authority assigns a product ID (ISVPRODID) and secu-
rity version number (ISVSVN) to a particular enclave identity.
EINIT establishes the sealing identity using the following steps:
1. Verifies that SIGSTRUCT is properly signed using the public key enclosed in the SIGSTRUCT.
2. Checks that the measurement of the enclave matches the measurement of the enclave specified in 
SIGSTRUCT.
3. Checks that the enclave’s attributes and MISCSELECT values are compatible with those specified in 
SIGSTRUCT.
4. Finalizes the measurement of the enclave and records the sealing identity (the sealing authority, product id 
and security version number) and enclave identity in the SECS.
5. Sets the ATTRIBUTES.INIT bit for the enclave.
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39.1.4 Intel® SGX Launch Control Configuration
Intel® SGX Launch Control is a set of controls that govern the creation of enclaves. Before the EINIT leaf function 
will successfully initialize an enclave, a designated Launch Enclave must create an EINITTOKEN for that enclave. 
Launch Enclaves have SECS.ATTRIBUTES.EINITTOKENKEY = 1, granting them access to the EINITTOKENKEY 
from the EGETKEY leaf function. EINITTOKENKEY must be used by the Launch Enclave when computing EINIT-
TOKEN.MAC, the Message Authentication Code of the EINITTOKEN. 
The hash of the public key used to sign the SIGSTRUCT of the Launch Enclave must equal the value in the 
IA32_SGXLEPUBKEYHASH MSRs. Only Launch Enclaves are allowed to launch without a valid token. 
The IA32_SGXLEPUBKEYHASH MSRs are provided to designate the platform’s Launch Enclave. 
IA32_SGXLEPUBKEYHASH defaults to digest of Intel’s launch enclave signing key after reset. 
IA32_FEATURE_CONTROL bit 17 controls the permissions on the IA32_SGXLEPUBKEYHASH MSRs when 
CPUID.(EAX=12H, ECX=00H):EAX[0] = 1. If IA32_FEATURE_CONTROL is locked with bit 17 set, 
IA32_SGXLEPUBKEYHASH MSRs are reconfigurable (writeable). If either IA32_FEATURE_CONTROL is not locked 
or bit 17 is clear, the MSRs are read only. By leaving these MSRs writable, system SW or a VMM can support a 
plurality of Launch Enclaves for hosting multiple execution environments. See Section 42.3.2 for more details. 

39.2 ENCLAVE ENTRY AND EXITING

39.2.1 Controlled Entry and Exit
The EENTER leaf function is the method to enter the enclave under program control. To execute EENTER, software 
must supply an address of a TCS that is part of the enclave to be entered. The TCS holds the location inside the 
enclave to transfer control to and a pointer to the SSA frame inside the enclave that an AEX should store the 
register state to. 
When a logical processor enters an enclave, the TCS is considered busy until the logical processors exits the 
enclave. An attempt to enter an enclave through a busy TCS results in a fault. Intel® SGX allows an enclave 
builder to define multiple TCSs, thereby providing support for multithreaded enclaves. 
Software must also supply to EENTER the Asynchronous Exit Pointer (AEP) parameter. AEP is an address external 
to the enclave which an exception handler will return to using IRET. Typically the location would contain the 
ERESUME instruction. ERESUME transfers control back to the enclave, to the address retrieved from the enclave 
thread’s saved state. 
EENTER performs the following operations:

1. Check that TCS is not busy and flush all cached linear-to-physical mappings. 

2. Change the mode of operation to be in enclave mode. 

3. Save the old RSP, RBP for later restore on AEX (Software is responsible for setting up the new RSP, RBP to be 
used inside enclave). 

4. Save XCR0 and replace it with the XFRM value for the enclave. 

5. Check if software wishes to debug (applicable to a debuggable enclave):

— If not debugging, then configure hardware so the enclave appears as a single instruction. 

— If debugging, then configure hardware to allow traps, breakpoints, and single steps inside the enclave.

6. Set the TCS as busy.

7. Transfer control from outside enclave to predetermined location inside the enclave specified by the TCS.
The EEXIT leaf function is the method of leaving the enclave under program control. EEXIT receives the target 
address outside of the enclave that the enclave wishes to transfer control to. It is the responsibility of enclave 
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software to erase any secret from the registers prior to invoking EEXIT. To allow enclave software to easily 
perform an external function call and re-enter the enclave (using EEXIT and EENTER leaf functions), EEXIT 
returns the value of the AEP that was used when the enclave was entered. 
EEXIT performs the following operations:

1. Clear enclave mode and flush all cached linear-to-physical mappings. 

2. Mark TCS as not busy. 

3. Transfer control from inside the enclave to a location on the outside specified as parameter to the EEXIT leaf 
function.

...

39.2.3.1  ERESUME Interaction
ERESUME restores registers depending on the mode of the enclave (32 or 64 bit).
• In 32-bit mode (IA32_EFER.LMA = 0 || CS.L = 0), the low 32-bits of the legacy registers (EAX, EBX, ECX, 

EDX, ESP, EBP, ESI, EDI, EIP and EFLAGS) are restored from the thread’s GPR area of the current SSA frame. 
Neither the upper 32 bits of the legacy registers nor the 64-bit registers (R8 … R15) are loaded. 

• In 64-bit mode (IA32_EFER.LMA = 1 && CS.L = 1), all 64 bits of the general processor registers (RAX, RBX, 
RCX, RDX, RSP, RBP, RSI, RDI, R8 … R15, RIP and RFLAGS) are loaded.

Extended features specified by SECS.ATTRIBUTES.XFRM are restored from the XSAVE area of the current SSA 
frame. The layout of the x87 area depends on the current values of IA32_EFER.LMA and CS.L:
• IA32_EFER.LMA = 0 || CS.L = 0

— 32-bit load in the same format that XSAVE/FXSAVE uses with these values.
• IA32_EFER.LMA = 1 && CS.L = 1

— 64-bit load in the same format that XSAVE/FXSAVE uses with these values as if REX.W = 1.

...

39.3.2 Register Preservation
As with most systems, it is the responsibility of the callee to preserve all registers except that used for returning 
a value. This is consistent with conventional usage and tends to optimize the number of register save/restore 
operations that need be performed. It has the additional security result that it ensures that data is scrubbed from 
any registers that were used by enclave to temporarily contain secrets.

...

39.4.2.1  Enclave Security Version
In the SIGSTRUCT, the MRSIGNER is associated with a 16-bit Product ID (ISVPRODID) and a 16 bit integer SVN 
(ISVSVN). Together they define a specific group of versions of a specific product. Most keys, including the Seal 
Key, can be bound to this pair. 
To support upgrading from one release to another, EGETKEY will return keys corresponding to any value less than 
or equal to the software's ISVSVN.
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39.4.2.2  Hardware Security Version
CPUSVN is a 128 bit value that reflects the microcode update version and authenticated code modules supported 
by the processor. Unlike ISVSVN, CPUSVN is not an integer and cannot be compared mathematically. Not all 
values are valid CPUSVNs. 
Software must ensure that the CPUSVN provided to EGETKEY is valid. EREPORT will return the CPUSVN of the 
current environment. Software can execute EREPORT with TARGETINFO set to zeros to retrieve a CPUSVN from 
REPORTDATA. Software can access keys for a CPUSVN recorded previously, provided that each of the elements 
reflected in CPUSVN are the same or have been upgraded.

39.4.3 Keys
Intel® SGX provides software with access to keys unique to each processor and rooted in HW keys inserted into 
the processor during manufacturing. 
Each enclave requests keys using the EGETKEY leaf function. The key is based on enclave parameters such as 
measurement, the enclave signing key, security attributes of the enclave, and the Hardware Security version of 
the processor itself. A full list of parameter options is specified in the KEYREQUEST structure, see details in 
Section 38.17. 
By deriving keys using enclave properties, SGX guarantees that if two enclaves call EGETKEY, they will receive a 
unique key only accessible by the respective enclave. It also guarantees that the enclave will receive the same 
key on every future execution of EGETKEY. Some parameters are optional or configurable by software. For 
example, a Seal key can be based on the signer of the enclave, resulting in a key available to multiple enclaves 
signed by the same party.
The EGETKEY leaf function provides several key types. Each key is specific to the processor, CPUSVN, and the 
enclave that executed EGETKEY. The EGETKEY instruction definition details how each of these keys is derived, see 
Table 41-56. Additionally,
• SEAL Key: The Seal key is a general purpose key for the enclave to use to protect secrets. Typical uses of the 

Seal key are encrypting and calculating MAC of secrets on disk. There are 2 types of Seal Key described in 
Section 39.4.3.1. 

• REPORT Key: This key is used to compute the MAC on the REPORT structure. The EREPORT leaf function is 
used to compute this MAC, and destination enclave uses the Report key to verify the MAC. The software usage 
flow is detailed in Section 39.4.3.2. 

• EINITOKENKEY: This key is used by Launch Enclaves to compute the MAC on EINITTOKENs. These tokens are 
then verified in the EINIT leaf function. The key is only available to enclaves with ATTRIBUTE.EINITTOKENKEY set 
to 1. 

• PROVISIONING Key and PROVISIONING SEAL Key: These keys are used by attestation key provisioning 
software to prove to remote parties that the processor is genuine and identify the currently executing TCB. 
These keys are only available to enclaves with ATTRIBUTE.PROVISIONKEY set to 1.

...

39.4.3.2  Using REPORTs for Local Attestation
SGX provides a means for enclaves to securely identify one another, this is referred to as “Local Attestation”. SGX 
provides a hardware assertion, REPORT that contains calling enclaves Attributes, Measurements and User 
supplied data (described in detail in Section 38.15). Figure 39-3 shows the basic flow of information.

1. The source enclave determines the identity of the target enclave to populate TARGETINFO. 

2. The source enclave calls EREPORT instruction to generate a REPORT structure. The EREPORT instruction 
conducts the following:

— Populates the REPORT with identify information about the calling enclave. 



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 719

— Derives the Report Key that is returned when the target enclave executes the EGETKEY. TARGETINFO 
provides information about the target.

— Computes a MAC over the REPORT using derived target enclave Report Key.

3. Non-enclave software copies the REPORT from source to destination. 

4. The target enclave executes the EGETKEY instruction to request its REPORT key, which is the same key used 
by EREPORT at the source. 

5. The target enclave verifies the MAC and can then inspect the REPORT to identify the source.

39.5 EPC AND MANAGEMENT OF EPC PAGES
EPC layout is implementation specific, and is enumerated through CPUID (see Table 37-6 for EPC layout). EPC is 
typically configured by BIOS at system boot time.

39.5.1 EPC Implementation
EPC must be properly protected against attacks. One example of EPC implementation could use a Memory 
Encryption Engine (MEE). An MEE provides a cost-effective mechanism of creating cryptographically protected 
volatile storage using platform DRAM. These units provide integrity, replay, and confidentiality protection. Details 
are implementation specific.

39.5.2 OS Management of EPC Pages
The EPC is a finite resource. SGX1 (i.e. CPUID.(EAX=12H, ECX=0):EAX.SGX1 = 1 but CPUID.(EAX=12H, 
ECX=0):EAX.SGX2 = 0) provides the EPC manager with leaf functions to manage this resource and properly swap 
pages out of and into the EPC. For that, the EPC manager would need to keep track of all EPC entries, type and 
state, context affiliation, and SECS affiliation.
Enclave pages that are candidates for eviction should be moved to BLOCKED state using EBLOCK instruction that 
ensures no new cached virtual to physical address mappings can be created by attempts to reference a BLOCKED 
page.

Figure 39-3     SGX Local Attestation
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Before evicting blocked pages, EPC manager should execute ETRACK leaf function on that enclave and ensure 
that there are no stale cached virtual to physical address mappings for the blocked pages remain on any thread 
on the platform.
After removing all stale translations from blocked pages, system software should use the EWB leaf function for 
securely evicting pages out of the EPC. EWB encrypts a page in the EPC, writes it to unprotected memory, and 
invalidates the copy in EPC. In addition, EWB also creates a cryptographic MAC (PCMD.MAC) of the page and 
stores it in unprotected memory. A page can be reloaded back to the processor only if the data and MAC match. 
To ensure that the only latest version of the evicted page can be loaded back, the version of the evicted page is 
stored securely in a Version Array (VA) in EPC.
SGX1 includes two instructions for reloading pages that have been evicted by system software: ELDU and ELDB. 
The difference between the two instructions is the value of the paging state at the end of the instruction. ELDU 
results in a page being reloaded and set to an UNBLOCKED state, while ELDB results in a page loaded to a 
BLOCKED state.
ELDB is intended for use by a Virtual Machine Monitor (VMM). When a VMM reloads an evicted page, it needs to 
restore it to the correct state of the page (BLOCKED vs. UNBLOCKED) as it existed at the time the page was 
evicted. Based on the state of the page at eviction, the VMM chooses either ELDB or ELDU.

39.5.3 Eviction of Enclave Pages
Intel SGX paging is optimized to allow the Operating System (OS) to evict multiple pages out of the EPC under a 
single synchronization.
The suggested flow for evicting a list of pages from the EPC is: 

1. For each page to be evicted from the EPC:

a. Select an empty slot in a Version Array (VA) page.

• If no empty VA page slots exist, create a new VA page using the EPA leaf function.

b. Remove linear-address to physical-address mapping from the enclave contexts’s mapping tables (page 
table and EPT tables). 

c. Execute the EBLOCK leaf function for the target page. This sets the target page state to BLOCKED. At this 
point no new mappings of the page will be created. So any access which does not have the mapping 
cached in the TLB will generate a #PF.

2. For each enclave containing pages selected in step 1:

— Execute an ETRACK leaf function pointing to that enclave’s SECS. This initiates the tracking process that 
ensures that all caching of linear-address to physical-address translations for the blocked pages is cleared.

3. For all logical processors executing in processes (OS) or guests (VMM) that contain the enclaves selected in 
step 1:

— Issue an IPI (inter-processor interrupt) to those threads. This causes those logical processors to 
asynchronously exit any enclaves they might be in, and as a result flush cached linear-address to 
physical-address translations that might hold stale translations to blocked pages. There is no need for 
additional measures such as performing a “TLB shootdown”.

4. After enclaves exit, allow logical processors can resume normal operation, including enclave re-entry as the 
tracking logic keeps track of the activity. 

5. For each page to be evicted:

— Evict the page using the EWB leaf function with parameters include the effective-address pointer to the 
EPC page, the VA slot, a 4K byte buffer to hold the encrypted page contents, and a 128 byte buffer to hold 
page metadata. The last three elements are tied together cryptographically and must be used to later 
reload the page.
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At this point, system software has the only copy of each page data encrypted with its page metadata in main 
memory. 

39.5.4 Loading an Enclave Page
To reload a previously evicted page, system software needs four elements: the VA slot used when the page was 
evicted, a buffer containing the encrypted page contents, a buffer containing the page metadata, and the parent 
SECS to associate this page with. If the VA page or the parent SECS are not already in the EPC, they must be 
reloaded first.

1. Execute ELDB/ELDU (depending on the desired BLOCKED state for the page), passing as parameters: the EPC 
page linear address, the VA slot, the encrypted page, and the page metadata. 

2. Create a mapping in the enclave context’s mapping tables (page tables and EPT tables) to allow the 
application to access that page (OS: system page table; VMM: EPT).

The ELDB/ELDU instruction marks the VA slot empty so that the page cannot be replayed at a later date.

...

39.5.7 Allocating a Regular Page
On processors that support SGX2, allocating a new page to an already initialized enclave is accomplished by 
invoking the EAUG leaf function. Typically, the enclave requests that the OS allocate a new page at a particular 
location within the enclave’s address space. Once allocated, the page remains in a pending state until the enclave 
executes the corresponding EACCEPT leaf function to accept the new page into the enclave. Page allocation oper-
ations may be batched to improve efficiency. 
The typical process for allocating a regular page is as follows: 

1. Enclave requests additional memory from OS when the current allocation becomes insufficient. 

2. The OS invokes the EAUG leaf function to add a new memory page to the enclave. 

a. EAUG may only be called on a free EPC page. 

b. Successful completion of the EAUG instruction places the target page in the VALID and PENDING state. 

c. All dynamically created pages have the type PT_REG and content of all zeros. 

3. The OS maps the page in the enclave context's mapping tables.

4. The enclave issues an EACCEPT instruction, which verifies the page’s attributes and clears the PENDING state. 
At that point the page becomes accessible for normal enclave use. 

39.5.8 Allocating a TCS Page 
On processors that support SGX2, allocating a new TCS page to an already initialized enclave is a two-step 
process. First the OS allocates a regular page with a call to EAUG. This page must then be accepted and initialized 
by the enclave to which it belongs. Once the page has been initialized with appropriate values for a TCS page, the 
enclave requests the OS to change the page’s type to PT_TCS. This change must also be accepted. As with allo-
cating a regular page, TCS allocation operations may be batched. 
A typical process for allocating a TCS page is as follows: 

1. Enclave requests an additional page from the OS. 

2. The OS invokes EAUG to add a new regular memory page to the enclave. 

a. EAUG may only be called on a free EPC page. 
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b. Successful completion of the EAUG instruction places the target page in the VALID and PENDING state. 

3. The OS maps the page in the enclave context's mapping tables.

4. The enclave issues an EACCEPT instruction, at which point the page becomes accessible for normal enclave 
use. 

5. The enclave initializes the contents of the new page. 

6. The enclave requests that the OS convert the page from type PT_REG to PT_TCS. 

7. OS issues an EMODT instruction on the page. 

a. The parameters to EMODT indicate that the regular page should be converted into a TCS. 

b. EMODT forces all access rights to a page to be removed because TCS pages may not be accessed by 
enclave code. 

8. The enclave issues an EACCEPT instruction to confirm the requested modification. 

39.5.9 Trimming a Page 
On processors that support SGX2, Intel SGX supports the trimming of an enclave page as a special case of 
EMODT. Trimming allows an enclave to actively participate in the process of removing a page from the enclave 
(deallocation) by splitting the process into first removing it from the enclave's access and then removing it from 
the EPC using the EREMOVE leaf function. The page type PT_TRIM indicates that a page has been trimmed from 
the enclave’s address space and that the page is no longer accessible to enclave software. Modifications to a page 
in the PT_TRIM state are not permitted; the page must be removed and then reallocated by the OS before the 
enclave may use the page again. Page deallocation operations may be batched to improve efficiency. 
The typical process for trimming a page from an enclave is as follows: 

1. Enclave signals OS that a particular page is no longer in use. 

2. OS invokes the EMODT leaf function on the page, requesting that the page’s type be changed to PT_TRIM. 

a. SECS and VA pages cannot be trimmed in this way, so the initial type of the page must be PT_REG or 
PT_TCS.

b. EMODT may only be called on valid enclave pages.

3. OS invokes the ETRACK leaf function on the enclave containing the page to track removal the TLB addresses 
from all the processors.

4. Issue an IPI (inter-processor interrupt) to flush the stale linear-address to physical-address translations for all 
logical processors executing in processes that contain the enclave.

5. Enclave issues an EACCEPT leaf function. 

6. The OS may now permanently remove the page from the EPC (by issuing EREMOVE). 

39.5.10 Restricting the EPCM Permissions of a Page 
On processors that support SGX2, restricting the EPCM permissions associated with an enclave page is accom-
plished using the EMODPR leaf function. This operation requires the cooperation of the OS to flush stale entries to 
the page and to update the page-table permissions of the page to match. Permissions restriction operations may 
be batched. 
The typical process for restricting the permissions of an enclave page is as follows: 

1. Enclave requests that the OS to restrict the permissions of an EPC page. 

2. OS performs permission restriction, flushing cached linear-address to physical-address translations, and 
page-table modifications.
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a. Invokes the EMODPR leaf function to restrict permissions (EMODPR may only be called on VALID pages).

b. Invokes the ETRACK leaf function on the enclave containing the page to track removal of the TLB 
addresses from all the processor.

c. Issue an IPI (inter-processor interrupt) to flush the stale linear-address to physical-address translations 
for all logical processors executing in processes that contain the enclave.

d. Sends IPIs to trigger enclave thread exit and TLB shootdown. 

e. OS informs the Enclave that all logical processors should now see the new restricted permissions.

3. Enclave invokes the EACCEPT leaf function.

a. Enclave may access the page throughout the entire process.

b. Successful call to EACCEPT guarantees that no stale cached linear-address to physical-address transla-
tions are present.

39.5.11 Extending the EPCM Permissions of a Page 
On processors that support SGX2, extending the EPCM permissions associated with an enclave page is accom-
plished directly be the enclave using the EMODPE leaf function. After performing the EPCM permission extension, 
the enclave requests the OS to update the page table permissions to match the extended permission. Security 
wise, permission extension does not require enclave threads to leave the enclave as TLBs with stale references to 
the more restrictive permissions will be flushed on demand, but to allow forward progress, an OS needs to be 
aware that an application might signal a page fault. 
The typical process for extending the permissions of an enclave page is as follows:

1. Enclave invokes EMODPE to extend the EPCM permissions associated with an EPC page (EMODPE may only be 
called on VALID pages).

2. Enclave requests that OS update the page tables to match the new EPCM permissions. 

3. Enclave code resumes.

a. If cached linear-address to physical-address translations are present to the more restrictive permissions, 
the enclave thread will page fault. The SGX2-aware OS will see that the page tables permit the access and 
resume the thread, which can now successfully access the page because exiting cleared the TLB. 

b. If cached linear-address to physical-address translations are not present, access to the page with the new 
permissions will succeed without an enclave exit. 

...

39.6.1 Illegal Instructions
The instructions listed in Table 38-1 are ring 3 instructions which become illegal when executed inside an enclave. 
Executing these instructions inside an enclave will generate an exception. 
The first row of Table 38-1 enumerates instructions that may cause a VM exit for VMM emulation. Since a VMM 
cannot emulate enclave execution, execution of any these instructions inside an enclave results in an invalid-
opcode exception (#UD) and no VM exit.
The second row of Table 38-1 enumerates I/O instructions that may cause a fault or a VM exit for emulation. 
Again, enclave execution cannot be emulated, so execution of any these instructions inside an enclave results in 
#UD.
The third row of Table 38-1 enumerates instructions that load descriptors from the GDT or the LDT or that change 
privilege level. The former class is disallowed because enclave software should not depend on the contents of the 
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descriptor tables and the latter because enclave execution must be entirely with CPL = 3. Again, execution of any 
these instructions inside an enclave results in #UD. 
The fourth row of Table 38-1 enumerates instructions that provide access to kernel information from user mode 
and can be used to aid kernel exploits from within enclave. Execution of any these instructions inside an enclave 
results in #UD

RDTSC and RDTSCP are legal inside an enclave for processors that support SGX2 (subject to the value of 
CR4.TSD). For processors which support SGX1 but not SGX2, RDTSC and RDTSCP will cause #UD.
RDTSC and RDTSCP instructions may cause a VM exit when inside an enclave.
Software developers must take into account that the RDTSC/RDTSCP results are not immune to influences by 
other software, e.g. the TSC can be manipulated by software outside the enclave.

NOTE
Some early processor implementation of Intel SGX will generate a #UD when RDTSC and RDTSCP 
are executed inside an enclave. See the model-specific processor errata for details of which 
processors treat execution of RDTSC and RDTSCP inside an enclave as illegal.

...

32. Updates to Chapter 40, Volume 3D
Change bars show changes to Chapter 40 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3D: System Programming Guide, Part 4.

------------------------------------------------------------------------------------------
Certain events, such as exceptions and interrupts, incident to (but asynchronous with) enclave execution may 
cause control to transition outside of enclave mode. (Most of these also cause a change of privilege level.) To 
protect the integrity and security of the enclave, the processor will exit the enclave (and enclave mode) before 
invoking the handler for such an event. For that reason, such events are called an enclave-exiting events 
(EEE); EEEs include external interrupts, non-maskable interrupts, system-management interrupts, exceptions, 
and VM exits.
The process of leaving an enclave in response to an EEE is called an asynchronous enclave exit (AEX). To 
protect the secrecy of the enclave, an AEX saves the state of certain registers within enclave memory and then 
loads those registers with fixed values called synthetic state.

Table 39-1    Illegal Instructions Inside an Enclave
 Instructions Result Comment

CPUID, GETSEC, RDPMC, SGDT, SIDT, SLDT, STR, VMCALL, VMFUNC #UD Might cause VM exit.

IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD #UD I/O fault may not safely recover. May require emulation.

Far call, Far jump, Far Ret, INT n/INTO, IRET, LDS/LES/LFS/LGS/LSS, 
MOV to DS/ES/SS/FS/GS, POP DS/ES/SS/FS/GS, SYSCALL, 
SYSENTER 

#UD Access segment register could change privilege level.

SMSW #UD Might provide access to kernel information.

ENCLU[EENTER], ENCLU[ERESUME] #GP Cannot enter an enclave from within an enclave.
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40.1 COMPATIBLE SWITCH TO THE EXITING STACK OF AEX
AEXs load registers with a pre-determined synthetic state. These register may be later pushed onto the appro-
priate stack in a form as defined by the enclave-exiting event. To allow enclave execution to resume after the 
invoking handler has process the enclave exiting event, the asynchronous enclave exit loads the address of tram-
poline code outside of the enclave into RIP. This trampoline code eventually returns to the enclave by means of an 
ENCLU(ERESUME) leaf function. Prior to exiting the enclave the RSP and RBP registers are restored to their values 
prior to enclave entry.
The stack to be used is chosen using the same rules as for non-SGX mode:
• If there is a privilege level change, the stack will be the one associated with the new ring. 
• If there is no privilege level change, the current application stack is used. 
• If the IA-32e IST mechanism is used, the exit stack is chosen using that method.

In all cases, the choice of exit stack and the information pushed onto it is consistent with non-SGX operation. 
Figure 40-1 shows the Application and Exiting Stacks after an exit with a stack switch. An exit without a stack 
switch uses the Application Stack. The ERESUME leaf index value is placed into RAX, the TCS pointer is placed in 
RBX and the AEP (see below) is placed into RCX to facilitate resuming the enclave after the exit.
Upon an AEX, the AEP (Asynchronous Exit Pointer) is loaded into the RIP. The AEP points to a trampoline code 
sequence which includes the ERESUME instruction that is later used to reenter the enclave. 
The following bits of RFLAGS are cleared before RFLAGS is pushed onto the exit stack: CF, PF, AF, ZF, SF, OF, RF. 
The remaining bits are left unchanged.

Figure 40-1    Exit Stack Just After Interrupt with Stack Switch
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40.2 STATE SAVING BY AEX
The State Save Area holds the processor state at the time of an AEX. To allow handling events within the enclave 
and re-entering it after an AEX, the SSA can be a stack of multiple SSA frames as illustrated in Figure 40-2.

The location of the SSA frames to be used is controlled by the following variables in the TCS and the SECS:
• Size of a frame in the State Save Area (SECS.SSAFRAMESIZE): This defines the number of 4K Byte pages in 

a single frame in the State Save Area. The SSA frame size must be large enough to hold the GPR state, the 
XSAVE state, and the MISC state. 

• Base address of the enclave (SECS.BASEADDR): This defines the enclave's base linear address from which the 
offset to the base of the SSA stack is calculated. 

• Number of State Save Area Slots (TCS.NSSA): This defines the total number of slots (frames) in the State 
Save Area stack. 

• Current State Save Area Slot (TCS.CSSA): This defines the slot to use on the next exit. 
• State Save Area (TCS.OSSA): This defines the offset of the base address of a set of State Save Area slots from 

the enclave’s base address.
When an AEX occurs, hardware selects the SSA frame to use by examining TCS.CSSA. Processor state is saved 
into the SSA frame (see Section 40.4) and loaded with a synthetic state (as described in Section 40.3.1)to avoid 
leaking secrets, RSP and RP are restored to their values prior to enclave entry, and TCS.CSSA is incremented. As 
will be described later, if an exception takes the last slot, it will not be possible to reenter the enclave to handle 
the exception from within the enclave. A subsequent ERESUME restores the processor state from the current SSA 
frame and frees the SSA frame.
The format of the XSAVE section of SSA is identical to the format used by the XSAVE/XRSTOR instructions. On 
EENTER, CSSA must be less than NSSA, ensuring that there is at least one State Save Area slot available for exits. 
If there is no free SSA frame when executing EENTER, the entry will fail.

...

Figure 40-2    The SSA Stack 
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40.3.1 Processor Synthetic State on Asynchronous Enclave Exit
Table 40-1 shows the synthetic state loaded on AEX. The values shown are the lower 32 bits when the processor 
is in 32 bit mode and 64 bits when the processor is in 64 bit mode.

...

40.3.3 Synthetic State for MISC Features
State represented by SECS.MISCSELECT might also be overridden by synthetic state after it has been saved into 
the SSA. State represented by MISCSELECT[0] is not overridden but if the exiting event is a page fault then lower 
12 bits of CR2 are cleared. 

40.4 AEX FLOW
On Enclave Exiting Events (interrupts, exceptions, VM exits or SMIs), the processor state is securely saved inside 
the enclave, a synthetic state is loaded and the enclave is exited. The EEE then proceeds in the usual exit-defined 
fashion. The following sections describes the details of an AEX:

1. The exact processor state saved into the current SSA frame depends on whether the enclave is a 32-bit or a 
64-bit enclave. In 32-bit mode (IA32_EFER.LMA = 0 || CS.L = 0), the low 32 bits of the legacy registers (EAX, 
EBX, ECX, EDX, ESP, EBP, ESI, EDI, EIP and EFLAGS) are stored. The upper 32 bits of the legacy registers and 
the 64-bit registers (R8 … R15) are not stored.

Table 40-1    GPR, x87 Synthetic States on Asynchronous Enclave Exit
Register Value

RAX 3 (ENCLU[3] is ERESUME).

RBX Pointer to TCS of interrupted enclave thread.

RCX AEP of interrupted enclave thread.

RDX, RSI, RDI 0.

RSP Restored from SSA.uRSP.

RBP Restored from SSA.uRBP.

R8-R15 0 in 64-bit mode; unchanged in 32-bit mode.

RIP AEP of interrupted enclave thread.

RFLAGS CF, PF, AF, ZF, SF, OF, RF bits are cleared. All other bits are left unchanged.

x87/SSE State Unless otherwise listed here, all x87 and SSE state are set to the INIT state. The INIT state is the state 
that would be loaded by the XRSTOR instruction with bits 1:0 both set in the requested feature bitmask 
(RFBM), and both clear in XSTATE_BV the XSAVE header.

FCW On #MF exception: set to 037EH. On all other exits: set to 037FH.

FSW On #MF exception: set to 8081H. On all other exits: set to 0H.

MXCSR On #XM exception: set to 1F01H. On all other exits: set to 1FB0H.

CR2 If the event that caused the AEX is a #PF, and the #PF does not directly cause a VM exit, then the low 
12 bits are cleared. 
If the #PF leads directly to a VM exit, CR2 is not updated (usual IA behavior).
Note: The low 12 bits are not cleared if a #PF is encountered during the delivery of the EEE that caused 
the AEX. This is because the #PF was not the EEE. 

FS, GS Restored to values as of most recent EENTER/ERESUME.
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In 64-bit mode (IA32_EFER.LMA = 1 && CS.L = 1), all 64 bits of the general processor registers (RAX, RBX,
RCX, RDX, RSP, RBP, RSI, RDI, R8 … R15, RIP and RFLAGS) are stored.
The state of those extended features specified by SECS.ATTRIBUTES.XFRM are stored into the XSAVE area
of the current SSA frame. The layout of the x87 and XMM portions (the 1st 512 bytes) depends on the
current values of IA32_EFER.LMA and CS.L:
If IA32_EFER.LMA = 0 || CS.L = 0, the same format (32-bit) that XSAVE/FXSAVE uses with these values.
If IA32_EFER.LMA = 1 && CS.L = 1, the same format (64-bit) that XSAVE/FXSAVE uses with these values
when REX.W = 1. 
The cause of the AEX is saved in the EXITINFO field. See Table 38-9 for details and values of the various
fields.
The state of those miscellaneous features (see Section 38.7.2) specified by SECS.MISCSELECT are stored into 
the MISC area of the current SSA frame.

2. Synthetic state is created for a number of processor registers to present an opaque view of the enclave state. 
Table 40-1 shows the values for GPRs, x87, SSE, FS, GS, Debug and performance monitoring on AEX. The 
synthetic state for other extended features (those controlled by XCR0[62:2]) is set to their respective INIT 
states when their corresponding bit of SECS.ATTRIBUTES.XFRM is set. The INIT state is that state as defined 
by the behavior of the XRSTOR instruction when HEADER.XSTATE_BV[n] is 0. Synthetic state of those miscel-
laneous features specified by SECS.MISCSELECT depends on the miscellaneous feature. There is no synthetic 
state required for the miscellaneous state controlled by SECS.MISCSELECT[0]. 

3. Any code and data breakpoints that were suppressed at the time of enclave entry are unsuppressed when 
exiting the enclave.

4. RFLAGS.TF is set to the value that it had at the time of the most recent enclave entry (except for the situation 
that the entry was opt-in for debug; see Section 43.2). In the SSA, RFLAGS.TF is set to 0. 

5. RFLAGS.RF is set to 0 in the synthetic state. In the SSA, the value saved is the same as what would have been 
saved on stack in the non-SGX case (architectural value of RF). Thus, AEXs due to interrupts, traps, and code 
breakpoints save RF unmodified into SSA, while AEXs due to other faults save RF as 1 in the SSA. 

If the event causing AEX happened on intermediate iteration of a REP-prefixed instruction, then RF=1 is
saved on SSA, irrespective of its priority.

6. Any performance monitoring activity (including PEBS) or profiling activity (LBR, Tracing using Intel PT) on the 
exiting thread that was suppressed due to the enclave entry on that thread is unsuppressed. Any counting 
that had been demoted from AnyThread counting to MyThread counting (on one logical processor) is 
promoted back to AnyThread counting.

40.4.1 AEX Operational Detail

Temp Variables in AEX Operational Flow

The pseudo code in this section describes the internal operations that are executed when an AEX occurs in enclave 
mode. These operations occur just before the normal interrupt or exception processing occurs.

(* Save RIP for later use *)
TMP_RIP = Linear Address of Resume RIP

Name Type Size (bits) Description

TMP_RIP Effective Address 32/64 Address of instruction at which to resume execution on ERESUME.

TMP_MODE64 binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1)).

TMP_BRANCH_RECORD LBR Record 2x64 From/To address to be pushed onto LBR stack.
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(* Is the processor in 64-bit mode? *)
TMP_MODE64  ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Save all registers, When saving EFLAGS, the TF bit is set to 0 and
the RF bit is set to what would have been saved on stack in the non-SGX case *)

 IF (TMP_MODE64 = 0)
THEN

Save EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI, EFLAGS, EIP into the current SSA frame using 
CR_GPR_PA; (* see Table 41-4 for list of CREGs used to describe internal operation within Intel SGX *)

SSA.RFLAGS.TF  0;
ELSE    (* TMP_MODE64 = 1 *)
 Save RAX, RBX, RCX, RDX, RSP, RBP, RSI, RDI, R8-R15, RFLAGS, RIP into the current SSA frame using 

CR_GPR_PA;
SSA.RFLAGS.TF  0;

FI;
Save FS and GS BASE into SSA using CR_GPR_PA;

(* store XSAVE state into the current SSA frame's XSAVE area using the physical addresses 
that were determined and cached at enclave entry time with CR_XSAVE_PAGE_i. *)

For each XSAVE state i defined by (SECS.ATTRIBUTES.XFRM[i] = 1, destination address cached in 
CR_XSAVE_PAGE_i)
   SSA.XSAVE.i  XSAVE_STATE_i;

(* Clear bytes 8 to 23 of XSAVE_HEADER, i.e. the next 16 bytes after XHEADER_BV *)

CR_XSAVE_PAGE_0.XHEADER_BV[191:64]  0;

(* Clear bits in XHEADER_BV[63:0] that are not enabled in ATTRIBUTES.XFRM *)

CR_XSAVE_PAGE_0.XHEADER_BV[63:0]  
CR_XSAVE_PAGE_0.XHEADER_BV[63:0] & SECS(CR_ACTIVE_SECS).ATTRIBUTES.XFRM;
Apply synthetic state to GPRs, RFLAGS, extended features, etc.

(* Restore the RSP and RBP from the current SSA frame's GPR area using the physical address 
that was determined and cached at enclave entry time with CR_GPR_PA. *)

RSP  CR_GPR_PA.URSP;
RBP  CR_GPR_PA.URBP;
(* Restore the FS and GS *)
FS.selector  CR_SAVE_FS.selector;
FS.base  CR_SAVE_FS.base;
FS.limit  CR_SAVE_FS.limit;
FS.access_rights  CR_SAVE_FS.access_rights;
GS.selector  CR_SAVE_GS.selector;
GS.base  CR_SAVE_GS.base;
GS.limit  CR_SAVE_GS.limit;
GS.access_rights  CR_SAVE_GS.access_rights;

(* Examine exception code and update enclave internal states*)
exception_code  Exception or interrupt vector;
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(* Indicate the exit reason in SSA *)
IF (exception_code = (#DE OR #DB OR #BP OR #BR OR #UD OR #MF OR #AC OR #XM ))

THEN
CR_GPR_PA.EXITINFO.VECTOR  exception_code;
IF (exception code = #BP)

THEN CR_GPR_PA.EXITINFO.EXIT_TYPE  6;
ELSE CR_GPR_PA.EXITINFO.EXIT_TYPE  3;

FI;
CR_GPR_PA.EXITINFO.VALID  1;

ELSE IF (exception_code is #PF or #GP )
THEN 
(* Check SECS.MISCSELECT using CR_ACTIVE_SECS *) 
IF (SECS.MISCSELECT[0] is set) 

THEN 
CR_GPR_PA.EXITINFO.VECTOR  exception_code; 
CR_GPR_PA.EXITINFO.EXIT_TYPE  3; 
IF (exception_code is #PF) 

THEN 
SSA.MISC.EXINFO. MADDR  CR2; 
SSA.MISC.EXINFO.ERRCD  PFEC; 
SSA.MISC.EXINFO.RESERVED  0; 

ELSE
SSA.MISC.EXINFO. MADDR  0; 
SSA.MISC.EXINFO.ERRCD  GPEC; 
SSA.MISC.EXINFO.RESERVED  0; 

FI; 
CR_GPR_PA.EXITINFO.VALID  1; 

FI;
ELSE

CR_GPR_PA.EXITINFO.VECTOR  0;
CR_GPR_PA.EXITINFO.EXIT_TYPE  0
CR_GPR_PA.REASON.VALID  0;

FI;

(* Execution will resume at the AEP *)
RIP  CR_TCS_PA.AEP;

(* Set EAX to the ERESUME leaf index *)
EAX  3;

(* Put the TCS LA into RBX for later use by ERESUME *)
RBX  CR_TCS_LA;

(* Put the AEP into RCX for later use by ERESUME *)
RCX  CR_TCS_PA.AEP;

(* Increment the SSA frame # *)
CR_TCS_PA.CSSA  CR_TCS_PA.CSSA + 1;
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(* Restore XCR0 if needed *)
IF (CR4.OSXSAVE = 1)

THEN XCR0  CR_SAVE_XCR0; FI;

Un-suppress all code breakpoints that are outside ELRANGE

(* Update the thread context to show not in enclave mode *)
CR_ENCLAVE_MODE  0;

(* Assure consistent translations. *)
Flush linear context including TLBs and paging-structure caches

IF (CR_DBGOPTIN = 0)
THEN

Un-suppress all breakpoints that overlap ELRANGE
(* Clear suppressed breakpoint matches *)
Restore suppressed breakpoint matches
(* Restore TF *)
RFLAGS.TF  CR_SAVE_TF;
Un-suppress monitor trap flag;
Un-suppress branch recording facilities;
Un-suppress all suppressed performance monitoring activity;
Promote any sibling-thread counters that were demoted from AnyThread to MyThread during enclave 

entry back to AnyThread; 
FI;

IF the “monitor trap flag” VM-execution control is 1
THEN Pend MTF VM Exit at the end of exit; FI;

(* Clear low 12 bits of CR2 on #PF *)
IF (Exception code is #PF)

THEN CR2  CR2 & ~0xFFF; FI;

(* end_of_flow *)
(* Execution continues with normal event processing. *)

...

33. Updates to Chapter 41, Volume 3D
Change bars show changes to Chapter 41 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3D: System Programming Guide, Part 4.

------------------------------------------------------------------------------------------

...

41.1.5.1  Concurrency Tables of Intel® SGX Instructions
Concurrent restriction of an individual leaf function (ENCLS or ENCLU) with another Intel SGX instruction leaf 
functions is listed under the Concurrency Restriction paragraph of the respective reference pages of the leaf 
function. 
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Each cell in the table for a given Intel SGX Instruction leaf details the concurrency restriction when that instruc-
tion references the same EPC page (as an explicit or an implicit parameter) as referenced by a concurrent instruc-
tion leaf executed on another logical processor. The concurrency behavior of the instruction leaf if focus shown in 
a given row is denoted by the following:
• ‘N’: The instructions listed in a given row heading may not execute concurrently with the instruction leaf 

shown in the respective column. Software should serialize them. For example, multiple ETRACK operations on 
the same enclave are not allowed to execute concurrently on the same SECS page.

• ‘Y’: The instruction leaf listed in a given row may execute concurrently with the instruction leaf shown in the 
respective column. For instance, multiple ELDB/ELDUs are allowed to execute concurrently as long as the 
selected EPC page is not the same page.

• ‘C’: The instruction leaf listed in a given row heading may return an error code when executed concurrently 
with the instruction leaf shown in the respective column.

• ‘U’: These two instruction leaves may complete, but the occurrence these two simultaneous flows are 
considered a user program error for which the processor does not enforce any restriction.

• A grey cell indicates the concurrency behavior of the instruction in focus (in the row header) may be different 
than that of the concurrent instruction (in the column header). The concurrent instruction's behavior is 
detailed in its respective concurrency table. For example, EBLOCK's SECS parameter is implicit, thus it is 
always shown as 'Y' in the table. However a concurrent instruction may return an error code when accessing 
the same page.

For instance, multiple ELDB/ELDUs are allowed to execute as long as the selected EPC page is not the same page. 
Multiple ETRACK operations are not allowed to execute concurrently.

...

ENCLS—Execute an Enclave System Function of Specified Leaf Number 

Instruction Operand Encoding

Description

The ENCLS instruction invokes the specified privileged Intel SGX leaf function for managing and debugging 
enclaves. Software specifies the leaf function by setting the appropriate value in the register EAX as input. The 
registers RBX, RCX, and RDX have leaf-specific purpose, and may act as input, as output, or may be unused. In 
64-bit mode, the instruction ignores upper 32 bits of the RAX register.
The ENCLS instruction produces an invalid-opcode exception (#UD) if CR0.PE = 0 or RFLAGS.VM = 1, or if it is 
executed in system-management mode (SMM). Additionally, any attempt to execute the instruction when CPL > 
0 results in #UD. The instruction produces a general-protection exception (#GP) if CR0.PG = 0 or if an attempt is 
made to invoke an undefined leaf function.
In VMX non-root operation, execution of ENCLS may cause a VM exit if the “enable ENCLS exiting” VM-execution 
control is 1. In this case, execution of individual leaf functions of ENCLS is governed by the ENCLS-exiting bitmap 
field in the VMCS. Each bit in that field corresponds to the index of an ENCLS leaf function (as provided in EAX).

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 0F 01 CF NP V/V SGX1 This instruction is used to execute privileged Intel SGX leaf func-
tions that are used for managing and debugging the enclaves.ENCLS

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

NP NA NA NA See Section 41.3
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Software in VMX root operation can thus intercept the invocation of various ENCLS leaf functions in VMX non-root 
operation by setting the “enable ENCLS exiting” VM-execution control and setting the corresponding bits in the 
ENCLS-exiting bitmap.
Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA = 0 || CS.L = 0) and are 64 bits in 64-
bit mode (IA32_EFER.LMA = 1 || CS.L = 1). CS.D value has no impact on address calculation. The DS segment is 
used to create linear addresses.
Segment override prefixes and address-size override prefixes are ignored, and is the REX prefix in 64-bit mode.

Operation

IF TSX_ACTIVE
THEN GOTO TSX_ABORT_PROCESSING; FI;

IF CR0.PE = 0 or RFLAGS.VM = 1 or in SMM or CPUID.SGX_LEAF.0:EAX.SE1 = 0
THEN #UD; FI;

IF (CPL > 0) 
THEN #UD; FI;

IF in VMX non-root operation and the “enable ENCLS exiting“ VM-execution control is 1
THEN 

IF EAX < 63 and ENCLS_exiting_bitmap[EAX] = 1 or EAX> 62 and ENCLS_exiting_bitmap[63] = 1
THEN VM exit;

FI;
FI;
IF IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0

THEN #GP(0); FI;

IF EAX is invalid leaf number)
THEN #GP(0); FI;

IF CR0.PG = 0
THEN #GP(0); FI;

(* DS must not be an expanded down segment *)
IF not in 64-bit mode and DS.Type is expand-down data

THEN #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions
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Protected Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If data segment expand down.
If CR0.PG=0.

Real-Address Mode Exceptions

#UD ENCLS is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLS is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.
If current privilege level is not 0.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.

...

ENCLU—Execute an Enclave User Function of Specified Leaf Number 

Instruction Operand Encoding

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 0F 01 D7 NP V/V SGX1 This instruction is used to execute non-privileged Intel SGX leaf 
functions.ENCLU

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

NP NA NA NA See Section 41.4
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Description

The ENCLU instruction invokes the specified non-privileged Intel SGX leaf functions. Software specifies the leaf 
function by setting the appropriate value in the register EAX as input. The registers RBX, RCX, and RDX have leaf-
specific purpose, and may act as input, as output, or may be unused. In 64-bit mode, the instruction ignores 
upper 32 bits of the RAX register.
The ENCLU instruction produces an invalid-opcode exception (#UD) if CR0.PE = 0 or RFLAGS.VM = 1, or if it is 
executed in system-management mode (SMM). Additionally, any attempt to execute this instruction when CPL < 
3 results in #UD. The instruction produces a general-protection exception (#GP) if either CR0.PG or CR0.NE is 0, 
or if an attempt is made to invoke an undefined leaf function. The ENCLU instruction produces a device not avail-
able exception (#NM) if CR0.TS = 1.
Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA = 0 or CS.L = 0) and are 64 bits in 64-
bit mode (IA32_EFER.LMA = 1 and CS.L = 1). CS.D value has no impact on address calculation. The DS segment 
is used to create linear addresses.
Segment override prefixes and address-size override prefixes are ignored, and is the REX prefix in 64-bit mode.

Operation

IN_64BIT_MODE 0;
IF TSX_ACTIVE

THEN GOTO TSX_ABORT_PROCESSING; FI;

IF CR0.PE= 0 or RFLAGS.VM = 1 or in SMM or CPUID.SGX_LEAF.0:EAX.SE1 = 0
THEN #UD; FI;

IF CR0.TS = 1
THEN #NM; FI;

IF CPL < 3
THEN #UD; FI;

IF IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0
THEN #GP(0); FI;

IF EAX is invalid leaf number
THEN #GP(0); FI;

IF CR0.PG = 0 or CR0.NE = 0
THEN #GP(0); FI;

IN_64BIT_MODE  IA32_EFER.LMA AND CS.L ? 1 : 0;
(* Check not in 16-bit mode and DS is not a 16-bit segment *)
IF not in 64-bit mode and (CS.D = 0 or DS.B = 0) 

THEN #GP(0); FI;

IF CR_ENCLAVE_MODE = 1 and (EAX = 2 or EAX = 3) (* EENTER or ERESUME *)
THEN #GP(0); FI;

IF CR_ENCLAVE_MODE = 0 and (EAX = 0 or EAX = 1 or EAX = 4 or EAX = 5 or EAX = 6 or EAX = 7)
(* EREPORT, EGETKEY, EEXIT, EACCEPT, EMODPE, or EACCEPTCOPY *)

THEN #GP(0); FI;
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Jump to leaf specific flow

Flags Affected

See individual leaf functions

Protected Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.
If current privilege level is not 3.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If input value in EAX encodes EENTER/ERESUME and ENCLAVE_MODE = 1.
If input value in EAX encodes EGETKEY/EREPORT/EEXIT/EACCEPT/EACCEPTCOPY/EMODPE 
and ENCLAVE_MODE = 0.
If operating in 16-bit mode.
If data segment is in 16-bit mode.
If CR0.PG = 0 or CR0.NE= 0.

#NM If CR0.TS = 1.

Real-Address Mode Exceptions

#UD ENCLS is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLS is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.
If current privilege level is not 3.
If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.
If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.
If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.
If input value in EAX encodes an unsupported leaf.
If input value in EAX encodes EENTER/ERESUME and ENCLAVE_MODE = 1.
If input value in EAX encodes EGETKEY/EREPORT/EEXIT/EACCEPT/EACCEPTCOPY/EMODPE 
and ENCLAVE_MODE = 0.
If CR0.NE= 0.

#NM If CR0.TS = 1.

...
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EADD—Add a Page to an Uninitialized Enclave  

Instruction Operand Encoding

Description

This leaf function copies a source page from non-enclave memory into the EPC, associates the EPC page with an 
SECS page residing in the EPC, and stores the linear address and security attributes in EPCM. As part of the asso-
ciation, the enclave offset and the security attributes are measured and extended into the SECS.MRENCLAVE. 
This instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a PAGEINFO structure while RCX contains the effective address of an EPC 
page. The table below provides additional information on the memory parameter of EADD leaf function.

EADD Memory Parameter Semantics

The instruction faults if any of the following: 

EADD Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 01H IR V/V SGX1 This leaf function adds a page to an uninitialized enclave.
ENCLS[EADD]

Op/En EAX RBX RCX

IR EADD (In) Address of a PAGEINFO (In) Address of the destination EPC page (In)

PAGEINFO PAGEINFO.SECS PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permitted 
by Non Enclave 

Read/Write access permit-
ted by Enclave 

Read access permitted 
by Non Enclave 

Read access permitted 
by Non Enclave 

Write access permitted 
by Enclave

The operands are not properly aligned. Unsupported security attributes are set.

Refers to an invalid SECS. Reference is made to an SECS that is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page.

The EPC page is already valid. If security attributes specifies a TCS and the source page specifies unsupported 
TCS values or fields.

The SECS has been initialized. The specified enclave offset is outside of the enclave address space.

Table 41-5    Concurrency Restrictions of EADD with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Param TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EADD Targ N N N N N N N N N N N

SECS N N Y Y N Y N N N N Y N
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Operation

Temp Variables in EADD Operational Flow

IF (DS:RBX is not 32Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

TMP_SRCPGE  DS:RBX.SRCPGE;
TMP_SECS  DS:RBX.SECS;
TMP_SECINFO  DS:RBX.SECINFO;
TMP_LINADDR  DS:RBX.LINADDR;

IF (DS:TMP_SRCPGE is not 4KByte aligned or DS:TMP_SECS is not 4KByte aligned or
DS:TMP_SECINFO is not 64Byte aligned or TMP_LINADDR is not 4KByte aligned)
THEN #GP(0); FI;

IF (DS:TMP_SECS does not resolve within an EPC)
THEN #PF(DS:TMP_SECS); FI;

SCRATCH_SECINFO  DS:TMP_SECINFO;

(* Check for mis-configured SECINFO flags*)

Table 41-6    Concurrency Restrictions of EADD with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Targ SECS Para
m

SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EADD Targ N N N N N N N N

SECS N Y N Y N Y N N N N N N

Name Type Size (bits) Description

TMP_SRCPGE Effective Address 32/64 Effective address of the source page.

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security 
attributes of the page to be added.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:TMP_SECINFO.

TMP_LINADDR Unsigned Integer 64 Holds the linear address to be stored in the EPCM and used to 
calculate TMP_ENCLAVEOFFSET.

TMP_ENCLAVEOFFSET Enclave Offset 64 The page displacement from the enclave base address.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.
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IF (SCRATCH_SECINFO reserved fields are not zero or 
! (SCRATCH_SECINFO.FLAGS.PT is PT_REG or SCRATCH_SECINFO.FLAGS.PT is PT_TCS) ) 
THEN #GP(0); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use) 

THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID ≠ 0) 
THEN #PF(DS:RCX); FI;

(* Check the SECS for concurrency *)
IF (SECS is not available for EADD) 

THEN #GP(0); FI;

IF (EPCM(DS:TMP_SECS).VALID = 0 or EPCM(DS:TMP_SECS).PT ≠ PT_SECS) 
THEN #PF(DS:TMP_SECS); FI;

(* Copy 4KBytes from source page to EPC page*)
DS:RCX[32767:0]  DS:TMP_SRCPGE[32767:0];

CASE (SCRATCH_SECINFO.FLAGS.PT) 
{

PT_TCS:
IF (DS:RCX.RESERVED ≠ 0) #GP(0); FI;
IF ( (DS:TMP_SECS.ATTIBUTES.MODE64BIT = 0) and 

((DS:TCS.FSLIMIT & 0FFFH ≠ 0FFFH) or (DS:TCS.GSLIMIT & 0FFFH ≠ 0FFFH) )) #GP(0); FI;
BREAK;

PT_REG:
IF (SCRATCH_SECINFO.FLAGS.W = 1 and SCRATCH_SECINFO.FLAGS.R = 0) #GP(0); FI;
BREAK;

ESAC;

(* Check the enclave offset is within the enclave linear address space *)
IF (TMP_LINADDR < DS:TMP_SECS.BASEADDR or TMP_LINADDR ≥ DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE) 

THEN #GP(0); FI;

(* Check concurrency of measurement resource*)
IF (Measurement being updated) 

THEN #GP(0); FI;

(* Check if the enclave to which the page will be added is already in Initialized state *)
IF (DS:TMP_SECS already initialized) 

THEN #GP(0); FI;

(* For TCS pages, force EPCM.rwx bits to 0 and no debug access *)
IF (SCRATCH_SECINFO.FLAGS.PT = PT_TCS) 

THEN
SCRATCH_SECINFO.FLAGS.R  0;
SCRATCH_SECINFO.FLAGS.W  0;
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SCRATCH_SECINFO.FLAGS.X  0;
(DS:RCX).FLAGS.DBGOPTIN  0; // force TCS.FLAGS.DBGOPTIN off
DS:RCX.CSSA  0;
DS:RCX.AEP  0;
DS:RCX.STATE  0;

FI;

(* Add enclave offset and security attributes to MRENCLAVE *)
TMP_ENCLAVEOFFSET  TMP_LINADDR - DS:TMP_SECS.BASEADDR;
TMPUPDATEFIELD[63:0]  0000000044444145H; // “EADD”
TMPUPDATEFIELD[127:64]  TMP_ENCLAVEOFFSET;
TMPUPDATEFIELD[511:128]  SCRATCH_SECINFO[375:0]; // 48 bytes
DS:TMP_SECS.MRENCLAVE  SHA256UPDATE(DS:TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(* Add enclave offset and security attributes to MRENCLAVE *)
EPCM(DS:RCX).R  SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W  SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X  SCRATCH_SECINFO.FLAGS.X;
EPCM(DS:RCX).PT  SCRATCH_SECINFO.FLAGS.PT;
EPCM(DS:RCX).ENCLAVEADDRESS  TMP_LINADDR;

(* associate the EPCPAGE with the SECS by storing the SECS identifier of DS:TMP_SECS *)
Update EPCM(DS:RCX) SECS identifier to reference DS:TMP_SECS identifier;

(* Set EPCM entry fields *)
EPCM(DS:RCX).BLOCKED  0;
EPCM(DS:RCX).PENDING  0;
EPCM(DS:RCX).MODIFIED  0;
EPCM(DS:RCX).VALID  1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If an enclave memory operand is outside of the EPC.
If an enclave memory operand is the wrong type.
If a memory operand is locked.
If the enclave is initialized.
If the enclave's MRENCLAVE is locked.
If the TCS page reserved bits are set.

#PF(error code) If a page fault occurs in accessing memory operands.
If the EPC page is valid.
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64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If an enclave memory operand is outside of the EPC.
If an enclave memory operand is the wrong type.
If a memory operand is locked.
If the enclave is initialized.
If the enclave's MRENCLAVE is locked.
If the TCS page reserved bits are set.

#PF(error code) If a page fault occurs in accessing memory operands.
If the EPC page is valid.

...

EAUG—Add a Page to an Initialized Enclave  

Instruction Operand Encoding

Description

This leaf function zeroes a page of EPC memory, associates the EPC page with an SECS page residing in the EPC, 
and stores the linear address and security attributes in the EPCM. As part of the association, the security attri-
butes are configured to prevent access to the EPC page until a corresponding invocation of the EACCEPT leaf or 
EACCEPTCOPY leaf confirms the addition of the new page into the enclave. This instruction can only be executed 
when current privilege level is 0.
RBX contains the effective address of a PAGEINFO structure while RCX contains the effective address of an EPC 
page. The table below provides additional information on the memory parameter of the EAUG leaf function.

EAUG Memory Parameter Semantics

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 0DH IR V/V SGX2 This leaf function adds a page to an initialized enclave.
ENCLS[EAUG]

Op/En EAX RBX RCX

IR EAUG (In) Address of a SECINFO (In) Address of the destination EPC page (In)

PAGEINFO PAGEINFO.SECS PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permit-
ted by Non Enclave 

Read/Write access permit-
ted by Enclave 

Must be zero
Read access permitted by 

Non Enclave 
Write access permitted by 

Enclave
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The instruction faults if any of the following: 

EAUG Faulting Conditions

Concurrency Restrictions

Operation

Temp Variables in EAUG Operational Flow

IF (DS:RBX is not 32Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

The operands are not properly aligned. Unsupported security attributes are set.

Refers to an invalid SECS. Reference is made to an SECS that is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page.

The EPC page is already valid. The specified enclave offset is outside of the enclave address space.

The SECS has been initialized.

Table 41-7    Concurrency Restrictions of EAUG with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EP

A

Param TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EAUG Targ N N N N N N N N N N N N

SECS Y N N Y N Y Y N Y N N Y N

Table 41-8    Concurrency Restrictions of EAUG with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EAUG Targ N N N N N N N N

SECS N Y Y Y N Y N Y Y N Y Y

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security 
attributes of the page to be added.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:TMP_SECINFO.

TMP_LINADDR Unsigned Integer 64 Holds the linear address to be stored in the EPCM and used to 
calculate TMP_ENCLAVEOFFSET.
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IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

TMP_SECS  DS:RBX.SECS;
TMP_LINADDR  DS:RBX.LINADDR;

IF ( DS:TMP_SECS is not 4KByte aligned or TMP_LINADDR is not 4KByte aligned )
THEN #GP(0); FI;

IF ( (DS:RBX.SRCPAGE is not 0) or (DS:RBX:SECINFO is not 0) )
THEN #GP(0); FI;

IF (DS:TMP_SECS does not resolve within an EPC)
THEN #PF(DS:SECS); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use) 

THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID ≠ 0) 
THEN #PF(DS:RCX); FI;

(* Check the SECS for concurrency *)
IF (SECS is not available for EAUG) 

THEN #GP(0); FI;

IF (EPCM(DS:TMP_SECS).VALID = 0 or EPCM(DS:TMP_SECS).PT ≠ PT_SECS) 
THEN #PF(DS:TMP_SECS); FI;

(* Check if the enclave to which the page will be added is in the Initialized state *)
IF (DS:TMP_SECS is not initialized) 

THEN #GP(0); FI;

(* Check the enclave offset is within the enclave linear address space *)
IF ( (TMP_LINADDR < DS:TMP_SECS.BASEADDR) or (TMP_LINADDR ≥ DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE) )

THEN #GP(0); FI;

(* Clear the content of EPC page*)
DS:RCX[32767:0]  0;

(* Set EPCM security attributes *)
EPCM(DS:RCX).R  1;
EPCM(DS:RCX).W  1;
EPCM(DS:RCX).X  0;
EPCM(DS:RCX).PT  PT_REG;
EPCM(DS:RCX).ENCLAVEADDRESS  TMP_LINADDR;
EPCM(DS:RCX).BLOCKED  0;
EPCM(DS:RCX).PENDING  1;
EPCM(DS:RCX).MODIFIED  0;
EPCM(DS:RCX).PR  0;
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(* associate the EPCPAGE with the SECS by storing the SECS identifier of DS:TMP_SECS *)
Update EPCM(DS:RCX) SECS identifier to reference DS:TMP_SECS identifier;

(* Set EPCM valid fields *)
EPCM(DS:RCX).VALID  1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.
If the enclave is not initialized.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.
If the enclave is not initialized.

#PF(error code) If a page fault occurs in accessing memory operands.

...

EBLOCK—Mark a page in EPC as Blocked  

Instruction Operand Encoding

Description

This leaf function causes an EPC page to be marked as BLOCKED. This instruction can only be executed when 
current privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address. 
Segment override is not supported.
An error code is returned in RAX.
The table below provides additional information on the memory parameter of EBLOCK leaf function.

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 09H IR V/V SGX1 This leaf function marks a page in the EPC as blocked.
ENCLS[EBLOCK]

Op/En EAX RCX

IR EBLOCK (In) Return error code (Out) Effective address of the EPC page (In)
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EBLOCK Memory Parameter Semantics

The error codes are: 

Concurrency Restrictions

Operation

Temp Variables in EBLOCK Operational Flow

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)

EPCPAGE

Read/Write access permitted by Enclave

Table 41-9    EBLOCK Return Value in RAX
 Error Code (see Table 38-3) Description

No Error EBLOCK successful

SGX_BLKSTATE Page already blocked. This value is used to indicate to a VMM that the page was already in 
BLOCKED state as a result of EBLOCK and thus will need to be restored to this state when it is 
eventually reloaded (using ELDB). 

SGX_ENTRYEPOCH_LOCKED SECS locked for Entry Epoch update. This value indicates that an ETRACK is 
currently executing on the SECS. The EBLOCK should be reattempted.

SGX_NOTBLOCKABLE Page type is not one which can be blocked
SGX_PG_INVLD Page is not valid and cannot be blocked
SGX_LOCKFAIL Page is being written by EADD, EAUG, ECREATE, ELDU/B, EMODT, or EWB

Table 41-10    Concurrency Restrictions of EBLOCK with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Param TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EBLOCK Targ Y Y Y N C C C N Y C Y Y C Y C Y C Y N C C N

SECS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Table 41-11    Concurrency Restrictions of EBLOCK with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EBLOCK Targ N C Y C C N C C N C Y Y Y C N C Y Y C Y Y Y

SECS Y Y Y Y U Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Name Type Size (Bits) Description

TMP_BLKSTATE Integer 64 Page is already blocked.
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THEN #PF(DS:RCX); FI;

RFLAGS.ZF,CF,PF,AF,OF,SF  0;
RAX 0;

IF (EPCM(DS:RCX). VALID = 0)
THEN 

RFLAGS.ZF  1;
RAX SGX_PG_INVLD;
GOTO DONE;

FI;

IF ( (EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS) and (EPCM(DS:RCX).PT ≠ PT_TRIM) )
THEN 

RFLAGS.CF  1;
IF (EPCM(DS:RCX).PT = PT_SECS) 

THEN RAX SGX_PG_IS_SECS;
ELSE RAX SGX_NOTBLOCKABLE;

FI;
GOTO DONE;

FI;

(* Check if the page is already blocked and report blocked state *)
TMP_BLKSTATE  EPCM(DS:RCX).BLOCKED;

(* at this point, the page must be valid and PT_TCS or PT_REG or PT_TRIM*)
IF (TMP_BLKSTATE = 1) ) 

THEN 
RFLAGS.CF  1;
RAX SGX_BLKSTATE;

ELSE
EPCM(DS:RCX).BLOCKED  1

FI;

DONE:

Flags Affected

Sets ZF if SECS is in use or invalid, otherwise cleared. Sets CF if page is BLOCKED or not blockable, otherwise 
cleared. Clears PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
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If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

...

ECREATE—Create an SECS page in the Enclave Page Cache 

Instruction Operand Encoding

Description

ENCLS[ECREATE] is the first instruction executed in the enclave build process. ECREATE copies an SECS structure 
outside the EPC into an SECS page inside the EPC. The internal structure of SECS is not accessible to software.
ECREATE will set up fields in the protected SECS and mark the page as valid inside the EPC. ECREATE initializes or 
checks unused fields.
Software sets the following fields in the source structure: SECS:BASEADDR, SECS:SIZE in bytes, and ATTRI-
BUTES. SECS:BASEADDR must be naturally aligned on an SECS.SIZE boundary. SECS.SIZE must be at least 2 
pages (8192).
The source operand RBX contains an effective address of a PAGEINFO structure. PAGEINFO contains an effective 
address of a source SECS and an effective address of an SECINFO. The SECS field in PAGEINFO is not used.
The RCX register is the effective address of the destination SECS. It is an address of an empty slot in the EPC. The 
SECS structure must be page aligned. SECINFO flags must specify the page as an SECS page. 

ECREATE Memory Parameter Semantics

ECREATE will fault if the SECS target page is in use; already valid; outside the EPC. It will also fault if addresses 
are not aligned; unused PAGEINFO fields are not zero.
If the amount of space needed to store the SSA frame is greater than the amount specified in SECS.SSAFRAME-
SIZE, a #GP(0) results. The amount of space needed for an SSA frame is computed based on 
DS:TMP_SECS.ATTRIBUTES.XFRM size. Details of computing the size can be found Section 42.7.

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 00H IR V/V SGX1 This leaf function begins an enclave build by creating an SECS 
page in EPC.ENCLS[ECREATE]

Op/En EAX RBX RCX

IR ECREATE (In) Address of a PAGEINFO (In) Address of the destination SECS page (In)

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permitted by 
Non Enclave 

Read access permitted by 
Non Enclave 

Read access permitted by Non 
Enclave 

Write access permitted by 
Enclave
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Concurrency Restrictions

Operation

Temp Variables in ECREATE Operational Flow

IF (DS:RBX is not 32Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

TMP_SRCPGE  DS:RBX.SRCPGE;
TMP_SECINFO  DS:RBX.SECINFO;

IF (DS:TMP_SRCPGE is not 4KByte aligned or DS:TMP_SECINFO is not 64Byte aligned)
THEN #GP(0); FI;

IF (DS:RBX.LINADDR ! = 0 or DS:RBX.SECS ≠ 0)
THEN #GP(0); FI;

(* Check for misconfigured SECINFO flags*)

Table 41-12    Concurrency Restrictions of ECREATE with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Param TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

ECREATE SECS N N N N N N N N N N N N

Table 41-13    Concurrency Restrictions of ECREATE with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Tar
g

SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

ECREATE SECS N N N N N N N N

Name Type Size (Bits) Description

TMP_SRCPGE Effective Address 32/64 Effective address of the SECS source page.

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security 
attributes of the SECS page to be added.

TMP_XSIZE SSA Size 64 The size calculation of SSA frame.

TMP_MISC_SIZE MISC Field Size 64 Size of the selected MISC field components.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.
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IF (DS:TMP_SECINFO reserved fields are not zero or DS:TMP_SECINFO.FLAGS.PT ≠ PT_SECS) ) 
THEN #GP(0); FI;

TMP_SECS  RCX;

IF (EPC entry in use) 
THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID = 1) 
THEN #PF(DS:RCX); FI;

(* Copy 4KBytes from source page to EPC page*)
DS:RCX[32767:0]  DS:TMP_SRCPGE[32767:0];

(* Check lower 2 bits of XFRM are set *)
IF ( ( DS:TMP_SECS.ATTRIBUTES.XFRM BitwiseAND 03H) ≠ 03H) 

THEN #GP(0); FI;

IF (XFRM is illegal) 
THEN #GP(0); FI;

(* Make sure that the SECS does not have any unsupported MISCSELECT options*)
IF ( !(CPUID.(EAX=12H, ECX=0):EBX[31:0] & DS:TMP_SECS.MISSELECT[31:0]) )

THEN
EPCM(DS:TMP_SECS).EntryLock.Release();
#GP(0);

FI;

( * Compute size of MISC area *)
TMP_MISC_SIZE  compute_misc_region_size();

(* Compute the size required to save state of the enclave on async exit, see Section 42.7.2.2*)
TMP_XSIZE  compute_xsave_size(DS:TMP_SECS.ATTRIBUTES.XFRM) + GPR_SIZE + TMP_MISC_SIZE;

(* Ensure that the declared area is large enough to hold XSAVE and GPR stat *)
IF ( ( DS:TMP_SECS.SSAFRAMESIZE*4096 < TMP_XSIZE) 

THEN #GP(0); FI;

IF ( (DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1) and (DS:TMP_SECS.BASEADDR is not canonical) )
THEN #GP(0); FI;

IF ( (DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and (DS:TMP_SECS.BASEADDR and 0FFFFFFFF00000000H) )
THEN #GP(0); FI;

IF ( (DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and (DS:TMP_SECS.SIZE ≥ 2 ^ (CPUID.(EAX=12H, ECX=0):.EDX[7:0]) ) )
THEN #GP(0); FI;

IF ( (DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1) and (DS:TMP_SECS.SIZE ≥ 2 ^ (CPUID.(EAX=12H, ECX=0):.EDX[15:8]) ) )
THEN #GP(0); FI;



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 750

(* Enclave size must be at least 8192 bytes and must be power of 2 in bytes*)
IF (DS:TMP_SECS.SIZE < 8192 or popcnt(DS:TMP_SECS.SIZE) > 1) 

THEN #GP(0); FI;

(* Ensure base address of an enclave is aligned on size*)
IF ( ( DS:TMP_SECS.BASEADDR and (DS:TMP_SECS.SIZE-1) ) 

THEN #GP(0); FI;

* Ensure the SECS does not have any unsupported attributes*)
IF ( ( DS:TMP_SECS.ATTRIBUTES and (~CR_SGX_ATTRIBUTES_MASK) ) 

THEN #GP(0); FI;

IF ( ( DS:TMP_SECS reserved fields are not zero) 
THEN #GP(0); FI;

Clear DS:TMP_SECS to Uninitialized;
DS:TMP_SECS.MRENCLAVE  SHA256INITIALIZE(DS:TMP_SECS.MRENCLAVE);
DS:TMP_SECS.ISVSVN  0;
DS:TMP_SECS.ISVPRODID  0;

(* Initialize hash updates etc*)
Initialize enclave’s MRENCLAVE update counter;

(* Add “ECREATE” string and SECS fields to MRENCLAVE *)
TMPUPDATEFIELD[63:0]  0045544145524345H; // “ECREATE”
TMPUPDATEFIELD[95:64]  DS:TMP_SECS.SSAFRAMESIZE;
TMPUPDATEFIELD[159:96]  DS:TMP_SECS.SIZE;
TMPUPDATEFIELD[511:160]  0; 
SHA256UPDATE(DS:TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(* Set EID *)
DS:TMP_SECS.EID  LockedXAdd(CR_NEXT_EID, 1);

(* Set the EPCM entry, first create SECS identifier and store the identifier in EPCM *)
EPCM(DS:TMP_SECS).PT  PT_SECS;
EPCM(DS:TMP_SECS).ENCLAVEADDRESS  0;
EPCM(DS:TMP_SECS).R  0;
EPCM(DS:TMP_SECS).W  0;
EPCM(DS:TMP_SECS).X  0;

(* Set EPCM entry fields *)
EPCM(DS:RCX).BLOCKED  0;
EPCM(DS:RCX).PENDING  0;
EPCM(DS:RCX).MODIFIED  0;
EPCM(DS:RCX).PR  0;
EPCM(DS:RCX).VALID  1;

Flags Affected

None
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Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the reserved fields are not zero.
If PAGEINFO.SECS is not zero.
If PAGEINFO.LINADDR is not zero.
If the SECS destination is locked.
If SECS.SSAFRAMESIZE is insufficient.

#PF(error code) If a page fault occurs in accessing memory operands.
If the SECS destination is outside the EPC.

64-Bit Mode Exceptions

#GP(0) If a memory address is non-canonical form.
If a memory operand is not properly aligned.
If the reserved fields are not zero.
If PAGEINFO.SECS is not zero.
If PAGEINFO.LINADDR is not zero.
If the SECS destination is locked.
If SECS.SSAFRAMESIZE is insufficient.

#PF(error code) If a page fault occurs in accessing memory operands.
If the SECS destination is outside the EPC.

...
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EDBGRD—Read From a Debug Enclave 

Instruction Operand Encoding

Description

This leaf function copies a quadword/doubleword from an EPC page belonging to a debug enclave into the RBX 
register. Eight bytes are read in 64-bit mode, four bytes are read in non-64-bit modes. The size of data read 
cannot be overridden.
The effective address of the source location inside the EPC is provided in the register RCX.

EDBGRD Memory Parameter Semantics

The error codes are: 

The instruction faults if any of the following: 

EDBGRD Faulting Conditions

This instruction ignores the EPCM RWX attributes on the enclave page. Consequently, violation of EPCM RWX attri-
butes via EDGBRD does not result in a #GP.

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 04H IR V/V SGX1 This leaf function reads a dword/quadword from a debug enclave.
ENCLS[EDBGRD]

Op/En EAX RBX RCX

IR EDBGRD (In) Data read from a debug enclave (Out) Address of source memory in the EPC (In)

EPCQW

Read access permitted by Enclave 

Table 41-14    EDBGRD Return Value in RAX
 Error Code (see Table 38-3) Description

No Error EDBGRD successful

SGX_PAGE_NOT_DEBUGGABLE The EPC page cannot be accessed because it is in the PENDING or MODIFIED state

RCX points into a page that is an SECS. RCX does not resolve to a naturally aligned linear address.

RCX points to a page that does not belong to an 
enclave that is in debug mode.

RCX points to a location inside a TCS that is beyond the architectural size of the 
TCS (SGX_TCS_LIMIT).

An operand causing any segment violation. May page fault.

CPL > 0.



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 753

Concurrency Restrictions

Operation

Temp Variables in EDBGRD Operational Flow

TMP_MODE64  ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF ( (TMP_MODE64 = 1) and (DS:RCX is not 8Byte Aligned) )
THEN #GP(0); FI;

IF ( (TMP_MODE64 = 0) and (DS:RCX is not 4Byte Aligned) )
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing EPCM *)
IF (Other EPCM modifying instructions executing) 

THEN #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX (SOURCE) is pointing to a PT_REG or PT_TCS or PT_VA *) 
IF ( (EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS) and (EPCM(DS:RCX).PT ≠ PT_VA))

THEN #PF(DS:RCX); FI;

Table 41-15    Concurrency Restrictions of EDBGRD with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Param TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EDBGRD Targ Y Y N Y N Y Y Y Y Y N N Y N

SECS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Table 41-16    Concurrency Restrictions of EDBGRD with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EDBGRD Targ N Y N N Y N Y Y Y N Y Y Y

SECS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Name Type Size (Bits) Description

TMP_MODE64 Binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1))

TMP_SECS  64 Physical address of SECS of the enclave to which source operand belongs
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(* If source is a TCS, then make sure that the offset into the page is not beyond the TCS size*)
IF ( ( EPCM(DS:RCX). PT = PT_TCS) and ((DS:RCX) & FFFH ≥ SGX_TCS_LIMIT) )

THEN #GP(0); FI;

(* make sure the enclave owning the PT_REG or PT_TCS page allow debug *) 
IF ( (EPCM(DS:RCX).PT = PT_REG) or (EPCM(DS:RCX).PT = PT_TCS) )

THEN 
TMP_SECS  GET_SECS_ADDRESS;
IF (TMP_SECS.ATTRIBUTES.DEBUG = 0) 

THEN #GP(0); FI;
IF ( (TMP_MODE64 = 1) )

THEN RBX[63:0]  (DS:RCX)[63:0]; 
ELSE EBX[31:0]  (DS:RCX)[31:0]; 

FI;
ELSE

TMP_64BIT_VAL[63:0]  (DS:RCX)[63:0] & (~07H); // Read contents from VA slot
IF (TMP_MODE64 = 1) 

THEN
IF (TMP_64BIT_VAL ≠ 0H) 

THEN RBX[63:0]  0FFFFFFFFFFFFFFFFH;
ELSE RBX[63:0]  0H;

FI;
ELSE

IF (TMP_64BIT_VAL ≠ 0H) 
THEN EBX[31:0]  0FFFFFFFFH;
ELSE EBX[31:0]  0H;

FI;
FI;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If the address in RCS violates DS limit or access rights.
If DS segment is unusable.
If RCX points to a memory location not 4Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS, PT_REG or PT_VA.
If the address in RCX points to a location inside TCS that is beyond SGX_TCS_LIMIT.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.
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64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.
If RCX points to a memory location not 8Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS, PT_REG or PT_VA.
If the address in RCX points to a location inside TCS that is beyond SGX_TCS_LIMIT.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

...

EDBGWR—Write to a Debug Enclave 

Instruction Operand Encoding

Description

This leaf function copies the content in EBX/RBX to an EPC page belonging to a debug enclave. Eight bytes are 
written in 64-bit mode, four bytes are written in non-64-bit modes. The size of data cannot be overridden.
The effective address of the source location inside the EPC is provided in the register RCX

EDBGWR Memory Parameter Semantics

The instruction faults if any of the following: 

EDBGWR Faulting Conditions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 05H IR V/V SGX1 This leaf function writes a dword/quadword to a debug enclave.
ENCLS[EDBGWR]

Op/En EAX RBX RCX

IR EDBGWR (In) Data to be written to a debug enclave (In) Address of Target memory in the EPC (In)

EPCQW

Write access permitted by Enclave 

RCX points into a page that is an SECS. RCX does not resolve to a naturally aligned linear address.

RCX points to a page that does not belong to an 
enclave that is in debug mode.

RCX points to a location inside a TCS that is not the FLAGS word.

An operand causing any segment violation. May page fault.

CPL > 0.
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The error codes are: 

This instruction ignores the EPCM RWX attributes on the enclave page. Consequently, violation of EPCM RWX attri-
butes via EDGBRD does not result in a #GP.

Concurrency Restrictions

Operation

Temp Variables in EDBGWR Operational Flow

TMP_MODE64  ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF ( (TMP_MODE64 = 1) and (DS:RCX is not 8Byte Aligned) )
THEN #GP(0); FI;

IF ( (TMP_MODE64 = 0) and (DS:RCX is not 4Byte Aligned) )
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

Table 41-17    EDBGWR Return Value in RAX
 Error Code (see Table 38-3) Description

No Error EDBGWR successful

SGX_PAGE_NOT_DEBUGGABLE The EPC page cannot be accessed because it is in the PENDING or MODIFIED 
state

Table 41-18    Concurrency Restrictions of EDBGWR with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Param TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EDBGWR Targ Y Y N Y N Y Y Y Y Y N N Y N

SECS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Table 41-19    Concurrency Restrictions of EDBGWR with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EDBGWR Targ N Y N N Y N Y Y Y N Y Y Y

SECS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Name Type Size (Bits) Description

TMP_MODE64 Binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1)).

TMP_SECS  64 Physical address of SECS of the enclave to which source operand belongs.
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(* make sure no other Intel SGX instruction is accessing EPCM *)
IF (Other EPCM modifying instructions executing) 

THEN #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX (DST) is pointing to a PT_REG or PT_TCS *) 
IF ( (EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS) )

THEN #PF(DS:RCX); FI;

(* If destination is a TCS, then make sure that the offset into the page can only point to the FLAGS field*)
IF ( ( EPCM(DS:RCX). PT = PT_TCS) and ((DS:RCX) & FF8H ≠ offset_of_FLAGS & 0FF8H) )

THEN #GP(0); FI;

(* Locate the SECS for the enclave to which the DS:RCX page belongs *) 
TMP_SECS  GET_SECS_PHYS_ADDRESS(EPCM(DS:RCX).ENCLAVESCES);

(* make sure the enclave owning the PT_REG or PT_TCS page allow debug *) 
IF (TMP_SECS.ATTRIBUTES.DEBUG = 0) 

THEN #GP(0); FI;

IF ( (TMP_MODE64 = 1) )
THEN (DS:RCX)[63:0]  RBX[63:0]; 
ELSE (DS:RCX)[31:0]  EBX[31:0]; 

FI;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If the address in RCS violates DS limit or access rights.
If DS segment is unusable.
If RCX points to a memory location not 4Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a location inside TCS that is not the FLAGS word.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.
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64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.
If RCX points to a memory location not 8Byte-aligned.
If the address in RCX points to a page belonging to a non-debug enclave.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a location inside TCS that is not the FLAGS word.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

...

EEXTEND—Extend Uninitialized Enclave Measurement by 256 Bytes 

Instruction Operand Encoding

Description

This leaf function updates the MRENCLAVE measurement register of an SECS with the measurement of an 
EXTEND string compromising of “EEXTEND” || ENCLAVEOFFSET || PADDING || 256 bytes of the enclave page. 
This instruction can only be executed when current privilege level is 0 and the enclave is uninitialized. 
RBX contains the effective address of the SECS of the region to be measured. The address must be the same as 
the one used to add the page into the enclave.
RCX contains the effective address of the 256 byte region of an EPC page to be measured. The DS segment is 
used to create linear addresses. Segment override is not supported.

EEXTEND Memory Parameter Semantics

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 06H IR V/V SGX1 This leaf function measures 256 bytes of an uninitialized enclave 
page.ENCLS[EEXTEND]

Op/En EAX EBX RCX

IR EEXTEND (In)
Effective address of the SECS of the 

data chunk (In)
Effective address of a 256-byte chunk in the EPC (In)

EPC[RCX]

Read access by Enclave 
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The instruction faults if any of the following: 

EEXTEND Faulting Conditions

Concurrency Restrictions

Operation

Temp Variables in EEXTEND Operational Flow

TMP_MODE64  ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF (DS:RBX does resolve to an EPC page) 
THEN #PF(DS:RBX); FI;

IF (DS:RCX is not 256Byte Aligned) 
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)

RBX points to an address not 4KBytes aligned. RBX does not resolve to an SECS.

RBX does not point to an SECS page. RBX does not point to the SECS page of the data chunk.

RCX points and address not 256B aligned. RCX points to an unused page or a SECS.

RCX does not resolve in an EPC page. If SECS is locked.

If the SECS is already initialized. May page fault.

CPL > 0.

Table 41-20    Concurrency Restrictions of EEXTEND with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Param TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EEXTEND Targ N N N Y N Y Y N N N

SECS Y Y Y Y N Y Y Y Y Y Y Y N Y N Y N N Y Y Y Y

Table 41-21    Concurrency Restrictions of EEXTEND with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EEXTEND Targ N N N N N

SECS Y Y Y N Y Y Y Y Y N Y Y Y N Y N Y Y N Y Y Y

Name Type Size (Bits) Description

TMP_SECS  64 Physical address of SECS of the enclave to which source operand belongs.

TMP_ENCLAVEOFFS
ET

Enclave Offset 64 The page displacement from the enclave base address.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.
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THEN #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing EPCM *)
IF (Other instructions accessing EPCM) 

THEN #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX (DST) is pointing to a PT_REG or PT_TCS *) 
IF ( (EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS) )

THEN #PF(DS:RCX); FI;

TMP_SECS  Get_SECS_ADDRESS();

IF (DS:RBX does not resolve to TMP_SECS)
THEN #GP(0); FI;

(* make sure no other instruction is accessing MRENCLAVE or ATTRIBUETS.INIT *) 
IF ( (Other instruction accessing MRENCLAVE) or (Other instructions checking or updating the initialized state of the SECS)) 

THEN #GP(0); FI;

(* Calculate enclave offset *)
TMP_ENCLAVEOFFSET EPCM(DS:RCX).ENCLAVEADDRESS - TMP_SECS.BASEADDR;
TMP_ENCLAVEOFFSET TMP_ENCLAVEOFFSET + (DS:RCX & 0FFFH)

(* Add EEXTEND message and offset to MRENCLAVE *)
TMPUPDATEFIELD[63:0]  00444E4554584545H; // “EEXTEND”
TMPUPDATEFIELD[127:64]  TMP_ENCLAVEOFFSET;
TMPUPDATEFIELD[511:128]  0; // 48 bytes
TMP_SECS.MRENCLAVE  SHA256UPDATE(TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)
INC enclave’s MRENCLAVE update counter;

(*Add 256 bytes to MRENCLAVE, 64 byte at a time *) 
TMP_SECS.MRENCLAVE  SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[511:0] );
TMP_SECS.MRENCLAVE  SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[1023: 512] );
TMP_SECS.MRENCLAVE  SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[1535: 1024] );
TMP_SECS.MRENCLAVE  SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[2047: 1536] );
INC enclave’s MRENCLAVE update counter by 4;

Flags Affected

None
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Protected Mode Exceptions

#GP(0) If the address in RBX is outside the DS segment limit.
If RBX points to an SECS page which is not the SECS of the data chunk.
If the address in RCX is outside the DS segment limit.
If RCX points to a memory location not 256Byte-aligned.
If another instruction is accessing MRENCLAVE.
If another instruction is checking or updating the SECS.
If the enclave is already initialized.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RBX points to a non-EPC page.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RBX is non-canonical form.
If RBX points to an SECS page which is not the SECS of the data chunk.
If RCX is non-canonical form.
If RCX points to a memory location not 256 Byte-aligned.
If another instruction is accessing MRENCLAVE.
If another instruction is checking or updating the SECS.
If the enclave is already initialized.

#PF(error code) If a page fault occurs in accessing memory operands.
If the address in RBX points to a non-EPC page.
If the address in RCX points to a page which is not PT_TCS or PT_REG.
If the address in RCX points to a non-EPC page.
If the address in RCX points to an invalid EPC page.

...
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EINIT—Initialize an Enclave for Execution 

Instruction Operand Encoding

Description

This leaf function is the final instruction executed in the enclave build process. After EINIT, the MRENCLAVE 
measurement is complete, and the enclave is ready to start user code execution using the EENTER instruction.
EINIT takes the effective address of a SIGSTRUCT and EINITTOKEN. The SIGSTRUCT describes the enclave 
including MRENCLAVE, ATTRIBUTES, ISVSVN, a 3072 bit RSA key, and a signature using the included key. 
SIGSTRUCT must be populated with two values, q1 and q2. These are calculated using the formulas shown below: 
q1 = floor(Signature2 / Modulus);
q2 = floor((Signature3 - q1 * Signature * Modulus) / Modulus);
The EINITTOKEN contains the MRENCLAVE, MRSIGNER, and ATTRIBUTES. These values must match the corre-
sponding values in the SECS. If the EINITTOKEN was created with a debug launch key, the enclave must be in 
debug mode as well. 

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 02H IR V/V SGX1 This leaf function initializes the enclave and makes it ready to 
execute enclave code.ENCLS[EINIT]

Op/En EAX RBX RCX RDX

IR EINIT (In) Error code (Out) Address of SIGSTRUCT (In) Address of SECS (In) Address of EINITTOKEN (In)
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EINIT Memory Parameter Semantics

EINIT performs the following steps, which can be seen in Figure 41-1:
Validates that SIGSTRUCT is signed using the enclosed public key.
Checks that the completed computation of SECS.MRENCLAVE equals SIGSTRUCT.HASHENCLAVE.
Checks that no reserved bits are set to 1 in SIGSTRUCT.ATTRIBUTES and no reserved bits in SIGSTRUCT.ATTRI-
BUTESMASK are set to 0. 
Checks that no controlled ATTRIBUTES bits are set in SIGSTRUCT.ATTRIBUTES unless the SHA256 digest of 
SIGSTRUCT.MODULUS equals IA32_SGX_LEPUBKEYHASH. 
Checks that SIGSTRUCT.ATTRIBUTES equals the result of logically and-ing SIGSTRUCT.ATTRIBUTEMASK with 
SECS.ATTRIBUTES. 
If EINITTOKEN.VALID is 0, checks that the SHA256 digest of SIGSTRUCT.MODULUS equals 
IA32_SGX_LEPUBKEYHASH. 
If EINITTOKEN.VALID is 1, checks the validity of EINITTOKEN. 
If EINITTOKEN.VALID is 1, checks that EINITTOKEN.MRENCLAVE equals SECS.MRENCLAVE. 

Figure 41-1    Relationships Between SECS, SIGSTRUCT and EINITTOKEN
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If EINITTOKEN.VALID is 1 and EINITTOKEN.ATTRIBUTES.DEBUG is 1, SECS.ATTRIBUTES.DEBUG must be 1. 
Commits SECS.MRENCLAVE, and sets SECS.MRSIGNER, SECS.ISVSVN, and SECS.ISVPRODID based on 
SIGSTRUCT. 
Update the SECS as Initialized.
Periodically, EINIT polls for certain asynchronous events. If such an event is detected, it completes with failure 
code (ZF=1 and RAX = SGX_UNMASKED_EVENT), and RIP is incremented to point to the next instruction. These 
events includes external interrupts, non-maskable interrupts, system-management interrupts, machine checks, 
INIT signals, and the VMX-preemption timer. EINIT does not fail if the pending event is inhibited (e.g., external 
interrupts could be inhibited due to blocking by MOV SS blocking or by STI). 
The following bits in RFLAGS are cleared: CF, PF, AF, OF, and SF. When the instruction completes with an error, 
RFLAGS.ZF is set to 1, and the corresponding error bit is set in RAX. If no error occurs, RFLAGS.ZF is cleared and 
RAX is set to 0.
The error codes are: 

Concurrency Restrictions

Table 41-22    EINIT Return Value in RAX
 Error Code (see Table 38-3) Description

No Error EINIT successful

SGX_INVALID_SIG_STRUCT If SIGSTRUCT contained an invalid value
SGX_INVALID_ATTRIBUTE If SIGSTRUCT contains an unauthorized attributes mask
SGX_INVALID_MEASUREMENT If SIGSTRUCT contains an incorrect measurement

If EINITTOKEN contains an incorrect measurement
SGX_INVALID_SIGNATURE If signature does not validate with enclosed public key
SGX_INVALID_LICENSE If license is invalid
SGX_INVALID_CPUSVN If license SVN is unsupported
SGX_UNMASKED_EVENT If an unmasked event is received before the instruction completes its 

operation

Table 41-23    Concurrency Restrictions of EINIT with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Param TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EINIT SECS N N N Y Y N N Y N N N N N N Y N

Table 41-24    Concurrency Restrictions of EINIT with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EINIT SECS N Y N Y N Y N N N N N N
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Operation

Temp Variables in EINIT Operational Flow

(* make sure SIGSTRUCT and SECS are aligned *)
IF ( (DS:RBX is not 4KByte Aligned) or (DS:RCX is not 4KByte Aligned) )

THEN #GP(0); FI;

(* make sure the EINITTOKEN is aligned *)
IF (DS:RDX is not 512Byte Aligned) 

THEN #GP(0); FI;

(* make sure the SECS is inside the EPC *)
IF (DS:RCX does not resolve within an EPC) 

THEN #PF(DS:RCX); FI;

TMP_SIG[14463:0]  DS:RBX[14463:0]; // 1808 bytes
TMP_TOKEN[2423:0]  DS:RDX[2423:0]; // 304 bytes

(* Verify SIGSTRUCT Header. *)
IF ( (TMP_SIG.HEADER ≠ 06000000E10000000000010000000000h) or

((TMP_SIG.VENDOR ≠ 0) and (TMP_SIG.VENDOR ≠ 00008086h) ) or
(TMP_SIG HEADER2 ≠ 01010000600000006000000001000000h) or
(TMP_SIG.EXPONENT   ≠ 00000003h) or (Reserved space is not 0’s) )
THEN 

RFLAGS.ZF  1;
RAX  SGX_INVALID_SIG_STRUCT;
GOTO EXIT;

FI;

(* Open “Event Window” Check for Interrupts. Verify signature using embedded public key, q1, and q2. Save upper 352 bytes of the 
PKCS1.5 encoded message into the TMP_SIG_PADDING*)
IF (interrupt was pending) {

RFLAG.ZF  1;

Name Type Size Description

TMP_SIG  SIGSTRUCT 1808Bytes Temp space for SIGSTRUCT.

TMP_TOKEN  EINITTOKEN 304Bytes Temp space for EINITTOKEN.

TMP_MRENCLAVE  32Bytes Temp space for calculating MRENCLAVE.

TMP_MRSIGNER  32Bytes Temp space for calculating MRSIGNER.

CONTROLLED_ATTRIBU
TES

ATTRIBUTES 16Bytes Constant mask of all ATTRIBUTE bits that can only be set for authorized 
enclaves.

TMP_KEYDEPENDENCIE
S 

Buffer 224Bytes Temp space for key derivation.

TMP_EINITTOKENKEY  16Bytes Temp space for the derived EINITTOKEN Key.

TMP_SIG_PADDING PKCS Padding 
Buffer

352Bytes The value of the top 352 bytes from the computation of Signature3 
modulo MRSIGNER.
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RAX  SGX_UNMASKED_EVENT;
GOTO EXIT;

FI
IF (signature failed to verify) {

RFLAG.ZF  1;
RAX  SGX_INVALID_SIGNATURE;
GOTO EXIT;

FI;
(*Close “Event Window” *)

(* make sure no other Intel SGX instruction is modifying SECS*)
IF (Other instructions modifying SECS) 

THEN #GP(0); FI;

IF ( (EPCM(DS:RCX). VALID = 0) or (EPCM(DS:RCX).PT ≠ PT_SECS) )
THEN #PF(DS:RCX); FI;

(* make sure no other instruction is accessing MRENCLAVE or ATTRIBUETS.INIT *) 
IF ( (Other instruction modifying MRENCLAVE) or (Other instructions modifying the SECS’s Initialized state)) 

THEN #GP(0); FI;

(* Calculate finalized version of MRENCLAVE *)
(* SHA256 algorithm requires one last update that compresses the length of the hashed message into the output SHA256 digest *)
TMP_ENCLAVE SHA256FINAL( (DS:RCX).MRENCLAVE, enclave’s MRENCLAVE update count *512);

(* Verify MRENCLAVE from SIGSTRUCT *)
IF (TMP_SIG.ENCLAVEHASH ≠ TMP_MRENCLAVE)

RFLAG.ZF  1;
RAX  SGX_INVALID_MEASUREMENT;
GOTO EXIT;

FI;

TMP_MRSIGNER  SHA256(TMP_SIG.MODULUS)

(* if controlled ATTRIBUTES are set, SIGSTRUCT must be signed using an authorized key *)
CONTROLLED_ATTRIBUTES  0000000000000020H;
IF ( ( (DS:RCX.ATTRIBUTES & CONTROLLED_ATTRIBUTES) ≠ 0) and (TMP_MRSIGNER ≠ IA32_SGXLEPUBKEYHASH) )

RFLAG.ZF  1;
RAX  SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;

(* Verify SIGSTRUCT.ATTRIBUTE requirements are met *)
IF ( (DS:RCX.ATTRIBUTES & TMP_SIG.ATTRIBUTEMASK) ≠ (TMP_SIG.ATTRIBUTE & TMP_SIG.ATTRIBUTEMASK) )

RFLAG.ZF  1;
RAX  SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;

( *Verify SIGSTRUCT.MISCSELECT requirements are met *)
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IF ( (DS:RCX.MISCSELECT & TMP_SIG.MISCMASK) ≠ (TMP_SIG.MISCSELECT & TMP_SIG.MISCMASK) )
THEN

RFLAGS.ZF  1;
RAX  SGX_INVALID_ATTRIBUTE;

GOTO EXIT
FI;

(* if EINITTOKEN.VALID[0] is 0, verify the enclave is signed by an authorized key *)
IF (TMP_TOKEN.VALID[0] = 0)

IF (TMP_MRSIGNER ≠ IA32_SGXLEPUBKEYHASH)
RFLAG.ZF  1;
RAX  SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;
GOTO COMMIT;

FI;

(* Debug Launch Enclave cannot launch Production Enclaves *)
IF ( (DS:RDX.MASKEDATTRIBUTESLE.DEBUG = 1) and (DS:RCX.ATTRIBUTES.DEBUG = 0) )

RFLAG.ZF  1;
RAX  SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;

(* Check reserve space in EINIT token includes reserved regions and upper bits in valid field *)
IF (TMP_TOKEN reserved space is not clear)

RFLAG.ZF  1;
RAX  SGX_INVALID_EINITTOKEN;
GOTO EXIT;

FI;

(* EINIT token must be ≤ CR_CPUSVN *)
IF (TMP_TOKEN.CPUSVN > CR_CPUSVN)

RFLAG.ZF  1;
RAX  SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;

(* Derive Launch key used to calculate EINITTOKEN.MAC *)
HARDCODED_PKCS1_5_PADDING[15:0]  0100H;
HARDCODED_PKCS1_5_PADDING[2655:16]  SignExtend330Byte(-1); // 330 bytes of 0FFH
HARDCODED_PKCS1_5_PADDING[2815:2656]  2004000501020403650148866009060D30313000H;

TMP_KEYDEPENDENCIES.KEYNAME  EINITTOKEN_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID  TMP_TOKEN.ISVPRODIDLE;
TMP_KEYDEPENDENCIES.ISVSVN  TMP_TOKEN.ISVSVN;
TMP_KEYDEPENDENCIES.OWNEREPOCH  CSR_SGXOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES  TMP_TOKEN.MASKEDATTRIBUTESLE;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK  0;
TMP_KEYDEPENDENCIES.MRENCLAVE  0;
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TMP_KEYDEPENDENCIES.MRSIGNER  IA32_SGXLEPUBKEYHASH;
TMP_KEYDEPENDENCIES.KEYID  TMP_TOKEN.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES  CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN  TMP_TOKEN.CPUSVN;
TMP_KEYDEPENDENCIES.MISCSELECT  TMP_TOKEN.MASKEDMISCSELECTLE;
TMP_KEYDEPENDENCIES.MISCMASK  0;
TMP_KEYDEPENDENCIES.PADDING  HARDCODED_PKCS1_5_PADDING;

(* Calculate the derived key*) 
TMP_EINITTOKENKEY  derivekey(TMP_KEYDEPENDENCIES);

(* Verify EINITTOKEN was generated using this CPU's Launch key and that it has not been modified since issuing by the Launch 
Enclave. Only 192 bytes of EINITOKEN are CMACed *)
IF (TMP_TOKEN.MAC ≠ CMAC(TMP_EINITTOKENKEY, TMP_TOKEN[1535:0] ) )

RFLAG.ZF  1;
RAX  SGX_INVALID_EINIT_TOKEN;
GOTO EXIT;

FI;

(* Verify EINITTOKEN (RDX) is for this enclave *)
IF (TMP_TOKEN.MRENCLAVE ≠ TMP_MRENCLAVE) or (TMP_TOKEN.MRSIGNER ≠ TMP_MRSIGNER) )

RFLAG.ZF  1;
RAX  SGX_INVALID_MEASUREMENT;
GOTO EXIT;

FI;

(* Verify ATTRIBUTES in EINITTOKEN are the same as the enclave’s *)
IF (TMP_TOKEN.ATTRIBUTES ≠ DS:RCX.ATTRIBUTES)

RFLAG.ZF  1;
RAX  SGX_INVALID_EINIT_ATTRIBUTE;
GOTO EXIT;

FI;

COMMIT:
(* Commit changes to the SECS; Set ISVPRODID, ISVSVN, MRSIGNER, INIT ATTRIBUTE fields in SECS (RCX) *) 
DS:RCX.MRENCLAVE  TMP_MRENCLAVE;
(* MRSIGNER stores a SHA256 in little endian implemented natively on x86 *) 
DS:RCX.MRSIGNER  TMP_MRSIGNER;
DS:RCX.ISVPRODID  TMP_SIG.ISVPRODID;
DS:RCX.ISVSVN  TMP_SIG.ISVSVN;
DS:RCX.PADDING  TMP_SIG_PADDING;

(* Mark the SECS as initialized *)
Update DS:RCX to initialized;

(* Set RAX and ZF for success*) 
RFLAG.ZF  0;
RAX  0;

EXIT:
RFLAGS.CF,PF,AF,OF,SF  0;
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Flags Affected

ZF is cleared if successful, otherwise ZF is set and RAX contains the error code. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand is not properly aligned.
If another instruction is modifying the SECS.
If the enclave is already initialized.
If the SECS.MRENCLAVE is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If RCX does not resolve in an EPC page.
If the memory address is not a valid, uninitialized SECS.

64-Bit Mode Exceptions

#GP(0) If a memory operand is not properly aligned.
If another instruction is modifying the SECS.
If the enclave is already initialized.
If the SECS.MRENCLAVE is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If RCX does not resolve in an EPC page.
If the memory address is not a valid, uninitialized SECS.

...

ELDB/ELDU—Load an EPC page and Marked its State 

Instruction Operand Encoding

Description

This leaf function copies a page from regular main memory to the EPC. As part of the copying process, the page 
is cryptographically authenticated and decrypted. This instruction can only be executed when current privilege 
level is 0.
The ELDB leaf function sets the BLOCK bit in the EPCM entry for the destination page in the EPC after copying. The 
ELDU leaf function clears the BLOCK bit in the EPCM entry for the destination page in the EPC after copying.
RBX contains the effective address of a PAGEINFO structure; RCX contains the effective address of the destination 
EPC page; RDX holds the effective address of the version array slot that holds the version of the page.

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 07H IR V/V SGX1 This leaf function loads, verifies an EPC page and marks the page 
as blocked.ENCLS[ELDB]

 EAX = 08H IR V/V SGX1 This leaf function loads, verifies an EPC page and marks the page 
as unblocked.ENCLS[ELDU]

Op/En EAX RBX RCX RDX

IR
ELDB/ELDU 

(In)
Return error 
code (Out)

Address of the PAGEINFO 
(In)

Address of the EPC page 
(In)

Address of the version-
array slot (In)
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The table below provides additional information on the memory parameter of ELDB/ELDU leaf functions.

EBLDB/ELDBU Memory Parameter Semantics

The error codes are: 

Concurrency Restrictions

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.PCMD PAGEINFO.SECS EPCPAGE Version-Array Slot

Non-enclave 
read access

Non-enclave read 
access

Non-enclave read 
access

Enclave read/write 
access

Read/Write access 
permitted by Enclave

Read/Write access per-
mitted by Enclave

Table 41-25    ELDB/ELDU Return Value in RAX
 Error Code (see Table 38-3) Description

No Error ELDB/ELDU successful

SGX_MAC_COMPARE_FAIL If the MAC check fails

Table 41-26    Concurrency Restrictions of ELDB/ELDU with Intel® SGX Instructions - 1of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Param Targ VA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

ELDB/
ELDU

Targ N N N N N N N N N N N

VA N N Y N Y N

SECS Y N Y Y N Y Y Y Y Y N Y

Table 41-27    Concurrency Restrictions of ELDB/ELDU with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SRC SECI
NFO

ELDB/
ELDU

Targ N N N N N N N N

VA N N Y N N

SECS N Y Y Y Y N Y Y Y Y
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Operation

Temp Variables in ELDB/ELDU Operational Flow

(* Check PAGEINFO and EPCPAGE alignment *)
IF ( (DS:RBX is not 32Byte Aligned) or (DS:RCX is not 4KByte Aligned) )

THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* Check VASLOT alignment *)
IF (DS:RDX is not 8Byte aligned)

THEN #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
THEN #PF(DS:RDX); FI;

TMP_SRCPGE  DS:RBX.SRCPGE;
TMP_SECS  DS:RBX.SECS;
TMP_PCMD  DS:RBXPCMD;

(* Check alignment of PAGEINFO (RBX)linked parameters. Note: PCMD pointer is overlaid on top of PAGEINFO.SECINFO field *)
IF ( (DS:TMP_PCMD is not 128Byte aligned) or (DS:TMP_SRCPGE is not 4KByte aligned) )

THEN #GP(0); FI;

(* Check concurrency of EPC and VASLOT by other Intel SGX instructions *)
IF ( (other instructions accessing EPC) or (Other instructions modifying VA slot) ) 

THEN #GP(0); FI;

(* Verify EPCM attributes of EPC page, VA, and SECS *)
IF (EPCM(DS:RCX).VALID = 1) 

THEN #PF(DS:RCX); FI;

IF ( (EPCM(DS:RDX & ~0FFFH).VALID = 0) or (EPCM(DS:RDX & ~0FFFH).PT ≠ PT_VA) )
THEN #PF(DS:RDX); FI;

Name Type Size (Bits) Description

TMP_SRCPGE Memory page 4KBytes

TMP_SECS Memory page 4KBytes

TMP_PCMD PCMD 128 Bytes

TMP_HEADER MACHEADER 128 Bytes

TMP_VER UINT64 64

TMP_MAC UINT128 128

TMP_PK UINT128 128 Page encryption/MAC key.

SCRATCH_PCMD PCMD 128 Bytes
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(* Copy PCMD into scratch buffer *)
SCRATCH_PCMD[1023: 0] DS:TMP_PCMD[1023:0];

(* Zero out TMP_HEADER*)
TMP_HEADER[sizeof(TMP_HEADER)-1: 0] 0;

TMP_HEADER.SECINFO  SCRATCH_PCMD.SECINFO;
TMP_HEADER.RSVD  SCRATCH_PCMD.RSVD;
TMP_HEADER.LINADDR  DS:RBX.LINADDR;

(* Verify various attributes of SECS parameter *)
IF ( (TMP_HEADER.SECINFO.FLAGS.PT = PT_REG) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_TCS) or 

 (TMP_HEADER.SECINFO.FLAGS.PT = PT_TRIM) )
THEN 

IF ( DS:TMP_SECS is not 4KByte aligned) 
THEN #GP(0) FI;

IF (DS:TMP_SECS does not resolve within an EPC) 
THEN #PF(DS:TMP_SECS) FI;

IF ( Other instructions modifying SECS) 
THEN #GP(0) FI;

IF ( (EPCM(DS:TMP_SECS).VALID = 0) or (EPCM(DS:TMP_SECS).PT ≠ PT_SECS) )
THEN #PF(DS:TMP_SECS) FI;

ELSIF ( (TMP_HEADER.SECINFO.FLAGS.PT = PT_SECS) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_VA) ) 
IF ( ( TMP_SECS ≠ 0) )

THEN #GP(0) FI;
ELSE

#GP(0) 
FI;

IF ( (TMP_HEADER.SECINFO.FLAGS.PT = PT_REG) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_TCS) or 
 (TMP_HEADER.SECINFO.FLAGS.PT = PT_TRIM) )
THEN 

TMP_HEADER.EID  DS:TMP_SECS.EID;
ELSE

(* These pages do not have any parent, and hence no EID binding *)
TMP_HEADER.EID  0;

FI;

(* Copy 4KBytes SRCPGE to secure location *)
DS:RCX[32767: 0] DS:TMP_SRCPGE[32767: 0];
TMP_VER  DS:RDX[63:0];

(* Decrypt and MAC page. AES_GCM_DEC has 2 outputs, {plain text, MAC} *)
(* Parameters for AES_GCM_DEC {Key, Counter, ..} *)
{DS:RCX, TMP_MAC}  AES_GCM_DEC(CR_BASE_PK, TMP_VER << 32, TMP_HEADER, 128, DS:RCX, 4096);

IF ( (TMP_MAC ≠ DS:TMP_PCMD.MAC) )
THEN 

RFLAGS.ZF  1;
RAX SGX_MAC_COMPARE_FAIL;
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GOTO ERROR_EXIT;
FI;

(* Check version before committing *)
IF (DS:RDX ≠ 0)

THEN #GP(0); 
ELSE

DS:RDX TMP_VER;
FI;

(* Commit EPCM changes *)
EPCM(DS:RCX).PT  TMP_HEADER.SECINFO.FLAGS.PT;
EPCM(DS:RCX).RWX  TMP_HEADER.SECINFO.FLAGS.RWX;
EPCM(DS:RCX).PENDING  TMP_HEADER.SECINFO.FLAGS.PENDING;
EPCM(DS:RCX).MODIFIED  TMP_HEADER.SECINFO.FLAGS.MODIFIED;
EPCM(DS:RCX).PR  TMP_HEADER.SECINFO.FLAGS.PR;
EPCM(DS:RCX).ENCLAVEADDRESS  TMP_HEADER.LINADDR;

IF ( (EAX = 07H) and (TMP_HEADER.SECINFO.FLAGS.PT is NOT PT_SECS or PT_VA))
THEN 

EPCM(DS:RCX).BLOCKED  1;
ELSE

EPCM(DS:RCX).BLOCKED  0;
FI;

EPCM(DS:RCX). VALID  1;

RAX 0;
RFLAGS.ZF  0;

ERROR_EXIT:
RFLAGS.CF,PF,AF,OF,SF  0;

Flags Affected

Sets ZF if unsuccessful, otherwise cleared and RAX returns error code. Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the instruction’s EPC resource is in use by others.
If the instruction fails to verify MAC.
If the version-array slot is in use.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand expected to be in EPC does not resolve to an EPC page.
If one of the EPC memory operands has incorrect page type.
If the destination EPC page is already valid.
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64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the instruction’s EPC resource is in use by others.
If the instruction fails to verify MAC.
If the version-array slot is in use.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand expected to be in EPC does not resolve to an EPC page.
If one of the EPC memory operands has incorrect page type.
If the destination EPC page is already valid.

...

EMODPR—Restrict the Permissions of an EPC Page  

Instruction Operand Encoding

Description

This leaf function restricts the access rights associated with an EPC page in an initialized enclave. THE RWX bits of 
the SECINFO parameter are treated as a permissions mask; supplying a value that does not restrict the page 
permissions will have no effect. This instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC 
page. The table below provides additional information on the memory parameter of the EMODPR leaf function.

EMODPR Memory Parameter Semantics

The instruction faults if any of the following: 

EMODPR Faulting Conditions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 0EH IR V/V SGX2 This leaf function restricts the access rights associated with a 
EPC page in an initialized enclave.ENCLS[EMODPR]

Op/En EAX RBX RCX

IR EMODPR (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read/Write access permitted by Enclave

The operands are not properly aligned. If unsupported security attributes are set.

The Enclave is not initialized. SECS is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid.
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The error codes are: 

Concurrency Restrictions

Operation

Temp Variables in EMODPR Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC) 
THEN #PF(DS:RCX); FI;

SCRATCH_SECINFO  DS:RBX;

(* Check for mis-configured SECINFO flags*)
IF ( (SCRATCH_SECINFO reserved fields are not zero ) or

Table 41-28    EMODPR Return Value in RAX
 Error Code (see Table 38-3) Description

No Error EMODPR successful

SGX_PAGE_NOT_MODIFIABLE The EPC page cannot be modified because it is in the PENDING or MODIFIED 
state

SGX_LOCKFAIL Page is being written by EADD, EAUG, ECREATE, ELDU/B, EMODT, or EWB

Table 41-29    Concurrency Restrictions of EMODPR with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EP

A

Param TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EMODPR Targ Y N Y N Y Y N Y N N

SECS Y Y N Y Y Y Y Y Y Y Y Y N Y Y N Y Y Y Y

Table 41-30    Concurrency Restrictions of EMODPR with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EMODP
R

Targ N Y Y N N C Y C C C Y C Y Y

SECS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operand belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
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!(SCRATCH_SECINFO.FLAGS.R is 0 or SCRATCH_SECINFO.FLAGS.W is not 0) )
THEN #GP(0); FI;

(* Check concurrency with SGX1 or SGX2 instructions on the EPC page *)
IF (SGX1 or other SGX2 instructions accessing EPC page) 

THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID is 0 )
THEN #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction) 

THEN 
RFLAGS  1;
RAX  SGX_LOCKFAIL;
GOTO DONE;

FI;

IF ( (EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0) )
THEN 

RFLAGS  1;
RAX  SGX_PAGE_NOT_MODIFIABLE;
GOTO DONE;

FI;

IF (EPCM(DS:RCX).PT is not PT_REG)
THEN #PF(DS:RCX); FI;

TMP_SECS  GET_SECS_ADDRESS

IF (TMP_SECS.ATTRIBUTES.INIT = 0)
  THEN #GP(0); FI;

(* Set the PR bit to indicate that permission restriction is in progress *)
EPCM(DS:RCX).PR  1;

(* Update EPCM permissions *)
EPCM(DS:RCX).R  EPCM(DS:RCX).R & SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W  EPCM(DS:RCX).W & SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X  EPCM(DS:RCX).X & SCRATCH_SECINFO.FLAGS.X;

RFLAGS.ZF  0;
RAX  0;

DONE:
RFLAGS.CF,PF,AF,OF,SF  0;
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Flags Affected

Sets ZF if page is not modifiable or if other SGX2 instructions are executing concurrently, otherwise cleared. 
Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

...

EMODT—Change the Type of an EPC Page  

Instruction Operand Encoding

Description

This leaf function modifies the type of an EPC page. The security attributes are configured to prevent access to the 
EPC page at its new type until a corresponding invocation of the EACCEPT leaf confirms the modification. This 
instruction can only be executed when current privilege level is 0.
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC 
page. The table below provides additional information on the memory parameter of the EMODT leaf function.

EMODT Memory Parameter Semantics

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 0FH IR V/V SGX2 This leaf function changes the type of an existing EPC page.
ENCLS[EMODT]

Op/En EAX RBX RCX

IR EMODT (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read/Write access permitted by Enclave
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The instruction faults if any of the following: 

EMODT Faulting Conditions

The error codes are: 

Concurrency Restrictions

Operation

Temp Variables in EMODT Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

The operands are not properly aligned. If unsupported security attributes are set.

The Enclave is not initialized. SECS is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid.

Table 41-31    EMODT Return Value in RAX
 Error Code (see Table 38-3) Description

No Error EMODT successful

SGX_PAGE_NOT_MODIFIABLE The EPC page cannot be modified because it is in the PENDING or MODIFIED state
SGX_LOCKFAIL Page is being written by EADD, EAUG, ECREATE, ELDU/B, EMODPR, or EWB

Table 41-32    Concurrency Restrictions of EMODT with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EP

A

Param TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EMODT Targ Y Y C C C C C C Y C Y N C C C

SECS Y Y N Y Y Y Y Y Y Y Y Y N Y Y N Y Y Y Y

Table 41-33    Concurrency Restrictions of EMODT with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EMODT Targ C Y C C C C C Y C C Y C Y C Y Y

SECS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operand belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
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IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC) 
THEN #PF(DS:RCX); FI;

SCRATCH_SECINFO  DS:RBX;

(* Check for mis-configured SECINFO flags*)
IF ( (SCRATCH_SECINFO reserved fields are not zero ) or

!(SCRATCH_SECINFO.FLAGS.PT is PT_TCS or SCRATCH_SECINFO.FLAGS.PT is PT_TRIM) )
THEN #GP(0); FI;

(* Check concurrency with SGX1 instructions on the EPC page *)
IF (other SGX1 instructions accessing EPC page) 

THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID is 0 or
!(EPCM(DS:RCX).PT is PT_REG or EPCM(DS:RCX).PT is PT_TCS))
THEN #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction) 

THEN #GP(0); FI;

(* Check for mis-configured SECINFO flags*)
IF ( (EPCM(DS:RCX).R = 0) and (SCRATCH_SECINFO.FLAGS.R = 0) and (SCRATCH_SECINFO.FLAGS.W ≠ 0) )) 

THEN 
RFLAGS  1;
RAX  SGX_LOCKFAIL;
GOTO DONE;

FI;

IF ( (EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0) )
THEN 

RFLAGS  1;
RAX  SGX_PAGE_NOT_MODIFIABLE;
GOTO DONE;

FI;

TMP_SECS  GET_SECS_ADDRESS

IF (TMP_SECS.ATTRIBUTES.INIT = 0)
  THEN #GP(0); FI;

(* Check concurrency with ETRACK *)
IF (ETRACK executed concurrently)

THEN #GP(0); FI;

(* Update EPCM fields *)
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EPCM(DS:RCX).PR  0;
EPCM(DS:RCX).MODIFIED  1;
EPCM(DS:RCX).R  0;
EPCM(DS:RCX).W  0;
EPCM(DS:RCX).X  0;
EPCM(DS:RCX).PT  SCRATCH_SECINFO.FLAGS.PT;

RFLAGS.ZF  0;
RAX  0;

DONE:
RFLAGS.CF,PF,AF,OF,SF  0;

Flags Affected

Sets ZF if page is not modifiable or if other SGX2 instructions are executing concurrently, otherwise cleared. 
Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

...

EPA—Add Version Array 

Instruction Operand Encoding

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 0AH IR V/V SGX1 This leaf function adds a Version Array to the EPC.
ENCLS[EPA]

Op/En EAX RBX RCX

IR EPA (In) PT_VA (In, Constant) Effective address of the EPC page (In)
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Description

This leaf function creates an empty version array in the EPC page whose logical address is given by DS:RCX, and 
sets up EPCM attributes for that page. At the time of execution of this instruction, the register RBX must be set to 
PT_VA.

The table below provides additional information on the memory parameter of EPA leaf function.

EPA Memory Parameter Semantics

Concurrency Restrictions

Operation

IF (RBX ≠ PT_VA or DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions accessing the page) 

THEN #GP(0); FI;

(* Check EPC page must be empty *)
IF (EPCM(DS:RCX). VALID ≠ 0)

THEN #PF(DS:RCX); FI;

(* Clears EPC page *)
DS:RCX[32767:0]  0;

EPCM(DS:RCX).PT  PT_VA;
EPCM(DS:RCX).ENCLAVEADDRESS  0;

EPCPAGE

Write access permitted by Enclave

Table 41-34    Concurrency Restrictions of EPA with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Param TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EPA VA N N N N N N N N N N N

Table 41-35    Concurrency Restrictions of EPA with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EPA VA N N N N N N N N



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 782

EPCM(DS:RCX).BLOCKED  0;
EPCM(DS:RCX).PENDING  0;
EPCM(DS:RCX).MODIFIED  0;
EPCM(DS:RCX).PR  0;
EPCM(DS:RCX).RWX  0;
EPCM(DS:RCX).VALID  1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the EPC page.
If RBX is not set to PT_VA.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If the EPC page is valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the EPC page.
If RBX is not set to PT_VA.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If the EPC page is valid.

...

EREMOVE—Remove a page from the EPC 

Instruction Operand Encoding

Description

This leaf function causes an EPC page to be un-associated with its SECS and be marked as unused. This instruc-
tion leaf can only be executed when the current privilege level is 0.
The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address. 
Segment override is not supported.

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 03H IR V/V SGX1 This leaf function removes a page from the EPC.
ENCLS[EREMOVE]

Op/En EAX RCX

IR EREMOVE (In) Effective address of the EPC page (In)
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The instruction fails if the operand is not properly aligned or does not refer to an EPC page or the page is in use 
by another thread, or other threads are running in the enclave to which the page belongs. In addition the instruc-
tion fails if the operand refers to an SECS with associations.

EREMOVE Memory Parameter Semantics

The instruction faults if any of the following: 

EREMOVE Faulting Conditions

The error codes are: 

Concurrency Restrictions

EPCPAGE

Write access permitted by Enclave

The memory operand is not properly aligned. The memory operand does not resolve in an EPC page.

Refers to an invalid SECS. Refers to an EPC page that is locked by another thread.

Another Intel SGX instruction is accessing the EPC page. RCX does not contain an effective address of an EPC page.

the EPC page refers to an SECS with associations.

Table 41-36    EREMOVE Return Value in RAX
 Error Code (see Table 38-3) Description

No Error EREMOVE successful

SGX_CHILD_PRESENT If the SECS still have enclave pages loaded into EPC
SGX_ENCLAVE_ACT If there are still logical processors executing inside the enclave

Table 41-37    Concurrency Restrictions of EREMOVE with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Param TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EREMOVE Targ C C C N N N C N N C N C C N C C C N N N N N

SECS C Y Y Y Y Y Y Y Y Y C Y Y Y C Y Y Y Y Y

Table 41-38    Concurrency Restrictions of EREMOVE with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EREMOVE Targ N C C C N N N C N N C C N C N C C C C C C C

SECS Y Y Y C Y Y Y Y Y Y Y Y Y Y Y Y C C C Y Y Y
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Operation

Temp Variables in EREMOVE Operational Flow

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve to an EPC page)
THEN #PF(DS:RCX); FI;

TMP_SECS  Get_SECS_ADDRESS();

(* Check the EPC page for concurrency *)
IF (EPC page being referenced by another Intel SGX instruction) 

THEN #GP(0); FI;

(* if DS:RCX is already unused, nothing to do*)
IF ( (EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PT = PT_TRIM AND EPCM(DS:RCX).MODIFIED = 0))

THEN GOTO DONE; 
FI;

IF (EPCM(DS:RCX).PT = PT_VA) 
THEN 

EPCM(DS:RCX).VALID  0;
GOTO DONE; 

FI;

IF (EPCM(DS:RCX).PT = PT_SECS) 
THEN 

IF (DS:RCX has an EPC page associated with it) 
THEN 

RFLAGS.ZF  1;
RAX SGX_CHILD_PRESENT;
GOTO ERROR_EXIT;

FI;
EPCM(DS:RCX).VALID  0;
GOTO DONE; 

FI;

TEMP_SECS  Get_SECS_ADDRESS();

IF (Other threads active using SECS) 
THEN 

RFLAGS.ZF  1;
RAX SGX_ENCLAVE_ACT;
GOTO ERROR_EXIT;

Name Type Size (Bits) Description

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.
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FI;

DONE:
RAX 0;
RFLAGS.ZF  0;

ERROR_EXIT:
RFLAGS.CF,PF,AF,OF,SF  0;

Flags Affected

Sets ZF if unsuccessful, otherwise cleared and RAX returns error code. Clears CF, PF, AF, OF, SF 

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the page.

#PF(error code) If a page fault occurs in accessing memory operands.
If the memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If the memory operand is non-canonical form.
If a memory operand is not properly aligned.
If another Intel SGX instruction is accessing the page.

#PF(error code) If a page fault occurs in accessing memory operands.
If the memory operand is not an EPC page.

...

ETRACK—Activates EBLOCK Checks 

Instruction Operand Encoding

Description

This leaf function provides the mechanism for hardware to track that software has completed the required TLB 
address clears successfully. The instruction can only be executed when the current privilege level is 0.
The content of RCX is an effective address of an EPC page.
The table below provides additional information on the memory parameter of EBLOCK leaf function.

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 0CH IR V/V SGX1 This leaf function activates EBLOCK checks.
ENCLS[ETRACK]

Op/En EAX RCX

IR ETRACK (In) Return error code (Out) Pointer to the SECS of the EPC page (In)
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ETRACK Memory Parameter Semantics

The error codes are: 

Concurrency Restrictions

Operation

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

(* Check concurrency with other Intel SGX instructions *)
IF (Other Intel SGX instructions using tracking facility on this SECS) 

THEN #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).PT ≠ PT_SECS) 
THEN #PF(DS:RCX); FI;

(* All processors must have completed the previous tracking cycle*)
IF ( (DS:RCX).TRACKING ≠ 0) ) 

THEN 
RFLAGS.ZF  1;
RAX SGX_PREV_TRK_INCMPL;

EPCPAGE

Read/Write access permitted by Enclave

Table 41-39    ETRACK Return Value in RAX
 Error Code (see Table 38-3) Description

No Error ETRACK successful

SGX_PREV_TRK_INCMPL All processors did not complete the previous shoot-down sequence

Table 41-40    Concurrency Restrictions of ETRACK with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Param TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

ETRACK SECS Y N Y Y N N Y Y Y Y Y N Y N

Table 41-41    Concurrency Restrictions of ETRACK with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

ETRACK SECS N Y Y N N Y N Y Y Y Y
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GOTO DONE;
ELSE

RAX 0;
RFLAGS.ZF  0;

FI;

DONE:
RFLAGS.ZF,CF,PF,AF,OF,SF  0;

Flags Affected

Sets ZF if SECS is in use or invalid, otherwise cleared. Clears CF, PF, AF, OF, SF 

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If another thread is concurrently using the tracking facility on this SECS.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the specified EPC resource is in use.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.

...

EWB—Invalidate an EPC Page and Write out to Main Memory 

Instruction Operand Encoding

Table 41-42    ETRACK Return Value in RAX
 Error Code (see Table 38-3) Value Description

No Error 0 ETRACK successful

SGX_PREV_TRK_INCMPL All processors did not complete the previous shoot-down sequence

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 0BH IR V/V SGX1 This leaf function invalidates an EPC page and writes it out to 
main memory.ENCLS[EWB]

Op/En EAX RBX RCX RDX

IR EWB (In) Error code (Out) Address of an PAGEINFO (In) Address of the EPC page (In) Address of a VA slot (In)
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Description

This leaf function copies a page from the EPC to regular main memory. As part of the copying process, the page is 
cryptographically protected. This instruction can only be executed when current privilege level is 0.

The table below provides additional information on the memory parameter of EPA leaf function.

EWB Memory Parameter Semantics

The error codes are: 

Concurrency Restrictions

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.PCMD EPCPAGE VASLOT

Non-EPC R/W access Non-EPC R/W access Non-EPC R/W access EPC R/W access EPC R/W access 

Table 41-43    EWB Return Value in RAX
 Error Code (see Table 38-3) Description

No Error EWB successful

SGX_PAGE_NOT_BLOCKED If page is not marked as blocked
SGX_NOT_TRACKED If EWB is racing with ETRACK instruction
SGX_VA_SLOT_OCCUPIED Version array slot contained valid entry
SGX_CHILD_PRESENT Child page present while attempting to page out enclave

Table 41-44    Concurrency Restrictions of EWB with Intel® SGX Instructions - 1of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Param Targ VA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EWB Src C C C N N N C N N C N C C N C C C N N N N

VA N N Y N Y N

SECS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Table 41-45    Concurrency Restrictions of EWB with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SRC SECI
NFO

EWB Src N C C C N N N C N N C C N C N C C C C C C C

VA N N Y N N

SECS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
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Operation

Temp Variables in EWB Operational Flow

IF ( (DS:RBX is not 32Byte Aligned) or (DS:RCX is not 4KByte Aligned) )
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)
THEN #PF(DS:RCX); FI;

IF (DS:RDX is not 8Byte Aligned)
THEN #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)
THEN #PF(DS:RDX); FI;

(* EPCPAGE and VASLOT should not resolve to the same EPC page*)
IF (DS:RCX and DS:RDX resolve to the same EPC page)

THEN #GP(0); FI;

TMP_SRCPGE  DS:RBX.SRCPGE;
(* Note PAGEINFO.PCMD is overlaid on top of PAGEINFO.SECINFO *)
TMP_PCMD  DS:RBX.PCMD;

If (DS:RBX.LINADDR ≠ 0) OR (DS:RBX.SECS ≠ 0) 
THEN #GP(0); FI;

IF ( (DS:TMP_PCMD is not 128Byte Aligned) or (DSTMP_SRCPGE is not 4KByte Aligned) )
THEN #GP(0); FI;

(* Check for concurrent Intel SGX instruction access to the page *)
IF (Other Intel SGX instruction is accessing page) 

THEN #GP(0); FI;

(*Check if the VA Page is being removed or changed*)

Name Type Size (Bytes) Description

TMP_SRCPGE Memory page 4096

TMP_PCMD PCMD 128

TMP_SECS SECS 4096

TMP_BPEPOCH UINT64 8

TMP_BPREFCOUNT UINT64 8

TMP_HEADER MAC Header 128

TMP_PCMD_ENCLAVEID UINT64 8

TMP_VER UINT64 8

TMP_PK UINT128 16
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IF (VA Page is being modified)
THEN #GP(0); FI;

(* Verify that EPCPAGE and VASLOT page are valid EPC pages and DS:RDX is VA *)
IF (EPCM(DS:RCX).VALID = 0) 

THEN #PF(DS:RCX); FI;

IF ( (EPCM(DS:RDX & ~0FFFH).VALID = 0) or (EPCM(DS:RDX & ~FFFH).PT is not PT_VA) )
THEN #PF(DS:RDX); FI;

(* Perform page-type-specific exception checks *)
IF ( (EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM ) )

THEN
TMP_SECS = Obtain SECS through EPCM(DS:RCX)

(* Check that EBLOCK has occurred correctly *)
IF (EBLOCK is not correct)

THEN #GP(0); FI;
FI;

RFLAGS.ZF,CF,PF,AF,OF,SF  0;
RAX  0;

(* Perform page-type-specific checks *)
IF ( (EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM ))

THEN
(* check to see if the page is evictable *)
IF (EPCM(DS:RCX).BLOCKED = 0) 

THEN
RAX  SGX_PAGE NOT_BLOCKED;
RFLAGS.ZF  1;
GOTO ERROR_EXIT;

FI;
(* Check if tracking done correctly *)
IF (Tracking not correct)

THEN
RAX  SGX_NOT_TRACKED;
RFLAGS.ZF  1;
GOTO ERROR_EXIT;

FI;

(* Obtain EID to establish cryptographic binding between the paged-out page and the enclave *)
TMP_HEADER.EID  TMP_SECS.EID;

(* Obtain EID as an enclave handle for software *)
TMP_PCMD_ENCLAVEID  TMP_SECS.EID;

ELSE IF (EPCM(DS:RCX).PT is PT_SECS)
(*check that there are no child pages inside the enclave *)
IF (DS:RCX has an EPC page associated with it)

THEN
RAX  SGX_CHILD_PRESENT;
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RFLAGS.ZF  1;
GOTO ERROR_EXIT;

FI:
TMP_HEADER.EID  0; 
(* Obtain EID as an enclave handle for software *)
TMP_PCMD_ENCLAVEID  (DS:RCX).EID;

ELSE IF (EPCM(DS:RCX).PT is PT_VA)
TMP_HEADER.EID  0; // Zero is not a special value
(* No enclave handle for VA pages*)
TMP_PCMD_ENCLAVEID  0;

FI;

(* Zero out TMP_HEADER*)
TMP_HEADER[ sizeof(TMP_HEADER)-1 : 0]  0;

TMP_HEADER.LINADDR  EPCM(DS:RCX).ENCLAVEADDRESS;
TMP_HEADER.SECINFO.FLAGS.PT  EPCM(DS:RCX).PT;
TMP_HEADER.SECINFO.FLAGS.RWX  EPCM(DS:RCX).RWX;
TMP_HEADER.SECINFO.FLAGS.PENDING  EPCM(DS:RCX).PENDING;
TMP_HEADER.SECINFO.FLAGS.MODIFIED  EPCM(DS:RCX).MODIFIED;
TMP_HEADER.SECINFO.FLAGS.PR  EPCM(DS:RCX).PR;

(* Encrypt the page, DS:RCX could be encrypted in place. AES-GCM produces 2 values, {ciphertext, MAC}. *)
(* AES-GCM input parameters: key, GCM Counter, MAC_HDR, MAC_HDR_SIZE, SRC, SRC_SIZE)*)
{DS:TMP_SRCPGE, DS:TMP_PCMD.MAC}  AES_GCM_ENC(CR_BASE_PK), (TMP_VER << 32), 

TMP_HEADER, 128, DS:RCX, 4096);

(* Write the output *)
Zero out DS:TMP_PCMD.SECINFO 
DS:TMP_PCMD.SECINFO.FLAGS.PT  EPCM(DS:RCX).PT;
DS:TMP_PCMD.SECINFO.FLAGS.RWX  EPCM(DS:RCX).RWX;
DS:TMP_PCMD.SECINFO.FLAGS.PENDING  EPCM(DS:RCX).PENDING;
DS:TMP_PCMD.SECINFO.FLAGS.MODIFIED  EPCM(DS:RCX).MODIFIED;
DS:TMP_PCMD.SECINFO.FLAGS.PR  EPCM(DS:RCX).PR;
DS:TMP_PCMD.RESERVED  0;
DS:TMP_PCMD.ENCLAVEID  TMP_PCMD_ENCLAVEID;
DS:RBX.LINADDR  EPCM(DS:RCX).ENCLAVEADDRESS;

(*Check if version array slot was empty *)
IF ([DS.RDX]) 

THEN
RAX  SGX_VA_SLOT_OCCUPIED
RFLAGS.CF  1;

FI;

(* Write version to Version Array slot *)
[DS.RDX]  TMP_VER; 

(* Free up EPCM Entry *)
EPCM.(DS:RCX).VALID  0;
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EXIT:

Flags Affected

ZF is set if page is not blocked, not tracked, or a child is present. Otherwise cleared. 
CF is set if VA slot is previously occupied, Otherwise cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If the EPC page and VASLOT resolve to the same EPC page.
If another Intel SGX instruction is concurrently accessing either the target EPC, VA, or SECS 
pages.
If the tracking resource is in use.
If the EPC page or the version array page is invalid.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If one of the EPC memory operands has incorrect page type.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If the EPC page and VASLOT resolve to the same EPC page.
If another Intel SGX instruction is concurrently accessing either the target EPC, VA, or SECS 
pages.
If the tracking resource is in use.
If the EPC page or the version array page in invalid.
If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If one of the EPC memory operands has incorrect page type.

...

41.4 INTEL® SGX USER LEAF FUNCTION REFERENCE

41.4.1 Instruction Column in the Instruction Summary Table
Leaf functions available with the ENCLU instruction mnemonic are covered in this section. In general, each 
instruction leaf requires EAX to specify the leaf function index and/or additional registers specifying leaf-specific 
input parameters. An instruction operand encoding table provides details of the implicitly-encoded register usage 
and associated input/output semantics.
In many cases, an input parameter specifies an effective address associated with a memory object inside or 
outside the EPC, the memory addressing semantics of these memory objects are also summarized in a separate 
table.
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EACCEPT—Accept Changes to an EPC Page  

Instruction Operand Encoding

Description

This leaf function accepts changes to a page in the running enclave by verifying that the security attributes spec-
ified in the SECINFO match the security attributes of the page in the EPCM. This instruction leaf can only be 
executed when inside the enclave. 
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC 
page. The table below provides additional information on the memory parameter of the EACCEPT leaf function.

EACCEPT Memory Parameter Semantics

The instruction faults if any of the following: 

EACCEPT Faulting Conditions

The error codes are:

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 05H IR V/V SGX2 This leaf function accepts changes made by system software to 
an EPC page in the running enclave.ENCLU[EACCEPT]

Op/En EAX RBX RCX

IR EACCEPT (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE (Destination)

Read access permitted by Non Enclave Read access permitted by Enclave

The operands are not properly aligned. If security attributes of the SECINFO page make the page inaccessible.

The EPC page is locked by another thread. RBX does not contain an effective address in an EPC page in the running enclave.

The EPC page is not valid. RCX does not contain an effective address of an EPC page in the running enclave.

SECINFO contains an invalid request. Page type is PT_REG and MODIFIED bit is 0.

Page type is PT_TCS or PT_TRIM and PENDING bit is 0 and MODIFIED bit is 1.

Table 41-46    EACCEPT Return Value in RAX
 Error Code (see Table 38-3) Description

No Error EACCEPT successful

SGX_PAGE_ATTRIBUTES_MISMATCH The attributes of the target EPC page do not match the expected values
SGX_NOT_TRACKED The OS did not complete an ETRACK on the target page
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Concurrency Restrictions

Operation

Temp Variables in EACCEPT Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RBX is not within CR_ELRANGE) 
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC) 
THEN #PF(DS:RBX); FI;

IF ( (EPCM(DS:RBX &~FFFH).VALID = 0) or (EPCM(DS:RBX &~FFFH).R = 0) or (EPCM(DS:RBX &~FFFH).PENDING ≠ 0) or 
(EPCM(DS:RBX &~FFFH).MODIFIED ≠ 0) or (EPCM(DS:RBX &~FFFH).BLOCKED ≠ 0) or 
(EPCM(DS:RBX &~FFFH).PT ≠ PT_REG) or (EPCM(DS:RBX &~FFFH).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RBX &~FFFH).ENCLAVEADDRESS ≠ (DS:RBX & FFFH)) )
THEN #PF(DS:RBX); FI;

(* Copy 64 bytes of contents *)
SCRATCH_SECINFO  DS:RBX; 

(* Check for mis-configured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero ) )

Table 41-47    Concurrency Restrictions of EACCEPT with Intel® SGX Instructions - 1of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Param Targ VA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EACCE
PT

Targ C Y Y C Y Y

SECINFO U Y U U

SECS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Table 41-48    Concurrency Restrictions of EACCEPT with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SRC SECI
NFO

EACCE
PT

Targ Y N Y N N N Y N Y C

SECIN
FO

U Y Y Y Y U Y

SECS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operands belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
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THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not within CR_ELRANGE) 
THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC) 
THEN #PF(DS:RCX); FI;

(* Check that the combination of requested PT, PENDING and MODIFIED is legal *)
IF (NOT ( ((SCRATCH_SECINFO.FLAGS.PT is PT_REG) and (SCRATCH_SECINFO.FLAGS.MODIFIED is 0)) or

((SCRATCH_SECINFO.FLAGS.PT is PT_TCS or PT_TRIM) and (SCRATCH_SECINFO.FLAGS.PENDING is 0) and
(SCRATCH_SECINFO.FLAGS.MODIFIED is 1)) ) )

THEN #GP(0); FI

(* Check security attributes of the destination EPC page *)
If ( (EPCM(DS:RCX).VALID is 0) or (EPCM(DS:RCX).BLOCKED is not 0) or

((EPCM(DS:RCX).PT is not PT_REG) and (EPCM(DS:RCX).PT is not PT_TCS) and (EPCM(DS:RCX).PT is not PT_TRIM)) or
(EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS))
THEN #PF((DS:RCX); FI;

(* Check the destination EPC page for concurrency *)
IF ( EPC page in use ) 

THEN #GP(0); FI;

(* Re-Check security attributes of the destination EPC page *)
IF ( (EPCM(DS:RCX).VALID is 0) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) )

THEN #PF(DS:RCX); FI;

(* Verify that accept request matches current EPC page settings *)
IF ( (EPCM(DS:RCX).ENCLAVEADDRESS ≠ DS:RCX) or (EPCM(DS:RCX).PENDING ≠ SCRATCH_SECINFO.FLAGS.PENDING) or

(EPCM(DS:RCX).MODIFIED ≠ SCRATCH_SECINFO.FLAGS.MODIFIED) or (EPCM(DS:RCX).R ≠ SCRATCH_SECINFO.FLAGS.R) or
(EPCM(DS:RCX).W ≠ SCRATCH_SECINFO.FLAGS.W) or (EPCM(DS:RCX).X ≠ SCRATCH_SECINFO.FLAGS.X) or
(EPCM(DS:RCX).PT ≠ SCRATCH_SECINFO.FLAGS.PT) )
THEN

RFLAGS  1;
RAX  SGX_PAGE_ATTRIBUTES_MISMATCH;
GOTO DONE;

FI;
(* Check that all required threads have left enclave *)
IF (Tracking not correct)

THEN
RFLAGS.ZF  1;
RAX  SGX_NOT_TRACKED;
GOTO DONE;

FI;

(* Get pointer to the SECS to which the EPC page belongs *)
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TMP_SECS = << Obtain physical address of SECS through EPCM(DS:RCX)>>
(* For TCS pages, perform additional checks *)
IF (SCRATCH_SECINFO.FLAGS.PT = PT_TCS) 

THEN
IF (DS:RCX.RESERVED ≠ 0) #GP(0); FI;

FI;

(* Check that TCS.FLAGS.DBGOPTIN, TCS stack, and TCS status are correctly initialized *)
IF ( ((DS:RCX).FLAGS.DBGOPTIN is not 0) or ((DS:RCX).CSSA ≥ (DS:RCX).NSSA) or ((DS:RCX).AEP is not 0) or ((DS:RCX).STATE is not 0) 

THEN #GP(0); FI;

(* Check consistency of FS & GS Limit *)
IF ( (TMP_SECS.ATTRIBUTES.MODE64BIT is 0) and ((DS:RCX.FSLIMIT & FFFH ≠ FFFH) or (DS:RCX.GSLIMIT & FFFH ≠ FFFH)) )

THEN #GP(0); FI;

(* Clear PENDING/MODIFIED flags to mark accept operation complete *)
EPCM(DS:RCX).PENDING  0;
EPCM(DS:RCX).MODIFIED  0;
EPCM(DS:RCX).PR  0;

(* Clear EAX and ZF to indicate successful completion *)
RFLAGS.ZF  0;
RAX  0;

DONE:
RFLAGS.CF,PF,AF,OF,SF  0;

Flags Affected

Sets ZF if page cannot be accepted, otherwise cleared. Clears CF, PF, AF, OF, SF

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

...
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EACCEPTCOPY—Initialize a Pending Page  

Instruction Operand Encoding

Description

This leaf function copies the contents of an existing EPC page into an uninitialized EPC page (created by EAUG). 
After initialization, the instruction may also modify the access rights associated with the destination EPC page. 
This instruction leaf can only be executed when inside the enclave. 
RBX contains the effective address of a SECINFO structure while RCX and RDX each contain the effective address 
of an EPC page. The table below provides additional information on the memory parameter of the EACCEPTCOPY 
leaf function.

EACCEPTCOPY Memory Parameter Semantics

The instruction faults if any of the following: 

EACCEPTCOPY Faulting Conditions

The error codes are:

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 07H IR V/V SGX2 This leaf function initializes a dynamically allocated EPC page 
from another page in the EPC.ENCLU[EACCEPTCOPY]

Op/En EAX RBX RCX RDX

IR EACCEPTCOPY (In)
Return Error Code 

(Out)
Address of a SECINFO (In)

Address of the destina-
tion EPC page (In)

Address of the 
source EPC page (In)

SECINFO EPCPAGE (Destination) EPCPAGE (Source)

Read access permitted by Non Enclave Read/Write access permitted by Enclave Read access permitted by Enclave

The operands are not properly aligned. If security attributes of the SECINFO page make the page inaccessible.

The EPC page is locked by another thread. If security attributes of the source EPC page make the page inaccessible.

The EPC page is not valid. RBX does not contain an effective address in an EPC page in the running enclave.

SECINFO contains an invalid request. RCX/RDX does not contain an effective address of an EPC page in the running 
enclave.

Table 41-49    EACCEPTCOPY Return Value in RAX
 Error Code (see Table 38-3) Description

No Error EACCEPTCOPY successful

SGX_PAGE_ATTRIBUTES_MISMATCH The attributes of the target EPC page do not match the expected values
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Concurrency Restrictions

Operation

Temp Variables in EACCEPTCOPY Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF ( (DS:RCX is not 4KByte Aligned) or (DS:RDX is not 4KByte Aligned) )
THEN #GP(0); FI;

IF ((DS:RBX is not within CR_ELRANGE) or (DS:RCX is not within CR_ELRANGE) or (DS:RDX is not within CR_ELRANGE))
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC) 
THEN #PF(DS:RBX); FI;

IF (DS:RCX does not resolve within an EPC) 
THEN #PF(DS:RCX); FI;

IF (DS:RDX does not resolve within an EPC) 
THEN #PF(DS:RDX); FI;

IF ( (EPCM(DS:RBX &~FFFH).VALID = 0) or (EPCM(DS:RBX &~FFFH).R = 0) or (EPCM(DS:RBX &~FFFH).PENDING ≠ 0) or 
(EPCM(DS:RBX &~FFFH).MODIFIED ≠ 0) or (EPCM(DS:RBX &~FFFH).BLOCKED ≠ 0) or (EPCM(DS:RBX &~FFFH).PT ≠ PT_REG) or 

Table 41-50    Concurrency Restrictions of EACCEPTCOPY with Intel® SGX Instructions - 1of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Param Targ VA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EACCE
PTCOP

Y

Targ

Src U Y U Y

SECIN
FO

U Y U U

Table 41-51    Concurrency Restrictions of EACCEPTCOPY with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SRC SECI
NFO

EACCE
PTCOP

Y

Targ N N N N

Src Y Y Y Y U Y Y

SECIN
FO

U Y Y Y Y Y Y

Name Type Size (bits) Description

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
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(EPCM(DS:RBX &~FFFH).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RBX &~FFFH).ENCLAVEADDRESS ≠ DS:RBX) )
THEN #PF(DS:RBX); FI;

(* Copy 64 bytes of contents *)
SCRATCH_SECINFO  DS:RBX;

(* Check for mis-configured SECINFO flags*)
IF ( (SCRATCH_SECINFO reserved fields are not zero ) or ((SCRATCH_SECINFO.FLAGS.R=0) AND(SCRATCH_SECINFO.FLAGS.W≠0 ) or

(SCRATCH_SECINFO.FLAGS.PT is not PT_REG) ) 
THEN #GP(0); FI;

(* Check security attributes of the source EPC page *)
IF ( (EPCM(DS:RDX).VALID = 0) or (EPCM(DS:RDX).PENDING ≠ 0) or (EPCM(DS:RDX).MODIFIED ≠ 0) or 

(EPCM(DS:RDX).BLOCKED ≠ 0) or (EPCM(DS:RDX).PT ≠ PT_REG) or (EPCM(DS:RDX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RDX).ENCLAVEADDRESS ≠ DS:RDX))
THEN #PF(DS:RDX); FI;

(* Check security attributes of the destination EPC page *)
IF ( (EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 1) or (EPCM(DS:RCX).MODIFIED ≠ 0) or 

(EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) )
THEN 

RFLAGS  1;
RAX  SGX_PAGE_ATTRIBUTE_MISMATCH; 
GOTO DONE;

FI;

(* Check the destination EPC page for concurrency *)
IF (destination EPC page in use ) 

THEN #GP(0); FI;

(* Re-Check security attributes of the destination EPC page *)
IF ( (EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 1) or (EPCM(DS:RCX).MODIFIED ≠ 0) or 

(EPCM(DS:RCX).R ≠ 1) or (EPCM(DS:RCX).W ≠ 1) or (EPCM(DS:RCX).X ≠ 0) or 
(EPCM(DS:RCX).PT ≠ SCRATCH_SECINFO.FLAGS.PT) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RCX).ENCLAVEADDRESS ≠ DS:RCX))
THEN #PF(DS:RCX); FI;

(* Copy 4KBbytes form the source to destination EPC page*)
DS:RCX[32767:0]  DS:RDX[32767:0];

(* Update EPCM permissions *)
EPCM(DS:RCX).R  EPCM(DS:RCX).R | SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W  EPCM(DS:RCX).W | SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X  EPCM(DS:RCX).X | SCRATCH_SECINFO.FLAGS.X;
EPCM(DS:RCX).PENDING  0;

RFLAGS.ZF  0;
RAX  0;
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DONE:
RFLAGS.CF,PF,AF,OF,SF  0;

Flags Affected

Sets ZF if page is not modifiable, otherwise cleared. Clears CF, PF, AF, OF, SF

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
If a memory operand is not an EPC page.
If EPC page has incorrect page type or security attributes.

...

EENTER—Enters an Enclave

Instruction Operand Encoding

Description

The ENCLU[EENTER] instruction transfers execution to an enclave. At the end of the instruction, the logical 
processor is executing in enclave mode at the RIP computed as EnclaveBase + TCS.OENTRY. If the target address 
is not within the CS segment (32-bit) or is not canonical (64-bit), a #GP(0) results.

EENTER Memory Parameter Semantics

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 02H IR V/V SGX1 This leaf function is used to enter an enclave.
ENCLU[EENTER]

Op/En EAX RBX RCX

IR EENTER (In)
Content of RBX.CSSA 

(Out)
Address of a TCS (In) Address of AEP (In)

Address of IP following 
EENTER (Out)

TCS

 Enclave access
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EENTER is a serializing instruction. The instruction faults if any of the following occurs: 

The following operations are performed by EENTER:
• RSP and RBP are saved in the current SSA frame on EENTER and are automatically restored on EEXIT or 

interrupt.
• The AEP contained in RCX is stored into the TCS for use by AEXs.FS and GS (including hidden portions) are 

saved and new values are constructed using TCS.OFSBASE/GSBASE (32 and 64-bit mode) and 
TCS.OFSLIMIT/GSLIMIT (32-bit mode only). The resulting segments must be a subset of the DS segment. 

• If CR4.OSXSAVE == 1, XCR0 is saved and replaced by SECS.ATTRIBUTES.XFRM. The effect of RFLAGS.TF 
depends on whether the enclave entry is opt-in or opt-out (see Section 43.1.2):

— On opt-out entry, TF is saved and cleared (it is restored on EEXIT or AEX). Any attempt to set TF via a 
POPF instruction while inside the enclave clears TF (see Section 43.2.5).

— On opt-in entry, a single-step debug exception is pended on the instruction boundary immediately after 
EENTER (see Section 43.2.2). 

• All code breakpoints that do not overlap with ELRANGE are also suppressed. If the entry is an opt-out entry, 
all code and data breakpoints that overlap with the ELRANGE are suppressed.

• On opt-out entry, a number of performance monitoring counters and behaviors are modified or suppressed 
(see Section 43.2.3):

— All performance monitoring activity on the current thread is suppressed except for incrementing and firing 
of FIXED_CTR1 and FIXED_CTR2.

— PEBS is suppressed.

— AnyThread counting on other threads is demoted to MyThread mode and 
IA32_PERF_GLOBAL_STATUS[60] on that thread is set

— If the opt-out entry on a hardware thread results in suppression of any performance monitoring, then the 
processor sets IA32_PERF_GLOBAL_STATUS[60] and IA32_PERF_GLOBAL_STATUS[63].

Concurrency Restrictions

Address in RBX is not properly aligned. Any TCS.FLAGS’s must-be-zero bit is not zero.

TCS pointed to by RBX is not valid or available or 
locked.

Current 32/64 mode does not match the enclave mode in 
SECS.ATTRIBUTES.MODE64.

The SECS is in use. Either of TCS-specified FS and GS segment is not a subsets of the current DS 
segment.

Any one of DS, ES, CS, SS is not zero. If XSAVE available, CR4.OSXSAVE = 0, but SECS.ATTRIBUTES.XFRM ≠ 3.

CR4.OSFXSR ≠ 1. If CR4.OSXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

Table 41-52    Concurrency Restrictions of EENTER with Intel® SGX Instructions - 1of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Param Targ VA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EENTE
R

TCS N N N Y N N N

SSA U Y Y U U

SECS Y Y N Y Y Y Y Y Y Y Y Y N Y Y N Y Y Y Y
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Operation

Temp Variables in EENTER Operational Flow

TMP_MODE64  ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Make sure DS is usable, expand up *)
IF (TMP_MODE64 = 0 and (DS not usable or ( ( DS[S] = 1) and (DS[bit 11] = 0) and DS[bit 10] = 1) ) ) )

THEN #GP(0); FI;

(* Check that CS, SS, DS, ES.base is 0 *)
IF (TMP_MODE64 = 0)

THEN 
IF(CS.base ≠ 0 or DS.base ≠ 0) #GP(0); FI;
IF(ES usable and ES.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.B = 0) #GP(0); FI;

FI;

IF (DS:RBX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

(* Check AEP is canonical*)
IF (TMP_MODE64 = 1 and (DS:RCX is not canonical) )

THEN #GP(0); FI;

Table 41-53    Concurrency Restrictions of EENTER with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SRC SECI
NFO

EENTE
R

TCS N N N N

SSA U Y U Y U U U

SECS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Name Type Size (Bits) Description

TMP_FSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_GSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_FSLIMIT Effective Address 32/64 Highest legal address in proposed FS segment.

TMP_GSLIMIT Effective Address 32/64 Highest legal address in proposed GS segment.

TMP_XSIZE integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective Address 32/64 Pointer used to iterate over the SSA pages in the current frame.

TMP_GPR Effective Address 32/64 Address of the GPR area within the current SSA frame.
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(* Check concurrency of TCS operation*)
IF (Other Intel SGX instructions is operating on TCS) 

THEN #GP(0); FI;

(* TCS verification *)
IF (EPCM(DS:RBX).VALID = 0) 

THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1) 
THEN #PF(DS:RBX); FI;

IF ( (EPCM(DS:RBX).ENCLAVEADDRESS ≠ DS:RBX) or (EPCM(DS:RBX).PT ≠ PT_TCS) )
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))
THEN #PF(DS:RBX); FI;

IF ( (DS:RBX).OSSA is not 4KByte Aligned)
THEN #GP(0); FI;

(* Check proposed FS and GS *)
IF ( ( (DS:RBX).OFSBASE is not 4KByte Aligned) or ( (DS:RBX).OGSBASE is not 4KByte Aligned) )

THEN #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)
TMP_SECS  Address of SECS for TCS;

(* Check proposed FS/GS segments fall within DS *)
IF (TMP_MODE64 = 0)

THEN 
TMP_FSBASE  (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_FSLIMIT  (DS:RBX).OFSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;
TMP_GSBASE  (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
TMP_GSLIMIT  (DS:RBX).OGSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;
(* if FS wrap-around, make sure DS has no holes*)
IF (TMP_FSLIMIT < TMP_FSBASE)

THEN 
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_FSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
(* if GS wrap-around, make sure DS has no holes*)
IF (TMP_GSLIMIT < TMP_GSBASE)

THEN 
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_GSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
ELSE

TMP_FSBASE  (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
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TMP_GSBASE  (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
IF ( (TMP_FSBASE is not canonical) or (TMP_GSBASE is not canonical))

THEN #GP(0); FI;
FI;

(* Ensure that the FLAGS field in the TCS does not have any reserved bits set *)
IF ( ( (DS:RBX).FLAGS & & FFFFFFFFFFFFFFFEH) ≠ 0) 

THEN #GP(0); FI;

(* SECS must exist and enclave must have previously been EINITted *)
IF (the enclave is not already initialized) 

THEN #GP(0); FI;

(* make sure the logical processor’s operating mode matches the enclave *)
IF ( (TMP_MODE64 ≠ TMP_SECS.ATTRIBUTES.MODE64BIT) )

THEN #GP(0); FI;

IF (CR4.OSFXSR = 0)
THEN #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)
IF (CR4.OSXSAVE = 0)

THEN 
IF (TMP_SECS.ATTRIBUES.XFRM ≠ 03H) THEN #GP(0); FI;

ELSE
IF ( (TMP_SECS.ATTRIBUES.XFRM & XCR0) ≠ TMP_SECS.ATTRIBUES.XFRM) THEN #GP(0); FI;

FI;

(* Make sure the SSA contains at least one more frame *)
IF ( (DS:RBX).CSSA ≥ (DS:RBX).NSSA) 

THEN #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA  (DS:RBX).OSSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * (DS:RBX).CSSA;
TMP_XSIZE  compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible; 
If a fault occurs, release locks, abort and deliver that fault;

IF (DS:TMP_SSA_PAGE does not resolve to EPC page) 
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0) 
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1) 
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE).MODIFIED = 1))
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF ( ( EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMPSSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or
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(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or 
(EPCM(DS:TMP_SECS).R = 0) or (EPCM(DS:TMP_SECS).W = 0) )
THEN #PF(DS:TMP_SSA_PAGE); FI;

CR_XSAVE_PAGE_n  Physical_Address(DS:TMP_SSA_PAGE);
ENDFOR

(* Compute address of GPR area*)
TMP_GPR  TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE -- sizeof(GPRSGX_AREA);
If a fault occurs; release locks, abort and deliver that fault;

IF (DS:TMP_GPR does not resolve to EPC page) 
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).VALID = 0) 
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).BLOCKED = 1) 
THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
THEN #PF(DS:TMP_GPR); FI;

IF ( ( EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT ≠ PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS EPCM(DS:RBX).ENCLAVESECS) or 
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0) )
THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
THEN 

IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) THEN #GP(0); FI;
FI;

CR_GPR_PA  Physical_Address (DS: TMP_GPR);

(* Validate TCS.OENTRY *)
TMP_TARGET  (DS:RBX).OENTRY + TMP_SECS.BASEADDR;
IF (TMP_MODE64 = 1)

THEN 
IF (TMP_TARGET is not canonical) THEN #GP(0); FI;

ELSE
IF (TMP_TARGET > CS limit) THEN #GP(0); FI;

FI;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)
IF (DS:RBX.STATE = ACTIVE)) 

THEN #GP(0); FI;

CR_ENCALVE_MODE  1;
CR_ACTIVE_SECS  TMP_SECS;
CR_ELRANGE  (TMPSECS.BASEADDR, TMP_SECS.SIZE);

(* Save state for possible AEXs *)
CR_TCS_PA  Physical_Address (DS:RBX);
CR_TCS_LA  RBX;
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CR_TCS_LA.AEP  RCX;

(* Save the hidden portions of FS and GS *)
CR_SAVE_FS_selector  FS.selector;
CR_SAVE_FS_base  FS.base;
CR_SAVE_FS_limit  FS.limit;
CR_SAVE_FS_access_rights  FS.access_rights;
CR_SAVE_GS_selector  GS.selector;
CR_SAVE_GS_base  GS.base;
CR_SAVE_GS_limit  GS.limit;
CR_SAVE_GS_access_rights  GS.access_rights;

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.OSXSAVE = 1) 

CR_SAVE_XCR0  XCR0;
XCR0  TMP_SECS.ATTRIBUTES.XFRM;

FI;

(* Set CR_ENCLAVE_ENTRY_IP *)
CR_ENCLAVE_ENTRY_IP  CRIP”
RIP  NRIP;
RAX  (DS:RBX).CSSA;
(* Save the outside RSP and RBP so they can be restored on interrupt or EEXIT *)
DS:TMP_SSA.U_RSP  RSP; 
DS:TMP_SSA.U_RBP  RBP; 

(* Do the FS/GS swap *)
FS.base  TMP_FSBASE;
FS.limit  DS:RBX.FSLIMIT;
FS.type  0001b;
FS.W  DS.W;
FS.S  1;
FS.DPL  DS.DPL;
FS.G  1;
FS.B  1;
FS.P  1;
FS.AVL  DS.AVL;
FS.L  DS.L;
FS.unusable  0;
FS.selector  0BH;

GS.base  TMP_GSBASE;
GS.limit  DS:RBX.GSLIMIT;
GS.type  0001b;
GS.W  DS.W;
GS.S  1;
GS.DPL  DS.DPL;
GS.G  1;
GS.B  1;
GS.P  1;
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GS.AVL  DS.AVL;
GS.L  DS.L;
GS.unusable  0;
GS.selector  0BH;

CR_DBGOPTIN  TSC.FLAGS.DBGOPTIN;
Suppress_all_code_breakpoints_that_are_outside_ELRANGE;

IF (CR_DBGOPTIN = 0) 
THEN

Suppress_all_code_breakpoints_that_overlap_with_ELRANGE;
CR_SAVE_TF  RFLAGS.TF;
RFLAGS.TF  0;
Suppress_monitor_trap_flag for the source of the execution of the enclave;
Suppress any pending debug exceptions;
Suppress any pending MTF VM exit;

ELSE
IF RFLAGS.TF = 1

THEN pend a single-step #DB at the end of EENTER; FI;
IF the “monitor trap flag” VM-execution control is set

THEN pend an MTF VM exit at the end of EENTER; FI;
FI;

Flush_linear_context;
Allow_front_end_to_begin_fetch_at_new_RIP;

Flags Affected

RFLAGS.TF is cleared on opt-out entry

Protected Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If part or all of the FS or GS segment specified by TCS is outside the DS segment or not prop-
erly aligned.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If any reserved field in the TCS FLAG is set.
If the target address is not within the CS segment.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(error code) If a page fault occurs in accessing memory.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to 
a valid PT_REG EPC page.
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64-Bit Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment or not prop-
erly aligned.
If the target address is not canonical.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(error code) If a page fault occurs in accessing memory operands.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to 
a valid PT_REG EPC page.

...

EEXIT—Exits an Enclave

Instruction Operand Encoding

Description

The ENCLU[EEXIT] instruction exits the currently executing enclave and branches to the location specified in RBX. 
RCX receives the current AEP. If RBX is not within the CS (32-bit mode) or is not canonical (64-bit mode) a #GP(0) 
results.

EEXIT Memory Parameter Semantics

If RBX specifies an address that is inside the enclave, the instruction will complete normally. The fetch of the next 
instruction will occur in non-enclave mode, but will attempt to fetch from inside the enclave. This has the effect of 
abort page semantics on the next destination.
If secrets are contained in any registers, it is responsibility of enclave software to clear those registers.
If XCR0 was modified on enclave entry, it is restored to the value it had at the time of the most recent EENTER or 
ERESUME.

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 04H IR V/V SGX1 This leaf function is used to exit an enclave.
ENCLU[EEXIT]

Op/En EAX RBX RCX

IR EEXIT (In) Target address outside the enclave (In) Address of the current AEP (In)

Target Address

 Non-Enclave read and execute access



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 809

If the enclave is opt-out, RFLAGS.TF is loaded from the value previously saved on EENTER. 
Code and data breakpoints are unsuppressed.
Performance monitoring counters are unsuppressed.

Concurrency Restrictions

Operation

Temp Variables in EEXIT Operational Flow

TMP_MODE64  ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF (TMP_MODE64 = 1)
THEN 

IF (RBX is not canonical) THEN #GP(0); FI;
ELSE

IF (RBX > CS limit) THEN #GP(0); FI;
FI;

TMP_RIP  CRIP;
RIP  RBX;

(* Return current AEP in RCX *)
RCX  CR_TCS_PA.AEP;

(* Do the FS/GS swap *)
FS.selector  CR_SAVE_FS.selector;
FS.base  CR_SAVE_FS.base;

Table 41-54    Concurrency Restrictions of EEXIT with Intel® SGX Instructions - 1of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Param Targ VA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EEXIT TCS Y Y Y Y Y N Y Y Y Y Y Y Y Y Y

SSA U Y Y Y Y Y Y U Y Y U Y Y Y Y Y

SECS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Table 41-55    Concurrency Restrictions of EEXIT with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Para
m

Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SRC SECI
NFO

EEXIT TCS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

SSA Y Y Y Y Y Y Y U Y Y Y U Y U U

SECS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Name Type Size (Bits) Description

TMP_RIP Effective Address 32/64 Saved copy of CRIP for use when creating LBR.
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FS.limit  CR_SAVE_FS.limit;
FS.access_rights  CR_SAVE_FS.access_rights;
GS.selector  CR_SAVE_GS.selector;
GS.base  CR_SAVE_GS.base;
GS.limit  CR_SAVE_GS.limit;
GS.access_rights  CR_SAVE_GS.access_rights;

(* Restore XCR0 if needed *)
IF (CR4.OSXSAVE = 1) 

XCR0  CR_SAVE__XCR0;
FI;

Unsuppress_all_code_breakpoints_that_are_outside_ELRANGE;

IF (CR_DBGOPTIN = 0) 
THEN

UnSuppress_all_code_breakpoints_that_overlap_with_ELRANGE;
Restore suppressed breakpoint matches;
RFLAGS.TF  CR_SAVE_TF;
UnSuppress_montior_trap_flag;
UnSuppress_LBR_Generation;
UnSuppress_performance monitoring_activity;
Restore performance monitoring counter AnyThread demotion to MyThread in enclave back to AnyThread

FI;

IF RFLAGS.TF = 1
THEN Pend Single-Step #DB at the end of EEXIT;

FI;

IF the “monitor trap flag” VM-execution control is set
THEN pend a MTF VM exit at the end of EEXIT;

FI;

CR_ENCLAVE_MODE  0;
CR_TCS_PA.STATE  INACTIVE;

(* Assure consistent translations *)
Flush_linear_context;

Flags Affected

RFLAGS.TF is restored from the value previously saved in EENTER or ERESUME.

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If RBX is outside the CS segment.

#PF(error code) If a page fault occurs in accessing memory.
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64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If RBX is not canonical.

#PF(error code) If a page fault occurs in accessing memory operands.
...

EGETKEY—Retrieves a Cryptographic Key 

Instruction Operand Encoding

Description

The ENCLU[EGETKEY] instruction returns a 128-bit secret key from the processor specific key hierarchy. The 
register RBX contains the effective address of a KEYREQUEST structure, which the instruction interprets to deter-
mine the key being requested. The Requesting Keys section below provides a description of the keys that can be 
requested. The RCX register contains the effective address where the key will be returned. Both the addresses in 
RBX & RCX should be locations inside the enclave. 
EGETKEY derives keys using a processor unique value to create a specific key based on a number of possible 
inputs. This instruction leaf can only be executed inside an enclave.

EEGETKEY Memory Parameter Semantics

After validating the operands, the instruction determines which key is to be produced and performs the following 
actions:
• The instruction assembles the derivation data for the key based on the Table 41-56
• Computes derived key using the derivation data and package specific value
• Outputs the calculated key to the address in RCX
The instruction fails with #GP(0) if the operands are not properly aligned. Successful completion of the instruction 
will clear RFLAGS.{ZF, CF, AF, OF, SF, PF}. The instruction returns an error code if the user tries to request a key 
based on an invalid CPUSVN or ISVSVN (when the user request is accepted, see the table below), requests a key 
for which it has not been granted the attribute to request, or requests a key that is not supported by the hard-
ware. These checks may be performed in any order. Thus, an indication by error number of one cause (for 
example, invalid attribute) does not imply that there are not also other errors. Different processors may thus give 
different error numbers for the same Enclave. The correctness of software should not rely on the order resulting 
from the checks documented in this section. In such cases the ZF flag is set and the corresponding error bit 
(SGX_INVALID_SVN, SGX_INVALID_ATTRIBUTE, SGX_INVALID_KEYNAME) is set in RAX and the data at the 
address specified by RCX is unmodified.

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 04H IR V/V SGX1 This leaf function retrieves a cryptographic key.
ENCLU[EGETKEY]

Op/En EAX RBX RCX

IR EGETKEY (In) Address to a KEYREQUEST (In) Address of the OUTPUTDATA (In)

KEYREQUEST OUTPUTDATA

 Enclave read access  Enclave write access
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Requesting Keys
The KEYREQUEST structure (see Section 38.17.1) identifies the key to be provided. The Keyrequest.KeyName 
field identifies which type of key is requested. 
Deriving Keys
Key derivation is based on a combination of the enclave specific values (see Table 41-56) and a processor key. 
Depending on the key being requested a field may either be included by definition or the value may be included 
from the KeyRequest. A “yes” in Table 41-56 indicates the value for the field is included from its default location, 
identified in the source row, and a “request” indicates the values for the field is included from its corresponding 
KeyRequest field. 

Keys that permit the specification of a CPU or ISV's code's SVNs have additional requirements. The caller may not 
request a key for an SVN beyond the current CPU or ISV SVN, respectively. 
Several keys are access controlled. Access to the Provisioning Key and Provisioning Seal key requires the 
enclave's ATTRIBUTES.PROVISIONKEY be set. The EINITTOKEN Key requires ATTRIBUTES.EINITTOKENKEY be set 
and SECS.MRSIGNER equal IA32_SGXLEPUBKEYHASH.
Some keys are derived based on a hardcode PKCS padding constant (352 byte string): 
HARDCODED_PKCS1_5_PADDING[15:0]  0100H;
HARDCODED_PKCS1_5_PADDING[2655:16]  SignExtend330Byte(-1); // 330 bytes of 0FFH
HARDCODED_PKCS1_5_PADDING[2815:2656]  2004000501020403650148866009060D30313000H;

Table 41-56    Key Derivation

Key Name Attributes 
Owner 
Epoch CPU SVN ISV SVN

ISV 
PRODID MRENCLAVE MRSIGNER RAND 

Source

Key 
Dependent 
Constant

Y 
SECS.ATTRIBUTE
S and 
SECS.MISCSELECT;

CSR_SEO
WNEREP
OCH

Y CPUSVN 
Register;

R 
Req.ISVSVN;

SECS. 
ISVID

SECS. 
MRENCLAVE

SECS. 
MRSIGNER

Req. 
KEYID

RAttribMask & 
SECS.ATTRIBUTE
S and 
SECS.MISCSELECT;

R 
Req.CPUSVN;

EINITTOKEN Yes Request Yes Request Request Yes No Yes Request

Report Yes Yes Yes Yes No No Yes No Request

Seal Yes Request Yes Request Request Yes Request Request Request

Provisioning Yes Request No Request Request Yes No Yes Yes

Provisioning 
Seal

Yes Request No Request Request Yes No Yes Yes
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The error codes are: 

Concurrency Restrictions

Operation

Temp Variables in EGETKEY Operational Flow

(* Make sure KEYREQUEST is properly aligned and inside the current enclave *)
IF ( (DS:RBX is not 128Byte aligned) or (DS:RBX is within CR_ELRANGE) ) 

THEN #GP(0); FI;

(* Make sure DS:RBX is an EPC address and the EPC page is valid *)
IF ( (DS:RBX does not resolve to an EPC address) or (EPCM(DS:RBX).VALID = 0) ) 

Table 41-57    EGETKEY Return Value in RAX
 Error Code (see Table 38-3) Value Description

No Error 0 EGETKEY successful

SGX_INVALID_ATTRIBUTE The KEYREQUEST contains a KEYNAME for which the enclave is not 
authorized

SGX_INVALID_CPUSVN If KEYREQUEST.CPUSVN is an unsupported platforms CPUSVN value
SGX_INVALID_ISVSVN If KEYREQUEST.ISVSVN is greater than the enclave's ISV_SVN
SGX_INVALID_KEYNAME If KEYREQUEST.KEYNAME is an unsupported value

Table 41-58    Concurrency Restrictions of EGETKEY with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Param TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EGETKEY Param U Y U U

SECS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Table 41-59    Concurrency Restrictions of EGETKEY with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EGETKEY Param U Y U Y U Y U

SECS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Name Type Size (Bits) Description

TMP_CURRENTSECS Address of the SECS for the currently executing enclave.

TMP_KEYDEPENDENCIES Temp space for key derivation.

TMP_ATTRIBUTES 128 Temp Space for the calculation of the sealable Attributes.

TMP_OUTPUTKEY 128 Temp Space for the calculation of the key.
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THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1) ) 
THEN #PF(DS:RBX); FI;

(* Check page parameters for correctness *)
IF ( (EPCM(DS:RBX).PT ≠ PT_REG) or (EPCM(DS:RBX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RBX).PENDING = 1) or

(EPCM(DS:RBX).MODIFIED = 1) or (EPCM(DS:RBX).ENCLAVEADDRESS ≠ (DS:RBX & ~0FFFH) ) or (EPCM(DS:RBX).R = 0) ) 
THEN #PF(DS:RBX); 

FI;

(* Make sure OUTPUTDATA is properly aligned and inside the current enclave *)
IF ( (DS:RCX is not 16Byte aligned) or (DS:RCX is within CR_ELRANGE) ) 

THEN #GP(0); FI;

(* Make sure DS:RCX is an EPC address and the EPC page is valid *)
IF ( (DS:RCX does not resolve to an EPC address) or (EPCM(DS:RCX).VALID = 0) ) 

THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).BLOCKED = 1) ) 
THEN #PF(DS:RCX); FI;

(* Check page parameters for correctness *)
IF ( (EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RCX).ENCLAVEADDRESS ≠ (DS:RCX & ~0FFFH) ) or (EPCM(DS:RCX).W = 0) ) 
THEN #PF(DS:RCX); 

FI;

(* Verify RESERVED spaces in KEYREQUEST are valid *)
IF ( (DS:RBX).RESERVED ≠ 0) or (DS:RBX.KEYPOLICY.RESERVED ≠ 0) ) 

THEN #GP(0); FI;

TMP_CURRENTSECS  CR_ACTIVE_SECS;

(* Determine which enclave attributes that must be included in the key. Attributes that must always be include INIT & DEBUG *)
REQUIRED_SEALING_MASK[127:0]  00000000 00000000 00000000 00000003H;
TMP_ATTRIBUTES  (DS:RBX.ATTRIBUTEMASK | REQUIRED_SEALING_MASK) & TMP_CURRENTSECS.ATTRIBUTES;

(* Compute MISCSELECT fields to be included *)
TMP_MISCSELECT  DS:RBX.MISCMASK & TMP_CURRENTSECS.MISCSELECT

CASE (DS:RBX.KEYNAME)
SEAL_KEY:

IF (DS:RBX.CPUSVN is beyond current CPU configuration)
THEN

RFLAGS.ZF  1;
RAX  SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)
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THEN
RFLAGS.ZF  1;
RAX  SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
// Include enclave identity?
TMP_MRENCLAVE  0;
IF (DS:RBX.KEYPOLICY.MRENCLAVE = 1)

THEN TMP_MRENCLAVE  TMP_CURRENTSECS.MRENCLAVE;
FI;
// Include enclave author?
TMP_MRSIGNER  0;
IF (DS:RBX.KEYPOLICY.MRSIGNER = 1)

THEN TMP_MRSIGNER  TMP_CURRENTSECS.MRSIGNER;
FI;
//Determine values key is based on
TMP_KEYDEPENDENCIES.KEYNAME  SEAL_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID  TMP_CURRENTSECS.ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN  DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.OWNEREPOCH  CSR_SEOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES  TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK  DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE  TMP_MRENCLAVE;
TMP_KEYDEPENDENCIES.MRSIGNER  TMP_MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID  DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES  CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN  DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING  TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT  TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK  ~DS:RBX.MISCMASK;
BREAK;

REPORT_KEY:
//Determine values key is based on
TMP_KEYDEPENDENCIES.KEYNAME  REPORT_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID  0;
TMP_KEYDEPENDENCIES.ISVSVN  0;
TMP_KEYDEPENDENCIES.OWNEREPOCH  CSR_SEOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES  TMP_CURRENTSECS.ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK  0;
TMP_KEYDEPENDENCIES.MRENCLAVE  TMP_CURRENTSECS.MRENCLAVE;
TMP_KEYDEPENDENCIES.MRSIGNER  0;
TMP_KEYDEPENDENCIES.KEYID  DS:RBX.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES  CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN  CR_CPUSVN;
TMP_KEYDEPENDENCIES.PADDING  HARDCODED_PKCS1_5_PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT  TMP_CURRENTSECS.MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK  0;
BREAK;

EINITTOKEN_KEY:
(* Check ENCLAVE has LAUNCH capability *)
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IF (TMP_CURRENTSECS.ATTRIBUTES.LAUNCHKEY = 0)
THEN 

RFLAGS.ZF  1;
RAX  SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN 
RFLAGS.ZF  1;
RAX  SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF  1;
RAX  SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME  EINITTOKEN_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID  TMP_CURRENTSECS.ISVPRODID
TMP_KEYDEPENDENCIES.ISVSVN  DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.OWNEREPOCH  CSR_SEOWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES  TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK  0;
TMP_KEYDEPENDENCIES.MRENCLAVE  0;
TMP_KEYDEPENDENCIES.MRSIGNER  TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID  DS:RBX.KEYID; 
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES  CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN  DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING  TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT  TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK  0;
BREAK;

PROVISION_KEY: 
(* Check ENCLAVE has PROVISIONING capability *)

IF (TMP_CURRENTSECS.ATTRIBUTES.PROVISIONKEY = 0) 
THEN

RFLAGS.ZF  1;
RAX  SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN
RFLAGS.ZF  1;
RAX  SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
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RFLAGS.ZF  1;
RAX  SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME  PROVISION_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID  TMP_CURRENTSECS.ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN  DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.OWNEREPOCH  0;
TMP_KEYDEPENDENCIES.ATTRIBUTES  TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK  DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE  0;
TMP_KEYDEPENDENCIES.MRSIGNER  TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID  0;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES  0;
TMP_KEYDEPENDENCIES.CPUSVN  DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING  TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT  TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK  ~DS:RBX.MISCMASK;
BREAK;

PROVISION_SEAL_KEY:
(* Check ENCLAVE has PROVISIONING capability *)
IF (TMP_CURRENTSECS.ATTRIBUTES.PROVISIONKEY = 0) 

THEN
RFLAGS.ZF  1;
RAX  SGX_INVALID_ATTRIBUTE;
GOTO EXIT;

FI;
IF (DS:RBX.CPUSVN is beyond current CPU configuration)

THEN
RFLAGS.ZF  1;
RAX  SGX_INVALID_CPUSVN;
GOTO EXIT;

FI;
IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

THEN
RFLAGS.ZF  1;
RAX  SGX_INVALID_ISVSVN;
GOTO EXIT;

FI;
(* Determine values key is based on *)
TMP_KEYDEPENDENCIES.KEYNAME  PROVISION_SEAL_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID  TMP_CURRENTSECS.ISVPRODID;
TMP_KEYDEPENDENCIES.ISVSVN  DS:RBX.ISVSVN;
TMP_KEYDEPENDENCIES.OWNEREPOCH  0;
TMP_KEYDEPENDENCIES.ATTRIBUTES  TMP_ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK  DS:RBX.ATTRIBUTEMASK;
TMP_KEYDEPENDENCIES.MRENCLAVE  0;
TMP_KEYDEPENDENCIES.MRSIGNER  TMP_CURRENTSECS.MRSIGNER;
TMP_KEYDEPENDENCIES.KEYID  0;
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TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES  CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN  DS:RBX.CPUSVN;
TMP_KEYDEPENDENCIES.PADDING  TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT  TMP_MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK  ~DS:RBX.MISCMASK;
BREAK;

DEFAULT:
(* The value of KEYNAME is invalid *)
RFLAGS.ZF  1;
RAX  SGX_INVALID_KEYNAME;
GOTO EXIT:

ESAC;

(* Calculate the final derived key and output to the address in RCX *)
TMP_OUTPUTKEY  derivekey(TMP_KEYDEPENDENCIES);
DS:RCX[15:0]  TMP_OUTPUTKEY;
RAX  0;
RFLAGS.ZF  0;

EXIT:
RFLAGS.CF  0;
RFLAGS.PF  0;
RFLAGS.AF  0;
RFLAGS.OF  0;
RFLAGS.SF  0;

Flags Affected

ZF is cleared if successful, otherwise ZF is set. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the current enclave.
If an effective address is not properly aligned.
If an effective address is outside the DS segment limit.
If KEYREQUEST format is invalid.

#PF(error code) If a page fault occurs in accessing memory.

64-Bit Mode Exceptions

#GP(0) If a memory operand effective address is outside the current enclave.
If an effective address is not properly aligned.
If an effective address is not canonical.
If KEYREQUEST format is invalid.

#PF(error code) If a page fault occurs in accessing memory operands.
...
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EMODPE—Extend an EPC Page Permissions  

Instruction Operand Encoding

Description

This leaf function extends the access rights associated with an existing EPC page in the running enclave. THE RWX 
bits of the SECINFO parameter are treated as a permissions mask; supplying a value that does not extend the 
page permissions will have no effect. This instruction leaf can only be executed when inside the enclave. 
RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC 
page. The table below provides additional information on the memory parameter of the EMODPE leaf function.

EMODPE Memory Parameter Semantics

The instruction faults if any of the following: 

EMODPE Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 06H IR V/V SGX2 This leaf function extends the access rights of an existing EPC 
page.ENCLU[EMODPE]

Op/En EAX RBX RCX

IR EMODPE (In) Address of a SECINFO (In) Address of the destination EPC page (In)

SECINFO EPCPAGE

Read access permitted by Non Enclave Read access permitted by Enclave

The operands are not properly aligned. If security attributes of the SECINFO page make the page inaccessible.

The EPC page is locked by another thread. RBX does not contain an effective address in an EPC page in the running enclave.

The EPC page is not valid. RCX does not contain an effective address of an EPC page in the running enclave.

SECINFO contains an invalid request.

Table 41-60    Concurrency Restrictions of EMODPE with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EP

A

Param TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EMODPE Targ Y Y Y Y

SECIN
FO

U Y U U



Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 820

Operation

Temp Variables in EMODPE Operational Flow

IF (DS:RBX is not 64Byte Aligned)
THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)
THEN #GP(0); FI;

IF ((DS:RBX is not within CR_ELRANGE) or (DS:RCX is not within CR_ELRANGE) )
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC) 
THEN #PF(DS:RBX); FI;

IF (DS:RCX does not resolve within an EPC) 
THEN #PF(DS:RCX); FI;

IF ( (EPCM(DS:RBX).VALID = 0) or (EPCM(DS:RBX).R = 0) or (EPCM(DS:RBX).PENDING ≠ 0) or (EPCM(DS:RBX).MODIFIED ≠ 0) or
(EPCM(DS:RBX).BLOCKED ≠ 0) or (EPCM(DS:RBX).PT ≠ PT_REG) or (EPCM(DS:RBX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RBX).ENCLAVEADDRESS ≠ DS:RBX) )
THEN #PF(DS:RBX); FI;

SCRATCH_SECINFO  DS:RBX;

(* Check for mis-configured SECINFO flags*)
IF (SCRATCH_SECINFO reserved fields are not zero ) 

THEN #GP(0); FI;

(* Check security attributes of the EPC page *)
IF ( (EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 0) or (EPCM(DS:RCX).MODIFIED ≠ 0) or 

(EPCM(DS:RCX).BLOCKED ≠ 0) or (EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) )
THEN #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)
IF (EPC page in use by another SGX2 instruction) 

Table 41-61    Concurrency Restrictions of EMODPE with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EMODP
E

Targ Y N Y N N N Y Y Y

SECIN
FO

U Y Y Y Y Y Y

Name Type Size (bits) Description

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.
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THEN #GP(0); FI;

(* Re-Check security attributes of the EPC page *)
IF ( (EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 0) or (EPCM(DS:RCX).MODIFIED ≠ 0) or 

(EPCM(DS:RCX).BLOCKED ≠ 0) or (EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or
(EPCM(DS:RCX).ENCLAVEADDRESS ≠ DS:RCX))
THEN #PF(DS:RCX); FI;

(* Check for mis-configured SECINFO flags*)
IF ( (EPCM(DS:RCX).R = 0) and (SCRATCH_SECINFO.FLAGS.R = 0) and (SCRATCH_SECINFO.FLAGS.W ≠ 0) )) 

THEN #GP(0); FI;

(* Update EPCM permissions *)
EPCM(DS:RCX).R  EPCM(DS:RCX).R | SCRATCH_SECINFO.FLAGS.R;
EPCM(DS:RCX).W  EPCM(DS:RCX).W | SCRATCH_SECINFO.FLAGS.W;
EPCM(DS:RCX).X  EPCM(DS:RCX).X | SCRATCH_SECINFO.FLAGS.X;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.
...
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EREPORT—Create a Cryptographic Report of the Enclave 

Instruction Operand Encoding

Description

This leaf function creates a cryptographic REPORT that describes the contents of the enclave. This instruction leaf 
can only be executed when inside the enclave. The cryptographic report can be used by other enclaves to deter-
mine that the enclave is running on the same platform.
RBX contains the effective address of the MRENCLAVE value of the enclave that will authenticate the REPORT 
output, using the REPORT key delivered by EGETKEY command for that enclave. RCX contains the effective 
address of a 64-byte REPORTDATA structure, which allows the caller of the instruction to associate data with the 
enclave from which the instruction is called. RDX contains the address where the REPORT will be output by the 
instruction.

EREPORT Memory Parameter Semantics

This instruction leaf perform the following: 

1. Validate the 3 operands (RBX, RCX, RDX) are inside the enclave.

2. Compute a report key for the target enclave, as indicated by the value located in RBX(TARGETINFO).

3. Assemble the enclave SECS data to complete the REPORT structure (including the data provided using the 
RCX (REPORTDATA) operand).

4. Computes a crytpographic hash over REPORT structure.

5. Add the computed hash to the REPORT structure.

6. Output the completed REPORT structure to the address in RDX (OUTPUTDATA). 
The instruction fails if the operands are not properly aligned.
CR_REPORT_KEYID, used to provide key wearout protection, is populated with a statistically unique value on boot 
of the platform by a trusted entity within the SGX TCB.

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 00H IR V/V SGX1 This leaf function creates a cryptographic report of the enclave.
ENCLU[EREPORT]

Op/En EAX RBX RCX RDX

IR EREPORT (In)
Address of TARGETINFO 

(In)
Address of REPORTDATA 

(In)
Address where the REPORT is 

written to in an OUTPUTDATA (In)

TARGETINFO REPORTDATA OUTPUTDATA

Read access by Enclave Read access by Enclave Read/Write access by Enclave 
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The instruction faults if any of the following: 

EREPORT Faulting Conditions

Concurrency Restrictions

Operation

Temp Variables in EREPORT Operational Flow

TMP_MODE64  ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Address verification for TARGETINFO (RBX) *)
IF ( (DS:RBX is not 128Byte Aligned) or (DS:RBX is not within CR_ELRANGE) )

THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC) 
THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX). VALID = 0)
THEN #PF(DS:RBX); FI;

An effective address not properly aligned. An memory address does not resolve in an EPC page.

If accessing an invalid EPC page. If the EPC page is blocked.

May page fault.

Table 41-62    Concurrency Restrictions of EREPORT with Other Intel® SGX Operations 1 of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Param TCS SSA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

EREPORT Param U Y U U

SECS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Table 41-63    Concurrency Restrictions of EREPORT with Other Intel® SGX Operations 2 of 2
Operation EREMOVE EREPORT ETRACK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SEC
S

Targ SEC
S

Targ SECI
NFO

SECS Targ SR
C

SECI
NFO

EREPORT Param U Y U Y U Y U

SECS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Name Type Size (bits) Description

TMP_ATTRIBUTES  32 Physical address of SECS of the enclave to which source operand belongs.

TMP_CURRENTSECS Address of the SECS for the currently executing enclave.

TMP_KEYDEPENDENCIES Temp space for key derivation.

TMP_REPORTKEY  128 REPORTKEY generated by the instruction.

TMP_REPORT  3712
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IF (EPCM(DS:RBX).BLOCKED = 1) ) 
THEN #PF(DS:RBX); FI;

(* Check page parameters for correctness *)
IF ( (EPCM(DS:RBX).PT ≠ PT_REG) or (EPCM(DS:RBX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RBX).PENDING = 1) or

(EPCM(DS:RBX).MODIFIED = 1) or (EPCM(DS:RBX).ENCLAVEADDRESS ≠ (DS:RBX & ~0FFFH) ) or (EPCM(DS:RBX).R = 0) ) 
THEN #PF(DS:RBX); 

FI;

(* Address verification for REPORTDATA (RCX) *)
IF ( (DS:RCX is not 128Byte Aligned) or (DS:RCX is not within CR_ELRANGE) )

THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC) 
THEN #P(DS:RCX); FI;

IF (EPCM(DS:RCX). VALID = 0)
THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).BLOCKED = 1) ) 
THEN #PF(DS:RCX); FI;

(* Check page parameters for correctness *)
IF ( (EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

(EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RCX).ENCLAVEADDRESS ≠ (DS:RCX & ~0FFFH) ) or (EPCM(DS:RCX).R = 0) ) 
THEN #PF(DS:RCX); 

FI;

(* Address verification for OUTPUTDATA (RDX) *)
IF ( (DS:RDX is not 512Byte Aligned) or (DS:RDX is not within CR_ELRANGE) )

THEN #GP(0); FI;

IF (DS:RDX does not resolve within an EPC) 
THEN #PF(DS:RDX); FI;

IF (EPCM(DS:RDX). VALID = 0)
THEN #PF(DS:RDX); FI;

IF (EPCM(DS:RDX).BLOCKED = 1) ) 
THEN #PF(DS:RDX); FI;

(* Check page parameters for correctness *)
IF ( (EPCM(DS:RDX).PT ≠ PT_REG) or (EPCM(DS:RDX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or

(EPCM(DS:RDX).ENCLAVEADDRESS ≠ (DS:RDX & ~0FFFH) ) or (EPCM(DS:RDX).W = 0) ) 
THEN #PF(DS:RDX); 

FI;

(* REPORT MAC needs to be computed over data which cannot be modified *)
TMP_REPORT.CPUSVN  CR_CPUSVN;
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TMP_REPORT.ISVPRODID  TMP_CURRENTSECS.ISVPRODID;
TMP_REPORT.ISVSVN  TMP_CURRENTSECS..ISVSVN;
TMP_REPORT.ATTRIBUTES  TMP_CURRENTSECS.ATTRIBUTES;
TMP_REPORT.REPORTDATA  DS:RCX[511:0];
TMP_REPORT.MRENCLAVE  TMP_CURRENTSECS.MRENCLAVE;
TMP_REPORT.MRSIGNER  TMP_CURRENTSECS.MRSIGNER;
TMP_REPORT.MRRESERVED  0;
TMP_REPORT.KEYID[255:0]  CR_REPORT_KEYID;
TMP_REPORT.MISCSELECT  TMP_CURRENTSECS.MISCSELECT;
(* Derive the report key *)
TMP_KEYDEPENDENCIES.KEYNAME  REPORT_KEY;
TMP_KEYDEPENDENCIES.ISVPRODID  0;
TMP_KEYDEPENDENCIES.ISVSVN  0;
TMP_KEYDEPENDENCIES.OWNEREPOCH  CSR_SGX_OWNEREPOCH;
TMP_KEYDEPENDENCIES.ATTRIBUTES  DS:RBX.ATTRIBUTES;
TMP_KEYDEPENDENCIES.ATTRIBUTESMASK  0;
TMP_KEYDEPENDENCIES.MRENCLAVE  DS:RBX.MEASUREMENT;
TMP_KEYDEPENDENCIES.MRSIGNER  0;
TMP_KEYDEPENDENCIES.KEYID  TMP_REPORT.KEYID;
TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES  CR_SEAL_FUSES;
TMP_KEYDEPENDENCIES.CPUSVN  CR_CPUSVN;
TMP_KEYDEPENDENCIES.PADDING  TMP_CURRENTSECS.PADDING;
TMP_KEYDEPENDENCIES.MISCSELECT  DS:RBX.MISCSELECT;
TMP_KEYDEPENDENCIES.MISCMASK  0;

(* Calculate the derived key*)
TMP_REPORTKEY  derive_key(TMP_KEYDEPENDENCIES);

(* call cryptographic CMAC function, CMAC data are not including MAC&KEYID *)
TMP_REPORT.MAC  cmac(TMP_REPORTKEY, TMP_REPORT[3071:0] );
DS:RDX[3455: 0]  TMP_REPORT;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If the address in RCS is outside the DS segment limit.
If a memory operand is not properly aligned.
If a memory operand is not in the current enclave.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.
If a memory operand is not properly aligned.
If a memory operand is not in the current enclave.

#PF(error code) If a page fault occurs in accessing memory operands.
...
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ERESUME—Re-Enters an Enclave

Instruction Operand Encoding

Description

The ENCLU[ERESUME] instruction resumes execution of an enclave that was interrupted due to an exception or 
interrupt, using the machine state previously stored in the SSA.

ERESUME Memory Parameter Semantics

The instruction faults if any of the following: 

The following operations are performed by ERESUME:
• RSP and RBP are saved in the current SSA frame on EENTER and are automatically restored on EEXIT or an 

asynchronous exit due to any Interrupt event.
• The AEP contained in RCX is stored into the TCS for use by AEXs.FS and GS (including hidden portions) are 

saved and new values are constructed using TCS.OFSBASE/GSBASE (32 and 64-bit mode) and 
TCS.OFSLIMIT/GSLIMIT (32-bit mode only). The resulting segments must be a subset of the DS segment. 

• If CR4.OSXSAVE == 1, XCR0 is saved and replaced by SECS.ATTRIBUTES.XFRM. The effect of RFLAGS.TF 
depends on whether the enclave entry is opt-in or opt-out (see Section 43.1.2):

— On opt-out entry, TF is saved and cleared (it is restored on EEXIT or AEX). Any attempt to set TF via a 
POPF instruction while inside the enclave clears TF (see Section 43.2.5).

Opcode/
Instruction

Op/En 64/32 
bit Mode 
Support

CPUID 
Feature 
Flag

Description

 EAX = 03H IR V/V SGX1 This leaf function is used to re-enter an enclave after an inter-
rupt.ENCLU[ERESUME]

Op/En RAX RBX RCX

IR ERESUME (In) Address of a TCS (In) Address of AEP (In)

TCS

 Enclave read/write access

Address in RBX is not properly aligned. Any TCS.FLAGS’s must-be-zero bit is not zero.

TCS pointed to by RBX is not valid or available or 
locked.

Current 32/64 mode does not match the enclave mode in 
SECS.ATTRIBUTES.MODE64.

The SECS is in use by another enclave. Either of TCS-specified FS and GS segment is not a subset of the current DS 
segment.

Any one of DS, ES, CS, SS is not zero. If XSAVE available, CR4.OSXSAVE = 0, but SECS.ATTRIBUTES.XFRM ≠ 3.

CR4.OSFXSR ≠ 1. If CR4.OSXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

Offsets 520-535 of the XSAVE area not 0. The bit vector stored at offset 512 of the XSAVE area must be a subset of 
SECS.ATTRIBUTES.XFRM.

The SSA frame is not valid or in use.
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— On opt-in entry, a single-step debug exception is pended on the instruction boundary immediately after 
EENTER (see Section 43.2.3). 

• All code breakpoints that do not overlap with ELRANGE are also suppressed. If the entry is an opt-out entry, 
all code and data breakpoints that overlap with the ELRANGE are suppressed.

• On opt-out entry, a number of performance monitoring counters and behaviors are modified or suppressed 
(see Section 43.2.3):

— All performance monitoring activity on the current thread is suppressed except for incrementing and firing 
of FIXED_CTR1 and FIXED_CTR2.

— PEBS is suppressed.

— AnyThread counting on other threads is demoted to MyThread mode and 
IA32_PERF_GLOBAL_STATUS[60] on that thread is set.

— If the opt-out entry on a hardware thread results in suppression of any performance monitoring, then the 
processor sets IA32_PERF_GLOBAL_STATUS[60] and IA32_PERF_GLOBAL_STATUS[63].

Concurrency Restrictions

Operation

Temp Variables in ERESUME Operational Flow

Table 41-64    Concurrency Restrictions of ERESUME with Intel® SGX Instructions - 1of 2

Operation EEXIT EADD EBLOCK ECRE
ATE

EDBGRD/
WR

EENTER/
ERESUME EEXTEND EGETKEY EINIT ELDB/ELDU EPA

Param Targ VA SECS Targ SECS Targ SECS SECS Targ SECS TCS SSA SECS Targ SECS Param SECS SECS Targ VA SECS VA

ERESU
ME

TCS N N N Y N N N

SSA U Y Y U U

SECS Y Y N Y Y Y Y Y Y Y Y Y N Y Y N Y Y Y Y

Table 41-65    Concurrency Restrictions of ERESUME with Intel® SGX Instructions - 2 of 2

Operation EREMOVE EREPORT ETRA
CK EWB EAUG EMODPE EMODPR EMODT EACCEPT EACCEPTCOPY

Param Targ SECS Param SECS SECS SRC VA SECS Targ SECS Targ SECI
NFO

Targ SECS Targ SECS Targ SECI
NFO

SECS Targ SRC SECI
NFO

ERESU
ME

TCS N N N N

SSA U Y U Y U U U

SECS Y Y Y Y Y Y Y Y Y Y Y

Name Type Size Description

TMP_FSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_GSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_FSLIMIT Effective Address 32/64 Highest legal address in proposed FS segment.

TMP_GSLIMIT Effective Address 32/64 Highest legal address in proposed GS segment.

TMP_TARGET Effective Address 32/64 Address of first instruction inside enclave at which execution is to resume.

TMP_SECS Effective Address 32/64 Physical address of SECS for this enclave.

TMP_SSA Effective Address 32/64 Address of current SSA frame.
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TMP_MODE64  ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Make sure DS is usable, expand up *)
IF (TMP_MODE64 = 0 and (DS not usable or ( ( DS[S] = 1) and (DS[bit 11] = 0) and DS[bit 10] = 1) ) ) )

THEN #GP(0); FI;

(* Check that CS, SS, DS, ES.base is 0 *)
IF (TMP_MODE64 = 0)

THEN 
IF(CS.base ≠ 0 or DS.base ≠ 0) #GP(0); FI;
IF(ES usable and ES.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.B = 0) #GP(0); FI;

FI;

IF (DS:RBX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

(* Check AEP is canonical*)
IF (TMP_MODE64 = 1 and (DS:RCX is not canonical) )

THEN #GP(0); FI;

(* Check concurrency of TCS operation*)
IF (Other Intel SGX instructions is operating on TCS) 

THEN #GP(0); FI;

(* TCS verification *)
IF (EPCM(DS:RBX).VALID = 0) 

THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1) 
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))
THEN #PF(DS:RBX); FI;

IF ( (EPCM(DS:RBX).ENCLAVEADDRESS ≠ DS:RBX) or (EPCM(DS:RBX).PT ≠ PT_TCS) )
THEN #PF(DS:RBX); FI;

TMP_XSIZE integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective Address 32/64 Pointer used to iterate over the SSA pages in the current frame.

TMP_GPR Effective Address 32/64 Address of the GPR area within the current SSA frame.

TMP_BRANCH_RECORD LBR Record From/to addresses to be pushed onto the LBR stack.

Name Type Size Description
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IF ( (DS:RBX).OSSA is not 4KByte Aligned)
THEN #GP(0); FI;

(* Check proposed FS and GS *)
IF ( ( (DS:RBX).OFSBASE is not 4KByte Aligned) or ( (DS:RBX).OGSBASE is not 4KByte Aligned) )

THEN #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)
TMP_SECS  Address of SECS for TCS;

(* Make sure that the FLAGS field in the TCS does not have any reserved bits set *)
IF ( ( (DS:RBX).FLAGS & & FFFFFFFFFFFFFFFEH) ≠ 0) 

THEN #GP(0); FI;

(* SECS must exist and enclave must have previously been EINITted *)
IF (the enclave is not already initialized) 

THEN #GP(0); FI;

(* make sure the logical processor’s operating mode matches the enclave *)
IF ( (TMP_MODE64 ≠ TMP_SECS.ATTRIBUTES.MODE64BIT) )

THEN #GP(0); FI;

IF (CR4.OSFXSR = 0)
THEN #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)
IF (CR4.OSXSAVE = 0)

THEN 
IF (TMP_SECS.ATTRIBUES.XFRM ≠ 03H) THEN #GP(0); FI;

ELSE
IF ( (TMP_SECS.ATTRIBUES.XFRM & XCR0) ≠ TMP_SECS.ATTRIBUES.XFRM) THEN #GP(0); FI;

FI;

(* Make sure the SSA contains at least one active frame *)
IF ( (DS:RBX).CSSA = 0) 

THEN #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA  (DS:RBX).OSSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * ( (DS:RBX).CSSA - 1);
TMP_XSIZE  compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible; 
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_SSA_PAGE does not resolve to EPC page) 

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0) 

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1) 
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THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE_.MODIFIED = 1))

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ( ( EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMPSSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or

(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or 
(EPCM(DS:TMP_SECS).R = 0) or (EPCM(DS:TMP_SECS).W = 0) )
THEN #PF(DS:TMP_SSA_PAGE); FI;

CR_XSAVE_PAGE_n  Physical_Address(DS:TMP_SSA_PAGE);
ENDFOR

(* Compute address of GPR area*)
TMP_GPR  TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE -- sizeof(GPRSGX_AREA);
Check that DS:TMP_SSA_PAGE is read/write accessible; 
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_GPR does not resolve to EPC page) 

THEN #PF(DS:TMP_GPR); FI;
IF (EPCM(DS:TMP_GPR).VALID = 0) 

THEN #PF(DS:TMP_GPR); FI;
IF (EPCM(DS:TMP_GPR).BLOCKED = 1) 

THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
THEN #PF(DS:TMP_GPR); FI;

IF ( ( EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT ≠ PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or 
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0) )
THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
THEN 

IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) THEN #GP(0); FI;
FI;

CR_GPR_PA  Physical_Address (DS: TMP_GPR);

TMP_TARGET  (DS:TMP_GPR).RIP;
IF (TMP_MODE64 = 1)

THEN 
IF (TMP_TARGET is not canonical) THEN #GP(0); FI;

ELSE
IF (TMP_TARGET > CS limit) THEN #GP(0); FI;

FI;

(* Check proposed FS/GS segments fall within DS *)
IF (TMP_MODE64 = 0)

THEN 
TMP_FSBASE  (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_FSLIMIT  (DS:RBX).OFSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;
TMP_GSBASE  (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
TMP_GSLIMIT  (DS:RBX).OGSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;
(* if FS wrap-around, make sure DS has no holes*)
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IF (TMP_FSLIMIT < TMP_FSBASE)
THEN 

IF (DS.limit < 4GB) THEN #GP(0); FI;
ELSE

IF (TMP_FSLIMIT > DS.limit) THEN #GP(0); FI;
FI;
(* if GS wrap-around, make sure DS has no holes*)
IF (TMP_GSLIMIT < TMP_GSBASE)

THEN 
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_GSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
ELSE

TMP_FSBASE  (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_GSBASE  (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
IF ( (TMP_FSBASE is not canonical) or (TMP_GSBASE is not canonical))

THEN #GP(0); FI;
FI;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)
IF (DS:RBX.STATE = ACTIVE))

THEN #GP(0); FI;

(* SECS.ATTRIBUTES.XFRM selects the features to be saved. *)
(* CR_XSAVE_PAGE_n: A list of 1 or more physical address of pages that contain the XSAVE area. *)
XRSTOR(TMP_MODE64, SECS.ATTRIBUTES.XFRM, CR_XSAVE_PAGE_n);

IF (XRSTOR failed with #GP) 
THEN

DS:RBX.STATE  INACTIVE;
#GP(0);

FI;

CR_ENCALVE_MODE  1;
CR_ACTIVE_SECS  TMP_SECS;
CR_ELRANGE  (TMP_SECS.BASEADDR, TMP_SECS.SIZE);

(* Save sate for possible AEXs *)
CR_TCS_PA  Physical_Address (DS:RBX);
CR_TCS_LA  RBX;
CR_TCS_LA.AEP  RCX;

(* Save the hidden portions of FS and GS *)
CR_SAVE_FS_selector  FS.selector;
CR_SAVE_FS_base  FS.base;
CR_SAVE_FS_limit  FS.limit;
CR_SAVE_FS_access_rights  FS.access_rights;
CR_SAVE_GS_selector  GS.selector;
CR_SAVE_GS_base  GS.base;
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CR_SAVE_GS_limit  GS.limit;
CR_SAVE_GS_access_rights  GS.access_rights;

(* Set CR_ENCLAVE_ENTRY_IP *)
CR_ENCLAVE_ENTRY_IP  CRIP”
RIP  TMP_TARGET;

Restore_GPRs from DS:TMP_GPR;

(*Restore the RFLAGS values from SSA*)
RFLAGS.CF  DS:TMP_GPR.RFLAGS.CF;
RFLAGS.PF  DS:TMP_GPR.RFLAGS.PF;
RFLAGS.AF  DS:TMP_GPR.RFLAGS.AF;
RFLAGS.ZF  DS:TMP_GPR.RFLAGS.ZF;
RFLAGS.SF  DS:TMP_GPR.RFLAGS.SF;
RFLAGS.DF  DS:TMP_GPR.RFLAGS.DF;
RFLAGS.OF  DS:TMP_GPR.RFLAGS.OF;
RFLAGS.NT  DS:TMP_GPR.RFLAGS.NT;
RFLAGS.AC  DS:TMP_GPR.RFLAGS.AC;
RFLAGS.ID  DS:TMP_GPR.RFLAGS.ID;
RFLAGS.RF  DS:TMP_GPR.RFLAGS.RF;
RFLAGS.VM  0;
IF (RFLAGS.IOPL = 3) 

THEN RFLAGS.IF = DS:TMP_GPR.IF; FI;

IF (TCS.FLAGS.OPTIN = 0) 
THEN RFLAGS.TF = 0; FI;

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.OSXSAVE = 1) 

CR_SAVE_XCR0  XCR0;
XCR0  TMP_SECS.ATTRIBUTES.XFRM;

FI;

(* Pop the SSA stack*)
(DS:RBX).CSSA  (DS:RBX).CSSA -1;

(* Do the FS/GS swap *)
FS.base  TMP_FSBASE;
FS.limit  DS:RBX.FSLIMIT;
FS.type  0001b;
FS.W  DS.W;
FS.S  1;
FS.DPL  DS.DPL;
FS.G  1;
FS.B  1;
FS.P  1;
FS.AVL  DS.AVL;
FS.L  DS.L;
FS.unusable  0;
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FS.selector  0BH;

GS.base  TMP_GSBASE;
GS.limit  DS:RBX.GSLIMIT;
GS.type  0001b;
GS.W  DS.W;
GS.S  1;
GS.DPL  DS.DPL;
GS.G  1;
GS.B  1;
GS.P  1;
GS.AVL  DS.AVL;
GS.L  DS.L;
GS.unusable  0;
GS.selector  0BH;

CR_DBGOPTIN  TSC.FLAGS.DBGOPTIN;
Suppress all code breakpoints that are outside ELRANGE;

IF (CR_DBGOPTIN = 0) 
THEN

Suppress all code breakpoints that overlap with ELRANGE;
CR_SAVE_TF  RFLAGS.TF;
RFLAGS.TF  0;
Suppress any MTF VM exits during execution of the enclave;
Clear all pending debug exceptions;
Clear any pending MTF VM exit;

ELSE
Clear all pending debug exceptions;
Clear pending MTF VM exits;

FI;

(* Assure consistent translations *)
Flush_linear_context;
Clear_Monitor_FSM;
Allow_front_end_to_begin_fetch_at_new_RIP;

Flags Affected

RFLAGS.TF is cleared on opt-out entry
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Protected Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment.
If any reserved field in the TCS FLAG is set.
If the target address is not within the CS segment.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(error code) If a page fault occurs in accessing memory.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to 
a valid PT_REG EPC page.

64-Bit Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment.
If any reserved field in the TCS FLAG is set.
If the target address is not canonical.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(error code) If a page fault occurs in accessing memory operands.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to 
a valid PT_REG EPC page.

...
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34. Updates to Chapter 42, Volume 3D
Change bars show changes to Chapter 42 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3D: System Programming Guide, Part 4.

------------------------------------------------------------------------------------------

...

42.2 IA32_FEATURE_CONTROL
IA32_FEATURE_CONTROL MSR provides two new bits related to two aspects of Intel SGX: using the instruction 
extensions and launch control configuration.

42.2.1 Availability of Intel SGX 
IA32_FEATURE_CONTROL[bit 18] allows BIOS to control the availability of Intel SGX extensions. For Intel SGX 
extensions to be available on a logical processor, bit 18 in the IA32_FEATURE_CONTROL MSR on that logical 
processor must be set, and IA32_FEATURE_CONTROL MSR on that logical processor must be locked (bit 0 must 
be set). See Section 37.7.1 for additional details. OS is expected to examine the value of bit 18 prior to enabling 
Intel SGX on the thread, as the settings of bit 18 is not reflected by CPUID.

42.2.2 Intel SGX Launch Control Configuration
The IA32_SGXLEPUBKEYHASHn MSRs used to configure authorized launch enclaves MRSIGNER digest value are 
present on logical processors that support the collection of SGX1 leaf functions (i.e. CPUID.(EAX=12H, 
ECX=00H):EAX[0] = 1). IA32_FEATURE_CONTROL[bit 17] allows to BIOS to enable write access to these MSRs. 
If IA32_FEATURE_CONTROL.LE_WR (bit 17) is set to 1 and IA32_FEATURE_CONTROL is locked on that logical 
processor, IA32_SGXLEPUBKEYHASH MSRs on that logical processor then the IA32_SGXLEPUBKEYHASHn MSR 
are writeable. If this bit 17 is not set or IA32_FEATURE_CONTROL is not locked, IA32_SGXLEPUBKEYHASH MSRs 
are read only. See Section 39.1.4 for additional details.

...

42.3.3 Interaction of Intel® SGX Instructions with Segmentation
All leaf functions of ENCLU and ENCLS instructions require that the DS segment be usable, and be an expand-up 
segment. Failing this check results in generation of a #GP(0) exception.
The Intel SGX leaf functions used for entering the enclave (ENCLU[EENTER] and ENCLU[ERESUME]) operate as 
follows:
• All usable segment registers except for FS and GS have a zero base. 
• The contents of the FS/GS segment registers (including the hidden portion) is saved in the processor.
• New FS and GS values compatible with enclave security are loaded from the TCS
• The linear ranges and access rights available under the newly-loaded FS and GS must abide to OS policies by 

ensuring they are subsets of the linear-address range and access rights available for the DS segment.
• The CS segment mode (64-bit, compatible, or 32 bit modes) must be consistent with the segment mode for 

which the enclave was created, as indicated by the SECS.ATTRIBUTES.MODE64 bit, and that the CPL of the 
logical processor is 3

An exit from the enclave either via ENCLU[EEXIT] or via an AEX restores the saved values of FS/GS segment 
registers.
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42.3.4 Interactions of Enclave Execution with Segmentation
During the course of execution, enclave code abides by all segmentation policies as dictated by IA32 and Intel 64 
Architectures, and generates appropriate exceptions on violations.
Additionally, any attempt by software executing inside an enclave to modify the processor's segmentation state 
(e.g. via MOV seg register, POP seg register, LDS, far jump, etc; excluding WRFSBASE/WRGSBASE) results in the 
generation of a #UD. See Section 39.6.1 for more information.
Upon enclave entry via the EENTER leaf function, FS is loaded from the (TCS.OFSBASE + SECS.BASEADDR) and 
TCS.FSLIMIT fields and GS is loaded from the (TCS.OGSBASE + SECS.BASEADDR) and TCS.GSLIMIT fields. 
Execution of WRFSBASE and WRGSBASE from inside a 64-bit enclave is allowed. The processor will save the new 
values into the current SSA frame on an asynchronous exit (AEX) and restore them back on enclave entry via 
ENCLU[ERESUME] instruction.

...

42.4 INTERACTIONS WITH PAGING
Intel SGX instructions are available only when the processor is executing in a protected mode of operation. Addi-
tionally, all Intel SGX leaf functions except for EDBGRD and EDBGWR are available only if paging is enabled. Any 
attempt to execute these leaf functions with paging disabled results in an invalid-opcode exception (#UD). As 
with segmentation, enclaves abide by all the paging policies set up by the OS, but they can be more restrictive 
than the OS.
All the memory operands passed into Intel SGX instructions are interpreted as offsets within the DS segment, and 
the linear addresses generated by combining these offsets with DS segment register are subject to paging-based 
access control if paging is enabled at the time of the execution of the leaf function.
Since the ENCLU[EENTER] and ENCLU[ERESUME] can only be executed when paging is enabled, and since paging 
cannot be disabled by software running inside an enclave (recall that enclaves always run with CPL = 3), enclave 
execution is always subject to paging-based access control. The Intel SGX access control itself is implemented as 
an extension to the existing paging modes. See Section 38.5 for details.
Execution of Intel SGX instructions may set accessed and dirty flags on accesses to EPC pages that do not fault 
even if the instruction later causes a fault for some other reason. 

42.5 INTERACTIONS WITH VMX
Intel SGX functionality (including SGX1 and SGX2) can be made available to software running in either VMX root 
operation or VMX non-root operation, as long as the processor is using a legal mode of operation (see Section 
42.1). 
A VMM has the flexibility to configure a VMCS to permit a guest to use any subset of the ENCLS leaf functions. 
Availability of the ENCLU leaf functions in VMX non-root operation has the same requirement as ENCLU leaf func-
tions outside of a virtualized environment.
Details of the VMCS control to allow VMM to configure support of Intel SGX in VMX non-root operation is described 
in Section 42.5.1

42.5.1 VMM Controls to Configure Guest Support of Intel® SGX
Intel SGX capabilities are primarily exposed to the software via the CPUID instruction. VMMs can virtualize CPUID 
instruction to expose/hide this capability to/from guests.
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Some of Intel SGX resources are exposed/controlled via model-specific registers (see Section 37.7). VMMs can 
virtualize these MSRs for the guests using the MSR bitmaps referenced by pointers in the VMCS.
The VMM can partition the Enclave Page Cache, and assign various partitions to (a subset of) its guests via the 
usual memory-virtualization techniques such as paging or the extended page table mechanism (EPT).
The VMM can set the “enable ENCLS exiting” VM-execution controls to cause a VM exit when the ENCLS instruc-
tion is executed in VMX non-root operation. If the “enable ENCLS exiting” control is 0, all of the ENCLS leaf func-
tions are permitted in VMX non-root operation. If the “enable ENCLS exiting” control is 1, execution of ENCLS leaf 
functions in VMX non-root operation is governed by consulting the bits in a new 64-bit VM-execution control field 
called the ENCLS-exiting bitmap (Each bit in the bitmap corresponds to an ENCLS leaf function with an EAX value 
that is identical to the bit’s position). When bits in the “ENCLS-exiting bitmap” are set, attempts to execute the 
corresponding ENCLS leaf functions in VMX non-root operation causes VM exits. The checking for these VM exits 
occurs immediately after checking that CPL = 0.

42.5.2 Interactions with the Extended Page Table Mechanism (EPT)
Intel SGX instructions are fully compatible with the extended page-table mechanism (EPT; see Section 28.2).
All the memory operands passed into Intel SGX instructions are interpreted as offsets within the DS segment, and 
the linear addresses generated by combining these offsets with DS segment register are subject to paging and 
EPT. As with paging, enclaves abide by all the policies set up by the VMM.
The Intel SGX access control itself is implemented as an extension to paging and EPT, and may be more restric-
tive. See Section 42.4 for details of this extension.
An execution of an Intel SGX instruction may set accessed and dirty flags for EPT (when enabled; see Section 
28.2.4) on accesses to EPC pages that do not fault or cause VM exits even if the instruction later causes a fault or 
VM exit for some other reason. 

42.5.3 Interactions with APIC Virtualization
This section applies to Intel SGX in VMX non-root operation when the “virtualize APIC accesses” VM-execution 
control is 1.
A memory access by an enclave instruction that implicitly uses a cached physical address is never checked for 
overlap with the APIC-access page. Such accesses never cause APIC-access VM exits and are never redirected to 
the virtual-APIC page. Implicit memory accesses can only be made to the SECS, the TCS, or the SSA of an enclave 
(see Section 38.5.3.2). 
An explicit Enclave Access (a linear memory access which is either from within an enclave into its ELRANGE, or an 
access by an Intel SGX instruction that is expected to be in the EPC) that overlaps with the APIC-access page 
causes a #PF exception (APIC page is expected to be outside of EPC). 
Non-Enclave accesses made either by an Intel SGX instruction or by a logical processor inside an enclave to an 
address that without SGX would have caused redirection to the virtual-APIC page instead cause an APIC-access 
VM exit. 
Other than implicit accesses made by Intel SGX instructions, guest-physical and physical accesses are not consid-
ered “enclave accesses”; consequently, such accesses result in undefined behavior if these accesses eventually 
reach EPC. This applies to any non-enclave physical accesses.
While a logical processor is executing inside an enclave, an attempt to execute an instruction outside of ELRANGE 
results in a #GP(0), even if the linear address would translate to a physical address that overlaps the APIC-access 
page. 
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42.6 INTEL® SGX INTERACTIONS WITH ARCHITECTURALLY-VISIBLE EVENTS
All architecturally visible vectored events (IA32 exceptions, interrupts, SMI, NMI, INIT, VM exit) can be detected 
while inside an enclave and will cause an asynchronous enclave exit if they are not blocked. Additionally, INT3, 
and the SignalTXTMsg[SENTER] (i.e. GETSEC[SENTER]’s rendezvous event message) events also cause asyn-
chronous enclave exits. Note that SignalTXTMsg[SEXIT] (i.e. GETSEC[SEXIT]’s teardown message) does not 
cause an AEX. 
On an AEX, information about the event causing the AEX is stored in the SSA (see Section 40.4 for details of AEX). 
The information stored in the SSA only describes the first event that triggered the AEX. If parsing/delivery of the 
first event results in detection of further events (e.g. VM exit, double fault, etc.), then the event information in the 
SSA is not updated to reflect these subsequently detected events. 

...

42.7.1 Requirements and Architecture Overview
Processor extended states are the ISA features that are enabled by the settings of CR4.OSXSAVE and the XCR0 
register. Processor extended states are normally saved/restored by software via XSAVE/XRSTOR instructions. 
Details of discovery of processor extended states and management of these states are described in CHAPTER 13 
of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. 
Additionally, the following requirements apply to Intel SGX:
• On an AEX, the Intel SGX architecture must protect the processor extended state and miscellaneous state by 

saving them in the enclave’s state-save area (SSA), and clear the secrets from the processor extended state 
that is used by an enclave. 

• Intel SGX architecture must verify that the SSA frame size is large enough to contain all the processor 
extended states and miscelaneous state used by the enclave.

• Intel SGX architecture must ensure that enclaves can only use processor extended state that is enabled by 
system software in XCR0. 

• Enclave software should be able to discover only those processor extended state and miscellaneous state for 
which such protection is enabled.

• The processor extended states that are enabled inside the enclave must be approved by the enclave 
developer:

— Certain processor extended state (e.g., Memory Protection Extensions, see Chapter 9 of Intel® MPX of 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1) modify the behavior of the 
legacy ISA software. If such features are enabled for enclaves that do not understand those features, then 
such a configuration could lead to a compromise of the enclave's security. 

• The processor extended states that are enabled inside the enclave must form an integral part of the enclave's 
identity. This requirement has two implications:

— Service providers may decide to assign different trust level to the same enclave depending on the ISA 
features the enclave is using.

To meet these requirements, the Intel SGX architecture defines a sub-field called X-Feature Request Mask (XFRM) 
in the ATTRIBUTES field of the SECS. On enclave creation (ENCLS[ECREATE] leaf function), the required SSA 
frame size is calculated by the processor from the list of enabled extended and miscellaneous states and verified 
against the actual SSA frame size defined by SECS.SSAFRAMESIZE. 
On enclave entry, after verifying that XFRM is only enabling features that are already enabled in XCR0, the value 
in the XCR0 is saved internally by the processor, and is replaced by the XFRM. On enclave exit, the original value 
of XCR0 is restored. Consequently, while inside the enclave, the processor extended states enabled in XFRM are 
in enabled state, and those that are disabled in XFRM are in disabled state. 
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The entire ATTRIBUTES field, including the XFRM subfield is integral part of enclave's identity (i.e., its value is 
included in reports generated by ENCLU[EREPORT], and select bits from this field can be included in key-deriva-
tion for keys obtained via the ENCLU[EGETKEY] leaf function).
Enclave developers can create their enclave to work with certain features and fallback to another code path in 
case those features aren't available (e.g. optimize for AVX and fallback to SSE). For this purpose Intel SGX 
provides the following fields in SIGSTRUCT: ATTRIBUTES, ATTRIBUTESMASK, MISCSELECT, and MISCMASK. 
EINIT ensures that the final SECS.ATTRIBUTES and SECS.MISCSELECT comply with the enclave developer's 
requirements as follows:
SIGSTRUCT.ATTRIBUTES & SIGSTRUCT.ATTRIBUTEMASK = SECS.ATTRIBUTES & SIGSTRUCT.ATTRIBUTEMASK
SIGSTRUCT.MISCSELECT & SIGSTRUCT.MISCMASK = SECS.MISCSELECT & SIGSTRUCT.MISCMASK.
On an asynchronous enclave exit, the processor extended states enabled by XFRM are saved in the current SSA 
frame, and overwritten by synthetic state (see Section 40.3 for the definition of the synthetic state). When the 
interrupted enclave is resumed via the ENCLU[ERESUME] leaf function, the saved state for processor extended 
states enabled by XFRM is restored.

...

42.7.2.1  SECS.ATTRIBUTES.XFRM
The ATTRIBUTES field of the SECS data structure (see Section 38.7) contains a sub-field called XSAVE-Feature 
Request Mask (XFRM). Software populates this field at the time of enclave creation according to the features that 
are enabled by the operating system and approved by the enclave developer.
Intel SGX architecture guarantees that during enclave execution, the processor extended state configuration of 
the processor is identical to what is required by the XFRM sub-field. All the processor extended states enabled in 
XFRM are saved on AEX from the enclave and restored on ERESUME.
The XFRM sub-field has the same layout as XCR0, and has consistency requirements that are similar to those for 
XCR0. Specifically, the consistency requirements on XFRM values depend on the processor implementation and 
the set of features enabled in CR4.
Legal values for SECS.ATTRIBUTES.XFRM conform to these requirements:
• XFRM[1:0] must be set to 0x3. 
• If the processor does not support XSAVE, or if the system software has not enabled XSAVE, then XFRM[63:2] 

must be zero. 
• If the processor does support XSAVE, XFRM must contain a value that would be legal if loaded into XCR0.
The various consistency requirements are enforced at different times in the enclave's life cycle, and the exact 
enforcement mechanisms are elaborated in Section 42.7.3 through Section 42.7.6.
On processors not supporting XSAVE, software should initialize XFRM to 0x3. On processors supporting XSAVE, 
software should initialize XFRM to be a subset of XCR0 that would be present at the time of enclave execution. 
Because bits 0 and 1 of XFRM must always be set, the use of Intel SGX requires that SSE be enabled 
(CR4.OSFXSR = 1).

42.7.2.2  SECS.SSAFRAMESIZE
The SSAFRAMESIZE field in the SECS data structure specifies the number of pages which software allocated1 for 
each SSA frame, including both the GPRSGX area, MISC area, the XSAVE area (x87 and XMM states are stored in 
the latter area), and optionally padding between the MISC and XSAVE area. The GPRSGX area must hold all the 
general-purpose registers and additional Intel SGX specific information. The MISC area must hold the Miscella-
neous state as specified by SECS.MISCSELECT, the XSAVE area holds the set of processor extended states speci-

1. It is the responsibility of the enclave to actually allocate this memory.
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fied by SECS.ATTRIBUTES.XFRM (see Section 38.9 for the layout of SSA and Section 42.7.3 for ECREATE's 
consistency checks). The SSA is always in non-compacted format.
If the processor does not support XSAVE, the XSAVE area will always be 576 bytes; a copy of XFRM (which will be 
set to 0x3) is saved at offset 512 on an AEX.
If the processor does support XSAVE, the length of the XSAVE area depends on SECS.ATTRIBUTES.XFRM. The 
length would be equal to what CPUID.(EAX=0DH, ECX= 0):EBX would return if XCR0 were set to XFRM. The 
following pseudo code illustrates how software can calculate this length using XFRM as the input parameter 
without modifying XCR0:

offset = 576;
size_last_x = 0;
For x=2 to 63
IF (XFRM[x] != 0) Then

tmp_offset = CPUID.(EAX=0DH, ECX= x):EBX[31:0];
IF (tmp_offset >= offset + size_last_x) Then

offset = tmp_offset;
size_last_x = CPUID.(EAX=0DH, ECX= x):EAX[31:0];

FI;
FI;
EndFor
return (offset + size_last_x); (* compute_xsave_size(XFRM), see “ECREATE—Create an SECS page in the 
Enclave Page Cache”*)

Where the non-zero bits in XFRM are a subset of non-zero bit fields in XCR0.
The size of the MISC region depends on the setting of SECS.MISCSELECT and can be calculated using the layout 
information described in Section 38.9.2

...

42.7.2.4  MISC Area in SSA
The MISC area of an SSA frame is positioned immediately before the GPRSGX region.

42.7.2.5  SIGSTRUCT Fields
Intel SGX provides the flexibility for an enclave developer to choose the enclave's code path according to the 
features that are enabled on the platform (e.g. optimize for AVX and fallback to SSE). See Section 42.7.1 for 
details.
SIGSTRUCT includes the following fields:
SIGSTRUCT.ATTRIBUTES, SIGSTRUCT.ATTRIBUTEMASK, SIGSTRUCT.MISCSELECT, SIGSTRUCT.MISCMASK.

42.7.2.6  REPORT.ATTRIBUTES.XFRM and REPORT.MISCSELECT
The processor extended states and miscellaneous states that are enabled inside the enclave form an integral part 
of the enclave's identity and are therefore included in the enclave's report, as provided by the ENCLU[EREPORT] 
leaf function. The REPORT structure includes the enclave's XFRM and MISCSELECT configurations.

42.7.2.7  KEYREQUEST
An enclave developer can specify which bits out of XFRM and MISCSELECT ENCLU[EGETKEY] should include in the 
derivation of the sealing key by specifying ATTRIBUTESMASK and MISCMASK in the KEYREQUEST structure.
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42.7.3 Processor Extended States and ENCLS[ECREATE]
The ECREATE leaf function of the ENCLS instruction enforces a number of consistency checks described earlier. 
The execution of ENCLS[ECREATE] leaf function results in a #GP(0) in any of the following cases:
• SECS.ATTRIBUTES.XFRM[1:0] is not 3. 
• The processor does not support XSAVE and any of the following is true: 

— SECS.ATTRIBUTES.XFRM[63:2] is not 0.

— SECS.SSAFRAMESIZE is 0.
• The processor supports XSAVE and any of the following is true:

— XSETBV would fault on an attempt to load XFRM into XCR0. 

— XFRM[63]=1. 

— The SSAFRAME is too small to hold required, enabled states (see Section 42.7.2.2).

...

42.7.4.1  Fault Checking
The EENTER leaf function of the ENCLU instruction enforces a number of consistency requirements described 
earlier. The execution of the ENCLU[EENTER] leaf function results in a #GP(0) in any of the following cases:
• If CR4.OSFXSR=0. 
• If The processor supports XSAVE and either of the following is true:

— CR4.OSXSAVE=0 and SECS.ATTRIBUTES.XFRM is not 3. 

— (SECS.ATTRIBUTES.XFRM & XCR0) != SECS.ATTRIBUTES.XFRM

...

42.7.6.1  Fault Checking
The ERESUME leaf function of the ENCLU instruction enforces a number of consistency requirements described 
earlier. Specifically, the ENCLU[ERESUME] leaf function results in a #GP(0) in any of the following cases: 
• CR4.OSFXSR=0.
• The processor supports XSAVE and either of the following is true:

— CR4.OSXSAVE=0 and SECS.ATTRIBUTES.XFRM is not 3. 

— (SECS.ATTRIBUTES.XFRM & XCR0) != SECS.ATTRIBUTES.XFRM.
A successful execution of ENCLU[ERESUME] loads state from the XSAVE area of the SSA frame in a fashion similar 
to that used by the XRSTOR instruction. Data in the XSAVE area that would cause the XRSTOR instruction to fault 
will cause the ENCLU[ERESUME] leaf function to fault. Examples include, but are not restricted to the following:
• A bit is set in the XSTATE_BV field and clear in XFRM. 
• The required bytes in the header are not clear. 
• Loading data would set a reserved bit in MXCSR.
Any of these conditions will cause ERESUME to fault, even if CR4.OSXSAVE=0. 

...
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42.7.7 Processor Extended States and ENCLU[EEXIT]
The ENCLU[EEXIT] leaf function does not perform any X-feature specific consistency checks, nor performs any 
state synthesis. It is the responsibility of enclave software to clear any sensitive data from the registers before 
executing EEXIT. However, successful execution of the ENCLU[EEXIT] leaf function restores XCR0 to the value it 
held at the time of the most recent enclave entry. 

42.7.8 Processor Extended States and ENCLU[EREPORT]

The ENCLU[EREPORT] leaf function creates the MAC-protected REPORT structure that reports on the enclave’s 
identity. ENCLU[EREPORT] includes in the report the values of SECS.ATTRIBUTES.XFRM and 
SECS.MISCSELECT.

42.7.9 Processor Extended States and ENCLU[EGETKEY]
The ENCLU[EGETKEY] leaf function returns a cryptographic key based on the information provided by the KEYRE-
QUEST structure. Intel SGX provides the means for isolation between different operating conditions by allowing 
an enclave developer to select which bits out of XFRM and MISCSELECT need to be included in the derivation of 
the keys.

...

42.8.1 Availability of Intel® SGX instructions in SMM
Enclave instructions are not available in SMM, and any attempt to execute ENCLS or ENCLU instructions inside 
SMM results in an invalid-opcode exception (#UD).

42.8.2 SMI while Inside an Enclave
If the logical processor executing inside an enclave receives an SMI, the logical processor exits the enclave asyn-
chronously. The response to an SMI received while executing inside an enclave depends on whether the dual-
monitor treatment is enabled. For detailed discussion of transfer to SMM, see Chapter 34, “System Management 
Mode” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.
If the logical processor executing inside an enclave receives an SMI when dual-monitor treatment is not enabled, 
the logical processor exits the enclave asynchronously, and transfers the control to the SMM handler. In addition 
to saving the synthetic architectural state to the SMRAM State Save Map (SSM), the logical processor also sets the 
“Enclave Interruption” bit in the SMRAM SSM (bit position 1 in SMRAM field at offset 7EE0H). 
If the logical processor executing inside an enclave receives an SMI when dual-monitor treatment is enabled, the 
logical processor exits the enclave asynchronously, and transfers the control to the SMM monitor via SMM VM exit. 
The SMM VM exit sets the “Enclave Interruption” bit in the Exit Reason (see Table 42-1) and in the Guest Inter-
ruptibility State field (see Table 42-2) of the SMM VMCS.

...

42.9 INTERACTIONS OF INIT, SIPI, AND WAIT-FOR-SIPI WITH INTEL® SGX
INIT received inside an enclave, while the logical processor is not in VMX operation, causes the logical processor 
to exit the enclave asynchronously. After the AEX, the processor's architectural state is initialized to “Power-on” 
state (Table 9.1 in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). If the logical 
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processor is BSP, then it proceeds to execute the BIOS initialization code. If the logical processor is an AP, it enters 
wait-for-SIPI state. 
INIT received inside an enclave, while the logical processor (LP) is in VMX root operation, follows regular Intel 
Architecture behavior and is blocked.
INIT received inside an enclave, while the logical processor is in VMX non-root operation, causes an AEX. Subse-
quent to the AEX, the INIT causes a VM exit with the Enclave Interruption bit in the exit-reason field in the VMCS. 
A processor cannot be inside an enclave in the wait-for-SIPI state. Consequently, a SIPI received while inside an 
enclave is lost.
Intel SGX does not change the behavior of the processor in the wait-for-SIPI state.
The SGX-related processor states after INIT-SIPI-SIPI is as follows:
• EPC Settings: Unchanged
• EPCM: Unchanged
• CPUID.LEAF_12H.*: Unchanged
• ENCLAVE_MODE: 0 (LP exits enclave asynchronously)
• MEE state: Unchanged
Software should be aware that following INIT-SIPI-SIPI, the EPC might contain valid pages and should take 
appropriate measures such as initialize the EPC with the EREMOVE leaf function. 

42.10 INTERACTIONS WITH DMA
DMA is not allowed to access any Processor Reserved Memory.

42.11 INTERACTIONS WITH TXT

42.11.1 Enclaves Created Prior to Execution of GETSEC
Enclaves which have been created before the GETSEC[SENTER] leaf function are available for execution after the 
successful completion of GETSEC[SENTER] and the corresponding SINIT ACM. Actions that a TXT Launched Envi-
ronment performs in preparation to execute code in the Launched Environment, also applies to enclave code that 
would run after GETSEC[SENTER].

42.11.2 Interaction of GETSEC with Intel® SGX
All leaf functions of the GETSEC instruction are illegal inside an enclave, and results in an invalid-opcode exception 
(#UD).
Responding Logical Processors (RLP) which are executing inside an enclave at the time a GETSEC[SENTER] event 
occurs perform an AEX from the enclave and then enter the Wait-for-SIPI state. 
RLP executing inside an enclave at the time of GETSEC[SEXIT], behave as defined for GETSEC[SEXIT]-that is, the 
RLPs pause during execution of SEXIT and resume after the completion of SEXIT.
The execution of a TXT launch does not affect Intel SGX configuration or security parameters.
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42.11.3 Interactions with Authenticated Code Modules (ACMs)
Intel SGX only allows launching ACMs with an Intel SGX SVN that is at the same level or higher than the expected 
Intel SGX SVN. The expected Intel SGX SVN is specified by BIOS and locked down by the processor on the first 
successful execution of an Intel SGX instruction that doesn’t return an error code. Intel SGX provides interfaces 
for system software to discover whether a non faulting Intel SGX instruction has been executed, and evaluate the 
suitability of the Intel SGX SVN value of any ACM that is expected to be launched by the OS or the VMM. 
These interfaces are provided through a read-only MSR called the IA32_SGX_SVN_STATUS MSR (MSR address 
500h). The IA32_SGX_SVN_STATUS MSR has the format shown in Table 42-2.

OS/VMM that wishes to launch an architectural ACM such as SINIT is expected to read the 
IA32_SGX_SVN_STATUS MSR to determine whether the ACM can be launched or a new ACM is needed:
• If either the Intel SGX SVN of the ACM is greater than the value reported by IA32_SGX_SVN_STATUS, or the 

lock bit in the IA32_SGX_SVN_STATUS is not set, then the OS/VMM can safely launch the ACM.
• If the Intel SGX SVN value reported in the corresponding component of the IA32_SGX_SVN_STATUS is 

greater than the Intel SGX SVN value in the ACM's header, and if bit 0 of IA32_SGX_SVN_STATUS is 1, then 
the OS/VMM should not launch that version of the ACM. It should obtain an updated version of the ACM either 
from the BIOS or from an external resource. 

However, OSVs/VMMs are strongly advised to update their version of the ACM any time they detect that the Intel 
SGX SVN of the ACM carried by the OS/VMM is lower than that reported by IA32_SGX_SVN_STATUS MSR, irre-
spective of the setting of the lock bit.
...

42.13.1 HLE and RTM Debug
RTM debug will be suppressed on opt-out enclave entry. After opt-out entry, the logical processor will behave as if 
IA32_DEBUG_CTL[15]=0. Any #DB detected inside an RTM transaction region will just cause an abort with no 
exception delivered. 
After opt-in entry, if either DR7[11] = 0 OR IA32_DEBUGCTL[15] = 0, any #DB or #BP detected inside an RTM 
transaction region will just cause an abort with no exception delivered. 
After opt-in entry, if DR7[11] = 1 AND IA32_DEBUGCTL[15] = 1, any #DB or #BP detected inside an RTM trans-
lation will 
• terminate speculative execution, 
• set RIP to the address of the XBEGIN instruction, and 
• be delivered as #DB (implying an Intel SGX AEX; any #BP is converted to #DB). 

Table 42-2    Layout of the IA32_SGX_SVN_STATUS MSR
Bit Position Name ACM Module ID Value

0 Lock N.A. • If 1, indicates that a non-faulting Intel SGX instruction has been 
executed, consequently, launching a properly signed ACM but with Intel 
SGX SVN value less than the BIOS specified Intel SGX SVN threshold 
would lead to an TXT shutdown. 

• If 0, indicates that the processor will allow a properly signed ACM to 
launch irrespective of the Intel SGX SVN value of the ACM.

15:1 RSVD N.A. 0

23:16 SGX_SVN_SINIT SINIT ACM • If CPUID.01H:ECX.SMX =1, this field reflects the expected threshold of 
Intel SGX SVN for the SINIT ACM. 

• If CPUID.01H:ECX.SMX =0, this field is reserved (0).

63:24 RSVD N.A. 0
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• DR6[16] will be cleared, indicating RTM debug (if the #DB causes a VM exit, DR6 is not modified but bit 16 of 
the pending debug exceptions field in the VMCS will be set).

42.14 INTEL® SGX INTERACTIONS WITH S STATES
Whenever an Intel SGX enabled processor enters S3-S5 state, enclaves are destroyed. This is due to the EPC 
being destroyed when power down occurs. It is the application runtime’s responsibility to re-instantiate an 
enclave after a power transition for which the enclaves were destroyed.

...

42.15.2 Machine Check Enables (IA32_MCi_CTL)
All supported IA32_MCi_CTL bits for all the machine check banks must be set for Intel SGX to be available 
(CPUID.SGX_Leaf.0:EAX[SGX1] == 1). Any act of clearing bits from '1 to '0 in any of the IA32_MCi_CTL register 
may disable Intel SGX (set CPUID.SGX_Leaf.0:EAX[SGX1] to 0) until the next reset.

...

42.17 INTEL SGX INTERACTION WITH PROTECTION KEYS
SGX interactions with PKRU are as follows:
• CPUID.(EAX=12H, ECX=1):ECX.PKRU indicates whether SECS.ATTRIBUTES.XFRM.PKRU can be set. If 

SECS.ATTRIBUTES.XFRM.PKRU is set, then PKRU is saved and cleared as part of AEX and is restored as part 
of ERESUME. If CR4.PKE is set, an enclave can execute RDPKRU and WRKRU independent of whether 
SECS.ATTRIBUTES.XFRM.PKRU is set.

SGX interactions with domain permission checks are as follows:

1) If CR4.PKE is not set, then legacy and SGX permission checks are not effected.

2) If CR4.PKE is set, then domain permission checks are applied to all non-enclave access and 
enclave accesses to user pages in addition to legacy and SGX permission checks at a higher 
priority than SGX permission checks.

3) Implicit accesses aren't subject to domain permission checks.

...

35. Updates to Chapter 43, Volume 3D
Change bars show changes to Chapter 43 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3D: System Programming Guide, Part 4.

------------------------------------------------------------------------------------------

...

43.1.1 Debug Enclave vs. Production Enclave
The SECS of each enclave provides a bit, SECS.ATTRIBUTES.DEBUG, indicating whether the enclave is a debug 
enclave (if set) or a production enclave (if 0). If this bit is set, software outside the enclave can use EDBGRD/
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EDBGWR to access the EPC memory of the enclave. The value of DEBUG is not included in the measurement of 
the enclave and therefore doesn't require an alternate SIGSTRUCT to be generated to debug the enclave.
The ATTRIBUTES field in the SECS is reported in the enclave's attestation, and is included in the key derivation. 
Enclave secrets that were protected by the enclave using Intel SGX keys when it ran as a production enclave will 
not be accessible by the debug enclave. A debugger needs to be aware that special debug content might be 
required for a debug enclave to run in a meaningful way. 
EPC memory belonging to a debug enclave can be accessed via the EDBGRD/EDBGWR leaf functions (see Section 
41.4), while that belonging to a non-debug enclave cannot be accessed by these leaf functions.

43.1.2 Tool-Chain Opt-in
The TCS.FLAGS.DBGOPTIN bit controls interactions of certain debug and profiling features with enclaves, 
including code/data breakpoints, TF, RF, monitor trap flag, BTF, LBRs, BTM, BTS, Intel Processor Trace, and perfor-
mance monitoring. This bit is forced to zero when EPC pages are added via EADD. A debugger can set this bit via 
EDBGWR to the TCS of a debug enclave.
An enclave entry through a TCS with the TCS.FLAGS.DBGOPTIN set to 0 is called an opt-out entry. Conversely, 
an enclave entry through a TCS with TCS.FLAGS.DBGOPTIN set to 1 is called an opt-in entry.

...

43.2.1 Single Stepping ENCLS Instruction Leafs
If the RFLAGS.TF bit is set at the beginning of ENCLS, then a single-step debug exception is pending as a trap-
class exception on the instruction boundary immediately after the ENCLS instruction. Additionally, if the instruc-
tion is executed in VMX non-root operation and the “monitor trap flag” VM-execution control is 1, an MTF VM exit 
is pending on the instruction boundary immediately after the instruction if the instruction does not fault.

43.2.2 Single Stepping ENCLU Instruction Leafs
The interactions of the unprivileged Intel SGX instruction ENCLU are leaf dependent.
An enclave entry via EENTER/ERESUME leaf functions of the ENCLU, in certain cases, may mask the RFLAGS.TF 
bit, and mask the setting of the “monitor trap flag” VM-execution control. In such situations, an exit from the 
enclave, either via the EEXIT leaf function or via an AEX unmasks the RFLAGS.TF bit and the “monitor trap flag” 
VM-execution control. The details of this masking/unmasking and the pending of single stepping events across 
EENTER/ERESUME/EEXIT/AEX are covered in detail in Section 43.2.3.
If the EFLAGS.TF bit is set at the beginning of EREPORT or EGETKEY leafs, and if the EFLAGS.TF is not masked by 
the preceding enclave entry, then a single-step debug exception is pending on the instruction boundary immedi-
ately after the ENCLU instruction. Additionally, if the instruction is executed in VMX non-root operation and the 
“monitor trap flag” VM-execution control is 1, and if the monitor trap flag is not masked by the preceding enclave 
entry, then an MTF VM exit is pending on the instruction boundary immediately after the instruction.
If the instruction under consideration results in a fault, then the control flow goes to the fault handler, and no 
single-step debug exception is asserted. In such a situation, if the instruction is executed in VMX non-root opera-
tion and the “monitor trap flag” VM-execution control is 1, an MTF VM exit is pending after the delivery of the fault 
(or any nested exception). No MTF VM exit occurs if another VM exit occurs before reaching that boundary on 
which an MTF VM exit would be pending.
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43.2.3 Single-Stepping Enclave Entry with Opt-out Entry

43.2.3.1 Single Stepping without AEX
Figure 40-1 shows the most common case for single-stepping after an opt-out entry.

In this scenario, if the RFLAGS.TF bit is set at the time of the enclave entry, then a single step debug exception is 
pending on the instruction boundary after EEXIT. Additionally, if the enclave is executing in VMX non-root opera-
tion and the “monitor trap flag” VM-execution control is 1, an MTF VM exit is pending on the instruction boundary 
after EEXIT.
The value of the RFLAGS.TF bit at the end of EEXIT is the same as the value of RFLAGS.TF at the time of the 
enclave entry.

43.2.3.2  Single Step Preempted by AEX Due to Non-SMI Event
Figure 43-2 shows the interaction of single stepping with AEX due to a non-SMI event after an opt-out entry.

Figure 43-1    Single Stepping with Opt-out Entry - No AEX
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In this scenario, if the enclave is executing in VMX non-root operation and the “monitor trap flag” VM-execution 
control is 1, an MTF VM exit is pending on the instruction boundary after the AEX. No MTF VM exit occurs if another 
VM exit happens before reaching that instruction boundary. 
The value of the RFLAGS.TF bit at the end of AEX is the same as the value of RFLAGS.TF at the time of the enclave 
entry.

43.2.4 RFLAGS.TF Treatment on AEX
The value of EFLAGS.TF at the end of AEX from an opt-out enclave is same as the value of EFLAGS.TF at the time 
of the enclave entry. The value of EFLAGS.TF at the end of AEX from an opt-in enclave is unmodified. The 
EFLAGS.TF saved in GPR portion of the SSA on an AEX is 0. For more detail see EENTER and ERESUME in Chapter 
5.

43.2.5 Restriction on Setting of TF after an Opt-Out Entry
Enclave entered through an opt-out entry is not allowed to set EFLAGS.TF. The POPF instruction forces RFLAGS.TF 
to 0 if the enclave was entered through opt-out entry.

...

43.3.1 Breakpoint Suppression
Following an opt-out entry:
• Instruction breakpoints are suppressed during execution in an enclave. 
• Data breakpoints are not triggered on accesses to the address range defined by ELRANGE.
• Data breakpoints are triggered on accesses to addresses outside the ELRANGE
Following an opt-in entry instruction and data breakpoints are not suppressed.
The processor does not report any matches on debug breakpoints that are suppressed on enclave entry. However, 
the processor does not clear any bits in DR6 that were already set at the time of the enclave entry.

Figure 43-2    Single Stepping with Opt-out Entry -AEX Due to Non-SMI Event Before Single-Step Boundary
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43.3.2 Reporting of Instruction Breakpoint on Next Instruction on a Debug Trap
A debug exception caused by the single-step execution mode or when a data breakpoint condition was met causes 
the processor to perform an AEX. Following such an AEX, the processor reports in the debug status register (DR6) 
matches of the new instruction pointer (the AEP address) in a breakpoint address register setup to detect instruc-
tion execution.

43.3.3 RF Treatment on AEX
RF flag value saved in SSA is the same as what would have been pushed on stack if the exception or event causing 
the AEX occurred when executing outside an enclave (see Section 17.3.1.1). Following an AEX, the RF flag is 0 in 
the synthetic state. 

43.3.4 Breakpoint Matching in Intel® SGX Instruction Flows
Implicit accesses made by Intel SGX instructions to EPC regions do not trigger data breakpoints. Explicit accesses 
made by ENCLS[ECREATE], ENCLS[EADD], ENCLS[EEXTEND], ENCLS[EINIT], ENCLS[EREMOVE], 
ENCLS[ETRACK], ENCLS[EBLOCK], ENCLS[EPA], ENCLS[EWB], ENCLS[ELD], ENCLS[EDBGRD], 
ENCLS[EDBGWR], ENCLU[EENTER], and ENCLU[ERESUME] to the EPC operands do not trigger data breakpoints.
Explicit accesses made by the Intel SGX instructions (ENCLU[EGETKEY] and ENCLU[EREPORT]) executed by an 
enclave following an opt-in entry, trigger data breakpoints on accesses to their EPC operands. All Intel SGX 
instructions trigger data breakpoints on accesses to their non-EPC operands. 

43.4 INT3 CONSIDERATION

43.4.1 Behavior of INT3 Inside an Enclave
Inside an enclave, INT3 delivers a fault-class exception and thus does not require the CPL to be less than DPL in 
the IDT gate 3. Following opt-out entry, the instruction delivers #UD. Following opt-in entry, INT3 delivers #BP.
The RIP saved in the SSA on AEX is that of the INT3 instruction. The RIP saved on the stack ( or in the TSS or 
VMCS) is that of the AEP.
If execution of INT3 in an enclave causes a VM exit, the event type in the VM-exit interruption information field 
indicates a hardware exception (type 3; not a software exception with type 6) and the VM-exit instruction length 
field is saved as zero.

43.4.2 Debugger Considerations
The INT3 is fault-like inside an enclave and the RIP saved in the SSA on AEX is that of the INT3 instruction. Conse-
quently, the debugger must not decrement SSA.RIP for #BP coming from an enclave to re-execute the instruction 
at the RIP of the INT3 instruction on a subsequent enclave entry. 

43.4.3 VMM Considerations
As described above, INT3 executed by enclave delivers #BP with “interruption type” of 3. A VMM that re-injects 
#BP into the guest can obtain the VM entry interruption information from appropriate VMCS fields (as recom-
mended in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).
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VMMs that create the VM-entry interruption information based on the interruption vector should use event type of 
3 (instead of 6) when they detect a VM exit incident to enclave mode that is due to an event with vector 3.

43.5 BRANCH TRACING

43.5.1 BTF Treatment
When software enables single-stepping on branches then:
• Following an opt-in entry using EENTER the processor generates a single step debug exception. 
• Following an EEXIT the processor generates a single-step debug exception
Enclave entry using ERESUME (opt-in or opt-out) and an AEX from the enclave do not cause generation of the 
single-step debug exception.

43.5.2 LBR Treatment

43.5.2.1 LBR Stack on Opt-in Entry
Following an opt-in entry into an enclave, last branch recording facilities if enabled continued to store branch 
records in the LBR stack MSRs as follows:
• On enclave entry using EENTER/ERESUME, the processor push the address of EENTER/ERESUME instruction 

into MSR_LASTBRANCH_n_FROM_IP, and the destination address of the EENTER/ERESUME into 
MSR_LASTBRANCH_n_TO_IP. 

• On EEXIT, the processor pushes the address of EEXIT instruction into MSR_LASTBRANCH_n_FROM_IP, and 
the address of EEXIT destination into MSR_LASTBRANCH_n_TO_IP. 

• On AEX, the processor pushes RIP saved in the SSA into MSR_LASTBRANCH_n_FROM_IP, and the address of 
AEP into MSR_LASTBRANCH_n_TO_IP. 

• For every branch inside the enclave, a branch record is pushed on the LBR stack.
Figure 43-3 shows an example of LBR stack manipulation after an opt-in entry. Every arrow in this picture indi-
cates a branch record pushed on the LBR stack. The “From IP” of the branch record contains the linear address of 
the instruction located at the start of the arrow, while the “To IP” of the branch record contains the linear address 
of the instruction at the end of the arrow. 
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43.5.2.2  LBR Stack on Opt-out Entry
An opt-out entry into an enclave suppresses last branch recording facilities, and enclave exit after an opt-out 
entry un-suppresses last branch recording facilities.
Opt-out entry into an enclave does not push any record on LBR stack.
If last branch recording facilities were enabled at the time of enclave entry, then EEXIT following such an enclave 
entry pushes one record on LBR stack. The MSR_LASTBRANCH_n_FROM_IP of such record holds the linear 
address of the instruction (EENTER or ERESUME) that was used to enter the enclave, while the 
MSR_LASTBRANCH_n_TO_IP of such record holds linear address of the destination of EEXIT. 
Additionally, if last branch recording facilities were enabled at the time of enclave entry, then an AEX after such an 
entry pushes one record on LBR stack, before pushing record for the event causing the AEX if the event pushes a 
record on LBR stack. The MSR_LASTBRANCH_n_FROM_IP of the new record holds linear address of the instruc-
tion (EENTER or ERESUME) that was used to enter the enclave, while MSR_LASTBRANCH_n_TO_IP of the new 
record holds linear address of the AEP. If the event causing AEX pushes a record on LBR stack, then the 
MSR_LASTBRANCH_n_FROM_IP for that record holds linear address of the AEP.
Figure 43-4 shows an example of LBR stack manipulation after an opt-out entry. Every arrow in this picture indi-
cates a branch record pushed on the LBR stack. The “From IP” of the branch record contains the linear address of 
the instruction located at the start of the arrow, while the “To IP” of the branch record contains the linear address 
of the instruction at the end of the arrow.

Figure 43-3    LBR Stack Interaction with Opt-in Entry
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43.5.2.3  Mispredict Bit, Record Type, and Filtering
All branch records resulting from Intel SGX instructions/AEXs are reported as predicted branches, and conse-
quently, bit 63 of MSR_LASTBRANCH_n_FROM_IP for such records is set. Branch records due to these Intel SGX 
operations are always non-HLE/non-RTM records. 
EENTER, ERESUME, EEXIT, and AEX are considered to be far branches. Consequently, bit 8 in MSR_LBR_SELECT 
controls filtering of the new records introduced by Intel SGX.

43.6 INTERACTION WITH PERFORMANCE MONITORING 

43.6.1 IA32_PERF_GLOBAL_STATUS Enhancement
On processors supporting Intel SGX, the IA32_PERF_GLOBAL_STATUS MSR provides a bit indicator, known as 
“Anti Side-channel Interference” (ASCI) at bit position 60. If this bit is 0, the performance monitoring data in 
various performance monitoring counters are accumulated normally as defined by relevant architectural/microar-
chitectural conditions. If the ASCI bit is set, the contents in various performance monitoring counters can be 
affected by the direct or indirect consequence of Intel SGX protection of enclave code executing in the processor. 

43.6.2 Performance Monitoring with Opt-in Entry
An opt-in enclave entry allow performance monitoring logic to observe the contribution of enclave code executing 
in the processor. Thus the contents of performance monitoring counters does not distinguish between contribu-

Figure 43-4    LBR Stack Interaction with Opt-out Entry
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tion originating from enclave code or otherwise. All counters, events, precise events, etc. continue to work as 
defined in the IA32/Intel 64 Software Developer Manual. Consequently, bit 60 of IA32_PERF_GLOBAL_STATUS 
MSR is not set.

43.6.3 Performance Monitoring with Opt-out Entry
In general, performance monitoring activities are suppressed when entering an opt-out enclave. This applies to 
all thread-specific, configured performance monitoring, except for the cycle-counting fixed counter, 
IA32_FIXED_CTR1 and IA32_FIXED_CTR2. Upon entering an opt-out enclave, IA32_FIXED_CTR0, IA32_PMCx 
will stop accumulating counts. Additionally, if PEBS is configured to capture PEBS record for this thread, PEBS 
record generation will also be suppressed. Consequently, bit 60 of IA32_PERF_GLOBAL_STATUS MSR is set.
Performance monitoring on the sibling thread may also be affected. Any one of IA32_FIXED_CTRx or IA32_PMCx 
on the sibling thread configured to monitor thread-specific eventing logic with AnyThread =1 is demoted to count 
only MyThread while an opt-out enclave is executing on the other thread.
...

43.6.5 PEBS Record Generation on Intel® SGX Instructions
All leaf functions of the ENCLS instruction report “Eventing RIP” of the ENCLS instruction if a PEBS record is gener-
ated at the end of the instruction execution. Additionally, the EGETKEY and EREPORT leaf functions of the ENCLU 
instruction report “Eventing RIP” of the ENCLU instruction if a PEBS record is generated at the end of the instruc-
tion execution.
If the EENTER and ERESUME leaf functions are performing an opt-in entry report “Eventing RIP” of the ENCLU 
instruction if a PEBS record is generated at the end of the instruction execution. On the other hand, if these leaf 
functions are performing an opt-out entry, then these leaf functions result in PEBS being suppressed, and no PEBS 
record is generated at the end of these instructions.
A PEBS record is generated if there is a PEBS event pending at the end of EEXIT (due to a counter overflowing 
during enclave execution or during EEXIT execution). This PEBS record contains the architectural state of the 
logical processor at the end of EEXIT. If the enclave was entered via an opt-in entry, then this record reports the 
“Eventing RIP” as the linear address of the ENCLU[EEXIT] instruction. If the enclave was entered via an opt-out 
entry, then the record reports the “Eventing RIP” as the linear address of the ENCLU[EENTER/ERESUME] instruc-
tion that performed the last enclave entry. 
A PEBS record is generated after the AEX if there is a PEBS event pending at the end of AEX (due to a counter 
overflowing during enclave execution or during AEX execution). This PEBS record contains the synthetic state of 
the logical processor that is established at the end of AEX. For opt-in entry, this record has the EVENTING_RIP set 
to the RIP saved in the SSA. For opt-out entry, the record has the EVENTING_RIP set to the linear address of 
EENTER/ERESUME used for the last enclave entry.
If the enclave was entered via an opt-in entry, then this record reports the “Eventing RIP” as the linear address in 
the SSA of the enclave (a.k.a., the “Eventing LIP” inside the enclave). If the enclave was entered via an opt-out 
entry, then the record reports the “Eventing RIP” as the linear address of the ENCLU[EENTER/ERESUME] instruc-
tion that performed the last enclave entry.
A second PEBS event may be pended during the Enclave Exiting Event (EEE). If the PEBS event is taken at the end 
of delivery of the EEE then the “Eventing RIP” in this second PEBS record is the linear address of the AEP.

43.6.6 Exception-Handling on PEBS/BTS Loads/Stores after AEX
The operating system should allocate sections of the DS save area from a non-paged pool, and mark them as 
accessed and dirty. If the loads/stores to any section of the DS save area incur faults then such faults are reported 
to the OS/VMM immediately, and generation of the PEBS/BTS record is skipped and may leave the buffers in a 
state where they have a partial PEBS or BTS records. 
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However, any events that are detected during PEBS/BTS record generation at the end of AEX and before deliv-
ering the Enclave Exiting Event (EEE) cannot be reported immediately to the OS/VMM, as an event window is not 
open at the end of AEX. Consequently, fault-like events such as page faults, EPT faults, EPT mis-configuration, 
and accesses to APIC-access page detected on stores to the PEBS/BTS buffer are not reported, and generation of 
the PEBS and/or BTS record at the end of AEX is aborted (this may leave the buffers in a state where they have 
partial PEBS or BTS records). Trap-like events detected on stores to the PEBS/BTS buffer (such as debug traps) 
are pended until the next instruction boundary, where they are handled according to the architecturally defined 
priority. The processor continues the handling of the Enclave Exiting Event (SMI, NMI, interrupt, exception 
delivery, VM exit, etc.) after aborting the PEBS/BTS record generation. 

43.6.6.1  Other Interactions with Performance Monitoring
For opt-in entry, EENTER, ERESUME, EEXIT, and AEX are all treated as predicted far branches, and any counters 
that are counting such branches are incremented by 1 as a part of retirement of these instructions. Retirement of 
these instructions is also counted in any counters configured to count instructions retired.
For opt-out entry, execution inside an enclave is treated as a single predicted branch, and all branch-counting 
performance monitoring counters are incremented accordingly. Additionally, such execution is also counted as a 
single instruction, and all performance monitoring counters counting instructions are incremented accordingly.
Enclave entry does not affect any performance monitoring counters shared between cores. 

...

36. Updates to Appendix A, Volume 3D
Change bars show changes to Appendix A of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3D: System Programming Guide, Part 4.

------------------------------------------------------------------------------------------

...

A.6 MISCELLANEOUS DATA
The IA32_VMX_MISC MSR (index 485H) consists of the following fields:
• Bits 4:0 report a value X that specifies the relationship between the rate of the VMX-preemption timer and 

that of the timestamp counter (TSC). Specifically, the VMX-preemption timer (if it is active) counts down by 1 
every time bit X in the TSC changes due to a TSC increment.

• If bit 5 is read as 1, VM exits store the value of IA32_EFER.LMA into the “IA-32e mode guest” VM-entry 
control; see Section 27.2 for more details. This bit is read as 1 on any logical processor that supports the 1-
setting of the “unrestricted guest” VM-execution control.

• Bits 8:6 report, as a bitmap, the activity states supported by the implementation:

— Bit 6 reports (if set) the support for activity state 1 (HLT).

— Bit 7 reports (if set) the support for activity state 2 (shutdown).

— Bit 8 reports (if set) the support for activity state 3 (wait-for-SIPI).
If an activity state is not supported, the implementation causes a VM entry to fail if it attempts to establish 
that activity state. All implementations support VM entry to activity state 0 (active).

• If bit 14 is read as 1, Intel® Processor Trace (Intel PT) can be used in VMX operation. If the processor supports 
Intel PT but does not allow it to be used in VMX operation, execution of VMXON clears IA32_RTIT_CTL.TraceEn 
(see “VMXON—Enter VMX Operation” in Chapter 30); any attempt to set that bit while in VMX operation 
(including VMX root operation) using the WRMSR instruction causes a general-protection exception.
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• If bit 15 is read as 1, the RDMSR instruction can be used in system-management mode (SMM) to read the 
IA32_SMBASE MSR (MSR address 9EH). See Section 34.15.6.4.

• Bits 24:16 indicate the number of CR3-target values supported by the processor. This number is a value 
between 0 and 256, inclusive (bit 24 is set if and only if bits 23:16 are clear).

• Bits 27:25 is used to compute the recommended maximum number of MSRs that should appear in the 
VM-exit MSR-store list, the VM-exit MSR-load list, or the VM-entry MSR-load list. Specifically, if the value 
bits 27:25 of IA32_VMX_MISC is N, then 512 * (N + 1) is the recommended maximum number of MSRs to be 
included in each list. If the limit is exceeded, undefined processor behavior may result (including a machine 
check during the VMX transition).

• If bit 28 is read as 1, bit 2 of the IA32_SMM_MONITOR_CTL can be set to 1. VMXOFF unblocks SMIs unless 
IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section 34.14.4).

• If bit 29 is read as 1, software can use VMWRITE to write to any supported field in the VMCS; otherwise, 
VMWRITE cannot be used to modify VM-exit information fields.

• If bit 30 is read as 1, VM entry allows injection of a software interrupt, software exception, or privileged 
software exception with an instruction length of 0.

• Bits 63:32 report the 32-bit MSEG revision identifier used by the processor.
• Bits 13:9 and bit 31 are reserved and are read as 0.

...

37. Updates to Appendix B, Volume 3D
Change bars show changes to Appendix B of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3D: System Programming Guide, Part 4.

------------------------------------------------------------------------------------------

...

B.2.1  64-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index 
value in bits 9:1. Table B-4 enumerates the 64-bit control fields.

Table B-4    Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb)
Field Name Index Encoding

Address of I/O bitmap A (full)
000000000B

00002000H

Address of I/O bitmap A (high) 00002001H

Address of I/O bitmap B (full)
000000001B

00002002H

Address of I/O bitmap B (high) 00002003H

Address of MSR bitmaps (full)1
000000010B

00002004H

Address of MSR bitmaps (high)1 00002005H

VM-exit MSR-store address (full)
000000011B

00002006H

VM-exit MSR-store address (high) 00002007H

VM-exit MSR-load address (full)
000000100B

00002008H

VM-exit MSR-load address (high) 00002009H
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VM-entry MSR-load address (full)
000000101B

0000200AH

VM-entry MSR-load address (high) 0000200BH

Executive-VMCS pointer (full)
000000110B

0000200CH

Executive-VMCS pointer (high) 0000200DH

PML address (full)2
000000111B

0000200EH

PML address (high)2 0000200FH

TSC offset (full)
000001000B

00002010H

TSC offset (high) 00002011H

Virtual-APIC address (full)3
000001001B

00002012H

Virtual-APIC address (high)3 00002013H

APIC-access address (full)4
000001010B

00002014H

APIC-access address (high)4 00002015H

Posted-interrupt descriptor address (full)5
000001011B

00002016H

Posted-interrupt descriptor address (high)5 00002017H

VM-function controls (full)6
000001100B

00002018H

VM-function controls (high)6 00002019H

EPT pointer (EPTP; full)7
000001101B

0000201AH

EPT pointer (EPTP; high)7 0000201BH

EOI-exit bitmap 0 (EOI_EXIT0; full)8
000001110B

0000201CH

EOI-exit bitmap 0 (EOI_EXIT0; high)8 0000201DH

EOI-exit bitmap 1 (EOI_EXIT1; full)8
000001111B

0000201EH

EOI-exit bitmap 1 (EOI_EXIT1; high)8 0000201FH

EOI-exit bitmap 2 (EOI_EXIT2; full)8
000010000B

00002020H

EOI-exit bitmap 2 (EOI_EXIT2; high)8 00002021H

EOI-exit bitmap 3 (EOI_EXIT3; full)8
000010001B

00002022H

EOI-exit bitmap 3 (EOI_EXIT3; high)8 00002023H

EPTP-list address (full)9
000010010B

00002024H

EPTP-list address (high)9 00002025H

VMREAD-bitmap address (full)10

000010011B
00002026H

VMREAD-bitmap address (high)10 00002027H

VMWRITE-bitmap address (full)10

000010100B
00002028H

VMWRITE-bitmap address (high)10 00002029H

Virtualization-exception information address (full)11

000010101B
0000202AH

Virtualization-exception information address (high)11 0000202BH

XSS-exiting bitmap (full)12

000010110B
0000202CH

XSS-exiting bitmap (high)12 0000202DH

Table B-4    Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb) (Contd.)
Field Name Index Encoding
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...

B.2.3  64-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields are distinguished by 
their index value in bits 9:1. Table B-6 enumerates the 64-bit guest-state fields.

ENCLS-exiting bitmap (full)13

000010111B
0000202EH

ENCLS-exiting bitmap (high)13 0000202FH

TSC multiplier (full)14

000011001B
00002032H

TSC multiplier (high)14 00002033H
NOTES:

1. This field exists only on processors that support the 1-setting of the “use MSR bitmaps” 
VM-execution control.

2. This field exists only on processors that support either the 1-setting of the “enable PML” VM-execution control.
3. This field exists only on processors that support either the 1-setting of the “use TPR shadow” VM-execution control.
4. This field exists only on processors that support the 1-setting of the “virtualize APIC accesses” VM-execution control.
5. This field exists only on processors that support the 1-setting of the “process posted interrupts” VM-execution control.
6. This field exists only on processors that support the 1-setting of the “enable VM functions” VM-execution control.
7. This field exists only on processors that support the 1-setting of the “enable EPT” VM-execution control.
8. This field exists only on processors that support the 1-setting of the “virtual-interrupt delivery” VM-execution control.
9. This field exists only on processors that support the 1-setting of the “EPTP switching” VM-function control.
10.This field exists only on processors that support the 1-setting of the “VMCS shadowing” VM-execution control.
11.This field exists only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.
12.This field exists only on processors that support the 1-setting of the “enable XSAVES/XRSTORS” VM-execution control.
13.This field exists only on processors that support the 1-setting of the “enable ENCLS exiting” VM-execution control.
14.This field exists only on processors that support the 1-setting of the “use TSC scaling” VM-execution control.

Table B-4    Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb) (Contd.)
Field Name Index Encoding

Table B-6    Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb)
Field Name Index Encoding

VMCS link pointer (full)
000000000B

00002800H

VMCS link pointer (high) 00002801H

Guest IA32_DEBUGCTL (full)
000000001B

00002802H

Guest IA32_DEBUGCTL (high) 00002803H

Guest IA32_PAT (full)1
000000010B

00002804H

Guest IA32_PAT (high)1 00002805H

Guest IA32_EFER (full)2
000000011B

00002806H

Guest IA32_EFER (high)2 00002807H

Guest IA32_PERF_GLOBAL_CTRL (full)3
000000100B

00002808H

Guest IA32_PERF_GLOBAL_CTRL (high)3 00002809H
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...

38. Updates to Appendix C, Volume 3D
Change bars show changes to Appendix C of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3D: System Programming Guide, Part 4.

------------------------------------------------------------------------------------------
Every VM exit writes a 32-bit exit reason to the VMCS (see Section 24.9.1). Certain VM-entry failures also do this 
(see Section 26.7). The low 16 bits of the exit-reason field form the basic exit reason which provides basic infor-
mation about the cause of the VM exit or VM-entry failure.

Guest PDPTE0 (full)4
000000101B

0000280AH

Guest PDPTE0 (high)4 0000280BH

Guest PDPTE1 (full)4
000000110B

0000280CH

Guest PDPTE1 (high)4 0000280DH

Guest PDPTE2 (full)4
000000111B

0000280EH

Guest PDPTE2 (high)4 0000280FH

Guest PDPTE3 (full)4
000001000B

00002810H

Guest PDPTE3 (high)4 00002811H

Guest IA32_BNDCFGS (full)5
000001001B

00002812H

Guest IA32_BNDCFGS (high)5 00002813H
NOTES:

1. This field exists only on processors that support either the 1-setting of the "load IA32_PAT" VM-entry control or that of the "save 
IA32_PAT" VM-exit control.

2. This field exists only on processors that support either the 1-setting of the "load IA32_EFER" VM-entry control or that of the "save 
IA32_EFER" VM-exit control.

3. This field exists only on processors that support the 1-setting of the "load IA32_PERF_GLOBAL_CTRL" VM-entry control.
4. This field exists only on processors that support the 1-setting of the "enable EPT" VM-execution control.
5. This field exists only on processors that support either the 1-setting of the “load IA32_BNDCFGS” VM-entry control or that of the 

“clear IA32_BNDCFGS” VM-exit control.

Table B-6    Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb) (Contd.)
Field Name Index Encoding
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Table C-1 lists values for basic exit reasons and explains their meaning. Entries apply to VM exits, unless other-
wise noted.

Table C-1    Basic Exit Reasons 
Basic Exit 
Reason Description

0 Exception or non-maskable interrupt (NMI). Either:

1: Guest software caused an exception and the bit in the exception bitmap associated with exception’s vector was 1.
2: An NMI was delivered to the logical processor and the “NMI exiting” VM-execution control was 1. This case includes 

executions of BOUND that cause #BR, executions of INT3 (they cause #BP), executions of INTO that cause #OF, 
and executions of UD2 (they cause #UD).

1 External interrupt. An external interrupt arrived and the “external-interrupt exiting” VM-execution control was 1.

2 Triple fault. The logical processor encountered an exception while attempting to call the double-fault handler and 
that exception did not itself cause a VM exit due to the exception bitmap.

3 INIT signal. An INIT signal arrived

4 Start-up IPI (SIPI). A SIPI arrived while the logical processor was in the “wait-for-SIPI” state.

5 I/O system-management interrupt (SMI). An SMI arrived immediately after retirement of an I/O instruction and 
caused an SMM VM exit (see Section 34.15.2).

6 Other SMI. An SMI arrived and caused an SMM VM exit (see Section 34.15.2) but not immediately after retirement of 
an I/O instruction.

7 Interrupt window. At the beginning of an instruction, RFLAGS.IF was 1; events were not blocked by STI or by MOV 
SS; and the “interrupt-window exiting” VM-execution control was 1.

8 NMI window. At the beginning of an instruction, there was no virtual-NMI blocking; events were not blocked by MOV 
SS; and the “NMI-window exiting” VM-execution control was 1.

9 Task switch. Guest software attempted a task switch.

10 CPUID. Guest software attempted to execute CPUID.

11 GETSEC. Guest software attempted to execute GETSEC.

12 HLT. Guest software attempted to execute HLT and the “HLT exiting” VM-execution control was 1.

13 INVD. Guest software attempted to execute INVD.

14 INVLPG. Guest software attempted to execute INVLPG and the “INVLPG exiting” VM-execution control was 1.

15 RDPMC. Guest software attempted to execute RDPMC and the “RDPMC exiting” VM-execution control was 1.

16 RDTSC. Guest software attempted to execute RDTSC and the “RDTSC exiting” VM-execution control was 1.

17 RSM. Guest software attempted to execute RSM in SMM.

18 VMCALL. VMCALL was executed either by guest software (causing an ordinary VM exit) or by the executive monitor 
(causing an SMM VM exit; see Section 34.15.2).

19 VMCLEAR. Guest software attempted to execute VMCLEAR.

20 VMLAUNCH. Guest software attempted to execute VMLAUNCH.

21 VMPTRLD. Guest software attempted to execute VMPTRLD.

22 VMPTRST. Guest software attempted to execute VMPTRST.

23 VMREAD. Guest software attempted to execute VMREAD.

24 VMRESUME. Guest software attempted to execute VMRESUME.

25 VMWRITE. Guest software attempted to execute VMWRITE.

26 VMXOFF. Guest software attempted to execute VMXOFF.
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27 VMXON. Guest software attempted to execute VMXON.

28 Control-register accesses. Guest software attempted to access CR0, CR3, CR4, or CR8 using CLTS, LMSW, or 
MOV CR and the VM-execution control fields indicate that a VM exit should occur (see Section 25.1 for details). This 
basic exit reason is not used for trap-like VM exits following executions of the MOV to CR8 instruction when the “use 
TPR shadow” VM-execution control is 1.

29 MOV DR. Guest software attempted a MOV to or from a debug register and the “MOV-DR exiting” VM-execution 
control was 1.

30 I/O instruction. Guest software attempted to execute an I/O instruction and either:

1: The “use I/O bitmaps” VM-execution control was 0 and the “unconditional I/O exiting” VM-execution control was 1.
2: The “use I/O bitmaps” VM-execution control was 1 and a bit in the I/O bitmap associated with one of the ports 

accessed by the I/O instruction was 1.

31 RDMSR. Guest software attempted to execute RDMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in read bitmap for low MSRs is 1, 

where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in read bitmap for high MSRs is 1, where 

n is the value of RCX & 00001FFFH.

32 WRMSR. Guest software attempted to execute WRMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in write bitmap for low MSRs is 1, 

where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in write bitmap for high MSRs is 1, 

where n is the value of RCX & 00001FFFH.

33 VM-entry failure due to invalid guest state. A VM entry failed one of the checks identified in Section 26.3.1.

34 VM-entry failure due to MSR loading. A VM entry failed in an attempt to load MSRs. See Section 26.4.

36 MWAIT. Guest software attempted to execute MWAIT and the “MWAIT exiting” VM-execution control was 1.

37 Monitor trap flag. A VM entry occurred due to the 1-setting of the “monitor trap flag” VM-execution control and 
injection of an MTF VM exit as part of VM entry. See Section 25.5.2.

39 MONITOR. Guest software attempted to execute MONITOR and the “MONITOR exiting” VM-execution control was 1.

40 PAUSE. Either guest software attempted to execute PAUSE and the “PAUSE exiting” VM-execution control was 1 or 
the “PAUSE-loop exiting” VM-execution control was 1 and guest software executed a PAUSE loop with execution 
time exceeding PLE_Window (see Section 25.1.3).

41 VM-entry failure due to machine-check event. A machine-check event occurred during VM entry (see Section 
26.8).

43 TPR below threshold. The logical processor determined that the value of bits 7:4 of the byte at offset 080H on the 
virtual-APIC page was below that of the TPR threshold VM-execution control field while the “use TPR shadow” VM-
execution control was 1 either as part of TPR virtualization (Section 29.1.2) or VM entry (Section 26.6.7).

44 APIC access. Guest software attempted to access memory at a physical address on the APIC-access page and the 
“virtualize APIC accesses” VM-execution control was 1 (see Section 29.4).

45 Virtualized EOI. EOI virtualization was performed for a virtual interrupt whose vector indexed a bit set in the EOI-
exit bitmap.

Table C-1    Basic Exit Reasons  (Contd.)
Basic Exit 
Reason Description
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...

46 Access to GDTR or IDTR. Guest software attempted to execute LGDT, LIDT, SGDT, or SIDT and the “descriptor-table 
exiting” VM-execution control was 1.

47 Access to LDTR or TR. Guest software attempted to execute LLDT, LTR, SLDT, or STR and the “descriptor-table 
exiting” VM-execution control was 1.

48 EPT violation. An attempt to access memory with a guest-physical address was disallowed by the configuration of 
the EPT paging structures.

49 EPT misconfiguration. An attempt to access memory with a guest-physical address encountered a misconfigured 
EPT paging-structure entry.

50 INVEPT. Guest software attempted to execute INVEPT.

51 RDTSCP. Guest software attempted to execute RDTSCP and the “enable RDTSCP” and “RDTSC exiting” VM-execution 
controls were both 1.

52 VMX-preemption timer expired. The preemption timer counted down to zero.

53 INVVPID. Guest software attempted to execute INVVPID.

54 WBINVD. Guest software attempted to execute WBINVD and the “WBINVD exiting” VM-execution control was 1.

55 XSETBV. Guest software attempted to execute XSETBV.

56 APIC write. Guest software completed a write to the virtual-APIC page that must be virtualized by VMM software 
(see Section 29.4.3.3).

57 RDRAND. Guest software attempted to execute RDRAND and the “RDRAND exiting” VM-execution control was 1.

58 INVPCID. Guest software attempted to execute INVPCID and the “enable INVPCID” and “INVLPG exiting” 
VM-execution controls were both 1.

59 VMFUNC. Guest software invoked a VM function with the VMFUNC instruction and the VM function either was not 
enabled or generated a function-specific condition causing a VM exit.

60 ENCLS. Guest software attempted to execute ENCLS and “enable ENCLS exiting” VM-execution control was 1 and 
either (1) EAX < 63 and the corresponding bit in the ENCLS-exiting bitmap is 1; or (2) EAX ≥ 63 and bit 63 in the 
ENCLS-exiting bitmap is 1.

61 RDSEED. Guest software attempted to execute RDSEED and the “RDSEED exiting” VM-execution control was 1.

62 Page-modification log full. The processor attempted to create a page-modification log entry and the value of the 
PML index was not in the range 0–511.

63 XSAVES. Guest software attempted to execute XSAVES, the “enable XSAVES/XRSTORS” was 1, and a bit was set in 
the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-exiting bitmap.

64 XRSTORS. Guest software attempted to execute XRSTORS, the “enable XSAVES/XRSTORS” was 1, and a bit was set 
in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-exiting bitmap.

Table C-1    Basic Exit Reasons  (Contd.)
Basic Exit 
Reason Description
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